
Floorplanning
Methodology Guide

UG 633 (v14.1) April 24, 2012

Floorplanning Methodology Guide www.xilinx.com UG 633 (v14.1) April 24, 2012

Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely
for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute,
republish, download, display, post, or transmit the Documentation in any form or by any means including, but not
limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of
Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the
right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation
to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx
expressly disclaims any liability in connection with technical support or assistance that may be provided to you in
connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX
MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE
DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX
BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE
DOCUMENTATION.

© Copyright 2011 Xilinx Inc. All Rights Reserved. XILINX, the Xilinx logo, the Brand Window and other designated
brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective
owners. The PowerPC name and logo are registered trademarks of IBM Corp., and used under license. All other
trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

03/01/2011 13.1 • Minor updates throughout.

04/24/2012 14.1 • Updated figures.
• Made minor language edits.

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 3
UG 633 (v14.1) April 24, 2012

Revision History . 2

Chapter 1: Floorplanning Overview
About Floorplanning . 5
Timing Closure . 6
Floorplanning Basics . 8
Floorplanning Considerations . 11
Working With Hierarchical Netlists . 11
Logic Synthesis Recommendations . 12
Increasing Consistency and Other Benefits of Floorplanning. 12
Using Clock Resources to Guide Floorplanning. 13

Chapter 2: Floorplanning Flows
Re-Use Flow (Design Meets Timing Some of the Time) . 15
Hierarchical Floorplanning Flow (Design Has Never Met Timing) 20

Chapter 3: Using Floorplanning for Timing Closure
Floorplanning Questions . 23
Place and Route Results . 23
Timing Results. 25
Gates and Hierarchies . 25
Shaping the Floorplan for the Critical Hierarchy . 28
Deciding What Else Should Be Floorplanned . 29

Chapter 4: Floorplanning Iteratively
General Recommendations . 31
Revise Critical Paths . 31
Improve Timing in Critical Hierarchies . 32

Appendix A: Additional Resources
Xilinx Resources . 33
ISE Documentation . 33
PlanAhead Documentation . 34

Table of Contents

http://www.xilinx.com

4 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 5
UG 633 (v14.1) April 24, 2012

Chapter 1

Floorplanning Overview

This chapter provides an overview of floorplanning.

About Floorplanning
Floorplanning allows you to:

• Choose the best grouping and connectivity of logic in a design, and

• Manually place blocks of logic in an FPGA device.

Goals of Floorplanning
The goals of floorplanning are to:

• Increase density, routability, or performance.

• Reduce route delays for selected logic by suggesting a better placement.

Benefits of Floorplanning
Floorplanning can:

• Improve performance.

• Enable a placed and routed design to meet timing.

• Help you achieve:

• Higher system clock frequency

• Shorter implementation run times

• Greater consistency in timing

• All of these benefits together

Limitations of Floorplanning
Even a good floorplan does not guarantee that a design will meet timing. The floorplan
does not fix routing. The floorplan only provides a placement seed.

http://www.xilinx.com

6 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 1: Floorplanning Overview

When To Floorplan
Consider floorplanning when a design:

• Does not meet timing consistently.

See Re-Use Flow (Design Meets Timing Some of the Time) in Chapter 2, Floorplanning
Flows.

OR

• Has never met timing.

See Hierarchical Floorplanning Flow (Design Has Never Met Timing) in Chapter 2,
Floorplanning Flows.

When to floorplan varies greatly among design teams. Design teams may floorplan:

• Before the first iteration through place and route.

• When a problem is identified before floorplanning.

• When a design does not consistently meet the setup timing constraint.

Timing Closure
Floorplanning reduces path delays, leading to timing closure.

During implementation, the software:

1. Compares the logic and routing delay against the time allowed by the timing
constraint.

2. Takes Clock Jitter and Clock-to-Clock Skew into account.

3. Reports the amount of time by which the paths:

• Beat timing constraints (meet timing), or

• Exceed timing constraints (fail timing).

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 7
UG 633 (v14.1) April 24, 2012

Timing Closure

Example Timing Report

Ensuring That Timing Constraints Are Accurate
As a first step in floorplanning, ensure that the timing constraints are accurate.

Determining Whether the Path is a Multi-Cycle Path or a False Path
Sections of some designs are not clocked every clock cycle, or the paths may not be reached
due to the control structure. The implementation software cannot make this determination.

These paths will be needlessly timed unless timing constraints mark this logic as
multi-cycle paths or false paths.

Many designs improve timing when the constraints are relaxed to match the design logic.

For a discussion of multi-cycle paths and false paths, see the Xilinx Timing Closure User
Guide (UG612) cited in Appendix A, Additional Resources.

Clock Jitter and Clock-to-Clock Skew
The allowed time is modified by:

• Clock jitter

• Clock-to-clock skew

If the destination clock rises before the source clock, the allowable time is reduced,
effectively tightening the period.

