
UltraFast Embedded
Design Methodology
Guide

UG1046 (v2.3) April 20, 2018

UltraFast Embedded Design Methodology Guide 2
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Date Version Revision
04/20/2018 2.3 • Added a note in the Overview section of Chapter 5.

• Replaced BFM terminology with VIP across the user guide.
07/27/2017 2.2 • Vivado IDE updates and minor editorial changes.
04/22/2015 2.1 • Added Embedded Design Methodology Checklist.

• Added Accessing Documentation and Training.
03/26/2015 2.0 • Added SDSoC Environment.

• Added Related Design Hubs.
10/20/2014 1.1 • Removed outdated information.

• In System Level Considerations, added information to the following sections:
° Performance
° Clocking and Reset

10/08/2014 1.0 Initial Release of document.

Send Feedback

https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=2

Table of Contents
Chapter 1: Introduction

Embedded Design Methodology Checklist. 9
Accessing Documentation and Training . 10

Chapter 2: System Level Considerations
Performance. 13
Power Consumption . 18
Clocking and Reset . 36
Interrupts . 41
Embedded Device Security . 45
Profiling and Partitioning . 51

Chapter 3: Hardware Design Considerations
Configuration and Boot Devices . 63
Memory Interfaces . 69
Peripherals . 76
Designing IP Blocks . 94
Hardware Performance Considerations . 102
Dataflow . 108
PL Clocking Methodology . 112
ACP and Cache Coherency. 116
PL High-Performance Port Access . 120
System Management Hardware Assistance. 124
Managing Hardware Reconfiguration . 127
GPs and Direct PL Access from APU . 133

Chapter 4: Software Design Considerations
Processor Configuration . 137
OS and RTOS Choices . 142
Libraries and Middleware . 152
Boot Loaders . 156
Software Development Tools . 162
UltraFast Embedded Design Methodology Guide 3
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=3

Chapter 5: Hardware Design Flow
Overview . 171
Using the Vivado IDE to Build IP Subsystems. 171
Rule-Based Connection . 173
Creating Hierarchical IP Subsystems. 173
Board Window . 173
Generating Block Designs . 174
Creating and Packaging IP for Reuse . 174
Creating Custom Interfaces . 176
Managing Custom IP . 176
Vivado High-Level Synthesis (HLS) . 177
Summary. 178

Chapter 6: Software Design Flow
Board Bring-Up Development . 181
Driver Development . 184
Application Developer . 192
Xilinx SDK Tools and Packages . 197
Xilinx Software Development Tools . 201

Chapter 7: Debug
Overview . 203
Software-Only Debug . 204
Simulation-Based Debug . 209
Board Debug. 210
Hardware and Software Co-Debug . 211
Virtual Platforms . 212

Chapter 8: SDSoC Environment
Introduction . 215
Overall Usage Flow . 216
Profiling . 219
Performance Estimation . 220
Generating and Running a Complete Software-Hardware System . 220
Optimizing Performance Using C-Callable RTL IP Library . 220
Optimizing IP Performance Using HLS . 221
Optimizing System Performance . 221
Debugging the System . 223
Performance Measurement and Analysis . 224
Expert Use Models . 224
UltraFast Embedded Design Methodology Guide 4
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=4

Appendix A: Additional Resources and Legal Notices
Xilinx Resources . 226
Solution Centers. 226
Documentation Navigator and Design Hubs . 226
Xilinx Documentation Navigator. 227
References . 227
Training Resources. 232
Please Read: Important Legal Notices . 233
UltraFast Embedded Design Methodology Guide 5
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=5

Chapter 1

Introduction
With the introduction of an All Programmable SoC product, Xilinx provides designers a
powerful way to build smarter systems quickly, effectively, and reliably. Smarter systems are
typically associated with increased complexity. This is both a benefit and a challenge. It is a
benefit because customers can create products that were previously impossible or
incredibly difficult to build. It is a challenge because product complexity increases the
importance of making good design decisions, particularly early in the product life cycle. The
interplay of system software, applications, and hardware requires new ways of thinking
about and solving system level problems. Xilinx has addressed the challenge by providing
customers with a comprehensive tool box, including software tools, user guides, reference
manuals and reference designs, to help accelerate product development with All
Programmable SoCs.

A typical embedded development team consists of system architects, software engineers,
and hardware engineers. Each team member often starts a design with familiar tools, and
this approach has typically worked for embedded development projects in the past.
However, the broad capabilities of the All Programmable SoC can cause problems for a
development team that does not consider the development approach up front. To make
teams more effective, Xilinx has created this methodology guide for embedded system
developers. This guide complements the UltraFast Design Methodology Guide for the Vivado
Design Suite (UG949) [Ref 16], targeted primarily at FPGA designers.

The term methodology can mean different things to different people. Flow charts, methods,
principles, rules, and policies are among several possible themes. This methodology guide
does not illustrate a step-by-step process for success. Instead, the goal is to equip
designers with information and guidance on designing embedded systems so that they can
make informed decisions when using the tool box. Some content applies generally to
embedded systems, while other content is specific to the Xilinx® All-Programmable SoC
products. The content is a reflection of user experiences and learning gained from system
development inside and outside of Xilinx. The content covers key principles, specific do's
and don'ts, best practices, and avoiding pitfalls. In some topics, use cases are provided to
illustrate concepts.
UltraFast Embedded Design Methodology Guide 6
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=6

Chapter 1: Introduction
This guide is organized around important functional areas that map to specific skill sets
within development teams. The sections are:

• System Level Considerations
• Hardware Design Considerations
• Software Design Considerations
• Hardware Design Flow
• Software Design Flow
• Debug
• SDSoC Environment

A typical mapping of chapter relevance to team members is shown in Table 1-1. However, it
is recommended that the entire team read the complete methodology guide before
beginning development. It is beneficial to understand the challenges described and
guidance provided in other chapters, even if the content is outside the engineer's direct
area of responsibility. The line between software engineers and hardware engineers is
continuing to blur, and engineers should reach beyond their primary responsibilities to
effectively work with the entire team. For example, a software engineer needs to understand
how the underlying hardware works, while a hardware engineer should understand the
software implications of hardware decisions that are made.

Typically, embedded design is done in the order listed in this guide–starting with
system-level design and ending with test and debug. The chapters are written such that
they can be read in any particular order. This is demonstrated in Figure 1-1, showing the
interdependencies between the chapters in this guide.

Table 1-1: Chapters Relevant to Design Team Members

Book Chapters System
Architects

Hardware
Designers

Software
Designers

System Level Considerations X X X

Hardware Design Considerations X X

Software Design Considerations X X

Hardware Design Flow X

Software Design Flow X

Debug X X

SDSoC Environment X
UltraFast Embedded Design Methodology Guide 7
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=7

Chapter 1: Introduction
Note: SDSoC Environment is not shown in Figure 1-1 because it is a tool that aids the user in
building a system using all of the principles and methodologies described in Chapters 2-7.
Additionally, Chapter 8 describes recommendations specific to the SDSoC flow.

After reading this guide, designers will be able to navigate the various tools and collateral
provided by Xilinx in a more informed and effective manner. The key takeaways in each
topic area should enable a designer to read the All-Programmable SoC detailed
documentation with greater understanding.

Users who are familiar with the Zynq-7000 All Programmable SoC Technical Reference
Manual (UG585) [Ref 4] and the Zynq-7000 All Programmable SoC Software Developers
Guide (UG821) [Ref 7] will benefit from reading this guide first.

Readers unfamiliar with the Zynq®-7000 AP SoC architecture should refer to the Zynq-7000
All Programmable SoC Overview (DS190) [Ref 31] for more information. Overall, this guide
enables an Embedded Design team to quickly assess trade-offs and avoid bottlenecks and
problems, thereby enabling the team to make the right decisions for successful embedded
system development.

X-Ref Target - Figure 1-1

Figure 1-1: Interdependence of Methodology Guide Chapters

System Level

Considerations

Debug

Hardware Design

Consideration

Software Design

Consideration

Vivado Design

Suite Hardware

Design Flow

Software Design

Flow Overview

X14202-

073117
UltraFast Embedded Design Methodology Guide 8
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=8

Chapter 1: Introduction
Embedded Design Methodology Checklist
To take full advantage of the UltraFast Embedded Design Methodology, Xilinx recommends
that you use this guide along with the Embedded Design Methodology Checklist. The
checklist includes common questions and recommended actions to consider during the
design process, starting with planning and continuing through all subsequent stages of
design. The checklist questions highlight typical areas in which design decisions are likely to
have downstream ramifications and draw attention to issues that are often unknown or
ignored.

Xilinx recommends reading the guide first before proceeding to the checklist. Most links
provide cross references to this guide and links to other Xilinx documentation. These
references offer guidance on addressing the design concerns raised by the questions.

The checklist is part of the Xilinx Documentation Navigator, a free tool that you can use to
access documentation while using Xilinx products. You can download Documentation
Navigator as a standalone product or as part of your SDK or Vivado installation (see Using
the Documentation Navigator).

To access the checklist feature, use Documentation Navigator version 2015.1 or later. From
within Documentation Navigator, use these steps to begin using the Design Methodology
Checklist:

1. Click the Design Hub View tab.
2. At the top of the menu on the left side, click Create Design Checklist.
3. Fill out the information in the New Design Checklist Dialog and click OK.
4. The new checklist opens. Tabs across the top of the checklist (see Figure 1-2) provide

navigation. The Title Page tab provides some basic information on using the checklist.
Click the other tabs to see the checklist questions and guidance.

A spreadsheet version of the Design Methodology Checklist is also available in the
following zip file:

xtp397-embedded-design-methodology-checklist.zip

X-Ref Target - Figure 1-2

Figure 1-2: Embedded Design Methodology Checklist Tabs in Documentation Navigator
UltraFast Embedded Design Methodology Guide 9
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?d=xtp397-embedded-design-methodology-checklist.zip
https://www.xilinx.com/cgi-bin/docs/rdoc?d=xtp397-embedded-design-methodology-checklist.zip
https://www.xilinx.com/cgi-bin/docs/rdoc?d=xtp397-embedded-design-methodology-checklist.zip
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=9

Chapter 1: Introduction
Accessing Documentation and Training
Access to the right information at the right time is critical for timely design closure and
overall design success. Reference guides, user guides, tutorials, and videos get you up to
speed as quickly as possible with Xilinx tools. This section lists some of the sources for
documentation and training.

Using the Documentation Navigator
The Xilinx embedded tools ship with the Xilinx Documentation Navigator, which provides an
environment to access and manage the entire set of Xilinx software and hardware
documentation, training, and support materials. Documentation Navigator allows you to
view current and past Xilinx documentation. The documentation display can be filtered
based on release, document type, or design task. When coupled with a search capability,
you can quickly find the right information.

Documentation Navigator scans the Xilinx website to detect and provide documentation
updates. The Update Catalog feature alerts you to available updates, and gives details
about the documents that are involved. Xilinx recommends that you always update the
catalog when alerted to keep it current. You can establish and manage local documentation
catalogs with specified documents.

The Documentation Navigator has a tab called the Design Hub View. Design hubs are
collections of documentation related by design activity, such as Zynq-7000 Design
Overview, PetaLinux Tools, and SDK. Documents and videos are organized in each hub in
order to simplify the learning curve for that area. Each hub contains an Embedded
Processor Design section, a Design Resources section, and a list of support resources. For
new users, the Embedded Processor Design section provides a good place to start.
UltraFast Embedded Design Methodology Guide 10
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=10

Chapter 1: Introduction
Accessing the QuickTake Video Tutorials
Xilinx QuickTake video tutorials provide guidance on using the features of Xilinx tools,
including SDK, SDSoC, and PetaLinux Tools. These tutorials are short and succinct training
tools. They can be viewed from the Video Tutorials page on xilinx.com or the Xilinx YouTube
channel and can be downloaded locally.

TIP: The QuickTake video tutorials are available through Documentation Navigator.

X-Ref Target - Figure 1-3

Figure 1-3: Xilinx Documentation Navigator, Catalog Viewer
UltraFast Embedded Design Methodology Guide 11
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
http://www.youtube.com/user/XilinxInc
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=11

Chapter 2

System Level Considerations
This chapter covers the following system-level design issues to be considered when
designing with a Zynq®-7000 AP SoC:

• Performance: The target application generally determines the overall system
performance. System performance objectives are allocated between hardware and
software, and further allocated to sub-components.

• Power Consumption: System performance is a primary driver of power consumption.
The design team is often faced with difficult trade-off choices to make between the two
issues. This section describes design considerations for optimizing power consumption
on a Zynq-7000 AP SoC.

• Clocking and Reset: It is important to understand what clocking resources are available
so that you can plan how to best use those resources. Similarly, the reset system has
many different sources and it is important that you understand how they affect the
different reset destinations.

• Interrupts: The system-level interrupt environment provides a comprehensive set of
capabilities for you to prioritize hardware and software resources in your application.

• Embedded Device Security: The security level required from application to application
can vary greatly. Understanding the various security features of the Zynq-7000 AP SoC
will help you implement the right level of security for your application.

