vitis::ai::RGBDsegmentation
Base class for
RGBDsegmentation
. Input is a pair images which are RGB image (cv::Mat) and HHA map generated with depth map (cv::Mat).
Output is a heatmap where each pixels is predicted with a semantic category, like chair, bed, usual object in indoor.
Sample code:
Mat img_bgr = cv::imread("sample_rgbdsegmentation_bgr.jpg");
Mat img_hha = cv::imread("sample_rgbdsegmentation_hha.jpg");
auto segmentation = vitis::ai::RGBDsegmentation::create("SA-Gate_pt", true);
auto result = segmentation->run(img_bgr, img_hha);
imwrite("result.jpg", result.segmentation);
Display of the model results: width=\textwidth
Quick Function Reference
The following table lists all the functions defined in the vitis::ai::RGBDsegmentation
class:
Type | Name | Arguments |
---|---|---|
std::unique_ptr< RGBDsegmentation > | create |
|
SegmentationResult | run |
|
create
Factory function to get an instance of derived classes of class RGBDsegmentation
.
Prototype
std::unique_ptr< RGBDsegmentation
> create(const std::string &model_name, bool need_preprocess=true);
Parameters
The following table lists the create
function arguments.
Type | Name | Description |
---|---|---|
const std::string & | model_name | Model name |
bool | need_preprocess | Normalize with mean/scale or not, default value is true. |
Returns
An instance ofRGBDsegmentation
class. run
Function to get running result of the RGBDsegmentation
neuron network.
Prototype
SegmentationResult
run(const cv::Mat &image_bgr, const cv::Mat &image_hha)=0;
Parameters
The following table lists the run
function arguments.
Type | Name | Description |
---|---|---|
const cv::Mat & | image_bgr | Input data of input image (cv::Mat). |
const cv::Mat & | image_hha | Input data of input image_hha (cv::Mat). |
Returns
SegmentationResult
.