If the source clock has jitter, the software modifies the allowed time.

The timing report shows the modifications. For failing timing paths, make sure the jitter
and skew numbers are reasonable.

Figure X-Ref Target - Figure 1-1

Figure 1-1: Example Timing Report

http://www.xilinx.com

8 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 1: Floorplanning Overview

Reducing Path Delay
Once the timing constraints and clocking structures are verified, timing can be met by
reducing path delay. The path delay is split between logic and routing. The delay
contributions from one or both must be reduced.

Compare the logic delay against the allowed period. If the logic delay exceeds, or is a large
percentage of the allowed path delay, the path requires additional work on the gates. You
can:

• Modify the RTL to add in registers, or

• Change the constraints, or

• Set up the synthesis engine differently.

If a large percentage of the path delay comes from routing, placement may be a problem.

Check to see if high fanout nets, pin placement, or other structures force a spread out of
placement. If not, use floorplanning to either:

• Reduce route delay, or

• Determine how RTL needs to be modified.

Floorplanning Basics
Following are some basic principles of floorplanning.

Reducing Route Delay
Floorplanning can reduce the route delay in a critical path. You can:

• Identify logic that is contributing to timing problems.

• Guide the place and route software to keep the logic close together.

The goal is to improve the timing of the critical paths by reducing the amount of route
delay.

Floorplanning does not change the logic that makes up the critical path. You must guide
the synthesis software to structure the gates to support the floorplan.

If most of the delay in the critical path comes from logic delay, re-synthesizing the design
may bring larger gains than floorplanning.

During floorplanning, you may discover other issues that might benefit from re-synthesis.
Designers often replicate registers to stay local to clusters of dispersed loads.

Incremental Design
You can use incremental design techniques with floorplanning for designs in which design
consistency is valued over absolute performance.

For more information, see “Floorplanning Partitions” in Chapter 2, “Design
Considerations” in the Hierarchical Design Methodology Guide (UG748) cited in Appendix A,
Additional Resources.

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 9
UG 633 (v14.1) April 24, 2012

Floorplanning Basics

Detailed Gate-Level Floorplanning
Detailed gate-level floorplanning places individual logic elements of a critical path on a
specific site on the chip.

You can hand place some or all of the gates for a timing critical path. Placed logic shows in
orange in the following figure.

Consider detailed gate-level floorplanning only as a last resort.

• Detailed gate-level floorplanning is time consuming.

• Detailed gate-level floorplanning requires comprehensive knowledge of the device to
achieve the proper routing.

• The resulting detailed gate-level placement is fragile. If gates or gate names change
during synthesis, the placement may no longer be valid.

Hierarchical Floorplanning
Use hierarchical floorplanning to constrain levels of hierarchy to specific regions on the
chip.

Xilinx recommends hierarchical floorplanning instead of gate level floorplanning.

Hierarchical floorplanning allows you to:

• Place one or more levels of hierarchy on a small region of the chip.

See Figure 1-3, Floorplanned Hierarchy.

• Provide quick guidance to the placer.

The hierarchy contains all the gates.

Figure X-Ref Target - Figure 1-2

Figure 1-2: Floorplanned Logic by Hand

http://www.xilinx.com

10 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 1: Floorplanning Overview

• Gate changes do not render the floorplan invalid as long as the hierarchy names do
not change.

• The placer relies on a comprehensive knowledge of the device and timing arcs in
order to generate a fine grain placement.

• The resulting floorplan is typically resistant to design changes.

High-Level Floorplan
You may need to generate a high-level floorplan for a design while:

• The RTL is being architected, and

• The pinout is being implemented.

The high-level floorplan:

• Enables you to visualize data flow across the device.

• May help you see how to generate better RTL and a better pinout.

Note: Do not use this floorplan for place and route.

Xilinx recommends that you:

• Synthesize the design.

• Run implementation first with only pinout constraints.

• Use a high-level floorplan together with the information from place and route, if the
design fails timing, to generate a new floorplan that is likely to improve timing.

Figure X-Ref Target - Figure 1-3

Figure 1-3: Floorplanned Hierarchy

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 11
UG 633 (v14.1) April 24, 2012

Floorplanning Considerations

Floorplanning Considerations
Following are some considerations into account during floorplanning.

Floorplanning is Often Iterative
Floorplanning is often an iterative process. The first pass at a floorplan may address issues
in one section, only to reveal that a different section is failing.

Floorplanning Can Hurt Timing
Floorplanning can hurt timing as well as improve it. This is especially true when it is not
clear what needs to be floorplanned, and where the design needs to be placed.

Use Multiple Trials and Notes
Multiple trials and notes about the design can help you create a working floorplan.

Floorplan Timing-Critical Logic
When you initially floorplan a design:

• Floorplan only the logic that the implementation software considers timing-critical.