• Profiling and Partitioning: An important system-level decision you make is how to
partition the functions of an application between hardware and software. Profiling
tools help in making those decisions.
UltraFast Embedded Design Methodology Guide 12
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=12

Chapter 2: System Level Considerations
Performance
With a Zynq-7000 AP SoC device, system performance depends on the final application
goals. For example, a real-time application's system performance might depend on the
interrupt service routine latency, while a video application's system performance might
depend on maintaining 60 frames per second over an off-chip interface. In this section, the
division of performance goals across different design team members is described, followed
by considerations for implementing those performance goals through data movement and
computation design choices. The section concludes with a discussion of Zynq-7000 AP SoC
device monitoring options, allowing designers to build custom performance monitoring
capabilities in software and programmable logic (PL).

System Performance Design Goals
System performance goals are divided across the different engineering disciplines on a
Zynq-7000 AP SoC device design team. The three engineering disciplines discussed in this
document are hardware, software, and system.

Hardware Engineer

Hardware engineers working with Zynq devices implement designs using a mixture of PL
components, AXI-connected IP, high speed off-chip interfaces, and custom logic. PL choices
are driven by performance requirements, such as throughput and latency, but can also be
driven by the performance constraints of system software and hardware interactions.
Hardware engineers must consider interactions with the processing system (PS), because
data movement and synchronization can have a large effect on PL throughput and latencies.
PL data movement and monitoring points can be used to guide design decisions and are
discussed later in this section. Traditional PL metrics, such as maximum frequency and
resource utilization, are not covered. See the UltraFast Design Methodology Guide for the
Vivado Design Suite (UG949) [Ref 16] for more information.

Software Engineer

Software engineers focus on system software running within the PS and its interaction with
memory, I/O, and PL. For example, user software that communicates with PL has multiple
communication options, each with advantages and disadvantages. The software
performance monitoring capabilities unique to Zynq devices can be used by software
engineers to tune performance and are described later in this section. Also, the rich
ecosystem of existing ARM performance profiling and monitoring tools can be used with
the dual-core Cortex-A9 processors for optimizing performance. For more information on
the performance monitoring capabilities, see the ARM DS-5 Development Studio
Streamline Performance Analyzer documentation [Ref 74].
UltraFast Embedded Design Methodology Guide 13
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=13

Chapter 2: System Level Considerations
System Engineer

Performance goals for designs implemented using Zynq devices can be partitioned across
hardware and software. This partitioning should be considered throughout all design
stages. During the initial stages, hardware and software engineers can work relatively
independently, but early performance estimates are needed to set realistic performance
goals and make initial partition choices. The system engineer must consider all hardware
and software performance bottlenecks and make trade-offs. The system architect can make
early performance estimates of data and communication paths, and fine tune them later
using the system performance-monitoring points and tools.

All design team members generally consider the impact on performance of data movement
and data computation. The ability to monitor system events is useful in designing and
optimizing performance of a Zynq device. These considerations are described in the
following sections, including suggested design methodologies to help guide Zynq device
design flows.

System Data Movement
Moving data through a system is a common system-level performance problem. A Zynq
device has several AXI masters that can drive transactions either directly or with assistance
from DMAs. This section describes the various options and trade-offs for addressing data
movement in a Zynq device.

The ARM CPUs can move data using direct memory transfers, such as memcpy. Such
transfers are useful for small transfers of 4 KB or less, while larger transfers benefit from
DMA assistance. The data's source and destination buffer locations should also be
considered. For example, a PS DMA data transfer to PL will typically go through the 32-bit
master GP ports. The Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)
[Ref 4] contains techniques for using the PS DMA controller. The PS DMA controller runs its
own microcode. An alternative method would use a DMA in PL to move data across the
64-bit ACP or HP ports, which is a higher-performing option and uses PL resources.

Other AXI masters within the PS should be considered when determining system data
movement performance. IOP DMAs exist in several IP blocks: the GigE controller, SDIO
controller, USB controller, and device configuration interface (DevC). The IP block functions
are described in the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)
[Ref 4], and drivers are provided for their use in operating systems such as Linux and
stand-alone designs. The GigE controller performance characteristics are further described
in PS and PL Ethernet Performance and Jumbo Frame Support with PL Ethernet in the
Zynq-7000 AP SoC (XAPP1082) [Ref 40]. The remaining cores have driver layers that provide
additional function, but their performance characteristics are not described here.
UltraFast Embedded Design Methodology Guide 14
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=14

Chapter 2: System Level Considerations
From the PL, AXI masters can drive data movement on the ACP, HP, or slave GP ports. These
ports and associated performance are described further in the following sections:

• ACP and Cache Coherency
• PL High-Performance Port Access
• GPs and Direct PL Access from APU

DMAs attached to these ports are best used to translate between AXI4 Memory-Mapped
and AXI4-Streaming interfaces, providing a clean separation of memory-mapped accesses
to data-centric processing (such as video pipelines). DMA is not always the preferred
method, however. If the streaming interface performance is low and not a concern, then the
AXI4-Stream FIFO core is a simple way to source and synchronize an AXI-Stream interface
from a processor. User applications can have custom AXI masters that do direct data
movement using standard AXI Memory-Mapped transactions. The throughput and latency
performance characteristics of such custom data transfers may end up being very similar to
standard PL DMA data transfers. Performance comparisons can be made using the counters
and timers described in System Monitoring.

DMA moves data from a source to a destination location. Memory is often used as data
buffers to match the differences in rate of data source, processing, or data sink, therefore
ensuring that the processing stage can achieve maximum throughput.

Off-chip data buffer location can be implemented using off-chip memory attached to
customizable MIO or EMIO pins. The memory characteristics affect the performance of
moving large buffers, such as file systems on SD cards or network-attached storage over the
GigE controller.

For on-chip buffering, the OCM, L2 cache, and DDR controller are the three main sources of
sharable buffer space within the PS. The L2 cache and DDR controller provide excellent
buffer-access latency for sharing data between the processor and ACP port. Only the ACP
can access the L2 cache from PL. For high-bandwidth accesses to DDR, the HP ports are
better suited than ACP. The OCM can be used by software applications as a 256 KB
scratchpad accessible by all masters in the PL. A benefit to using OCM is its excellent
random-access latency, whereas the L2 cache and DDR memory benefit from
memory-access locality.

System Computation
Computation can be done in either the ARM cores or within the PL. Typical Zynq devices
have the control plane written in software executing on the ARM cores. Data-centric
computation is done in the PL using a mix of existing and custom IP. In high-performance
situations such as line-rate packet processing, computation and control can be moved
closer to the data. This typically requires custom PL IP to manage data flow.
UltraFast Embedded Design Methodology Guide 15
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=15

Chapter 2: System Level Considerations
Moving computations from software into the PL is an important benefit of the Zynq-7000
AP SoC platform. Not all software can be moved to the PL, in particular pre-compiled code,
complex library routines, and OS services. If it is possible to move software components to
PL, performance metrics such as the full application runtime should consider the trade-off
between data movement costs and acceleration benefits. This cost and benefit analysis can
be done using software profiling tools to determine potential speedups according to
Amdahl's law:

In the equation above, S is the overall performance improvement and α is the percentage of
the algorithm that can be sped up with hardware acceleration. Therefore 1-α is the
percentage of the algorithm that cannot be improved. The variable p is the speedup due to
acceleration. For example, to accelerate a computational algorithm implemented entirely in
software, you can use profiling tools such as TCF profiler to help identify the particular
function that is frequently used. The percentage of time with which this function is used
corresponds to a high α number. The function can then be sped up by implementing it in
hardware. The speed up of the function maps to p. Dividing a frequently used function by a
large multiplier will result in the most improvement in performance in the computation of
the algorithm due to hardware acceleration.

The speed up of a particular function has two components: the transfer of data to and from
the acceleration block and the actual computation performed by the accelerator. When a
DMA is used to perform the data transfer, the overhead for setting up and managing the
DMA must be taken into account when measuring the multiplier factor, p. If the overhead is
large, it can bound the value of p and may result in a low p factor, and therefore low
improvement in performance. For more information, see the Profiling and Partitioning
section.

High-level synthesis provides an excellent way of moving software components to PL for
exploring acceleration options. If candidate software is not a good fit for high-level
synthesis, Xilinx also provides a rich library of programmable logic IP with corresponding
drivers which can replace functions implemented in software to improve overall system
performance.
UltraFast Embedded Design Methodology Guide 16
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=16

Chapter 2: System Level Considerations
System Monitoring
A rich tool ecosystem exists for monitoring the ARM processors. In a Zynq device, full
system-level performance monitoring also uses blocks available in the PS and PL. These are:

• SCU Global Timer (PS). The SCU global timer can be used to timestamp system events
in a single clock domain. Alternatively, operating systems often provide high accuracy
timers for software event tracing, such as Linux clock_nanosleep.

• ARM Performance Monitoring Units (PS). Each ARM core has a performance
monitoring unit (PMU) that is used to count micro-architectural events. These counters
can be accessed directly by software, through operating system utilities, or with chip
debuggers such as Linux Perf or ARM Streamline. The counters are viewable in the
Performance View of SDK 2014.2. See the Performance Monitoring Unit section in the
ARM Cortex-A9 Technical Reference Manual [Ref 77] for more information.

• L2 Cache Event Counters (PS). The L2 cache has event counters that can be accessed
to measure cache performance. The counters are viewable in the Performance Counters
View of SDK. See the Zynq-7000 All Programmable SoC Technical Reference Manual
(UG585) [Ref 4] for more information.

• GigE Controller (PS). The gigabit Ethernet controller has statistical counters to track
bytes received and transmitted on its interface. See the Zynq-7000 All Programmable
SoC Technical Reference Manual (UG585) [Ref 4] for more information.

• AXI Performance Monitor (PL). This core can be added in PL to monitor AXI
performance metrics such as throughput and latency. Trace functions enable
time-stamped AXI traces, such as time-stamped start and end of AXI transactions to
observe per-transaction latency. See the AXI Performance Monitor web page [Ref 45]
for more information.

• AXI Timer (PL). This core can be added in PL to provide a free-running timer in PL. This
timer is useful for time-stamping events in PL clock domains. See the AXI
Timer/Counter web page [Ref 46] for more information.

• AXI Traffic Generator (PL). This core can generate a variety of traffic patterns to the
PS interfaces. When used with an AXI performance monitor, the traffic generator can
help provide early system-level performance estimates. The core can be used to
estimate data-movement costs and validate design partition choices. For more
information, refer to the LogiCORE™ AXI Traffic Generator web page [Ref 47].

These monitor blocks provide visibility into the full system performance behavior. Event
counters and PL monitoring blocks can be customized for specific design performance
goals or used to get a high-level view of system performance. Early use of built-in
performance monitoring allows performance feedback throughout the design cycle,
resulting in data-driven system architecture decisions.
UltraFast Embedded Design Methodology Guide 17
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=17

Chapter 2: System Level Considerations
There are different ways of exercising or acquiring monitoring data from the various blocks.
Most peripherals come with an example application packaged with the corresponding
bare-metal driver shipped with Xilinx SDK. A list of available Linux drivers is provided in the
Xilinx Linux Drivers wiki page [Ref 52].

Xilinx SDK provides built-in System Performance Modeling and Analysis functionality.
Performance monitors gather data from the system, either live data or data created by
traffic generators which are used to model real world transactions. This data is displayed
using the Xilinx SDK visualization tools with statistics for number of transactions,
bandwidth, and latency from an APM (profile mode) connected to the HP and ACP ports.
For more information, refer to Xilinx SDK System Debugger.

Power Consumption
The power consumption of Zynq-7000 AP SoCs is an important consideration for system
architects and board designers. Power consumption is a critical concern for most
applications, and some applications specify maximum power per card or per system. Thus,
designers must consider power consumption early in the design process, often starting with
device selection.

Reducing SoC power consumption can improve board design by lowering supply-rail
power, simplifying power supply design and thermal management, and easing the
requirements on the power distribution planes. Low power also contributes to longer
battery life and higher reliability, because cooler-running systems last longer.

Reducing system power consumption requires a comprehensive and focused approach to
achieve optimal results. This section covers several aspects of Zynq-7000 AP SoC power
consumption, including PS and PL architecture and features, the power components
associated with PL, and the process technology. It also covers power dissipation, and
traditional methods of estimating and measuring power.

Power Challenges
According to Moore's Law, transistor size decreases with each process technology
generation. As size decreases the amount of current each transistor leaks increases, causing
an increase in static power consumption, which is the amount of current the device draws
when not switching. Increasing SoC performance requires higher-frequency clocks,
resulting in increased dynamic power consumption. Thus, static power is driven by
transistor leakage current and dynamic power is driven by the transistor switching
frequency. Compounding the problem, decreasing transistor sizes allow more transistors to
be packed on FPGAs with each product generation. More transistors results in more leakage
current and more transistors switching at higher clock frequencies on each FPGA device.
UltraFast Embedded Design Methodology Guide 18
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=18

Chapter 2: System Level Considerations
These issues require designers to address power supply and thermal-management issues
earlier in the design cycle. Using a heat sink on a device may not adequately resolve these
issues. Instead, designers must look for opportunities to reduce the impact of the design
logic.

Figure 2-1 illustrates actions that can be taken at various points in the design cycle to
reduce power consumption. Addressing power issues early in the design process yields the
greatest benefits.

Power and Signaling
Zynq-7000 AP SoC devices are divided into several power domains, as illustrated in
Figure 2-2.

