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Chapter 1

Introduction
With the introduction of an All Programmable SoC product, Xilinx provides designers a 
powerful way to build smarter systems quickly, effectively, and reliably. Smarter systems are 
typically associated with increased complexity. This is both a benefit and a challenge. It is a 
benefit because customers can create products that were previously impossible or 
incredibly difficult to build. It is a challenge because product complexity increases the 
importance of making good design decisions, particularly early in the product life cycle. The 
interplay of system software, applications, and hardware requires new ways of thinking 
about and solving system level problems. Xilinx has addressed the challenge by providing 
customers with a comprehensive tool box, including software tools, user guides, reference 
manuals and reference designs, to help accelerate product development with All 
Programmable SoCs.

A typical embedded development team consists of system architects, software engineers, 
and hardware engineers. Each team member often starts a design with familiar tools, and 
this approach has typically worked for embedded development projects in the past. 
However, the broad capabilities of the All Programmable SoC can cause problems for a 
development team that does not consider the development approach up front. To make 
teams more effective, Xilinx has created this methodology guide for embedded system 
developers. This guide complements the UltraFast Design Methodology Guide for the Vivado 
Design Suite (UG949) [Ref 16], targeted primarily at FPGA designers.

The term methodology can mean different things to different people. Flow charts, methods, 
principles, rules, and policies are among several possible themes. This methodology guide 
does not illustrate a step-by-step process for success. Instead, the goal is to equip 
designers with information and guidance on designing embedded systems so that they can 
make informed decisions when using the tool box. Some content applies generally to 
embedded systems, while other content is specific to the Xilinx® All-Programmable SoC 
products. The content is a reflection of user experiences and learning gained from system 
development inside and outside of Xilinx. The content covers key principles, specific do's 
and don'ts, best practices, and avoiding pitfalls. In some topics, use cases are provided to 
illustrate concepts. 
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Chapter 1: Introduction
This guide is organized around important functional areas that map to specific skill sets 
within development teams. The sections are: 

• System Level Considerations
• Hardware Design Considerations
• Software Design Considerations
• Hardware Design Flow
• Software Design Flow
• Debug
• SDSoC Environment

A typical mapping of chapter relevance to team members is shown in Table 1-1. However, it 
is recommended that the entire team read the complete methodology guide before 
beginning development. It is beneficial to understand the challenges described and 
guidance provided in other chapters, even if the content is outside the engineer's direct 
area of responsibility. The line between software engineers and hardware engineers is 
continuing to blur, and engineers should reach beyond their primary responsibilities to 
effectively work with the entire team. For example, a software engineer needs to understand 
how the underlying hardware works, while a hardware engineer should understand the 
software implications of hardware decisions that are made.

Typically, embedded design is done in the order listed in this guide–starting with 
system-level design and ending with test and debug. The chapters are written such that 
they can be read in any particular order. This is demonstrated in Figure 1-1, showing the 
interdependencies between the chapters in this guide.

Table 1-1: Chapters Relevant to Design Team Members

Book Chapters System 
Architects

Hardware 
Designers

Software 
Designers

System Level Considerations X X X

Hardware Design Considerations X X

Software Design Considerations X X

Hardware Design Flow X

Software Design Flow X

Debug X X

SDSoC Environment X
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Chapter 1: Introduction
Note: SDSoC Environment is not shown in Figure 1-1 because it is a tool that aids the user in 
building a system using all of the principles and methodologies described in Chapters 2-7. 
Additionally, Chapter 8 describes recommendations specific to the SDSoC flow.

After reading this guide, designers will be able to navigate the various tools and collateral 
provided by Xilinx in a more informed and effective manner. The key takeaways in each 
topic area should enable a designer to read the All-Programmable SoC detailed 
documentation with greater understanding.

Users who are familiar with the Zynq-7000 All Programmable SoC Technical Reference 
Manual (UG585) [Ref 4] and the Zynq-7000 All Programmable SoC Software Developers 
Guide (UG821) [Ref 7] will benefit from reading this guide first.

Readers unfamiliar with the Zynq®-7000 AP SoC architecture should refer to the Zynq-7000 
All Programmable SoC Overview (DS190) [Ref 31] for more information. Overall, this guide 
enables an Embedded Design team to quickly assess trade-offs and avoid bottlenecks and 
problems, thereby enabling the team to make the right decisions for successful embedded 
system development.

X-Ref Target - Figure 1-1

Figure 1-1: Interdependence of Methodology Guide Chapters
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Chapter 1: Introduction
Embedded Design Methodology Checklist
To take full advantage of the UltraFast Embedded Design Methodology, Xilinx recommends 
that you use this guide along with the Embedded Design Methodology Checklist. The 
checklist includes common questions and recommended actions to consider during the 
design process, starting with planning and continuing through all subsequent stages of 
design. The checklist questions highlight typical areas in which design decisions are likely to 
have downstream ramifications and draw attention to issues that are often unknown or 
ignored. 

Xilinx recommends reading the guide first before proceeding to the checklist. Most links 
provide cross references to this guide and links to other Xilinx documentation. These 
references offer guidance on addressing the design concerns raised by the questions. 

The checklist is part of the Xilinx Documentation Navigator, a free tool that you can use to 
access documentation while using Xilinx products. You can download Documentation 
Navigator as a standalone product or as part of your SDK or Vivado installation (see Using 
the Documentation Navigator). 

To access the checklist feature, use Documentation Navigator version 2015.1 or later. From 
within Documentation Navigator, use these steps to begin using the Design Methodology 
Checklist:

1. Click the Design Hub View tab.
2. At the top of the menu on the left side, click Create Design Checklist.
3. Fill out the information in the New Design Checklist Dialog and click OK.
4. The new checklist opens. Tabs across the top of the checklist (see Figure 1-2) provide 

navigation. The Title Page tab provides some basic information on using the checklist. 
Click the other tabs to see the checklist questions and guidance.

A spreadsheet version of the Design Methodology Checklist is also available in the 
following zip file:

xtp397-embedded-design-methodology-checklist.zip

X-Ref Target - Figure 1-2

Figure 1-2: Embedded Design Methodology Checklist Tabs in Documentation Navigator
UltraFast Embedded Design Methodology Guide 9
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?d=xtp397-embedded-design-methodology-checklist.zip
https://www.xilinx.com/cgi-bin/docs/rdoc?d=xtp397-embedded-design-methodology-checklist.zip
https://www.xilinx.com/cgi-bin/docs/rdoc?d=xtp397-embedded-design-methodology-checklist.zip
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=9


Chapter 1: Introduction
Accessing Documentation and Training
Access to the right information at the right time is critical for timely design closure and 
overall design success. Reference guides, user guides, tutorials, and videos get you up to 
speed as quickly as possible with Xilinx tools. This section lists some of the sources for 
documentation and training.

Using the Documentation Navigator
The Xilinx embedded tools ship with the Xilinx Documentation Navigator, which provides an 
environment to access and manage the entire set of Xilinx software and hardware 
documentation, training, and support materials. Documentation Navigator allows you to 
view current and past Xilinx documentation. The documentation display can be filtered 
based on release, document type, or design task. When coupled with a search capability, 
you can quickly find the right information.

Documentation Navigator scans the Xilinx website to detect and provide documentation 
updates. The Update Catalog feature alerts you to available updates, and gives details 
about the documents that are involved. Xilinx recommends that you always update the 
catalog when alerted to keep it current. You can establish and manage local documentation 
catalogs with specified documents.

The Documentation Navigator has a tab called the Design Hub View. Design hubs are 
collections of documentation related by design activity, such as Zynq-7000 Design 
Overview, PetaLinux Tools, and SDK. Documents and videos are organized in each hub in 
order to simplify the learning curve for that area. Each hub contains an Embedded 
Processor Design section, a Design Resources section, and a list of support resources. For 
new users, the Embedded Processor Design section provides a good place to start.
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Chapter 1: Introduction
Accessing the QuickTake Video Tutorials
Xilinx QuickTake video tutorials provide guidance on using the features of Xilinx tools, 
including SDK, SDSoC, and PetaLinux Tools. These tutorials are short and succinct training 
tools. They can be viewed from the Video Tutorials page on xilinx.com or the Xilinx YouTube 
channel and can be downloaded locally.

TIP: The QuickTake video tutorials are available through Documentation Navigator.

X-Ref Target - Figure 1-3

Figure 1-3: Xilinx Documentation Navigator, Catalog Viewer
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Chapter 2

System Level Considerations
This chapter covers the following system-level design issues to be considered when 
designing with a Zynq®-7000 AP SoC:

• Performance: The target application generally determines the overall system 
performance. System performance objectives are allocated between hardware and 
software, and further allocated to sub-components.

• Power Consumption: System performance is a primary driver of power consumption. 
The design team is often faced with difficult trade-off choices to make between the two 
issues. This section describes design considerations for optimizing power consumption 
on a Zynq-7000 AP SoC.

• Clocking and Reset: It is important to understand what clocking resources are available 
so that you can plan how to best use those resources. Similarly, the reset system has 
many different sources and it is important that you understand how they affect the 
different reset destinations.

• Interrupts: The system-level interrupt environment provides a comprehensive set of 
capabilities for you to prioritize hardware and software resources in your application.

• Embedded Device Security: The security level required from application to application 
can vary greatly. Understanding the various security features of the Zynq-7000 AP SoC 
will help you implement the right level of security for your application.

• Profiling and Partitioning: An important system-level decision you make is how to 
partition the functions of an application between hardware and software. Profiling 
tools help in making those decisions.
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Chapter 2: System Level Considerations
Performance
With a Zynq-7000 AP SoC device, system performance depends on the final application 
goals. For example, a real-time application's system performance might depend on the 
interrupt service routine latency, while a video application's system performance might 
depend on maintaining 60 frames per second over an off-chip interface. In this section, the 
division of performance goals across different design team members is described, followed 
by considerations for implementing those performance goals through data movement and 
computation design choices. The section concludes with a discussion of Zynq-7000 AP SoC 
device monitoring options, allowing designers to build custom performance monitoring 
capabilities in software and programmable logic (PL). 

System Performance Design Goals
System performance goals are divided across the different engineering disciplines on a 
Zynq-7000 AP SoC device design team. The three engineering disciplines discussed in this 
document are hardware, software, and system.

Hardware Engineer

Hardware engineers working with Zynq devices implement designs using a mixture of PL 
components, AXI-connected IP, high speed off-chip interfaces, and custom logic. PL choices 
are driven by performance requirements, such as throughput and latency, but can also be 
driven by the performance constraints of system software and hardware interactions. 
Hardware engineers must consider interactions with the processing system (PS), because 
data movement and synchronization can have a large effect on PL throughput and latencies. 
PL data movement and monitoring points can be used to guide design decisions and are 
discussed later in this section. Traditional PL metrics, such as maximum frequency and 
resource utilization, are not covered. See the UltraFast Design Methodology Guide for the 
Vivado Design Suite (UG949) [Ref 16] for more information.

Software Engineer

Software engineers focus on system software running within the PS and its interaction with 
memory, I/O, and PL. For example, user software that communicates with PL has multiple 
communication options, each with advantages and disadvantages. The software 
performance monitoring capabilities unique to Zynq devices can be used by software 
engineers to tune performance and are described later in this section. Also, the rich 
ecosystem of existing ARM performance profiling and monitoring tools can be used with 
the dual-core Cortex-A9 processors for optimizing performance. For more information on 
the performance monitoring capabilities, see the ARM DS-5 Development Studio 
Streamline Performance Analyzer documentation [Ref 74].
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Chapter 2: System Level Considerations
System Engineer

Performance goals for designs implemented using Zynq devices can be partitioned across 
hardware and software. This partitioning should be considered throughout all design 
stages. During the initial stages, hardware and software engineers can work relatively 
independently, but early performance estimates are needed to set realistic performance 
goals and make initial partition choices. The system engineer must consider all hardware 
and software performance bottlenecks and make trade-offs. The system architect can make 
early performance estimates of data and communication paths, and fine tune them later 
using the system performance-monitoring points and tools.

All design team members generally consider the impact on performance of data movement 
and data computation. The ability to monitor system events is useful in designing and 
optimizing performance of a Zynq device. These considerations are described in the 
following sections, including suggested design methodologies to help guide Zynq device 
design flows. 

System Data Movement 
Moving data through a system is a common system-level performance problem. A Zynq 
device has several AXI masters that can drive transactions either directly or with assistance 
from DMAs. This section describes the various options and trade-offs for addressing data 
movement in a Zynq device.

The ARM CPUs can move data using direct memory transfers, such as memcpy. Such 
transfers are useful for small transfers of 4 KB or less, while larger transfers benefit from 
DMA assistance. The data's source and destination buffer locations should also be 
considered. For example, a PS DMA data transfer to PL will typically go through the 32-bit 
master GP ports. The Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) 
[Ref 4] contains techniques for using the PS DMA controller. The PS DMA controller runs its 
own microcode. An alternative method would use a DMA in PL to move data across the 
64-bit ACP or HP ports, which is a higher-performing option and uses PL resources.

Other AXI masters within the PS should be considered when determining system data 
movement performance. IOP DMAs exist in several IP blocks: the GigE controller, SDIO 
controller, USB controller, and device configuration interface (DevC). The IP block functions 
are described in the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) 
[Ref 4], and drivers are provided for their use in operating systems such as Linux and 
stand-alone designs. The GigE controller performance characteristics are further described 
in PS and PL Ethernet Performance and Jumbo Frame Support with PL Ethernet in the 
Zynq-7000 AP SoC (XAPP1082) [Ref 40]. The remaining cores have driver layers that provide 
additional function, but their performance characteristics are not described here.
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Chapter 2: System Level Considerations
From the PL, AXI masters can drive data movement on the ACP, HP, or slave GP ports. These 
ports and associated performance are described further in the following sections:

• ACP and Cache Coherency
• PL High-Performance Port Access
• GPs and Direct PL Access from APU

DMAs attached to these ports are best used to translate between AXI4 Memory-Mapped 
and AXI4-Streaming interfaces, providing a clean separation of memory-mapped accesses 
to data-centric processing (such as video pipelines). DMA is not always the preferred 
method, however. If the streaming interface performance is low and not a concern, then the 
AXI4-Stream FIFO core is a simple way to source and synchronize an AXI-Stream interface 
from a processor. User applications can have custom AXI masters that do direct data 
movement using standard AXI Memory-Mapped transactions. The throughput and latency 
performance characteristics of such custom data transfers may end up being very similar to 
standard PL DMA data transfers. Performance comparisons can be made using the counters 
and timers described in System Monitoring.

DMA moves data from a source to a destination location. Memory is often used as data 
buffers to match the differences in rate of data source, processing, or data sink, therefore 
ensuring that the processing stage can achieve maximum throughput.

Off-chip data buffer location can be implemented using off-chip memory attached to 
customizable MIO or EMIO pins. The memory characteristics affect the performance of 
moving large buffers, such as file systems on SD cards or network-attached storage over the 
GigE controller.

For on-chip buffering, the OCM, L2 cache, and DDR controller are the three main sources of 
sharable buffer space within the PS. The L2 cache and DDR controller provide excellent 
buffer-access latency for sharing data between the processor and ACP port. Only the ACP 
can access the L2 cache from PL. For high-bandwidth accesses to DDR, the HP ports are 
better suited than ACP. The OCM can be used by software applications as a 256 KB 
scratchpad accessible by all masters in the PL. A benefit to using OCM is its excellent 
random-access latency, whereas the L2 cache and DDR memory benefit from 
memory-access locality.

System Computation
Computation can be done in either the ARM cores or within the PL. Typical Zynq devices 
have the control plane written in software executing on the ARM cores. Data-centric 
computation is done in the PL using a mix of existing and custom IP. In high-performance 
situations such as line-rate packet processing, computation and control can be moved 
closer to the data. This typically requires custom PL IP to manage data flow.
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Chapter 2: System Level Considerations
Moving computations from software into the PL is an important benefit of the Zynq-7000 
AP SoC platform. Not all software can be moved to the PL, in particular pre-compiled code, 
complex library routines, and OS services. If it is possible to move software components to 
PL, performance metrics such as the full application runtime should consider the trade-off 
between data movement costs and acceleration benefits. This cost and benefit analysis can 
be done using software profiling tools to determine potential speedups according to 
Amdahl's law:

In the equation above, S is the overall performance improvement and α is the percentage of 
the algorithm that can be sped up with hardware acceleration. Therefore 1-α is the 
percentage of the algorithm that cannot be improved. The variable p is the speedup due to 
acceleration. For example, to accelerate a computational algorithm implemented entirely in 
software, you can use profiling tools such as TCF profiler to help identify the particular 
function that is frequently used. The percentage of time with which this function is used 
corresponds to a high α number. The function can then be sped up by implementing it in 
hardware. The speed up of the function maps to p. Dividing a frequently used function by a 
large multiplier will result in the most improvement in performance in the computation of 
the algorithm due to hardware acceleration. 

The speed up of a particular function has two components: the transfer of data to and from 
the acceleration block and the actual computation performed by the accelerator. When a 
DMA is used to perform the data transfer, the overhead for setting up and managing the 
DMA must be taken into account when measuring the multiplier factor, p. If the overhead is 
large, it can bound the value of p and may result in a low p factor, and therefore low 
improvement in performance. For more information, see the Profiling and Partitioning 
section.

High-level synthesis provides an excellent way of moving software components to PL for 
exploring acceleration options. If candidate software is not a good fit for high-level 
synthesis, Xilinx also provides a rich library of programmable logic IP with corresponding 
drivers which can replace functions implemented in software to improve overall system 
performance. 
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Chapter 2: System Level Considerations
System Monitoring 
A rich tool ecosystem exists for monitoring the ARM processors. In a Zynq device, full 
system-level performance monitoring also uses blocks available in the PS and PL. These are:

• SCU Global Timer (PS). The SCU global timer can be used to timestamp system events 
in a single clock domain. Alternatively, operating systems often provide high accuracy 
timers for software event tracing, such as Linux clock_nanosleep.

• ARM Performance Monitoring Units (PS). Each ARM core has a performance 
monitoring unit (PMU) that is used to count micro-architectural events. These counters 
can be accessed directly by software, through operating system utilities, or with chip 
debuggers such as Linux Perf or ARM Streamline. The counters are viewable in the 
Performance View of SDK 2014.2. See the Performance Monitoring Unit section in the 
ARM Cortex-A9 Technical Reference Manual [Ref 77] for more information.

• L2 Cache Event Counters (PS). The L2 cache has event counters that can be accessed 
to measure cache performance. The counters are viewable in the Performance Counters 
View of SDK. See the Zynq-7000 All Programmable SoC Technical Reference Manual 
(UG585) [Ref 4] for more information.

• GigE Controller (PS). The gigabit Ethernet controller has statistical counters to track 
bytes received and transmitted on its interface. See the Zynq-7000 All Programmable 
SoC Technical Reference Manual (UG585) [Ref 4] for more information.

• AXI Performance Monitor (PL). This core can be added in PL to monitor AXI 
performance metrics such as throughput and latency. Trace functions enable 
time-stamped AXI traces, such as time-stamped start and end of AXI transactions to 
observe per-transaction latency. See the AXI Performance Monitor web page [Ref 45] 
for more information.

• AXI Timer (PL). This core can be added in PL to provide a free-running timer in PL. This 
timer is useful for time-stamping events in PL clock domains. See the AXI 
Timer/Counter web page [Ref 46] for more information.

• AXI Traffic Generator (PL). This core can generate a variety of traffic patterns to the 
PS interfaces. When used with an AXI performance monitor, the traffic generator can 
help provide early system-level performance estimates. The core can be used to 
estimate data-movement costs and validate design partition choices. For more 
information, refer to the LogiCORE™ AXI Traffic Generator web page [Ref 47].

These monitor blocks provide visibility into the full system performance behavior. Event 
counters and PL monitoring blocks can be customized for specific design performance 
goals or used to get a high-level view of system performance. Early use of built-in 
performance monitoring allows performance feedback throughout the design cycle, 
resulting in data-driven system architecture decisions.
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Chapter 2: System Level Considerations
There are different ways of exercising or acquiring monitoring data from the various blocks. 
Most peripherals come with an example application packaged with the corresponding 
bare-metal driver shipped with Xilinx SDK. A list of available Linux drivers is provided in the 
Xilinx Linux Drivers wiki page [Ref 52]. 

Xilinx SDK provides built-in System Performance Modeling and Analysis functionality. 
Performance monitors gather data from the system, either live data or data created by 
traffic generators which are used to model real world transactions. This data is displayed 
using the Xilinx SDK visualization tools with statistics for number of transactions, 
bandwidth, and latency from an APM (profile mode) connected to the HP and ACP ports. 
For more information, refer to Xilinx SDK System Debugger.

Power Consumption
The power consumption of Zynq-7000 AP SoCs is an important consideration for system 
architects and board designers. Power consumption is a critical concern for most 
applications, and some applications specify maximum power per card or per system. Thus, 
designers must consider power consumption early in the design process, often starting with 
device selection.

Reducing SoC power consumption can improve board design by lowering supply-rail 
power, simplifying power supply design and thermal management, and easing the 
requirements on the power distribution planes. Low power also contributes to longer 
battery life and higher reliability, because cooler-running systems last longer. 

Reducing system power consumption requires a comprehensive and focused approach to 
achieve optimal results. This section covers several aspects of Zynq-7000 AP SoC power 
consumption, including PS and PL architecture and features, the power components 
associated with PL, and the process technology. It also covers power dissipation, and 
traditional methods of estimating and measuring power.

Power Challenges
According to Moore's Law, transistor size decreases with each process technology 
generation. As size decreases the amount of current each transistor leaks increases, causing 
an increase in static power consumption, which is the amount of current the device draws 
when not switching. Increasing SoC performance requires higher-frequency clocks, 
resulting in increased dynamic power consumption. Thus, static power is driven by 
transistor leakage current and dynamic power is driven by the transistor switching 
frequency. Compounding the problem, decreasing transistor sizes allow more transistors to 
be packed on FPGAs with each product generation. More transistors results in more leakage 
current and more transistors switching at higher clock frequencies on each FPGA device.
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Chapter 2: System Level Considerations
These issues require designers to address power supply and thermal-management issues 
earlier in the design cycle. Using a heat sink on a device may not adequately resolve these 
issues. Instead, designers must look for opportunities to reduce the impact of the design 
logic.

Figure 2-1 illustrates actions that can be taken at various points in the design cycle to 
reduce power consumption. Addressing power issues early in the design process yields the 
greatest benefits.

Power and Signaling
Zynq-7000 AP SoC devices are divided into several power domains, as illustrated in 
Figure 2-2.

X-Ref Target - Figure 2-1

Figure 2-1: Managing Power Issues Throughout the Design Cycle

X-Ref Target - Figure 2-2

Figure 2-2: Zynq-7000 AP SoC Power Domains
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Chapter 2: System Level Considerations
The PS and PL power supplies are independent; however, the PS power supply must be 
present when the PL power supply is active. The PL can be powered off in applications that 
do not require the PL. The PS and PL power pins are summarized in Table 2-1. The voltage 
sequencing and electrical specifications are described in Zynq-7000 All Programmable SoC 
(Z-7010, Z-7015, and Z-7020): DC and AC Switching Characteristics (DS187) [Ref 30].

PS Power Domains

For more information on Zynq-7000 AP SoC PS power domains, refer to Chapter 5: 
Processing System (PS) Power and signaling of Zynq-7000 All Programmable SoC PCB 
Design Guide (UG933) [Ref 14].

PL Power Domains

Multiple power supplies are required to power the different PL resources in a Zynq-7000 AP 
SoC. The different resources operate at different voltage levels for increased performance 
or signal strength while preserving improved immunity to noise and parasitic effects.

PL Power Sources lists the power sources typically used by PL resources available in 
Zynq-7000 AP SoC. This table is provided only as a guide because the specifics can vary 
across Zynq-7000 AP SoC families.

Table 2-1: Power Pins 
Type Pin Name Nominal Voltage Power Pin Description

PS Power VCCPINT 1.0V Internal logic
VCCPAUX 1.8V I/O buffer pre-driver
VCCO_DDR 1.2V to 1.8V DDR memory interface
VCCO_MIO0 1.8V to 3.3V MIO bank 0, pins 0:15
VCCO_MIO1 1.8V to 3.3V MIO bank 1, pins 16:53
VCCPLL 1.8V Three PLL clocks, analog

PL Power VCCINT 1.0V Internal core logic
VCCAUX 1.8V I/O buffer pre-driver
VCCO_# 1.8V to 3.3V I/O buffers drivers (per bank)
VCC_BATT 1.5V PL decryption key memory backup
VCCBRAM 1.0V PL block RAM
VCCAUX_IO_G# 1.8V to 2.0V PL auxiliary I/O circuits

XADC VCCADC 1.8V Analog power and ground.
Ground GND Ground Digital and analog grounds
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Chapter 2: System Level Considerations
Board-Level Power-Distribution System
On a printed circuit board, the power distribution system (PDS) distributes power from the 
source to the various chips and devices requiring power. Although the PDS design can vary 
from simple to complex, there are three primary requirements it must satisfy:

• The PDS must deliver a well-regulated voltage. Power regulation is done at the 
regulated power-supply circuit, supported by one or more bulk capacitors and LC 
filtering circuits.

• The PDS must be stable at all points on the board under all current loading conditions. 
Stability under all loading conditions has two sub-requirements: 

° The distribution system must have low resistance and inductance. This usually 
requires a system of power and return planes for distribution, and low inductance 
pads and vias at the various device connections. 

° The charge must be available where and when needed. The required charge is 
typically stored in bypass capacitors that are placed around the board, and to a 
lesser extent from distributed planar capacitance.

• The PDS must be quiet, meaning that when devices switch, noise is not generated that 
interferes with other devices or generates EMI.

Table 2-2: PL Power Sources
Power Supply Resources Powered

VCCINT
and

VCCBRAM

• All CLB resources
• All routing resources
• Entire clock tree, including all clock buffers
• Block RAM/FIFO
• DSP slices
• All input buffers
• Logic elements in the IOB (ILOGIC/OLOGIC)
• ISERDES/OSERDES
• Tri-Mode Ethernet MAC
• Clock Managers (DCM, PLL, etc.)(minor)
• PCIE and PCS portion of MGTs

VCCAUX
and

VCCAUX_IO

• Clock Managers (MMCM, PLL, DCM, etc.)
• IODELAY/IDELAYCTRL
• All output buffers
• Differential Input buffers
• VREF-based, single-ended I/O standards, such as HSTL18_I
• Phaser

VCCO • All output buffers
• Some input buffers
• Digitally Controlled Impedance (DCI) circuits, also referred to as On-Chip 

Termination (OCT)
MGT • PMA circuits of transceivers
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Chapter 2: System Level Considerations
For more information on power distribution systems for Zynq devices, refer to “Chapter 3: 
Power Distribution System” in the Zynq-7000 All Programmable SoC PCB Design Guide 
(UG933) [Ref 14].

Power Management
Using a Zynq-7000 AP SoC can help reduce a system's static power consumption. The 
Zynq-7000 AP SoC PS is an optimized silicon element consisting of dual-core ARM 
Cortex-A9 CPUs plus integrated peripherals. The PL is based on the Xilinx® 7-Series 
architecture built on the 28nm high-performance, low-power (HPL) process, providing 
high-performance operation while enabling significant power reduction. Choosing a device 
built on the HPL process eliminates the need for complex and expensive 
static-power-management schemes.

There are different ways to reduce system power. The following sections provide tips that 
can be used to optimize a design to meet system power requirements.

PS Power Management

This section describes the design considerations needed to optimize power consumption of 
a Zynq-7000 AP SoC PS. This includes power management of the APU unit, PS peripherals, 
clocks and PLLs, caches, SCU, and OCM. It is assumed that the designer understands the 
impact of power management trade-offs on the overall system.

System Design Considerations 

The PS components can be power managed as follows:

• Application Processing Unit (APU). The Zynq-7000 AP SoC APU supports dynamic 
clock gating. This feature can be enabled using the CP15 power control register. If 
enabled, the clocks to several CPU internal blocks are dynamically disabled during idle 
periods. The gated blocks are:

° Integer core

° System control block

° Data engine

By reducing the processor core voltages and operating frequency, as much as a two-fold 
decrease in power consumption can be realized. Refer to the power-management 
section of the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) 
[Ref 4] for more information.
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Chapter 2: System Level Considerations
• PS Peripherals. The PS supports several clock domains, each with independent 
clock-gating control. When the system is in run mode, the user can shut down unused 
clock domains to reduce dynamic power dissipation. Clocks for PS peripherals such as 
timers, DMA, SPI, QSPI, SDIO, and the DDR controller can be independently gated to 
save power. Refer to Chapter 25, Clocks, in the Zynq-7000 All Programmable SoC 
Technical Reference Manual (UG585) [Ref 4] for more information on the system clocks 
and how they can be controlled using dividers, gates, and multiplexers.

• Caches. The L2 cache controller supports the following dynamic-power reduction 
features. These features are controlled by a corresponding enable bit in the 
l2cpl310.reg15_power_ctrl register. 

° Dynamic Clock Gating. When the dynamic high-level clock-gating feature is 
enabled, the cache controller clock stops when the controller is idle. The 
clock-gating feature waits several cycles after the controller is idle before it stops 
the clock.

° Standby Mode. The L2 cache controller standby mode can be used with the 
processor's wait-for-interrupt (WFI) mode that drives the L2 cache controller. When 
a processor is in WFI mode and standby mode is enabled, the L2 cache controller 
internal clocks are stopped. Refer to Chapter 3, Application Processing Unit, in the 
Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4] for 
more information on using WFI.

The dynamic clock gating feature is a superset of the standby mode. In standby mode, 
clock gating is limited to WFI states, thus making L2 cache accesses more predictable 
under normal run conditions.

• On-Chip Memory (OCM). In general, OCM can be used to reduce overall power during 
low-power modes such as Linux standby mode. For example, OCM can be used to store 
executable code when the DDR is in low power mode. 

• Snoop Control Unit (SCU). The SCU has a standby mode that is enabled by setting the 
corresponding bit in the mpcore.SCU_CONTROL_REGISTER. When enabled, the internal 
SCU clocks are stopped when the following conditions are met:

° The CPUs are in WFI mode.

° There are no pending requests on the ACP.

° There is no remaining activity in the SCU.

The SCU resumes normal operation when a CPU leaves WFI mode or a request on the 
ACP occurs.
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Chapter 2: System Level Considerations
• PLL. PLL power consumption is dependent on the PLL output frequency, thus power 
consumption can be reduced by using a lower PLL output frequency. Power can also be 
reduced by powering down unused PLLs. For example, if all clock generators can be 
driven by the DDR PLL, then the ARM core and I/O PLLs can be disabled to reduce 
power consumption. The DDR PLL is the only unit that can drive all of the clock 
generators. Each clock can be individually disabled when not in use. In some cases, 
individual subsystems contain additional clock disable capabilities and other power 
management features. 

• Physical Memory. Zynq-7000 AP SoCs support different types of physical memory, 
such as DDR2, DDR3, and LPDDR2. The supported DDR memory types can operate with 
both 16-bit and 32-bit data. DDR power consumption can be a significant component 
of total power, so minimizing DDR power consumption is an important way of reducing 
system power. Items to consider when reducing DDR power consumption include:

° The DDR controller operating speed.

° The choice of DDR width and whether ECC is enabled or disabled.

° The number of DDR chips used.

° The DDR type, such as using LPDDR for significant voltage reductions.

° The use of different DDR modes during low power operation, such as DDR 
self-refresh mode. Refer to the appropriate DDR standards for more information 
about power consumption during DDR low-power operating modes. 

Refer to the “Clocks” chapter in the Zynq-7000 All Programmable SoC Technical 
Reference Manual (UG585) [Ref 4] for more information on implementing DDR controller 
clock gating.

• I/O. I/O devices such as MIOs and DDR IOs also contribute to overall power. Refer to 
the “SelectIO Signaling” chapter of the Zynq-7000 All Programmable SoC PCB Design 
Guide (UG933) [Ref 14] for more information on I/O buffer control power management.

Software Support 

The Linux kernel supports the following power management states:

• S0: Freeze or low-power idle. This is a generic, pure software, light-weight, low-power 
state.

• S1: Standby or power-on suspend. All processor caches are flushed and instruction 
execution stops. Power to the processor and RAM is maintained.

• S3: Suspend-to-RAM. System and device state is saved to memory. All devices are 
suspended and powered off. RAM remains powered.

Refer to the Zynq Power Management wiki page [Ref 66] for more information about Linux 
power management support for Zynq-7000 AP SoCs.
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Chapter 2: System Level Considerations
The link also provides information about the CPU-scaling framework implemented for 
Zynq-7000 AP SoCs. The CPU-scaling framework is used to scale CPU frequency at run time. 
For applications that do not require high processing performance, the CPU frequency can 
be reduced to meet application needs. A lower clock frequency can significantly reduce the 
operating power when compared to operating at a higher frequency.

PL Power Management
The PL can be powered off in applications that do not require the PL. To do this, 
independently-connected power supplies are needed for the PS and PL. The PL supplies 
that can be powered off include VCCINT, VCCAUX, VCCBRAM, and VCCO. Refer to the 
appropriate data sheet to determine the correct power sequencing.

The configuration is lost when the PL is powered down and must be reconfigured when it 
is powered on again. Software should determine when it is safe to power down the PL.

This section describes design considerations for optimizing PL power consumption on a 
Zynq-7000 AP SoC.

Logic Resource Utilization

PL resource utilization is an important contributor to the total power consumed by 
Zynq-7000 AP SoCs. The amount of CLB resources, dedicated hardware, and routing used is 
design dependent and adds to both static and dynamic power consumed by the PL. A 
thorough understanding of the PL architecture enables the designer to leverage silicon 
resources.

To reduce power, designers must look for opportunities to reduce the logic in a design. This 
allows use of smaller devices and reduces static power consumption. One option is to use 
dedicated hardware blocks rather than implementing the function in CLBs. This can help 
lower both static and dynamic power consumption and make it easier to meet timing 
requirements. Blocks lower static power consumption because the total transistor count is 
less than an equivalent component built using CLB logic. 

Designers can use the IP catalog to customize the dedicated hardware for instantiating a 
specific resource. Unused PS IP can be re-purposed for other tasks that may not be obvious. 
For example, DSP48 slices have many logic functions, such as multipliers, adders and 
accumulators, wide logic comparators, shifters, pattern matchers, and counters. Block RAMs 
can be used as state machines, math functions, and ROMs.

Most of the coding techniques needed are described in the UltraFast Design Methodology 
Guide for the Vivado Design Suite (UG949) [Ref 16].
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Chapter 2: System Level Considerations
Managing Control Sets

Control signals (signals that control synchronous elements such as a clock, set, reset, and 
clock enable) can affect device density, utilization, and performance. Some guidelines 
follow for keeping the power impact of these signals to a minimum.

Avoid using both a set and reset on a register or latch. The flip-flops in Xilinx FPGAs can 
support both asynchronous and synchronous reset and set controls. However, the 
underlying flip-flop can natively implement only one set, reset, preset, or clear at a time. 
Specifying more than one of these functions in the RTL code results in the implementation 
of one condition using the SR port of the flip-flop and the other condition implemented in 
the PL, thus using more PL resources.

If one of the conditions is synchronous and the other is asynchronous, the asynchronous 
condition is the one implemented using the SR port, and the synchronous condition is 
implemented in the PL. In general, avoid more than one set, reset, preset, or clear condition. 
Also, only one attribute for each group of four flip-flops in a slice determines whether the 
SR ports of flip-flops are synchronous or asynchronous.

Use active-high control signals, because the control ports on registers are active high. 
Active-low signals use more lookup tables because they require an inversion before they 
drive the register control port. The LUT may already have other inputs such that the 
inversion could require another LUT. Using active-low control signals can lead to longer 
implementation runtimes and result in poor device utilization, affecting timing and power. 
Therefore, active-low resets in an FPGA design are not recommended.

Use active-high control signals where possible in the HDL code or instantiated components. 
When it's impossible to specify control signal polarity within the design, invert the signal in 
the top-level code hierarchy. The I/O logic can absorb the inferred inverter without using 
additional FPGA logic or routing, resulting in better utilization, performance, and power.

Managing Sets and Resets

Coding unnecessary sets and resets can prevent the inference of shift-register LUTs (SRLs), 
LUT RAMs, block RAMs, and other logic structures. Although coding can be awkward, many 
circuits can be made to self-reset, or simply do not need a reset. For example, considering 
flip-flops within a data pipeline, there is little point in having a reset at all. After a few cycles, 
the entire pipeline is operational, and any incorrect data is flushed out of the system.

Reducing the use of sets and resets improves device utilization, resulting in better 
placement, improved performance, and reduced power.

Refer to the Get Smart about Reset: Think Local, Not Global Whitepaper (WP272) [Ref 34] for 
more information on designing resets.
UltraFast Embedded Design Methodology Guide 26
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=26


Chapter 2: System Level Considerations
Clock Gating

The PL dynamic power consumption is determined by the operating clock frequency (fclk), 
node capacitance (C), FPGA operating voltage (V), and the switching activity (α ) on various 
design nodes. The equation for dynamic power is:

Dynamic Power = α x fclk x C x V2 Equation 2-1

For most designs, some parameters are determined either by the FPGA technology (for 
example, operating voltage) or by design requirements (for example, operating frequency). 

Gating the clock or data paths is a common technique used to stop switching activity when 
the results of those paths are not used. Clock gating stops all synchronous activity, 
preventing data path signals and glitches from propagating. 

The Vivado® tool analyzes the description and netlist to detect unwanted conditions. 
However, designer knowledge of the application, data flow, and dependencies are not 
available to the tool, but should be specified by the designer to further remove unwanted 
conditions. 

There are several design nodes that do not affect the PL output, but continue to toggle. 
Every flip-flop, block RAM and DSP48 has a local clock-enable. Designers can gate the local 
clock-enable to eliminate unnecessary flip-flop, block RAM, and DSP toggling, as shown in 
Figure 2-3.

Designers should ensure the maximum number of elements are controlled by the gating 
signal when possible. For example, it is more power efficient to gate a clock domain at its 
source rather than gate each load with a clock-enable signal. Designers can use the 
different clock buffer primitives in the PL to gate clocks, depending on the application.

The BUFGCE primitive is a global clock buffer with a clock enable. BUFGCE can be used to 
dynamically gate a global clock or clock domain, glitch free. Using this resource also 
reduces high clock enable fanout and saves PL fabric routing resources.

If gating is needed for a specific logic function or a clock domain in the PL, the BUFHCE or 
BUFRCE primitive can be used. These primitives reduce loading and capacitance, lowering 
the PL dynamic power consumption.

X-Ref Target - Figure 2-3

Figure 2-3: Gating the Local Clock-Enable to Eliminate Unnecessary Toggling
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Chapter 2: System Level Considerations
The BUFGMUX_CTRL primitive can be used to distribute clocks to specific regions and avoid 
unwanted PL fabric dynamic switching. It can also be used to switch between fast and slow 
clocks in order to reduce power.

There are often several design nodes that do not affect the PL output but continue to 
toggle, resulting in unwanted dynamic power consumption. The FPGA clock enables can be 
used to gate those nodes. 

Making the best use of timing constraints is also important in low-power design. If an 
application operates in a temperature-controlled environment, the application can be 
derated to meet timing. The design should be constrained to use the maximum specified 
clock rate. Using a faster clock rate than necessary typically has the following negative 
effects:

• More PL resources are used due to reduced resource sharing.
• Logic and registers are often duplicated to meet tight timing constraints.
• The amount of routing increases.
• There are fewer inferences of PL dedicated features. 

All of these negative effects can significantly impact dynamic power consumption. 

Block RAM 

The power block RAM consumes is directly proportional to the time it is enabled. To save 
power, the block RAM enable can be driven low when the block RAM is not used. Both the 
block RAM enable rate and the clock rate are important to consider when optimizing power. 

The block RAM should be enabled during an active read or write cycle. Synthesis tools 
might not infer these primitives, so if they are needed their inference should be verified 
with a schematic viewer and instantiated if necessary to save power. 
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Chapter 2: System Level Considerations
Floorplanning

Designs that span multiple clock regions use more clocking resources and consume more 
power. When possible, place any intermittently used logic in a single clock region to help 
reduce power, as shown in Figure 2-4. While the tools attempt to do this automatically, 
some designs may require manual effort like applying an area constraint to achieve this.

Limiting data motion is another power-reduction technique. Instead of moving operands 
around the PL, move only the results, as shown in Figure 2-5. Using fewer and shorter buses 
lowers capacitance, improves performance, and consumes less power. The pinout 
placement and corresponding logic design must be considered during floorplanning.

X-Ref Target - Figure 2-4

Figure 2-4: Constraining Intermittently Used Logic to a Single Clock Region

X-Ref Target - Figure 2-5

Figure 2-5: Limiting Data Motion
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Chapter 2: System Level Considerations
IO Power

I/O power can be a major contributor to total power consumption. In some designs, as 
much as half of the total power consumption comes from the I/Os, particularly in 
memory-intensive systems.

Some interfaces do not require fast, differential I/O capabilities. I/O standards such as 
HSLVDCI can save considerable power in FPGA-to-FPGA communications and in 
lower-speed memory interfaces. 

All Zynq-7000 AP SoCs offer programmable slew rate and drive strength that can be used to 
reduce I/O dynamic power. The devices support digitally controlled impedance (DCI) 
technology, and can be tri-stated. DCI eliminates termination power when the I/O’s output 
is enabled, so that the device consumes termination power only during ingress cycles.

Zynq-7000 AP SoCs incorporate a user-programmable receiver power mode for HSTL and 
SSTL. By controlling the programmable power modes on each I/O, DC power can be 
reduced by making trade-offs between power and performance.

Zynq-7000 AP SoCs have transceivers optimized for high performance and low jitter. The 
transceivers offer several low-power operating features, enabling designers to customize 
the flexibility of operation and granularity to make power and performance trade-offs.

In the transceivers, you can use the shared LC PLL to save power. In four-lane designs with 
an identical line rate (XAUI, for example), you can use a quad PLL instead of an individual 
channel PLL. Similarly, because a PLL can run at higher and lower rates within the range, a 
lower operating range can be selected to save power.

The RXPOWERDOWN and TXPOWERDOWN options can be enabled. PLL power down can 
be enabled in the lowest-power mode, such as in a system D3 state, which is mostly used in 
PCIe systems.

You can also save I/O power in the following ways:

• Using time-multiplexing techniques to reduce I/O count.
• Using minimal I/O count design partitioning that can help switch off an I/O bank when 

not used.
• Reducing the number of I/O standards used within a bank. 

Partial Reconfiguration

One way to reduce static power is to simply use a smaller device. With partial 
reconfiguration, designers can essentially time-slice a block of logic in the PL and run parts 
of their design independently. The design then requires a much smaller device because not 
every part of the design is needed 100 percent of the time. 
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Chapter 2: System Level Considerations
Partial reconfiguration has the potential to reduce dynamic power as well as static power. 
For example, many designs must run very fast, but that maximum performance might only 
be needed a small percentage of the time. To save power, designers can use partial 
reconfiguration to swap out a high-performance design with a low-power version of the 
same design-instead of designing for maximum performance 100 percent of the time. You 
can switch back to the high-performance design when the system needs it.

This principle can also apply to I/O standards, specifically when a design does not need a 
high-power interface all the time. LVDS is a high-power interface, regardless of activity, due 
to the high DC currents required to power it. You can use partial reconfiguration to change 
the I/O from LVDS to a low-power interface, such as LVCMOS, at times when the design 
does not need the highest performance, and then switch back to LVDS when the system 
requires high-speed transmissions.

Power Estimation
Power calculations can be performed at three distinct phases of the design cycle.

• Concept phase: In this phase a rough estimate of power can be calculated based on 
estimates of logic capacity and activity rates.

• Design phase: Power can be calculated more accurately based on detailed information 
about how the design is implemented in a Zynq-7000 AP SoC. 

• System integration phase: Power is measured in a lab environment.

Xilinx provides a suite of tools and documentation to help evaluate the thermal and power 
supply requirements of the system throughout the design cycle. Figure 2-6 shows the tools 
available at each stage of the design cycle.

Some tools are stand-alone, while others are integrated into the implementation process, 
using information available at each stage of the design process. All tools can exchange 
information back and forth for efficient analysis.

X-Ref Target - Figure 2-6

Figure 2-6: Vivado Power Estimation and Analysis Tools in the FPGA Design Process
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The final power consumption is determined after the system has been implemented and 
measured in the lab. This is done by manually probing the development-board power lines, 
or by providing a mechanism to read the voltage and current from external programmable 
voltage regulators. Accurate power calculations in early design stages result in fewer 
problems later. 

Xilinx Power Estimator (XPE)

The Xilinx Power Estimator (XPE) spreadsheet is a power estimation tool typically used 
during a project's concept phase. XPE assists with architecture evaluation and device 
selection, and helps with selecting the appropriate power supply and thermal management 
components for the application. The XPE interface for Zynq-7000 AP SoCs is shown in 
Figure 2-7. Designers can use the tool to specify design resource use, activity rates, I/O 
loading, CPU clock frequency, and many other design parameters. XPE combines the 
parameters with the device models to calculate an estimated power distribution.
X-Ref Target - Figure 2-7

Figure 2-7: Xilinx Power Estimator for Zynq-7000 AP SoCs
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Chapter 2: System Level Considerations
XPE is also commonly used later in the design cycle during implementation and power 
closure, such as evaluating the power implications of engineering change orders. For large 
designs implemented by multiple teams, the project leader can use XPE to import the 
utilization and activity of each team's module, then monitor the total power and reallocate 
the power budget to ensure constraints are met.