• Begin with the lower level hierarchies that the implementation software considers
timing-critical.

Do Not Floorplan the Entire Design
Most FPGA designs, as presented to the implementation software in the post-synthesis
netlist form, support floorplanning the entire design.

Xilinx does not recommend floorplanning the entire design. Floorplanning the entire
design based on the data flow diagrams almost always hurts timing.

Working With Hierarchical Netlists
When working with hierarchical netlists:

1. The RTL structure can help or hinder floorplanning for timing closure. You can
floorplan the hierarchy that is coded into the RTL as presented by the synthesis
software.

2. Set up the synthesis software to generate a hierarchical netlist. Working with a
hierarchical netlist is easier than working with a netlist without a hierarchy.

3. Timing can be met more easily if you understand how the design will be spread out on
the chip when you construct the hierarchy.

4. If two similar memory interfaces must be placed on opposite sides of the chip, you can
give each interface its own copy of high fanout control signals in the RTL source.

http://www.xilinx.com

12 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 1: Floorplanning Overview

5. The synthesis software often does not replicate signals optimally. When synthesis
replicates a high fanout driving a flip flop, such as a reset flop, synthesis may make
two copies with lower loading that both have to span the chip.

6. You can duplicate the register by hand to create two copies with lower fanout:

• One register drives the loads on one side of the chip.

• The other register drives the loads on the opposite side of the chip.

Logic Synthesis Recommendations
Follow these logic synthesis recommendations:

1. Structure the RTL logic to confine critical timing paths to individual modules. Critical
paths that span large numbers of hierarchical modules are difficult to floorplan.

2. Register the outputs of all the modules to reduce the number of modules involved in a
critical path.

3. Replicate the drivers of nets that are separated on the die. Synthesis may need an
attribute to preserve logically equivalent logic.

4. Long paths in single large hierarchical block can make floorplanning difficult. Because
to is easier to work with smaller hierarchical blocks, Xilinx recommends dividing large
hierarchical blocks in the RTL.

5. Intermingled critical paths can be difficult to floorplan. Divide large critical blocks into
blocks that are smaller and easier to isolate.

6. If you expect the design to change often, consider using incremental synthesis.

• Synthesize individual blocks separately, or

• Use SYN_HIER=HARD to preserve the hierarchy.

Hierarchy preservation helps an incremental flow, but may hurt performance because
global optimizations across hierarchy are disabled. Consider this trade-off before
using incremental RTL synthesis methodology.

7. Constrain the synthesis engine to rebuild or otherwise preserve the hierarchy in the
synthesized netlist.

• Flattened netlists may be optimal for synthesis, but make it difficult to:

- Floorplan.

- Constrain placement.

• Use the synthesis option to rebuild the hierarchy.

- For XST, use -netlist_hierarchy = rebuilt.

- The PlanAhead™ software includes the synthesis option by default.

Increasing Consistency and Other Benefits of Floorplanning
A successful floorplan can:

• Increase design consistency.

• Improve quality of results (QOR).

• Take a design from failing timing to meeting timing.

Many hierarchical floorplans work across multiple netlist revisions as bug fixes are
incorporated from simulation and board testing. However, blocks that meet timing on one

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 13
UG 633 (v14.1) April 24, 2012

Using Clock Resources to Guide Floorplanning

pass may fail timing on another pass. Placement is only a guide to place and route. Routing
is not locked down.

If achieving design consistency is more important than achieving the highest performance,
consider the trade-offs of incorporating incremental synthesis and implementation. These
flows can limit the scope of gate-level netlist changes, and preserve placement and routing
between different runs. These techniques achieve consistency at the cost of some QOR. You
should decide which flow to use at the beginning of your design cycle, not after the design
is well underway.

For more information, see Chapter 2, “Design Considerations” in the Hierarchical Design
Methodology Guide (UG748) cited in Appendix A, Additional Resources.

Using Clock Resources to Guide Floorplanning
Different FPGA device families have different restrictions on the placement of logic for a
design with a high percentage of clock resources. Consider the device clock rules when
placing the logic.

The PlanAhead software can:

• Help constrain some clocks to certain regions on the chip.

• Graphically display the various clock regions or clock quadrants within the chip.

The Clock Region Properties or Pblock Properties Statistics:

• Show where clock resources are located in the Clock Resources view.

• Show which clock nets and clock regions:

• Are present in all Pblocks, and

• Are defined by AREA_GROUP constraints.

The schematic view can show the logic and hierarchy attached to each clock net.

http://www.xilinx.com

14 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 1: Floorplanning Overview

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 15
UG 633 (v14.1) April 24, 2012

Chapter 2

Floorplanning Flows

Xilinx® supports the following floorplanning flows:

• Re-Use Flow (Design Meets Timing Some of the Time)

• Hierarchical Floorplanning Flow (Design Has Never Met Timing)

Both flows can significantly impact timing.