X-Ref Target - Figure 2-1

Figure 2-1: Managing Power Issues Throughout the Design Cycle

X-Ref Target - Figure 2-2

Figure 2-2: Zynq-7000 AP SoC Power Domains

Use of Hard IP, Proper

use of control signals

Reducing Clock and Block

Activity, Partial

Reconfiguration

Intelligent Clock-Gating

Options

XPE, PlanAhead,

Power Estimator, XPA

Unified Architecture,

Stacked-Silicon

Interconnect

28-nm HPL

SW

SW Power

Optimization

Power Estimation Tools

Architecture

Process

HW

S
ta

tic
 P

o
w

e
r

D
yn

a
m

ic P
o
w

e
r

Low-

Power

Design

Techniques

X14194-073117

X14195-073117

Programmable Logic

VCCINT

VCCAUX

VCCO0 VCCO1 VCCOn

Processing System (PS)

VCCPINT

VCCPAUX

VCCPLL

VCCO_MIO0 VCCO_DDR VCCO_MIO1
UltraFast Embedded Design Methodology Guide 19
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=19

Chapter 2: System Level Considerations
The PS and PL power supplies are independent; however, the PS power supply must be
present when the PL power supply is active. The PL can be powered off in applications that
do not require the PL. The PS and PL power pins are summarized in Table 2-1. The voltage
sequencing and electrical specifications are described in Zynq-7000 All Programmable SoC
(Z-7010, Z-7015, and Z-7020): DC and AC Switching Characteristics (DS187) [Ref 30].

PS Power Domains

For more information on Zynq-7000 AP SoC PS power domains, refer to Chapter 5:
Processing System (PS) Power and signaling of Zynq-7000 All Programmable SoC PCB
Design Guide (UG933) [Ref 14].

PL Power Domains

Multiple power supplies are required to power the different PL resources in a Zynq-7000 AP
SoC. The different resources operate at different voltage levels for increased performance
or signal strength while preserving improved immunity to noise and parasitic effects.

PL Power Sources lists the power sources typically used by PL resources available in
Zynq-7000 AP SoC. This table is provided only as a guide because the specifics can vary
across Zynq-7000 AP SoC families.

Table 2-1: Power Pins
Type Pin Name Nominal Voltage Power Pin Description

PS Power VCCPINT 1.0V Internal logic
VCCPAUX 1.8V I/O buffer pre-driver
VCCO_DDR 1.2V to 1.8V DDR memory interface
VCCO_MIO0 1.8V to 3.3V MIO bank 0, pins 0:15
VCCO_MIO1 1.8V to 3.3V MIO bank 1, pins 16:53
VCCPLL 1.8V Three PLL clocks, analog

PL Power VCCINT 1.0V Internal core logic
VCCAUX 1.8V I/O buffer pre-driver
VCCO_# 1.8V to 3.3V I/O buffers drivers (per bank)
VCC_BATT 1.5V PL decryption key memory backup
VCCBRAM 1.0V PL block RAM
VCCAUX_IO_G# 1.8V to 2.0V PL auxiliary I/O circuits

XADC VCCADC 1.8V Analog power and ground.
Ground GND Ground Digital and analog grounds
UltraFast Embedded Design Methodology Guide 20
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=20

Chapter 2: System Level Considerations
Board-Level Power-Distribution System
On a printed circuit board, the power distribution system (PDS) distributes power from the
source to the various chips and devices requiring power. Although the PDS design can vary
from simple to complex, there are three primary requirements it must satisfy:

• The PDS must deliver a well-regulated voltage. Power regulation is done at the
regulated power-supply circuit, supported by one or more bulk capacitors and LC
filtering circuits.

• The PDS must be stable at all points on the board under all current loading conditions.
Stability under all loading conditions has two sub-requirements:

° The distribution system must have low resistance and inductance. This usually
requires a system of power and return planes for distribution, and low inductance
pads and vias at the various device connections.

° The charge must be available where and when needed. The required charge is
typically stored in bypass capacitors that are placed around the board, and to a
lesser extent from distributed planar capacitance.

• The PDS must be quiet, meaning that when devices switch, noise is not generated that
interferes with other devices or generates EMI.

Table 2-2: PL Power Sources
Power Supply Resources Powered

VCCINT
and

VCCBRAM

• All CLB resources
• All routing resources
• Entire clock tree, including all clock buffers
• Block RAM/FIFO
• DSP slices
• All input buffers
• Logic elements in the IOB (ILOGIC/OLOGIC)
• ISERDES/OSERDES
• Tri-Mode Ethernet MAC
• Clock Managers (DCM, PLL, etc.)(minor)
• PCIE and PCS portion of MGTs

VCCAUX
and

VCCAUX_IO

• Clock Managers (MMCM, PLL, DCM, etc.)
• IODELAY/IDELAYCTRL
• All output buffers
• Differential Input buffers
• VREF-based, single-ended I/O standards, such as HSTL18_I
• Phaser

VCCO • All output buffers
• Some input buffers
• Digitally Controlled Impedance (DCI) circuits, also referred to as On-Chip

Termination (OCT)
MGT • PMA circuits of transceivers
UltraFast Embedded Design Methodology Guide 21
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=21

Chapter 2: System Level Considerations
For more information on power distribution systems for Zynq devices, refer to “Chapter 3:
Power Distribution System” in the Zynq-7000 All Programmable SoC PCB Design Guide
(UG933) [Ref 14].

Power Management
Using a Zynq-7000 AP SoC can help reduce a system's static power consumption. The
Zynq-7000 AP SoC PS is an optimized silicon element consisting of dual-core ARM
Cortex-A9 CPUs plus integrated peripherals. The PL is based on the Xilinx® 7-Series
architecture built on the 28nm high-performance, low-power (HPL) process, providing
high-performance operation while enabling significant power reduction. Choosing a device
built on the HPL process eliminates the need for complex and expensive
static-power-management schemes.

There are different ways to reduce system power. The following sections provide tips that
can be used to optimize a design to meet system power requirements.

PS Power Management

This section describes the design considerations needed to optimize power consumption of
a Zynq-7000 AP SoC PS. This includes power management of the APU unit, PS peripherals,
clocks and PLLs, caches, SCU, and OCM. It is assumed that the designer understands the
impact of power management trade-offs on the overall system.

System Design Considerations

The PS components can be power managed as follows:

• Application Processing Unit (APU). The Zynq-7000 AP SoC APU supports dynamic
clock gating. This feature can be enabled using the CP15 power control register. If
enabled, the clocks to several CPU internal blocks are dynamically disabled during idle
periods. The gated blocks are:

° Integer core

° System control block

° Data engine

By reducing the processor core voltages and operating frequency, as much as a two-fold
decrease in power consumption can be realized. Refer to the power-management
section of the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)
[Ref 4] for more information.
UltraFast Embedded Design Methodology Guide 22
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=22

Chapter 2: System Level Considerations
• PS Peripherals. The PS supports several clock domains, each with independent
clock-gating control. When the system is in run mode, the user can shut down unused
clock domains to reduce dynamic power dissipation. Clocks for PS peripherals such as
timers, DMA, SPI, QSPI, SDIO, and the DDR controller can be independently gated to
save power. Refer to Chapter 25, Clocks, in the Zynq-7000 All Programmable SoC
Technical Reference Manual (UG585) [Ref 4] for more information on the system clocks
and how they can be controlled using dividers, gates, and multiplexers.

• Caches. The L2 cache controller supports the following dynamic-power reduction
features. These features are controlled by a corresponding enable bit in the
l2cpl310.reg15_power_ctrl register.

° Dynamic Clock Gating. When the dynamic high-level clock-gating feature is
enabled, the cache controller clock stops when the controller is idle. The
clock-gating feature waits several cycles after the controller is idle before it stops
the clock.

° Standby Mode. The L2 cache controller standby mode can be used with the
processor's wait-for-interrupt (WFI) mode that drives the L2 cache controller. When
a processor is in WFI mode and standby mode is enabled, the L2 cache controller
internal clocks are stopped. Refer to Chapter 3, Application Processing Unit, in the
Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4] for
more information on using WFI.

The dynamic clock gating feature is a superset of the standby mode. In standby mode,
clock gating is limited to WFI states, thus making L2 cache accesses more predictable
under normal run conditions.

• On-Chip Memory (OCM). In general, OCM can be used to reduce overall power during
low-power modes such as Linux standby mode. For example, OCM can be used to store
executable code when the DDR is in low power mode.

• Snoop Control Unit (SCU). The SCU has a standby mode that is enabled by setting the
corresponding bit in the mpcore.SCU_CONTROL_REGISTER. When enabled, the internal
SCU clocks are stopped when the following conditions are met:

° The CPUs are in WFI mode.

° There are no pending requests on the ACP.

° There is no remaining activity in the SCU.

The SCU resumes normal operation when a CPU leaves WFI mode or a request on the
ACP occurs.
UltraFast Embedded Design Methodology Guide 23
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=23

Chapter 2: System Level Considerations
• PLL. PLL power consumption is dependent on the PLL output frequency, thus power
consumption can be reduced by using a lower PLL output frequency. Power can also be
reduced by powering down unused PLLs. For example, if all clock generators can be
driven by the DDR PLL, then the ARM core and I/O PLLs can be disabled to reduce
power consumption. The DDR PLL is the only unit that can drive all of the clock
generators. Each clock can be individually disabled when not in use. In some cases,
individual subsystems contain additional clock disable capabilities and other power
management features.

• Physical Memory. Zynq-7000 AP SoCs support different types of physical memory,
such as DDR2, DDR3, and LPDDR2. The supported DDR memory types can operate with
both 16-bit and 32-bit data. DDR power consumption can be a significant component
of total power, so minimizing DDR power consumption is an important way of reducing
system power. Items to consider when reducing DDR power consumption include:

° The DDR controller operating speed.

° The choice of DDR width and whether ECC is enabled or disabled.

° The number of DDR chips used.

° The DDR type, such as using LPDDR for significant voltage reductions.

° The use of different DDR modes during low power operation, such as DDR
self-refresh mode. Refer to the appropriate DDR standards for more information
about power consumption during DDR low-power operating modes.

Refer to the “Clocks” chapter in the Zynq-7000 All Programmable SoC Technical
Reference Manual (UG585) [Ref 4] for more information on implementing DDR controller
clock gating.

• I/O. I/O devices such as MIOs and DDR IOs also contribute to overall power. Refer to
the “SelectIO Signaling” chapter of the Zynq-7000 All Programmable SoC PCB Design
Guide (UG933) [Ref 14] for more information on I/O buffer control power management.

Software Support

The Linux kernel supports the following power management states:

• S0: Freeze or low-power idle. This is a generic, pure software, light-weight, low-power
state.

• S1: Standby or power-on suspend. All processor caches are flushed and instruction
execution stops. Power to the processor and RAM is maintained.

• S3: Suspend-to-RAM. System and device state is saved to memory. All devices are
suspended and powered off. RAM remains powered.

Refer to the Zynq Power Management wiki page [Ref 66] for more information about Linux
power management support for Zynq-7000 AP SoCs.
UltraFast Embedded Design Methodology Guide 24
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=24

Chapter 2: System Level Considerations
The link also provides information about the CPU-scaling framework implemented for
Zynq-7000 AP SoCs. The CPU-scaling framework is used to scale CPU frequency at run time.
For applications that do not require high processing performance, the CPU frequency can
be reduced to meet application needs. A lower clock frequency can significantly reduce the
operating power when compared to operating at a higher frequency.

PL Power Management
The PL can be powered off in applications that do not require the PL. To do this,
independently-connected power supplies are needed for the PS and PL. The PL supplies
that can be powered off include VCCINT, VCCAUX, VCCBRAM, and VCCO. Refer to the
appropriate data sheet to determine the correct power sequencing.

The configuration is lost when the PL is powered down and must be reconfigured when it
is powered on again. Software should determine when it is safe to power down the PL.

This section describes design considerations for optimizing PL power consumption on a
Zynq-7000 AP SoC.

Logic Resource Utilization

PL resource utilization is an important contributor to the total power consumed by
Zynq-7000 AP SoCs. The amount of CLB resources, dedicated hardware, and routing used is
design dependent and adds to both static and dynamic power consumed by the PL. A
thorough understanding of the PL architecture enables the designer to leverage silicon
resources.

To reduce power, designers must look for opportunities to reduce the logic in a design. This
allows use of smaller devices and reduces static power consumption. One option is to use
dedicated hardware blocks rather than implementing the function in CLBs. This can help
lower both static and dynamic power consumption and make it easier to meet timing
requirements. Blocks lower static power consumption because the total transistor count is
less than an equivalent component built using CLB logic.

Designers can use the IP catalog to customize the dedicated hardware for instantiating a
specific resource. Unused PS IP can be re-purposed for other tasks that may not be obvious.
For example, DSP48 slices have many logic functions, such as multipliers, adders and
accumulators, wide logic comparators, shifters, pattern matchers, and counters. Block RAMs
can be used as state machines, math functions, and ROMs.

Most of the coding techniques needed are described in the UltraFast Design Methodology
Guide for the Vivado Design Suite (UG949) [Ref 16].
UltraFast Embedded Design Methodology Guide 25
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=25

Chapter 2: System Level Considerations
Managing Control Sets

Control signals (signals that control synchronous elements such as a clock, set, reset, and
clock enable) can affect device density, utilization, and performance. Some guidelines
follow for keeping the power impact of these signals to a minimum.