System-Level Power Analysis

The final system power consumption is determined after the design has been implemented 
and measured in the lab. This is done by manually probing the development-board power 
lines, or by providing a mechanism to read the voltage and current of voltage regulators.

The Zynq-7000 AP SoC Low Power Techniques part 1 - Installing and Running the Power 
Demo Tech Tip wiki page [Ref 63] provides a reference design demonstrating system-level 
power consumption while executing different application scenarios on Zynq-7000 AP SoC 
PS and PL sections. You can refer to this technical article when performing system-level 
power measurements on your design.

Vivado Power Analysis

Vivado Power Analysis is a tool used to analyze power consumption of placed and routed 
designs during the design phase. It provides a comprehensive GUI that allows a detailed 
analysis of the power consumed as well as thermal information for the specified operating 
conditions. Figure 2-8 shows an example report from Vivado Power Analysis.
X-Ref Target - Figure 2-8

Figure 2-8: Vivado Power Analysis Example Report
UltraFast Embedded Design Methodology Guide 33
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=33


Chapter 2: System Level Considerations
The tool provides two different views of power consumption:

• Power consumed by type of blocks found in the design, including clock trees, logic, 
signals, I/Os, and PS IP such as block RAMs and DSP blocks.

• Power consumed throughout the design hierarchy. 

Designers can toggle between the two views to perform a detailed power analysis. The 
views provide an efficient method for locating the blocks or design parts that consume the 
most power, thus identifying places to focus power optimization efforts.

Switching activity information from Value Change Dump (VCD) and Switching Activity 
Interchange format (SAIF) files can be entered into the Vivado Power Analysis tool for more 
accurate power estimation. VCD files contain header information, variable definitions, and 
value change details for each step of a simulation. SAIF files contain signal toggle counts 
and timing attributes specifying the time duration of signals at level 0, 1, X, or Z.

PL Power Optimization in Vivado 
Although designers can use clock gating to optimize power as described previously, it is 
rarely done. This is either because the design contains intellectual property from other 
sources or because of the effort involved in doing such fine-grained clock gating. The 
Vivado tools automate such power optimizations to maximize power savings while 
minimizing effort.

The Vivado design tools offer a variety of power optimizations enabling you to minimize 
dynamic power consumption by up to 30%. 

Vivado performs an analysis on the entire PL design, including legacy and third-party IP 
blocks, for potential power savings. It examines the output logic of sourcing registers that 
do not contribute to the result during a given clock cycle, and then creates fine-grained 
clock gating and logic-gating signals that eliminate unnecessary switching activity.

Power optimizations are also applied to dedicated block RAMs. Most of the power savings 
is realized by disabling the dedicated block RAM's enable when no data is written and when 
the output is not being used.

Refer to the Vivado Design Suite User Guide: Power Analysis and Optimization (UG907) 
[Ref 10] for more information on using the power optimization options and extracting the 
power consumption information from the design.
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Correcting Over-Budget PL Power Consumption
Late in the design cycle there is pressure to get the system to market, and most system 
parameters are well defined, such as the board environment and cooling solution. Even 
though this limits the engineering rework you can do, further power reduction might be 
possible in the PL. The following process can help focus your efforts on the areas in the PL 
with the highest potential for power reduction.

1. Determine which Power Budget is Exceeded

Vivado GUI users can review the summary view in the Vivado Power Analysis report, and 
command line users can use the summary section of the power report file. The on-chip 
and supply power tables provide a high-level view of the power distribution. Use the 
summary view to determine the type and amount of power that exceeds your budget.

2. Identify the Focus Areas

Review the different detailed views in the Vivado Power Analysis report or Xilinx Power 
Estimator. Analyze the environment parameters and the power distribution across the 
different resources used, the design hierarchy, and clock domains. When an area of the 
design is found where power seems high, the information presented should help in 
determining the likely contributing factors.

3. Experiment

After developing a list of focus areas for power optimization, sort the list from easiest to 
most difficult and decide which optimization or experiment to perform next. The power 
tools allow what-if analysis so that design changes can be made quickly and power 
estimates produced without requiring edits to code or constrains, and without 
rerunning the implementation tools.

While power optimization techniques that can be used are listed in this document, more 
information can be found in the Vivado Design Suite User Guide: Power Analysis and 
Optimization (UG907) [Ref 10].

Experiment Using the Vivado Power Optimizer Feature

To maximize power savings when running the power optimizer in the Vivado tools, run 
power optimization on the entire design and do not exclude portions of the design. If 
power savings are not realized after enabling power optimization, there are three areas that 
should be examined more closely:

• Global set and reset signals
• Block RAM enable generation
• Register clock gating
A low number of enables generated by power optimization in any of those areas could 
indicate a need to review coding practices, or the options and properties set for design.
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Experiment with the Vivado Power Analysis Feature

In the Vivado Report Power dialog box, adjustments can be made before rerunning the 
analysis to review the power implications. Refer to the Vivado Design Suite User Guide: 
Power Analysis and Optimization (UG907) [Ref 10] for more information on how to use the 
different options in the Vivado Power Analyzer tool to produce optimal results. 

Experiment with Xilinx Power Estimator (XPE)

The Vivado power analysis results from modules developed by multiple sources can be 
imported into XPE. This permits a review of total power once the separate IP blocks are 
implemented in the device. You can estimate the implications of design changes on power 
consumption without requiring code or netlist changes. The estimation done by XPE is not 
as accurate as that done by the Vivado Power Analysis tool because adjustments cannot be 
made at the individual logic element or signal level in XPE.

Conclusion
Understanding and implementing power-sensitive design techniques before coding is the 
single-largest method for reducing system power. Using the various Xilinx tools at the 
appropriate design cycle stages also helps in meeting power specifications, and provides 
the board designer with information on selecting the number, type, and size of the power 
supplies.

Clocking and Reset
External and internal clocking resources are available for use as source clocks to various IP 
blocks in the Zynq-7000 AP SoC. Those resources are described below. Also described in 
this section are the various hardware, software, and debug resets, particularly when and 
how you should use them.

External Clocks

PS_CLK

On the PS side, a fixed-frequency oscillator in the range of 30–60 MHz is typically used to 
provide the processor clock PS_CLK. The clock must be a single-ended LVCMOS signal, 
using the same voltage level as the I/O voltage for MIO bank 0. From this clock, all other PS 
internal clocks are generated based on three PLLs: ARM, DRM, and IO PLL.
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The default PS_CLK frequency used on Xilinx evaluation boards is 33.3 MHz. Other clock 
frequencies can be used, but the following items are dependent on the PS clock frequency 
and must be adjusted accordingly: 

• The LogiCORE IP Processing System 7 configuration wizard calculates the derived clock 
dividers and multipliers of each of the PLLs as well as the I/O peripheral clocks such as 
SPI or UART based on the selected PS_CLK frequency. These values are later used by the 
first stage boot loader (FSBL) during initialization of the PS.

• The U-Boot board configuration include file.
• The Linux design-specific device tree.

Others

On the PL side, single-ended or differential fixed-frequency oscillators can be used as 
additional clock sources for greater flexibility. They should be connected to multi-region 
clock capable (MRCC) input pins and adhere to the I/O standard and voltage of the 
corresponding PL bank. PL input clock jitter can be much smaller than that of PS-derived 
clocks. For certain applications (such as to generate a video resolution dependent, accurate 
pixel clock in a video system), external low-jitter programmable clock synthesizers are used.

Certain board peripherals require an external crystal to operate the PHY (for example, a 25 
MHz crystal is required for the Ethernet PHY). Also, some peripheral I/O interfaces provide 
input and/or output clocks to communicate with the corresponding PHY (such as Ethernet 
RX and TX clocks). 

Internal Clocks

PS

All clocks generated by the PS clock subsystem are derived from one of three 
programmable PLLs: CPU, DDR, and I/O. Each of these PLLs is loosely associated with the 
clocks in the CPU, DDR, and peripheral subsystems. During normal operation, the PLLs are 
enabled, driven by the PS_CLK clock pin. In bypass mode, the clock signal on the PS_CLK pin 
provides the source for the various clock generators instead of the PLLs. After the boot 
process, the bypass mode and output frequency of each PLL can be individually controlled 
by software.

The CPU clock domain is composed of four separate clocks: CPU_6x4x, CPU_3x2x, CPU_2x, 
and CPU_1x. These four clocks are named according to their frequencies, which are related 
by one of two ratios: 6:3:2:1 or 4:2:2:1 (abbreviated 6:2:1 and 4:2:1, respectively). All of the 
CPU clocks are synchronous to each other. There are two independent DDR clock domains: 
DDR_3x and DDR_2x. These clocks are asynchronous to each other and the CPU clocks. Most 
I/O peripherals clocks have dedicated dividers. Each peripheral clock is completely 
asynchronous to all other clocks.
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Chapter 2: System Level Considerations
PS - PL Interface

PL AXI channels (AXI_HP, AXI_ACP, and AXI_GP) have asynchronous interfaces between the 
PS and the PL. The synchronization, where the clock domain crossing occurs, is located 
inside the PS. Therefore, the PL provides the interface clock to the PS. Each of the 
aforementioned interfaces could use unique clocks in the PL.

The PS provides four frequency-programmable fabric clocks (FCLK [3:0]) to the PL that are 
physically spread out along the PS-PL boundary. The clocks can be controlled individually 
by setting the clock's source (ARM, DDR, or I/O PLL) and the clock's output frequency. There 
is no guaranteed phase relationship between any of the four FCLK clocks, even when 
sharing the same clock source. Make sure to use appropriate design constraints when 
interfacing between multiple FCLK regions. The FCLK clocks are disabled until the PS - PL 
level shifters are enabled.

RECOMMENDED: It is good practice to route a single FCLK into a clocking wizard IP core instantiated 
inside the PL to generate more than one phase-aligned output clocks.

The following are pros and cons of using FCLK:

• FCLK is the preferred PL clock under the following circumstances:

° The processor controls the PL clock frequency.

° An on-board clock generator is not available.
• FCLK is not the preferred PL clock under the following circumstances: 

° The PL clock frequency is outside the frequency range supported by FCLK.

° The PL uses a clock provided by the FPGA pins. This is common in 
source-synchronous protocols that use the input clock to sample receive data.

° Low clock jitter is required. 

° Some IP blocks that require specific clocking cannot use FCLK:
- The memory-interface generator (MIG) requires a differential clock, Therefore, 

FCLK cannot be used for the MIG except at reduced frequencies due to jitter.
- GTs should use a differential clock from the board as a reference clock.

For more information on the PS clock system, refer to the Clocks chapter of the Zynq-7000 
All Programmable SoC Technical Reference Manual (UG585) [Ref 4].

PL

The PL provides clock primitives that are commonly found on FPGA devices, such as global 
or regional clock buffers (BUFG, BUFR), phased-locked loops (PLL), or mixed-mode clock 
managers (MMCM). For convenience, the clocking wizard IP core implements a wrapper 
around the MMCM/PLL primitives with up to eight configurable output clocks. The user can 
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Chapter 2: System Level Considerations
optionally enable dynamic reconfiguration of clock frequencies using the dynamic 
reconfiguration port (DRP) or an AXI-Lite interface.

TIP: In the simplest case, a complete Zynq-7000 system can be built with a single input clock based on 
PS_CLK, and all PL clocks are generated from the provided FCLKs and FPGA clocking resources.

PS Power-On Reset
The PS power-on reset (PS_POR_B) is an active-low signal used to hold the PS in reset until 
all PS power supplies are stable and at their required voltage levels. This signal should be 
generated from the power supply power-good signal or from a voltage supervisor chip. At 
the time PS_POR_B is released, the system clock (PS_CLK) must have been stable for 2,000 
clock cycles. PS_POR_B should be pulled high to VCCO_MIO0. When asserting PS_POR_B, 
the pulse length must be longer than 100 μs.

The power-on reset is the chip master reset. It resets every register in the device that can be 
reset, resets all PS RAM (including OCM, Fifos, buffers, etc.) and starts BootROM execution, 
clearing the PL configuration. When PS_POR_B is held low, all PS I/Os are held in 3-state.

PS System Reset
The PS system reset (PS_SRST_B) is an active-low signal that is used primarily for debugging 
proposes. PS_SRST_B must be high to begin the boot process. If PS_SRST_B is not used it 
can be pulled high to VCCO_MIO1. When asserting PS_SRST_B, the pulse length must be 
longer than 1 μs.

A PS system reset (PS_SRST_B) resets all functional logic without affecting the debug 
environment. This differs from a power-on reset (PS_POR_B), which erases the debug 
configuration. The PS_SRST_B erases all PS RAM, starts BootROM execution, and clears the 
PL configuration. It does not re-sample the boot-mode strapping pins, unlike the 
PS_POR_B. The boot mode remains the same as the previous power-on reset, and the 
security level of the previous boot is retained.

The PS_SRST_B signal must be de-asserted before the PS_POR_B signal is de-asserted. If the 
BootROM execution caused by a PS_POR_B reset is interrupted by the assertion of the 
PS_SRST_B reset signal, the system will lock down. If both PS_SRST_B and PS_POR_B are 
used, PS_POR_B must be the last signal that is de-asserted. For more information, refer to 
Xilinx Answer Record 52847 [Ref 70].

Contact Xilinx Technical Support if you need a PS reset solution that does not clear the PL. 

System Software Reset
The System Software Reset, also called SLCR Soft Reset, is asserted by writing to 
PSS_RST_CTRL[SOFT_RST] and has the same effect as asserting the PS_SRTS_B pin. All of the 
PS RAMs are cleared and the PL is reset as well. 
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Chapter 2: System Level Considerations
Watchdog Timer Resets
There are two sources of watchdog timer resets: the System Watchdog, SWDT, and the two 
ARM Watchdog Timers, AWDT0 and AWDT1. The SWDT always resets the entire system, 
while each of the AWDTs can be used to reset either the associated ARM core (same effect 
as CPU Reset) or the entire system (same effect as System Software Reset).

CPU Resets
There are two CPU Resets, one for each ARM core asserted by writing to 
A9_CPU_RST_CTRL[A9_RSTx]. A CPU Reset to a single processor must be applied from the 
other CPU, through JTAG or the PL.

Debug Resets
There are two debug resets, Debug System Reset and Debug Reset, that originate from the 
ARM DAP and are controlled by JTAG. The Debug System Reset has the same effect as a 
System Software Reset, whereas the Debug Reset only resets the debug logic.

Peripheral Resets
Individual peripheral resets can be asserted under software control, using programmable 
bits within the SLCR. However, asserting reset at the peripheral block level is not 
recommended. Resetting a peripheral without completing all in-flight or pending 
transactions will cause the system to hang, because AXI transactions do not support a 
timeout mechanism. When asserting reset to a peripheral, all pending and in-flight 
transactions must be completed and no future transactions can be issued prior to the reset.

PL Resets
The PS provides four programmable reset signals to the PL (FCLK_RESET [3:0]). The resets 
are individually programmable and independent of the PL clocks. After a POR or 
system-wide reset, the reset signals are not de-asserted until the BootROM execution 
finishes and the PS to PL level shifters are enabled

The FCLK_RESET is loosely associated with the FCLK of the same number. That is, the FCLK 
needs to be toggling for the FCLK_RESET to propagate out of the PS. The reset is an 
asynchronous reset to the PL and you must synchronize the reset inside the PL if required.

RECOMMENDED: To synchronize an FCLK_RESET, connect the signal to the external reset input port of 
a proc_sys_reset IP core. By doing so, the reset output signals connected to other PL IP cores can be 
synchronized to the slowest clock.
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Chapter 2: System Level Considerations
If the FCLK_RESET signal drives the reset of AXI-based IP in PL and is reasserted after the 
initial de-assertion described above, resetting the IP later without completing all in-flight or 
pending transactions to and from the process block will cause the system to hang. The 
system must idle all AXI masters and finish all AXI transactions prior to asserting reset.

Interrupts
Generic Interrupt Controller
Because a Zynq-7000 AP SoC has many interrupt sources, the MPCore multicore processor 
includes an implementation of the generic interrupt controller (GIC) architecture to help 
funnel, prioritize, and arbitrate those interrupt sources. The GIC maps interrupts to specific 
processor nIRQ and nFIQ lines. Multiple, concurrent interrupts are presented serially to one 
or more processor interrupt lines.

Conceptually, the GIC contains an interrupt distribution block (distributor) and two 
processor-interrupt blocks. Each block contains a set of registers. Registers in the 
processor-interrupt blocks can only be accessed by the processor they are attached to using 
its private bus and cannot be accessed by the other CPU or other AXI masters in the system. 
Distributor registers can be accessed by either processor, and some registers are also 
banked for secure and non-secure access.

Interrupts sent to the GIC can be unmanaged (legacy) or managed. Legacy interrupts are 
not controlled by the GIC and the interrupt handler should not interact with GIC registers. 

X-Ref Target - Figure 2-9

Figure 2-9: System-Level Block Design
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Chapter 2: System Level Considerations
Managed interrupts are controlled by the GIC and the interrupt handler must interact with 
GIC registers.

The distributor can control managed interrupt sources as follows:

• Define the interrupt as edge-sensitive or level-sensitive, subject to hardware 
configuration limitations.

• Assign a 5-bit priority to the interrupt, with a programmable binary point.
• Assign a TrustZone technology security state to the interrupt. Interrupts labeled as 

secure are called Group 0 interrupts, and non-secure interrupts are labeled as Group 1 
interrupts.

• Route shared peripheral interrupts to one or both processors.
Note: Private peripheral interrupts (PPIs) are dedicated to each CPU and cannot be routed 
elsewhere other than through the GIC.

• Route a software-generated interrupt to one or both processors.
• Save and restore the pending state of each interrupt. This is useful in low-power 

applications.

Interrupt Architecture
The PS and PL interrupt sources, PS interrupt hierarchy, and Cortex-A9 processor 
considerations are described in this section.

PS Interrupt Sources

Each Cortex-A9 processor can be interrupted by the following sources:

• Sixteen software-generated interrupts (SGIs) are available for software to interrupt 
either processor.

• Five private peripheral interrupts (PPIs) are available. There are two interrupts from PL 
(FIQ and IRQ) and one each from the global timer, the private timer, and AWDT.

• Sixty shared peripheral interrupts are available. There are 44 PS I/O peripheral 
interrupts and 16 PL interrupts. 

• Four PL interrupts can bypass the GIC and directly interrupt the processors, reducing 
interrupt latency.

• Although it is not an interrupt, a CPU may use the WFE instruction to deliberately stall 
and wait for an event on a dedicated input line from the other CPU or the PL. 
UltraFast Embedded Design Methodology Guide 42
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=42


Chapter 2: System Level Considerations
PL Interrupt Sources

Each device in the PL that responds to interrupts must arrange for its own interrupt 
controller, if needed. The following interrupts can be sent from the PS to the PL:

• Twenty-nine shared peripheral interrupts from the PS. These correspond to many (but 
not all) of the PS peripherals.

• A processor can also use software-generated interrupts to interrupt the PL by using 
EMIO GPIOs, an AXI_GPIO output channel in the PL, or by asserting a per-processor 
hardware event line using the SEV instruction.

Interrupt IDs

A Zynq-7000 AP SoC supports IRQ IDs #0 through #95, as follows:

• IRQ ID #0–#15. These are assigned to software generated interrupts, allowing software 
to interrupt a processor, including the processor hosting the software.

• IRQ ID #16–#31. These are assigned to private peripheral interrupts. IRQ ID #16–#26 
are unused. Zynq-7000 AP SoCs implement IRQ ID #27–#31, as follows:
a. IRQ ID #27 is used by the processor global timer.
b. IRQ ID #28 is used by the managed FIQ and is also an unmanaged input.
c. IRQ ID #29 is used by the processor private timer.
d. IRQ ID #30 is used by the processor AWDT.
e. IRQ ID #31 is used by the managed IRQ and is also an unmanaged input.

• IRQ ID #32–#95. These are assigned to shared peripheral interrupts. IRQ ID #36 is 
unused. Zynq-7000 AP SoCs implement IRQ ID #32–#35 and #37–#95. Thirty-one 
interrupts (IRQ ID #32–#62) can all be unlocked or all be locked against user change.

Unique Capabilities
Interrupts can originate from the PS or the PL, and a PS processor or dedicated hardware in 
the PL fabric (such as MicroBlaze™) can respond to interrupts. This enables the unique 
capabilities of Zynq-7000 AP SoCs, described in the following sections.

Interrupt Processing in Fabric

Custom hardware can be created to offload interrupt processing to the PL. When this is 
done, interrupt latency can be very low and deterministic (clock cycle accuracy). Also, the 
custom hardware can perform computations that would take longer on the processor, in 
parallel with the processor. If this is done, data stitching might be required, and the ACP 
might be useful in providing cache coherency for PL masters.
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Chapter 2: System Level Considerations
Custom hardware can also be used to filter interrupts, reducing PS interrupt frequency and 
processor loading. This can be done by converting multiple, low-level interrupts into fewer, 
high-level interrupts.

Processor as an Extension of Fabric

Alternatively, processors in a Zynq-7000 AP SoC can act as an extension of fabric hardware, 
performing tasks in software that would be difficult to implement in hardware. The PL can 
send an interrupt to the PS to initiate a task, and interrupts can be sent from the PS to PL 
indicating task completion. This method can also be used with the PS DMA330 controller to 
provide additional execution threads.

Using OCM for Handlers

Fetching an interrupt handler from DDR memory might take more time than desired. The 
Zynq-7000 AP SoC has a large L2 cache, but an interrupt handler may not be cached when 
an interrupt occurs. In this case, it may be beneficial to place interrupt handlers in on-chip 
memory (OCM). When this is done, the variability in time spent fetching an interrupt 
handler is limited to L1 caches misses, leading to reduced jitter

Processor Affinity

Because there are two processors, polling responsibilities and interrupt handlers can be 
divided between the processors, reducing latency and improving response time. This can be 
done in either symmetric or asymmetric multi-processing systems.

Using FIQ and IRQ

Each Cortex-A9 in a Zynq-7000 AP SoC has two interrupt lines, nFIQ and nIRQ, driven by the 
ARM e Generic Interrupt Controller (GIC). The 'n' prefix indicates that they are active low 
interrupts. FIQ has lower latency than IRQ and is typically used for high-priority interrupts. 
IRQ is used for interrupts that do not require low-latency response. An FIQ always preempts 
an IRQ, and a preempted IRQ handler resumes execution after the FIQ handler finishes.

TrustZone

Zynq-7000 AP SoCs use ARM TrustZone technology, allowing system components to be 
identified as secure or non-secure. For example, at different times each processor can 
operate in secure and non-secure modes. Similarly, interrupts can be identified as secure 
and non-secure. This allows isolation of secure components from those that are not secure. 
In this case, higher-priority FIQs can be used for secure interrupts and lower-priority IRQs 
for non-secure interrupts. Many secure settings can also be locked to prevent changes.
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System Design Considerations
System designs should consider the performance impacts of various interrupt 
implementation options:

• Latency and associated jitter should be characterized and managed by hardware or the 
operating system. Jitter occurs if the OS masks interrupts for an unpredictable time 
period, or because higher priority interrupts are being serviced.

• Policies for peripherals and associated software should be defined for cases when 
interrupt handling is delayed. Choices include dropping data, throttling or pausing the 
remote data source, and allowing hardware to run with degraded performance.

• Processor utilization is sufficient for peripheral services and other tasks, assuming 
average and worst case scenarios.

• The interrupt handler's memory location can affect instruction-fetch performance. 
Memory closer to the processor will have lower latency. Aligning the interrupt service 
routine so that it starts on a cache line boundary can improve latency.

• When an interrupted peripheral operates on data that could be cached by the 
processor, the processor must maintain cache coherency by invalidating or flushing its 
caches, or by using hardware coherency mechanisms such as the ACP. On Zynq-7000 AP 
SoCs, PL peripherals that use the ACP port avoid this restriction.

• In systems implementing asymmetric multi-processing (AMP), an ownership policy for 
interrupts (and other system resources) must be established.

Embedded Device Security
The definition of security in modern embedded devices depends on the application. For 
mobile phones, security could refer to preventing unauthorized access to personal data, 
such as bank account numbers and passwords. For data center switches, security could refer 
to preventing a hacker from maliciously logging in and disrupting network services. 
Stealing and decompiling binary software logic stored in flash memory or physically 
breaking open devices for reverse engineering are also possible embedded device security 
challenges.

Potential threats to embedded devices include:

• Data privacy in the embedded device
• Cloning the embedded device
• Denial of service
• Malware insertion to change the embedded device behavior
• An insider providing keys to an adversary
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Chapter 2: System Level Considerations
The above examples describe threats from hackers and competitors. Other system security 
threats can come from poorly-written programs. Such programs can accidentally corrupt 
other programs and user data stored in the embedded-device flash, or disrupt normal 
embedded-device operations by monopolizing the processor or peripheral bandwidth.

Zynq-7000 AP SoCs are designed to improve the security of the embedded systems they 
power. This section highlights security features of Zynq-7000 AP SoCs that can be used to 
provide different levels of security, such as:

• Boot image and bitstream encyption and authentication (secure boot).
• Partitioning the system into separate secure zones (TrustZone).
• Deploying asynchronous multiprocessing (AMP) on Zynq-7000 AP SoCs.
• Linux deployment on Zynq-7000 AP SoCs.

Secure Boot
An embedded system using a Zynq-7000 AP SoC typically wants to prevent the device from 
being used differently than what was originally intended. An embedded system with a 
Zynq-7000 AP SoC will typically have at least one of two programmable components: 
software (PS images) and PL bitstreams. The system must be designed to ensure that once 
it is deployed into the field, untrusted and corrupted programmable components are not 
used for system boot. Also, security against programmable component theft must be 
included to prevent a malicious competitor from stealing PS images and PL bitstreams. 
Authentication is used to prevent booting with unauthorized programmable components, 
and encryption is used to prevent programmable components theft.

Zynq-7000 AP SoCs provide multiple features in hardware and software (BootROM) that can 
be configured to ensure that trusted programmable components (software and PL 
bitstreams) are used to boot a Zynq-7000 AP SoC. Secure boot mode is restricted to NOR, 
NAND, SDIO, or Quad-SPI flash as the external boot device. A secure boot from JTAG or any 
other external interface is not allowed. 
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PS Software Boot Flow

The boot flow for PS is shown in Figure 2-10.
X-Ref Target - Figure 2-10

Figure 2-10: PS Boot Flow

Power On Reset

(Debug access with JTAG disabled)

Internal memory hardware clean process 

(Optional OCM ROM CRC)

RSA authentication performed on FSBL

Load boot image header

AES decryption of FSBL

(Decrypted FSBL loaded to OCM)

HMAC authentication of FSBL

Disable OCM ROM memory

Pass control to FSBL

Disable and LOCK all security features

(AES and HMAC)

Load FSBL into OCM

Disable OCM ROM memory

Enable JTAG

Pass control to FSBL

Secure boot Non-Secure boot

RSA enabled

X14193-080117
UltraFast Embedded Design Methodology Guide 47
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=47


Chapter 2: System Level Considerations
Power-On BootROM CRC Check

After power-on, the BootROM is the first software component that executes. An optional 
128KB CRC check can be done on the BootROM prior to loading the FSBL. The CRC check is 
controlled by eFuse settings. Refer to the Secure Key Driver section in Secure Boot of 
Zynq-7000 All Programmable SoC (XAPP1175) [Ref 42] for more information on 
programming eFuses in Zynq-7000 AP SoCs.

During BootROM execution, the boot header is read from the external storage boot device 
(SDIO, QSPI flash, NAND flash, or NOR flash) as configured by the mode pins. The header 
contains information indicating whether the device will boot securely or non-securely. Refer 
to the “Boot and Configuration” chapter in the Zynq-7000 All Programmable SoC Technical 
Reference Manual (UG585) [Ref 4] for more information on the mode pins.

RSA Authentication of FSBL

During execution, the BootROM can authenticate a secure FSBL prior to decryption or a 
non-secure FSBL prior to execution using RSA public-key authentication. This feature is 
enabled by blowing the RSA Authentication Enable fuse in the PS eFuse array. 
Authenticating the FSBL can ensure that a malicious or corrupted FSBL does not 
compromise a Zynq-7000 AP SoC by booting from an unauthorized boot source using 
unauthorized programmable components. Refer to Secure Boot of Zynq-7000 All 
Programmable SoC (XAPP1175) [Ref 42] for more information on RSA authentication.

Secure BOOT Image

The programmable components of a monolithic boot image (BOOT.bin) include:

• PS image components

° An initialization header that can optionally write values to registers. For example the 
initialization header can be used to increase the CPU clock speed or boot device 
speed before the BootROM copies and executes the FSBL.

° FSBL.

° Optional secondary-boot loader, such as U-Boot or bare-metal software.

° Optional data images and multiple ELF.

° Optional Linux uImage.
• PL bitstream

The boot image can be made secure, if desired. The PS images and PL bitstreams in a secure 
boot image are authenticated using a hash-based message authentication code (HMAC) 
and encrypted using the advanced encryption standard (AES). Refer to Secure Boot of 
Zynq-7000 All Programmable SoC (XAPP1175) [Ref 42] and Zynq-7000 All Programmable 
SoC Secure Boot Getting Started Guide (UG1025) [Ref 21] for more information on creating 
secure boot images.
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Chapter 2: System Level Considerations
AES & HMAC Authentication Engines

A Zynq-7000 AP SoC PL contains AES decryption and HMAC authentication engines. 
Therefore, the PL must be powered on during the secure boot process, even if the secure 
boot image does not have a PL bitstream. The BootROM checks whether the PL is powered 
on prior to reading encrypted images from boot devices, so the embedded system must 
ensure the PL is powered on before decryption. Because the PL is powered by a different 
power rail, the embedded system must be designed to ensure the rail has appropriate 
connectivity to the power regulator.

Bootgen

The programmable components of BOOT.bin are assembled using a Xilinx software tool 
called Bootgen. Bootgen also encrypts the programmable components when the secure 
boot option is selected. Refer to “Creating a Secure Boot image” in Secure Boot of 
Zynq-7000 All Programmable SoC (XAPP1175) [Ref 42] and to “Using Bootgen” in 
Zynq-7000 All Programmable SoC Software Developers Guide (UG821) [Ref 7].

Generating Keys

The secure boot authentication and decryption process requires the use of cryptographic 
keys. The keys used by Zynq-7000 AP SoCs are:

• AES 256-bit key
• HMAC key
• RSA Primary Secret Key (PSK)
• RSA Primary Public Key (PPK)
• RSA Secondary Secret Key (SSK)
• RSA Secondary Public Key (SPK)

You can provide a a developer's key for the AES and HMAC engine or generate them using 
Bootgen. Bootgen creates one key for both key0 and HMAC. If unique values for key0 and 
HMAC are needed, they can be created by running Bootgen twice, taking the key from each 
run, and providing it as a user-supplied set of keys in a third run. The AES key is 
programmed into either eFuse or BBRAM in the PL using Vivado or the Secure Key Driver. 

In the Zynq AP SoC, the primary RSA key is used to authenticate the secondary keys. 
Secondary keys are used to authenticate partitions (such as software, data, and bitstream). 
OpenSSL is used to create RSA primary and secondary keys. OpenSSL is used because it is 
readily available, but you can also use other methods to generate keys. The RSA key 
generated by OpenSSL is a private/public key pair. The public key is a subset of the private 
key. For security, it is important to protect the private key. In RSA, the private key is used to 
sign the partitions at the manufacturing site, and a hash of the public key is programmed 
into the Zynq AP SoC embedded device to verify the signature.
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eFuse / BBRAM for Security

For RSA authentication, the hash of the PPK is stored in the PS eFuse array. The PS eFuse is 
programmed using the secure key driver. For AES decryption, the key is stored in either the 
eFuse or BBRAM in the PL. The PL eFuse control bits for eFuse Secure Boot, BBRAM Key 
Disable, and JTAG Chain Disable are programmed using Vivado or the Secure Key Driver. 
The eFuses are one-time programmable (OTP). A power-on reset (POR) is required after 
programming the eFuses.

For more information on the Secure Key Driver, as well as many other security features 
discussed in this section, refer to Secure Boot of Zynq-7000 All Programmable SoC 
(XAPP1175) [Ref 42].

Partitioning a System in Separate Secure Zones (Trust Zone)
Secure boot uses encryption and authentication to prevent a boot from using unauthorized 
software, and it prevents theft of programmable PS images and PL bitstreams. However, 
system designers may want to provide additional protection levels, such as allowing access 
to certain system components only when trusted software executes on the system. This 
would help prevent dynamically-loaded third-party applications from accessing private 
data or monopolizing systems resources, degrading system performance. For example, a 
system designer might not want third-party software to access system flash that is used to 
store private data, such as bank account details and passwords. 

ARM TrustZone technology ensures runtime security by enabling the system designer to 
divide the system into logical partitions that allow only trusted software to access secure 
components at the hardware level. For more information, refer to:

• ARM Security Technology: Building a Secure System using TrustZone® Technology 
[Ref 76]

• Programming ARM TrustZone Architecture on the Xilinx Zynq-7000 All Programmable 
SoC User Guide (UG1019) [Ref 20]

Security using Asynchronous Multiprocessing (AMP)
Asynchronous multiprocessing (AMP) can be used in a Zynq-7000 AP SoC for system 
security by restricting where software can execute. For example, one ARM Cortex-A9 
processor can be used to execute untrusted third-party applications and the other ARM 
Cortex-A9 processor can be used to execute trusted software. The operating system on the 
ARM Cortex-A9 processor running trusted software is given system resources, such as 
peripherals, that are mission critical. The operating system on the ARM core running 
untrusted software is not made aware of the secure peripherals. This approach provides a 
logical separation where untrusted software cannot intentionally or unintentionally 
degrade system performance. This approach ensures runtime security. Preventing a 
malicious boot of a Zynq-7000 AP SoC by an unauthorized programmable component is 
covered by secure boot. 
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Chapter 2: System Level Considerations
Linux Deployment
Because Linux is ported to Zynq-7000 AP SoCs, Linux security features are available. Linux 
security includes file access controls, use of the memory management unit to prevent illegal 
memory access, such as by programs.

Linux-based platforms such as Android also provide device security by using virtual 
machines that prevent third-party applications from directly accessing hardware resources.

Many other third-party proprietary security extensions exist for Linux.

Profiling and Partitioning
Profiling tools help you determine how to partition an application’s functions between 
hardware and software for optimal performance.

Software Profiling

Profiling is a form of program analysis that is used to aid the optimization of a software 
application. It is used to measure a number of application code properties, including:

• Memory usage
• Function call execution time
• Function call frequency
• Instruction usage

Profiling can be done statically (without executing the software program) or dynamically 
(done while the software application is running on a physical or virtual processor). 

Static profiling is generally done by analyzing the source code, or sometimes the object 
code. 

Dynamic profiling is usually an intrusive process whereby program execution on a 
processor is interrupted to gather information. Trace mechanisms within some processors 
can be used to non-intrusively gather profiling data.

Profiling allows a designer to identify code-execution bottlenecks that may be caused by:

• Inefficient code
• Poor communication between functions and a module in the PL
• Poor communication between functions in software
• An algorithm or routine implemented in software that may be more suitably 

implemented in hardware
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Chapter 2: System Level Considerations
Once identified, the bottlenecks can be optimized by rewriting the original software 
function or by moving it to the PL for acceleration. Alternatively, part of the function could 
remain in software, while the problematic section could be moved to hardware.

Profiling is also useful when analyzing large programs that are too big to be analyzed by 
reading the source code. Profiling can help designers identify bugs that may otherwise not 
have been noticed.

The execution flow of various functions is shown in Figure 2-11 above, with the number of 
clock cycles required to execute a given function highlighted. By profiling a program, and 
thus determining the number of clock cycles required to execute each individual function, it 
can be determined whether or not a function needs to be optimized. During development, 
a software engineer may have estimated the average time a function should take to execute 
on a given PS. This estimate can be compared to the profiling results and large 
discrepancies can be investigated. An example profiling output for the execution flow in 
Figure 2-11 is provided in Figure 2-12.

X-Ref Target - Figure 2-11

Figure 2-11: Program Execution Example

X-Ref Target - Figure 2-12

Figure 2-12: Example Profiling Output
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Chapter 2: System Level Considerations
Xilinx SDK System Debugger

The Xilinx SDK includes profiling tools that help identify bottlenecks in the code that might 
occur due to the interaction of functions executed within the PL, and functions executed on 
the processor. Once identified, these bottlenecks can be optimized by migrating the entire 
function to PL, by optimizing the function code on the processor, or by splitting the 
function between processor and PL. 

SDK supports hierarchical profiling, providing a view into which calling functions and called 
sub-functions have the largest effect on process performance.

TCF Profiling

Profiling in the Xilinx SDK can be done with the TCF profiler. It works using a statistical 
sampling method that examines the system at regular intervals, determines what code is 
running, and updates appropriate counters. The execution profile's accuracy improves the 
longer a profile is collected, assuming the sample rate is sufficient. Unlike other profilers 
that make use of interrupts, this method does not cause inaccuracies if the profiled code 
disables interrupts. The profiled program does not need to be recompiled, as it does with 
gprof.

Performance Monitoring

The performance monitoring feature in the SDK collects AXI Performance Monitor (APM) 
event count module data from the PL, ARM Performance Monitor Unit (PMU) data, and L2 
cache data from a Zynq-7000 AP SoC PS. The data is collected by the SDK in real-time, over 
JTAG. The values from these counters are sampled every 10 msec. These values are used to 
calculate metrics shown in the dedicated view. 
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Chapter 2: System Level Considerations
The Performance Tab in SDK is shown in Figure 2-13.

For each Cortex-A9 CPU, the following PMU events are monitored:

• Data cache refill
• Data cache access
• Data stall
• Write stall
• Instruction rename
• Branch miss

The following two L2C-PL310 (L2 cache controller) counters are monitored:

• Number of cache hits
• Number of cache accesses

X-Ref Target - Figure 2-13

Figure 2-13: Performance Tab
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The following APM counters for each of the HP and ACP ports can be monitored when the 
APM is used in a design:

• Write byte count
• Read byte count
• Write transaction count
• Total write latency
• Read transaction count
• Total read latency

ARM Development Studio 5 (DS-5)

The ARM Development Studio 5 (DS-5) tool chain is a complete suite of software 
development tools for ARM processor-based systems. DS-5 covers all development stages 
of ARM processor-based products, from platform bring-up to application profiling, while 
including a number of ARM Linux and Android specific features.
The Streamline performance analyzer is a component of the ARM Development Studio 5 
(DS-5) tool chain. It is a system-level performance analysis tool for Linux and Android 
systems. It uses sample-based profiling, Linux kernel trace, and software annotation 
techniques. A Streamline report provides a variety of performance-related information on 
seven panes: Timeline, Call Paths, Functions, Code, Call Graph, Stack Analysis, and Logs.
By default, the Streamline profiling reports are generated by sampling the program counter 
every 1ms or 10ms. When event-based sampling is enabled, Streamline takes samples when 
an event counter reaches the selected threshold value. These samples fall on the instruction 
that caused the last event, and are used to fill the profiling reports with event-based data 
instead of time-based data. For example, event-based sampling can be used to determine 
which parts of the code are causing cache misses or branch mis-predictions.

Practical Applications

Boot Time
The amount of time it takes the application to boot can be a significant concern for some 
systems. Total boot time includes the execution time for the BootROM, FSBL, 2nd stage 
boot loader (such as U-Boot), and the operating system. For information about boot time, 
refer to Xilinx Answer Record 55572 [Ref 71].
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Processor Loading 
Processor load is a measure, over time, of the computation actually done as a percent of the 
total computation that could be done. When the processor load nears 100 percent the 
system can start to fail or be unresponsive.
Top is a Linux tool that provides an ongoing look at processor load in real time. It displays 
a list of the most CPU-intensive tasks on the system, and can provide an interactive 
interface for manipulating processes. It can sort the tasks by CPU, CPU usage, memory 
usage and runtime.

System Latency

System latency is the length of time after a request is made for a system operation to start 
until the operation actually starts. Identifying the cause of system latency can be 
challenging because it includes the application and all software layers below it, including 
the operating system.

Interrupt Latency

Interrupt latency is the length of time for an interrupt to be acted on after it has been 
generated. Interrupt latency is often measured by the amount of time it takes the CPU to 
recognize the interrupt and respond by suspending execution of the current processing 
context. Another measure is the amount of time it takes to begin interrupt processing. 

In SMP Linux, interrupt processing can be done by either CPU with the default being to run 
on CPU0. If processing is left to the default it can result in a large load on one CPU. The CPU 
affinity of each interrupt can be altered from user space to balance the processing load. 
There are also applications that help balance interrupt loads, such as irqbalance. 

Cyclictest is a Linux tool that measures the amount of time between an interrupt and the 
start of the interrupt response. The measured time is compared with the expected time, and 
the difference is the latency. A number of events can delay the actual interrupt response, 
and cyclictest can be used to identify and characterize those delays. 

Hardware Profiling
When profiling, a system can be viewed as a hierarchy of subsystems, each having its own 
performance monitoring abilities. To completely analyze system performance, all data must 
be integrated and synchronized into a view that allows the designer to see where time is 
being consumed in the system.

The PL has flexibility not found in a traditional fixed SOC, giving the designer a range of 
implementation alternatives. Profiling a design is one method that can be used to fully 
understand the impacts of a specific implementation.
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Program Trace Module (PTM)

The PTM is a module that performs real-time instruction flow tracing based on the Program 
Flow Trace (PFT) architecture. The PTM generates information that trace tools use to 
reconstruct the execution of all or part of a program. 

The PFT architecture assumes that the trace tools (such as DS-5) can access a copy of the 
code being traced. For this reason, the PTM generates traces only at certain points in 
program execution, called waypoints. This reduces the amount of trace data generated by 
the PTM. Waypoints are changes in the program flow or events, such as an exception. The 
trace tools use waypoints to follow the flow of program execution.

For full program-flow reconstruction, the PTM traces:

• Indirect branches, with target address and condition code
• Direct branches with only the condition code
• Instruction barrier instructions
• Exceptions, with an indication of where the exception occurred
• Changes in processor instruction set state
• Changes in processor security state
• Context-ID changes
• Entry to and return from debug state when halting debug-mode is enabled.

The PTM can also be configured to trace: 

• Cycle count between traced waypoints
• Global system timestamps
• Target addresses for taken direct branches.

Performance Monitor Unit (PMU)

The Cortex-A9 processor PMU provides six counters to gather statistics on the operation of 
the processor and memory system. Each counter can track any of the 58 events that are 
significant system performance measurements. Software applications, like the Xilinx System 
Debugger, can make use of the event counts along with software execution times to help 
optimize the software. Xilinx drivers provide access to this information so that software 
applications can retrieve this information from the driver and display it.
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Level 2 (L2) Cache Event Counters

The PL310 L2-cache controller incorporates two counters that allow monitoring of cache 
events. These events can assist in understanding how applications are affecting the L2 
cache and how they might be optimized. Xilinx drivers provide access to this information so 
that software applications can retrieve this information from the driver and display it.

AXI Performance Monitor (APM)

The LogiCORE IP AXI Performance Monitor is a soft IP core that can be built into the PL to 
measure AMBA AXI system performance metrics in the PL. The performance monitor 
measures bus latency of masters/slaves (AXI4/AXI3/AXI4-Stream) in a system, the amount 
of memory traffic over specific durations, and other performance metrics. This core can also 
be used for real-time profiling of software applications.

The APM monitors the AXI system non-intrusively so that no CPU processing is required. 
However, software on the ARM CPU can initialize monitoring of specific data and then 
gather the results from the APM, which is minimally intrusive in system profiling. Xilinx 
drivers provide access to this information so that software applications can retrieve the 
information from the driver and display it. The APM can also be configured by the System 
Debugger in the profile mode.

The APM includes the following capabilities that can be helpful during profiling:

• Studying the latencies of any AXI-based slave, such as a memory controller, and tuning 
the core.

• Obtaining system-level metrics, such as write-throughput, read-throughput, average 
interconnect read-latency, and others.

• Analyzing the transaction latencies and identifying the agent causing more idle cycles 
in the transactions.

• Comparing two similar AXI agents.
• Counting external events (other than AXI), such as FIFO overflow/underflow, interrupts, 

and others.
• Logging specific events on the monitor slots, and then reconstructing and analyzing 

the behavior/performance.

Ethernet Statistics Registers

The Gigabit Ethernet Controllers contain statistics registers that are accessible to software 
through low-level interfaces. The statistics registers record counts of various event types 
associated with transmit and receive operations. The counts are helpful for profiling and 
analyzing network performance. Xilinx drivers provide access to this information so that 
software applications can retrieve it and display it.
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Software/Hardware Partitioning
With the help of software profiling, compute-intensive functions within an application can 
be identified. These functions can then be compiled into hardware and migrated into the PL 
for higher performance. 

At the interface between hardware and software is a communication mechanism that allows 
data exchange between the two. The parameters of the accelerated function are passed to 
or made available to the hardware accelerator in PL, and the result of the hardware 
computation is returned or made available to software. 