Re-Use Flow (Design Meets Timing Some of the Time)
The Re-Use Flow can close timing on a design that meets timing some of the time. You can
re-use some block RAM and DSP48 component placement from a successful
implementation run to seed a later run.

Advantages and Disadvantages of Re-Use Flow
The Re-Use Flow has the following advantages:

• Can be applied quickly.

• Can reduce implementation run times.

• Can improve consistency of meeting timing.

• Does not require extensive knowledge of the device to place the design.

The Re-Use Flow has the following disadvantages:

• Does not work if the design does not meet timing at all.

• Limits design change.

• May not consistently meet timing.

How Re-Use Flow Works
One source of timing variability is the macro placement, such as block RAM and DSP48
components. Placed macros can act as a seed to the LUT and FF placement. By re-using
macro placement from an implementation run that meets timing, you can reduce some
variability from one implementation run to the next. This allows the implementation
software to find a placement that meets timing, then re-use some of it for later turns.

This approach can be used when:

• The design meets timing some of the time, and

• The names and structures for the macros do not change.

The placement of the larger macros can suggest a placement for the other gates. Timing
may be more stable and, in some cases, implementation run times may decrease.

http://www.xilinx.com

16 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 2: Floorplanning Flows

Start with a PAR run that routes and meets timing. Look for a Timing Score of 0, and 0
unroutes in the Design Runs view. If multiple runs meet timing, start with the run that has
the shortest implementation run time.

Using an Implementation Run

You can use an implementation run in:

• Scripts

• Project Navigator

• The PlanAhead™ software

Load the design that meets timing into the PlanAhead software to constrain placement.

Viewing Implementation Placement

To see where the implementation software placed the gates:

1. Run Project Navigator > Analyze Timing/Floorplan Design, or

2. Select PlanAhead > Flow Navigator > Implement Design to open the implemented
design, or

3. If implementation was run in stand-alone scripts:

a. Create a new PlanAhead software project

b. Select New Project wizard > Import ISE Place and Route Results.

Figure X-Ref Target - Figure 2-1

Figure 2-1: Project Summary

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 17
UG 633 (v14.1) April 24, 2012

Re-Use Flow (Design Meets Timing Some of the Time)

Re-Using the Placement
When the design meets timing, you can re-use the placement. Do not fix everything in
place, because the design is likely to change.

On most designs, the block RAM and DSP48 primitives have a relatively stable set of
primitives and names. Re-using the placement of only the block RAM and DSP48
primitives helps maintain timing as other gates change.

Searching for Primitives

The PlanAhead software allows you to easily find all:

• Block Memory (RAMB and FIFO primitives)

• Block Arithmetic (MULT and DSP primitives)

Figure X-Ref Target - Figure 2-2

Figure 2-2: Viewing Implementation Placement

http://www.xilinx.com

18 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 2: Floorplanning Flows

To search for these primitives, select Edit > Find. See the following figure.

The search compiles a list of all matching objects. All placements for the implementation
run are loaded. The macro placement needed for a seed must be isolated from the other
placement.

Fixed and Unfixed Placement
The PlanAhead software has two types of placement:

• Fixed Placement

• Unfixed Placement

Table 2-1: Placement Types

Fixing the Logic
To fix the logic:

1. Select the placed objects to be fixed.

Figure X-Ref Target - Figure 2-3

Figure 2-3: Searching for the Memory and Arithmetic Blocks

Fixed Placement Unfixed Placement

Created From • Placed from a User
Constraints File (UCF), or

• Designated by the user in
the PlanAhead software

• Back-annotated from the
implementation software

Reused Yes No

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 19
UG 633 (v14.1) April 24, 2012

Re-Use Flow (Design Meets Timing Some of the Time)

2. Right-click.

3. Select Fix Instances.

Analyzing and Modifying Placement
The placed logic in the Device view changes color to show the change in how the software
handles the placement.

The UCF is updated with the new constraints only after a save.

The UCF now has multiple gate level constraints in the form:

INST "usbEngine0/usb_out/buffer_fifo/Mram_fifo_ram" LOC = RAMB36_X3Y14;
INST "fftEngine/fftInst/arnd2/ct5/Maddsub_n0027" LOC = DSP48_X1Y26;

If the names in the gate level netlist change, re-run the placement to update the references
defined in the LOC constraints.

If the macros or the logic around the macros change, clear and rerun the placement.

If the design regularly fails timing:

• Run PAR without the LOC constraints on the macros.

• Tweak placement of individual block RAM or DSP48 components (advanced users).

For more information on analyzing and modifying placement, see:

• Chapter 10, “Analyzing the Implementation Results” in the PlanAhead User Guide
(UG632) cited in Appendix A, Additional Resources.

• Chapter 11, “Floorplanning the Design” in the PlanAhead User Guide (UG632) cited in
Appendix A, Additional Resources.