Avoid using both a set and reset on a register or latch. The flip-flops in Xilinx FPGAs can
support both asynchronous and synchronous reset and set controls. However, the
underlying flip-flop can natively implement only one set, reset, preset, or clear at a time.
Specifying more than one of these functions in the RTL code results in the implementation
of one condition using the SR port of the flip-flop and the other condition implemented in
the PL, thus using more PL resources.

If one of the conditions is synchronous and the other is asynchronous, the asynchronous
condition is the one implemented using the SR port, and the synchronous condition is
implemented in the PL. In general, avoid more than one set, reset, preset, or clear condition.
Also, only one attribute for each group of four flip-flops in a slice determines whether the
SR ports of flip-flops are synchronous or asynchronous.

Use active-high control signals, because the control ports on registers are active high.
Active-low signals use more lookup tables because they require an inversion before they
drive the register control port. The LUT may already have other inputs such that the
inversion could require another LUT. Using active-low control signals can lead to longer
implementation runtimes and result in poor device utilization, affecting timing and power.
Therefore, active-low resets in an FPGA design are not recommended.

Use active-high control signals where possible in the HDL code or instantiated components.
When it's impossible to specify control signal polarity within the design, invert the signal in
the top-level code hierarchy. The I/O logic can absorb the inferred inverter without using
additional FPGA logic or routing, resulting in better utilization, performance, and power.

Managing Sets and Resets

Coding unnecessary sets and resets can prevent the inference of shift-register LUTs (SRLs),
LUT RAMs, block RAMs, and other logic structures. Although coding can be awkward, many
circuits can be made to self-reset, or simply do not need a reset. For example, considering
flip-flops within a data pipeline, there is little point in having a reset at all. After a few cycles,
the entire pipeline is operational, and any incorrect data is flushed out of the system.

Reducing the use of sets and resets improves device utilization, resulting in better
placement, improved performance, and reduced power.

Refer to the Get Smart about Reset: Think Local, Not Global Whitepaper (WP272) [Ref 34] for
more information on designing resets.
UltraFast Embedded Design Methodology Guide 26
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=26

Chapter 2: System Level Considerations
Clock Gating

The PL dynamic power consumption is determined by the operating clock frequency (fclk),
node capacitance (C), FPGA operating voltage (V), and the switching activity (α) on various
design nodes. The equation for dynamic power is:

Dynamic Power = α x fclk x C x V2 Equation 2-1

For most designs, some parameters are determined either by the FPGA technology (for
example, operating voltage) or by design requirements (for example, operating frequency).

Gating the clock or data paths is a common technique used to stop switching activity when
the results of those paths are not used. Clock gating stops all synchronous activity,
preventing data path signals and glitches from propagating.

The Vivado® tool analyzes the description and netlist to detect unwanted conditions.
However, designer knowledge of the application, data flow, and dependencies are not
available to the tool, but should be specified by the designer to further remove unwanted
conditions.

There are several design nodes that do not affect the PL output, but continue to toggle.
Every flip-flop, block RAM and DSP48 has a local clock-enable. Designers can gate the local
clock-enable to eliminate unnecessary flip-flop, block RAM, and DSP toggling, as shown in
Figure 2-3.

Designers should ensure the maximum number of elements are controlled by the gating
signal when possible. For example, it is more power efficient to gate a clock domain at its
source rather than gate each load with a clock-enable signal. Designers can use the
different clock buffer primitives in the PL to gate clocks, depending on the application.

The BUFGCE primitive is a global clock buffer with a clock enable. BUFGCE can be used to
dynamically gate a global clock or clock domain, glitch free. Using this resource also
reduces high clock enable fanout and saves PL fabric routing resources.

If gating is needed for a specific logic function or a clock domain in the PL, the BUFHCE or
BUFRCE primitive can be used. These primitives reduce loading and capacitance, lowering
the PL dynamic power consumption.

X-Ref Target - Figure 2-3

Figure 2-3: Gating the Local Clock-Enable to Eliminate Unnecessary Toggling

Before

sig

Power

Consumption

After

sig

Power

Consumption

CE

X14196-073117
UltraFast Embedded Design Methodology Guide 27
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=27

Chapter 2: System Level Considerations
The BUFGMUX_CTRL primitive can be used to distribute clocks to specific regions and avoid
unwanted PL fabric dynamic switching. It can also be used to switch between fast and slow
clocks in order to reduce power.

There are often several design nodes that do not affect the PL output but continue to
toggle, resulting in unwanted dynamic power consumption. The FPGA clock enables can be
used to gate those nodes.

Making the best use of timing constraints is also important in low-power design. If an
application operates in a temperature-controlled environment, the application can be
derated to meet timing. The design should be constrained to use the maximum specified
clock rate. Using a faster clock rate than necessary typically has the following negative
effects:

• More PL resources are used due to reduced resource sharing.
• Logic and registers are often duplicated to meet tight timing constraints.
• The amount of routing increases.
• There are fewer inferences of PL dedicated features.

All of these negative effects can significantly impact dynamic power consumption.

Block RAM

The power block RAM consumes is directly proportional to the time it is enabled. To save
power, the block RAM enable can be driven low when the block RAM is not used. Both the
block RAM enable rate and the clock rate are important to consider when optimizing power.

The block RAM should be enabled during an active read or write cycle. Synthesis tools
might not infer these primitives, so if they are needed their inference should be verified
with a schematic viewer and instantiated if necessary to save power.
UltraFast Embedded Design Methodology Guide 28
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=28

Chapter 2: System Level Considerations
Floorplanning

Designs that span multiple clock regions use more clocking resources and consume more
power. When possible, place any intermittently used logic in a single clock region to help
reduce power, as shown in Figure 2-4. While the tools attempt to do this automatically,
some designs may require manual effort like applying an area constraint to achieve this.

Limiting data motion is another power-reduction technique. Instead of moving operands
around the PL, move only the results, as shown in Figure 2-5. Using fewer and shorter buses
lowers capacitance, improves performance, and consumes less power. The pinout
placement and corresponding logic design must be considered during floorplanning.

X-Ref Target - Figure 2-4

Figure 2-4: Constraining Intermittently Used Logic to a Single Clock Region

X-Ref Target - Figure 2-5

Figure 2-5: Limiting Data Motion

X14197-073117

X14198-073117
UltraFast Embedded Design Methodology Guide 29
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=29

Chapter 2: System Level Considerations
IO Power

I/O power can be a major contributor to total power consumption. In some designs, as
much as half of the total power consumption comes from the I/Os, particularly in
memory-intensive systems.

Some interfaces do not require fast, differential I/O capabilities. I/O standards such as
HSLVDCI can save considerable power in FPGA-to-FPGA communications and in
lower-speed memory interfaces.

All Zynq-7000 AP SoCs offer programmable slew rate and drive strength that can be used to
reduce I/O dynamic power. The devices support digitally controlled impedance (DCI)
technology, and can be tri-stated. DCI eliminates termination power when the I/O’s output
is enabled, so that the device consumes termination power only during ingress cycles.

Zynq-7000 AP SoCs incorporate a user-programmable receiver power mode for HSTL and
SSTL. By controlling the programmable power modes on each I/O, DC power can be
reduced by making trade-offs between power and performance.

Zynq-7000 AP SoCs have transceivers optimized for high performance and low jitter. The
transceivers offer several low-power operating features, enabling designers to customize
the flexibility of operation and granularity to make power and performance trade-offs.

In the transceivers, you can use the shared LC PLL to save power. In four-lane designs with
an identical line rate (XAUI, for example), you can use a quad PLL instead of an individual
channel PLL. Similarly, because a PLL can run at higher and lower rates within the range, a
lower operating range can be selected to save power.

The RXPOWERDOWN and TXPOWERDOWN options can be enabled. PLL power down can
be enabled in the lowest-power mode, such as in a system D3 state, which is mostly used in
PCIe systems.

You can also save I/O power in the following ways:

• Using time-multiplexing techniques to reduce I/O count.
• Using minimal I/O count design partitioning that can help switch off an I/O bank when

not used.
• Reducing the number of I/O standards used within a bank.

Partial Reconfiguration

One way to reduce static power is to simply use a smaller device. With partial
reconfiguration, designers can essentially time-slice a block of logic in the PL and run parts
of their design independently. The design then requires a much smaller device because not
every part of the design is needed 100 percent of the time.
UltraFast Embedded Design Methodology Guide 30
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=30

Chapter 2: System Level Considerations
Partial reconfiguration has the potential to reduce dynamic power as well as static power.
For example, many designs must run very fast, but that maximum performance might only
be needed a small percentage of the time. To save power, designers can use partial
reconfiguration to swap out a high-performance design with a low-power version of the
same design-instead of designing for maximum performance 100 percent of the time. You
can switch back to the high-performance design when the system needs it.

This principle can also apply to I/O standards, specifically when a design does not need a
high-power interface all the time. LVDS is a high-power interface, regardless of activity, due
to the high DC currents required to power it. You can use partial reconfiguration to change
the I/O from LVDS to a low-power interface, such as LVCMOS, at times when the design
does not need the highest performance, and then switch back to LVDS when the system
requires high-speed transmissions.

Power Estimation
Power calculations can be performed at three distinct phases of the design cycle.

• Concept phase: In this phase a rough estimate of power can be calculated based on
estimates of logic capacity and activity rates.

• Design phase: Power can be calculated more accurately based on detailed information
about how the design is implemented in a Zynq-7000 AP SoC.

• System integration phase: Power is measured in a lab environment.

Xilinx provides a suite of tools and documentation to help evaluate the thermal and power
supply requirements of the system throughout the design cycle. Figure 2-6 shows the tools
available at each stage of the design cycle.

Some tools are stand-alone, while others are integrated into the implementation process,
using information available at each stage of the design process. All tools can exchange
information back and forth for efficient analysis.

X-Ref Target - Figure 2-6

Figure 2-6: Vivado Power Estimation and Analysis Tools in the FPGA Design Process

XPower Estimator (XPE) Vivado Power Analysis

Specification
Synthesized

Design

Placed

Design

Routed

Design
Closure Validation

X14199-073117
UltraFast Embedded Design Methodology Guide 31
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=31

Chapter 2: System Level Considerations
The final power consumption is determined after the system has been implemented and
measured in the lab. This is done by manually probing the development-board power lines,
or by providing a mechanism to read the voltage and current from external programmable
voltage regulators. Accurate power calculations in early design stages result in fewer
problems later.

Xilinx Power Estimator (XPE)

The Xilinx Power Estimator (XPE) spreadsheet is a power estimation tool typically used
during a project's concept phase. XPE assists with architecture evaluation and device
selection, and helps with selecting the appropriate power supply and thermal management
components for the application. The XPE interface for Zynq-7000 AP SoCs is shown in
Figure 2-7. Designers can use the tool to specify design resource use, activity rates, I/O
loading, CPU clock frequency, and many other design parameters. XPE combines the
parameters with the device models to calculate an estimated power distribution.
X-Ref Target - Figure 2-7

Figure 2-7: Xilinx Power Estimator for Zynq-7000 AP SoCs
UltraFast Embedded Design Methodology Guide 32
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=32

Chapter 2: System Level Considerations
XPE is also commonly used later in the design cycle during implementation and power
closure, such as evaluating the power implications of engineering change orders. For large
designs implemented by multiple teams, the project leader can use XPE to import the
utilization and activity of each team's module, then monitor the total power and reallocate
the power budget to ensure constraints are met.

System-Level Power Analysis

The final system power consumption is determined after the design has been implemented
and measured in the lab. This is done by manually probing the development-board power
lines, or by providing a mechanism to read the voltage and current of voltage regulators.

The Zynq-7000 AP SoC Low Power Techniques part 1 - Installing and Running the Power
Demo Tech Tip wiki page [Ref 63] provides a reference design demonstrating system-level
power consumption while executing different application scenarios on Zynq-7000 AP SoC
PS and PL sections. You can refer to this technical article when performing system-level
power measurements on your design.

Vivado Power Analysis

Vivado Power Analysis is a tool used to analyze power consumption of placed and routed
designs during the design phase. It provides a comprehensive GUI that allows a detailed
analysis of the power consumed as well as thermal information for the specified operating
conditions. Figure 2-8 shows an example report from Vivado Power Analysis.
X-Ref Target - Figure 2-8

Figure 2-8: Vivado Power Analysis Example Report
UltraFast Embedded Design Methodology Guide 33
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=33

Chapter 2: System Level Considerations
The tool provides two different views of power consumption:

• Power consumed by type of blocks found in the design, including clock trees, logic,
signals, I/Os, and PS IP such as block RAMs and DSP blocks.

• Power consumed throughout the design hierarchy.

Designers can toggle between the two views to perform a detailed power analysis. The
views provide an efficient method for locating the blocks or design parts that consume the
most power, thus identifying places to focus power optimization efforts.

Switching activity information from Value Change Dump (VCD) and Switching Activity
Interchange format (SAIF) files can be entered into the Vivado Power Analysis tool for more
accurate power estimation. VCD files contain header information, variable definitions, and
value change details for each step of a simulation. SAIF files contain signal toggle counts
and timing attributes specifying the time duration of signals at level 0, 1, X, or Z.

PL Power Optimization in Vivado
Although designers can use clock gating to optimize power as described previously, it is
rarely done. This is either because the design contains intellectual property from other
sources or because of the effort involved in doing such fine-grained clock gating. The
Vivado tools automate such power optimizations to maximize power savings while
minimizing effort.