This communication can be done over one of the PS AXI ports (AXI_ACP, AXI_HP, or slave 
AXI_GP) using any of the following data movement schemes:

• Memory-mapped registers
• AXI-Stream FIFO
• AXI-DMA

The choice of the port and the data mover employed by the hardware is influenced by the 
data transfer size, the resources required to implement the communication mechanism, and 
any latency requirement. Some of the most commonly used solutions are discussed below.

Implementing memory-mapped registers in the accelerator provides the simplest form of 
data communication. In one method, the accelerator is an AXI-slave. Software writes the 
required computation parameters into the registers and starts the hardware. When the 
hardware is done, the accelerator either interrupts the PS or writes to a status register-bit 
polled by software. In low power applications, using the event inputs may be preferred over 
interrupts. The software can then obtain the result with a series of register reads. A block 
diagram of this method is shown in Figure 2-14.
X-Ref Target - Figure 2-14

Figure 2-14: Memory Mapped Register
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Alternatively, the accelerator can act as an AXI-master and pull data from system memory or 
a PS peripheral as directed by software. A block diagram of this method is shown in 
Figure 2-15.

While the register-based solution is simple to implement, it works best with accelerators 
that have a small data set to transfer across the software/hardware boundary. There is a 
software overhead for accessing individual registers, which makes the data transfer 
expensive. With larger data sets, an AXI FIFO can be employed for streaming type 
interfaces. A block diagram of this method is shown in Figure 2-16.

X-Ref Target - Figure 2-15

Figure 2-15: Memory Mapped Register With AXI Master

X-Ref Target - Figure 2-16

Figure 2-16: Memory Mapped FIFO
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Chapter 2: System Level Considerations
Very often, the hardware accelerator is used to process a large amount of data, such as in a 
video based application. The data is stored in memory that is accessible by both software 
and hardware in the PL, such as OCM or DDR. A DMA is used to pull data out of the memory 
and push the data back into memory after accelerator processing. A block diagram of this 
method is shown in Figure 2-17.

The Zynq-7000 All Programmable SoC ZC702 Base Targeted Reference Design (Vivado Design 
Suite 2014.2) User Guide (UG925) [Ref 13] is a video-processing application that implements 
an edge-detection filter on a 1080p60 video stream in both software and hardware. In the 
hardware implementation, a video DMA pulls video data out of the DDR, pipes it through 
the edge-detection engine, then writes the video stream back into DDR. Software updates 
the DMA registers to control the flow of video data.

X-Ref Target - Figure 2-17

Figure 2-17: Memory Mapped DMA

Zynq Processor 

System
Zynq Programmable Logic

R
e

g
        D

M
A

A
X

I-L
ite

  IC

Main

X14192-073117

A
X

I IC

Accelerator

M_AXI_GP    

S_AXI_HP/ACP    
UltraFast Embedded Design Methodology Guide 61
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=61


Chapter 3

Hardware Design Considerations
This chapter covers the following hardware design issues to be considered when designing 
with a Zynq®-7000 AP SoC:

• Configuration and Boot Devices: You can boot from a variety of primary and secondary 
boot devices. This section describes the boot flow and boot device options.

• Memory Interfaces: You can connect the DDR memory controller to a variety of DDR 
memory devices, using either a 16-bit or 32-bit wide data bus. An ECC option is supported.

• Peripherals: A variety of peripherals are available in the Zynq-7000 AP SoC. This section 
describes the peripherals and their interaction with the Application Processing Unit 
(APU).

• Designing IP Blocks: IP blocks are pre-designed, pre-verified, and reusable functional 
blocks that can help you reduce design time. This section describes the process of 
designing solutions containing IP blocks.

• Hardware Performance Considerations: This section describes hardware performance 
metrics and methods you can use to tune the performance of AXI masters, AXI slaves, 
and AXI datapaths.

• Dataflow: Dataflow within the processing system (PS) and between the PS and 
programmable logic (PL) is described in this section.

• PL Clocking Methodology: The PL clocking methodology is covered in this section. The 
different PL clock sources and their recommended use are described.

• ACP and Cache Coherency: The ACP’s ability to provide low-latency access to PL 
masters, including optional coherency with the L1 cache, is described in this section.

• PL High-Performance Port Access: You can use the HP ports to give the PL direct access 
to the DDR controller and the on-chip memory (OCM). Design-driven optimizations 
that use the HP ports are described in this section.

• System Management Hardware Assistance: System management, including the control 
of system-level parameters based on user-specific inputs, is discussed in this section.

• Managing Hardware Reconfiguration: You can apply partial reconfiguration to the 
portion of the FPGA that is not static logic. This section describes the process of 
partially reconfiguring your design.

• GPs and Direct PL Access from APU: This section describes how you use the GP 
interfaces for accessing registers and memory in the PL from the APU.
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Configuration and Boot Devices
This section describes Zynq-7000 AP SoC boot devices and how they are configured. It 
covers the boot flow and the role of BootROM as an agent for performing the boot 
initialization sequence. Primary boot options like Quad-SPI, SD, NAND, NOR flash, and JTAG 
boot mode, and secondary boot options like eMMC and PCIe in the Zynq-7000 AP SoC are 
described. The section focuses on the boot flow and boot device usability in system-level 
scenarios. The JTAG boot mode is considered a slave boot mode and is always a non-secure 
boot mode.

Typical Boot Flow
The boot sequence in a Zynq-7000 AP SoC involves reading the first-stage boot loader 
(FSBL) from external static storage, typically NAND or NOR flash memory. The BootROM 
contains the code that is executed after power on reset, and that code reads the FSBL from 
the external static storage.

After the PS_POR_B pin is de-asserted, hardware samples the boot-strap pins and 
configures the PS and the PLLs. Software in the PS internal BootROM executes, beginning 
with code that configures the ARM core and peripherals necessary to copy the FSBL image 
from the chosen boot device to OCM, and then the code switches execution from the OCM. 
You can copy the FSBL from the primary boot device mentioned above or you can load it 
through JTAG. Optionally, in non-secure boot mode, you can execute the FSBL from 
Quad-SPI/NOR flash that supports execute-in-place.

Figure 3-1 depicts the typical boot flow.

You can boot a Zynq-7000 AP SoC in both secure and non-secure modes. Secure mode boot 
is only possible with static memories whereas non-secure mode boot is possible with both 
JTAG and static memories. JTAG boot is primarily used during the system development 
phase.

X-Ref Target - Figure 3-1

Figure 3-1: Typical Boot Flow
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Chapter 3: Hardware Design Considerations
Selecting a Boot Device
The following primary boot options are available for Zynq-7000 AP SoCs:

• Quad-SPI with optional execute-in-place mode
• NAND flash
• NOR flash with optional execute-in-place mode
• SD memory card
• JTAG

The following secondary boot options are available for Zynq-7000 AP SoCs:

• eMMC
• PCIe, Ethernet, USB, UART, or a custom FPGA interface

You can select a BootROM device using any of the following criteria:

• The device works with the Zynq-7000 AP SoC BootROM and is supported by Xilinx® 
tools (iMPACT, SDK) and higher-level software such as U-Boot and Linux. You can find a 
list of Xilinx-recommended devices for different boot options in Xilinx Answer Record 
50991 [Ref 69].

• The device meets the application's configuration pin requirements. For example, the 
QSPI boot option requires fewer pins than the NAND or NOR boot options.

• The device meets the application's size requirements. NAND and SD boot options 
provide higher memory density than the QSPI and NOR boot options.

• The device meets the application's configuration speed requirements. QSPI is the 
fastest available boot option.

• Device management can be adequately handled by the application. NAND devices can 
be more difficult to manage than other boot options. Bad blocks require design 
decisions on how they will be managed when they occur.

Your choice of boot device affects the number of pins required, the maximum memory size, 
the boot time, and the device management software complexity. Table 3-1 summarizes the 
design trade-offs.
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Chapter 3: Hardware Design Considerations
More information on each boot option is provided in the following sections.

Quad-SPI with Optional Execute-in-Place Mode

The BootROM can detect the Quad-SPI interface's intended I/O width using the 
width-detection parameter value (0xAA995566) and image-identification parameter value 
(0x584C4E58). Quad-SPI is the fastest configuration solution available. Only the SD 
memory card boot option has a lower pin count. You can access Quad-SPI as linear memory 
in Zynq-7000 AP SoCs. Device management is simpler because bad blocks are of less 
concern than they are in other devices, such as NAND flash. In linear mode, Quad-SPI 
supports up to 16 MB in single mode and 32 MB in dual mode. More than 16 MB is also 
supported when the QSPI is operated in IO mode. For the execute-in-place option, the 
BootROM uses the linear addressing feature of the Quad-SPI controller for non-secure boot 
modes. Multiboot is possible with QSPI. 

For information on which vendor flash devices are currently supported by the Zynq-7000 AP 
SoC tools, refer to Xilinx Answer Record 50991 [Ref 69].

Table 3-1: Flash Memory Comparison

Peripheral Pins Boot Device XIP Limitations Read/Write Max Size Boot 
Time

QSPI 7 single,
8 dual 
stacked,
13 dual 
parallel

Yes.
Boot image 
in 16MB 
single and 
stacked, 
32MB for 
parallel.

Yes Capacity limited to 16MB 
per device as a boot 
device.
Very slow erase/write – 
usually used as read only. 
Often used in with eMMC 
or SD card.

Byte/Block 16MB in 
Liner mode,
128MB in 
IO mode, 
per QSPI. 
Each 
controller 
can support 
up to two 
QSPIs.

Fast

NAND X8–14
X16–22

Yes
Boot image 
in the first 
128MB

No Requires software 
management of ECC, wear 
leveling, bad block. 
Requires file systems for 
raw flash such as JFFS2 or 
UBIFS.
Requires ECC.
Hardware support for 
1-bit ECC only.

Block/Block 1GB Medium

SD 6 Yes No Requires Mechanical 
connector

Block/Block Any size Slow

Parallel 
NOR

37 Yes Yes Support capacity 
comparable to large QSPI, 
but with high pin count.

Byte/Block 64MB Fast

eMMC 6 No No Cannot boot from eMMC Block/Block Any size N/A
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Chapter 3: Hardware Design Considerations
NAND Flash

The NAND flash boot option is an inexpensive solution supporting large density devices. 
The only restriction is the boot image must be located within the first 1 GB of address space 
in the NAND flash device. Performance of this boot option is lower than that of the 
Quad-SPI boot option. Typical NAND flash solutions require more pins and have lower 
memory bandwidth than Quad-SPI solutions. The application design needs to have a 
mechanism for managing bad clocks, including during boot. Multiboot is possible with 
NAND.

Micron (on-die ECC) and Spansion (S34) are the recommended NAND boot device families. 
Micron NAND devices typically require multi-bit ECC, which necessitates using only devices 
with on-die ECC support.

NOR Flash with Optional Execute-in-Place Mode

You can access NOR flash as linear memory with Zynq-7000 AP SoCs. Also, bad blocks are 
of less concern than they are in NAND flash devices. NOR flash density is comparable to 
Quad-SPI. It uses more MIO pins compared to other boot options. A typical NOR flash (byte 
peripheral interface) uses 40 MIO pins and can support up to 64 MB. 

For information on which vendor flash devices are currently supported by the Zynq-7000 AP 
SoC tools, refer to Xilinx Answer Record 50991 [Ref 69].

SD Memory Card

SD memory cards have higher densities than that of the NAND flash boot option. Devices 
are generally managed as a file system. Bad blocks do not need to be managed by the 
application design. SD memory is slower than the Quad-SPI boot option, and the SD cards 
require an on-board connector. eMMC devices are not primary boot devices but you can 
use them as a secondary boot source. In SD boot mode, BootROM does not perform header 
search and a multi-boot option is not supported. You can improve boot time in the SD boot 
mode by setting the CPU clock divisor to 2 in the ARM_CLK_CTRL register (0x1F000200).

JTAG

In JTAG boot mode, you can select the independent JTAG mode to support a debugger 
connected to the ARM DAP controller and another tool connected to the Xilinx PL TAP 
controller. The Xilinx PL TAP controller is accessible using the PL JTAG interface connected 
to dedicated PL pins. Access to the ARM DAP controller (for another tool) is done using the 
EMIO JTAG interface. This requires downloading a bitstream into the PL. You can download 
the bitstream using the Xilinx PL TAP controller.
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Chapter 3: Hardware Design Considerations
eMMC

You can use the eMMC secondary boot option when QSPI is the primary boot option and a 
small QSPI memory is used. Typically, the FSBL will be loaded in to the QSPI and other 
partitions will be loaded into eMMC. Xilinx recommends using eMMC with the SDIO 
controller only in standard speed mode (max frequency of 25 MHz).

PCIe, Ethernet, USB, UART, and Custom FPGA Interface

You can also implement secondary boot using PCIe, Ethernet, USB, UART, or a custom FPGA 
interface. You can select an option appropriate to your application. The PCIe-based 
secondary boot option is discussed below.

PCIe secondary boot uses the PCIe protocol to fetch the second-stage boot loader from a 
host system that implements a PCIe root complex. The PCIe block in the Zynq-7000 AP SoC 
PL implements the end point function and forms the communication link with the PCIe root 
complex. You can fetch the FSBL image from external memory (QSPI, NAND, or NOR flash) 
and after FSBL execution is done, the FSBL can fetch the secondary U-Boot image from the 
host-system memory over PCIe.

To implement this option, you need to generate a bitstream instantiating the PCIe block in 
the design. For example, you can implement the programmed IO (PIO) design using a Xilinx 
7 Series PCIe IP block. You also need to implement a set of PL registers for handshake status 
between the APU and the host CPU, and connect the register interface to the PS master GP 
port. The boot flow is:

• The FSBL will be loaded from the primary boot device.
• The APU waits until the FSBL performs the peripheral initialization process.
• The FSBL programs the bit file with the PIO design and handshake status register set.
• The APU programs the bitDone register after the bit file programming is done.
• The host PIO driver reads the bitDone register and writes the U-Boot.elf file to PL 

block RAM.
• After U-Boot.elf is written, the status is written to the U-BootDone register.
• The APU polls the U-BootDone bit, and after it is done copies the file to PS DDR 

memory.
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File System
The flash choice influences the file system that can be implemented. The file system choices 
described below are specific to Linux, but provide a good outline of the issues to be 
considered.

eMMC and SD cards have a built-in controller that runs the Flash Translation Layer (FTL) 
firmware, allowing the device to appear to the OS as a block device. Conventional file 
systems, such FAT or ext3, work with block devices and can be implemented using these 
devices. 

A raw flash device (such as NAND, QSPI, or parallel NOR) requires software management so 
that reads-from and writes-to memory cells function properly. Linux uses the memory 
technology device (MTD) subsystem to provide an abstraction layer between the 
hardware-specific device drivers and higher-level applications. Linux supports file systems 
that are layered on top of MTD devices, such as JFFS2 and UBIFS. These file systems are 
designed to include software management algorithms to handle issues like wear leveling 
and bad block management, and must be used for the device to function properly.

Optimizing Boot Time
The BootROM settings used to read from each flash device type are selected for maximum 
compatibility, often at the expense of performance. Boot interface performance can be 
improved by setting the corresponding controller registers in the register initialization 
portion of the BootROM header. The settings depend on the devices being used and the 
board layout parameters. Optimized register values should be obtained from vendor data 
sheets for the devices used. Examples of optimized values for each boot device can be 
found in the Register Initialization to Optimize Boot Times section of the Zynq-7000 All 
Programmable SoC Technical Reference Manual (UG585) [Ref 4] and the Xilinx Answer Record 
55572 [Ref 71]. The optimized values can be added to the boot image header using 
Bootgen. Refer to the “Using Bootgen” appendix in the Zynq-7000 All Programmable SoC 
Software Developers Guide (UG821) [Ref 7] for more information. The BootROM 
Performance section of the Boot and Configuration chapter in the Zynq-7000 All 
Programmable SoC Technical Reference Manual (UG585) [Ref 4] provides methods to 
improve timing and bandwidth results during different boot stages.
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Case Study: Variations in QSPI Boot Time
This case study describes boot-time measurements done on a Xilinx ZC702 board using 
different QSPI devices running at 100MHz, and varying the PS frequency.

The boot time (measured from U-Boot start to the Linux prompt) for a 32 MB Spansion 
single device with the PS running at 667 MHz is approximately 3036 milliseconds. The boot 
time for a 64 MB Spansion dual-parallel device with the PS running at the same frequency 
is approximately 2994 milliseconds. Therefore, using a dual-parallel QSPI device that is 
twice the size of a single QSPI device improves boot time by approximately 42 milliseconds, 
without changing the PS frequency.

Changing the PS frequency also affects boot time. As mentioned above, the boot time for a 
32 MB Spansion single QSPI device with the PS running at 667 MHz is approximately 3036 
milliseconds. Using the same QSPI device but increasing the PS speed to 867 MHz results in 
a boot time of approximately 2523 milliseconds. Therefore, without changing the QSPI 
device, increasing the PS operating frequency from 667 MHz to 867 MHz improves boot 
time by approximately 513 milliseconds.

Memory Interfaces
DDR
The DDR multi-protocol memory controller in the Zynq-7000 AP SoC supports 1.8V DDR2, 
1.2V LPDDR2, 1.5V DDR3, and 1.35V DDR3L. It can be configured to provide a 16-bit or 
32-bit wide data bus. All devices support the 16-bit and 32-bit data bus width options, 
except the 7z010 CLG225 device that supports only the 16-bit data bus width. The 
controller optionally supports ECC in 32-bit configurations, with 16 data bits and 10 check 
bits. When ECC is enabled the data width is limited to 16 bits. A 1 GB address map is 
allocated to the DDR. However, if ECC is used, only 512 MB of address space is available.

The DDR memory controller contains three major blocks: an AXI memory port interface 
(DDRI), a core controller with a transaction scheduler (DDRC), and a controller with digital 
PHY (DDRP). The details of each block and other controller aspects are described at this link 
in the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4].

The controller includes a digital PHY with a dedicated set of I/Os. On the fastest speed 
grade for some Zynq-7000 AP SoC devices, the maximum supported bus clock is 666 2/3 
MHz in DDR3 mode. The maximum supported bus clock is 533 MHz in DDR3 mode for all 
other speed grades. The theoretical maximum bus bit-rate is:

Data transfer rate = 666 2/3 MHz * 2 bits (for double data rate) = 1333 Mb/s per data IO
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Chapter 3: Hardware Design Considerations
Using the maximum bus width of 32 bits, the maximum bus bandwidth is 42.6 Gb/s, or 
5.3 GB/s. This bandwidth is shared by multiple masters connected using the four DDRI slave 
ports as shown in Figure 3-2. The DDRI block connects to four 64-bit synchronous AXI 
interfaces to serve multiple AXI masters simultaneously. Each AXI interface has its own 
dedicated transaction FIFO. Port S0 is connected to the L2-cache and services only the PL 
CPU and ACP interfaces to ensure low latency and fast access. Port P1 is shared by all 
central-interconnect masters, such as PS peripherals and AXI GP ports. The four PL AXI_HP 
interfaces are multiplexed down in pairs and are connected to ports 2 and 3, as shown in 
Figure 3-2. 

The maximum bus bandwidth is 5.3 GB/s, but it is not sustainable. The DDR efficiency must 
consider the overhead associated with DDR and is influence by the data access pattern. 
Address patterns that minimize page and row changes reduce page and row change 
overhead, resulting in higher utilization and higher system throughput. Refer to the 
“Row/Bank/Column Address Mapping” subsection of the “DDR Memory Controller” chapter 
(available at this link) in the Zynq-7000 All Programmable SoC Technical Reference Manual 
(UG585) [Ref 4]. 

How PL AXI masters are connected to the HP ports also determines system throughput. 
Multiple AXI masters are more likely to produce random address accesses that cause more 
page misses, resulting in lower DDR efficiency. In Figure 3-2, the AXI_HP to DDR 
interconnect multiplexes four PL AXI_HP down to two pairs connected to ports S2 and S3, 
both arbitrated by the interconnect. When there are only two PL AXI masters, higher 
performance can be achieved by connecting the masters to port AXI_HP0 and AXI_HP2, or 
AXI_HP1 and AXI_HP3, thus using both port 2 and 3 of the DDR controller. In a typical 
Linux-based video design, achievable system bandwidth from the AXI_HP ports is about 
50%. This is described in Designing High-Performance Video Systems with the Zynq-7000 All 
Programmable SoC (XAPP792) [Ref 36].

The controller DDRC block includes a three-stage arbiter for improved DDR control latency. 
Latency can be controlled using register settings. For details on managing DDR latency, 
refer to the “DDRC Arbitration” subsection of the “DDR Memory Controller” chapter 
(available at this link) in the Zynq-7000 All Programmable SoC Technical Reference Manual 
(UG585) [Ref 4].
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Chapter 3: Hardware Design Considerations
To facilitate high-bandwidth operation, the DDR interface timing must be properly 
initialized and calibrated. DDRP includes a DRAM training feature to help automatically 
determine the timing delays required to align data to the optimal window for reliable data 
capture. This feature is described in the “Initialization and Calibration” subsection of the 
“DDR Memory Controller” chapter (available at this link) in the Zynq-7000 All 
Programmable SoC Technical Reference Manual (UG585) [Ref 4]. 

The Zynq-7000 AP SoC tool flow helps automate the DDR bring-up. To do this, the PS DDRC 
board parameters need to be configured in accordance with Xilinx Answer Record 46778 
[Ref 67]. This will import the delay characteristics of DDR signals on the board during the 
hardware design process. Those characteristics are used to determine the initial values used 
by the automatic training algorithm, or for calculating static interface timing when the 
automatic algorithm is not supported by the particular DDR standard. The timing values are 
part of the design's hardware platform specification and are exported to the SDK and used 
in PS initialization code that is called by the FSBL. DDR is not used by the BootROM.

X-Ref Target - Figure 3-2

Figure 3-2: DDR Memory Controller Block Diagram and Interconnect to AXI_HP Ports

S0 S1 S2 S3

M0 M1 M2

AXI_HP

to DDR

Interconnect

AXI HP0 AXI HP1 AXI HP2 AXI HP3

S0 S1 S2 S3

CPUs and 
ACP

Other Bus 
Masters

DDR

Memory

Controller

DDR Interface

DDR Core

DDR PHY

to OCM

DDR DRAM Memory

Devices

16 or 32 bits

Zynq Device Boundary

X14178-073117
UltraFast Embedded Design Methodology Guide 71
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xDDRMemoryController
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=71


Chapter 3: Hardware Design Considerations
QSPI
The PS QSPI flash controller communicates to an external serial flash memory using the 
QSPI interface. The memory flash cells are arranged in parallel and are sometimes referred 
to as NOR flash. While this configuration is less dense and has smaller capacity than NAND 
flash memory, it allows single-byte reads anywhere in the array. For reads, it can behave like 
a standard address-mapped memory and is well-suited for code storage. Also, it supports 
the execute-in-place (XIP) feature where a CPU can execute code directly out of QSPI 
without reading the code into DDR or OCM first. The Zynq-7000 AP SoC Boot - Booting and 
Running Without External Memory Tech Tip wiki page [Ref 61] provides a “hello world” 
example design on a ZC702 board using XIP.

Of all the flash memories supported by a Zynq-7000 AP SoC, QSPI has the highest read 
performance and provides the fastest boot solution with a very low pin count requirement. 
It supports page-based write and sector-based erase, but at a substantially slower rate 
compared with other types of devices. For a cost-effective solution with fast boot time and 
large memory capacity, you can use a small QSPI as the primary boot device for storing the 
FSBL. All other partitions can be placed in a larger flash, such as eMMC or SD. For 
information on how to implement such a system, refer to the “eMMC Flash Devices” section 
(available at this link) in the Zynq-7000 All Programmable SoC Software Developers Guide 
(UG821) [Ref 7].

The QSPI flash controller supports three different modes of operation: I/O mode, 
linear-addressing mode, and legacy SPI mode. In linear-addressing mode, the AXI 
transactions received by the QSPI controller are automatically translated into the 
corresponding command and data transactions on the QSPI bus connected to the flash 
device. The controller supports only 24-bits of flash address, therefore the maximum size of 
QSPI is limited to 16MB in linear mode. BootROM accesses the QSPI in linear mode. When 
QSPI is used in XIP mode, the length of the FSBL is limited to the capacity of the QSPI in 
linear mode, minus the length of the boot header. When XIP mode is enabled (through the 
boot header), instead of copying the FSBL to OCM, BootROM hands control to the FSBL 
executing directly from QSPI flash. When QSPI is not used in XIP mode, BootROM copies the 
FSBL into OCM for execution. In this case, the size of FSBL is limited by the 192 KB OCM 
capacity. The first three quarters of OCM is located at low memory, and the top one quarter 
is mapped to high memory. The FSBL could use most of the top one quarter for items such 
as stack and heap.

In I/O mode, software composes the command and data in the TXD registers, and the 
controller drives the content of the register to the flash memory in the proper format. The 
data driven by the flash memory is shifted into the corresponding RXD registers and the 
data is extracted by software. Using I/O mode, the software can issue flash commands to 
specifically modify specific register bits inside the flash memory, thus expanding the QSPI 
flash address space by effectively switching between pages. Using this method, the 
controller can support up to 128MB per QSPI. For more information on QSPI I/O mode, 
refer to the I/O mode section in the Quad-SPI Flash Controller chapter (available at this link) 
of the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4].
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Chapter 3: Hardware Design Considerations
When a QSPI larger than 16MB is used on the board, any Zynq-7000 AP SoC platform reset 
must also trigger a reset to the QSPI so that the page register is reset. This ensures that 
when BootROM reads from address 0x0 in linear mode it can access the boot image. Refer 
to Xilinx Answer Record 57744 [Ref 72] for more information on the reset requirement when 
using flash devices larger than 16 MB.

If either RSA encryption or XIP mode is used to store boot images in flash devices larger 
than 16 MB, the boot image cannot be placed at offset 0x0. Instead, the boot image can be 
located at offset 0x0+32K. If the image is located at 0x0, a duplicate header image can be 
located at offset 0x0+16MB, or a single x1 QSPI can be used.

Different QSPI flash devices require different dummy clock cycles depending on the QSPI 
clock frequency and the type of command used to perform the read. Depending on the way 
the QSPI is configured on the board (x1, x2, x4, single, stacked, or parallel) and the 
particular flash device used, the controller's LQSPI_CFG register must be set appropriately 
for proper communication with the flash device. When using Xilinx-supported QSPI flash 
devices, the Xilinx PS QSPI device driver automatically writes the appropriate values into the 
LQSPI_CFG register. For information on which vendor flash devices are currently supported 
by the Zynq-7000 AP SoC tools, refer to Xilinx Answer Record 50991 [Ref 69].

BootROM automatically issues read commands using either fast read (x1), quad output read 
(x4), dual-output fast read (x2), single mode, or parallel mode by examining the 
width-detection value and the image-identification value in the BootROM header. Based on 
the values, BootROM uses the widest supported I/O bus width to read data from the 
Quad-SPI device, but sends commands in x1. BootROM writes a set of initial values into the 
LQSPI_CFG register. Further details on those values can be found in the Quad-SPI Boot 
subsection of the Boot and Configuration chapter (available at this link) of the Zynq-7000 
All Programmable SoC Technical Reference Manual (UG585) [Ref 4].

In a high-speed QSPI application where the memory-interface clock is greater than 40 MHz, 
QSPI feedback mode must be used. For more information on the QSPI Feedback clock, see 
the Quad-SPI Feedback Clock subsection in the Quad-SPI Flash Controller chapter (available 
at this link) of the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) 
[Ref 4].

The QSPI can be programmed by U-Boot, Linux, iMPACT, and the SDK.

The QSPI flash controller details can be found in the Quad-SPI Flash Controller chapter 
(available at this link) of the Zynq-7000 All Programmable SoC Technical Reference Manual 
(UG585) [Ref 4].
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Chapter 3: Hardware Design Considerations
Static Memory Controller
The static memory controller has two interface modes: a NAND flash interface mode and a 
parallel port memory interface mode. The NAND flash interface mode supports NAND 
flash, while the parallel-port interface mode supports NOR flash and asynchronous SRAM. 
Because both QSPI and NOR flash use NOR-based memory cells, and because QSPI is 
limited to 16MB in linear mode, capacity is the differentiating factor in selecting NOR flash 
over QSPI. However, because the static memory controller limits the number of address 
lines to 26 bits, it supports NOR flash sizes only up to 64MB. The 16MB QSPI limit applies 
only during boot (the amount of data read by BootROM must not exceed 16MB). After 
BootROM loads FSBL into either OCM or DDR memory, the QSPI controller can switch into 
I/O mode and access up to 128MB of memory with the support of the flash-device's page 
register. Consequently, the NOR-flash controller's ability to support 64MB devices (at the 
expense of 40 pins) as compared to 128MB devices supported by QSPI (using just 8 pins) 
makes QSPI a preferred solution over NOR flash.

The following section describes the NAND-flash interface mode. For more information 
about using the parallel-port memory interface, refer to the Zynq-7000 All Programmable 
SoC Technical Reference Manual (UG585) [Ref 4].

NAND Memory Controller

In NAND flash the memory cells are laid out in series, resulting in more densely-packed 
memory cells, higher capacity per silicon area, and cheaper per-bit cost than NOR flash. The 
NAND flash controller can support up to 1GB of external NAND flash with either an 8-bit or 
16-bit I/O bus for address/data/command. It supports the Open NAND flash Interface 1.0 
specification. 

The dense memory-cell packing causes the cells to be stressed during programming and 
erase cycles, making them more prone to bit errors. ECC is used to mitigate those errors. 
The NAND flash controller includes hardware support for 1-bit ECC correction. Software is 
used to run flash management algorithms that make use of the ECC data to manage the 
various error modes, deal with bad blocks, homogenize wear across the memory cells, and 
improve cell endurance and data retention.

Because the controller only supports 1-bit ECC, only NAND devices with on-chip ECC or 
one-bit ECC can be used with Zynq-7000 AP SoCs. Currently, only single-level-cell (SLC) 
devices meet the ECC criteria and multi-level-cell (MLC) devices are not supported. Also, the 
controller only supports a single chip select. Xilinx supported NAND devices range in size 
from 128MB to 1GB, in both x8 and x16 configurations. Xilinx officially supports NAND 
devices from Micron and Spansion. For information on which vendor flash devices are 
supported by the Zynq-7000 AP SoC tools, refer to Xilinx Answer Record 50991 [Ref 69].

Even in a high-capacity NAND device, the Zynq-7000 AP SoC BootROM will look for a boot 
image to start in the first 128MB. Therefore, the start of both standard and fallback boot 
images (if used) must begin in the first 128MB.
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Chapter 3: Hardware Design Considerations
Communication with the NAND flash is based on a set of AC timing parameters that vary 
from device to device. For a Zynq-7000 AP SoC to communicate with a NAND device using 
the correct timing, a designer should input the relevant timing parameters into the CS0 
column on the SMC Timing Calculation page based on the device's AC timing values. This is 
shown in Figure 3-3.

The CS0 cycle is automatically calculated based on the NAND clock frequency. The values 
are exported to the SDK's PS initialization code as part of the design's Hardware Platform 
Specification. The initialization code writes those values to the smc.SET_CYCLE register.

BootROM reads from NAND flash prior to executing PS initialization code, using a set of 
initial values stored in the smc.SET_CYCLE register. Further details on those values can be 
found in the NAND Boot subsection of the “Boot and Configuration” chapter in the 
Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4].

In NAND flash, reads and writes occur in pages, while erasures occur in blocks. Because 
NAND flash does not behave like random access memory, Linux systems use it as a memory 
technology device (MTD) that provides an abstraction layer, allowing software to access the 
device using the MTD subsystem API. That API is common among different flash types and 
technologies. MTD is not a block device and it lacks the software management algorithms 
to handle issues like wear leveling and bad block management. Instead of traditional file 
systems like ext2, ext3, and FAT (which work on top of block devices), the file system must 
be designed to work on top of raw flash, such as JFFS2 or UBIFS. JFFS2 works on top of MTD 
subsystems. UBIFS works on top of UBI subsystems, and those work on top of MTD 
subsystems to provide software management algorithms required for NAND devices.

X-Ref Target - Figure 3-3

Figure 3-3: SMC Timing Page Example
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Chapter 3: Hardware Design Considerations
Peripherals
The memory-mapped peripherals present in the Zynq-7000 AP SoC PS, and the interaction 
of those peripherals with the APU and the memory controller, are described in this section. 
It is assumed that the reader is familiar with the AMBA bus topology (AHB and APB) and has 
an understanding of the USB, CAN, UART, Ethernet, and SPI protocols.

The Zynq-7000 AP SoC peripherals can be broadly categorized as:

• PS peripherals
• PL peripherals

The PS peripherals are hard-wired peripherals and are implemented as part of the standard 
ASSP implementation. The PL peripherals are programmable and reconfigurable on the fly. 
This section covers the PS peripherals and the PL peripherals are covered in the following 
section.

The PS peripherals are memory mapped and the peripheral memory map is predefined. 
Peripherals implement the Advanced Microcontroller Bus Architecture (AMBA) 
protocol-compliant bus architecture and are connected to either the central interconnect or 
part of the application processor unit. They communicate with the ARM Cortex-A9 
processor using AMBA-specified transactions. The peripherals are ARM TrustZone security 
aware and can optionally deny non-secure accesses coming from a non-secure master. 
Peripherals connected to the central interconnect can optionally be routed to the PL that 
enables PL access. 
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Chapter 3: Hardware Design Considerations
Figure 3-4 shows the top-level block diagram of the peripherals present in PS.

Peripheral Descriptions
The following are key peripherals present in the PS block.

USB Peripheral

The PS USB controller is USB 2.0 compliant and can operate in any of the following modes:

• Device mode
• Host mode
• On-The-Go (OTG) mode

X-Ref Target - Figure 3-4

Figure 3-4: PS Peripheral Block Diagram
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Chapter 3: Hardware Design Considerations
The USB controller attaches to an external PHY using the ULPI interface, which is 
implemented as an 8-line SDR data bus using the MIO. The ULPI PHY is not part of the USB 
controller, and you can implement any ULPI-compliant PHY to connect to the USB controller 
in the Zynq-7000 AP SoC. The port-controller indication, power select, and power failure 
signals can be routed to the PL via EMIO. The sideband signals can also be routed to the 
SelectIO™ pins. The USB controller has a built-in DMA engine with a transmit and receive 
FIFO that transfers the data to and from memory using the AHB bus.

Refer to the USB Host, Device, and OTG Controllers chapter (available at this link) of the 
Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4] for more 
information.

Data Flow

The data transferred by the DMA from memory is encapsulated using the USB 2.0 protocol 
format and is transmitted over the ULPI interface to the PHY.

System Level Considerations

The USB controller is clocked from two clock domains:

• The AHB interface is clocked by the CPU_1x clock domain.
• The USB protocol engine and the port controller interface use the 60 MHz clock 

generated by the ULPI PHY.

You can use three different methods to reset the USB controller:

• You can trigger a controller reset with a PS reset by writing to the USB command 
register using the APB interface.

• You can trigger a ULPI PHY reset under the control of a GPIO signal. 
• You can trigger a USB bus reset with the auto reset feature in OTG mode.

You can configure the controller as a USB host, USB device, or as an OTG. The configuration 
is determined by your application. The controller host mode requires the USB host 
controller interface be built in the Linux image. You can set different device mode options, 
either USB mass storage, isochronous, or interrupt-based. For a high-speed endpoint, the 
maximum packet size is 512 bytes for bulk transfers and 1024 bytes for isochronous devices. 
You can use isochronous mode for streaming applications, such as video.
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Chapter 3: Hardware Design Considerations
Ethernet Peripheral

The gigabit Ethernet MAC (GEM) implements a 10/100/1000 Mb/s Ethernet MAC 
compatible with the IEEE 802.3-2008 standard. It is capable of operating in either half mode 
or full-duplex mode at all three speeds. You can configure each of the two GEM controllers 
independently. To save pins, each controller uses an RGMII interface through the MIO. 
Access to the PL is through the EMIO which provides the GMII interface. 

You can create other Ethernet communication interfaces in the PL using the GMII available 
on the EMIO interface.

Because the GEM controller in the Zynq-7000 AP SoC provides only the MAC function, you 
must implement a separate PHY.

Data Flow

The DMA block present in the controller fetches data from system memory using the AHB 
bus and stores data in the transmit FIFO. The FIFO data is converted to Ethernet protocol 
format by the controller and is sent to the Ethernet PHY using an RGMII or GMII interface, 
depending on whether the user selects the MIO or EMIO interface.

Registers are used to configure the features of the MAC, select different modes of 
operation, and enable and monitor network management statistics

The controllers provide MDIO interfaces for PHY management. You can control the PHYs 
from either of the MDIO interfaces.

System Level Considerations

The GEM controller offers a number of system-level features that can be implemented 
based on system requirements. For example, you can enable checksum off-loading in a 
system that requires better network efficiency and less CPU utilization. Another 
system-level consideration is implementation of precision time protocol (PTP) as defined in 
IEEE 1588. The controller detects and responds to PTP events and requires a PTP compliant 
network peer.

You can optionally route Ethernet packets from the controller to the PL using the DMA 
interface. This option may require implementation of packet acceleration or packet 
inspection IP in the PL.

The GEM controller does not support jumbo frames. If you require jumbo frame support, 
you can implement the Xilinx AXI Ethernet MAC IP in the PL. You can use the AXI DMA IP to 
read and write Ethernet frames to and from PS DDR memory. The GEM controller does not 
support 3.3V IO voltage. Refer to the Gigabit Ethernet Controller chapter (available at this 
link) in Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4] for 
more information.
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Chapter 3: Hardware Design Considerations
SDIO Peripheral

The SD/SDIO controller communicates with the SDIO devices and SD memory cards. You 
can route the SDIO interface through the MIO multiplexer to the MIO pins, or through the 
EMIO to SelectIO pins in the PL. The controller can support SD and SDIO applications in a 
wide range of portable low-power applications such as 802.11 devices, GPS, WiMAX, and 
others.

The SD/SDIO controller is compatible with the standard SD Host Controller Specification 
Version 2.0 Part A2 with SDMA (single operation DMA), ADMA1 (4 KB boundary limited 
DMA), and ADMA2 support. ADMA2 allows data at any location and any size to be 
transferred in a 32-bit system memory using scatter-gather DMA. The core also supports up 
to seven functions in SD1 and SD4, but does not support SPI mode. The core does support 
the SD high-speed (SDHS) and SD High Capacity (SDHC) card standards. You should be 
familiar with the SD2.0/SDIO 2.0 specifications [Ref 91].

The SD/SDIO controller is accessed by the ARM processor via the AHB bus. The controller 
also includes a DMA unit with an internal FIFO to meet throughput requirements. The 
SD/SDIO controller complies with the MMC 3.31 specification.

Data Flow 

The SD/SDIO controller has a DMA built into the controller that can fetch data from system 
memory using the AHB bus. The controller implements a pair of FIFOs to read and write 
data to the attached card to maximize throughput. The data is written to the attached card 
or read back based on an SD-specific command initiated by the APU.

System Level Considerations

SD cards are essentially NAND flash devices with built-in controllers that implement the 
flash translation layer (FTL). The FTL handles ECC, block management, and wear leveling so 
that the memory behaves like a block device. Because of this, conventional file systems 
(such as FAT, ext2, and ext3) can be implemented. Because of multi-chip packaging 
technologies and modern advances in multi-level cell technology, SD memory devices 
provide the highest density and capacity of all flash memory choices available in a 
Zynq-7000 AP SoC. The drawback of SD memory is the requirement for a mechanical SD 
card connector. When a physical connector is undesirable, eMMC is an alternative. eMMC 
consists of flash memory and a controller packaged in a small ball grid array (BGA) that can 
be directly mounted onto a circuit board without a mechanical connector. The SD and 
eMMC solutions differ in their ability to function as boot devices. A Zynq-7000 AP SoC can 
boot directly from an SD card, but it cannot do so from an eMMC. eMMC solutions require 
an additional boot device, such as QSPI.
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Chapter 3: Hardware Design Considerations
In addition to the CLK, CMD and Data signals, card detect (CDn) signals indicate the 
insertion or presence of the SD card, and write protect (WPn) signals indicate the position 
of the write protect switch on the memory card. Some software drivers rely on the use of 
these signals. Thus, if the signals are not available, a simple solution is to tie CDn active and 
WPn inactive.

You can also use the SD/SDIO peripheral as a boot mode device. Refer to Configuration and 
Boot Devices and to the SD/SDIO Controller chapter (available at this link) in Zynq-7000 All 
Programmable SoC Technical Reference Manual (UG585) [Ref 4] for more information.

UART Peripheral

The UART controller is a full-duplex asynchronous receiver and transmitter that supports a 
wide range of programmable baud rates and I/O signal formats. The controller can 
accommodate automatic parity generation and multi-master detection mode.

The UART operations are controlled by the configuration and mode registers. The state of 
the FIFOs, modem signals, and other controller functions are read using the status, interrupt 
status, and modem status registers.

Data Flow

The communication between the controller and the APU occurs over the APB bus. The 
controller is structured with separate Rx and Tx data paths. Each path includes a 64-byte 
FIFO. The data that arrives from system memory over the APB bus are stored into the 
transmit FIFO. The received data from the MIO/EMIO interface is stored in the receive FIFO 
and transmitted to system memory using the APB bus. 

The controller serializes and de-serializes data in the Rx and Tx FIFOs and includes a mode 
switch to support loopback configurations for the RxD and TxD signals. The FIFO interrupt 
status bits support polling or an interrupt-driven handler. Software reads and writes data 
bytes using the Rx and Tx data port registers.

System Level Considerations

Zynq-7000 AP SoCs include two UART controllers that are commonly used as debug ports 
for embedded systems. They are also often used in providing a terminal connection with a 
host PC. Because of their utility, they are supported by all layers of software: FSBL, U-Boot, 
stand-alone, and various operating systems. 

The UART is used by the FSBL early in the boot process to send information to the terminal. 
The simplest connection to the UART controller requires two signals, TX and RX. It is 
recommended that the user have access to UART1 for debug, even when using a PMOD with 
two test points, TX and RX. 
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Chapter 3: Hardware Design Considerations
Because of its low bandwidth, high voltage swings, and large connector, most modern 
computers no longer have a UART port and instead use USB as the standard peripheral bus. 
Therefore, it may be necessary to add a USB-to-UART bridge controller on the board to 
enable connection between the host USB port and the Zynq-7000 AP SoC UART port. This 
is shown in Figure 3-5. The host PC terminal software recognizes the bridge as a virtual 
COM port and any of the widely-available terminal programs can be used to communicate 
with a Zynq-7000 AP SoC.

Figure 3-6 is an example of the Cypress USB-to-UART bridge device being used to enable a 
connection between a host computer and a Zynq-7000 AP SoC. In the simplest 
implementation, only the UART controller's TXD and RXD signals are required to support a 
terminal. If flow control is required, this can be added using the extended MIO. Cypress 
provides a royalty-free Virtual COM Port (VCP) driver that allows the CY7C64225 
USB-to-UART bridge to appear as a COM port to the communication software on the host 
computer, such as TeraTerm or HyperTerm.

An alternative implementation uses the Silicon Labs CP2103GM USB-to-UART bridge 
device. See the ZC702 Evaluation Board for the Zynq-7000 XC7Z020 All Programmable SoC 
User Guide (UG850) [Ref 8] for details.

X-Ref Target - Figure 3-5

Figure 3-5: Connecting a Zynq-7000 AP SoC UART to PC via USB-to-UART Bridge

Table 3-2: CY7C6 Connections

EPP Pin UART Function 
in EPP

Schematic Net 
Name CY7C6 Pin UART Function in 

CY7C64225
D11 (MIO Bank 1/501) TX, data out USB_1_RXD 23 RXD, data in
C15 (MIO Bank 1/501) RX, data in USB_1_TXD 4 TXD, data out

X-Ref Target - Figure 3-6

Figure 3-6: Connection using a Cypress USB-to-UART Bridge
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Chapter 3: Hardware Design Considerations
Only a two-pin UART can be routed through the MIO. A full 8-pin UART requires routing 
through EMIO. It supports a programmable baud rate plus protocol and parity. Details of 
the UART controller can be found in the UART Controller chapter (available at this link) in 
the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4].

CAN Peripheral

The CAN controller in PS is a memory-mapped peripheral that supports bit rates up to 1 
Mb/s. The controller implements a transmit and receive FIFO with a capability of storing 64 
messages. The controller implements 16-bit time stamping for receive messages and 
provides receive and transmit error counters.

Data Flow

The CAN controller has an APB interface connecting the peripheral to the central 
interconnect and you can use it to configure the control registers. You can route the CAN 
transmit and receive signals to either MIO or the PL through EMIO. The CAN controller 
supports five modes of operation:

• Configuration mode
• Normal mode
• Sleep mode
• Loopback mode
• Snoop mode

You can initiate each of these modes with a register write operation using the APB bus 
attached to the controller. Refer to the CAN Controller chapter (available at this link) in the 
Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4] for more 
information.