Figure X-Ref Target - Figure 2-4

Figure 2-4: Selecting Logic in the Find Results Dialog Box

http://www.xilinx.com

20 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 2: Floorplanning Flows

Hierarchical Floorplanning Flow (Design Has Never Met Timing)
The Hierarchical Floorplanning Flow is more powerful than the Re-Use Flow (Design
Meets Timing Some of the Time). This flow can:

• Close timing on a design that has never met timing.

• Suggest design and logic changes to meet timing more easily and consistently.

• Significantly impact timing.

If floorplanned logic is slower, remove the floorplanned logic and try another approach. If
logic that is not floorplanned is slower, try floorplanning it as well.

Advantages and Disadvantages of Hierarchical Floorplanning Flow
The Hierarchical Floorplanning Flow has the following advantages:

• Resists design change.

• Can close timing.

• Can bring consistency.

The Hierarchical Floorplanning Flow has the following disadvantages:

• Requires significant engineering time.

• May require iterations.

Using Hierarchical Floorplanning Flow in Designs That Have Not Met
Timing

Hierarchical floorplanning is the best flow for closing timing in designd that have not met
timing.

Hierarchical floorplanning allows you to:

• Take smaller levels of hierarchy.

• Constrain the hierarchy to a region on the chip.

• Use that as a guide to implementation.

This involves more work than a design that meets timing.

Implementation:

• Has comprehensive knowledge of the critical paths and the structure of the chip.

• Generally does a good job of the fine grain placement.

• Cannot always find a solution for the coarse placement for a large flat design.

You can help implementation by seeding a coarse placement with the hierarchies that
contain gates that fail timing after implementation.

You should have an idea of the final pinout when floorplanning.

Blocks that connect to I/Os must often be placed near their I/Os. During floorplanning, it
may become obvious that a pinout is pulling timing critical paths apart. If detected early
enough, it may be possible to change the pinout or logic to improve timing closure.

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 21
UG 633 (v14.1) April 24, 2012

Hierarchical Floorplanning Flow (Design Has Never Met Timing)

These lines define the shape on the chip, and what to place into it.

You can:

• Set up a region that does not constrain all these ranges.

• Constrain only the block RAM components to sites on the chip by using:

INST "usbEngine1" AREA_GROUP = "pblock_usbEngine1";
AREA_GROUP "pblock_usbEngine1" RANGE=RAMB18_X0Y24:RAMB18_X2Y47;
AREA_GROUP "pblock_usbEngine1" RANGE=RAMB36_X0Y12:RAMB36_X2Y23;

The slices and DSP are now unconstrained.

http://www.xilinx.com

22 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 2: Floorplanning Flows

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 23
UG 633 (v14.1) April 24, 2012

Chapter 3

Using Floorplanning for Timing Closure

This chapter discusses using floorplanning for timing closure.

Floorplanning Questions
When creating a floorplan, keep the following questions in mind:

1. What are the timing failures?

2. What is the critical hierarchy?

3. Are changes to floorplanning or logic alone enough to close timing?

4. Does anything else need to be floorplanned?

5. Can the critical hierarchies be floorplanned?

6. What should be placed where?

To answer these questions:

• Look at the timing paths, placement, and logic structure in the paths, and

• Understand the pinout and the design.

See the following example of a design walkthrough.

Place and Route Results
Only post-implementation timing results can identify which logic is failing timing. If the
design stills fails timing after implementation, load the results into the PlanAhead™
software.

The placement results, timing results, and gates can all be viewed in one place. To obtain
ideas for troubleshooting, select multiple critical paths and view the placement See
Figure 3-1, Placement of Paths Failing Timing.

http://www.xilinx.com

24 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 3: Using Floorplanning for Timing Closure

This figure shows that the block RAM components with critical paths are spread out over
more of the chip than necessary. Use floorplanning to generate a tighter placement.

The timing problem occurs in the paths from block RAM components. These paths are
good candidates for floorplanning.

Figure X-Ref Target - Figure 3-1

Figure 3-1: Placement of Paths Failing Timing

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 25
UG 633 (v14.1) April 24, 2012

Timing Results

Timing Results
In order to close timing, analyze the paths between block RAM components to determine
whether to:

• Floorplan, or

• Change logic, or

• Both floorplan and change logic.

The path delay for the above critical path shows two nets with long route delays. See
Figure 3-2, Detailed Data Path. The path is failing timing by 28 ps. The first net has 937 ps
route delay. The route delay can be reduced with improved placement.

A hierarchical floorplan can reduce the route delay in the critical logic. Logic delay limits
the amount of performance gain.

To modify the gates in designs with a large percentage of logic delay:

• Change the code, or

• Update synthesis

Gates and Hierarchies
You can floorplan gates through individual LOC and placement constraints.

Do not move the gates by hand to improve timing.

• Identifying and placing the gates is slow and difficult.

• If the logic in the gate floorplan changes, the floorplan must be redone.