The Vivado design tools offer a variety of power optimizations enabling you to minimize
dynamic power consumption by up to 30%.

Vivado performs an analysis on the entire PL design, including legacy and third-party IP
blocks, for potential power savings. It examines the output logic of sourcing registers that
do not contribute to the result during a given clock cycle, and then creates fine-grained
clock gating and logic-gating signals that eliminate unnecessary switching activity.

Power optimizations are also applied to dedicated block RAMs. Most of the power savings
is realized by disabling the dedicated block RAM's enable when no data is written and when
the output is not being used.

Refer to the Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)
[Ref 10] for more information on using the power optimization options and extracting the
power consumption information from the design.
UltraFast Embedded Design Methodology Guide 34
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=34

Chapter 2: System Level Considerations
Correcting Over-Budget PL Power Consumption
Late in the design cycle there is pressure to get the system to market, and most system
parameters are well defined, such as the board environment and cooling solution. Even
though this limits the engineering rework you can do, further power reduction might be
possible in the PL. The following process can help focus your efforts on the areas in the PL
with the highest potential for power reduction.

1. Determine which Power Budget is Exceeded

Vivado GUI users can review the summary view in the Vivado Power Analysis report, and
command line users can use the summary section of the power report file. The on-chip
and supply power tables provide a high-level view of the power distribution. Use the
summary view to determine the type and amount of power that exceeds your budget.

2. Identify the Focus Areas

Review the different detailed views in the Vivado Power Analysis report or Xilinx Power
Estimator. Analyze the environment parameters and the power distribution across the
different resources used, the design hierarchy, and clock domains. When an area of the
design is found where power seems high, the information presented should help in
determining the likely contributing factors.

3. Experiment

After developing a list of focus areas for power optimization, sort the list from easiest to
most difficult and decide which optimization or experiment to perform next. The power
tools allow what-if analysis so that design changes can be made quickly and power
estimates produced without requiring edits to code or constrains, and without
rerunning the implementation tools.

While power optimization techniques that can be used are listed in this document, more
information can be found in the Vivado Design Suite User Guide: Power Analysis and
Optimization (UG907) [Ref 10].

Experiment Using the Vivado Power Optimizer Feature

To maximize power savings when running the power optimizer in the Vivado tools, run
power optimization on the entire design and do not exclude portions of the design. If
power savings are not realized after enabling power optimization, there are three areas that
should be examined more closely:

• Global set and reset signals
• Block RAM enable generation
• Register clock gating
A low number of enables generated by power optimization in any of those areas could
indicate a need to review coding practices, or the options and properties set for design.
UltraFast Embedded Design Methodology Guide 35
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=35

Chapter 2: System Level Considerations
Experiment with the Vivado Power Analysis Feature

In the Vivado Report Power dialog box, adjustments can be made before rerunning the
analysis to review the power implications. Refer to the Vivado Design Suite User Guide:
Power Analysis and Optimization (UG907) [Ref 10] for more information on how to use the
different options in the Vivado Power Analyzer tool to produce optimal results.

Experiment with Xilinx Power Estimator (XPE)

The Vivado power analysis results from modules developed by multiple sources can be
imported into XPE. This permits a review of total power once the separate IP blocks are
implemented in the device. You can estimate the implications of design changes on power
consumption without requiring code or netlist changes. The estimation done by XPE is not
as accurate as that done by the Vivado Power Analysis tool because adjustments cannot be
made at the individual logic element or signal level in XPE.

Conclusion
Understanding and implementing power-sensitive design techniques before coding is the
single-largest method for reducing system power. Using the various Xilinx tools at the
appropriate design cycle stages also helps in meeting power specifications, and provides
the board designer with information on selecting the number, type, and size of the power
supplies.

Clocking and Reset
External and internal clocking resources are available for use as source clocks to various IP
blocks in the Zynq-7000 AP SoC. Those resources are described below. Also described in
this section are the various hardware, software, and debug resets, particularly when and
how you should use them.

External Clocks

PS_CLK

On the PS side, a fixed-frequency oscillator in the range of 30–60 MHz is typically used to
provide the processor clock PS_CLK. The clock must be a single-ended LVCMOS signal,
using the same voltage level as the I/O voltage for MIO bank 0. From this clock, all other PS
internal clocks are generated based on three PLLs: ARM, DRM, and IO PLL.
UltraFast Embedded Design Methodology Guide 36
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=36

Chapter 2: System Level Considerations
The default PS_CLK frequency used on Xilinx evaluation boards is 33.3 MHz. Other clock
frequencies can be used, but the following items are dependent on the PS clock frequency
and must be adjusted accordingly:

• The LogiCORE IP Processing System 7 configuration wizard calculates the derived clock
dividers and multipliers of each of the PLLs as well as the I/O peripheral clocks such as
SPI or UART based on the selected PS_CLK frequency. These values are later used by the
first stage boot loader (FSBL) during initialization of the PS.

• The U-Boot board configuration include file.
• The Linux design-specific device tree.

Others

On the PL side, single-ended or differential fixed-frequency oscillators can be used as
additional clock sources for greater flexibility. They should be connected to multi-region
clock capable (MRCC) input pins and adhere to the I/O standard and voltage of the
corresponding PL bank. PL input clock jitter can be much smaller than that of PS-derived
clocks. For certain applications (such as to generate a video resolution dependent, accurate
pixel clock in a video system), external low-jitter programmable clock synthesizers are used.

Certain board peripherals require an external crystal to operate the PHY (for example, a 25
MHz crystal is required for the Ethernet PHY). Also, some peripheral I/O interfaces provide
input and/or output clocks to communicate with the corresponding PHY (such as Ethernet
RX and TX clocks).

Internal Clocks

PS

All clocks generated by the PS clock subsystem are derived from one of three
programmable PLLs: CPU, DDR, and I/O. Each of these PLLs is loosely associated with the
clocks in the CPU, DDR, and peripheral subsystems. During normal operation, the PLLs are
enabled, driven by the PS_CLK clock pin. In bypass mode, the clock signal on the PS_CLK pin
provides the source for the various clock generators instead of the PLLs. After the boot
process, the bypass mode and output frequency of each PLL can be individually controlled
by software.

The CPU clock domain is composed of four separate clocks: CPU_6x4x, CPU_3x2x, CPU_2x,
and CPU_1x. These four clocks are named according to their frequencies, which are related
by one of two ratios: 6:3:2:1 or 4:2:2:1 (abbreviated 6:2:1 and 4:2:1, respectively). All of the
CPU clocks are synchronous to each other. There are two independent DDR clock domains:
DDR_3x and DDR_2x. These clocks are asynchronous to each other and the CPU clocks. Most
I/O peripherals clocks have dedicated dividers. Each peripheral clock is completely
asynchronous to all other clocks.
UltraFast Embedded Design Methodology Guide 37
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=37

Chapter 2: System Level Considerations
PS - PL Interface

PL AXI channels (AXI_HP, AXI_ACP, and AXI_GP) have asynchronous interfaces between the
PS and the PL. The synchronization, where the clock domain crossing occurs, is located
inside the PS. Therefore, the PL provides the interface clock to the PS. Each of the
aforementioned interfaces could use unique clocks in the PL.

The PS provides four frequency-programmable fabric clocks (FCLK [3:0]) to the PL that are
physically spread out along the PS-PL boundary. The clocks can be controlled individually
by setting the clock's source (ARM, DDR, or I/O PLL) and the clock's output frequency. There
is no guaranteed phase relationship between any of the four FCLK clocks, even when
sharing the same clock source. Make sure to use appropriate design constraints when
interfacing between multiple FCLK regions. The FCLK clocks are disabled until the PS - PL
level shifters are enabled.

RECOMMENDED: It is good practice to route a single FCLK into a clocking wizard IP core instantiated
inside the PL to generate more than one phase-aligned output clocks.

The following are pros and cons of using FCLK:

• FCLK is the preferred PL clock under the following circumstances:

° The processor controls the PL clock frequency.

° An on-board clock generator is not available.
• FCLK is not the preferred PL clock under the following circumstances:

° The PL clock frequency is outside the frequency range supported by FCLK.

° The PL uses a clock provided by the FPGA pins. This is common in
source-synchronous protocols that use the input clock to sample receive data.

° Low clock jitter is required.

° Some IP blocks that require specific clocking cannot use FCLK:
- The memory-interface generator (MIG) requires a differential clock, Therefore,

FCLK cannot be used for the MIG except at reduced frequencies due to jitter.
- GTs should use a differential clock from the board as a reference clock.

For more information on the PS clock system, refer to the Clocks chapter of the Zynq-7000
All Programmable SoC Technical Reference Manual (UG585) [Ref 4].

PL

The PL provides clock primitives that are commonly found on FPGA devices, such as global
or regional clock buffers (BUFG, BUFR), phased-locked loops (PLL), or mixed-mode clock
managers (MMCM). For convenience, the clocking wizard IP core implements a wrapper
around the MMCM/PLL primitives with up to eight configurable output clocks. The user can
UltraFast Embedded Design Methodology Guide 38
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=38

Chapter 2: System Level Considerations
optionally enable dynamic reconfiguration of clock frequencies using the dynamic
reconfiguration port (DRP) or an AXI-Lite interface.

TIP: In the simplest case, a complete Zynq-7000 system can be built with a single input clock based on
PS_CLK, and all PL clocks are generated from the provided FCLKs and FPGA clocking resources.

PS Power-On Reset
The PS power-on reset (PS_POR_B) is an active-low signal used to hold the PS in reset until
all PS power supplies are stable and at their required voltage levels. This signal should be
generated from the power supply power-good signal or from a voltage supervisor chip. At
the time PS_POR_B is released, the system clock (PS_CLK) must have been stable for 2,000
clock cycles. PS_POR_B should be pulled high to VCCO_MIO0. When asserting PS_POR_B,
the pulse length must be longer than 100 μs.

The power-on reset is the chip master reset. It resets every register in the device that can be
reset, resets all PS RAM (including OCM, Fifos, buffers, etc.) and starts BootROM execution,
clearing the PL configuration. When PS_POR_B is held low, all PS I/Os are held in 3-state.

PS System Reset
The PS system reset (PS_SRST_B) is an active-low signal that is used primarily for debugging
proposes. PS_SRST_B must be high to begin the boot process. If PS_SRST_B is not used it
can be pulled high to VCCO_MIO1. When asserting PS_SRST_B, the pulse length must be
longer than 1 μs.

A PS system reset (PS_SRST_B) resets all functional logic without affecting the debug
environment. This differs from a power-on reset (PS_POR_B), which erases the debug
configuration. The PS_SRST_B erases all PS RAM, starts BootROM execution, and clears the
PL configuration. It does not re-sample the boot-mode strapping pins, unlike the
PS_POR_B. The boot mode remains the same as the previous power-on reset, and the
security level of the previous boot is retained.

The PS_SRST_B signal must be de-asserted before the PS_POR_B signal is de-asserted. If the
BootROM execution caused by a PS_POR_B reset is interrupted by the assertion of the
PS_SRST_B reset signal, the system will lock down. If both PS_SRST_B and PS_POR_B are
used, PS_POR_B must be the last signal that is de-asserted. For more information, refer to
Xilinx Answer Record 52847 [Ref 70].

Contact Xilinx Technical Support if you need a PS reset solution that does not clear the PL.

System Software Reset
The System Software Reset, also called SLCR Soft Reset, is asserted by writing to
PSS_RST_CTRL[SOFT_RST] and has the same effect as asserting the PS_SRTS_B pin. All of the
PS RAMs are cleared and the PL is reset as well.
UltraFast Embedded Design Methodology Guide 39
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=39

Chapter 2: System Level Considerations
Watchdog Timer Resets
There are two sources of watchdog timer resets: the System Watchdog, SWDT, and the two
ARM Watchdog Timers, AWDT0 and AWDT1. The SWDT always resets the entire system,
while each of the AWDTs can be used to reset either the associated ARM core (same effect
as CPU Reset) or the entire system (same effect as System Software Reset).

CPU Resets
There are two CPU Resets, one for each ARM core asserted by writing to
A9_CPU_RST_CTRL[A9_RSTx]. A CPU Reset to a single processor must be applied from the
other CPU, through JTAG or the PL.

Debug Resets
There are two debug resets, Debug System Reset and Debug Reset, that originate from the
ARM DAP and are controlled by JTAG. The Debug System Reset has the same effect as a
System Software Reset, whereas the Debug Reset only resets the debug logic.

Peripheral Resets
Individual peripheral resets can be asserted under software control, using programmable
bits within the SLCR. However, asserting reset at the peripheral block level is not
recommended. Resetting a peripheral without completing all in-flight or pending
transactions will cause the system to hang, because AXI transactions do not support a
timeout mechanism. When asserting reset to a peripheral, all pending and in-flight
transactions must be completed and no future transactions can be issued prior to the reset.

PL Resets
The PS provides four programmable reset signals to the PL (FCLK_RESET [3:0]). The resets
are individually programmable and independent of the PL clocks. After a POR or
system-wide reset, the reset signals are not de-asserted until the BootROM execution
finishes and the PS to PL level shifters are enabled

The FCLK_RESET is loosely associated with the FCLK of the same number. That is, the FCLK
needs to be toggling for the FCLK_RESET to propagate out of the PS. The reset is an
asynchronous reset to the PL and you must synchronize the reset inside the PL if required.