I2C Peripheral

I2C (Inter-Integrated Circuit) is a multi-master serial single-ended bus that uses two 
bidirectional open-drain lines, Serial Data (SDA) and Serial Clock (SCL), both pulled up with 
resistors. The protocol includes a slave address, an optional register address within the 
slave device, and per-byte ACK/NACK bits. I2C is used for attaching low-speed peripherals 
such as sensors, EEPROMs, I/O expanders, programmable clock devices, or A/D and D/A 
converters to an embedded system. Several bus implementations are derived from the I2C 
bus, including the System Management Bus (SMBus), Power Management Bus (PMBus), and 
Intelligent Platform Management Interface (IPMI).

Zynq-7000 AP SoCs include two I2C controllers that can operate at the common I2C bus 
speeds of 100 Kb/s (standard mode) and 400 Kb/s (fast mode). Each controller can function 
as a master or a slave in a multi-master design. The master can be programmed to use both 
normal (7-bit) addressing and extended (10-bit) addressing modes. The master is 
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Chapter 3: Hardware Design Considerations
responsible for generating the clock and controlling the data transfer. Data can be 
transmitted or received in both master and slave mode configurations.

Data Flow

In slave monitor mode the I2C interface can be set to monitor slave-busy status. In this 
mode the I2C continuously attempts a transfer to a particular slave device until that slave 
device responds with an ACK.

In slave mode, extended address support is determined automatically by detecting a 
specific code in bits [7:3] of the first address byte. You can set the HOLD bit to prevent the 
master from continuing with the transfer, preventing an overflow condition in the slave. 
However, you must clear the HOLD bit before a timeout occurs in the I2C controller. You can 
program different timeout values.

You can program the I2C controller registers using the APB slave interface. The I2C interface 
specific SCL and SDA signals can be routed either to the PL via EMIO, or they can be routed 
to MIO. If routed through EMIO, the SCL and SDA signals are often implemented using 
tri-stated I/O buffers to communicate with I2C devices connected to one of the PL I/O 
banks. The controller raises the completion interrupt to indicate to the host that a transfer 
is complete. In master mode, any NACK received by the controller is communicated to the 
host using NACK interrupt. Refer to the I2C Controller chapter (available at this link) in the 
Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4] for more 
information.

System Level Considerations

A pull-up resistor shall be placed at the far end of the SCL and SDA lines, furthest from the 
Zynq-7000 AP SoC. See Design Calculations for Robust I2C Communications [Ref 78] for 
pull-up resistor example calculation. Typical voltages are +5 V or +3.3 V. A 
level-shifter/repeater might be required depending on the voltages of I2C devices and the 
Zynq-7000 AP SoC I/O bank used. PCB and package delay skew for SDA to SCL should be 
less than ±500 ps.

Not all I2C slave devices have programmable addresses, thus address conflicts can occur 
when connecting multiple devices with identical addresses to a single bus. For this reason, 
an I2C adapter port is typically routed through an I2C bus switch to connect I2C slaves with 
identical addresses to different bus segments. Applications must first address and then 
configure the bus switch to select the desired I2C channel before communicating with slave 
devices on one of the I2C bus segments. There can be more than one device per I2C bus 
segment if the I2C addresses are different and the capacitance of a bus segment is below 
the allowable value. An example I2C bus topology including a 1:8 bus switch is shown in 
Figure 3-7. For more information, refer to PCA9548A Low Voltage 8-Channel I2C Switch 
With Reset [Ref 90].
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Chapter 3: Hardware Design Considerations
Stand-alone, U-Boot, and Linux drivers are available to operate the I2C controller. The 
stand-alone driver can be used inside the FSBL for early initialization of peripherals. All 
common transfer modes are supported for both master and slave mode. Refer to the Xilinx 
Linux I2C driver wiki page [Ref 54] for more information on the Linux driver as well as a 
simple application example. 

SPI Peripheral

SPI (Serial Peripheral Interface) is a synchronous serial bus that operates in full-duplex 
mode. It uses four wires: SCLK (Serial Clock), MISO (Master Input, Slave Output), MOSI 
(Master Output, Slave Input), and SS (Slave Select). Devices communicate in master/slave 
mode where the master device initiates the data transfer. The master does not use an 
addressing mechanism when communicating with a slave. Multiple slave devices are 
allowed, using individual slave-select lines that are typically active-low. SPI is commonly 
used to talk to A/D and D/A converters, flash and EEPROM memories, LCDs, and many other 
peripherals. The JTAG standard is essentially an application stack for a three-wire SPI 
protocol.

Zynq-7000 AP SoCs include 2 SPI controllers that can operate in master, slave, or 
multi-master mode. The controller always operates in full-duplex mode, receiving and 
transmitting data simultaneously. 

Data Flow

In master mode, up to three slave devices can be targeted using individual slave-select 
signals. It is possible to add an external peripheral-select 3-to-8 decoder on the board to 
target up to eight slave devices. When using the 3-to-8 decoder option you can use 
software to control the three output pins to the decoder. Software can use this feature to 
control an external tri-state when a device has a single bidirectional SPI data pin.

X-Ref Target - Figure 3-7

Figure 3-7: Example I2C Bus Topology
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Chapter 3: Hardware Design Considerations
In slave mode, the controller receives messages from an external master and transmits a 
simultaneous reply. The controller reads and writes to slave devices via the 128-byte TX/RX 
FIFOs using the 32-bit register-mapped data-port registers. The read and write FIFOs 
provide buffering between the SPI I/O interface and software servicing the controller via 
APB slave interface. The FIFO is used for both slave and master I/O modes. Refer to the SPI 
Controller chapter (available at this link) in the Zynq-7000 All Programmable SoC Technical 
Reference Manual (UG585) [Ref 4] for more information. 

CAUTION! All SPI transactions must be byte-aligned (multiple of 8 bits). Slave devices that implement 
non-byte aligned SPI transactions, such as 10-bit address and 16-bit data, are not supported.

System Level Considerations

Both SPI interfaces, SPI[0,1] can be routed to MIO pins or to the PL via EMIO. If routed 
through EMIO, the most common method is to implement the interface signals using 
tri-stated I/O buffers to communicate with SPI devices connected to one of the PL I/O banks 
(if this is done, the SPI interface cannot be used until the PL has been programmed). The 
slave select signals SS[1,2] can be optionally enabled when using the core in master mode. 
These signals are true outputs because they are only available when the core is configured 
as a master. The SS0 signal is tri-stated because it is also used in slave mode. The SCLK clock 
frequency can operate up to 50 MHz when the I/O signals are routed to MIO pins. When the 
I/O signals are routed through EMIO, the SCLK frequency can operate up to 25 MHz.

Figure 3-8 shows the SPI controller configured for master mode and routed through MIO. 
SS0 must be routed through an EMIO pin. In this configuration, when SS0 is used it needs 
to be pulled high using a pull-up resistor and must not be driven low by an external device. 
Up to three slave devices can be connected simultaneously and selected using the 
corresponding slave-select line (SSn). If less than three slaves are connected, any of the SS 
signals can be used. If SS0 is not used, it must be pulled to Vcc and not used for any other 
purposes.
X-Ref Target - Figure 3-8

Figure 3-8: SPI Slave Connection to SPI Controller in Master Mode
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Chapter 3: Hardware Design Considerations
When routed via EMIO, connect the EMIOSPIxSSON0 output signal to the PL slave and tie 
the EMIOSPIxSSIN input signal to Vcc. It is important that SS0 is high because the controller 
snoops this signal in master mode to detect a multi-master mode situation. If SS0 is low, the 
controller will assume multi-master mode and issue a Mode_Fail interrupt. Multi-master 
mode is not recommended. For details on driving SPI control signals, refer to Xilinx Answer 
Record 47511 [Ref 68].

Figure 3-9 shows the SPI controller configured for slave mode and routed through MIO. The 
slave-select line SS0 is used to connect the external master device to the slave controller. 
Other external slave devices can be connected off-chip depending on the capabilities of the 
master device.

It is recommended that the SCLK, MISO, MOSI, and SS lines have matched lengths to help 
meet setup and hold times. PCB and package delay skew for the MISO, MOSI, and SS lines 
relative to SCLK should be less than ±50 ps.

Stand-alone, U-Boot, and Linux drivers are available to operate the SPI controller. The 
stand-alone driver can be used inside the FSBL for early peripheral initialization if the 
controller is routed via MIO. If the controller is routed via EMIO, the initialization can take 
place only after the bitfile is downloaded. All common transfer modes are supported for 
both master and slave mode. Refer to the Xilinx Linux SPI driver wiki page [Ref 55] for more 
information on the Linux driver as well as a simple application example.

GPIO Peripheral

GPIO (General Purpose Input/Output) are generic pins that can be programmed by the user 
at run-time, including whether it is an input or output. GPIO pins are typically used for 
connecting LEDs, DIP switches and push buttons, or to connect the interrupt and reset 
signals of board peripherals. Using GPIO via EMIO provides a solution for controlling PL 

X-Ref Target - Figure 3-9

Figure 3-9: SPI Master Connection to SPI Controller in Slave Mode

SPI Slave 

Controller
MIO

SCLK

MOSI

MISO

SS0

SS1

SS2

MISO

SS0

MOSI

SCLK

Other External 

Slave Devices

Zynq Device 

Boundary

External 

Master

Device

Zynq Device

X14172-073117

nc

nc

MISO

SSa

MOSI

SCLK

SSb

SSc

SSd
UltraFast Embedded Design Methodology Guide 87
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=87


Chapter 3: Hardware Design Considerations
reset without worrying about the side affects of controlling FCLK_RST. It also provides 
access to 64 inputs from the PL, 64 true outputs, and 64 output enables to the PL through 
the EMIO interface. You can use output enables as an additional 64 outputs by controlling 
the direction registers, if the output enables are not required. Each GPIO is independently 
and dynamically programmed as input, output, or interrupt-sensing. When configured to 
sense interrupts, it can be set to level-sensitive (high or low) or edge-sensitive (positive, 
negative, or both).

System Level Considerations

The GPIO controller has four banks. Bank 0 has 32 pins and bank 1 has 24 pins. The total of 
54 GPIO pins in the two banks are dedicated to MIO. These pins are tri-stated and can be 
configured as inputs or outputs. Banks 2 and 3 have 32 pins each, and the total of 64 GPIO 
pins are connected to the PL using EMIO. These GPIO contain three signals: input, output, 
and output enable. Tri-state buffers can be instantiated at the device boundary, however, 
the PS to PL connections are simple wires.

Each GPIO is independently and dynamically programmed as input, output, or 
interrupt-sensing. When configured to sense interrupts, it can be set to level-sensitive (high 
or low) or edge-sensitive (positive, negative, or both). Software can read all GPIO values 
within a bank using a single load instruction, or write data to one or more GPIOs (within a 
range of GPIOs) using a single store instruction.

CAUTION! MIO pins [8:7] are available as output only. GPIO channels 7 and 8 can only be configured 
as outputs.

I/O standards and voltages for on-board peripherals need to match the MIO or PL I/O pin 
configuration.

Both stand-alone and Linux drivers are available to operate the GPIO controller. The 
stand-alone driver can be used inside the FSBL for early initialization of peripherals. Refer to 
the Xilinx Linux GPIO driver wiki page [Ref 53] for more information on the Linux driver as 
well as a simple application example.

Cortex-A9 Multiprocessing Peripherals

The Cortex-A9 multiprocessing peripherals include the SWDT and TTC with auto decrement 
feature and they can be used as general purpose timers. These timers serve as a mechanism 
to startup the processor from standby mode.

The System Level Control Register (SLCR) acts as a peripheral to the APU and external PL 
master. You can access the SLCR only in the secure mode of the master requesting a register 
access. The SLCR consists of registers that configure various clocking, reset, and security 
settings of the peripherals.
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Chapter 3: Hardware Design Considerations
PS DMA Controller

You can use the PS DMA controller to transfer data from any PS or PL peripheral to DDR, 
OCM, linear QSPI, SMC, a PL peripheral, or linear addressable memory connected to the 
M_AXI_GP port in the PS-PL boundary.

You can use the DMA controller in an application requiring hardware co-processor 
acceleration, where a PL algorithm is used to process data written by the Cortex-A9 into 
DDR memory. In such an application where data is processed by both a PS and PL 
peripheral, the DMA controller plays an important role.

You can use the DMA controller to save system power. The CPU can go into low-power 
mode and bulk data transfers can occur over the PS DMA interface. Because the CPU clock 
is much faster than the DMA clock, this approach saves considerable dynamic power. Refer 
to the DMA Controller chapter in Zynq-7000 All Programmable SoC Technical Reference 
Manual (UG585) [Ref 4] for more information.

XADC

The XADC contains two 12-bit 1-MSPS ADCs with separate track and hold amplifiers, an 
on-chip analog multiplexer, and on-chip thermal and supply sensors. The two ADCs can be 
configured to simultaneously sample two external analog-input channels. The track and 
hold amplifiers support a range of analog input signal types including, unipolar, bipolar, 
and differential. The external inputs include one pair of dedicated differential analog-input, 
(Vp/Vn) and sixteen multi-function pins that can support analog input or can be used as 
digital I/O (Vauxn/p). The dedicated analog inputs can support signal bandwidths of at least 
500 KHz at sample rates of 1MSPS, or 250KHz on the auxiliary channels.

The XADC also includes a number of on-chip sensors that support measurement of the 
on-chip power supply voltages and die temperature. The results of the ADC conversion 
from any source (temperature, supply voltage, or analog input channels) are stored in a set 
of status registers inside the XADC block. Because the temperature is available and the 
clocks are programmable, you could adjust the Zynq-7000 AP SoC clocks as temperature 
changes.

The XADC block also includes a set of control registers used to configure and control XADC 
operations. This includes alarm registers that are used to specify automatic alarm 
thresholds for the internally-measured sensors (temperature and voltage). The alarm 
automatically triggers a PS interrupt when temperature or voltages falls outside the 
acceptable ranges defined by the registers. 

The XADC analog inputs can be used to support motor control, a touch sensor, or many 
other applications that require an analog front-end. The voltage and temperature sensing 
capability can be used to monitor system health and to react appropriately when the system 
experiences abnormal temperature or voltage conditions. 
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Chapter 3: Hardware Design Considerations
Two application notes describing the XADC used as a system monitor and to perform ADC 
operations on external analog signals are:

• Using the Zynq-7000 Processing System (PS) to Xilinx Analog to Digital Converter (XADC) 
Dedicated Interface to Implement System Monitoring and External Channel 
Measurements (XAPP1172) [Ref 41]

• System Monitoring Using the Zynq-7000 AP SoC Processing System with the XADC AXI 
Interface (XAPP1182) [Ref 43]

The XADC status and control registers are accessible using either the parallel DRP interface 
or the serial JTAG-DRP interface, as shown in Figure 3-10. The LogiCORE™ IP can be used to 
encapsulate the entire XADC hard block with the necessary logic to turn the XADC into a 
32-bit AXI slave peripheral that can be connected to the master AXI_GP port of the PS. This 
solution is required for the PS to access the data at a 1Mbps rate. The AXI XADC LogiCORE 
IP has the disadvantage that it consumes PL resources to implement, however, it provides a 
fast and clean interface to the XADC. It takes full advantage of the parallel data path and is 
the only method that can realize the full 1MSPS, as demonstrated in System Monitoring 
Using the Zynq-7000 AP SoC Processing System with the XADC AXI Interface (XAPP1182) 
[Ref 43].

An alternative solution is to use the built-in PS_XADC interface block. The advantage is that 
it requires no additional PL logic (the FPGA does not have to be configured when using 
built-in features). Reading and writing the XADC DRP registers requires a write of the proper 
command to XADCIF_CMDFIFO and a read from XADCIF_RDFIFO. However, because the 
block serializes the FIFO contents and shifts data in and out of the XADC hard block one bit 
a time via the DRP JTAG interface, this solution is slower and cannot keep up with the higher 
data rate. As demonstrated in Using the Zynq-7000 Processing System (PS) to Xilinx Analog 
to Digital Converter (XADC) Dedicated Interface to Implement System Monitoring and 
External Channel Measurements (XAPP1172) [Ref 41], this interface was able to achieve only 
100KHz. Also, the PL-JTAG interface and the internal PS-XADC interface cannot be used at 
the same time.
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X-Ref Target - Figure 3-10

Figure 3-10: XADC Block Diagram
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Chapter 3: Hardware Design Considerations
Communication with Peripherals

The peripherals discussed above implement an AMBA-specific bus structure to 
communicate with the APU and the memory system. USB, GEM, SDIO, and SPI peripherals 
have two types of communication interface: 

• The APB interface connects the peripheral slave to the APU master. The interface 
communicates using the central interconnect.

• The AHB interface enables high speed bus transactions between the DMA controller 
embedded in the peripheral and the system memory. The interface connects to the 
system memory using the central interconnect.

Figure 3-11 shows the peripheral bus connection to main memory and the APU. Figure 3-11 
is a generic block diagram of a peripheral with DMA and control register sets implemented.
X-Ref Target - Figure 3-11

Figure 3-11: Peripheral Communication Bus
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Chapter 3: Hardware Design Considerations
Peripheral Design Example
This example shows things to consider when designing with peripherals. The example uses 
the Zynq-7000 AP SoC GEM controllers and two different physical interfaces. One controller 
has an RGMII PHY using the MIO interface and the other controller has a 1000BASE-X PHY 
using the EMIO interface. You can select any supported interface to meet your 
requirements.

1. The PS has two instances of a GEM controller. One uses the RGMII interface and the 
other uses the 1000BASE-X interface.

2. TrustZone security aware access of the peripheral from the Cortex-A9 multiprocessing 
core.

3. You can enable and disable the TCP checksum off-load to GEM hardware, noting the 
CPU utilization and performance differences between the two options.

Figure 3-12 shows the hardware block diagram.

Although this example is built around a gigabit Ethernet peripheral, you can extend the 
concepts to other PS peripherals.

X-Ref Target - Figure 3-12

Figure 3-12: Example GEM Instantiation
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Hardware Design Considerations

You can create the hardware design using the Vivado® IP integrator flow. You must enable 
MIO connectivity for GEM0 and EMIO connectivity for GEM1. Enabling EMIO for GEM1 
brings the transmit and receive GMII signals to the PS IP top-level instance. The user must 
instantiate the 1000BASE-X IP core from Xilinx in the IP integrator design and connect it to 
the GEM1 EMIO ports. You can implement the design using the Vivado Design Suite 
implementation flow to generate the bitstream. See PS and PL Ethernet Performance and 
Jumbo Frame Support with PL Ethernet in the Zynq-7000 AP SoC (XAPP1082) [Ref 40] for 
more information.

Software Design Considerations

The GEM peripheral supports off-loading the TCP checksum to hardware to boost Ethernet 
performance and improve CPU utilization by performing compute-intensive checksum 
calculations in hardware. The user can enable checksum off-load by writing into the GEM 
configuration register using the APB interface.

The GEM driver configures the GEM DMA for a specific transfer size. The driver also sets up 
the descriptor ring, DMA allocation, and recycling, and programs the source and 
destination MAC addresses.

The DMA transfer begins after enabling the transmitter and receiver by writing to the 
network control register. 

Designing IP Blocks
Pre-verified intellectual property (IP) blocks are used to reduce time-to-market, and to 
enable feature-rich digital and analog circuitry on the SoC. These IP blocks include 
embedded processors, memory blocks, interface blocks, analog blocks, and components 
that handle application-specific processing functions. Use of standard interface 
specifications, such as the AMBA high-speed specification and AXI specification, improve IP 
block reusability. You can refer to the Vivado IP catalog for more information on the IP 
blocks supported by the selected Zynq-7000 AP SoC device.

There are two main categories of IP blocks:

• Soft IP Blocks: You can implement these blocks in an FPGA fabric and are specified 
using RTL or higher-level descriptions. They are more suitable for digital cores, because 
a hardware description language (HDL) is process-independent and can be synthesized 
to the gate level. The HDL form has the advantage of flexibility, portability, and 
reusability, with the drawback of not having guaranteed timing or power 
characteristics.
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Chapter 3: Hardware Design Considerations
• PS IP Blocks: These blocks have fixed layouts and are optimized for a specific 
application and process. Their primary advantage is predictable performance, which 
comes with additional effort and cost, plus lack of portability, that may greatly limit the 
areas of application. PS IP blocks are usually prequalified, meaning the provider has 
tested it in silicon. This adds greater assurance to its correctness.

The inherent complexity of SoC designs leads to the implementation of more complex 
interfaces around a processing block. The high-speed serial transceiver present on a 
Zynq-7000 AP SoC is a typical example. The transceiver's high-speed serial IOs are capable 
of transferring data in multiples of gigahertz. The transceiver block is capable of performing 
byte-boundary alignment, clock data recovery, and skew elimination across multiple 
transceiver lanes. It is also capable of clock compensation in systems that use independent 
transmit and receive clocks with ppm variation. User logic connects to the transceiver 
through a complex interface, and the functionality of that logic is complex because it must 
control the various functional blocks within the transceiver. 

An IP block plays a significant role in handling the transceiver configuration by masking the 
underlying complexity from the user interface. An Aurora IP block from Xilinx with an AXI4 
Stream-compliant user interface performs the transceiver initialization, clock 
compensation, channel bonding, and byte-boundary alignment. A user can build a 
transceiver application based on the AXI4 Stream interface without knowledge of the 
underlying transceiver complexity.

Figure 3-13 shows how the Aurora IP plugs into the transceiver interface in a Zynq-7000 AP 
SoC.

X-Ref Target - Figure 3-13

Figure 3-13: Aurora IP Example
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IP Core Design Methodology
Xilinx enables different methodologies for creating IP blocks and offers an easy 
maintenance approach. You can reuse the IP blocks in the embedded system designs 
created for Zynq-7000 AP SoCs and other processing systems, such as MicroBlaze™ 
processors. The following sections describe the IP creation methodologies using the Xilinx 
tool chain.

System Generator

System Generator is a tool that can create DSP IP blocks based on a user configuration, 
using MathWorks Simulink for FPGA system design. It offers a high-level model-based 
environment for system designs. A large number of building blocks are available in System 
Generator, from simple mathematical operators to complex DSP operations. 

In the Vivado Design Suite, the IP Packager compilation target allows a user to package the 
IP generated from the System Generator and include it in the Vivado IP Catalog. You can use 
the System Generator design like other IP blocks from the IP Catalog and instantiate it in 
your design. 

HDL Coder

HDL Coder is a tool from MathWorks that generates synthesizable HDL code from MATLAB 
functions and Simulink models. It provides a workflow that analyzes the MATLAB/Simulink 
model and converts the model from floating-point to fixed-point, providing a high-level 
abstraction. The workflow also provides verification code, allowing the HDL code to be 
tested with the original MATLAB/Simulink model.

Not all the functions present in MATLAB and Simulink support HDL generation. Because of 
this, some of a model's functionality may have to be modified to use functions or blocks 
that support HDL generation.
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Chapter 3: Hardware Design Considerations
Vivado High Level Synthesis

Vivado High Level Synthesis (HLS) is a tool from Xilinx that is capable of converting C-based 
designs to RTL design files for implementation on Xilinx FPGA devices. The Vivado HLS tool 
flow is shown in Figure 3-14.

The Vivado HLS flow packages the RTL output into the following formats, allowing you to 
easily integrate the output into other Xilinx design tools:

• IP Catalog: Contains a ZIP file that you can add to the Vivado IP Catalog.
• Synthesized Checkpoint (.dcp): A Vivado checkpoint file that you can add directly into a 

design in the Vivado Design Suite.
• System Generator for DSP: You can add this output to the Vivado edition of System 

Generator for DSP.
• System Generator for DSP (ISE®): You can add this output to the ISE edition of System 

Generator for DSP.
• Pcore for EDK: You can add this output to the Xilinx Platform Studio.

In addition to the packaged output formats, the RTL files are available as stand-alone files 
(not part of the recommended packaged formats).

X-Ref Target - Figure 3-14

Figure 3-14: Vivado HLS Flow
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Chapter 3: Hardware Design Considerations
IP Core Design Considerations
When designing an IP block, reusability of that IP block across multiple embedded system 
designs and across different user configuration options should be considered. 
Parameterization and implementation of standard bus topologies allows an IP block to be 
reusable in most system-level scenarios. 

You should consider the following when designing an IP block:

• Parameterization: Parameterization includes interface-level configuration and IP 
feature-specific configuration. Interface-level configuration is important when the IP 
block interfaces with other IP blocks and the user must control different bus 
parameters, including the data and address bus width, clocking, reset interface 
configuration, etc. IP feature-specific configuration enables or disables a feature in the 
IP block depending on the user selection. 

You can handle parameterization in IP blocks in multiple ways. The basic level of 
parameterization can be implemented in the HDL code. The HDL parameters can be 
configured from the IP configuration wizard available after packaging the IP block using 
Vivado IP integrator tool. You can implement a customized environment to 
parameterize the IP block.

• Bus Topology: The reusability of IP blocks is an important consideration when 
designing an IP block. You can enhance reusability by implementing a bus topology 
that complies with industry-standard bus interfaces. One of the most widely used 
standards is AMBA, and a broad class of IP blocks exist that comply with that bus 
specification. A bus topology implemented with industry-standard interfaces enables 
easy plug and play of master and slave IP blocks at the system level. Such IP blocks can 
also offer flexibility in selecting a particular version of the standard protocol and 
interface-level configurations.

The choice of bus interface depends on system-level requirements. The AXI4-Lite bus is 
primarily used as a control bus from the PS, and the AXI4 Memory-Mapped bus is for 
memory transfers between the IP core. The AXI4-Stream bus is used to connect to 
streaming blocks in the design that do not have addressing context. The following 
figure shows the AXI4-Lite, AXI4 Memory-Mapped, and AXI4-Stream buses in an AXI 
DMA-based design. In this figure, the AXI DMA is responsible for moving data between 
the PS system memory and the AXI4-Stream compliant Sobel IP using the high 
performance port. The PS sets up the AXI DMA's buffer descriptor using the AXI4-Lite 
interface.
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Chapter 3: Hardware Design Considerations
• IP Security and Documentation: Protecting a design against copyright infringement is 
an important consideration in designing IP blocks. You can employ various security 
algorithms to encrypt the HDL file. The Xilinx tools allow you to encrypt and decrypt 
the HDL using the AES algorithm. 

Connecting IP Blocks to the PS
When the interface between the PS and PL uses AMBA-compliant interfaces, you can 
implement a design using soft IP blocks. The PS-PL interface has a GP port (master and 
slave) that can implement an AXI3 or AXI4 interface, and can connect the PS to a soft IP core 
register interface. You can use the high-performance (HP) ports as AXI3 slave ports that are 
driven by an AXI3 or AXI4 master IP block in the PL. You can use the ACP interface in a 
similar way. The ACP interface implements the AWCACHE and ARCACHE signals, and the 
user IP block implementing the ACP master controller needs to implement these signals. 
For more information, refer to ACP and Cache Coherency.

The ACP interface enables connectivity to the L2 cache, and the interface can be used where 
the IP block in the PL is co-processing a compute-intensive operation requiring 
considerable CPU utilization.

You can implement the AXI3/4 memory mapped or AXI4 stream protocol. The AXI3/4 
memory mapped interface has read/write addressing signals and data interface signals. The 
AXI4 stream interface does not have address signals.

X-Ref Target - Figure 3-15

Figure 3-15: AXI4-Lite, AXI4 Memory-Mapped, and AXI4-Stream Buses
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Chapter 3: Hardware Design Considerations
When designing a Zynq AP SoC with an IP block, the PL must account for the following:

1. The IP block complies with the AXI3/4 protocol specification. The AXI interfaces in the 
PS-PL boundary are AXI3-protocol compliant. You can use a Xilinx-provided AXI 
interconnect IP block to connect the AXI4-compliant IP to the PS-PL interface ports.

2. The IP block is part of an IP integrator repository, simplifying integration of the IP block 
into a system level design.

3. The PS-PL interface supports memory-mapped access of implemented peripherals.
4. You can select the AXI4 stream interface to connect IP blocks that do not require 

addressing context. The AXI4 stream interface is widely used for video-based IP blocks. 
You can store the stream video input from the video IP block in the PS DDR memory 
using the video DMA IP block connected to the HP port interface.

Case Study: Designing with Xilinx IP Blocks
This section describes how to design a system using IP blocks from the Xilinx IP integrator 
catalog. You can apply the methods to any IP block.

The case study is of a notch filter, which is a DSP IP that can process analog samples to 
remove non-linearity introduced by an external sensor. When an analog signal passes 
through a non-linear sensor, for example an RTD sensor, the sensor can introduce nonlinear 
behavior at the analog signal output. This is due to variations in the sensor transfer function 
based on temperature. The non-linear output requires compensation, and you can 
implement the compensation algorithm in either the analog or digital domains. Digital 
algorithms offer more cost effective and accurate reconstruction of the non-linear signal.

A Zynq-7000 AP SoC has a Xilinx ADC in the PL, and the IP block that instantiates the XADC 
provides a user wrapper with an option to convert the XADC samples to an AXI4-Stream 
compliant interface. The user can design an IP block that compensates for the non-linear 
sensor by preemptively correcting the XADC's samples with lookup polynomial coefficients. 

You can design the sensor-compensating IP block using DSP48 blocks available in the 
Zynq-7000 AP SoC. The IP can implement two user interfaces: an AXI4-Stream interface for 
data and an AXI4-Lite interface for control. The AXI4-Stream interface can connect to the 
XADC Wizard IP, and the AXI4-Lite interface can connect to the PS's GP0 master-interface 
for controlling the IP-specific parameters.

Figure 3-16 shows a block diagram of the IP block.
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Chapter 3: Hardware Design Considerations
The process of creating the IP block is:

1. Write HDL code that implements an AXI4-Stream interface for data and an AXI4-Lite 
interface for control. Implement the function that multiplies the AXI4-Stream data with 
the interpolated coefficients.

2. Package the HDL code using Vivado IP Packager. Auto-infer interfaces and associate 
clocks with each of the interfaces.

3. Set up a local repository and copy the packed IP XACT files to the local repository.
4. Create a Vivado project and add the local repository.
5. Create the block design by instantiating the local IP block with other IP blocks and 

connect them together.
6. Implement the design using Vivado Design Suite.
X-Ref Target - Figure 3-16

Figure 3-16: IP Use-Case Illustration
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Chapter 3: Hardware Design Considerations
Hardware Performance Considerations
The PL on a Zynq-7000 AP SoC has multiple communication paths for software and 
hardware to share data and resources. Each of these paths has configuration settings for 
altering hardware-specific performance. In this section, hardware performance metrics will 
be defined, and methods for tuning performance of AXI masters, AXI slaves, and AXI 
datapaths will be described.

Hardware Performance Metrics
An important metric of PL performance is the AXI throughput and latency when accessing 
performance-critical IP in a Zynq-7000 AP SoC. Xilinx uses ARM AMBA AXI interconnects in 
PL to connect and map user IP into a global address space. Some application datapaths will 
be throughput constrained (such as video and networking) or latency constrained (such as 
real-time applications or protocol-specific constraints). Often when a Zynq-7000 AP SoC 
design is started, the system architect can only specify performance using the two simple 
metrics of throughput and latency, something observed by many Zynq-7000 AP SoC 
customers.

To highlight the trade-off between latency and throughput, an ACP master that issues eight 
outstanding 32-byte transactions will have an average read latency 130% higher than a 
single outstanding transaction master. However, the master with eight outstanding 
transactions also has a 262% higher average throughput. This is because multiple 
outstanding transactions are pipelined, leading to a higher throughput and latency 
performance profile. The designer can decide if latency or throughput is more important to 
system performance.

These two metrics form the foundation of visualizing and tuning application performance. 
The AXI interfaces that IP might access within a Zynq-7000 AP SoC are described below. AXI 
IP design best-practices are not considered.

High-Performance AXI Masters
An AXI master's design and configuration affects its ability to drive high-performance 
traffic. Following are two examples of AXI masters that have different performance 
characteristics as seen from an AXI interface.

AXI Master #1. Supports a 32-bit AXI-Lite interface and issues one outstanding AXI 
transaction at a time. This master generates single-beat transactions and runs at 100 MHz 
on a ZC702 board.

AXI Master #2. This master uses a 64-bit AXI4 interface and can issue 16 outstanding 
transactions at a time, with a maximum burst length of 16 beats per transaction. This master 
can run at 200 MHz on the same Zynq-7000 AP SoC board.
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Chapter 3: Hardware Design Considerations
Independent of the datapath and the AXI destination slave, the performance of AXI master 
#1 will not match AXI Master #2. To minimize throughput constraints, the AXI master should 
fully use the AXI address and data channels. To minimize latency constraints, limit the 
number of outstanding transactions because transactions will pipeline sequentially in the 
AXI data channel.

This simple example might be intuitive, but building high-performance AXI masters adds 
design complexity and may consume more resources. Often, performance is only 
considered after performance goals are not met. The following section outlines 
performance considerations when designing an AXI master.

Building High-Performance AXI Masters

Many designs are generated using prebuilt IP, and performance choices are limited. 
However, the following general guidelines can help build high-performance AXI masters, or 
tune existing IP when parameterization is possible.

• For throughput-constrained masters, support multiple outstanding transactions. 
This requirement adds complexity to AXI masters, but Zynq-7000 AP SoC interfaces can 
internally support varying numbers of multiple transactions. This data pipelining 
enables higher utilization of AXI data channels, often the only channel that matters in 
throughput-based designs.

• For low latency masters, throttle the number of outstanding transactions to 
maximize latency-throughput behavior. This item can be difficult to quantify, but 
through experimentation, the latency curve can be shaped to minimize latency the 
master sees while allowing multiple outstanding transactions. Figure 3-17 is an 
example latency-throughput curve showing how an increase in the number of 
requested transactions affects latency.

X-Ref Target - Figure 3-17

Figure 3-17: Example Latency Throughput Curve for HP Port Reads
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Chapter 3: Hardware Design Considerations
• Ignore the AXI response channel. If possible, use posted writes to reduce the 
transaction latency. For example, consider a transaction complete on an AXI rdlast or 
wrlast signal, ignoring the write response channel response. In a well-formed design, 
there will be no channel or slave errors that an AXI master must manage. If writes 
cannot be posted, then this channel cannot be ignored. However, the AXI write 
response channel typically adds tens of cycles to a transaction in many Zynq-7000 AP 
SoC datapaths. 

• Consider AXI master addressing behavior and the destination AXI slave response. 
The address sequence that an AXI master generates affects the destination slave's 
ability to service that traffic. For example, if an AXI master generates random addresses 
to a DDR-based memory, it can cause lower memory performance. Also, multiple 
masters accessing DDR address ranges can cause suboptimal DDR scheduling. This is 
not always an issue because some memory slaves, such as the OCM, are better at 
handling random accesses. Also, if random access is kept within a small address range, 
the L2 cache can service this traffic. These AXI slaves will be discussed later.

• Maximize clock rate, data width, and transaction burst size. These parameters 
should be matched to what is supported natively by a Zynq-7000 AP SoC (such as 
internal 64-bit datapaths and a maximum AXI3 burst length of 16 beats). Typically, 
increasing the AXI master clock rate affects just a portion of the total datapath, because 
a transaction likely also travels through the PS and its clock domains. PL data widths 
will be internally translated to the PS data widths, when needed. Using burst size as an 
example, if a PL AXI master drives AXI4 traffic into the PS, the transactions might be 
translated into AXI3 transactions. 

Using Performance-Critical AXI Slaves
Performance-critical slaves respond to data-movement requests from PL. Zynq-7000 AP 
SoCs have three AXI slaves that are especially performance critical: the OCM, L2 cache, and 
DDRC. The addition of a configurable memory-interface generator (MIG) to the PL is also 
possible. The benefits of the different slaves are:

• On-Chip Memory. The OCM is a 256KB memory block accessible to both ARM cores 
and the PL from the GP, HP, and ACP ports. The OCM is an ideal component for use in 
synchronization or scratchpad applications. 

• L2 Cache. The 512KB L2 cache is only accessible by the ACP from the PL. It is a shared 
resource with the two ARM Cortex-A9 cores. This slave has excellent performance 
characteristics when data traffic fits within 512KB. However, performance degrades if 
there is heavy processor contention. The ACP and coherent memory access is described 
in ACP and Cache Coherency.
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Chapter 3: Hardware Design Considerations
• DDR Controller. You can connect the DDRC to a variety of off-chip memory devices, 
such as DDR3 and LPDDR2. The DDRC is accessible from the PL using the AXI master 
interfaces (GP, HP, and ACP). Each PL interface has a unique datapath to the DDRC. The 
DDRC has higher memory capacity and throughput performance than the OCM and L2 
cache.

• PL Attached MIG (Optional). Zynq-7000 AP SoCs can support an MIG-generated 
memory controller in the PL. This soft IP option provides another high-performance 
memory interface that can isolate PL memory from the processor system's software 
access to the DDRC. The MIG exports an AXI interface that allows designs to attach 
standard AXI-master IP. The greatest benefit of this core is the ability to customize the 
PHY into banking and addressing schemes for a specific application. 

Selecting Performance-Critical AXI Slaves

The AXI slave selected for a datapath is often done so to meet functional requirements, such 
as CPU coherency or memory size. The selection of an AXI slave can also be driven by 
performance requirements. The following selection considerations have been used by 
several Zynq-7000 AP SoC customers:

• Avoid or isolate performance-critical datapaths. Often during the design process, 
certain datapaths are marked as critical to system performance and other paths are 
marked as secondary. For example, a network-processing application may need 
dedicated access to off-chip memory, whereas packet inspection can occur at a slower 
rate on less critical datapaths. You can isolate ACP access to the L2 cache from HP to 
DDRC traffic by limiting the memory footprint of the ACP access. Similarly, OCM 
accesses from GP can be isolated from ACP and HP traffic. 

• Low latency. The amount of latency that tolerated depends on the system-level 
application and behavior of data traffic. The OCM has excellent low-latency 
characteristics. Accessing small memory regions through the ACP enables an 
application to take advantage of low-latency L2 cache access. 

• High throughput. The high-performance ports provide high throughput to the PS 
DDRC from the PL. A common problem with the HP performance is L2 cache contention 
at the DDRC. A memory-intensive software application can cause a reduction in HP 
throughput. However, you can reduce contention by using the DDRC priority settings 
and the QoS 301 settings on the L2 cache to DDRC datapath.

• Configurability and confidence. Some designs might use a PL MIG to avoid memory 
access contention with the processor subsystem. Other designs might use a custom 
memory interface based on previous designs or developer experience. Prototyping 
boards for Zynq-7000 AP SoC support MIG (such as the ZC706 board) and enable 
designers to evaluate a custom MIG core and compare the results with standard 
Zynq-7000 AP SoC datapaths to the DDRC. 
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Chapter 3: Hardware Design Considerations
High-Performance Datapaths
There are two symmetric datapaths for the PS to communicate with the PL (master GP0, 
master GP1), and there are seven datapaths for PL AXI Masters to drive traffic into the PS. 

The AXI interfaces are described in the following sections: 

• ACP and Cache Coherency
• PL High-Performance Port Access
• GPs and Direct PL Access from APU

The process of using the system-performance goals to select between those interfaces is 
described below.

Selecting a High-Performance Datapath

The selection of a datapath is often based on design function. However, performance 
considerations can also drive datapath selection.

• Choosing between the ACP and HP ports. When the cache and user AXI4 signals are 
set for a cache access, the ACP port provides access to the L2 cache and maintains 
cache coherency with the ARM Cortex-A9 cores. Using the ACP without the cache 
enabled can be useful to a PL master because the memory map matches that seen by 
the Cortex-A9 cores.The L2 cache is a shared resource, and using the ACP port can 
impact processor memory bandwidth. Also, if the traffic generated by AXI masters 
spans a large address range (such as video frames) or is random in nature (such as 
scatter-gather DMA), L2 cache misses will increase, causing a corresponding increase in 
latency and potentially lower throughput.

The HP ports support 32-bit and 64-bit data paths, providing high-throughput access to 
the DDRC. The HP ports contain FIFOs for increased burst throughput and you can 
control their prioritization. The HP ports also provide low latency and high bandwidth to 
the OCM. You might find this useful if the accelerators are in the PL and the OCM is large 
enough for the buffer.

• Selecting the GP ports. The slave GP ports provide PL masters direct access to many 
resources isolated from performance-critical datapaths on the ACP and HP ports.

• Memory-access footprint. If a design uses the ACP for non-coherent access with poor 
cache locality, then the DDRC serves the majority of ACP traffic. In an example 
Zynq-7000 AP SoC deployment, ACP latency is reduced up to 53% by increasing cache 
locality of transactions. HP and GP transactions do not access the L2 cache and are not 
directly affected by cache behavior. For more information on using the ACP for 
coherent access, see ACP and Cache Coherency.
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Chapter 3: Hardware Design Considerations
• PS datapath performance controls. System clock rates, QoS-301 signals, and DDRC 
priority settings can all impact datapath performance. You can set most of the 
memory-mapped registers and functions that use IP integrator when building the 
design. You can set QoS-301 bits at runtime. Although higher system clock rates help 
move data faster, the QoS-301 signals and DDRC priority settings can shift performance 
between contending AXI masters. For example, QoS-301 settings on the L2 to DDRC 
datapath can limit L2 cache transactions to the DDRC, allowing HP traffic to be serviced 
by the DDRC more frequently. DDRC priority settings can also be used to prioritize read 
and write transactions within the DDRC.

Monitoring Hardware Performance
Xilinx provides an AXI performance monitor (APM) core shown in Figure 3-18 that you can 
use to observe and measure latency and throughput on PL AXI interfaces. This core is 
available in IP integrator and is the basis for all AXI performance measurements referenced 
in this document. 

Zynq-7000 AP SoC developers can insert this APM into their PL design like other IP, and 
verify performance metrics throughout the design cycle.

X-Ref Target - Figure 3-18

Figure 3-18: Adding an AXI Performance Monitor into a Vivado 2013.4 IP integrator Design
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Dataflow
This section provides an overview of the dataflow in a Zynq-7000 AP SoC. The first part 
describes the dataflow within the PS, focusing on APU access of PS DDR, and of PS 
peripherals to PS DDR. The second part describes dataflow from the PL to the PS, focusing 
on the following PS-PL AXI interfaces: general purpose interfaces, ACP interface, and high 
performance interfaces. Throughout, major system design characteristics and 
considerations are described. For more information, refer to the Zynq-7000 All 
Programmable SoC Technical Reference Manual (UG585) [Ref 4].

The various interconnect blocks used within the Zynq-7000 AP SoC devices are designed to 
meet the needs of various functional blocks. The PS interconnect is based on 
high-performance data path switches that enable data transfers between various 
peripherals and DDR memory, or between the APU and DDR or OCM memories. The PS-PL 
interface provides an AXI interface in the PL, enabling PL peripherals to connect to the PS 
and subsequent dataflow.

The block diagram in Figure 3-19 shows the major data paths that are covered in this 
section.
X-Ref Target - Figure 3-19

Figure 3-19: Block Level Data Path Overview
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Chapter 3: Hardware Design Considerations
Interconnect within PS
There are two primary data paths within the PS: the APU interconnect to PS DDR, and the PS 
peripheral interconnect to PS DDR. 

The central interconnect is 64 bits and is the core of the ARM NIC-301 switches. The master 
and slave interconnect route low-to-medium level traffic between the central interconnect 
and the general purpose interconnects and IO peripherals in the PS. Memory interconnect 
provides a direct, high-speed data path from the PL HP interface to the DDR memory 
controller. It also provides access to on-chip RAM through the OCM interconnect. 

The interconnect does not offer a full cross-bar structure; not all masters can access all 
slaves. The details on which masters can access which slaves are available in the 
Interconnect Datapaths table at this link in the Zynq-7000 All Programmable SoC Technical 
Reference Manual (UG585) [Ref 4].

APU Access to PS-DDR

Each processor provides two 64-bit pseudo-AXI interfaces. All AXI transactions are routed 
through the SCU to the OCM or L2-cache controller based on their addresses. The APU 
accesses DDR memory through the SCU and L2-cache controller. Both the SCU and 
L2-cache controller behave like switches because of their address-filtering feature. The SCU 
also provides the lowest latency path from the APU or ACP peripherals in the PL to the 
OCM, and also contains the intelligence to manage data coherency between the two 
processors and L1cache.

When the L2-cache controller is disabled, the transactions are directed either to the DDR 
controller or master interconnect based on their addresses.

PS Peripheral Access to PS-DDR

The IO peripherals (USB, GEM, and SDIO, for example) implement two interfaces for 
communication: 

• An APB interface for connecting peripheral slaves to the APU master 
• An AHB interface that facilitates high-speed bus transactions for connecting an 

embedded DMA controller in the high speed peripherals to system memory

The APB interface is used primarily to control peripherals. The AHB interface (from a DMA 
master in a peripheral) is connected to central interconnect, providing access to the DDR 
controller.
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Chapter 3: Hardware Design Considerations
PS-PL AXI Interfaces
This section describes the PS-PL AXI interfaces that are used to connect PL-based 
peripherals and functions to the PS. Usage models for each interface are described in their 
respective sections.

General Purpose AXI Interface (AXI_GP)

The AXI_GP interface has four 32-bit general-purpose ports with two master and two slave 
ports; the PL is the master for two ports and the PS is the master for the other two ports. 
The ports are connected to the master and slave interconnect ports in the PS. 

The AXI_GP ports are provided for general purpose use and are not designed for high 
performance.