Ask instead, What hierarchy is timing critical?

Implementation reports timing problems for usbEngine0 in Figure 3-2, Detailed Data
Path. This level of hierarchy, or one or more levels of sub-hierarchy, are candidates for
hierarchical floorplanning. You must investigate the design to determine which hierarchy
to floorplan.

Load the critical paths into the schematic. In Figure 3-3, Gates and Hierarchy in the Critical
Path, the schematic shows:

• The gates involved in the critical path, and

• The hierarchy in which the gates are located.

Trace the logic around the critical gates in the schematic to see how the non-critical logic is
structured.

Figure X-Ref Target - Figure 3-2

Figure 3-2: Detailed Data Path

http://www.xilinx.com

26 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 3: Using Floorplanning for Timing Closure

The floorplan should constrain at least the timing critical paths involving block RAM
components inside each usbEngine. So far, both usbEngine blocks appear to be good
candidates for floorplanning. However, if usbEngine block is a large portion of the chip,
try to floorplan the levels of sub-hierarchy that contain the critical path.

Critical and Non-Critical Hierarchies

To determine which gates should be floorplanned, look at the placement in the Device
view.

In Figure 3-4, Critical and Non-Critical Parts of a usbEngine:

• The gates in the critical sub-hierarchies are colored red.

• The gates in the non-critical sub-hierarchies are colored green.

Figure 3-4 shows that:

• In the critical hierarchies, there is high utilization of block RAM components.

• The non-critical hierarchies contain considerable LUT and FF logic that can be placed
between the block RAM components.

• The entire hierarchy is approximately 20% of the design.

Figure X-Ref Target - Figure 3-3

Figure 3-3: Gates and Hierarchy in the Critical Path

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 27
UG 633 (v14.1) April 24, 2012

Gates and Hierarchies

Before floorplanning usbEngine1, examine the pinout and design connectivity. The
design may show that usbEngine1 is not a good candidate

Confirming Good Candidates

The next step is to:

• Confirm that usbEngine1 is a good candidate for floorplanning.

• Determine where it should be placed.

• Create a top level floorplan on the device (optional).

The top level floorplan can suggest which logic is influencing the placement of other logic.
Blocks spread out across the chip are bad candidates for floorplanning.

In Figure 3-5, Top Level Floorplan for Analysis:

• I/O connectivity is displayed as green I/O lines.

Look for the lines going from the middle I/O bank on the left side of the chip to the
block in the middle towards the bottom of the device.

• Connectivity between hierarchical blocks is displayed as bundles of nets between the
placed hierarchies. The block is highlighted in white.

• Communicates to most other blocks.

• Is not a good candidate for floorplanning because it has to spread around the
chip.

You can see at a glance that there are many inter-connected hierarchies. You can see
when a pinout draws a hierarchy across the chip.

Figure X-Ref Target - Figure 3-4

Figure 3-4: Critical and Non-Critical Parts of a usbEngine

http://www.xilinx.com

28 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 3: Using Floorplanning for Timing Closure

Figure 3-5 shows the top level floorplan for this design. Only one hierarchy is spread
around the chip. A second hierarchy spans the length of the right side. The pinout would
support floorplanning usbEngine1. Based on the pinout, usbEngine1 (in the middle
towards the bottom of the device) should be placed in the upper left corner of the device.

Shaping the Floorplan for the Critical Hierarchy
The floorplan suggests that the critical hierarchy should be in the upper left corner. Design
analysis shows that the critical hierarchy uses multiple block RAM sites. The pinout shows
that the critical hierarchy connects to the two I/O banks on the top left of the chip. It makes
sense to try to floorplan the logic to use slices and block RAM components between these
banks.

A good target is to try to size the block to use:

• 100% of the block RAM (or DSP, if applicable), and

• About 80% of the slices.

Figure X-Ref Target - Figure 3-5

Figure 3-5: Top Level Floorplan for Analysis

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 29
UG 633 (v14.1) April 24, 2012

Deciding What Else Should Be Floorplanned

Deciding What Else Should Be Floorplanned
This design has two copies of the same gates:

• usbEngine1

• usbEngine0

Implementation showed a timing problem in usbEngine0. The same timing problem will
probably occur in usbEngine1 as well.

To deal with this problem, Xilinx® recommends that you:

• Solve the timing problems of each block separately.

• Consider the USB blocks as separate timing critical hierarchies.

• Floorplan each hierarchy separately.

A final floorplan that meets timing is shown in Figure 3-6, First Pass Floorplan.

Constraining Subsets of the Netlist Hierarchy

The PlanAhead software creates a construct that enables you to constrain any subset of
netlist hierarchy to a region on the chip. They are created using the New Pblock and
Assign to Pblock commands.