RECOMMENDED: To synchronize an FCLK_RESET, connect the signal to the external reset input port of
a proc_sys_reset IP core. By doing so, the reset output signals connected to other PL IP cores can be
synchronized to the slowest clock.
UltraFast Embedded Design Methodology Guide 40
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=40

Chapter 2: System Level Considerations
If the FCLK_RESET signal drives the reset of AXI-based IP in PL and is reasserted after the
initial de-assertion described above, resetting the IP later without completing all in-flight or
pending transactions to and from the process block will cause the system to hang. The
system must idle all AXI masters and finish all AXI transactions prior to asserting reset.

Interrupts
Generic Interrupt Controller
Because a Zynq-7000 AP SoC has many interrupt sources, the MPCore multicore processor
includes an implementation of the generic interrupt controller (GIC) architecture to help
funnel, prioritize, and arbitrate those interrupt sources. The GIC maps interrupts to specific
processor nIRQ and nFIQ lines. Multiple, concurrent interrupts are presented serially to one
or more processor interrupt lines.

Conceptually, the GIC contains an interrupt distribution block (distributor) and two
processor-interrupt blocks. Each block contains a set of registers. Registers in the
processor-interrupt blocks can only be accessed by the processor they are attached to using
its private bus and cannot be accessed by the other CPU or other AXI masters in the system.
Distributor registers can be accessed by either processor, and some registers are also
banked for secure and non-secure access.

Interrupts sent to the GIC can be unmanaged (legacy) or managed. Legacy interrupts are
not controlled by the GIC and the interrupt handler should not interact with GIC registers.

X-Ref Target - Figure 2-9

Figure 2-9: System-Level Block Design

Software Generated

Interrupts (SGI)

Generic Interrupt

Controller
Enable, Classify, Distribute

and PrioritizeSoftware Interrupts

CPU 1

CPU 0 CPU 0

Private Peripheral

Interrupts (PPI)
CPU 0

CPU 0

Private
5

Private Peripheral

Interrupts (PPI)
CPU 1

CPU 1

Private
5

Shared Peripheral

Interrupts (SPI)

Shared Peripherals

CPU 1

CPU 0

PS

I/O Peripherals (IOP)

Programmable

Logic

60

60

1644

Interrupt

Interface

Execution

Unit

Private Interrupt

Registers

IRQ/FIQ

CPU 1

Interrupt

Interface

Execution

Unit

Private Interrupt

Registers

IRQ/FIQ

Interrupt

Control and Status

Registers

CPU Private

Bus

WFI, WFE and

Event Indicators

16 each

X14186-073117
UltraFast Embedded Design Methodology Guide 41
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=41

Chapter 2: System Level Considerations
Managed interrupts are controlled by the GIC and the interrupt handler must interact with
GIC registers.

The distributor can control managed interrupt sources as follows:

• Define the interrupt as edge-sensitive or level-sensitive, subject to hardware
configuration limitations.

• Assign a 5-bit priority to the interrupt, with a programmable binary point.
• Assign a TrustZone technology security state to the interrupt. Interrupts labeled as

secure are called Group 0 interrupts, and non-secure interrupts are labeled as Group 1
interrupts.

• Route shared peripheral interrupts to one or both processors.
Note: Private peripheral interrupts (PPIs) are dedicated to each CPU and cannot be routed
elsewhere other than through the GIC.

• Route a software-generated interrupt to one or both processors.
• Save and restore the pending state of each interrupt. This is useful in low-power

applications.

Interrupt Architecture
The PS and PL interrupt sources, PS interrupt hierarchy, and Cortex-A9 processor
considerations are described in this section.

PS Interrupt Sources

Each Cortex-A9 processor can be interrupted by the following sources:

• Sixteen software-generated interrupts (SGIs) are available for software to interrupt
either processor.

• Five private peripheral interrupts (PPIs) are available. There are two interrupts from PL
(FIQ and IRQ) and one each from the global timer, the private timer, and AWDT.

• Sixty shared peripheral interrupts are available. There are 44 PS I/O peripheral
interrupts and 16 PL interrupts.

• Four PL interrupts can bypass the GIC and directly interrupt the processors, reducing
interrupt latency.

• Although it is not an interrupt, a CPU may use the WFE instruction to deliberately stall
and wait for an event on a dedicated input line from the other CPU or the PL.
UltraFast Embedded Design Methodology Guide 42
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=42

Chapter 2: System Level Considerations
PL Interrupt Sources

Each device in the PL that responds to interrupts must arrange for its own interrupt
controller, if needed. The following interrupts can be sent from the PS to the PL:

• Twenty-nine shared peripheral interrupts from the PS. These correspond to many (but
not all) of the PS peripherals.

• A processor can also use software-generated interrupts to interrupt the PL by using
EMIO GPIOs, an AXI_GPIO output channel in the PL, or by asserting a per-processor
hardware event line using the SEV instruction.

Interrupt IDs

A Zynq-7000 AP SoC supports IRQ IDs #0 through #95, as follows:

• IRQ ID #0–#15. These are assigned to software generated interrupts, allowing software
to interrupt a processor, including the processor hosting the software.

• IRQ ID #16–#31. These are assigned to private peripheral interrupts. IRQ ID #16–#26
are unused. Zynq-7000 AP SoCs implement IRQ ID #27–#31, as follows:
a. IRQ ID #27 is used by the processor global timer.
b. IRQ ID #28 is used by the managed FIQ and is also an unmanaged input.
c. IRQ ID #29 is used by the processor private timer.
d. IRQ ID #30 is used by the processor AWDT.
e. IRQ ID #31 is used by the managed IRQ and is also an unmanaged input.

• IRQ ID #32–#95. These are assigned to shared peripheral interrupts. IRQ ID #36 is
unused. Zynq-7000 AP SoCs implement IRQ ID #32–#35 and #37–#95. Thirty-one
interrupts (IRQ ID #32–#62) can all be unlocked or all be locked against user change.

Unique Capabilities
Interrupts can originate from the PS or the PL, and a PS processor or dedicated hardware in
the PL fabric (such as MicroBlaze™) can respond to interrupts. This enables the unique
capabilities of Zynq-7000 AP SoCs, described in the following sections.

Interrupt Processing in Fabric

Custom hardware can be created to offload interrupt processing to the PL. When this is
done, interrupt latency can be very low and deterministic (clock cycle accuracy). Also, the
custom hardware can perform computations that would take longer on the processor, in
parallel with the processor. If this is done, data stitching might be required, and the ACP
might be useful in providing cache coherency for PL masters.
UltraFast Embedded Design Methodology Guide 43
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=43

Chapter 2: System Level Considerations
Custom hardware can also be used to filter interrupts, reducing PS interrupt frequency and
processor loading. This can be done by converting multiple, low-level interrupts into fewer,
high-level interrupts.

Processor as an Extension of Fabric

Alternatively, processors in a Zynq-7000 AP SoC can act as an extension of fabric hardware,
performing tasks in software that would be difficult to implement in hardware. The PL can
send an interrupt to the PS to initiate a task, and interrupts can be sent from the PS to PL
indicating task completion. This method can also be used with the PS DMA330 controller to
provide additional execution threads.

Using OCM for Handlers

Fetching an interrupt handler from DDR memory might take more time than desired. The
Zynq-7000 AP SoC has a large L2 cache, but an interrupt handler may not be cached when
an interrupt occurs. In this case, it may be beneficial to place interrupt handlers in on-chip
memory (OCM). When this is done, the variability in time spent fetching an interrupt
handler is limited to L1 caches misses, leading to reduced jitter

Processor Affinity

Because there are two processors, polling responsibilities and interrupt handlers can be
divided between the processors, reducing latency and improving response time. This can be
done in either symmetric or asymmetric multi-processing systems.

Using FIQ and IRQ

Each Cortex-A9 in a Zynq-7000 AP SoC has two interrupt lines, nFIQ and nIRQ, driven by the
ARM e Generic Interrupt Controller (GIC). The 'n' prefix indicates that they are active low
interrupts. FIQ has lower latency than IRQ and is typically used for high-priority interrupts.
IRQ is used for interrupts that do not require low-latency response. An FIQ always preempts
an IRQ, and a preempted IRQ handler resumes execution after the FIQ handler finishes.

TrustZone

Zynq-7000 AP SoCs use ARM TrustZone technology, allowing system components to be
identified as secure or non-secure. For example, at different times each processor can
operate in secure and non-secure modes. Similarly, interrupts can be identified as secure
and non-secure. This allows isolation of secure components from those that are not secure.
In this case, higher-priority FIQs can be used for secure interrupts and lower-priority IRQs
for non-secure interrupts. Many secure settings can also be locked to prevent changes.
UltraFast Embedded Design Methodology Guide 44
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=44

Chapter 2: System Level Considerations
System Design Considerations
System designs should consider the performance impacts of various interrupt
implementation options:

• Latency and associated jitter should be characterized and managed by hardware or the
operating system. Jitter occurs if the OS masks interrupts for an unpredictable time
period, or because higher priority interrupts are being serviced.

• Policies for peripherals and associated software should be defined for cases when
interrupt handling is delayed. Choices include dropping data, throttling or pausing the
remote data source, and allowing hardware to run with degraded performance.

• Processor utilization is sufficient for peripheral services and other tasks, assuming
average and worst case scenarios.

• The interrupt handler's memory location can affect instruction-fetch performance.
Memory closer to the processor will have lower latency. Aligning the interrupt service
routine so that it starts on a cache line boundary can improve latency.

• When an interrupted peripheral operates on data that could be cached by the
processor, the processor must maintain cache coherency by invalidating or flushing its
caches, or by using hardware coherency mechanisms such as the ACP. On Zynq-7000 AP
SoCs, PL peripherals that use the ACP port avoid this restriction.

• In systems implementing asymmetric multi-processing (AMP), an ownership policy for
interrupts (and other system resources) must be established.

Embedded Device Security
The definition of security in modern embedded devices depends on the application. For
mobile phones, security could refer to preventing unauthorized access to personal data,
such as bank account numbers and passwords. For data center switches, security could refer
to preventing a hacker from maliciously logging in and disrupting network services.
Stealing and decompiling binary software logic stored in flash memory or physically
breaking open devices for reverse engineering are also possible embedded device security
challenges.

Potential threats to embedded devices include:

• Data privacy in the embedded device
• Cloning the embedded device
• Denial of service
• Malware insertion to change the embedded device behavior
• An insider providing keys to an adversary
UltraFast Embedded Design Methodology Guide 45
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=45

Chapter 2: System Level Considerations
The above examples describe threats from hackers and competitors. Other system security
threats can come from poorly-written programs. Such programs can accidentally corrupt
other programs and user data stored in the embedded-device flash, or disrupt normal
embedded-device operations by monopolizing the processor or peripheral bandwidth.

Zynq-7000 AP SoCs are designed to improve the security of the embedded systems they
power. This section highlights security features of Zynq-7000 AP SoCs that can be used to
provide different levels of security, such as:

• Boot image and bitstream encyption and authentication (secure boot).
• Partitioning the system into separate secure zones (TrustZone).
• Deploying asynchronous multiprocessing (AMP) on Zynq-7000 AP SoCs.
• Linux deployment on Zynq-7000 AP SoCs.

Secure Boot
An embedded system using a Zynq-7000 AP SoC typically wants to prevent the device from
being used differently than what was originally intended. An embedded system with a
Zynq-7000 AP SoC will typically have at least one of two programmable components:
software (PS images) and PL bitstreams. The system must be designed to ensure that once
it is deployed into the field, untrusted and corrupted programmable components are not
used for system boot. Also, security against programmable component theft must be
included to prevent a malicious competitor from stealing PS images and PL bitstreams.
Authentication is used to prevent booting with unauthorized programmable components,
and encryption is used to prevent programmable components theft.

Zynq-7000 AP SoCs provide multiple features in hardware and software (BootROM) that can
be configured to ensure that trusted programmable components (software and PL
bitstreams) are used to boot a Zynq-7000 AP SoC. Secure boot mode is restricted to NOR,
NAND, SDIO, or Quad-SPI flash as the external boot device. A secure boot from JTAG or any
other external interface is not allowed.
UltraFast Embedded Design Methodology Guide 46
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=46

Chapter 2: System Level Considerations
PS Software Boot Flow

The boot flow for PS is shown in Figure 2-10.
X-Ref Target - Figure 2-10

Figure 2-10: PS Boot Flow

Power On Reset

(Debug access with JTAG disabled)

Internal memory hardware clean process

(Optional OCM ROM CRC)

RSA authentication performed on FSBL

Load boot image header

AES decryption of FSBL

(Decrypted FSBL loaded to OCM)

HMAC authentication of FSBL

Disable OCM ROM memory

Pass control to FSBL

Disable and LOCK all security features

(AES and HMAC)

Load FSBL into OCM

Disable OCM ROM memory

Enable JTAG

Pass control to FSBL

Secure boot Non-Secure boot

RSA enabled

X14193-080117
UltraFast Embedded Design Methodology Guide 47
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=47

Chapter 2: System Level Considerations
Power-On BootROM CRC Check

After power-on, the BootROM is the first software component that executes. An optional
128KB CRC check can be done on the BootROM prior to loading the FSBL. The CRC check is
controlled by eFuse settings. Refer to the Secure Key Driver section in Secure Boot of
Zynq-7000 All Programmable SoC (XAPP1175) [Ref 42] for more information on
programming eFuses in Zynq-7000 AP SoCs.