A typical use model for the M_AXI_GP port is to connect it to the control-plane interface of 
a peripheral implemented in the PL. You can use the S_AXI_GP port to communicate with 
addressable PS peripherals from the PL. When PL peripheral performance requirements are 
not high, you can also use S_AXI_GP to access PS-DDR.

Accelerator Coherency Port (ACP)

The ACP provides an interface to masters in the PL for direct connection to the SCU. The PL 
masters maintain memory coherency with L1 caches and have direct access to the L2 cache 
and OCM. The ACP has the same level of connectivity to peripherals and memory as the 
CPU. For more information, refer to the address map in the System Addresses chapter 
(available at this link) of the Zynq-7000 All Programmable SoC Technical Reference Manual 
(UG585) [Ref 4].

Addresses on the ACP port are snooped by the SCU to provide full I/O coherency. Reads on 
the ACP will hit in any CPU's L1 data cache, and writes will invalidate any stale data in L1 and 
write through to L2. This results in significant performance benefits and simplifies driver 
software.

The ACP allows a device, such as an external PL-DMA, direct access to CPU-coherent data 
regardless of where the data is in the CPU cache or memory hierarchy. The resulting system 
coherence relieves the software driver of performing costly operations such as cache 
flushing and helps improve system performance. 

The ACP is optimized for cache-line length transfers and also has certain limitations that 
should be taken into account when designing a system with an ACP. Further details are 
available in ACP and Cache Coherency.

Use of ACP for high performance applications should be considered with care because the 
peripherals connected to the ACP will compete with the CPUs for access to caches and the 
memory subsystem in the PS, impacting overall performance.
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Chapter 3: Hardware Design Considerations
High Performance Ports (AXI_HP) 

Four high-performance AXI interfaces are provided to enable a high-throughput data path 
between the PL masters, and DDR and OCM memory in the PS. Each datapath is selectable 
between 32-bit and 64-bit. A dedicated memory interconnect provides direct connectivity 
of these AXI-HP ports to the DDR memory controller in the PS. Also, FIFO buffers for read 
and write traffic are present, providing high-performance capabilities. These ports are also 
referred to as the AXI FIFO Interface (AFI). 

The four AXI-HP ports are multiplexed down in pairs and are connected to two ports on the 
memory controller. The memory interconnect switch arbitrates between the two ports. 
When using two HP ports, use of port-0 and port-2 is recommended because these are on 
separate DDR interfaces.

The HP AXI interface provides additional capabilities, such as QoS, FIFO occupancy, and 
issuance throttling on interconnect. This enables bandwidth management when there are 
multiple masters with different types of traffic flow. You can control the QoS signals using 
PL signals or by statically configuring the APB registers.

In addition to the PS-PL AXI Interfaces discussed above, there are additional PS-PL 
interfaces:

a. Extended MIO allows routing of IO peripheral signals to the PL. This provides an 
interface between the PS IOP controller and user logic in PL, and it also enables use 
of PL device pins. For more information, refer to this link in the Zynq-7000 All 
Programmable SoC Technical Reference Manual (UG585) [Ref 4].

b. PS-PL clock, reset, and interrupt interfaces that provide clock, reset, and interrupt 
signals in the PL. For more information, refer to this link in the Zynq-7000 All 
Programmable SoC Technical Reference Manual (UG585) [Ref 4].

c. Device configuration interface, used to configure the PL under PS software control. 
For more information, refer to this link in the Zynq-7000 All Programmable SoC 
Technical Reference Manual (UG585) [Ref 4].

d. The DMA interface between PS and PL can be used for high-speed data transfer 
between the PL IP block and other peripherals or memory blocks in the PS. The 
interface between the PS and the fabric can be used to propagate CPU interrupt 
events.
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Chapter 3: Hardware Design Considerations
System Level Design Considerations

When managing the bandwidth of PS-PL AXI interfaces, the following should be considered:

• The general-purpose ports should be used for low-to-medium types of traffic, such as 
controlling PL peripherals from the PS, or as a data path for low-speed PL peripherals. 
For example, you can move Ethernet packets into the PL through the S_AXI_GP port 
because the bandwidth and latency requirements are satisfied by the port. However, in 
applications requiring guaranteed latency and high performance, such as video 
implemented in PL, use of HP ports is preferable.

• The accelerator coherency port is useful when applications in the PL need to maintain 
coherency with the processor L1 caches, and need reduced software overhead.

• The high-performance port is recommended when applications in the PL need 
high-bandwidth access to the DDR controller or the OCM. Multiple ports are provided 
so that you can distribute the PL masters across four HP ports for improved load 
balancing, rather than restricting PL masters to a single HP port. You can obtain even 
higher bandwidth for one PL master by using multiple HP port sets (HP0 and HP2, or 
HP1 and HP3).

For more information about using multiple port sets, refer to this link in the Zynq-7000 
All Programmable SoC Technical Reference Manual (UG585) [Ref 4].

PL Clocking Methodology
This section covers the clock methodology in Zynq-7000 AP SoC PL, describing the different 
clock sources available in the PL and their recommended usage. Those clock sources are:

• Clock from PS (FCLK)
• Clock Recovered from a GT
• Clock from External Source
• Clock Generated by MMCM

At the end of this section a video system design is discussed as a typical model 
demonstrating use of the various clock sources. 

Clock from PS (FCLK)
Refer to the Clocking and Reset for information on using FCLK.
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Chapter 3: Hardware Design Considerations
Clock Recovered from a GT
The receiver clock data recovery (CDR) circuit in the GT transceiver extracts clock and data 
from an incoming data stream. The recovered clock has a direct relationship to the 
transceiver line rate and the data-path width. You can use the recovered clock in a PL design 
requiring a high-speed serial transceiver for communication with the link partner. The 
recovered clock typically has inherent jitter, and that jitter must be corrected before using 
the clock in a design that is sensitive to input jitter. In general, the recovered clock is used 
to sample data received by the PL logic. The architecture of the CDR is shown in Figure 3-20.

For more information, refer to the Receiver chapter of 7 Series FPGAs GTX/GTH Transceivers 
User Guide (UG476) [Ref 2] and 7 Series FPGAs GTP Transceivers (UG482) [Ref 3].

Clock from External Source
An FPGA clock-capable IO pin that supports differential clocks can supply a PL clock. If a 
single-ended clock is used, it should be connected to the P (master) side of the 
clock-capable input pin pair.

The choice of single-ended versus differential-input clocking depends on the design's 
clocking requirements. Differential clocking is recommended because it eliminates 
power-supply noise and line-coupling noise. If the design is pin limited, you can use 
single-ended clocking.

When a single-ended clock is connected to the P side of an input pin pair, the N side cannot 
be used for another single-ended clock. However, you can use it as a user IO.

The clock-capable pins provide dedicated, high-speed access to the internal global and 
regional clock sources, as shown in Figure 3-21.

For more information, refer to 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 1].

X-Ref Target - Figure 3-20

Figure 3-20: CDR Architecture
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Chapter 3: Hardware Design Considerations
Clock Generated by MMCM
The MMCM is used to generate multiple clocks with different frequency and phase 
relationships. The MMCM also de-skews the clock output. A use model is shown in 
Figure 3-22.

The MMCM primitive, MMCME2_ADV, provides the functions listed above and the input 
clock selection using the Dynamic Reconfiguration Port (DRP).

X-Ref Target - Figure 3-21

Figure 3-21: Clock Capable Inputs

X-Ref Target - Figure 3-22

Figure 3-22: MMCM Use Model
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Chapter 3: Hardware Design Considerations
FCLK Use Model 
An example FCLK use model is a video application that displays a test pattern on a display 
monitor. Figure 3-23 illustrates this model.

The use model has the following IP blocks:

• Test pattern generator (TPG): Generates video frames of different test patterns.
• Video timing controller (VTC): Generates the timing for TPG.
• Video direct memory access module (VDMA): Writes the video frames generated by 

TPG in to the DDR memory.
• Display controller: Fetches the frames from the DDR through HP2 port and displays 

on monitor.
• On-board clock synthesizer: Used as a video clock driving all input video modules and 

the display controller. It is programmable by the PS.
• Clock derived from FCLK using the MMCM: This clock has a higher frequency than 

Sys_clk. It is used by the VDMA and display controller AXI master interfaces because of 
display controller latency requirements. 

In this example, the design could use an external clock routed to PL and to an MMCM that 
generates the desired Sys_clk output. The PS AXI interconnect provides the clock domain 
between the HP/GP port and the PL.

X-Ref Target - Figure 3-23

Figure 3-23: FCLK Use Model
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Chapter 3: Hardware Design Considerations
ACP and Cache Coherency
The accelerator coherency port provides low-latency access for PL masters, including 
optional cache coherency with the dual core ARM Cortex-A9 CPUs. From a system 
perspective, the ACP interface has similar connectivity as the APU CPUs. Because of this, the 
ACP competes with the APU CPUs for resource access outside the APU block. Figure 3-24 
shows an overview of the ACP connectivity.

The ACP's main benefit, compared to other PL masters, is access to CPU cache-coherent 
memory and use of the low-latency 512KB L2 cache. In a common Zynq-7000 AP SoC 
implementation, a PL accelerator is connected to the ACP port. It is configured by the CPU 
over one of the GP ports, and then the accelerator does its data movement over the ACP. 
Coherent data movement is managed in hardware, allowing the PL ACP-master to issue 
standard AXI reads and writes. The only requirement on ACP cache-coherent accesses is 
that those transactions have the A*CACHE and A*USER bits set to all 1s.

X-Ref Target - Figure 3-24

Figure 3-24: ACP Connectivity Diagram
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Chapter 3: Hardware Design Considerations
This hardware-managed coherency model is an alternative to having PL accelerators use the 
HP or GP ports to access non-coherent memory directly from the DDR Controller. Here, 
software-managed coherency would be necessary, whereby the processor would have to 
flush shared memory back to the DDR to guarantee coherency. While there are many ways 
to implement software-managed coherency, the ACP does so in hardware, easing software 
design.

Because the ACP supports cache coherency, ACP-attached AXI masters compete with the 
CPUs for L2-cache resources (the L1 cache is only available to the CPU). Any AXI read or 
write transaction coming from the ACP will use L2-cache resources to service the data 
movement (arbitration, tag matching, and cache-line fetches to DDR Controller). If this data 
movement is coordinated with CPU activity (such as the accelerator example above), then 
sharing the memory resources benefits the larger system application. If this data movement 
operates in parallel with unrelated CPU tasks, there are additional opportunities to mitigate 
contention on the CPUs and ACP masters, as described in the next section.

ACP Design Methodology
The following design methodology best-practices for effectively using the ACP are based on 
several customer use-cases plus performance analysis of the Zynq-7000 AP SoC ACP.

ACP-Master Design Methodology

• Avoid Thrashing the Cache. The 512KB L2 cache is a shared resource between the two 
ARM processors and the ACP. The ability of the ACP to access large quantities of data 
has the potential to lower software performance. Locking and partitioning the cache 
can help ensure the shared data has a high cache hit rate. For example, video-style 
accesses to the ACP port would have little cache locality and, without cache 
management, hurt memory system performance.

In one example performance test case, ACP accesses that have good cache locality will 
show 54% lower latency when compared to an ACP access pattern with no cache locality. 
Results will vary by application.

• Match AXI Transaction Parameters to ACP. The ACP is an AXI3 compliant 64-bit 
interface. Transactions for AXI3 or AXI4 compliant masters attached to the ACP will be 
converted to 64-bit-wide transactions with a maximum burst length of 16 beats. All 
conversion is done using soft IP such as the protocol converter or the AXI interconnect. 
Converted non-64-bit transactions and high beat-count transactions have the potential 
to cause extra data-transfer cycles. Additional ACP access optimizations and constraints 
are described in the ARM Infocenter Accelerator Coherency Port web page [Ref 75].
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Chapter 3: Hardware Design Considerations
• Choose Blocking versus Non-blocking Transactions. Care must be taken with 
transactions completing out of order on the ACP port. Under certain conditions, writes 
and/or reads can complete out of order unless the axresp channel is used as a barrier 
between subsequent transactions. Ideally, the response channel should be ignored, 
allowing transactions to complete as soon as data is transferred. However, care is 
required when issuing multiple reads and writes to the same address range. For DMA 
bulk transfers, this is typically not a problem. However, you can see the problem when 
multiple outstanding read and write transactions are issued to a small address range.

In an example use-case, if the ACP's response channel is ignored during multiple 
read-modify-write operations to the same address, out-of-order read-after-write 
collisions can occur.

• ACP use for non-coherent access. It is recommended that non-cache-coherent traffic 
from PL be routed through the HP or GP ports. If required, however, you can set the AXI 
4-bit cache fields to modify the behavior of ACP accesses. For more information, refer 
to Section 2.4 Accelerator Coherency Port in the Cortex-A9 Technical Reference Manual 
[Ref 77].

PS Configuration for the ACP Design Methodology

• L2-Cache Clocking and Prefetching. The L2 cache is clocked at the CPU clock rate 
and, with good cache locality, will service the majority of ACP accesses. While you can 
raise the PL clocks to decrease the access latency, you should also clock the L2 cache as 
fast as possible. You can use L2 prefetch settings to turn prefetch on and off, and use 
other settings to control the number of cache lines fetched per miss. For example, ACP 
accesses with little cache locality may not benefit from prefetching because they can 
cause mis-speculated fetches from the L2 to the DDR controller.

Refer to the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) 
[Ref 4] for more information on optimizing the PS settings for ACP accesses and 
modifying the L2 cache settings.
UltraFast Embedded Design Methodology Guide 118
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=118


Chapter 3: Hardware Design Considerations
Contention with Software on CPU Methodologies

• Consider CPU Memory Access Patterns. The effect of cache contention with the 
processor is also dictated by the processor's memory-access patterns. Software that 
runs entirely out of a processor's L1 cache will not be affected by ACP accesses. 
However, ACP accesses can affect software with low cache locality, such as a 
memory-striding application. 

For example, a memory-intensive software application running on the ARM Cortex-A9 is 
unaffected by heavy ACP traffic accessing a single 4 KB memory page from the L2 cache.

As a further example, running L1-cache-bound benchmarks, such as Dhrystone or 
Coremark, on the CPU is unaffected by heavy ACP traffic accessing a 512 KB buffer held 
within the L2 cache.

• Advanced Cache Management. You can use techniques such as cache locking and 
cache partitioning to assist in cache sharing and cache isolation between multiple CPU 
and ACP masters. These techniques may require you modify linker scripts and tailor 
ARM memory descriptors to the applications memory layout. For a tutorial on how to 
lock caches and the possible performance effects, refer to Zynq-7000 AP SoC Boot - 
Locking and Executing out of L2 Cache Tech Tip wiki page [Ref 62].

• Monitoring Contention. It is important to monitor and measure contention when 
design goals are not being met. You can monitor the L2 cache, the CPUs, and the ACP 
itself for ACP performance. You can monitor the L2 cache using event counters, 
processor cache accesses using the ARM Performance Monitoring Units (PMU), and the 
ACP using Xilinx's AXI performance monitor implemented in the PL. These monitoring 
methodologies are further described in Performance.
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Chapter 3: Hardware Design Considerations
PL High-Performance Port Access
The high performance (HP) ports give the PL direct access to the DDR controller and to the 
On-Chip Memory (OCM). The Zynq-7000 AP SoC Technical Reference Manual provides an 
excellent functional description of the HP ports and possible performance optimizations. 
This section describes common design-driven optimizations implemented in customer 
designs that use the HP ports.

The HP ports are typically used in a design needing PL high-throughput access to either the 
OCM or, more commonly, DRAM attached to the DDR controller. Figure 3-25 shows that the 
HP ports contend with each other and other PS masters at different points in the PS 
architecture. Methods for achieving a high-throughput design on multiple HP interfaces 
with system contention are described below.
X-Ref Target - Figure 3-25

Figure 3-25: High Performance (HP) Port Connectivity
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Chapter 3: Hardware Design Considerations
HP Master Design Methodology
• Order of adding HP ports. Because of the HP data paths, HP ports should be added to 

minimize data path contention. In general, HP ports should be added in the following 
order: HP0, HP2, HP1, and HP3. Using this order, HP masters can take full advantage of 
the two dedicated DDR controller ports. 

For example, in a design requiring two HP ports, a 15% improvement in combined 
throughput can be realized if heavy read traffic is routed through HP0 and HP2 instead 
of HP0 and HP1. As higher throughput traffic is driven, the performance difference 
increases.

If more than four HP masters are required, you can use an AXI interconnect in the PL to 
multiplex the masters onto the four HP ports. When assigning the masters to HP ports, 
the goal is to maximize HP port throughput. For example, you can assign high-traffic 
masters to separate HP ports and pair them with low-traffic masters. An important 
consideration is that a single HP port could saturate at a lower throughput than the 
DDRC's saturation point.

• AXI Addressing Optimizations. Standard DRAM access optimizations should be 
considered, including address optimizations and minimizing read/write mix, if possible. 
Designing High-Performance Video Systems with the Zynq-7000 All Programmable SoC 
(XAPP792) [Ref 36] provides guidance on using nonlinear addressing to match the 
row-bank-column layout of DRAM for a video application. Also, whenever possible, the 
read/write mix should be minimized, although this is not always possible due to design 
behavior. 

For example, in a system with read-only HP0 and HP2 ports, the read throughput on HP0 
drops 0 12% when HP2 is changed to write-only. The performance degradation range 
depends on traffic addressing and generated transaction rate.

• Increasing the PL clock rate. Increasing the programmable clock speeds is a common 
method used to maximize application performance. However, there are diminishing 
returns on increasing the PL clock rate when performance bottlenecks exist in moving 
data between the PL and the DDR controller. Referring to the data path in Figure 3-25, 
although the PL master initiates traffic in the PL clock domain, the majority of the data 
path is in PS clock domains. Also, the maximum DDRC bandwidth should be considered 
because the DDRC will eventually saturate due to increased PL master traffic.

For example, in a design where two HP ports are driving heavy read and write traffic to 
the 533MHz DDR controller, increasing the PL clock speed from 50 MHz to 100 MHz 
increases total HP throughput 92%, whereas an increase from 100MHz to 200 MHz 
increases throughput 13%. In the latter case, traffic is driven more often from the PL, 
resulting in a saturated DDR controller.
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Chapter 3: Hardware Design Considerations
PS Configuration for the HP Design Methodology
When designing with HP ports, the contention of high-throughput traffic at the DDR 
controller and attached DRAM destination cannot be ignored. The HP ports have two 
dedicated ports to the DDR controller, but those are arbitrated with the L2 Cache and the 
central interconnect in the DDR controller. You can minimize contention from the 512KB L2 
cache port because the L2 cache services CPU and ACP requests if the L2 cache holds the 
requested data. However, if the CPUs or ACP access memory with little cache locality, those 
cache accesses are serviced by the DDRC, potentially hurting HP performance. Also, the 
central interconnect contention at the DDRC is application dependent, with the potential 
for heavy traffic coming from USB or gigabit Ethernet masters.

You can use two advanced techniques to limit L2 and central interconnect access to the 
DDRC, with a goal of improving HP throughput in high-contention implementations. You 
should use these techniques after default settings are tried and an HP performance goal is 
not met. You can modify either of the following:

• The DDRC priority settings
• The QoS-301 settings within the PS

The techniques can prioritize HP traffic to the DDR, but do not necessarily increase overall 
performance. Instead, they slow down other PS masters to the benefit of the HP ports.

• DDR Controller Priority Settings. These settings control the order that transactions 
are serviced at the DDR controller ports and at the DDR PHY. The high priority read 
feature and go2critical counter values are the most important features controlled by 
the DDR controller priority settings. You can use the high priority read options on each 
DDR controller port to increase a port's read priority over that of other DDR controller 
ports. This increase in priority can have an effect on the HP throughput of highly 
loaded systems (such as where all HP ports are driving high throughput traffic). These 
advanced features are useful when a Zynq-7000 AP SoC is pushed to its performance 
limits, such as when the DDR controller is saturated at theoretical maximum 
throughput. Refer to this link in the Zynq-7000 All Programmable SoC Technical 
Reference Manual (UG585) [Ref 4] for more information.

• QoS-301 Settings. The AXI data path from the L2 cache to the DDR controller has 
QoS-301 settings that are currently accessible only through direct register writes from 
your application. You cannot modify them using the Vivado GUI. This feature allows 
transaction throttling on that path, benefitting HP port performance under heavy DDR 
traffic. This feature is best used when memory-intensive software with poor L2-cache 
locality is running. Refer to this link in the Zynq-7000 All Programmable SoC Technical 
Reference Manual (UG585) [Ref 4] for more information.
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Chapter 3: Hardware Design Considerations
Contention Mitigation for DDR Controller Methodologies
Similarly to the ACP contention sources, HP performance is affected by system loading, 
specifically at the DDR controller. The biggest potential source of contention will be the L2 
cache making cache line requests to service CPU or ACP accesses. CPU and ACP contention 
will depend on memory access patterns exceeding the capacity of the 512KB L2 cache. 
Ethernet and USB traffic from the central switch can also drive large amounts of traffic to 
the DDR controller.

• Monitoring Contention. It is important to monitor and measure contention when 
design goals are not being met. For HP performance, you can monitor the L2 cache, 
Ethernet controller, and the HP ports. You can monitor the L2 cache and Ethernet 
controller using event counters within the core, and monitor the HP ports using Xilinx's 
AXI performance monitor implemented in PL.

• How much contention is an issue? Most contention-mitigation techniques noticeably 
improve performance when the total system traffic to the DDR approaches the DDR 
controller's theoretical maximum. For example, a 32-bit DDR controller running on the 
ZC702 board at 533MHz can theoretically sustain 4.3GB/s of memory throughput. The 
DDR controller is designed to arbitrate fairly and sustain several high-throughput 
sources, and contention effects will not be visible at low DDR controller utilization. 

• Using an attached PL Memory Interface Generator (MIG). Xilinx also provides PL 
memory interfaces to off-chip DDR that can supplement or replace the HP to DDR 
controller data path. Functionally, you can isolate this added memory from the PS 
memory map, or you can access it using the GP ports. For more information, refer to 
Xilinx Answer Record 58387 [Ref 73].

The MIG is typically a better-performing memory option for large bulk data transfers to 
contiguous addresses from a single master, such as Ethernet and video frames. Also, this 
memory option is best for buffering data isolated from PS accesses, because direct CPU 
accesses to this PL DDR would go through the 32-bit GP ports, limiting MIG 
performance. Otherwise, the PS DDR controller provides excellent memory performance 
for HP workloads.
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Chapter 3: Hardware Design Considerations
System Management Hardware Assistance
This section describes the hardware components that enable system management in a 
Zynq-7000 AP SoC PS. System management includes control of system-level parameters 
based on user-specific inputs. Chip-level management includes control of die temperature, 
management of errors, implementation of low-power mode during system inactivity, 
management of secure and non-secure access to peripherals.

Software components play an important role while performing system management. The 
focus of this section is on hardware assistance for system management on Zynq-7000 AP 
SoCs.

Xilinx Analog-to-Digital Converter
The Xilinx analog-to-digital converter (XADC) is a flexible analog interface that resides in PL 
and assists in monitoring temperature and power-supply sensors. The XADC has three 
interfaces, JTAG, DRP and PS-XADC, with which system applications can monitor the 
temperature and voltage status and take appropriate action. The JTAG and DAP interfaces 
are present in all 7-series FPGAs. However, the PS-XADC interface is only present in 
Zynq-7000 AP SoC devices.

Figure 3-26 shows how the XADC arbitrates between the AXI XADC DRP interface and the 
PL-JTAG or PS-XADC interface.
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Chapter 3: Hardware Design Considerations
TrustZone Security
The ARM TrustZone technology supports system-wide security at multiple levels, including 
hardware, software, and memory. The Zynq-7000 AP SoC PS architecture supports multiple 
operating modes, including supervisor, system, and user modes, to provide different levels 
of protection at the application level.

A processor switches between two separate worlds, secure world and normal world, 
through a processor mode called monitor mode, as shown in Figure 3-27. The TrustZone 
technology is implemented in many PS components, including: APU, L1-cache controller, 
memory management unit, SCU, SLCR, triple timer counter, watch-dog timer, I2C, GPIO, SPI, 
CAN, UART, QSPI, NOR, DDR memory controller, L2-cache controller, AXI interconnects, 
on-chip memory, DMAC, Gigabit Ethernet controller, SDIO controller, and USB controller.

DDR Memory Controller

You can configure DDR memory in 64MB segments, and configure each segment to be 
secure or non-secure using a control register, TZ_DDR_RAM (0xF8000430).

• A bit value of 0 indicates a secure memory region for the associated memory segment.
• A bit value of 1 indicates a non-secure memory region for the associated memory 

segment.

When there is non-secure access to a secure segment of DDR memory, a DECERR response 
is returned to the initiator of the transaction. Write transactions are masked and result in no 
write to the DDR memory, whereas read transactions return all zeroes.

X-Ref Target - Figure 3-27

Figure 3-27: Switching Between Secure and Non-Secure World
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Chapter 3: Hardware Design Considerations
L2 Cache Controller

The L2 cache controller supports TrustZone technology by adding an NS bit to cached data. 
In this way, the cache controller treats secure and non-secure as being in two different 
memory spaces. For a read transfer, the cache controller sends a line-fill command to 
external memory, propagates any security errors from external memory to the processor, 
and does not allocate the line in L2 cache if there is an error.

DDR Error Recovery
An error correction code (ECC) mechanism is supported for 16-bit DDR content. This allows 
recovery of corrupted DDR data. Ten ECC bits for each 16 data bits support correction of 
single-bit errors and detection of two-bit errors. When ECC is enabled for writes, ECC code 
is computed and written to DDR along with the data. When ECC is read, the DDR controller 
checks the data against the stored ECC code. Writing DDR memory without enabling ECC, 
and then reading with ECC enabled, may return ECC errors. 

When an error is correctable, the controller corrects the data and sends it without 
generating an interrupt or AXI response. When an error is uncorrectable, the controller 
sends an AXI SLVERR response along with the corrupted data to the AXI master. AXI masters 
in the PS might also generate L2 or DMA interrupts, or CPU prefetch or data exceptions. 
When they do, the same AXI SLVERR response is sent to the PS AXI master.

Low Power
You can power-optimize Zynq-7000 AP SoCs in various ways: PL power off, processor 
standby mode, clock gating of PS subsystems, PLL configuration, or I/O voltage control.

When the PL is not in use, you can power-off the entire PL. However, the PL loses state when 
it is powered off, and it must be reconfigured when it is powered on again. The system 
software should determine when to power-off the PL and it should reconfigure the PL when 
it is needed again.

Clock Gating

The PS has multiple clock domains, and each clock has gating control to stop the clock. 
System software can enable gating of a particular clock when that clock domain is not in 
use. This reduces dynamic power dissipation.

You can disable clocks using system-level control registers (SLCR), which starts at address 
0xF8000000.

For example, when the SPI controller is not in use, you can disable the controller reference 
clock by writing an appropriate value to register SPI_CLK_CTRL (0xF8000158). 
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Chapter 3: Hardware Design Considerations
Figure 3-28 shows how clock gating of the SPI reference clock works.

Managing Hardware Reconfiguration
Partial reconfiguration is the ability to reconfigure a portion of an FPGA chip to implement 
different logic functions without disturbing the remaining logic on the chip. The technology 
enables an FPGA to implement different functional blocks in a time-sliced manner. 

TIP: The Partial Reconfiguration Design Hub in the Documentation Navigator provides links to 
additional information about Partial Reconfiguration. For more information, see Related Design Hubs.

FPGA partial reconfiguration is supported using the following constructs:

• A configuration-select line that enables partial reconfiguration of an SRAM FPGA 
without powering down the supply voltage.

• A configuration latch that can store the configuration data used for partial 
reconfiguration.

In the Zynq-7000 AP SoC PL architecture, the basic programmable unit is a configuration 
frame composed of a LUT, DSP48, and BRAM. In partial reconfiguration, the configuration 
frames are reprogrammed using a Processor Configuration Access Port (PCAP) that acts as 
a reconfiguration agent. Each configuration frame has a unique address identified with a 
top/bottom address bit, a major address, and a minor address. The partial bitstreams are 
generated using a Xilinx Vivado Tool flow, and the partial bitstreams are parsed by the PCAP 
to reconfigure the frames.

X-Ref Target - Figure 3-28

Figure 3-28: Clock Gating
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Chapter 3: Hardware Design Considerations
Partial reconfiguration offers the following advantages over a traditional full configuration:

• Reduced hardware resource utilization: A designer can fit more logic into an existing 
device by dynamically time-slicing design functions.

• Increased productivity and scalability: Only the modified function needs to be 
implemented in context with the already-verified design

• Enhanced maintainability and reduced system down-time: You can deploy new 
functions and insert them dynamically while the system is up and running

Figure 3-29 shows a conceptual view of the partial reconfiguration methodology. The static 
design does not change over time and establishes communication between the partial 
reconfiguration modules and the static design. The communication between the static logic 
and the partial reconfiguration modules occurs over a set of communication macros 
consisting of a bidirectional communication entity and tri-state gates.

The Zynq-7000 AP SoC has a PL portion that you can reconfigure using partial 
reconfiguration. The PL is programmed using the Processor Configuration Access Port 
(PCAP) that is part of the PS Device Configuration Interface. The PCAP block communicates 
with the CPU and system memory using a PCAP to APB bridge that converts APB 
transactions to PCAP read/write transactions. You can store the partial bitstreams 
generated using the Xilinx Vivado design tool into the PS DDR memory, and retrieve them 
to configure the PL over the PCAP interface using the partial reconfiguration methodology. 

X-Ref Target - Figure 3-29

Figure 3-29: Conceptual View of Partial Reconfiguration
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Chapter 3: Hardware Design Considerations
Partial Reconfiguration Terminology
The reconfigurable partition refers to the physical location on the FPGA selected for partial 
reconfiguration. The remainder of the design is referred to as static logic. You can refer to 
a specific design implementation as a reconfigurable module. A configuration defines a 
complete FPGA design and produces a full bitstream for a reconfigurable module and static 
logic, plus a partial bitstream for the reconfigurable module.

System Level Considerations
When using partial reconfiguration in your design flow, you should take the following 
system-level considerations into account.

RECOMMENDED: To learn how to design with Partial Reconfiguration in Vivado, refer to the Partial 
Reconfiguration Design Hub in the Documentation Navigator. For more information, see Related 
Design Hubs.

Hardware Design Flow

The first step in creating a partially reconfigurable design is to create a design using a 
reconfigurable module and static design flow. Implementation of a partial reconfiguration 
design flow requires the Xilinx Vivado design tool, as described in the following steps:

• Create a partial reconfiguration project using the Xilinx Vivado design tool targeting 
the evaluation platform, and import the netlists and constraint files.

• Define the reconfigurable partition. This partition ensures that the logic and routing 
common to each of the multiple designs is identical.

• Create reconfigurable modules for the reconfigurable partition by adding the 
corresponding netlist and constraint files. Constraints that apply only to specific 
reconfigurable modules must be scoped to the module level and should be provided 
with the corresponding netlist. Constraints applied to the static logic and any 
constraints that are shared across all reconfigurable modules should be included in the 
top-level constraint file.

• Floorplan the reconfigurable partition by setting the physical size of the partition and 
the types of resources desired. Xilinx FPGAs support reconfiguration of CLBs 
(Flip-Flops, LUTs, distributed RAM, Multiplexers, etc.), BRAM, and DSP blocks, plus all 
associated routing resources. The designer must floorplan the reconfigurable partition 
such that it can accommodate the resources required by the reconfigurable modules. 
As a guide, 20% overhead should be assumed for routing resources. The location of a 
reconfigurable partition inside the PL with respect to the static logic depends on the 
data flow and how the reconfigurable modules communicate with the rest of the 
design. A simple strategy is to implement the configuration with the highest resource 
utilization without floorplanning, identify the region where most of the resources are 
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Chapter 3: Hardware Design Considerations
placed, and create a partition around this region that is big enough to hold all the 
resources.

• When building reconfigurable design configurations, the first configuration 
implemented should be the most challenging one. 

• Run the partial reconfiguration verify-configuration utility to validate consistency 
between the reconfigurable-module implementations.

• Generate full and partial bitstreams for the reconfigurable modules. 

Figure 3-30 shows the hardware design flow implementing partial reconfiguration.
X-Ref Target - Figure 3-30

Figure 3-30: HW Design Flow for Partial Reconfiguration
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Chapter 3: Hardware Design Considerations
System Design Flow

The Device Configuration (DevC) interface containing the AXI-PCAP bridge is used to 
implement the partial reconfiguration flow on a Zynq-7000 AP SoC. 

The following example summarizes the boot sequence for partial reconfiguration:

1. After power-on reset, the BootROM determines the external memory interface or boot 
mode (SD flash memory) and the encryption status (non-secure). The BootROM uses the 
DevC's DMA to load the First Stage Boot Loader (FSBL) into on-chip RAM (OCM). 

2. The BootROM shuts down and releases CPU control to the FSBL which in turn configures 
the PL with the full bitstream via the PCAP.

3. The FSBL loads and releases control to the user application in bare-metal OS.
4. The user application loads the partial bitstreams into DDR memory during start-up. This 

is to maximize the configuration throughput over the PCAP interface, speed up the 
configuration time, and take advantage of cache.

5. The application can use the partial bitstreams at any time to modify the pre-defined PL 
regions while the rest of the FPGA remains fully active and uninterrupted. This is done 
by transferring the reconfigurable module bitstream from DDR to the PL via PCAP.

6. A single configuration engine handles both full configuration and partial 
reconfiguration. The task of loading a partial bitstream into the PL does not require 
knowledge of the reconfigurable module's physical location because 
configuration-frame addressing information is included in the partial bitstream

Figure 3-31 shows the system level flow for partial reconfiguration. The Xilinx device 
configuration driver implements low-level APIs to interact with the PCAP block, and the 
user application can call the APIs to initiate the partial reconfiguration flow. The user 
application must be aware of the source addresses in the DDR where the partial bitstreams 
are stored.
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Chapter 3: Hardware Design Considerations
 

The example above shows how to load partial bitstreams from the PS-DDR memory. In 
general, the bitstreams can exist in any external memory that the device configuration 
interface can access.

Managing Reconfiguration using U-Boot and Linux

You can use Linux and U-Boot to dynamically load the reconfigurable bitstream to the PL. If 
an application is running on Linux and a portion of the hardware must be reconfigured, the 
application can send a request to the Linux kernel to load the appropriate PL bitstream and 
the corresponding kernel module supporting the hardware device. 

If the FSBL execution time is critical, you can use partial reconfiguration to partition the 
design so that the smaller bitstreams are loaded faster during FSBL execution. This reduces 
overall boot time. U-Boot can configure and initialize the remaining design. Partitioning is 
useful when a specific PL functions must be started within a specific time limit.

You can encrypt the partially reconfigured bitstream using an encryption key. You can 
decrypt using either U-Boot or Linux, depending on the application requirements. Once 
decrypted, you can use the bitstream to configure the PL using the PCAP interface.
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Figure 3-31: System Level Flow for PR
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Chapter 3: Hardware Design Considerations
GPs and Direct PL Access from APU
This section describes APU access to registers and memory in the PL through its AXI 
general-purpose interfaces, the address requirements for AXI slaves in PL, and issues 
relating to security and performance. A system design is described that deals with direct PL 
access by ARM Cores and represents a typical use case. 

The APU in PS can access registers and memory in PL using GP master AXI interfaces, which 
are part of the PS-PL interface. There are two GP master AXI interfaces that the APU can use 
to initiate an AXI transaction to a slave implemented in PL.

M_AXI_GP ports have the following features: 

• AXI-3 protocol.
• Data bus width of 32-bits.
• Master port ID width of 12-bits.
• Master-port issuing capability of eight reads and eight writes.

The AXI interfaces, M_AXI_GP0 and M_AXI_GP1, each occupy 1GB of system address space, 
as shown in Table 3-3.

All APU accesses within the address ranges shown in Table 3-3 pass through the 
Interconnect in the PS to either M_AXI_GP0 or M_AXI_GP1, depending on the address. If the 
transactions initiated by the APU are outside these address ranges, the transactions will not 
be routed to master GP ports.

Table 3-3: Address Range of GP Ports
Interface Low Address High Address

M_AXI_GP0 0x40000000 0x7FFFFFFF
M_AXI_GP1 0x80000000 0xBFFFFFFF
UltraFast Embedded Design Methodology Guide 133
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=133


Chapter 3: Hardware Design Considerations
Figure 3-32 shows the path used by an APU accessing an AXI slave in PL.

Performance
The GP ports are directly connected to the PS master interconnect ports without FIFO 
buffering, unlike HP ports that have FIFO buffering to increase performance and 
throughput. Therefore, GP ports are for general purpose and not for high performance. The 
GP port has a latency of 38 M_AXI_GP interface clock cycles.

Design Considerations for AXI Master GP Port
• When AXI interconnect in the PL is connected to the PS GP master AXI interface and the 

HP AXI slave interface, you need to disable HP slave port access from the master port 
GP. In the IP integrator address editor under processing_system7 addressing, un-assign 
the HP port address to avoid the address conflict.

• Accesses to the GP interface are not cached by default. You can cache accesses by 
changing the Translation Lookaside Buffers (TLBs).

• When using the GP interface with an AXI interconnect in PL, system software should 
never access an address that does not exist in the AXI interconnect. This will avoid 
permanent AXI interconnect lock-up (there is no timeout set by the AXI interconnect).

• The voltage translators at the PS-PL boundary must be configured before the APU uses 
the master GP interface to access the AXI slave in PL. This is normally done by the FSBL.

X-Ref Target - Figure 3-32

Figure 3-32: APU Accessing PL Slave through GP Port
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Chapter 3: Hardware Design Considerations
Use Case
Figure 3-33 shows how the GP master AXI interface on the PS access AXI slave registers in 
the PL to configure peripherals, read status, and access DDR memory.

The GP0 port is connected to a DDR controller to increase the DDR memory available to the 
PS through the DDR controller in the PL. The GP1 port is used to configure the AXI IIC and 
AXI GPIO IP blocks. The TLB has to be changed to allow caching of PL DDR memory.

X-Ref Target - Figure 3-33

Figure 3-33: APU Accessing AXI Slaves in PL
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Chapter 4

Software Design Considerations
This chapter covers the following software design issues to be considered when designing 
with a Zynq®-7000 AP SoC:

• Processor Configuration: Configuring the processor to meet system requirements is an 
important consideration in implementing an embedded system. This section will help 
you optimize the ARM cores to best fit your application needs.

• OS and RTOS Choices: This section will help you understand the pros and cons when 
selecting the appropriate software platform for your embedded system — OS, RTOS, or 
bare metal.

• Libraries and Middleware: Libraries help you combine common and useful functions in 
a single place so that they can be re-used by your applications. Middleware sits on top 
of the operating system and reduces complexity by centralizing software stacks that 
otherwise would be redundant in an application layer. This section describes how you 
use libraries and middleware to improve application-programming productivity and 
reliability.

• Boot Loaders: There are a variety of ways you can use to boot and bring up applications 
in your embedded system. This section describes the Zynq-7000 AP SoC boot flow 
options from power-up to application execution.

• Software Development Tools: The Xilinx software development tools you can use to 
build software components for your Zynq-7000 AP SoC are described in this section.
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Chapter 4: Software Design Considerations
Processor Configuration
To fully use an SoC in an embedded system, it is important to configure the processor to 
meet system requirements. This section describes the aspects to consider. The content here 
is specific to Zynq-7000 AP SoC systems, but it can be applied to any system.

Clock Speed and Multiple Cores
A good balance between power and performance can make an embedded system highly 
effective and efficient. Processors can be configured to run at lower clock frequencies than 
the maximum limit, potentially saving power. If an operating system supports multiple 
processor cores, power could be saved by running the cores at a lower frequency instead of 
a single core at a high frequency. Power savings can be determined by analyzing the power 
requirements and consumption of the multiple processor cores running at the lower clock 
frequency and comparing the result with a single core running at a high clock frequency. 

The processor clock frequency can be dynamically changed by system software. When 
running both processor cores, they always run at the same frequency. Multi-threaded 
software that scales across cores helps take full advantage of a multicore system. Such 
software can increase performance by executing threads in parallel, without pushing the 
system to the maximum clock frequency.

SMP and AMP Configuration
Deciding to use a multicore processor affects the software system design, including 
operating system selection. Most multicore SoCs have an option to run the system as an 
asymmetric multiprocessor (AMP) or symmetric multiprocessor (SMP). 

An AMP configuration uses each processor core for different (usually unrelated) tasks. Each 
core works independently, and at various times signals or synchronizes with other cores to 
exchange messages. Typically, each core has its own memory address space, except for the 
memory used to pass messages. In practice, the AMP configuration is typically used to run 
different operating systems or different, independent instances of the same operating 
system.

An SMP configuration uses multiple processor cores to perform tasks within the same 
operating environment, such as when multi-core Linux runs multiple tasks simultaneously. A 
common scheduler is responsible for dispatching different tasks on different processor 
cores. The operation is symmetrical because the system view from each core is identical.

Different AMP and SMP configurations use different cache coherency and memory-sharing 
implementations. The system's AMP or SMP behavior can be controlled using the processor 
core's system-control private registers (for example, CP15 in the ARM v7 core). 
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Chapter 4: Software Design Considerations
Figure 4-1 and Figure 4-2 show typical examples of AMP and SMP systems, respectively 
(processor refers to processor core).

Figure 4-1 shows two AMP examples:

• In example 1, each processor is allocated private memory, and that memory is not 
shared between the processors. Both processors have access to common memory and 
a set of peripherals.

• In example 2, one processor does all memory operations but cannot access the 
peripherals. The second processor accesses the peripherals but does not perform 
memory operations.

In Figure 4-2, both processors have equal access to all peripherals and memory.

.

Using Coprocessors 
Hardware coprocessors can improve system performance. For example, using 
NEON-specific instructions can improve performance if the system will perform lots of 
floating-point or SIMD operations. Those instructions use the NEON media coprocessor 
capability in the ARM Cortex-A9 MPCore processor.

X-Ref Target - Figure 4-1

Figure 4-1: Typical AMP Configurations

X-Ref Target - Figure 4-2

Figure 4-2: Typical SMP Configuration
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Chapter 4: Software Design Considerations
Although the NEON technology is power-optimized, most coprocessors are power-hungry. 
However, because coprocessors are designed for specific tasks, they are faster and more 
power efficient than using the main processor for performing those tasks. Coprocessors 
reduce CPU bandwidth and allow CPU power reduction when workload is reduced.

Co-processors execute specific instructions designed for their use. For example, the 
Zynq-7000 AP SoC Spectrum Analyzer part 2-Building ARM NEON Library Tech Tip [Ref 64] 
shows how to use NEON libraries to target the NEON capabilities of a Zynq-7000 AP SoC. 

Cache Considerations
Caches can greatly improve system performance and should be used when possible. Most 
SoCs have integrated L1 and L2 caches. Each CPU core typically has a dedicated L1 cache 
that can be individually configured for use by that core. The L2 cache is usually shared by all 
CPU cores. Coherency between the caches is maintained by a snoop control unit (SCU), and 
coherency decisions are determined by the AMP or SMP multi-processor configuration.

The caches should be invalidated before they are enabled. The L1 instruction cache must be 
enabled at the beginning of the boot process (typically, by the first-stage boot loader), and 
it should not be disabled thereafter. The L1 and L2 data caches can be configured and 
enabled at a later time. 

All cache operations are done on cache lines. The cache controller can write back (flush) and 
invalidate cache lines by cache way or by physical address.

Usually, an SoC contains differently ordered memory (such as strongly ordered or device 
memory), and the system can use or not use cache operations on that memory. Also, there 
can be cache policies, such as write-through or write-back, that are program specific.

If any system peripheral uses memory that is shared with the CPU, coherency between that 
memory and the CPU cache should be maintained by software using cache operations 
(which are costly). Similarly, in some complex systems, a peripheral might have access to 
cached memory for improved performance. In that case, coherency between the peripheral 
cache, memory, and the CPU cache should be maintained by software. The software 
overhead of maintaining coherency introduces latency. The latency can be avoided by using 
the hardware coherency provided by cache-coherent ports, such as the accelerator 
coherence port (ACP).

Zynq-7000 AP SoC systems provide an ACP that gives external ports access to processor 
caches. An ACP allows other non-cached master peripherals and accelerators, such as a 
DMA engine or cryptographic accelerator core, to be cache-coherent with the processor 
core L1 caches.
UltraFast Embedded Design Methodology Guide 139
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=139


Chapter 4: Software Design Considerations
Processor State after Power on Reset
In the Zynq-7000 AP SoC, both processor cores start after power-on reset (POR). CPU0 
starts at address 0x0, where BootROM loads the first-stage boot loader. CPU1 is sent into a 
wait-for-event (WFE) loop. Any interrupt will cause CPU1 to wake up and exit the WFE state. 
The boot loader, kernel, or equivalent software is typically responsible for starting CPU1 at 
a later time, when it is going to be used.

In most cases, DDR memory is not initialized at POR, so the first-stage boot loader is loaded 
into simpler memory, such as on-chip memory, and is mapped to address 0x0 in the SoC.

ARM processors start in supervisor (SVC) mode after POR. Then, the kernel or equivalent 
software changes the ARM processor mode as required.