Figure X-Ref Target - Figure 3-6

Figure 3-6: First Pass Floorplan

http://www.xilinx.com

30 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 3: Using Floorplanning for Timing Closure

The Pblocks become AREA_GROUP constraints in the User Constraints File (UCF) in
order to guide implementation and confine the levels of hierarchy to various regions on the
chip.

INST "usbEngine1" AREA_GROUP = "pblock_usbEngine1";
AREA_GROUP "pblock_usbEngine1" RANGE=SLICE_X0Y60:SLICE_X43Y119;
AREA_GROUP "pblock_usbEngine1" RANGE=DSP48_X0Y24:DSP48_X2Y47;
AREA_GROUP "pblock_usbEngine1" RANGE=RAMB18_X0Y24:RAMB18_X2Y47;
AREA_GROUP "pblock_usbEngine1" RANGE=RAMB36_X0Y12:RAMB36_X2Y23;

These lines define the shape on the chip, and what to place into it.

You can:

• Set up a region that does not constrain all these ranges.

• Constrain only the block RAM components to sites on the chip by using:

INST "usbEngine1" AREA_GROUP = "pblock_usbEngine1";
AREA_GROUP "pblock_usbEngine1" RANGE=RAMB18_X0Y24:RAMB18_X2Y47;
AREA_GROUP "pblock_usbEngine1" RANGE=RAMB36_X0Y12:RAMB36_X2Y23;

The slices and DSP are now unconstrained.

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 31
UG 633 (v14.1) April 24, 2012

Chapter 4

Floorplanning Iteratively

Xilinx® recommends that you floorplan iteratively, and that you consider the options
shown in the sections below. Not all options will help in all cases. Try several options
where necessary to find the best solution for your design.

General Recommendations
Following are some general recommendations for floorplanning iteratively.

Use Trial and Error
When it is not clear which hierarchy to floorplan, use trial and error until timing improves.

Look for Hidden Connections
If timing degrades in the floorplanned blocks, look for hidden connections. The design
may have connections that are not immediately obvious.

Revise the Floorplan
Revise the floorplan if necessary. Save each floorplan in case you want to revisit your work
later.

Keep Floorplans Simple
Keep floorplans simple. Simple floorplans usually work better and take less time than
complicated floorplans.

Re-Run the Design After Upgrading
After upgrading an ISE® Design Suite release, run the design through implementation
unconstrained. A new release may make floorplanning unnecessary.

Revise Critical Paths
The following sections contain suggestions for improving floorplanning based on the
location of criticial paths.

http://www.xilinx.com

32 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

Chapter 4: Floorplanning Iteratively

Within Logic That is Not Floorplanned
If critical paths are located within logic that is not floorplanned:

• Identify the levels of hierarchy that contain the critical paths.

• Assign them to a new Pblock.

• Place the Pblock on the chip.

• Keep this Pblock for place and route if the placement is reasonable.

Within a Single Pblock
If critical paths are within a single Pblock, revise the Pblock.

• Create a Pblock within the Pblock that contained the failing timing path to constrain
the critical hierarchy more tightly, or

• Work with lower levels of hierarchy, remove some logic, and use a smaller Pblock.

Between a Pblock and an Unconstrained Hierarchy
If critical paths are between a Pblock and an unconstrained hierarchy, add the unconstrained
logic to a Pblock.

• Create a new Pblock to hold the critical path and place it nearby, or

• If the unconstrained logic is small, create a Pblock to hold both the critical path and
the unconstrained logic.

Between Two Pblocks
If critical paths are between two Pblocks:

• Move or reshape the Pblocks so they are closer.

• Embed one Pblock inside the other.

• Move logic from one Pblock to the other.

Improve Timing in Critical Hierarchies
1. If the logic in a critical hierarchy is large, heavily interconnected, or being pulled

around the chip by scattered loads, do not place it initially.

• Begin with the timing critical hierarchy that has a good connectivity.

• Revisit the hierarchy on a later pass if it is still a problem.

• If paths are a persistent timing problem, revise the RTL, then re-synthesize.

2. If floorplanned sections still fail timing, remove the floorplanning constraints.

3. If timing still fails to improve, try a new approach.

http://www.xilinx.com

Floorplanning Methodology Guide www.xilinx.com 33
UG 633 (v14.1) April 24, 2012

Appendix A

Additional Resources

Xilinx Resources
• Device User Guides:

http://www.xilinx.com/support/documentation/user_guides.htm

• Xilinx Glossary: http://www.xilinx.com/company/terms.htm

• Xilinx Design Tools: Installation and Licensing Guide (UG798):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/iil.pdf

• Xilinx Design Tools: Release Notes Guide (UG631):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/irn.pdf

• Product Support and Documentation: http://www.xilinx.com/support

ISE Documentation
• Libraries Guides:

http://www.xilinx.com/support/documentation/dt_ise14-1_librariesguides.htm

• ISE Design Suite Documentation:
http://www.xilinx.com/support/documentation/dt_ise14-1.htm