During BootROM execution, the boot header is read from the external storage boot device
(SDIO, QSPI flash, NAND flash, or NOR flash) as configured by the mode pins. The header
contains information indicating whether the device will boot securely or non-securely. Refer
to the “Boot and Configuration” chapter in the Zynq-7000 All Programmable SoC Technical
Reference Manual (UG585) [Ref 4] for more information on the mode pins.

RSA Authentication of FSBL

During execution, the BootROM can authenticate a secure FSBL prior to decryption or a
non-secure FSBL prior to execution using RSA public-key authentication. This feature is
enabled by blowing the RSA Authentication Enable fuse in the PS eFuse array.
Authenticating the FSBL can ensure that a malicious or corrupted FSBL does not
compromise a Zynq-7000 AP SoC by booting from an unauthorized boot source using
unauthorized programmable components. Refer to Secure Boot of Zynq-7000 All
Programmable SoC (XAPP1175) [Ref 42] for more information on RSA authentication.

Secure BOOT Image

The programmable components of a monolithic boot image (BOOT.bin) include:

• PS image components

° An initialization header that can optionally write values to registers. For example the
initialization header can be used to increase the CPU clock speed or boot device
speed before the BootROM copies and executes the FSBL.

° FSBL.

° Optional secondary-boot loader, such as U-Boot or bare-metal software.

° Optional data images and multiple ELF.

° Optional Linux uImage.
• PL bitstream

The boot image can be made secure, if desired. The PS images and PL bitstreams in a secure
boot image are authenticated using a hash-based message authentication code (HMAC)
and encrypted using the advanced encryption standard (AES). Refer to Secure Boot of
Zynq-7000 All Programmable SoC (XAPP1175) [Ref 42] and Zynq-7000 All Programmable
SoC Secure Boot Getting Started Guide (UG1025) [Ref 21] for more information on creating
secure boot images.
UltraFast Embedded Design Methodology Guide 48
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=48

Chapter 2: System Level Considerations
AES & HMAC Authentication Engines

A Zynq-7000 AP SoC PL contains AES decryption and HMAC authentication engines.
Therefore, the PL must be powered on during the secure boot process, even if the secure
boot image does not have a PL bitstream. The BootROM checks whether the PL is powered
on prior to reading encrypted images from boot devices, so the embedded system must
ensure the PL is powered on before decryption. Because the PL is powered by a different
power rail, the embedded system must be designed to ensure the rail has appropriate
connectivity to the power regulator.

Bootgen

The programmable components of BOOT.bin are assembled using a Xilinx software tool
called Bootgen. Bootgen also encrypts the programmable components when the secure
boot option is selected. Refer to “Creating a Secure Boot image” in Secure Boot of
Zynq-7000 All Programmable SoC (XAPP1175) [Ref 42] and to “Using Bootgen” in
Zynq-7000 All Programmable SoC Software Developers Guide (UG821) [Ref 7].

Generating Keys

The secure boot authentication and decryption process requires the use of cryptographic
keys. The keys used by Zynq-7000 AP SoCs are:

• AES 256-bit key
• HMAC key
• RSA Primary Secret Key (PSK)
• RSA Primary Public Key (PPK)
• RSA Secondary Secret Key (SSK)
• RSA Secondary Public Key (SPK)

You can provide a a developer's key for the AES and HMAC engine or generate them using
Bootgen. Bootgen creates one key for both key0 and HMAC. If unique values for key0 and
HMAC are needed, they can be created by running Bootgen twice, taking the key from each
run, and providing it as a user-supplied set of keys in a third run. The AES key is
programmed into either eFuse or BBRAM in the PL using Vivado or the Secure Key Driver.

In the Zynq AP SoC, the primary RSA key is used to authenticate the secondary keys.
Secondary keys are used to authenticate partitions (such as software, data, and bitstream).
OpenSSL is used to create RSA primary and secondary keys. OpenSSL is used because it is
readily available, but you can also use other methods to generate keys. The RSA key
generated by OpenSSL is a private/public key pair. The public key is a subset of the private
key. For security, it is important to protect the private key. In RSA, the private key is used to
sign the partitions at the manufacturing site, and a hash of the public key is programmed
into the Zynq AP SoC embedded device to verify the signature.
UltraFast Embedded Design Methodology Guide 49
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=49

Chapter 2: System Level Considerations
eFuse / BBRAM for Security

For RSA authentication, the hash of the PPK is stored in the PS eFuse array. The PS eFuse is
programmed using the secure key driver. For AES decryption, the key is stored in either the
eFuse or BBRAM in the PL. The PL eFuse control bits for eFuse Secure Boot, BBRAM Key
Disable, and JTAG Chain Disable are programmed using Vivado or the Secure Key Driver.
The eFuses are one-time programmable (OTP). A power-on reset (POR) is required after
programming the eFuses.

For more information on the Secure Key Driver, as well as many other security features
discussed in this section, refer to Secure Boot of Zynq-7000 All Programmable SoC
(XAPP1175) [Ref 42].

Partitioning a System in Separate Secure Zones (Trust Zone)
Secure boot uses encryption and authentication to prevent a boot from using unauthorized
software, and it prevents theft of programmable PS images and PL bitstreams. However,
system designers may want to provide additional protection levels, such as allowing access
to certain system components only when trusted software executes on the system. This
would help prevent dynamically-loaded third-party applications from accessing private
data or monopolizing systems resources, degrading system performance. For example, a
system designer might not want third-party software to access system flash that is used to
store private data, such as bank account details and passwords.

ARM TrustZone technology ensures runtime security by enabling the system designer to
divide the system into logical partitions that allow only trusted software to access secure
components at the hardware level. For more information, refer to:

• ARM Security Technology: Building a Secure System using TrustZone® Technology
[Ref 76]

• Programming ARM TrustZone Architecture on the Xilinx Zynq-7000 All Programmable
SoC User Guide (UG1019) [Ref 20]

Security using Asynchronous Multiprocessing (AMP)
Asynchronous multiprocessing (AMP) can be used in a Zynq-7000 AP SoC for system
security by restricting where software can execute. For example, one ARM Cortex-A9
processor can be used to execute untrusted third-party applications and the other ARM
Cortex-A9 processor can be used to execute trusted software. The operating system on the
ARM Cortex-A9 processor running trusted software is given system resources, such as
peripherals, that are mission critical. The operating system on the ARM core running
untrusted software is not made aware of the secure peripherals. This approach provides a
logical separation where untrusted software cannot intentionally or unintentionally
degrade system performance. This approach ensures runtime security. Preventing a
malicious boot of a Zynq-7000 AP SoC by an unauthorized programmable component is
covered by secure boot.
UltraFast Embedded Design Methodology Guide 50
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=50

Chapter 2: System Level Considerations
Linux Deployment
Because Linux is ported to Zynq-7000 AP SoCs, Linux security features are available. Linux
security includes file access controls, use of the memory management unit to prevent illegal
memory access, such as by programs.

Linux-based platforms such as Android also provide device security by using virtual
machines that prevent third-party applications from directly accessing hardware resources.

Many other third-party proprietary security extensions exist for Linux.

Profiling and Partitioning
Profiling tools help you determine how to partition an application’s functions between
hardware and software for optimal performance.

Software Profiling

Profiling is a form of program analysis that is used to aid the optimization of a software
application. It is used to measure a number of application code properties, including:

• Memory usage
• Function call execution time
• Function call frequency
• Instruction usage

Profiling can be done statically (without executing the software program) or dynamically
(done while the software application is running on a physical or virtual processor).

Static profiling is generally done by analyzing the source code, or sometimes the object
code.

Dynamic profiling is usually an intrusive process whereby program execution on a
processor is interrupted to gather information. Trace mechanisms within some processors
can be used to non-intrusively gather profiling data.

Profiling allows a designer to identify code-execution bottlenecks that may be caused by:

• Inefficient code
• Poor communication between functions and a module in the PL
• Poor communication between functions in software
• An algorithm or routine implemented in software that may be more suitably

implemented in hardware
UltraFast Embedded Design Methodology Guide 51
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=51

Chapter 2: System Level Considerations
Once identified, the bottlenecks can be optimized by rewriting the original software
function or by moving it to the PL for acceleration. Alternatively, part of the function could
remain in software, while the problematic section could be moved to hardware.

Profiling is also useful when analyzing large programs that are too big to be analyzed by
reading the source code. Profiling can help designers identify bugs that may otherwise not
have been noticed.

The execution flow of various functions is shown in Figure 2-11 above, with the number of
clock cycles required to execute a given function highlighted. By profiling a program, and
thus determining the number of clock cycles required to execute each individual function, it
can be determined whether or not a function needs to be optimized. During development,
a software engineer may have estimated the average time a function should take to execute
on a given PS. This estimate can be compared to the profiling results and large
discrepancies can be investigated. An example profiling output for the execution flow in
Figure 2-11 is provided in Figure 2-12.

X-Ref Target - Figure 2-11

Figure 2-11: Program Execution Example

X-Ref Target - Figure 2-12

Figure 2-12: Example Profiling Output

Function

A

Function

B

Function

A

Function

C

Fcn

D

Fcn

E

Fcn

F

Function

C

Fcn

G

Timer

Program Execution

Profiler Interrupt

Signals X14187-073117

Function A

Function C

Function B

Function D

Function E

Function F

Function G

2

2

1

1

1

1

1

Calls

1 2 4 6 Execution Time

(Clock Cycles)
X14188-073117
UltraFast Embedded Design Methodology Guide 52
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=52

Chapter 2: System Level Considerations
Xilinx SDK System Debugger

The Xilinx SDK includes profiling tools that help identify bottlenecks in the code that might
occur due to the interaction of functions executed within the PL, and functions executed on
the processor. Once identified, these bottlenecks can be optimized by migrating the entire
function to PL, by optimizing the function code on the processor, or by splitting the
function between processor and PL.

SDK supports hierarchical profiling, providing a view into which calling functions and called
sub-functions have the largest effect on process performance.

TCF Profiling

Profiling in the Xilinx SDK can be done with the TCF profiler. It works using a statistical
sampling method that examines the system at regular intervals, determines what code is
running, and updates appropriate counters. The execution profile's accuracy improves the
longer a profile is collected, assuming the sample rate is sufficient. Unlike other profilers
that make use of interrupts, this method does not cause inaccuracies if the profiled code
disables interrupts. The profiled program does not need to be recompiled, as it does with
gprof.

Performance Monitoring

The performance monitoring feature in the SDK collects AXI Performance Monitor (APM)
event count module data from the PL, ARM Performance Monitor Unit (PMU) data, and L2
cache data from a Zynq-7000 AP SoC PS. The data is collected by the SDK in real-time, over
JTAG. The values from these counters are sampled every 10 msec. These values are used to
calculate metrics shown in the dedicated view.
UltraFast Embedded Design Methodology Guide 53
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=53

Chapter 2: System Level Considerations
The Performance Tab in SDK is shown in Figure 2-13.

For each Cortex-A9 CPU, the following PMU events are monitored:

• Data cache refill
• Data cache access
• Data stall
• Write stall
• Instruction rename
• Branch miss

The following two L2C-PL310 (L2 cache controller) counters are monitored:

• Number of cache hits
• Number of cache accesses

X-Ref Target - Figure 2-13

Figure 2-13: Performance Tab
UltraFast Embedded Design Methodology Guide 54
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=54

Chapter 2: System Level Considerations
The following APM counters for each of the HP and ACP ports can be monitored when the
APM is used in a design:

• Write byte count
• Read byte count
• Write transaction count
• Total write latency
• Read transaction count
• Total read latency

ARM Development Studio 5 (DS-5)

The ARM Development Studio 5 (DS-5) tool chain is a complete suite of software
development tools for ARM processor-based systems. DS-5 covers all development stages
of ARM processor-based products, from platform bring-up to application profiling, while
including a number of ARM Linux and Android specific features.
The Streamline performance analyzer is a component of the ARM Development Studio 5
(DS-5) tool chain. It is a system-level performance analysis tool for Linux and Android
systems. It uses sample-based profiling, Linux kernel trace, and software annotation
techniques. A Streamline report provides a variety of performance-related information on
seven panes: Timeline, Call Paths, Functions, Code, Call Graph, Stack Analysis, and Logs.
By default, the Streamline profiling reports are generated by sampling the program counter
every 1ms or 10ms. When event-based sampling is enabled, Streamline takes samples when
an event counter reaches the selected threshold value. These samples fall on the instruction
that caused the last event, and are used to fill the profiling reports with event-based data
instead of time-based data. For example, event-based sampling can be used to determine
which parts of the code are causing cache misses or branch mis-predictions.

Practical Applications

Boot Time
The amount of time it takes the application to boot can be a significant concern for some
systems. Total boot time includes the execution time for the BootROM, FSBL, 2nd stage
boot loader (such as U-Boot), and the operating system. For information about boot time,
refer to Xilinx Answer Record 55572 [Ref 71].
UltraFast Embedded Design Methodology Guide 55
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=55

Chapter 2: System Level Considerations
Processor Loading
Processor load is a measure, over time, of the computation actually done as a percent of the
total computation that could be done. When the processor load nears 100 percent the
system can start to fail or be unresponsive.
Top is a Linux tool that provides an ongoing look at processor load in real time. It displays
a list of the most CPU-intensive tasks on the system, and can provide an interactive
interface for manipulating processes. It can sort the tasks by CPU, CPU usage, memory
usage and runtime.