Interrupt Handling
ARM cores provide a generic interrupt controller (GIC) and private peripheral interrupt (PPI) 
controller for handling interrupts. The GIC has a flexible approach to inter-processor 
communication, and the routing and prioritization of system interrupts. Software can 
control up to 224 independent interrupts. Each interrupt can be distributed to one or both 
processor cores, hardware-prioritized, and routed between the operating system and the 
ARM TrustZone technology software management layer (see Secure Configurations). There 
are also priority mask registers that allow interrupts below a specified priority to be 
ignored.

Apart from the GIC, a processor core can mask all incoming interrupts by setting an 
interrupt mask in a processor system control register. In ARM processors, the IRQ and FIQ 
lines can be masked independently for each processor core.

Interrupt handlers should be configured at the beginning of the kernel boot-up. There are 
three possible interrupt sources:

• Private Peripheral Interrupts (PPIs):

These per-processor-core interrupts have limited function. They include FIQs, CPU 
watchdogs, CPU timers, and some IRQs which might include interrupt signals from FPGA 
logic.

• Shared Peripheral Interrupts (SPIs):

These interrupts are shared between the processor cores. The GIC decides how to 
distribute the SPIs to particular processor cores. These are generally hardware 
interrupts, and there can be large numbers of them.

• Software Generated Interrupts (SGIs):

These are synchronous interrupts generated by writing an interrupt number on a 
particular SGI register on the system.
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Chapter 4: Software Design Considerations
You can configure the GIC registers to handle the interrupts listed above. Figure 4-3 shows 
the interrupt routing mechanism of GIC v1.0 (PL310).

Timers
Each processor core has private timers that can be used in the context of that processor 
core. The timers can be useful for tracking the core run time, instead of the entire system. 
The SoC also has global timers that give system-wide timing information. Interrupts 
generated by these timers are private peripheral interrupts (PPIs) and are assigned on a 
per-processor-core basis. Timer interrupts are often essential to system operation, because 
they are used for scheduling and time-slicing tasks.

MMU Configurations
Most operating systems, like Linux, require a virtual memory system. The memory 
management unit (MMU) is a hardware block that facilitates virtual-memory access. The 
MMU uses data structures, such as page tables, for address translation. The 
operating-system kernel must configure the MMU and set up page tables to implement the 
virtual-memory system. Different page tables are required for different operating-system 
modes, such as the secure mode of TrustZone technology.

X-Ref Target - Figure 4-3

Figure 4-3: Interrupt Handling
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Chapter 4: Software Design Considerations
Secure Configurations
The Zynq-7000 AP SoC provides an option of dividing a system into two worlds, secure and 
non-secure, by using the TrustZone technology mechanism. The processor mode must be 
switched to monitor mode (secure mode) to enter the secure world for performing secure 
operations. Also, there must be a separate MMU configuration for the different worlds. 

For more information on TrustZone technology, see TrustZone Security.

OS and RTOS Choices
Operating system software manages the operations and protects the hardware resources of 
a computing system. An OS or RTOS can support multitasking and manage resource usage. 
Bare-metal software can serve as a minimal implementation of necessary 
system-management functions. This section covers comparisons of system-management 
types, hardware requirements, available OS and RTOS ports, running multiple OSs, and 
development and debug tools.

There are also security considerations between a monolithic OS and a microkernel. A 
full-featured monolithic OS like Linux uses the MMU for secure and non-secure memory 
regions, whereas a microkernel RTOS does not use the MMU and thus will not offer the 
same memory protection as a monolithic kernel. For details, refer to the Xilinx Security 
Solutions webpage [Ref 48].

Types of Embedded-System Software
Table 4-1 compares features of bare-metal, RTOS, and OS system-management software.

Table 4-1: Bare-Metal Software, RTOS, and OS Comparison
Bare Metal Software RTOS General-Purpose OS

Capabilities Simple Simple to Advanced Advanced
Hardware 
abstraction

None Minimal High-level

Multi-tasking No Yes Yes
Real-time Guaranteed response time Guaranteed response time As quickly as possible
Memory 
management

None Basic memory protection Advanced virtual- 
memory management

Code footprint Small (KBs) Small to Medium (KBs to MBs) Medium to Large (MBs)
Example Bare-metal software with 

SDK
VxWorks, FreeRTOS Windows Embedded, 

Linux
Open-source 
considerations

Available with Vivado® 
and SDK tools. These tools 
require specific licenses.

Some are available with 
open-source licenses, some 
are paid versions

Some are available with 
open-source licenses, 
some are paid versions
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Chapter 4: Software Design Considerations
The selection of system-management software can depend on the following factors:

• Prior-Experience and/or Existing Solutions: This approach to selecting 
system-management software saves time and validation effort. It also simplifies 
designing systems with variations of an existing OS or RTOS with added features. This is 
because of the learning curve involved in using a new OS or RTOS with a different set of 
supported features.

• Capabilities: OSs and RTOSs differ in their features and middleware support. It is 
important to select one based on the needs of the overall system design, such as 
middleware stacks for USB, TCP/IP, and file-system support. 

• Configurability: Some RTOSs have GUI-based configuration options used to enable 
caches, prioritize interrupts, select the RTOS tick periods, etc. Full-featured OSs like 
Linux can be feature-configured using tools like menuconfig. These configuration 
interfaces and tools save time and highlight available feature options. 

• Performance: Interrupts and task-switching latencies may vary between different OSs 
and RTOSs. Thoroughly investigate the hard real-time, soft real-time, and overall 
latencies when choosing an OS or RTOS.

• Memory Size: Memory-size requirements for an OS, RTOS, and application tasks need 
to be estimated when choosing an OS or RTOS.

• Cost: There are free GNU license-based OSs or RTOSs. Some vendors charge, based on 
their support and services model:

° Bare-metal BSP and drivers are provided free with Xilinx development environments 
like the SDK.

° RTOS selection can be based on free or paid commercial licenses, depending on the 
features and support model.

° Linux selection can be based on free or paid commercial licenses, depending on the 
features and support model.

° Commercial variants come with support and additional features, like USB 
middleware stacks or RTOS file-system stack.

• Application Requirements:

° If an application needs advanced software with ready-made libraries, then consider 
a full-featured OS, such as Linux.

° If an application needs hard real-time response for many tasks, then consider an 
RTOS like freeRTOS.

° If an application needs both a full-featured OS and real-time response, then 
consider a multi-OS environment like Linux Symmetric Multi-Processing (SMP) with 
real-time patches, or asymmetric multiprocessing (AMP) with Linux and RTOS 
running on the dual ARM cores or hypervisor.
UltraFast Embedded Design Methodology Guide 143
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=143


Chapter 4: Software Design Considerations
Hardware Requirements for Running an OS or RTOS
An OS or RTOS requires the following:

• System Timer: This is a hardware timer for the kernel heartbeat, like jiffies in the Linux 
OS. The timer is used by the OS or RTOS for all time-related kernel activities, such as 
scheduling and delays.

• Memory Footprint: As low as 5 to 30 KB of RAM and ROM for an RTOS. A few KBs to 
100 MBs for Linux OS, based on the kernel and services configuration selections.

• Memory Management Unit (MMU): Required for a full-featured, general-purpose OS 
like Linux. May be used for memory protection by some RTOS implementations.

The Zynq-7000 AP SoC has all the hardware resources to run an RTOS and/or a full-featured 
OS like Linux. Achieving the time determinism of a real-time solution depends on many 
other factors, like resource-allocation and access times, overall solution architecture, etc., 
along with an RTOS.

OS and RTOS Ports
There following describes several example OS and RTOS ports to the Zynq-7000 AP SoC, but 
the full list is not limited to this information.

Linux OS and PetaLinux Tools

The Xilinx® Linux distribution includes the Linux OS and a complete configuration, build, 
and deploy environment for the Zynq-7000 AP SoC. Because PetaLinux is full-featured, 
integrated, tested, and documented, it is the recommended and supported Linux 
deployment mechanism for Xilinx customers. As a Xilinx product, PetaLinux has the same 
level of product management, support, bug-tracking, and emphasis that other Xilinx tools 
receive.

Although the Linux OS built using the PetaLinux Tools is based on a stable and thoroughly 
tested Linux kernel, also from the Xilinx Git server, PetaLinux offers much more than what 
can be downloaded from the Xilinx Git server. PetaLinux includes an installer, development 
tools, board support packages (BSPs), platform-management utilities, application and 
library frameworks, and documentation. PetaLinux is available under no-charge and 
commercial licenses, as described in the PetaLinux licensing page. All PetaLinux users are 
entitled to community (forum-based) support; commercial licensees may also access 
support directly from Xilinx. For details, see the Xilinx Linux wiki page [Ref 56] and the Xilinx 
PetaLinux wiki page [Ref 58].

Xilinx's PetaLinux Tools supports configuring, customizing, building, and packaging a Linux 
BSP for full-featured OS functionality on the Zynq-7000 AP SoC. For details on how to 
configure and use these BSPs, refer to the Xilinx PetaLinux Tools web site [Ref 50].
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Chapter 4: Software Design Considerations
OS and RTOS Ecosystem

In addition to the Xilinx OS and RTOS ports, described above, the Zynq-7000 AP SoC has 
strong ecosystem support products from 3rd-party and alliance members. These products 
may have differences in supported features, context-switch performance, interrupt 
latencies, technical support, and in their middleware support for file systems, USB, PCIe, 
Ethernet, etc.

Table 4-2 and the following sections describe the 3rd-party and alliance member ecosystem 
solutions. For additional information, refer to the Xilinx Zynq-7000 AP SoC Ecosystem 
webpage [Ref 49].

Quadros Systems Features

RTXC RTOS, from Quadros Systems, has these features:

Table 4-2: OS, RTOS, and Middleware Products 

Alliance Member OS, RTOS, and Middleware Products More 
Information

Adeneo Embedded Windows Embedded Compact 7, Linux, Android, and QNX [Ref 86]
Discretix Security-centric software and IP solutions [Ref 79]
ENEA Software AB OSE RTOS and ENEA Linux [Ref 80]
eSOL uITRON 4.0 RTOS, T-Kernel RTOS and IDE [Ref 81]
Green Hills Software INTEGRITY RTOS [Ref 83]
Express Logic ThreadX RTOS [Ref 82]
iVeia Android On Zynq-7000 AP SoC [Ref 86]
Mentor Graphics Nucleus RTOS [Ref 87]
Micrium µC/OS RTOS [Ref 88]
MontaVista Software MontaVista Carrier Grade Linux [Ref 89]
Open Kernel Labs OKL4 Microvisor [Ref 92]
QNX QNX Neutrino RTOS [Ref 93]
Quadros RTXC RTOS 

For information about features, see Quadros Systems 
Features, page 145

[Ref 94]

Real Time Engineers Ltd. FreeRTOS [Ref 95]
Sciopta Sciopta RTOS [Ref 96]
Sierraware Open source SierraVisor Hypervisor and SierraTEE Trusted 

Execution Environment
[Ref 97]

SYSGO PikeOS [Ref 98] 
[Ref 99]

Timesys LinuxLink [Ref 101]
Wind River VxWorks, Linux, and Workbench IDE [Ref 102]
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Chapter 4: Software Design Considerations
• Small, scalable footprint to fit any ROM or RAM budget (typically 25 KB or less)
• Delivered in source code, with sample code for a working project using ARM DS-5 

development tools
• Graphical configuration program, RTXCgen, for ease of building the application's RTOS
• Graphical trace tool, RTXCview, for visibility into system performance and behavior
• RTXC/mp available for asymmetric multiprocessing (AMP)
• License fees apply

The following middleware stacks are supported along with RTXC RTOS:

• Ethernet TCP/IP v4 and v6
• Ethernet packet prioritization
• Ethernet security suite
• Application server:

° AJAX, JSON, and XML-RPC

° Remote device management, with persistent sockets (WebSockets)

° Remote GUI
• USB host and device
• High performance, fail-safe file systems:

° NAND and NOR

° SD, MMC, and flash drive

Support for Zynq-7000 AP SoC and ZC702 development boards:

• Timer initialization
• UART initialization
• MMU initialization
• Interrupt controller setup and initialization
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Chapter 4: Software Design Considerations
• Instruction- and data-cache initialization.
• Advanced support for ARM Vector Floating Point (VFP) and NEON:

° Explicit or automatic enabling of VFP-register context extensions for tasks that use 
VFP or NEON.

° Optional support for a VFP and NEON register set that reduces context-switch 
overhead.

° Uses “lazy swapping” to minimize interrupt latency and context-switch overhead for 
VFP and NEON register sets.

° Control of VFP context, such as manual suspend and automatic or manual resume. 
Fine-level control allows application to minimize VFP-register context overhead in 
non-VFP and non-NEON execution paths. Useful in mostly integer environments in 
which tasks rarely need VFP or NEON, except in isolated functions. When used with 
lazy swapping, explicit suspend control can be used to improve overall system 
throughput.

Real Time Engineers Ltd.

FreeRTOS is free to use without any need to expose custom code. FreeRTOS supports 
real-time tasks, queues, binary semaphores, counting semaphores, mutexes, etc., for 
communication and synchronization between tasks and interrupt-service routines. The 
FreeRTOS memory footprint is about 4 to 9KB. The middleware stacks supported with 
freeRTOS include:

• FAT file system
• UDP/IP and TCP/IP stacks
• CLI
• Safety
• CyaSSL SSL/TSL

Multi-OS
There are multiple ways to enable multiple operating systems running on both CPU cores of 
the dual-core ARM Cortex-A9 MPCore processor in the Zynq-7000 AP SoC. See the 
following links for information about the symmetric and asymmetric multi-processing 
options:

• Zynq-7000 All Programmable SoC Software Developers Guide (UG821) [Ref 7]
• Xilinx Multi-OS Support wiki page [Ref 57]
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Chapter 4: Software Design Considerations
Simple AMP

A simple multi-OS AMP implementation can consist of running, for example, Linux OS and 
a bare-metal application or of running two bare-metal applications. 

The two CPU cores of the ARM processor share memory and peripherals. Asymmetric 
multi-processing (AMP) is a mechanism that allows both cores to run their own operating 
systems or bare-metal applications with the possibility of loosely coupling those 
applications via shared resources. Figure 4-4 shows an example of AMP with Linux OS and 
a bare-metal application. Figure 4-5 shows an example of AMP with Linux OS and an RTOS.

Referring to Figure 4-4, AMP with Linux OS and a bare-metal application operates as 
follows:

• Linux runs on CPU0.

° Linux then starts the CPU1 executable loaded into memory by the FSBL.
• The bare-metal application runs in dedicated memory space on CPU1.

° MMU0 is used by Linux as normal. MMU1 is used to define the bare-metal 
application’s memory context, but no special coding is required.

° The bare-metal application does not run within the Linux memory context.

° Linux is not aware of the memory used by CPU1.

X-Ref Target - Figure 4-4

Figure 4-4: AMP with Linux OS and Bare-Metal Application
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Chapter 4: Software Design Considerations
The MMU can be used to contain the application.

° The MMU defines what addresses (memory and AXI devices) the application can 
access normally.

° CPU1 is not restricted from accessing the Linux memory spaces or shared devices 
(ICD or SCU), but Linux can detect if and when that occurs and take the appropriate 
action.

• Implementation approach.

° Communication between Linux and the bare-metal application use the OCM.

° OCM caching is disabled for improved determinism.
• The use case is supported by Xilinx Worldwide Technical Support department.

For more information, refer to:

• Simple AMP: Bare-Metal System Running on Both Cortex-A9 Processors (XAPP1079) 
[Ref 39]

• Simple AMP Running Linux and Bare-Metal System on Both Zynq-7000 AP SoC Processors 
(XAPP1078) [Ref 38]

Referring to Figure 4-5, AMP with Linux OS and RTOS operates as follows:

• The firmware runs in dedicated memory space at address 0x0000_0000.

° The FreeRTOS kernel does not run within the Linux memory context.

° Linux can read and write this address space just like it can read any other device 
memory.

X-Ref Target - Figure 4-5

Figure 4-5: AMP with Linux OS and RTOS
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Chapter 4: Software Design Considerations
• The MMU limits how firmware affects Linux.

° The MMU defines what addresses (memory and AXI devices) the application can 
access normally.

° The granularity is 1 MB. If two devices lie in a 1 MB region you cannot isolate one 
without the other.

° The GIC is shared between firmware and Linux.
- Interrupts are routed to firmware or Linux by the GIC.
- Firmware is not prevented from reconfiguring the GIC.

• The Linux kernel is not prevented from corrupting firmware.

° However, violations should only occur from explicit calls or through specific types of 
crashes.

° System design and comprehensive testing may mitigate customer real-world 
concerns.

• Implementation approach.

° Should be applicable to other flat RTOS.

° Might be applicable to RTOS using virtual memory (such as kernel and user space).

For an overview of the Linux OS and FreeRTOS AMP design shown in Figure 4-5, refer to 
PetaLinux Tools User Guide: Zynq All Programmable SoC Linux-FreeRTOS AMP Guide (UG978) 
[Ref 17].

ARM Cortex-A9 TrustZone

The Zynq-7000 AP SoC supports the ARM Cortex-A9 TrustZone technology, according to 
the recommendations of the Trusted Base System Architecture specification. This 
technology enables the development of platforms that support a Trusted Execution 
Environment (TEE) and security-aware applications and secure services, or Trusted 
Applications (TA). A TEE is a small, secure kernel that is typically developed with standard 
APIs according to the TEE specification evolved by the Global Platform industry forum.

The TrustZone technology supports development of separate Rich Operating System and 
TEE environments by creating operating modes, in addition to the Normal domain, that are 
known as the Monitor mode and the Secure domain. The Secure domain has the same 
capability as the Normal domain but it operates in a separate memory space. A Secure 
Monitor acts as a virtual gatekeeper to control migration between the domains.
UltraFast Embedded Design Methodology Guide 150
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=150


Chapter 4: Software Design Considerations
Development and Debugging Tools
The development and debugging tools available to support your application are described 
below.

Xilinx Software Development Kit

The Xilinx Software Development Kit (SDK) provides a variety of Xilinx software packages, 
including drivers, libraries, board-support packages, and complete operating systems, for 
developing a software platform.

TIP: The Software Development Kit Design Hub in the Documentation Navigator provides links to 
additional information about Using the Software Development Kit and embedded design. For more 
information, see Related Design Hubs.

The Xilinx SDK is a complete development environment, including:

• Platform-aware BSP generation
• Sample application-code generation, ranging from memory tests to TCP/IP echo 

servers
• Cross-compilation tools
• Application profiling
• Linker-script generation
• Debug interfaces through JTAG
• Target communication framework
• Remote debugging
• Heterogeneous multicore debugging
• Flash loaders
• Boot-file creation for secure and non-secure environments
• First-stage boot loader (FSBL) generation

SDK supports Linux-kernel debugging through JTAG and application thread-level 
debugging using the target communications framework (TCF) agent and GNU GDB 
infrastructure.
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Chapter 4: Software Design Considerations
ARM DS-5 Development Studio

ARM DS-5 Development Studio is a complete development environment that supports 
Linux, Android, and RTOS debugging. For details on using the DS-5 with a Zynq-7000 AP 
SoC, refer to the Xilinx XC702 DS-5 Getting Connected Guide [Ref 103] and the Zynq-7000 
Platform Software Development Using the ARM DS-5 Toolchain (XAPP1185) [Ref 44].

IAR

The IAR Systems' debugger supports OS and RTOS kernel-level debugging. For more 
information, see the IAR Integrated Solutions Partner Program web site [Ref 85].

Libraries and Middleware
This section summarizes how static and dynamic libraries and middleware can be used to 
improve application-programming productivity and reliability.

Libraries
Libraries are a convenient method of combining common and useful functions into a single 
unit that can be re-used by programs. A library abstracts implementation details and 
provides a tested and optimized behavior that can be easily incorporated into programs. 
Libraries support static and dynamic linking. 

Libraries can be categorized into commonly used libraries and domain-specific libraries:

• Examples of commonly used libraries include GNU C, GNU C++ library, POSIX Pthread 
libraries.

• Examples of domain-specific libraries include Intel Threading Building Blocks (parallel 
processing), FFmpeg audio, OpenCV, direct rendering manager (DRM), kernel mode 
setting (KMS), ARM OpenMAX DL sample software library (audio/video processing), 
and MATLAB engine library (mathematical processing).

Benefits of Libraries

• Provide behavior and code reusability (the write-once, use-many approach). 
• Speed up application development by abstracting underlying hardware and software.
• Provide easily maintainable code that reduces testing resources. 

For example, the GNU C library is well-tested, and bugs are fixed regularly. Because of this, 
using the library saves substantial testing and development resources.
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Chapter 4: Software Design Considerations
Xilinx Libraries for Stand-Alone Systems

The Xilinx Software Development Kit (SDK) provides a set of reusable libraries and drivers 
for Zynq-7000 AP SoC processing system (PS) and programmable logic (PL) components. 
These libraries and drivers include:

• libxil.a — Device drivers for peripherals.
• LibXil MFS — A memory file system.
• LibXil FFS — A generic FAT file system based on an open source implementation. It is 

primarily used with the SD/eMMC driver and a glue layer is implemented to link it to 
that driver.

• LibXil Flash — A library that provides read, write, erase, lock, unlock, and 
device-specific functions for parallel flash devices.

• LibXil Isf — An in-system flash library that supports the Xilinx in-system flash hardware 
and serial flash on SPI/QSPI.

• LibXil SKey — The LibXil SKey library provides a programming mechanism for 
user-defined eFUSE bits. The PS eFUSE holds the RSA primary key hash bits and user 
feature bits, which can enable or disable some Zynq-7000 AP SoC processor features.

• lwIP — A third-party, light-weight TCP/IP networking library.

Libraries are classified into two types, static and dynamic, according to the type of linkage 
object.

Static Libraries

Static libraries are a collection of object files that become, after linking, part of an 
application image. In Linux, these libraries are called archives. The file names of static 
libraries conventionally end with a.a suffix.

Advantages

• Simple to use; external dependencies are resolved at compile time.
• Shorter compilation time.
• Runs slightly faster. In theory, code in static ELF libraries that is linked into an 

executable should run 1% to 5% faster than a shared library or a dynamically loaded 
library.

• Simplifies makefile link steps, because the linker takes care of searching and extracting 
object files required by the application.
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Chapter 4: Software Design Considerations
Disadvantages

• Changes to static libraries require rebuilding all dependent applications.
• Executable memory footprint becomes larger. 
• If processes that share an object library run simultaneously, the code and data sections 

of the object library are copied into the address space of each process.

When to Use

Static linking is often the easiest way to distribute an application because it relieves the user 
from the task of distributing any dependent library with the target application.

Dynamic Libraries

Dynamic libraries are loaded when an application that uses them is executed. A single copy 
of the object library is shared among multiple applications, so that the library's code and 
data sections do not become part of application's address space. Shared objects are not 
copied into each application program area. Instead, a single copy of the object library is 
loaded into memory at run time when the first application requiring that library is executed.

In Linux, the naming convention for dynamic-library files has a lib prefix, the name of the 
library, and the string .so followed by a version number that is incremented whenever the 
interface or implementation changes.

Advantages

• Smaller executable memory footprint than for static libraries. 
• If an object library is changed, dependent applications simply need to be re-executed.

Disadvantages

• Libraries are dependent on the run time loader. In Linux, the dynamic loader (ld.so) is 
part of the GNU C library and is responsible for loading all dependent shared libraries.

• Symbol relocation is performed at run time. Because of this, applications using a shared 
dynamic library may take slightly more time to execute than a static-library 
counterpart. 

Running an executable on a target platform requires that the custom shared library path be 
added to the search path of the dynamic linker. The LD_LIBRARY_PATH environment variable 
specifies to the run time linker that the custom shared library resides at some particular 
location.
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Chapter 4: Software Design Considerations
When to Use

Use a dynamic library when the library is shared between multiple applications. For 
example, use embedded run time libraries like the GNU C library in this manner.

One such use case can be found in a Xilinx Zynq-7000 AP SoC Tech Tip demonstrating use 
of the ARM NEON Library on a ZC702 platform. Refer to Xilinx Zynq-7000 AP SoC Spectrum 
Analyzer part 2-Building ARM NEON Library Tech Tip [Ref 64].

The Tech Tip describes the process of obtaining and building a set of filtering functions 
targeting the Zynq-7000 AP SoC ZC702 platform. Many applications that can take 
advantage of the processing capabilities of the Zynq-7000 AP SoC involve complex 
calculations used in filtering, video manipulation, and signal processing.

An open source project within the ARM community provides a library of common, useful 
functions accelerated by NEON that you can use when developing applications. This has 
evolved into the Ne10 project and the Ne10 library.

Middleware 
Middleware is a set of libraries that runs between the operating-system and application 
layers. In embedded systems, middleware is system software that sits on top of the 
operating system or is sometimes included as part of the operating system. For example, 
common middleware such as a TCP/IP communication stack is typically part of modern 
operating systems.

Middleware reduces complexity by centralizing software stacks that otherwise would be 
redundant in an application layer. There are many type of middleware, including 
message-oriented middleware (MOM), remote procedure call (RPC), and networking 
protocols above the device-driver layer and below the application layer.

Examples

• TCP/IP stacks
• USB host stack
• Controller area network (CAN) stack
• Multimedia middleware stack

Advantages

• Fast development of robust and powerful applications
• Does only what is unique to the application
• Supports scalability and abstraction
• Reliability
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Use Case

lwIP is an open source TCP/IP protocol suite available under the BSD license. Although it 
can be used with an operating system, lwIP is a stand-alone stack without operating system 
dependencies. The use-case demonstrates how you can integrate middleware, such as a 
lightweight IP (lwIP) network stack, into a stand-alone application.

The Xilinx software development kit (SDK) provides lwIP software customization. The lwIP 
stack supports IP, ICMP, IGMP, UDP, TCP, and other networking protocols. By using the lwIP 
stack, you can focus on developing your application core and leave the TCP/IP 
implementation to the lwIP stack.

For more information about how to integrate an open-source network stack into an 
application development, refer to LightWeight IP (lwIP) Application Examples (XAPP1026) 
[Ref 37].

Boot Loaders
A boot loader is the software that initializes the system in preparation for execution of the 
next level of software, such as an operating system. Usually, each operating system has a set 
of boot loaders specific for it. Boot loaders usually contain several ways to boot the OS 
kernel and also contain commands for debugging and/or modifying the kernel 
environment.

Details of the boot process depend on the complete system design and choice of OS, such 
as embedded Linux, RTOS, or bare-metal OS. The number of stages in booting also may vary 
based on the system design. This section describes the boot flow of the Zynq-7000 AP SoC, 
from power-up to application execution.

Boot Process
The Zynq-7000 AP SoC boot process can be a multistage boot, depending on the system 
requirements. This section describes three broadly divided stages of booting and their role 
in the booting process. Figure 4-6 shows the steps while booting embedded Linux and 
application code on a Zynq-7000 AP SoC.

When power is applied to the SoC, the boot process starts from the BootROM. This process 
loads and then starts executing the first-stage boot loader (FSBL) from on-chip memory 
(OCM). The FSBL configures the specific initialization. Then, based on the software 
architecture, the second-stage boot loader (SSBL), such as U-Boot in the case of embedded 
Linux, is initialized and executed. The FSBL and/or SSBL start the RTOS or embedded Linux 
and the application code.
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Stage 0

At power-on or reset, the ARM core runs initialization code from the BootROM. The 
BootROM code cannot be changed; it is a factory pre-programmed code that comes with 
each Zynq-7000 AP SoC. The BootROM code determines the device on which the next-level 
loader is located by reading the boot-mode pins. Depending on the boot-mode setting, the 
FSBL is copied from either NAND, parallel NOR, serial NOR (Quad-SPI), or Secure Digital 
(SD) flash memories to the OCM. 

X-Ref Target - Figure 4-6

Figure 4-6: Boot Flow
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Chapter 4: Software Design Considerations
Figure 4-7 shows the standard (non-secure) boot flow. The secure boot flow is described in 
Embedded Device Security

Stage 1

The FSBL gets execution control from the BootROM and either runs from the OCM or 
execute-in-place flash based on the boot mode settings. The FSBL initializes the PS and 
looks for a bit file in the boot device. If found, the FSBL writes the bit file to the PL. Whether 
or not a bit file is found, the FSBL loads application binaries and data files into memory until 
the complete image has been read from the boot device. Then the FSBL starts executing the 
first application binary that was loaded. 

Typically, the FSBL initializes the external RAM and loads the second-stage boot loader 
(SSBL) or a stand-alone application. Based on the software architecture, if it is a full featured 
OS like embedded Linux the SSBL (such as U-Boot in the case of embedded Linux) is 
initialized and executed. The FSBL and/or SSBL start the RTOS or embedded Linux and the 
application. Then, the FSBL hands over control by jumping to the start address of the SSBL, 
in the case of a full-featured OS like embedded Linux, or to an RTOS or application.

Stage 1 can include the user application if it is small enough to fit in OCM memory.

The Zynq-7000 AP SoC supports both secure and non-secure boot methods. The boot-ROM 
code flow for both methods is described below. 

X-Ref Target - Figure 4-7

Figure 4-7: Non-Secure Boot Flow
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For secure boot, the principal security objective of the SoC is to lay a foundation of trust. It 
does this using integrity, confidentiality, and authentication from the time power is applied 
to the time control is asserted. The SoC also provides a method for maintaining this trust. 
The SoC does this by using the PL's built-in Advanced Encryption Standard (AES-256) and 
hashed message authentication code (HMAC) engines, and the RSA authentication 
capability of the PS. 

The SoC boots securely unless it is changed from a secure to a non-secure mode. The first 
decision point is the initial load of the FSBL. If the FSBL is encrypted, the BootROM code 
boots securely and hands control off to the FSBL securely, while disabling JTAG. If the FSBL 
is not encrypted, the AES 256 and HMAC engines are disabled and the JTAG ports can be 
accessed. To enable RSA authentication, the RSA Enable eFUSE must be programmed.

The Xilinx design tools allow specifying whether the software and bit-stream partitions are 
authenticated using the public-key RSA algorithm and whether subsequent images are 
encrypted and authenticated using the AES and HMAC engines. An unencrypted partition 
can also be specified. This allows use of both public- and private-key algorithms on a 
partition basis.

Alternatively, when configuration time is critical, a trade off can be made between security 
and boot time, because configuration speed is faster for unencrypted partitions than for 
encrypted partitions. A relatively large, open-source U-Boot or Linux image, for example, 
loads faster if the image is unencrypted. If any of the secure features are selected, the initial 
FSBL, at a minimum, must be encrypted with AES-256 and authenticated with the HMAC 
algorithm.

Figure 4-8 shows the FSBL flow for secure boot mode. Figure 4-9 shows the FSBL flow for 
non-secure boot mode. 

For more information about secure boot of the Zynq-7000 AP SoC, refer to the following 
documents:

• Secure Boot in the Zynq-7000 All Programmable SoC (WP426) [Ref 35]
• Secure Boot of Zynq-7000 All Programmable SoC (XAPP1175) [Ref 42]
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X-Ref Target - Figure 4-8

Figure 4-8: FSBL Flow for Secure Boot
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Stage 2

This stage could be a second-stage boot loader (SSBL) like U-Boot, or it could be an RTOS 
or application. In the case of a full-featured OS like embedded Linux, the SSBL U-Boot runs 
in CPU0 to initialize and set up the environment in which the OS will boot. The initialization 
includes configuring the MMU to use flat memory (that is, virtual and physical locations are 
the same). The boot loader then fetches the kernel image (per the boot-mode setting) and 
other information, such as boot arguments, into RAM. Then the loader passes control to the 
OS, such as embedded Linux.

In the case of Linux, the OS detects and enables the second processor core, configures and 
activates the MMU and data caches, and performs other actions to make a complete system 
available to applications.

There is no limit to what each stage can actually do, although some things can be done 
more easily in one stage than in others. For example, reading a file from an NTFS USB drive 
is possible from Linux, but it requires some development effort to do it from the boot 
loader. U-Boot can be adapted to such requirements.

Zynq-7000 All Programmable SoC Software Developers Guide (UG821) [Ref 7] covers the 
architecture details, programming model, OS considerations, and complete development 
steps for running Linux and applications on Zynq-7000 AP SoC.

X-Ref Target - Figure 4-9

Figure 4-9: FSBL Flow for Non-Secure Boot
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Software Development Tools
Xilinx provides a variety of software development tools that can be used to build various 
software components used by the Zynq-7000 AP SoC, including:

• Board Support Package (BSP). This is a set of APIs used to access low-level hardware. 
These APIs are grouped based on the peripheral they access and functions they 
perform. The BSP also includes startup, CPU initialization, and EABI code.

• Stand-alone (bare-metal) applications. These are simple applications that do not 
support complex kernel features such as multi-tasking. Such applications use the BSP 
APIs to access low-level hardware.

• FSBL (first stage boot loader). This is a small application that performs PS hardware 
initialization, loads the fabric with a bit stream, optionally loads additional data, and 
loads the second-stage boot loader. The FSBL is an example of a stand-alone 
(bare-metal) application.

• U-Boot (second stage boot loader). This boot loader performs the necessary 
hardware initialization for the kernel to begin execution. When done, the Linux kernel is 
loaded and starts executing.

• Linux kernel. Linux is an open source operating system. The hardware-dependent 
parts of the Linux kernel (device drivers, etc.) are provided for the Zynq-7000 AP SoC. 
The hardware independent parts of the kernel (file systems, networking, etc.) are similar 
to other Linux machines. The kernel is configured as needed and targeted to the ARM 
processor.

• User applications. Typical user applications run in the Linux environment and are 
hardware independent. Hardware access is done through the driver APIs.

• Device tree blob. The device tree is a structure of nodes and properties describing 
components and features supported by the hardware (PS peripherals, ARM processors, 
and PL peripherals). The nodes provide information such as the hardware-component 
map address, interrupt number, default settings, etc. The device tree is compiled and 
provided to the Linux kernel at boot time. While booting, the kernel uses this 
information to load the corresponding device drivers.

Also, the software development tools are used to selectively debug and profile the software 
on the hardware platform.
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Chapter 4: Software Design Considerations
The software development tools for Zynq-7000 AP SoCs include:

• GUI-based tool chain. These tools provide you with a graphical user interface. The tool 
and build features are selected through a set of menu options. After this is done, the 
compiler/linker is started in the background and the compilation progress is shown 
visually. The GNU tools are integrated into the GUI-based tool chain applications. The 
Xilinx software development kit (SDK) is an example of a GUI-based tool chain. 

With the IDE (integrated development environment), programmers can build a variety of 
software components, such as:

° BSP

° User applications on a stand-alone platform

° User applications on a Linux platform
• Command-line based tool chain. These tools are standard GNU tools (such as gcc) 

that are configured for the ARM processor. CodeSourcery (a gcc toolchain from Mentor 
Graphics supporting the ARM architecture) is used in the development tools for the 
Zynq-7000 AP SoC. The compiler and linker options are supplied using the command 
line or with makefiles. The arm-linux-xilinx-gnueabi-gcc is an example of a 
command-line based tool chain.

With the GNU-based tool chain, programmers can build a variety of software 
components, such as:

° The Linux kernel and device drivers

° Device tree blob

° User applications

° Reusable libraries
• Hybrid tool chain. These tools are a combination of GUI and command-line based 

tools. The configuration of all project components is done through GUI-based tools. 
However, each component build is done using command-line tools. PetaLinux is an 
example of a hybrid tool chain.

The GNU tools that are configured for ARM processors are integrated into a hybrid tool 
chain. With a hybrid tool chain, programmers can build a variety of software 
components, such as:

° The Linux kernel and device drivers

° Device tree blob

° User applications

° Reusable libraries

° Completely packaged image
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Chapter 4: Software Design Considerations
GUI-Based Tool Chain
The Xilinx SDK is an integrated development environment (IDE) based on Eclipse. The Xilinx 
SDK provides an environment for creating, compiling, and debugging software applications. 

The SDK runs the GNU-based compiler tool chain in the background. The supported utilities 
include the GCC compiler, a linker, the GDB debugger, and other utilities such as a JTAG 
debugger, flash programmer, and libraries. Also, the tool integrates drivers for all Xilinx IP 
cores, example applications, software service packages (such as lwIP), and bare-metal BSPs. 
Programmers can integrate any of these components to build the application. The SDK 
supports applications developed using assembly, C, and C++.

Features of the Xilinx SDK include:

• Support for Zynq-7000 AP SoCs and MicroBlaze™ processors.
• Based on the Eclipse C/C++ Development Tooling (CDT).
• Complete IDE that directly interfaces to Vivado tools.
• Complete software design and debug processes are supported including multicore, 

hardware, and software debug capabilities.
• The editor, compilers, build tools, flash memory management, JTAG, and GDB 

debuggers are integrated.
• Supported by the Xilinx edition of Mentor Sourcery CodeBench Lite.
• Custom libraries and device drivers.
• The SDK includes user-customizable drivers for all supported Xilinx hardware IP cores, a 

POSIX-compliant kernel library, and networking and file-handling libraries. The libraries 
and drivers can be customized based on feature needs, memory requirements, and 
hardware capabilities.

• Managed makefiles, management of hardware platforms, remote debug, cross probing 
support between hardware and software debug, flash programming, boot image 
(boot.bin) creation, linker script generation, repository management, and FPGA 
programming.

• Profiling support.

Features of the Xilinx SDK debugger include:

• Based on the Eclipse Target Communication Framework (TCF).
• Homogenous and heterogeneous multi-processor support.
• Linux application debug on the target platform.
• Hierarchical profiling.
• Bare-metal and Linux application development.
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Chapter 4: Software Design Considerations
• Support for symmetric multi-processing and asymmetric multi-processing designs.
• Associate hardware and software breakpoints per core.
• NEON library support.

Applications are developed based on either a stand-alone or a Linux platform model.

Stand-Alone Platform

In a stand-alone platform, an application is built as monolithic, executable code. 
Multi-tasking is not supported, so device drivers are loaded with the application and the 
application invokes the driver APIs directly.

The stand-alone software platform is a single-threaded environment used when an 
application accesses processor functions directly. The stand-alone software platform 
supports program profiling and provides functions such as processor interrupt handling, 
exception handling, and cache handling.

Stand-alone platforms are used by small, dedicated systems that do not require an 
operating system. The advantages include:

• Application development is typically simple and quick.
• The overall complexity is minimized because context switching and multi-tasking is not 

used.
• Developers can have a more detailed and comprehensive understanding of the 

top-to-bottom system implementation.
• Ideal for the initial development stages of new hardware. 
• A console (text) based application can be built using this platform.

The disadvantages include:

• A complex application system requiring multi-tasking cannot be built.
• Not ideal for GUI-based applications.

The steps for developing a stand-alone application include:

• Creating a new workspace and importing the hardware platform into the workspace 
(the hardware platform is exported from the Vivado design tools).

• Creating a new board support package (BSP) and application.
• Alternatively, importing an existing BSP and software application into the workspace. A 

board support package (BSP) in the SDK contains libraries and drivers that software 
applications can use when the provided APIs are used.

• Modifying the BSP settings.
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Chapter 4: Software Design Considerations
• Building the BSP and application.
• Debugging software applications.
• Profiling software applications.

Figure 4-10 shows the development cycle using the SDK tool.

More details on SDK usage can be found in the following documents: 

• K7 Embedded TRD 2013.2 [Ref 51]
• OS and Libraries Document Collection (UG643) [Ref 5]
X-Ref Target - Figure 4-10

Figure 4-10: SDK Software Development Flow
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Chapter 4: Software Design Considerations
Linux Platform

Linux is a multi-process operating system, and applications written for a Linux platform are 
code compatible with any system that runs Linux. The applications use the Linux library APIs 
and therefore access the hardware resources in an abstract manner.

Application development for a Linux platform is similar to other Linux application 
development processes that are hardware-platform independent. The procedure for 
creating applications in the SDK workspace is similar to the stand-alone platform except the 
Linux-platform BSP is selected.

GNU-Based Compiler Tool Chain
The Zynq-7000 AP SoC supports launch of the GNU tool chain in two ways:

• GNU open-source tool chain
• PetaLinux framework

These variants are described in the following sections.

GNU Open-Source Tool Chain

The open-source tool chain is based on Mentor Graphics' CodeSourcery tool chain. 
Sourcery CodeBench is a complete development environment for embedded C/C++ 
development on ARM, Power, ColdFire, and other architectures. Sourcery CodeBench Lite 
Edition includes:

• GNU C and C++ compilers
• GNU assembler and linker
• C and C++ runtime libraries
• GNU debugger

For ARM processors, the tool chain supports the ARM, Thumb, and Thumb-2 instructions 
for the active architectures, including version 7 of the ARM architecture. 

The GNU open source tool chain is described in more detail on the Xilinx Zynq-7000 AP SoC 
Linux wiki page [Ref 65].

PetaLinux Framework

The PetaLinux Tools is a development environment that works with the Xilinx 
hardware-design flow for Zynq-7000 AP SoCs. Tailored to accelerate design productivity, 
the solution contains everything necessary to build, develop, test and deploy embedded 
Linux systems. 
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Chapter 4: Software Design Considerations
PetaLinux consists of three key elements: 

• Pre-configured binary bootable images.
• Fully customizable Linux operating system for Xilinx devices.
• PetaLinux Tools, including tools and utilities to automate complex tasks across 

configuration, build, and deployment.

Because PetaLinux is fully featured, integrated, tested, and documented, it is the Xilinx 
recommended and supported Linux deployment mechanism for Xilinx customers. PetaLinux 
BSPs provide a complete, integrated and tested, Linux operating system for Xilinx devices 
including:

• BSP
• Boot loader
• Linux kernel
• Linux applications & libraries
• C & C++ application development
• Debug
• Thread and FPU support
• Integrated web server for easy remote management of network and firmware 

configurations

Although PetaLinux is based on a stable and thoroughly tested version of Linux, the 
PetaLinux Tools includes more than what is available from the Xilinx Git server. The 
PetaLinux Tools includes an installer, development tools, BSPs, platform management 
utilities, application and library frameworks, and documentation that are not found in the 
Xilinx open source Linux (OSL) offering.

All PetaLinux users are entitled to community (forum-based) support. Commercial licensees 
can get support directly from Xilinx.

The PetaLinux tool chain is described in more detail on the Xilinx PetaLinux Tools web site 
[Ref 50].
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Chapter 4: Software Design Considerations
JTAG Debugger
The GUI-based SDK includes debugging capabilities, enabling programmers to debug code 
in the following ways:

• Single step
• Break points
• Memory watch
• Disassembly
• Call-stack
• Processor register dump

The SDK provides various ways to use the debug capabilities. The system debugger is based 
on the Vivado hardware server (which is based on TCF). The system debugger performs 
debug operations over JTAG or a TCP/IP link. The JTAG link is used for local debug and the 
TCP/IP link is used for communicating with the TCF agent in Linux. The debugger is also 
available as a command line debugger called XSDB. XSDB can be used without invoking the 
SDK.

The GUI-based SDK debugger is described in more detail in K7 Embedded TRD 2013.2 
[Ref 51]

The command-line XMD debugger is described in more detail in the Embedded System Tools 
Reference Manual (UG1043) [Ref 22].

JTAG Profiler

The GUI-based SDK also includes a software profiler. The profiler enables programmers to 
monitor function calls, time spent by the processor on each function, a graphical display of 
processor usage, etc. As with the debug capabilities, the profiler is based on the TCF-based 
XMD tool, which performs the profiling operations over the JTAG link.

Refer to the AXI Interface Based KC705 Embedded Kit MicroBlaze Processor Subsystem 
Software Tutorial (UG915) [Ref 12] for more information.
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Chapter 5

Hardware Design Flow
This chapter covers the following hardware design flows to be considered when designing 
with a Zynq®-7000 AP SoC:

• Using the Vivado IDE to Build IP Subsystems: You can use the Vivado® Design Suite to 
build IP subsystems using a variety of tools, which are described in this section.

• Rule-Based Connection: You can catch errors by running the design validation process, 
which runs design-rule checks on the block design and reports warnings and errors. 
This section describes the design validation process.

• Creating Hierarchical IP Subsystems: You can use the Vivado IP integrator tool to create 
hierarchical IP subsystems.

• Board Window: The Board window in IP integrator shows all the interfaces that are 
present on a particular board.

• Generating Block Designs: When a block design or IP subsystem has been created, the 
source files, IP constraints, and structural netlist can be generated. After this is done, 
the design can be integrated into a higher-level HDL design, or taken through synthesis 
and implementation. 

• Creating and Packaging IP for Reuse: The Vivado IP packager enables Vivado IDE users 
and third-party IP developers to easily prepare an IP design for use in the Vivado IP 
catalog. The custom IP can then be instantiated into a design using the Vivado Design 
Suite. 

• Creating Custom Interfaces: The Vivado Design Suite requires that all memory-mapped 
interfaces use an AXI interface. The suite has a wizard that assists converting a custom 
IP interface to one that adheres to the AXI interface standard.

• Managing Custom IP: The Vivado IP Catalog contains built-in repository management 
features for adding IP cores from another source. 