• Command Line Tools User Guide (UG628):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/devref.pdf

• Constraints Guide (UG625):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/cgd.pdf

• Data2MEM User Guide (UG658):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
data2mem.pdf

• ISim User Guide (UG660):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
plugin_ism.pdf

• Synthesis and Simulation Design Guide (UG626):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/sim.pdf

• Timing Closure User Guide (UG612):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug612.pdf

• Xilinx/Cadence PCB Guide (UG629):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
cadence_pcb.pdf

• Xilinx/Mentor Graphics PCB Guide (UG630):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
mentor_pcb.pdf

http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=glossary
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=iil.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=irn.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=support
http://www.xilinx.com/cgi-bin/docs/rdoc?locale=en;v=14.1;t=libraries+guides
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;t=ise+docs
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;t=ise+docs;d=devref.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=cgd.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=data2mem.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=plugin_ism.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=sim.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=ug612.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=cadence_pcb.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=mentor_pcb.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=mentor_pcb.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=13.1&topic=sw+manuals&sub=index.html

34 www.xilinx.com Floorplanning Methodology Guide
UG 633 (v14.1) April 24, 2012

• XPower Estimator User Guide (UG440):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug440.pdf

• XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices
(UG627):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/xst.pdf

• XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices (UG687):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/xst_v6s6.pdf

PlanAhead Documentation
• PlanAhead User Guides:

http://www.xilinx.com/support/documentation/dt_planahead_planahead/
14-1_userguides.htm

• Floorplanning Methodology Guide (UG633):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
Floorplanning_Methodolgy_Guide.pdf

• Hierarchical Design Methodology Guide (UG748):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
Hierarchical_Design_Methodolgy_Guide.pdf

• Pin Planning Methodology Guide (UG792):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
ug792_pinplan.pdf

• PlanAhead Tcl Command Reference Guide (UG789):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
ug789_pa_tcl_commands.pdf

• PlanAhead User Guide (UG632):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
PlanAhead_UserGuide.pdf

• PlanAhead Tutorials:
http://www.xilinx.com/support/documentation/
dt_planahead_planahead14-1_tutorials.htm

http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;t=planahead+userguides
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;t=planahead+userguides
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=ug440.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=xst.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=xst_v6s6.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=Floorplanning_Methodology_Guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=ug792_pinplan.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=ug792_pinplan.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=ug789_pa_tcl_commands.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;d=PlanAhead_UserGuide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.1;t=planahead+tutorials

	Floorplanning Methodology Guide
	Revision History
	Table of Contents
	Floorplanning Overview
	About Floorplanning
	Goals of Floorplanning
	Benefits of Floorplanning
	Limitations of Floorplanning
	When To Floorplan

	Timing Closure
	Example Timing Report
	Ensuring That Timing Constraints Are Accurate
	Determining Whether the Path is a Multi-Cycle Path or a False Path
	Clock Jitter and Clock-to-Clock Skew
	Reducing Path Delay

	Floorplanning Basics
	Reducing Route Delay
	Incremental Design
	Detailed Gate-Level Floorplanning
	Hierarchical Floorplanning
	High-Level Floorplan

	Floorplanning Considerations
	Floorplanning is Often Iterative
	Floorplanning Can Hurt Timing
	Use Multiple Trials and Notes
	Floorplan Timing-Critical Logic
	Do Not Floorplan the Entire Design

	Working With Hierarchical Netlists
	Logic Synthesis Recommendations
	Increasing Consistency and Other Benefits of Floorplanning
	Using Clock Resources to Guide Floorplanning

	Floorplanning Flows
	Re-Use Flow (Design Meets Timing Some of the Time)
	Advantages and Disadvantages of Re-Use Flow
	How Re-Use Flow Works
	Re-Using the Placement
	Fixed and Unfixed Placement
	Fixing the Logic
	Analyzing and Modifying Placement

	Hierarchical Floorplanning Flow (Design Has Never Met Timing)
	Advantages and Disadvantages of Hierarchical Floorplanning Flow
	Using Hierarchical Floorplanning Flow in Designs That Have Not Met Timing

	Using Floorplanning for Timing Closure
	Floorplanning Questions
	Place and Route Results
	Timing Results
	Gates and Hierarchies
	Shaping the Floorplan for the Critical Hierarchy
	Deciding What Else Should Be Floorplanned

	Floorplanning Iteratively
	General Recommendations
	Use Trial and Error
	Look for Hidden Connections
	Revise the Floorplan
	Keep Floorplans Simple
	Re-Run the Design After Upgrading

	Revise Critical Paths
	Within Logic That is Not Floorplanned
	Within a Single Pblock
	Between a Pblock and an Unconstrained Hierarchy
	Between Two Pblocks

	Improve Timing in Critical Hierarchies

	Additional Resources
	Xilinx Resources
	ISE Documentation
	PlanAhead Documentation

