VCK5000 Evaluation Kit
The Versal ACAP VCK5000 is a Versal AI Core series evaluation kit that enables designers to develop solutions using AI and DSP engines capable of delivering over 100X greater compute performance compared to current server class CPUs. For this release, DPU core with batch=8 is implemented using AI Engines.
VCK5000 Performance with 8PE350 MHz DPUCVDX8H
The following table lists the throughput performance (in frames/sec or fps) for various neural network samples on the Versal ACAP VCK5000 Gen3x16 with DPUCVDX8H running at 8PE@350 MHz.
No | Neural Network | Input Size | GOPS | DPU Frequency (MHz) | Performance (fps) (Multiple thread) |
---|---|---|---|---|---|
1 | densebox_320_320 | 320x320 | 0.49 | 350 | 5902.4 |
2 | densebox_640_360 | 360x640 | 1.1 | 350 | 2802.39 |
3 | ENet_cityscapes_pt | 512x1024 | 8.6 | 350 | 140.057 |
4 | face_landmark | 96x72 | 0.14 | 350 | 14111.7 |
5 | face-quality_pt | 80x60 | 0.06 | 350 | 41833.6 |
6 | fpn | 256x512 | 8.9 | 350 | 1074.4 |
7 | FPN_Res18_Medical_segmentation | 320x320 | 45.3 | 350 | 535.843 |
8 | FPN-resnet18_covid19-seg_pt | 352x352 | 22.7 | 350 | 1071.96 |
9 | inception_v1 | 224x224 | 3.2 | 350 | 4105.35 |
10 | inception_v1_tf | 224x224 | 3 | 350 | 4362.47 |
11 | medical_seg_cell_tf2 | 128x128 | 5.3 | 350 | 1955.31 |
12 | MLPerf_resnet50_v1.5_tf | 224x224 | 8.19 | 350 | 4425.9 |
13 | multi_task | 288x512 | 14.8 | 350 | 694.169 |
14 | openpose_pruned_0_3 | 368x368 | 49.9 | 350 | 168.812 |
15 | plate_detection | 320x320 | 0.49 | 350 | 7812.45 |
16 | refinedet_baseline | 480x360 | 123 | 350 | 291.851 |
17 | RefineDet-Medical_EDD_tf | 320x320 | 9.8 | 350 | 1287.96 |
18 | refinedet_pruned_0_8 | 360x480 | 25 | 350 | 654.851 |
19 | refinedet_pruned_0_92 | 360x480 | 10.1 | 350 | 844.655 |
20 | refinedet_pruned_0_96 | 360x480 | 5.1 | 350 | 888.547 |
21 | refinedet_VOC_tf | 320x320 | 81.9 | 350 | 378.612 |
22 | reid | 80x160 | 0.95 | 350 | 10467.2 |
23 | resnet18 | 224x224 | 3.7 | 350 | 6434.83 |
24 | resnet50 | 224x224 | 7.7 | 350 | 4516.51 |
25 | resnet50_pt | 224x224 | 4.1 | 350 | 4453.62 |
26 | resnet50_tf2 | 224x224 | 7.7 | 350 | 4515.15 |
27 | resnet_v1_101_tf | 224x224 | 14.4 | 350 | 2938.99 |
28 | resnet_v1_152_tf | 224x224 | 21.8 | 350 | 2095.6 |
29 | resnet_v1_50_tf | 224x224 | 7 | 350 | 4846.78 |
30 | salsanext_pt | 64x2048 | 20.4 | 350 | 171.977 |
31 | SemanticFPN_cityscapes_pt | 256x512 | 10 | 350 | 1080.18 |
32 | sp_net | 128x224 | 0.55 | 350 | 7654.76 |
33 | squeezenet | 227x227 | 0.76 | 350 | 8256.32 |
34 | squeezenet_pt | 224x224 | 0.82 | 350 | 5147.72 |
35 | ssd_adas_pruned_0_95 | 360x480 | 6.3 | 350 | 930.74 |
36 | ssd_traffic_pruned_0_9 | 360x480 | 11.6 | 350 | 894.817 |
37 | tiny_yolov3_vmss | 416x416 | 5.46 | 350 | 2612.41 |
38 | unet_chaos-CT_pt | 512x512 | 23.3 | 350 | 229.231 |
39 | vpgnet_pruned_0_99 | 480x640 | 2.5 | 350 | 600.461 |
40 | yolov2_voc | 448x448 | 34 | 350 | 949.278 |
41 | yolov2_voc_pruned_0_66 | 448x448 | 11.6 | 350 | 1574.72 |
42 | yolov2_voc_pruned_0_71 | 448x448 | 9.9 | 350 | 1727.27 |
43 | yolov2_voc_pruned_0_77 | 448x448 | 7.8 | 350 | 1698.6 |
44 | yolov3_adas_pruned_0_9 | 256x512 | 5.5 | 350 | 1379.55 |
45 | yolov3_bdd | 288x512 | 53.7 | 350 | 383.884 |
46 | yolov3_voc | 416x416 | 65.4 | 350 | 459.207 |
47 | yolov3_voc_tf | 416x416 | 65.6 | 350 | 459.307 |