• Vivado High-Level Synthesis (HLS): The high-level synthesis (HLS) tool transforms a C, 
C++, OpenCL Kernel, or SystemC design specification into a register transfer level (RTL) 
implementation that in turn can be synthesized into a Xilinx All Programmable device. 
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Chapter 5: Hardware Design Flow
Overview
As programmable devices become larger and more complex, and as design schedules 
become shorter, use of third-party IP and design reuse are becoming mandatory. Xilinx 
recognizes the challenges designers face and has created a powerful feature within the 
Vivado Design Suite to help solve these challenges. This feature is called the Vivado IP 
integrator.

The IP integrator enables the creation of block designs. These block designs are essentially 
IP subsystems containing any number of user-configured IP and interconnect. IP integrator 
is the feature for doing embedded-processor design in Vivado design tools with Zynq-7000 
AP SoCs, MicroBlaze™ processor designs, and non-processor-based designs. It is used to 
instantiate high-level synthesis (HLS) modules from Vivado HLS, DSP modules from System 
Generator, and custom IP made available using the create-and-package IP flow. Designs can 
be created interactively on the IP integrator GUI canvas or programmatically through a Tcl 
programming interface. Xilinx recommends using the IP integrator tool for processor based 
designs. For details, see the Vivado Design Suite User Guide: Embedded Processor Hardware 
Design (UG898) [Ref 18]and Vivado Design Suite User Guide: Designing IP Subsystems Using 
IP Integrator (UG994) [Ref 19].

Using the Vivado IDE to Build IP Subsystems
The Vivado IDE can be used to build IP subsystems with the IP integrator GUI, scripted tcl 
flow, or the designer assistance that is part of IP integrator.

Using the GUI to Create an IP Subsystem
The IP integrator has a powerful GUI environment for creating IP subsystems. IP cores can 
be instantiated and interconnected using various automation features. Custom IP can also 
be packaged for use in IP integrator. Designs should be reassembled in the GUI 
environment and taken through the flow. After the design is stable, a script can be written 
that creates and implements the design. For more information about features of the GUI, 
refer to the Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator 
(UG994) [Ref 19].

Using a Scripted Flow to Create an IP Subsystem
Every action in the IP integrator GUI canvas results in an equivalent tcl command. These Tcl 
commands are also logged in the Vivado Design Suite journal file. A script can be written 
based on the journal file, and that script can be re-used to create and implement the design 
later.
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Chapter 5: Hardware Design Flow
Designer Assistance
To expedite the creation of a processor-based design, use the Block Automation and 
Connection Automation features of IP integrator. The Block Automation feature should be 
used to configure the processor and related IP cores, whereas the Connection Automation 
feature should be used to make repetitive connections to different pins or ports in the 
design. IP integrator is also board-aware and supports Xilinx® evaluation boards. This 
means that when an evaluation board is used as the target hardware, IP integrator knows all 
the interfaces present on that particular board. A design's I/O ports can be connected to 
existing interfaces on the target board using the Connection Automation feature. Designer 
assistance also helps with clocks and reset connectivity. Several kinds of tabs, such as the 
Signals tab and the Board Part Interface tab, help make connections in the block design. 
Designer assistance helps expedite interconnectivity and eliminates unintended design 
errors.

Block Automation

For some complex IP and processor-based designs, IP integrator has a feature called Block 
Automation. This feature supports quick assembly of processor- or IP-based subsystems 
with commonly used components. After the basic building blocks for an embedded design 
are assembled, this basic system can be extended by adding IP cores from the catalog.

Connection Automation

When the Block Automation is done and a basic system has been built, external I/O pins 
need to be connected. The Connection Automation serves this purpose. Connection 
Automation helps make connections to the I/O pins and it helps make connections to 
different sources on the design itself. Combined with board awareness, the Connection 
Automation feature helps connect the block design ports to external interfaces on the 
target board and to create physical constraints for these ports. Use of this feature, 
therefore, is highly recommended.
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Chapter 5: Hardware Design Flow
Rule-Based Connection
IP integrator runs basic design-rule checks in real time as the design is being assembled. 
However, there is a potential for something to go wrong during design creation. As an 
example, the frequency of a clock pin may not be set correctly. Such errors can be caught by 
running design validation. Design validation runs design-rule checks on the block design 
and reports any warnings or errors regarding the design. The warnings and/or errors can 
then be cross-probed from the messages view into the block diagram. Design validation is 
recommended to catch design errors that may go unnoticed until later in the design flow.

Running design validation also runs parameter propagation on the block design, one of the 
most powerful features of IP integrator. The feature lets an IP core auto-update its 
parameterization based on how it is connected in the design. IP cores can be packaged with 
specific propagation rules, and IP integrator runs these rules as the diagram is generated.

Creating Hierarchical IP Subsystems
The IP integrator can be used to create hierarchical IP subsystems. This feature can be 
useful for designs having a large number of blocks that could otherwise become hard to 
manage on the GUI canvas. Multiple hierarchical levels are supported, so blocks can be 
grouped based on design function. The use of hierarchy within IP integrator can keep 
designs modular and neat on the IP integrator canvas.

The visual aspects of design objects can be changed. For example, clocks and resets can be 
colored differently, and various layers can be enabled and disabled.

Board Window
As mentioned above, IP integrator is board-aware. When a block design is targeted to a 
particular Xilinx evaluation board, the Board window shows all the interfaces that are 
present on that particular board. The interfaces present in the Board Part Interfaces Tab can 
be connected to create a target design with or without a processor. This is a powerful 
mechanism for creating a block design. When an interface is selected for connection, all IP 
cores that can connect to that particular interface are displayed. For example, on a Kintex® 
KC705 board, if the 8-bit LEDs are selected, three IP choices are presented (the GPIO, the IO 
Module, and the MicroBlaze MCS IP) that can connect to this interface. Based on the IP 
selection, a connection can be made to LEDs on the board or, using the Designer Assistance, 
to the rest of the block design.
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Chapter 5: Hardware Design Flow
Generating Block Designs
When a block design or IP subsystem has been created, the source files, IP constraints, and 
structural netlist can be generated. After this is done, the design can be integrated into a 
higher-level HDL design, or taken through synthesis and implementation.

Using Out-of-Context Synthesis for Block Designs
Hierarchical design flows enable the partitioning of designs into smaller, more manageable 
modules that can be processed independently. In the Vivado Design Suite, these flows are 
based on the ability to synthesize a partitioned module out-of-context (OOC) from the rest 
of the design. The most common use with IP integrator is for synthesizing an OOC module 
and creating a design checkpoint (DCP) file. This block design, if used as a part of the larger 
Vivado design, does not need to be re-synthesized each time other parts of the design 
(outside of IP integrator) are modified. This results in considerable run-time improvements 
and should be considered if run-times are a matter of concern, specifically during the early 
stages of design exploration.

Creating Remote Block Designs
IP integrator can create stand-alone block designs that can be re-used by multiple Vivado 
Design Suite projects. After the design is created and put under revision control, multiple 
design teams can re-use the same block design for creating multiple projects. This is an 
important re-use feature of IP integrator that should be considered in a team-based 
environment.

Creating and Packaging IP for Reuse
The Vivado IP packager enables Vivado IDE users and third-party IP developers to easily 
prepare an IP design for use in the Vivado IP catalog. The custom IP can then be 
instantiated into a design using the Vivado Design Suite. Use of the following packaging 
flow results in a consistent user experience, whether using Xilinx IP, third-party IP, or 
customer-developed IP within the Vivado Design Suite.

Packaging Custom IP and IP Subsystems
The Vivado Create and Package IP function supports the creation of custom IP for delivery 
in the Vivado IP Catalog. The industry standard IP-XACT format is used for packaging the IP 
core. The location of the packaged IP can be added to the Repository Manager section of 
the Vivado Design Suite Settings. When a repository of one or more IP cores is added, the 
IP is shown in the IP Catalog. Users can select and customize IP cores from this catalog. 
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Chapter 5: Hardware Design Flow
The flow for using the Vivado IP Packager is: 

1. Use the Vivado IP Packager to create and package the IP HDL and associated data files. 
The IP Packager currently does not support SystemVerilog sources as the top level. A 
Verilog or VHDL wrapper around the SystemVerilog source is required.

2. Provide the Packaged IP to a team member or customer.
3. Have the end-user add the IP location to the Repository section of the Vivado Design 

Suite Settings.
4. The IP core is shown in the IP Catalog, and the end-user can select and customize the IP 

core in a way similar to Xilinx-delivered IP.

The Create and Package IP function provides two ways of creating custom IP. The first way 
is to use the Create and Package IP function to create a new IP core with one or more AXI 
interfaces. When the interfaces have been created, insert the custom IP and connect to 
these interfaces. The second way is to package the IP core and include it in the IP catalog for 
later use in IP integrator. This second way can be used when all HDL files for the custom IP, 
including the AXI interface, are available.

The Create and Package IP function allows IP end-users to have a consistent experience, 
whether using Xilinx IP, third-party IP, or custom IP. For more information on creating and 
packaging IP, see the Vivado Design Suite User Guide: Creating and Packaging Custom IP 
(UG1118) [Ref 23].

Updating the IP Catalog
The Vivado Design Suite IP catalog is a unified repository that supports searching, 
reviewing detailed information, and viewing documentation for an IP core. After an IP core 
has been packaged, users can point to the IP repository containing the newly packaged IP 
core in the Vivado tool and add the IP core to the IP catalog. The newly packaged IP core is 
then ready to be used in the IP integrator.
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Chapter 5: Hardware Design Flow
Creating Custom Interfaces
The Vivado Design Suite requires that all memory-mapped interfaces use an AXI interface. 
The suite has a wizard that assists converting a custom IP interface to one that adheres to 
the AXI interface standard. The Create and Package IP flow can generate three AXI interface 
types: 

• AXI4: For memory-mapped interfaces that allow bursts of up to 256 data-transfer 
cycles with a single address phase.

• AXI4-Lite: A lightweight, single-transaction, memory-mapped interface.
• AXI4-Stream: An interface that removes the requirement for an address phase and 

allows unlimited data-burst sizes.

The Create and Package IP flow can create a template AXI4 peripheral that includes HDL, 
drivers, a test application, verification intellectual property (VIP), and an example template. 
After the peripheral has been created, design files can be added to complete the custom IP. 
See the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 23] and Vivado 
Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994) [Ref 19] for 
details.

Managing Custom IP
The Vivado IP Catalog contains built-in repository management features for adding IP cores 
from another source. To make the custom IP visible, place the custom IP in a location that 
is accessible from the host machine. Then, launch the Vivado Design Suite and run the IP 
Settings functions from the IP Catalog to register the new user repository location and 
include the new IP core in the IP catalog.

There are two types of repositories:

• Standard Xilinx Repositories: The Vivado Design Suite ships standard Xilinx repositories. 
These repositories are always enabled, and they cannot be changed in the Xilinx IP 
Catalog.

• Configured User Repositories: User repositories are visible from the active machine that 
contains one or more IP cores.

The Repository Manager allows adding or removing user repositories and establishing 
precedence between repositories. IP is distinguished through a unique ordered list of 
elements corresponding to the vendor, library, name, and version (VLNV).
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Chapter 5: Hardware Design Flow
If multiple repositories are referenced and have the same IP VLNV in multiple locations, the 
Vivado IDE displays the IP core in the repository with highest precedence. The Xilinx IP 
repositories are always enabled, and they always have lowest precedence.

When the repository setup for a given project is changed, the Repository Manager stores 
the changes within the settings. Consequently, changes are visible when the project is 
reopened on any machine (assuming the repository paths are also available).

Vivado High-Level Synthesis (HLS)
The high-level synthesis (HLS) tool transforms a C, C++, OpenCL Kernel, or SystemC design 
specification into a register transfer level (RTL) implementation that in turn can be 
synthesized into a Xilinx All Programmable device. 

HLS performs two types of synthesis on the design:

• Algorithm Synthesis: This synthesizes the functional statements into RTL statements 
over potentially multiple clock cycles.

• Interface Synthesis: This transforms the function arguments (or parameters) into RTL 
ports with specific timing protocols, allowing the design to communicate with other 
designs in the system.

Like the many decisions made during manual RTL design, the number of available 
implementations and optimizations is large, and the combinations of how they impact each 
other is very large. HLS abstracts these details and helps create an optimal design in the 
shortest time.

Typically, HLS is used after a software bottleneck has been identified by profiling the 
software application within the SDK or third-party tools. When the bottleneck function(s) 
have been identified, the next step is to move those function(s) into hardware using HLS. 
Finally, the HLS design can be exported as an IP core to be used in IP integrator. HLS also 
generates a simulation model for the IP core that can be used to verify the IP function. Refer 
to the Vivado Design Suite User Guide: High-Level Synthesis (UG902) [Ref 9] for more 
information.
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Chapter 5: Hardware Design Flow
Summary
In general, the following steps should be followed to capture an embedded design in IP 
integrator:

1. Add processor IP, such as the Zynq-7000 AP SoC or the MicroBlaze processor.
2. When the processor IP is instantiated, designer assistance is available. Use designer 

assistance to configure the processor and peripherals.
3. Customize the processor further, if needed. This step is needed if more function and 

control over clocks, resets, I/O ports, etc., is desired.
4. Add peripherals, and connect them using designer assistance, when available.
5. Add connectivity IP for external interfaces, such as GPIO, Ethernet, etc.
6. Add custom accelerators for the Processing Logic, if needed.
7. Connect and review clock and reset domains, using the Signals tab or the Make 

Connection wizard.
8. Run design-rule checks by validating design. Resolve any errors or warnings flagged 

during design validation, and run design validation until no further errors are flagged.
9. Synthesize, implement, and generate bit-stream for the design.
10. Export the design to the SDK for software development.
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Chapter 6

Software Design Flow
This chapter describes software design flow for the Zynq®-7000 AP SoC and provides 
guidance for various software development roles, referred to as personas. The design flow 
for each persona includes an overview of the tool flow and available solutions—from Xilinx 
and its partners—at each stage. References are provided to external documents and other 
sections in this guide if more information is needed.

Unlike ASICs and ASSPs, the Zynq-7000 AP SoC has programmable logic (PL, the 
hardware-configurable FPGA portion of the device) and a processing system (PS, the two 
ARM Cortex-A9 cores). The hardware design and configuration of PL can be done using the 
Xilinx® Vivado® tools. Refer to Chapter 5, Hardware Design Flow. The hardware design files 
from the Vivado tools are sent to the Xilinx SDK for software development. Figure 6-1 
shows the hardware and software development flow for the Zynq-7000 AP SoC.
X-Ref Target - Figure 6-1

Figure 6-1: Hardware and Software Development Flow
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Chapter 6: Software Design Flow
Referring to Figure 6-1, the files sent from the hardware flow to the software flow (referred 
to as handoff files) contain information such as the hardware specification, PS peripheral 
information, register memory map, and a bitstream for the PL. The handoff files insulate 
software developers from the Zynq-7000 AP SoC reconfigurable hardware. The handoff files 
make the hardware appear to software as an ASSP. Software developers can use the handoff 
files to design firmware, drivers, and a board-support package (BSP). 

Typically, the software design flow of Zynq7000-AP SoCs involves development of one or 
more of the software layers shown in Figure 6-2.

The remaining sections cover software development flow of three personas: board bring-up 
developer, driver developer, and application developer. Each persona works on one of the 
layers in Figure 6-2. A persona can refer to the corresponding section in this chapter to 
understand software development flow pertaining to their area of work.

X-Ref Target - Figure 6-2

Figure 6-2: Software Development Layers

Applications

Middleware Framework (Optional)

Operating System (Optional)

Firmware Board Support Package

Hardware

X14204-

073117
UltraFast Embedded Design Methodology Guide 180
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=180


Chapter 6: Software Design Flow
Board Bring-Up Development
Board bring-up activities include developing low-level firmware, setting up the boot 
sequence, and basic tests for the interfaces and the peripherals. This section describes the 
Xilinx development solutions available for basic board bring-up activities, divided into the 
following phases:

1. PS initialization 
2. PL configuration 
3. Memory and peripheral testing
4. Hardware and software debug

PS Initialization
Xilinx tools auto generate the ps7_init.tcl and ps7_init.c files when Vivado exports 
a design. The ps7_init.c file is an initialization file auto generated by Vivado and used 
by the first stage boot loader (FSBL) to initialize the PS. When bringing up the board, the 
first step is to connect to the target Zynq-7000 AP SoC through the Xilinx debugger and run 
the ps7_init.tcl script (provides the same results as ps7_init.c) to initialize the PS 
peripherals, clocks, DDR, PLL, and MIO. To verify the PS initialized successfully, execute 
memory reads and verify commands from the XSDB debugger. System peripherals can be 
read and written to verify basic functionality.

The FSBL can load a second stage boot loader, such as U-Boot, or it can load and boot an 
operating system. In bare-metal implementations, FSBL directly loads the application code.

Refer to the Zynq-7000 All Programmable SoC Software Developers Guide (UG821) [Ref 7] 
for more information on the FSBL, including normal and secure boot.

On third-party debuggers, the FSBL can be used to initialize DDR memory and load the 
application code, which can be debugged using the debugger. For example, the FSBL can be 
loaded in OCM, executed for a few seconds, stopped, and then the debug tool can be used 
(via JTAG) to load the application code in DDR for debug. Most debuggers support script 
mechanisms for automating this process.

The Xilinx SDK repository provides bare-metal drivers that can be used for board bring-up.
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Chapter 6: Software Design Flow
U-Boot

U-Boot is an open-source universal boot loader that can act as a primary or secondary boot 
loader. U-boot can be used to load a stand-alone application, a bitstream, or a Linux OS 
kernel. On Zynq-7000 AP SoCs, U-Boot is used as a secondary boot loader, but it can be 
configured and rebuilt to act as a primary boot loader. The FSBL is designed to bring up a 
secondary boot loader like U-Boot. U-Boot can be loaded from an external device, and it 
can be used to initialize PS peripherals not initialized by the primary boot loader. U-Boot or 
any other secondary boot loader can be removed from the final product to reduce boot 
time.

The flow charts in Figure 6-3 outline the boot sequence and the files involved in the boot 
process.

The open-source Xilinx U-Boot project is available at the Xilinx Git repository. Xilinx U-Boot 
is also released as a part of the PetaLinux offerings. Refer to the Xilinx U-Boot wiki page 
[Ref 59] for more information on configuring and building U-Boot.

X-Ref Target - Figure 6-3

Figure 6-3: Boot Sequence and Boot Files
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Chapter 6: Software Design Flow
PL Configuration
The PL is configured either by software running on the ARM core or through JTAG. Xilinx 
supports PL configuration using the FSBL, U-Boot, or Linux. 

On production boards, the FSBL can configure the PL using the PCAP interface. During the 
development and debug phase, the PL can be configured through JTAG from either the 
Vivado tools or Xilinx SDK. After the PL is configured, the processor can access PL 
peripherals in the same manner as PS peripherals. The debugger can read and write PL 
peripheral registers at this stage.

Memory and Peripheral Testing
The Xilinx SDK has a memory test that can verify the DDR memory and the signal integrity 
of the memory controller and DDR interface. The bare-metal memory test application can 
be used to exercise a DDR memory power-on self-test. The DRAM test application template 
is located in your installation directory at 
SDK\2014.2\data\embeddedsw\lib\sw_apps\zynq_dram_test.

Example drivers are available for many PS peripherals. They can be found in the 
SDK\<Version>\data\embeddedsw\XilinxProcessorIPLib\drivers\ 
<Peripheral> folder of your installation directory. The folder also contains sample test 
applications for Xilinx Soft IP cores. These tests can be used to test peripherals during the 
board bring-up phase. Also, the tests can be modified to develop a comprehensive 
power-on self-test or built-in test.

Hardware and Software Debug
There may be cases when DDR initialization fails. If this occurs, a connection to the 
debugger can be made by debugging the FSBL stage. Any application downloaded to DDR 
can be debugged after that. The Xilinx SDK supports heterogeneous multicore debugging, 
allowing debug of both MicroBlaze™ processors and the ARM cores. Also, cross triggers can 
be used when it is unclear whether the problem is in software or hardware. Refer to the 
Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940) [Ref 15] for 
more information on setting up cross triggers.
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Chapter 6: Software Design Flow
Driver Development
Driver developers create software drivers for SoC and on-board peripherals, establishing 
interfaces for higher software layers such as the OS or bare-metal applications. Peripheral 
drivers must be created for the ARM Cortex-A9 and MicroBlaze cores. This section covers 
points to consider when developing bare-metal and Linux drivers for the configured 
hardware, and it highlights available Xilinx solutions.

Bare-Metal Drivers
The Xilinx SDK supports various file types used in driver development (both Xilinx IP drivers 
and custom drivers) and used during the software development cycles. The file types and 
directory structure are shown in Figure 6-4.

X-Ref Target - Figure 6-4

Figure 6-4: Directory Structure of Drivers, OSs, and Libraries
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Chapter 6: Software Design Flow
Handoff File Details

The software development cycle — from handoff to debug — is shown in Figure 6-5.
 

The software development cycle begins with handoff files created during the hardware 
design flow. After preparing the hardware design with the Vivado tools, a hardware handoff 
folder is created for use by the SDK in driver and application development. Beginning with 
release 2014.2, Vivado hardware export creates a single, compressed hardware definition 
file (*.hdf) and writes it to the SDK_Export folder. This file contains hardware details, 
such as base addresses and version information. From the SDK workspace, a hardware 
platform project is created and the project within the workspace is configured by pointing 
it to the *.hdf file. The SDK (beginning with release 2014.2) supports import of traditional 
XML files in addition to the *.hdf files.

When building the BSP project, the SDK generates an xparameters.h file, populating it 
with hardware details (such as base addresses and interrupt IDs) in the form of #define 
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Figure 6-5: Software Development Cycle with the SDK
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Chapter 6: Software Design Flow
constants. Software drivers (stand-alone platform) and applications can reference these 
constants in the code.

Driver File Organization

The drivers for Xilinx IPs (PS peripheral IPs and soft IPs) are shipped with the SDK. These 
drivers are located in the data/embeddedsw/XilinxProcessorIPLib/drivers 
folder in your SDK installation folder. Each driver is located in a separate folder. For 
example, the IIC PS driver version 2.0 is located in the 
data/embeddedsw/XilinxProcessorIPLib/drivers/iicps_v2_0 folder of your 
SDK installation.

Each driver folder contains four subfolders:

• data: This folder contains the MDD file and Tcl script file.
• doc: This folder contains help files that provide details of APIs and data structures 

implemented in the driver.
• examples: This folder contains C source files demonstrating examples on how to use 

the driver. These examples are ready to build and launch on the hardware. The 
examples can be used as-is when following the procedure for building stand-alone 
applications. The examples can also be modified as needed.

• Src: This folder contains the driver source code (C and H files).
UltraFast Embedded Design Methodology Guide 186
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=186


Chapter 6: Software Design Flow
The source file repository is organized as shown in Figure 6-6.

To load driver source code into the project workspace, the SDK reads the MDD file in each 
version folder. The SDK selects the corresponding driver version based on parameter values 
in the MDD file. When the SDK finds a driver with multiple versions, it takes the highest 
version as default. However, the programmer can select the required version from a drop 
box.

X-Ref Target - Figure 6-6

Figure 6-6: Source File Repository
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Chapter 6: Software Design Flow
The MDD is used to assist with the following tasks:

• Integrating custom drivers into the SDK.
• Modify existing drivers and integrate the variants into the SDK.
• Modify the BSP, such as adding new software services.

IP Blocks and Drivers

The IP blocks and drivers can be characterized as shown in Table 6-1. As can be seen in the 
table, the SDK can identify and load any driver source code for either type of IP block.

PS IP

PS IP blocks are hardware blocks that are part of the Zynq-7000 AP SoC PS. The PS includes 
several peripherals (USB, I2C, Ethernet, etc.) plus the ARM Cortex-A9 processor.

The application requires driver support to access the peripherals. Bare metal and Linux 
drivers are provided. The SDK provides pre-built bare-metal drivers and Linux kernel (Xilinx 
supported) drivers for all PS IP peripherals.

Soft IP

Soft IP blocks are hardware blocks built as part of the design and loaded into the Zynq-7000 
AP SoC PL. Some examples of soft IP blocks in the PL are VDMA, AXI-Ethernet, and third 
party IP blocks.

The application requires driver support to access the peripherals. Bare metal and Linux 
drivers are provided. Bare-metal drivers are provided by the SDK and Linux drivers are 
provided by the Linux kernel source tree from Xilinx.

The following steps must be followed so that a third-party IP driver can be used in the SDK:

• Create a driver for the IP block.
• Create the associated data definition file (MDD) and data generation file (Tcl) for use by 

the SDK. 
• Set the driver path as an external repository of the SDK project. The SDK can now 

recognize and load the driver normally.

The bare-metal driver and application development flow is shown in Figure 6-7.

Table 6-1: IP Block and Driver Combinations Supported by the SDK
Soft IP (PL) PS IP (PS)

Xilinx drivers Supported Supported

Custom drivers Supported Supported
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Chapter 6: Software Design Flow
For more information, refer to the Zynq-7000 All Programmable SoC Software Developers 
Guide (UG821) [Ref 7].

Xilinx Driver Flow

Soft IP drivers are shipped with the tool installation. The drivers can be directly imported 
into the BSP from the standard driver location.

There are two methods for modifying and using the standard drivers:

• Method 1:

° Modify the driver source code in the default driver path.

° Reload and build the BSP. This action will cause the modified driver to be loaded.
• Method 2:

° Create a driver folder structure in a local path.

° Copy the standard driver and assign a different version number.

° Modify the source code and the corresponding MDD file. 

° In the SDK, point to the local repository path so that the SDK uses the modified 
driver.

For more information on MDD parameters, refer to the “Microprocessor Driver Definition 
(MDD)” information in the Generating Basic Software Platforms: Reference Guide (UG1138) 
[Ref 24].

X-Ref Target - Figure 6-7

Figure 6-7: Bare-Metal Application Development Overview
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Chapter 6: Software Design Flow
Custom Driver Flow

Custom IP software can be in the form of libraries or drivers. The Xilinx MDD and MLD files 
provide the capabilities needed to create drivers for custom IP blocks, enabling developers 
to:

• Develop new drivers and integrate them into the SDK
• Customize existing drivers
• Customize a BSP format and folder structure tailored to the OS tool chain
• Customize the OS based on the hardware

The MLD format describes the parameters that can be used to customize libraries and 
operating systems. For more information on user-written libraries and operating systems 
that must be configured by the Libgen tool, refer to the “Microprocessor Software 
Specification (MSS)” chapter in the Generating Basic Software Platforms: Reference Guide 
(UG1138) [Ref 24].

MDD files contain directives for customizing or creating software drivers. For more 
information on the MDD format and the parameters that can be used to customize or create 
drivers, refer to the “Microprocessor Driver Definition (MDD)” chapter in the Generating 
Basic Software Platforms: Reference Guide (UG1138) [Ref 24]. 

The method for modifying and using custom drivers is the same as method two for Xilinx 
drivers, described in Xilinx Driver Flow in .

Linux Driver Development
Linux on Zynq-7000 AP SoCs requires drivers for both PS IP (peripherals) and soft IP 
(custom logic implemented in the PL). Drivers can be added to Linux as a part of the kernel 
or as loadable kernel modules. Xilinx provides a complete Linux source targeted to the 
Zynq-7000 AP SoC. For more information and to download a copy, see The Official Linux 
Kernel from Xilinx web page [Ref 100]. The Xilinx Wiki's Linux drivers page lists information 
on drivers from Xilinx. The Xilinx Wiki's Linux page also provides information on 
Linux-related offerings from Xilinx.

Xilinx releases pre-built images for Zynq-7000 AP SoC evaluation boards (ZC702, ZC706, 
and ZedBoard) with the release of Xilinx tools.
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Chapter 6: Software Design Flow
Device Tree

Information about hardware added or removed (such as an IP block in the PL) can be sent 
to the kernel using a device tree. The device tree can also be used to convey specific 
information about the hardware.

The Xilinx Wiki's build device tree page describes how to build a device tree BSP using the 
Xilinx SDK. The SDK requires the following two files when creating a device tree BSP:

• Hardware handoff files from the Vivado tools.
• Device tree files (.tcl and .mld) from the device tree release in the SDK repository.

Root File System

Xilinx provides the initial root file system for Zynq-7000 AP SoCs: ramdisk/initrd. Other 
supported file systems can be mounted on the root file system after system boot. The Xilinx 
Wiki has more information on how to build and modify the root file-system. 

Linux Kernel Debug

The Xilinx SDK's system debugger can be used for Linux kernel debug through JTAG. The 
system debugger is a heterogeneous multicore debugger that enables simultaneous debug 
of MicroBlaze and ARM cores. Processor cores can be controlled individually by the system 
debugger when the Linux kernel is running in SMP mode. PL address space can be 
debugged, and during debug PL memory space is shown in the memory view.

The SDK help has information on how to use the system debugger to debug a Linux kernel 
on a Zynq-7000 AP SoC. The SDK help also describes how Linux kernel symbol files can be 
added during debug configuration and the steps for mapping the compilation path from 
the Linux host machine to the Linux source tree in a Windows environment.

By default, when debugging using attach to running target mode, the PL registers will not 
be accessible. The environment variable HW_SERVER_ALLOW_PL_ACCESS must be set using 
the SDK shell, and the hw_server started using the following sequence:

1. Kill all running instances of hw_server.
2. Launch a terminal command prompt from the SDK and set 

HW_SERVER_ALLOW_PL_ACCESS.
3. Launch hw_server from the same shell.

Alternatively, the GDB debugger can be used for Linux kernel debug through JTAG. The ARM 
DS-5 also supports Linux kernel debug on Zynq-7000 AP SoC devices.
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Chapter 6: Software Design Flow
Application Developer
Applications are developed to run on bare metal or an operating system such as Linux or 
FreeRTOS. This section describes how applications can be developed, debugged, and 
analyzed for Linux and bare-metal platforms running on Zynq-7000 AP SoCs. Use cases are 
provided to illustrate how the SDK tools assist in developing, debugging, and analyzing the 
software application.

Bare Metal
The SDK supports software application development on the exported hardware design. The 
SDK extracts hardware information from the design exported by the Vivado tools. Based on 
that information the SDK provides a complete application development environment. 
Application development requires a board-support package, including hardware 
initialization, drivers, and a set of libraries, such as TCP/IP Stack (lwIP), and FAT File System 
(FFS).

The Xilinx SDK provides two template types:

• Hardware (PS only) templates for Zynq-7000 AP SoCs. Using this template, an 
application can be developed without creating a design with the Vivado tools. 
Templates are available for the ZC702, ZC706, ZedBoard, and MicroZed boards.

• Application templates. Predefined applications, such as hello world and an empty 
application can be generated for any hardware design using the available peripherals. 
Other applications, such as lwip, can be created with minimal effort in the SDK.

The SDK can also be used in batch mode, where you can create and build applications 
through a command line interface, without invoking the SDK IDE.

For more information, refer to the Xilinx Software Development Kit Help (UG782) [Ref 6].

The Xilinx SDK comes with a set of libraries you can use to facilitate stand-alone application 
development. For more information, see Xilinx Libraries for Stand-Alone Systems.
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Chapter 6: Software Design Flow
Use Case: Develop, Debug, and Integrate

The dialog box in Figure 6-8 shows the creation of a C/C++ application. For more 
information, refer to the SDK Help [Ref 6]: Xilinx C/C++ New Project Wizard.

After an application is created, it must be built. For more information, refer to the SDK Help 
[Ref 6]: Building Projects web page.

For more information on running and debugging applications, refer to the SDK Help [Ref 6]: 
Running, Debugging, and Profiling Projects.

X-Ref Target - Figure 6-8

Figure 6-8: C/C++ Application Dialog Box
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Chapter 6: Software Design Flow
Linux Application Developer
Linux applications use the Linux software stack, which includes the Linux kernel, libraries, 
file system, and the driver APIs.

Some of the architectural choices that affect the development of Linux applications are:

1. Symmetric multiprocessing (SMP) or asymmetric multiprocessing (AMP) system.
2. Resource sharing in AMP systems. AMP systems require memory mapping for separate 

cores. For more information, refer to the sample AMP configurations.
3. SMP system interrupt affinity.
4. Third party libraries. Refer to Libraries and Middleware, for more information. Licensing 

for open-source libraries and software used on proprietary projects should be 
considered.

5. Secure execution, such as TrustZone execution.
6. Driver support for custom IP.
7. Inter-processor communication mechanism. For more information, refer to How a 

MicroBlaze can peaceably coexist with the Zynq-7000 AP SoC [Ref 84].

For more information on architectural design considerations, see Chapter 4, Software 
Design Considerations.

Xilinx provides documents, basic software blocks, and reference designs that can be used 
during the architecture design and evaluation stage. For more information, refer to the 
Xilinx Linux wiki page [Ref 56].

Application Development Flow

The Xilinx SDK provides a set of tools and a suggested development flow for developing 
Linux applications. This is described in detail in the “Software Application Development 
Flows” chapter of the Zynq-7000 All Programmable SoC Software Developers Guide (UG821) 
[Ref 7]. 

Alternatively, in-house or third-party solutions can be used to develop Linux applications. 
The following support is required by the tools for developing applications for Zynq-7000 AP 
SoCs:

• A build system, including a cross-development tool chain on the host system.
• A Linux kernel, device tree, software stack, and libraries.
• A Zynq-7000 AP SoC Linux target or emulation platform.
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Chapter 6: Software Design Flow
Xilinx Tool Flow for Linux Application Development 

Xilinx provides Linux drivers, BSPs, and source code as a part of the PetaLinux tool flow and 
Xilinx Linux distribution. The PetaLinux flow is designed for FPGAs and devices similar to the 
Zynq-7000 AP SoC. It offers configuration and Linux deployment capabilities for the 
Zynq-7000 AP SoC, including a complete tool chain, BSPs, and Xilinx evaluation boards. For 
more information on configuring PetaLinux, refer to the Xilinx Wiki's PetaLinux page.

 PetaLinux is covered in more detail in OS and RTOS Choices.

Figure 6-9 shows the Xilinx tools used in Linux application development.

Application Development Using the Xilinx SDK

The Xilinx SDK supports development and debug of Linux applications for Zynq-7000 AP 
SoCs. It supports the ARM Linux GCC tool chain (Sourcery CodeBench Lite) and offers 
various Xilinx tools for Linux application development. The Xilinx SDK also comes bundled 
with Linux application templates and supporting libraries to help developers evaluate the 
Zynq-7000 AP SoC with minimal setup.

For more information on Linux application development flow, refer to the “Software 
Application Development Flows” chapter of the Zynq-7000 All Programmable SoC Software 
Developers Guide (UG821) [Ref 7]. 

Figure 6-10 shows how a Linux application development project can be created in SDK, 
using an OpenCV Example Application template. SDK provides the libraries required for 
OpenCV applications.

X-Ref Target - Figure 6-9

Figure 6-9: Linux Application Development using Xilinx Tools
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Chapter 6: Software Design Flow
Figure 6-11 shows how different build settings and libraries can be selected when building 
Linux applications using SDK.

SDK enables users to connect to a Zynq-7000 AP SoC Linux target using an IP address. After 
the connection is made, the application executable can be copied to the Linux target and 
run.

X-Ref Target - Figure 6-10

Figure 6-10: Creating a New Linux Application in the Xilinx SDK

X-Ref Target - Figure 6-11

Figure 6-11: Xilinx SDK Build Setting and Libraries
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Chapter 6: Software Design Flow
Linux Application Debug

Linux applications can be debugged on Zynq-7000 AP SoCs using GDB or the Xilinx system 
debugger. The Xilinx SDK also enables local-target or remote-target Linux application 
debug. Linux application debug is supported by the Xilinx SDK using gdbserver for GDB, or 
a TCF agent for the system debugger. A TCF agent process must be running on the Linux 
target to debug Linux applications using the system debugger.

Linux applications can also be developed and debugged using other IDEs, such as ARM 
DS-5. If a command-line approach is preferred, a build system developed in-house can be 
used, or one can be obtained from an OS vendor. The Zynq-7000 AP SoC ecosystem is 
supported by a variety of OS partners. A list of OS partners is can be found in OS and RTOS 
Choices.

Xilinx SDK Tools and Packages
Xilinx provides tools and software packages for developing Zynq-7000 AP SoC software. The 
development utilities are released as:

• Xilinx tools released in the SDK IDE.
• Software packages, including a bare-metal BSP and drivers, plus source code.
• Software released through Xilinx Git.

Tools Released in the Xilinx SDK
Tools and utilities released in the Xilinx SDK are described in the following sections.

X-Ref Target - Figure 6-12

Figure 6-12: Xilinx SDK Build Setting and Libraries
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Chapter 6: Software Design Flow
Boot Image Creation

The Xilinx SDK provides facilities for creating a boot image. Bootgen can stitch the 
boot-loader FSBL, the bitstream, and application executable files (including U-Boot) to 
generate a boot image file in .bin or .mcs format. The SDK also has a Create Boot Image 
wizard option for adding the partition images and creating a bootable image. For more 
information, refer to the following:

• “Creating a Zynq Boot Image for an Application” in Xilinx Software Development Kit 
Help (UG782) [Ref 6].

• “Using Bootgen” appendix (available at this link) in the Zynq-7000 All Programmable 
SoC Software Developers Guide (UG821) [Ref 7].

•  Vivado Design Suite QuickTake Video: How to Create Zynq Boot Image Using Xilinx 
SDK

Programming Utilities

Program Flash

The program flash utility allows users to download .bin and .mcs files to on-board flash 
devices. Figure 6-13 shows the flash devices supported by this utility.

Program FPGA

The PL bitstream can be programmed in different ways. One method is to use the Program 
FPGA utility in the SDK GUI.

X-Ref Target - Figure 6-13

Figure 6-13: Flash Devices Supported by the Program Flash Utility
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Chapter 6: Software Design Flow
Debuggers

The Xilinx SDK provides heterogeneous debuggers that support ARM and MicroBlaze 
debug. The debug capability is supported by the GUI and command line interface. The 
command line interface supports Tcl scripting, enabling command execution in JTAG mode. 
The following debuggers are supported by the Xilinx SDK:

• System Debugger.
• XSDB: Xilinx System Debugger (command line flow).
• XMD: Xilinx Microprocessor Debugger.
• GDB debugger.

To ensure that the MicroBlaze core is visible to the debugger, MDM must be enabled when 
creating the hardware design in Vivado. 

The SDK system debugger provides hardware-software debug features that assist in 
debugging code running on Zynq-7000 AP SoCs. The debugger also facilitates 
hardware-software cross triggers.

For more information, see Chapter 7, Debug.

Performance Analysis

Performance analysis is an important step in identifying code bottlenecks. The Xilinx SDK 
provides code profilers and a performance analyzer. For more information, see Chapter 2, 
Profiling and Partitioning.
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Chapter 6: Software Design Flow
Application Templates

Figure 6-14 shows the application templates bundled in the SDK for bare-metal 
programming.

Xilinx Git Software Solutions Release
Xilinx releases system software for Zynq-7000 AP SoCs and MicroBlaze targets on the Xilinx 
Git page. Some of the packages released on the Git page include:

1. Linux xlnx: The Xilinx Linux kernel
2. U-Boot-xlnx: The Xilinx U-Boot repository
3. Device tree: The Xilinx SDK Linux device tree generator 
4. meta-xilinx: Xilinx device and board support for Yocto/OE-core.

X-Ref Target - Figure 6-14

Figure 6-14: SDK Application Templates
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Chapter 6: Software Design Flow
Xilinx Software Development Tools
Software development tools provided by Xilinx include the SDK and the Xilinx Yocto Project.

Xilinx SDK
The Xilinx SDK is an Eclipse-based IDE and contains Xilinx tools and software packages. It 
enables embedded software development for Xilinx FPGAs and Zynq-7000 AP SoC devices. 
The SDK contains essential software packages, such as pre-defined hardware configurations 
for Xilinx evaluation boards, peripheral and IP device drivers, a bare-metal BSP repository, 
firmware with required supported libraries, and application templates. The packages are 
released with the latest source code so that they can be modified as-needed. The SDK also 
contains other tools that are used to create a boot image, program the processor, and test 
performance.

The Xilinx SDK is free and can be downloaded from https://www.xilinx.com/tools/sdk.htm.

PetaLinux

PetaLinux offers a solution for the development and deployment of Linux-based software 
on All Programmable devices. The PetaLinux tool set includes an installer, development 
tools, Linux-based BSPs for Xilinx evaluation boards, and library frameworks. The Xilinx Wiki 
contains a detailed description of PetaLinux. The wiki page also contains documentation on 
the overall Xilinx Linux offerings and Xilinx open-source software.

Xilinx Yocto Project
The Xilinx Yocto Project provides templates, tools and methods for creating custom 
Linux-based systems for embedded products built on MicroBlaze and Zynq-7000 AP SoCs. 
Included are meta files, development boards, and a QEMU emulator. The Xilinx Wiki Yocto 
page provides links to Xilinx Yocto releases. This includes meta-xilinx, a Yocto BSP layer 
supporting Linux kernel build, U-Boot and Poky distributions.

The Xilinx Yocto project also enables up-streaming of relevant drivers and software 
packages from non-Xilinx entities. Customers and OS vendors are encouraged to develop 
compliant software and upstream drivers, which helps enhance the product and overall 
Xilinx community.

For more information on the Xilinx Yocto Project, refer to the following:

• Xilinx Yocto wiki page [Ref 60]
• Yocto Project web page [Ref 104]
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Chapter 7

Debug
This chapter covers the following information about the debug methodology:

• Overview: This section provides an overview of the debug methodology for developing 
applications using a Zynq®-7000 AP SoC.

• Software-Only Debug: Embedded software debug is done using the Xilinx® Software 
Development Kit (SDK). The SDK debug perspective provides a comprehensive debug 
environment. 

• Simulation-Based Debug: Simulation emulates the final design's behavior in a software 
environment. Simulation helps verify design functionality by injecting stimulus and 
observing the output result. 

• Board Debug: After a design is implemented, it must be tested on hardware. Software 
debug of hardware can be done using the SDK tool. Debug can be useful in finding 
problems in the FPGA or fabric side. 

• Hardware and Software Co-Debug: Xilinx provides a solution allowing you to 
simultaneously debug the processing system (PS) and the peripherals in the 
programmable logic (PL).

• Virtual Platforms: Virtual platforms are software systems that mimic the behavior of 
hardware. They are fast, functional models of an embedded platform.

Because of the programmable logic (PL) density and the processor system complexity, the 
debug methodology described in this section is critical to the development of applications 
using a Zynq-7000 AP SoC.

The test and debug capability of Zynq-7000 AP SoCs combined with the ARM CoreSight 
technology enables you to debug the processing system (PS) and PL using intrusive and 
non-intrusive debug methods. Users can debug a complete system, including the PS and PL 
together. In addition to debugging software, users can debug hardware points in the PS and 
user-selected hardware points in the PL.

The test and debug capability is based on the ARM CoreSight v1.0 architecture and defines 
four classes of CoreSight technology components: access and control, trace source, trace 
link, and trace sink. Also, the Debug Access Port (DAP), which is not a CoreSight 
component, provides access to CoreSight components and other system features.
UltraFast Embedded Design Methodology Guide 202
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=202


Chapter 7: Debug
Overview
The software tools allow both intrusive and non-intrusive debug. There are break and watch 
points for intrusive debug. Non-intrusive debug is done using ARMs Program Trace 
Macrocell (PTM), which captures instruction flow. Flow is compressed by capturing only 
changes in the program flow. Data can be sent off-chip through 2 to 32 trace output port 
pins that are part of the MIO/EMIO. The other option is to load the trace data into the 
Embedded Trace Buffer (ETB) and use third-party tools to upload the trace data through 
JTAG.

Software-only debug can be done, or the Vivado® Integrated Logic Analyzer (ILA) cores can 
be added to the design for combined hardware and software debug. The PL JTAG port is 
daisy chained with the ARM Debug Access Port (DAP). The Vivado logic analyzer cores are 
accessed through the PL JTAG. ARM and third-party tools attach to the ARM Debug Access 
Port (DAP).

For more information on PS and PL debug configurations, refer to the “JTAG and DAP 
Subsystem” (available at this link) and “System Test and Debug” (available at this link) 
chapters of the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) 
[Ref 4].

PS Debug
The Zynq-7000 AP SoC PS provides the following capabilities for system-wide trace:

• Debug and trace visibility of whole systems with a single debugger connection
• Cross triggering support between SoC subsystems
• Multi-source trace in a single stream
• Higher data compression than previous solutions
• Standard programmer's models for tools support
• Automatic topology discovery
• Open interfaces for third party soft cores
• Low pin-count options
UltraFast Embedded Design Methodology Guide 203
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xSystemTestAndDebug
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xJTAGAndDAPSubsystem
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=203


Chapter 7: Debug
PL Debug
Xilinx provides the fabric trace monitor (FTM) for PL test and debug. It is based on the ARM 
CoreSight architecture, and is a component of the trace source class in the CoreSight 
system within Zynq-7000 AP SoCs. The FTM receives trace data from the PL and formats it 
into trace packets to be combined with the trace packets from other trace source 
components, such as program trace macrocell (PTM) and instrumentation trace macrocell 
(ITM). With this capability, PL events can be traced simultaneously with PS events. The FTM 
also supports cross-triggering between the PS and PL, except for the trace dumping 
feature. Also, the FTM provides general-purpose debug signals between the PS and PL.

The PL test and debug features are:

• ARM CoreSight compliant
• 32-bit trace data from the PL
• 4-bit trace ID from the PL
• Clock domain crossing between the PL and PS
• FIFO buffering for trace packets to absorb PL trace data bursts
• FIFO overflow indication by generating an overflow packet
• Trace packets are compatible with ARM trace port software and hardware
• Trigger signals to and from the PL
• General-purpose I/Os to and from the PL

Software-Only Debug
Embedded software debug is done using the Xilinx Software Development Kit (SDK). The 
SDK debug perspective provides a comprehensive debug environment. The debug window 
shows the session state, including a call stack, source code, disassembled code, process 
memory, register information, and the XMD console. Breakpoints can be set and execution 
controlled using standard debugger commands.
UltraFast Embedded Design Methodology Guide 204
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=204


Chapter 7: Debug
A typical application development and debug process overview includes the steps shown in 
Figure 7-1.

System Debugger and Target Connections
When debugging applications, the System Debugger connects to the target board through 
JTAG using the Target Communication Framework (TCF). When debug starts, the System 
Debugger runs a hardware server agent on the local host. Alternatively, it can run on a 
remote host when one machine is running the debug application and another machine is 
connected to the board, such as in a remote lab environment. The System Debugger 
target-connections window allows management of the board under debug.

System Debugger
The Xilinx System Debugger (XSDB) is the preferred software debug method for Zynq-7000 
AP SoCs. System Debugger provides heterogeneous debug of dual ARM and multiple 
MicroBlaze™ processors in the same session, on either bare metal or Linux-based systems. 
It also includes hierarchical profiling, ARM NEON library support, and the XSDB command 

X-Ref Target - Figure 7-1

Figure 7-1: Application Development and Debug Overview
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Chapter 7: Debug
interface. After a board is connected, the status of each CPU in the system can be identified. 
The debugger also provides a way to attach target applications (.elf files) to each CPU, 
assign symbols for Linux debug, view and set registers, view and set breakpoints, and 
monitor memory locations. Commands can be issued to the system through XSDB, and 
disassembled application code can be viewed using halts and breakpoints.

For more information, including how to connect to a board, refer to the Xilinx Software 
Development Kit Help (UG782) [Ref 6].

Xilinx System Debugger (Command Line)

XSDB is the command interface for loading and controlling CPUs. It can be invoked either 
from the command line or using an interactive GUI built into the SDK. It includes a Tool 
Command Language (Tcl) interface that supports scripting of repetitive or complex tasks. 
XSDB also provides ways to read registers, memory locations, and set code breakpoints. The 
XSDB supports dynamic help for command usage.

Profiling
The System Debugger in the SDK also supports code profiling that displays function call 
execution time, so that the most time-consuming parts of an application can be identified. 
Function calls can be isolated and the called sub-functions profiled, and the user can 
cross-probe to the source code for reference. Profiling can be used to determine where 
software applications might be converted into PL or DSP functions for faster system 
performance.

GNU Tool Chain Support
In addition to System Debugger, the SDK supports application debug using the GNU tool 
chain, including the GNU Debugger (GDB) and gprof for application profiling.

Drivers and BSP Debug
Software applications must link to or run on top of a software platform using the provided 
APIs. Therefore, before creating and using software applications in the SDK, a board 
support package (BSP) must be created. A board support package is a collection of libraries 
and drivers that forms the lowest layer of an application software stack.

The SDK includes a stand-alone board support package for application development. This 
package is a simple, semi-hosted, and single-threaded environment that provides basic 
features, such as standard input/output and access to processor hardware features.

Board support packages and their libraries can be configured using the SDK Board Support 
Package settings dialog box. Multiple board support packages can be created in the SDK 
workspace. This allows users to work simultaneously with different board support package 
configurations, and to re-target applications from one package to another.
UltraFast Embedded Design Methodology Guide 206
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=206


Chapter 7: Debug
Drivers can be used to create applications. The applications and drivers can be debugged 
using Xilinx System Debugger in stand-alone debug mode or attached to a running target. 
The debugger can be configured for each core, and user-selectable options can run 
initialization files before downloading and running the stand-alone application through 
JTAG.

For more information, refer to the Xilinx Software Development Kit Help (UG782) [Ref 6] and 
the Zynq-7000 All Programmable SoC Software Developers Guide (UG821) [Ref 7].

OS Debug
Xilinx System Debugger can be used in the attach-to-running-target mode for debugging 
the operating system and supporting drivers. The System Debugger configurations allow 
users to add the kernel symbol files and to provide the compilation path mapping to enable 
source-code debugging. The kernel source must be compiled with following flags set.

CONFIG_DEBUG_KERNEL=y 
CONFIG_DEBUG_INFO=y 

The debugger can also debug code running in PL address space, and the memory view 
supports PL memory space during debugging.

When debugging using attach-to-running-target mode, the default is that the PL registers 
will not be accessible. The environment variable HW_SERVER_ALLOW_PL_ACCESS needs to 
be set through the SDK shell and then the hw_server as follows:

1. Kill any instance of hw_server that is running.
2. Launch a terminal command prompt from the SDK, and set 

HW_SERVER_ALLOW_PL_ACCESS.
3. Launch hw_server from the same shell.

Alternatively, the GDB debugger can also be used for Linux kernel debugging. Like system 
debugger, GDB is a remote debugger connected to a server that translates between TCP 
and JTAG. The ARM DS-5 Development Studio also supports Linux kernel debugging for 
Zynq-7000 AP SoCs.

For more information, refer to the “Attach and Debug Linux Kernel Using Xilinx System 
Debugger” topic in the Xilinx Software Development Kit Help (UG782) [Ref 6].

Linux Application Debug
Developers can debug Linux applications by selecting the System Debugger's Linux 
application debug mode. The Xilinx SDK also enables local target or remote target debug 
for Linux applications. Linux application debug is supported by the Xilinx SDK using the TCF 
agent. A TCF agent process must be running on the Linux target to debug Linux applications 
using System Debugger.
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Chapter 7: Debug
The GDB debugger can also debug Linux applications. The remote ARM Linux application 
debugger supports debug by communicating with the gdbserver process running on the 
Zynq-7000 AP SoC target. An example System Debugger window is shown in Figure 7-2.

Developers can use IDEs other than the Xilinx SDK, such as the ARM DS-5 Development 
Studio, for Linux application development and debug. Some developers prefer using a 
command-line tool when developing Linux applications. Those developers can use tools 
built in-house or obtained from OS vendors. The Zynq-7000 AP SoC ecosystem is supported 
by a variety of OS partners. A list of OS partners is found in OS and RTOS Choices.

Trace
The Cortex-A9 includes a program trace module (PTM) that is compatible with the ARM 
CoreSight program-flow trace capabilities. This can be used on either Cortex-A9 processor 
and provides full visibility into the processor instruction flow. The Cortex-A9 PTM has 
visibility over all code branches and program flow changes with cycle-counting, enabling 
profile analysis. The PTM block and the CoreSight design kit provides the ability to 
non-obtrusively trace the execution history of multiple processors. The instruction 
execution results can be stored in an on-chip buffer, or sent off-chip using a standard trace 
interface for improved visibility during development and debug.

The ARM DS-5 Development Studio with DSTREAM supports ETB and PTM instruction trace 
functions for Zynq-7000 AP SoC devices. Lauterbach Trace32 also supports trace data from 
PTM, FTM, ETB, and AXI Monitor.

For more information on SDK software debug, refer to the following:

• Zynq-7000 All Programmable SoC Software Developers Guide (UG821) [Ref 7]
• Xilinx Software Development Kit Help (UG782) [Ref 6]

X-Ref Target - Figure 7-2

Figure 7-2: SDK System Debugger Window
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Chapter 7: Debug
Simulation-Based Debug
Simulation emulates the final design's behavior in a software environment. Simulation helps 
verify design functionality by injecting stimulus and observing the output result.

System Simulation
Zynq-7000 AP SoCs can be simulated at the RTL level using the Zynq-7000 AP SoC 
verification intellectual property (VIP). The VIP supports functional simulation of Zynq-7000 
AP SoC applications. It enables functional verification of PL by mimicking the PS-PL 
interfaces, and the PS OCM/DDR memories. The VIP is delivered as a package of encrypted 
Verilog modules. The VIP operation is controlled using a sequence of Verilog tasks 
contained in a Verilog syntax file. For more information on the Zynq-7000 AP SoC VIP, refer 
to the product specification for the Zynq-7000 All Programmable SoC Verification IP v1.0 
(DS940) [Ref 32].

If the design is created using IP integrator, the Vivado tools automatically use the 
Zynq-7000 AP SoC VIP when the design simulation files are generated. The PL logic is 
simulated using the IP RTL and the Zynq-7000 AP SoC VIP. A typical use case generates 
transactions from the PS using GP ports. This can be done using one of the Verilog tasks 
defined as part of the Zynq-7000 AP SoC VIP.

When using a PL-side DDR memory, the MIG slave interface will be connected to the 
Zynq-7000 AP SoC VIP with the AXI-interconnect. If a Micron memory module is used, the 
associated Micron simulation model must be connected to the test bench during design 
simulation.

Verifying Custom IP
Custom IP packaged using the Vivado tools can be verified using simulation and on 
hardware. When creating custom IP using the Create and Package IP feature, the Verify the 
Peripheral IP using the AXI VIP Simulation Interface option should be used. Selecting 
this option ensures that a template IP integrator design is created with AXI VIP, thus 
simulating the core functionality. The test bench used by this template design uses the API's 
defined in the AXI VIP. For more details on the AXI Verification Intellectual Property with 
respect to APIs and response codes, refer to the AXI Verification IP v1.1 Product Guide (AXI) 
(PG267) [Ref 33].

The default test bench template should be modified when testing IP cores generated by the 
CIP wizard. For more information about the process of mapping HDLs with custom IP 
templates, refer to this link in the Vivado Design Suite User Guide: Creating and Packaging 
Custom IP (UG1118) [Ref 23]. Also, if ports are exposed, the template IP integrator design 
and the template test bench must be modified accordingly before design simulation.
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Board Debug 
After a design is implemented, it must be tested on hardware. Software debug of hardware 
can be done using the SDK tool. Debug can be useful in finding problems in the FPGA or 
fabric side.

FPGA-Only Debug
The PL can be debugged using the Vivado Integrated Logic Analyzer (ILA). The ILA can be 
included in the RTL code or inserted in the PL after synthesis. It can be configured to 
monitor design interfaces and nets. A trigger condition can be specified during run-time 
that exposes a specific problem. Nets marked for debug and connected to the ILA can be 
monitored to locate the problem source.

Processor-Only Debug
The SDK is used to debug software issues. The SDK allows a user to view the code, view 
variable values, follow control flow, and set-up and analyze break points. 

Before using the SDK, the design must be exported to hardware. The export process creates 
a design directory containing files from the Vivado tools describing the hardware 
configuration. The files contain information about all design IP blocks and their memory 
map. Using this information, the SDK can create the IP drivers. Different software 
applications can be created in the SDK using the information provided by the export 
function.

After a software application has been built in the SDK, the FPGA can be programmed using 
the design bitstream and the application can be launched on the hardware. System 
Debugger can then be used to debug the software application.
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Chapter 7: Debug
Hardware and Software Co-Debug
Zynq-7000 AP SoCs give you outstanding design potential, allowing you to combine 
processor function with custom FPGA logic. With this high potential comes greater 
complexity and the need for a powerful set of tools. Xilinx provides a solution allowing you 
to simultaneously debug the PS and the peripherals in the PL.

Hardware and software co-debug is done using the Vivado ILA and the Xilinx SDK. The ILA 
enables nets to be marked for debug and analyzed. The SDK allows setting breakpoints or 
watchpoints, stepping through program execution, viewing program variables and the 
stack, and viewing system memory contents. Co-debug is used to debug system-level 
issues when the software and hardware are combined.

Cross Triggering
Embedded Cross Trigger (ECT) is the cross-triggering mechanism to debug interactions 
between hardware and software. Using ECT, a CoreSight component can interact with other 
components by sending and receiving triggers. ECT contains two components:

• CTM: Cross Trigger Matrix
• CTI: Cross Trigger Interface

Cross triggering can be used to co-debug an application running on the processor and the 
PL hardware. Vivado Hardware Manager and the SDK are used for this purpose. 
Cross-trigger ports in the Zynq-7000 AP SoC enable this feature using handshake signals 
with ILA. There are specific interfaces, TRIGGER_IN and TRIGGER_OUT, for each ARM core. 
Designers can choose either or both of the ARM cross trigger interfaces at the PS-PL 
interface. Also, the designer must use the ILA IP in the PL and set cross triggers in the SDK 
GUI. Processor software can be interrupted when a hardware trigger condition occurs and, 
similarly, hardware signals can be probed when a software breakpoint occurs. For more 
information on the procedure to set cross triggers and debug using Vivado, refer to the 
Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940) [Ref 15].

Custom IP Hardware Validation
The CIP wizard enables custom IP design template generation in IP integrator that can be 
debugged on hardware. The Create and Package IP feature provides you with the capability 
to generate an example design connecting JTAG to the custom IP using an AXI Master core. 
The design incorporates Master and Slave AXI VIPs based on the peripheral IP created and 
stitches them with the peripheral IP. After the corresponding bitstream is programmed on 
the board, you can modify the generated test vector Tcl file to test the peripheral IP 
function tested on the board. The test vector file contains a series of writes and reads that 
are used to validate the IP.
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Virtual Platforms
Virtual platforms are software systems that mimic the behavior of hardware. They are fast, 
functional models of an embedded platform. They execute the same software binaries as 
hardware and run on traditional desktops, laptops, or servers. Virtual platforms enable 
system design to be done earlier and at a higher level of abstraction. They enable software 
development to progress before hardware (board or HDL) is available. They also support 
unlimited fault injection and test, thereby catching and eliminating bugs in early 
development phases. Virtual platforms can be easier and faster to modify than hardware 
because hardware parameters can be changed quickly.

Zynq-7000 AP SoC Virtual Platform
The Zynq-7000 AP SoC virtual platform uses models of PS components found in a typical 
SoC, including:

• The Cortex-A9 MPCore processor
• Peripherals around the processor, such as UART, Ethernet, USB, CAN, and others
• Component models frequently used in the programmable fabric, such as PCIe 

technology and video

The virtual platform can connect the models to a variety of interfaces, including Ethernet, 
USB, serial console, and graphical displays.

The virtual platform enables developers to create and integrate new device models within 
the Zynq-7000 AP SoC PL. Models can also be created and integrated within the board 
containing the Zynq-7000 AP SoC. Unlike other solutions that require a hardware 
implementation of custom IP to be connected to the virtual target, the Xilinx virtual 
platform can be modified entirely in software to represent a custom hardware design.

Xilinx virtual platforms are beneficial to all stages of product development, from 
pre-architecture product definition, system design, development, integration, test, to final 
delivery. 

The benefits include:

• Time to Market 

° Early software development: Software teams can start developing device drivers 
and applications prior to hardware availability.

° Fast software development: Unlike simulators for hardware design and 
verification, the virtual platform runs fast enough to satisfy software developers.

° Smarter software development: Virtual platforms enable software developers to 
explore new techniques and tricks that can significantly reduce development time.
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Chapter 7: Debug
° No retargeting: Register and instruction-accurate models ensure that the virtual 
platform will run the same production binaries used by the hardware 
implementation, simplifying software migration to the physical platform.

° No hardware and software dependencies: The need for developers to share 
scarce development equipment is eliminated.

• Product Quality 

° Improved system design: Concurrently experiment with alternative software and 
hardware configurations to yield the best system design.

° Complete system visibility and control: Any register and memory location can be 
monitored and debugged, even at points that are inaccessible on a physical device.

° Improved testing iterations: Software and hardware can be debugged and tested 
in parallel for more comprehensive test coverage.

° Enhanced software regression testing: Nightly software builds and tests can be 
run on the virtual platform.

° Enhanced Fault injection and Metric driven verification: A virtual platform 
enables hardware fault injection, even at points that are inaccessible on a physical 
device.

Cadence Virtual System Platform
Although traditional virtual platforms enable new development approaches that result in 
changes in product design, they often fall short when product teams move from a 
development platform to their product-specific hardware. Extensible virtual platforms offer:

• Convenient, well-defined model: The Zynq-7000 SoC virtual platform is out-of-box 
ready. Software teams can use it immediately to start developing Linux, RTOS, and 
bare-metal applications.

• Extensibility: Xilinx and Cadence enable developers to extend the virtual platform with 
new devices (instantiated within the Zynq-7000 SoC programmable fabric or on the 
board) or system models. The extensible virtual platform has the flexibility and 
configurability of physical hardware. Using Cadence tools, it supports models written in 
C or System-C, as well as models written in SystemVerilog or VHDL.
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Chapter 8

SDSoC Environment
This chapter covers the following information about designing in the SDSoC environment:

• Overall Usage Flow in : You should understand the overall usage flow for using the 
SDSoc design environment, as well as supported OSs and hardware platforms.

• Profiling: SDSoC integrates profiling capabilities on top of the ones available in Xilinx® 
SDK, allowing you to profile the application without code instrumentation.

• Performance Estimation: The SDSoC environment provides tools to quickly estimate the 
performance improvement that can be expected when you identify functions for 
hardware acceleration.

• Generating and Running a Complete Software-Hardware System: After running the 
performance estimation flow, you can rebuild the system and see the actual 
performance of the generated system.

• Optimizing Performance Using C-Callable RTL IP Library: You can use the C-Callable RTL 
IP library to optimize performance.

• Optimizing IP Performance Using HLS: You can use Vivado high-level synthesis (HLS) to 
compile application code that is sent to hardware in the SDSoC environment, and then 
improve code using common strategies used by the SDSoC tool.

• Optimizing System Performance: With SDSoC, you can use various techniques to 
optimize your system performance.

• Debugging the System: SDSoC allows projects to be created and debugged using the 
SDSoC environment. SDSoC shares the debugging infrastructure and methodology 
with the Xilinx SDK System Debugger.

• Performance Measurement and Analysis: SDSoC shares many of the advanced 
system-level performance measurement and analysis capabilities with Xilinx SDK. It 
provides optional functions for measuring performance and for identifying 
performance bottlenecks.

• Expert Use Models: Expert users can override design decisions made by SDSoC.
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Chapter 8: SDSoC Environment
Introduction
SDSoC provides a C/C++ programming experience with an easy-to-use Eclipse-based 
development environment, including design tools for Zynq®-7000AP SoC development by 
software engineers and system architects. SDSoC includes a full-system optimizing C/C++ 
compiler that provides automated software acceleration in programmable logic combined 
with automated system connectivity generation between the software and the hardware.

The SDSoC programming model is designed to be intuitive to software engineers. An 
application is written as C/C++ code, with the programmer identifying a target platform 
and a subset of the functions within the application to compile into hardware. The SDSoC 
C/C++ compiler and linker then compile the application into hardware and software to 
realize the complete embedded system implemented on a Zynq device, including a 
complete boot image with firmware, operating system, and application executable. 
Figure 8-1 shows the complete system flow.

SDSoC unifies the hardware and software design flows presented in this guide into a single 
C/C++ based flow and automates many of the time-consuming tasks, especially the system 
connectivity generation and the hardware-software integration. Figure 8-2 illustrates the 

X-Ref Target - Figure 8-1

Figure 8-1: Complete C/C++ Application to Zynq System Flow with SDSoC
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Chapter 8: SDSoC Environment
difference between the traditional hardware-software design flow and the design flow 
using SDSoC. By automating many of the design tasks, SDSoC enables a software engineer 
and system architect to quickly implement an application and perform rapid design 
iteration.

The hardware/software interface is defined by the interactions and data flow among 
functions mapped to hardware and the rest of the program. Each function mapped to 
hardware runs as an independent thread, but the compiler ensures that the program 
semantics are preserved. Rather than recoding an application to invoke device drivers for 
each hardware function, SDSoC compiler automatically maps the original application onto 
the generated hardware system using its own library of efficient data movers to 
communicate data between the processing system and the programmable logic. 

The easiest way to understand the mapping is to realize that the SDSoC compiler analyzes 
the program structure and its data flow and generates a hardware and software system that 
efficiently implements the program's data flow, including optimizations to communicate 
data directly from one hardware block to another, rather than always going through the 
processing system main memory.

Applications can link with C-callable IP libraries to support IP reuse. When application code 
links with C-callable libraries provided as part of the platform, the interface to these 
libraries essentially encapsulates the platform-specific portions of the application. In this 
way, applications can achieve considerable portability across platforms.

Overall Usage Flow
Figure 8-3 shows the overall usage flow using the SDSoC design environment. For a given 
user application, the first step is to identify the compute-intensive parts of the application 
using profiling or by other means. These parts should either be already present or 
refactored into functions. In the SDSoC design environment, these functions can then be 
assigned to hardware. SDSoC supports a fast performance estimation without generating 

X-Ref Target - Figure 8-2

Figure 8-2: The Traditional Design Flow(a) and the Design Flow with SDSoC (b)
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Chapter 8: SDSoC Environment
full bit-stream to enable rapid design optimization. Based on the performance estimation, 
optimizations can be done with the following goals:

• To migrate more computation to hardware
• To optimize the performance of functions moved to hardware; for example, using 

high-level synthesis (HLS) pragmas
• To optimize the data transfer performance between the processing system and 

programmable logic; for example, using different data movers or different memory 
allocation
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Chapter 8: SDSoC Environment
After achieving the desired performance, SDSoC can generate the SD card image for the full 
system to run the application on the target platform. Based on running the generated 
system, further optimizations can be done.
X-Ref Target - Figure 8-3

Figure 8-3: SDSoC User Flow
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Chapter 8: SDSoC Environment
By default, SDSoC targets the Linux operating system. The SD card image that is generated 
includes the Linux kernel, file system, and user application. SDSoC also supports FreeRTOS 
and a standalone (bare metal) mode as choices of OS. For FreeRTOS and standalone, the 
user application is compiled with support from Xilinx Standalone system (LibXil). For more 
details on options to control the OS choice, refer to the SDSoC Environment User Guide 
(UG1027) [Ref 26] and the SDSoC Environment Tutorial: Introduction (UG1028) [Ref 27].

SDSoC comes with support for a few hardware platforms out of the box. This list of 
supported platforms includes popular boards such as ZC702, ZC706, Zed board, and 
MicroZed. You can select the target platform for an application either in SDK while setting 
up the project, or by specifying the -sds-pf command line option within a Makefile. You 
can view the list of all available platforms by running the command line tool sdscc with the 
option -sds-pf-list. 

SDSoC also allows users and third-parties to generate platforms starting with their own 
Vivado designs. Such platforms can be selected by pointing to the top-level platform 
directory either in SDK or the command line. For more details on creating SDSoC platforms, 
refer to the SDSoC Environment Platform Development Guide (UG1146) [Ref 28].

Profiling
The importance of performance analysis and profiling has been well documented in 
previous chapters. SDSoC integrates those principles through hooks and features inside the 
tool. Profiling capabilities build on top of the ones in Xilinx SDK, and therefore, application 
developers can use the non-intrusive TCF profiler to profile the application without any 
code instrumentation. Based on the profile information, a first pass at moving functions to 
hardware can be started. For more details, refer to Chapter 6, Software Design Flow.

SDSoC also supports the standard Eclipse based tools, such as gprof, for profiling the user 
application; refer to Chapter 7, Debug for references. An SDSoC user can modify the build 
properties of the application and select the –pg and –g1 options to obtain the profiling 
information. Once these options are selected, the user can build the project and execute it 
on the board to obtain the profile information file (gmon.out). The SDSoC environment 
includes the standard Eclipse-based graphical view of the gmon.out file, which shows a 
hierarchical view of functions with the percentage of time spent in each of them.
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Chapter 8: SDSoC Environment
Performance Estimation
After functions have been identified for hardware acceleration, the SDSoC environment 
provides tools to quickly estimate the performance improvement that can be expected by 
these choices. For example, a full build cycle for a typical application might take 40 minutes, 
whereas the performance estimation flow can give an estimate of the application speedup 
in the order of minutes. The performance estimation flow can be run by changing the build 
configuration to “SDEstimate” and building the project. More details on this flow can be 
found in SDSoC Environment User Guide (UG1027) [Ref 26] and the SDSoC Environment 
Tutorial: Introduction (UG1028) [Ref 27].

Generating and Running a Complete 
Software-Hardware System
Once you are satisfied with the estimated performance obtained by performing iterations 
using the performance estimation flow, you can change the build configuration to 
“SDRelease” and rebuild the project. You can also copy the generated SD card image to an 
SD card and run on the board to see the actual performance of the generated system.

Optimizing Performance Using C-Callable RTL IP 
Library
As described in Introduction, the data flow defined by a software application can be 
automatically mapped onto hardware and software in an application-specific SoC. The 
SDSoC compiler maps and schedules operations onto hardware functions based on 
program data flow. An application can also link to a library that provides a function call 
mapping onto an IP block defined in a hardware description language like Verilog. From the 
point of view of the application code and the SDSoC compiler, the scheduling and mapping 
are identical whether the function is synthesized at compile time using HLS or mapped onto 
an HDL IP block. Any call to a hardware function will be mapped into hardware by the 
SDSoC compiler.

A traditional “software driver” approach to targeting an IP block peripheral typically 
exposes only the control interface; the hardware system captures the data flow. Using a 
full-system compiler like SDSoC, application code can instead directly invoke the data 
processing functions as it would any other functional library. The data transport, such as 
using DMA, is abstracted and automatically invoked to implement the function call 
efficiently.
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Chapter 8: SDSoC Environment
For more information, refer to the SDSoC Environment Platform Development Guide 
(UG1146) [Ref 28].

Optimizing IP Performance Using HLS
The application code that is sent to hardware in the SDSoC environment is compiled 
through the Vivado high-level synthesis (HLS) compiler. This is described in Chapter 5, 
Hardware Design Flow. Several optimization strategies are presented in the Vivado Design 
Suite User Guide: High-Level Synthesis (UG902) [Ref 9]. Some common strategies to improve 
code are used by the SDSoC tool, such as adding a pragma for enabling pipelining before 
a compute intensive loop and increasing the memory bandwidth for the inner loop by 
specifying the array_partition pragma for the variables accessed inside the inner loop. For 
more high-level details for optimization strategies, refer to SDSoC Environment User Guide 
(UG1027) [Ref 26].

Optimizing System Performance
System performance improvements through acceleration is one of the key principles 
integrated in the SDSoC. Chapter 2, System Level Considerations and Chapter 3, Hardware 
Design Considerations touched upon the different ways to improve performance from both 
Software and Hardware perspective. This section describes some additional techniques 
used by SDSoC and how the it implements some of the previously described techniques 
such as storing data in system memory and data pipelining.

Using Physically Contiguous Memory
The SDSoC system-optimizing compiler incorporates memory allocation trade-offs in 
software and hardware functions. On Linux based systems, memory allocated by malloc() 
is paged. The kernel keeps track of the pages for the user and presents a unified view to the 
user application. However, when memory allocated by malloc() is transferred to the 
accelerator, there is a performance penalty to collect individual pages and transfer them 
using the scatter-gather mode in the AXI-DMA. SDSoC provides a user-accessible function 
sds_alloc(), which behaves like malloc() but allocates physically contiguous memory. 
This results in faster performance when using data movers like scatter-gather DMA, but it 
also allows SDSoC to choose data movers like simple-mode of the AXI-DMA with 
significantly better performance due to lower overhead. 
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Chapter 8: SDSoC Environment
Using Local Caches and Streaming Data
The data transferred to the code compiled through Vivado HLS can be sent once to reside 
in BRAMs in the programmable logic for the duration of the computation, if the amount of 
data is small. If the data is too large to fit in BRAMs in the programmable logic, or if it is not 
used multiple times during the computation, then it can be sent as a datastream to the 
generated accelerator. You can control these choices for caching or streaming data being 
transferred between the processor and accelerator, as detailed in the SDSoC Environment 
User Guide (UG1027) [Ref 26].

Using Shared Memory
Instead of transferring data from the processor's memory to the accelerator's local memory 
or streaming it through the accelerator, it is also possible for the processor and accelerator 
to access a common region of shared memory. You can achieve this by adding code 
pragmas to the function that is mapped to hardware. Using this technique requires the user 
application to allocate the memory using sds_alloc() instead of malloc(). More 
details about this can be found in the SDSoC Environment User Guide (UG1027) [Ref 26].

Using Direct Accelerator-Accelerator Data Transfers
If multiple functions are selected for hardware acceleration, the SDSoC environment can 
automatically pipeline them. This means that it passes the data transferred between them 
directly in hardware, without copying it to the processor first, so long as there is no use on 
the processor side.

Using Multiple Instances of the Same Hardware Function
Multiple calls from a single source location to a function mapped to hardware are mapped 
to a single accelerator. However, SDSoC provides an async code pragma, which directs the 
compiler to generate multiple accelerator instances to improve the performance of the 
application by processing more data in parallel.

Pipelining Data Communication with Computation
Multiple successive calls to an accelerator can be pipelined by the SDSoC compiler under 
user pragma control. This allows the overlap of accelerator computation with the data 
transfer of the subsequent call to the accelerator. Consider Figure 8-4, which shows 
sequential calls to an accelerator with two inputs and one output.
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Figure 8-5 shows two calls to the same accelerator executing in a pipelined fashion. 
Multiple buffers, automatically inserted by the compiler, are used so that the data transfer 
for the second call can start as soon as the data transfer for the first call is done. This is 
achieved in the SDSoC environment by using the async pragma as described in Chapter 7 
of the SDSoC Environment User Guide (UG1027) [Ref 26]. 

Debugging the System
SDSoC shares the debugging infrastructure and methodology with the Xilinx SDK System 
Debugger, including enhancements to support debugging applications for the standalone 
platform and having the ability to look into IP registers in the physical address space. Refer 
to Chapter 6, Software Design Flow.

SDSoC allows projects to be created and debugged using the SDSoC IDE. Projects can also 
be created outside the SDSoC IDE using user-created Makefiles and debugged either on the 
command line or using the SDSoC IDE. For details about debugging, refer to the SDSoC 
Environment User Guide (UG1027) [Ref 26] and the SDSoC Environment Tutorial: Introduction 
(UG1028) [Ref 27].

X-Ref Target - Figure 8-4

Figure 8-4: Sequential Execution of Calls to the Accelerator

X-Ref Target - Figure 8-5

Figure 8-5: Pipelined Execution of Calls to the Accelerator
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Performance Measurement and Analysis
For simple performance measurement and to identify performance bottlenecks, SDSoC 
provides the function sds_clock_counter(), which returns a cycle-accurate timestamp 
from a free-running counter in hardware. You can use this counter to instrument your code 
and collect performance data. You also have access to Vivado_HLS reports under the _sds 
folder in the build directory, from which you can gain more insight about the generated 
hardware and changes you could make to improve performance.

SDSoC shares many of the advanced system-level performance measurement and analysis 
capabilities with Xilinx SDK; refer to Chapter 6, Software Design Flow. The SDSoC compiler 
optionally inserts an AXI Performance Monitor (APM) into the generated system to monitor 
traffic between the Zynq device Programming Logic (PL) and Processing System (PS). By 
observing activity at the PS/PL boundary using the APM, a designer can determine whether 
a system is saturating the capacity of a particular resource, such as the cache-coherent ACP 
port. 

A hardware function observing an idle data transport interface for long periods between 
computations might indicate a compute-bound system that would benefit from accelerator 
micro-architecture optimization to increase throughput and decrease latency. Conversely, a 
data transport interface that is saturated might indicate a situation where traffic can be 
redirected to other available transport interfaces on the PS. For more information, refer to 
the Xilinx Software Development Kit (SDK) User Guide: System Performance Analysis 
(UG1145) [Ref 25].

Expert Use Models
You can override every design decision made by SDSoC as needed, either by inserting 
pragmas into application code or by using IDE/command-line parameters. 

Specific controls for more advanced users provide the following capabilities.

• Data mover selection: To control the mapping of data transfers on to different IP 
blocks, such as simple mode DMA, scatter-gather DMA, and 2-D DMA.

• Zynq-7000AP SoC processing system interfaces to CPU and DDR selection: To control 
the mapping onto cache-coherent or high-throughput AXI interfaces.

• Hardware function "port" interface selections: To control the hardware interfaces on 
hardware accelerator; for example, as  "shared memory" between hardware function 
and controlling software thread, or as "copy-in, copy-out" for caching data in local 
BRAMs.

• Run-time variable size data transfers: For transfers that obey "copy-in, copy-out" 
semantics, limiting transfer sizes when possible can improve system performance.
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• Hardware function microarchitecture using Vivado HLS: For compute-bound systems, 
you can employ Vivado HLS pragmas and directives to improve throughput and latency.

• Blocking vs. non-blocking function invocation: By default, functions preserve the 
original function call semantics, but you can instruct the compiler, using pragmas in the 
code, to return control "immediately", such as, to implement software task pipelining.

• Mapping subsets of hardware functions into different bitstreams that the application 
will time-multiplex during run-time: To time multiplex the programmable logic fabric to 
realize more hardware functions than can fit in the target device concurrently.

For more details regarding each of these controls, refer to the “SDSoC Pragma 
Specification” section in the SDSoC Environment User Guide (UG1027) [Ref 26].

Advanced users, hardware designers, and system software teams might want to build their 
own SDSoC platform, including partial hardware design and software components like OS, 
drivers, file system, and libraries. They can also package their own HDL IP as C-callable IP 
libraries. There is a well-defined, low-overhead methodology for exporting a Vivado 
hardware system to support SDSoC, as well as to create C-callable libraries for HDL IPs. For 
more information, refer to the SDSoC Environment Platform Development Guide (UG1146) 
[Ref 28].

SDSoC is a tool that brings a lot of techniques described in earlier chapters under one 
umbrella to aid you in effectively architecting, designing, and debugging a system. It 
provides a means to implement methodology principles described earlier and also 
highlights new principles that become visible when seen under one umbrella. The biggest 
benefits of the tool are reaped by the Software designer. This is a must have in a Software 
designer's toolbox to accelerate development of systems with hardware components.
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Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx 
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual 
property at all stages of the design cycle. Topics include design assistance, advisories, and 
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support 
resources, which you can filter and search to find information. To open the Xilinx 
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other 
topics, which you can use to learn key concepts and address frequently asked questions. To 
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page 
on the Xilinx website.
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Xilinx Documentation Navigator
The Xilinx Documentation Navigator is a free tool that you can use to access documentation 
while using Xilinx products. The Documentation Navigator is available as part of the Vivado 
Installer. When it is installed on your system, you can access it by going to Start > Programs 
> Xilinx Design Tools > DocNav and clicking the DocNav icon.

For detailed information about using the Xilinx Documentation Navigator, refer to this link 
in Vivado Design Suite User Guide: Getting Started (UG910) [Ref 11].

Related Design Hubs
Design hubs provide quick access to documentation, training, and information for specific 
design tasks. The following design hubs are applicable to embedded development and the 
methods described in this guide:

• Partial Reconfiguration Design Hub
• Software Development Kit (SDK) Design Hub

References
The references below provide additional information.

Xilinx User and Reference Guides
1. 7 Series FPGAs Clocking Resources (UG472)
2. 7 Series FPGAs GTX/GTH Transceivers (UG476)
3. 7 Series FPGAs GTP Transceivers (UG482)
4. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)
5. OS and Libraries Document Collection (UG643)
6. Xilinx Software Development Kit Help (UG782)
7. Zynq-7000 All Programmable SoC Software Developers Guide (UG821)
8. ZC702 Evaluation Board for the Zynq-7000 XC7X020 All Programmable SoC User Guide 

(UG850)
9. Vivado Design Suite User Guide: High-Level Synthesis (UG902)
10. Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)
11. Vivado Design Suite User Guide: Getting Started (UG910)
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12. AXI Interface Based KC705 Embedded Kit MicroBlaze Processor Subsystem Software 
Tutorial (UG915)

13. Zynq-7000 All Programmable SoC ZC702 Base Targeted Reference Design (Vivado Design 
Suite 2014.2) User Guide (UG925)

14. Zynq-7000 All Programmable SoC PCB Design Guide (UG933)
15. Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940)
16. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)
17. PetaLinux Tools User Guide: Zynq All Programmable SoC Linux-FreeRTOS AMP Guide 

(UG978)
18. Vivado Design Suite User Guide: Embedded Processor Hardware Design (UG898)
19. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
20. Programming ARM TrustZone Architecture on the Xilinx Zynq-7000 All Programmable SoC 

User Guide (UG1019)
21. Zynq-7000 All Programmable SoC Secure Boot Getting Started Guide (UG1025)
22. Embedded System Tools Reference Manual (UG1043)
23. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)
24. Generating Basic Software Platforms Reference Guide (UG1138)
25. Xilinx Software Development Kit (SDK) User Guide: System Performance Analysis 

(UG1145)

SDSoC Documentation

26. SDSoC Environment User Guide (UG1027)
27. SDSoC Environment Tutorial: Introduction (UG1028)
28. SDSoC Environment Platform Development Guide (UG1146)
29. SDSoC Environment Optimization Guide (UG1235)

Other Xilinx References

Data Sheets

30. Zynq-7000 All Programmable SoC (Z-7007S, Z-7012S, Z-7014S, Z-7010, Z-7015, and 
Z-7020): DC and AC Switching Characteristics (DS187)

31. Zynq-7000 All Programmable SoC Overview (DS190)
32. Zynq-7000 All Programmable SoC Verification IP v1.0 (DS940)
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Product Guides

33. AXI Verification IP v1.1 Product Guide (AXI) (PG267)

White Papers

34. Get Smart about Reset: Think Local, Not Global Whitepaper (WP272)
35. Secure Boot in the Zynq-7000 All Programmable SoC (WP426)

Application Notes

36. Designing High-Performance Video Systems with the Zynq-7000 All Programmable SoC 
(XAPP792)

37. LightWeight IP (lwIP) Application Examples (XAPP1026)
38. Simple AMP Running Linux and Bare-Metal System on Both Zynq-7000 AP SoC Processors 

(XAPP1078)
39. Simple AMP: Bare-Metal System Running on Both Cortex-A9 Processors (XAPP1079)
40. PS and PL Ethernet Performance and Jumbo Frame Support with PL Ethernet in the 

Zynq-7000 AP SoC (XAPP1082)
41. Using the Zynq-7000 Processing System (PS) to Xilinx Analog to Digital Converter (XADC) 

Dedicated Interface to Implement System Monitoring and External Channel 
Measurements (XAPP1172)

42. Secure Boot of Zynq-7000 All Programmable SoC (XAPP1175)
43. System Monitoring Using the Zynq-7000 AP SoC Processing System with the XADC AXI 

Interface (XAPP1182)
44. Zynq-7000 Platform Software Development Using the ARM DS-5 Toolchain (XAPP1185)

Web Pages

45.  AXI Performance Monitor web page
46.  AXI Timer/Counter web page
47.  LogiCORE™ AXI Traffic Generator web page
48.  Xilinx Security Solutions web page
49.  Xilinx Zynq-7000 AP SoC Ecosystem web page
50.  Xilinx PetaLinux Tools web page
UltraFast Embedded Design Methodology Guide 229
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_vip;v=latest;d=pg267-axi-vip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp272.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp426-zynq-7000-secure-boot.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp792-high-performance-video-zynq.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1026.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1078-amp-linux-bare-metal.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1079-amp-bare-metal-cortex-a9.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1082-zynq-eth.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1172_zynq_ps_xadc.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1175_zynq_secure_boot.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1182_zynq_axi_xadc_mon.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1185-Zynq-software-development-with-DS-5.pdf
https://www.xilinx.com/products/intellectual-property/axi_perf_mon.htm
https://www.xilinx.com/products/intellectual-property/axi_timer.htm
https://www.xilinx.com/products/intellectual-property/axi_tg.htm
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000/security.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000/ecosystem/index.htm
https://www.xilinx.com/tools/petalinux-sdk.htm
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=229


Appendix A: Additional Resources and Legal Notices
Wiki Pages

51.  K7 Embedded TRD 2013.2 wiki page
52.  Xilinx Linux Drivers wiki page
53.  Xilinx Linux GPIO driver wiki page
54.  Xilinx Linux I2C driver wiki page
55.  Xilinx Linux SPI driver wiki page
56.  Xilinx Linux wiki page
57.  Xilinx Multi-OS Support wiki page
58.  Xilinx PetaLinux wiki page
59.  Xilinx U-Boot wiki page
60.  Xilinx Yocto wiki page
61.  Zynq-7000 AP SoC Boot - Booting and Running Without External Memory Tech Tip wiki 

page
62.  Zynq-7000 AP SoC Boot - Locking and Executing out of L2 Cache Tech Tip wiki page
63.  Zynq-7000 AP SoC Low Power Techniques part 1 - Installing and Running the Power 

Demo Tech Tip wiki page
64.  Xilinx Zynq-7000 AP SoC Spectrum Analyzer part 2-Building ARM NEON Library Tech Tip
65.  Xilinx Zynq Linux wiki page
66.  Xilinx Zynq Power Management wiki page

Answer Records

67.  Xilinx Answer Record 46778
68.  Xilinx Answer Record 47511
69.  Xilinx Answer Record 50991
70.  Xilinx Answer Record 52847
71.  Xilinx Answer Record 55572
72.  Xilinx Answer Record 57744
73.  Xilinx Answer Record 58387
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Information from Other Companies
74. ARM DS-5 Development Studio Streamline Performance Analyzer documentation: 

http://ds.arm.com/ds-5/optimize
75. ARM Infocenter Accelerator Coherency Port web page: 

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CACGGBCF.ht
ml

76. ARM Security Technology: Building a Secure System using TrustZone® Technology: 
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC
-009492C_trustzone_security_whitepaper.pdf

77. Cortex-A9 Technical Reference Manual: 
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388e/DDI0388E_cortex_a9_r2p
0_trm.pdf

78. Design Calculations for Robust I2C Communications: 
http://www.edn.com/design/analog/4371297/Design-calculations-for-robust-I2C-communic
ations

79. Discretix: http://www.discretix.com/
80. ENEA Software AB Solutions: http://www.enea.com/solutions/
81. eSOL Embedded Engineering and Enabling Solution: http://www.esol.com/
82. Express Logic ThreadX RTOS: http://rtos.com/products/threadx/xilinx_arm
83. GreenHills INTEGRITY RTOS: http://www.ghs.com/products/xilinx_zynq.html
84. How a MicroBlaze can peaceably coexist with the Zynq-7000 AP SoC: 

http://www.eetimes.com/document.asp?doc_id=1280680
85. IAR Integrated Solutions Partner Program: 

http://www.iar.com/Products/RTOS/Integrated-RTOSes/
86. iVeia Adeneo Embedded Board Support Packages: 

http://www.adeneo-embedded.com/Products/Board-Support-Packages
87. Mentor Graphics Nucleus RTOS: 

http://www.mentor.com/embedded-software/nucleus/?sfm=auto_suggest
88. Micrium µC/OS RTOS: http://micrium.com/products/
89. MontaVista Carrier Grade Edition 7: 

http://www.mvista.com/product-carrier-grade-edition7.html
90. PCA9548A Low Voltage 8-Channel I2C Switch With Reset: 

http://www.ti.com/lit/ds/symlink/pca9548a.pdf
91. SD Association, Latest Simplified Specifications: 

https://www.sdcard.org/downloads/pls/simplified_specs/
92. Open Kernel Labs OKL4 Microvisor: http://www.ok-labs.com/products/okl4-microvisor
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93. QNX Neutrino RTOS: 
http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html#overview|

94. Quadros RTOS: http://www.quadros.com/products/operating-systems
95. Real Time Engineers FreeRTOS Interactive webpage: 

http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freert
os.org/entries/23277857-Updated-Xilinx-FreeRTOS-port-for-Zynq-to-SDK-14-4-release

96. Sciopta RTOS: http://www.sciopta.com/news/ZYNQ-7000.html
97. Sierraware Hypervisor and SierraTEE Trusted Execution Environment: 

http://www.sierraware.com/arm_hypervisor.html
98. SYSGO PikeOS BSPs for ZC702, Zed, and Zynq-7000 All Programmable SoC BSP: 

http://www.sysgo.com/products/board-support-packages/pikeos-bsp-list/
99. SYSGO PikeOS Product Information: 

http://www.sysgo.com/news-events/press/press/details/article/sysgos-certified-pikeos
-supports-xilinxs-zynq-7000-all-programmable-soc/

100.The Official Linux Kernel from Xilinx webpage: https://github.com/Xilinx/linux-xlnx
101.Timesys LinuxLink: http://www.timesys.com/embedded-linux/linuxlink
102.Wind River VxWorks, Linux, and Workbench IDE: http://www.windriver.com/
103.Xilinx XC702 DS-5 Getting Connected Guide: 

http://www.arm.com/files/pdf/zc702_ds5_2.pdf
104.Yocto Project webpage: http://git.yoctoproject.org/cgit/cgit.cgi/meta-xilinx/about/

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more 
about the concepts presented in this document. Use these links to explore related videos:

1.  Vivado Design Suite QuickTake Video: How to Create a Zynq Boot Image Using Xilinx 
SDK

2. Vivado Design Suite QuickTake Video Tutorials
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Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the 
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS 
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF 
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether 
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related 
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, 
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a 
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised 
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of 
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials 
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to 
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and 
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use 
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical 
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF 
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A 
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY 
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY 
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY 
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT 
LIABILITY.
© Copyright 2014-2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated 
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of 
their respective owners.
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