System Latency

System latency is the length of time after a request is made for a system operation to start
until the operation actually starts. Identifying the cause of system latency can be
challenging because it includes the application and all software layers below it, including
the operating system.

Interrupt Latency

Interrupt latency is the length of time for an interrupt to be acted on after it has been
generated. Interrupt latency is often measured by the amount of time it takes the CPU to
recognize the interrupt and respond by suspending execution of the current processing
context. Another measure is the amount of time it takes to begin interrupt processing.

In SMP Linux, interrupt processing can be done by either CPU with the default being to run
on CPU0. If processing is left to the default it can result in a large load on one CPU. The CPU
affinity of each interrupt can be altered from user space to balance the processing load.
There are also applications that help balance interrupt loads, such as irqbalance.

Cyclictest is a Linux tool that measures the amount of time between an interrupt and the
start of the interrupt response. The measured time is compared with the expected time, and
the difference is the latency. A number of events can delay the actual interrupt response,
and cyclictest can be used to identify and characterize those delays.

Hardware Profiling
When profiling, a system can be viewed as a hierarchy of subsystems, each having its own
performance monitoring abilities. To completely analyze system performance, all data must
be integrated and synchronized into a view that allows the designer to see where time is
being consumed in the system.

The PL has flexibility not found in a traditional fixed SOC, giving the designer a range of
implementation alternatives. Profiling a design is one method that can be used to fully
understand the impacts of a specific implementation.
UltraFast Embedded Design Methodology Guide 56
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=56

Chapter 2: System Level Considerations
Program Trace Module (PTM)

The PTM is a module that performs real-time instruction flow tracing based on the Program
Flow Trace (PFT) architecture. The PTM generates information that trace tools use to
reconstruct the execution of all or part of a program.

The PFT architecture assumes that the trace tools (such as DS-5) can access a copy of the
code being traced. For this reason, the PTM generates traces only at certain points in
program execution, called waypoints. This reduces the amount of trace data generated by
the PTM. Waypoints are changes in the program flow or events, such as an exception. The
trace tools use waypoints to follow the flow of program execution.

For full program-flow reconstruction, the PTM traces:

• Indirect branches, with target address and condition code
• Direct branches with only the condition code
• Instruction barrier instructions
• Exceptions, with an indication of where the exception occurred
• Changes in processor instruction set state
• Changes in processor security state
• Context-ID changes
• Entry to and return from debug state when halting debug-mode is enabled.

The PTM can also be configured to trace:

• Cycle count between traced waypoints
• Global system timestamps
• Target addresses for taken direct branches.

Performance Monitor Unit (PMU)

The Cortex-A9 processor PMU provides six counters to gather statistics on the operation of
the processor and memory system. Each counter can track any of the 58 events that are
significant system performance measurements. Software applications, like the Xilinx System
Debugger, can make use of the event counts along with software execution times to help
optimize the software. Xilinx drivers provide access to this information so that software
applications can retrieve this information from the driver and display it.
UltraFast Embedded Design Methodology Guide 57
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=57

Chapter 2: System Level Considerations
Level 2 (L2) Cache Event Counters

The PL310 L2-cache controller incorporates two counters that allow monitoring of cache
events. These events can assist in understanding how applications are affecting the L2
cache and how they might be optimized. Xilinx drivers provide access to this information so
that software applications can retrieve this information from the driver and display it.

AXI Performance Monitor (APM)

The LogiCORE IP AXI Performance Monitor is a soft IP core that can be built into the PL to
measure AMBA AXI system performance metrics in the PL. The performance monitor
measures bus latency of masters/slaves (AXI4/AXI3/AXI4-Stream) in a system, the amount
of memory traffic over specific durations, and other performance metrics. This core can also
be used for real-time profiling of software applications.

The APM monitors the AXI system non-intrusively so that no CPU processing is required.
However, software on the ARM CPU can initialize monitoring of specific data and then
gather the results from the APM, which is minimally intrusive in system profiling. Xilinx
drivers provide access to this information so that software applications can retrieve the
information from the driver and display it. The APM can also be configured by the System
Debugger in the profile mode.

The APM includes the following capabilities that can be helpful during profiling:

• Studying the latencies of any AXI-based slave, such as a memory controller, and tuning
the core.

• Obtaining system-level metrics, such as write-throughput, read-throughput, average
interconnect read-latency, and others.

• Analyzing the transaction latencies and identifying the agent causing more idle cycles
in the transactions.

• Comparing two similar AXI agents.
• Counting external events (other than AXI), such as FIFO overflow/underflow, interrupts,

and others.
• Logging specific events on the monitor slots, and then reconstructing and analyzing

the behavior/performance.

Ethernet Statistics Registers

The Gigabit Ethernet Controllers contain statistics registers that are accessible to software
through low-level interfaces. The statistics registers record counts of various event types
associated with transmit and receive operations. The counts are helpful for profiling and
analyzing network performance. Xilinx drivers provide access to this information so that
software applications can retrieve it and display it.
UltraFast Embedded Design Methodology Guide 58
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=58

Chapter 2: System Level Considerations
Software/Hardware Partitioning
With the help of software profiling, compute-intensive functions within an application can
be identified. These functions can then be compiled into hardware and migrated into the PL
for higher performance.

At the interface between hardware and software is a communication mechanism that allows
data exchange between the two. The parameters of the accelerated function are passed to
or made available to the hardware accelerator in PL, and the result of the hardware
computation is returned or made available to software.

This communication can be done over one of the PS AXI ports (AXI_ACP, AXI_HP, or slave
AXI_GP) using any of the following data movement schemes:

• Memory-mapped registers
• AXI-Stream FIFO
• AXI-DMA

The choice of the port and the data mover employed by the hardware is influenced by the
data transfer size, the resources required to implement the communication mechanism, and
any latency requirement. Some of the most commonly used solutions are discussed below.

Implementing memory-mapped registers in the accelerator provides the simplest form of
data communication. In one method, the accelerator is an AXI-slave. Software writes the
required computation parameters into the registers and starts the hardware. When the
hardware is done, the accelerator either interrupts the PS or writes to a status register-bit
polled by software. In low power applications, using the event inputs may be preferred over
interrupts. The software can then obtain the result with a series of register reads. A block
diagram of this method is shown in Figure 2-14.
X-Ref Target - Figure 2-14

Figure 2-14: Memory Mapped Register

X14189-073117

Zynq Processor System

M_AXI_GP

Zynq Programmable Logic

Register

Accelerator

A
X

I-L
ite

 IC

Main
UltraFast Embedded Design Methodology Guide 59
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=59

Chapter 2: System Level Considerations
Alternatively, the accelerator can act as an AXI-master and pull data from system memory or
a PS peripheral as directed by software. A block diagram of this method is shown in
Figure 2-15.

While the register-based solution is simple to implement, it works best with accelerators
that have a small data set to transfer across the software/hardware boundary. There is a
software overhead for accessing individual registers, which makes the data transfer
expensive. With larger data sets, an AXI FIFO can be employed for streaming type
interfaces. A block diagram of this method is shown in Figure 2-16.

X-Ref Target - Figure 2-15

Figure 2-15: Memory Mapped Register With AXI Master

X-Ref Target - Figure 2-16

Figure 2-16: Memory Mapped FIFO

Zynq Processor System Zynq Programmable Logic

Register

Accelerator

A
X

I-L
ite

 IC

Main

X14190-073117

M_AXI_GP

M_AXI_HP/ACP

Zynq

Processor

System

M_AXI_GP

Zynq Programmable Logic

AXI FIFO Accelerator

A
X

I ICMain

X14191-073117
UltraFast Embedded Design Methodology Guide 60
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=60

Chapter 2: System Level Considerations
Very often, the hardware accelerator is used to process a large amount of data, such as in a
video based application. The data is stored in memory that is accessible by both software
and hardware in the PL, such as OCM or DDR. A DMA is used to pull data out of the memory
and push the data back into memory after accelerator processing. A block diagram of this
method is shown in Figure 2-17.

The Zynq-7000 All Programmable SoC ZC702 Base Targeted Reference Design (Vivado Design
Suite 2014.2) User Guide (UG925) [Ref 13] is a video-processing application that implements
an edge-detection filter on a 1080p60 video stream in both software and hardware. In the
hardware implementation, a video DMA pulls video data out of the DDR, pipes it through
the edge-detection engine, then writes the video stream back into DDR. Software updates
the DMA registers to control the flow of video data.

X-Ref Target - Figure 2-17

Figure 2-17: Memory Mapped DMA

Zynq Processor

System
Zynq Programmable Logic

R
e

g
 D

M
A

A
X

I-L
ite

 IC

Main

X14192-073117

A
X

I IC

Accelerator

M_AXI_GP

S_AXI_HP/ACP
UltraFast Embedded Design Methodology Guide 61
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=61

Chapter 3

Hardware Design Considerations
This chapter covers the following hardware design issues to be considered when designing
with a Zynq®-7000 AP SoC:

• Configuration and Boot Devices: You can boot from a variety of primary and secondary
boot devices. This section describes the boot flow and boot device options.

• Memory Interfaces: You can connect the DDR memory controller to a variety of DDR
memory devices, using either a 16-bit or 32-bit wide data bus. An ECC option is supported.

• Peripherals: A variety of peripherals are available in the Zynq-7000 AP SoC. This section
describes the peripherals and their interaction with the Application Processing Unit
(APU).

• Designing IP Blocks: IP blocks are pre-designed, pre-verified, and reusable functional
blocks that can help you reduce design time. This section describes the process of
designing solutions containing IP blocks.

• Hardware Performance Considerations: This section describes hardware performance
metrics and methods you can use to tune the performance of AXI masters, AXI slaves,
and AXI datapaths.

• Dataflow: Dataflow within the processing system (PS) and between the PS and
programmable logic (PL) is described in this section.

• PL Clocking Methodology: The PL clocking methodology is covered in this section. The
different PL clock sources and their recommended use are described.

• ACP and Cache Coherency: The ACP’s ability to provide low-latency access to PL
masters, including optional coherency with the L1 cache, is described in this section.

• PL High-Performance Port Access: You can use the HP ports to give the PL direct access
to the DDR controller and the on-chip memory (OCM). Design-driven optimizations
that use the HP ports are described in this section.

• System Management Hardware Assistance: System management, including the control
of system-level parameters based on user-specific inputs, is discussed in this section.

• Managing Hardware Reconfiguration: You can apply partial reconfiguration to the
portion of the FPGA that is not static logic. This section describes the process of
partially reconfiguring your design.

• GPs and Direct PL Access from APU: This section describes how you use the GP
interfaces for accessing registers and memory in the PL from the APU.
UltraFast Embedded Design Methodology Guide 62
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=62

Chapter 3: Hardware Design Considerations
Configuration and Boot Devices
This section describes Zynq-7000 AP SoC boot devices and how they are configured. It
covers the boot flow and the role of BootROM as an agent for performing the boot
initialization sequence. Primary boot options like Quad-SPI, SD, NAND, NOR flash, and JTAG
boot mode, and secondary boot options like eMMC and PCIe in the Zynq-7000 AP SoC are
described. The section focuses on the boot flow and boot device usability in system-level
scenarios. The JTAG boot mode is considered a slave boot mode and is always a non-secure
boot mode.

Typical Boot Flow
The boot sequence in a Zynq-7000 AP SoC involves reading the first-stage boot loader
(FSBL) from external static storage, typically NAND or NOR flash memory. The BootROM
contains the code that is executed after power on reset, and that code reads the FSBL from
the external static storage.

After the PS_POR_B pin is de-asserted, hardware samples the boot-strap pins and
configures the PS and the PLLs. Software in the PS internal BootROM executes, beginning
with code that configures the ARM core and peripherals necessary to copy the FSBL image
from the chosen boot device to OCM, and then the code switches execution from the OCM.
You can copy the FSBL from the primary boot device mentioned above or you can load it
through JTAG. Optionally, in non-secure boot mode, you can execute the FSBL from
Quad-SPI/NOR flash that supports execute-in-place.

Figure 3-1 depicts the typical boot flow.

You can boot a Zynq-7000 AP SoC in both secure and non-secure modes. Secure mode boot
is only possible with static memories whereas non-secure mode boot is possible with both
JTAG and static memories. JTAG boot is primarily used during the system development
phase.

X-Ref Target - Figure 3-1

Figure 3-1: Typical Boot Flow

BootROM FSBL SSBL OS APPLICATION

X14131-073117
UltraFast Embedded Design Methodology Guide 63
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=63

Chapter 3: Hardware Design Considerations
Selecting a Boot Device
The following primary boot options are available for Zynq-7000 AP SoCs:

• Quad-SPI with optional execute-in-place mode
• NAND flash
• NOR flash with optional execute-in-place mode
• SD memory card
• JTAG

The following secondary boot options are available for Zynq-7000 AP SoCs:

• eMMC
• PCIe, Ethernet, USB, UART, or a custom FPGA interface

You can select a BootROM device using any of the following criteria:

• The device works with the Zynq-7000 AP SoC BootROM and is supported by Xilinx®
tools (iMPACT, SDK) and higher-level software such as U-Boot and Linux. You can find a
list of Xilinx-recommended devices for different boot options in Xilinx Answer Record
50991 [Ref 69].

• The device meets the application's configuration pin requirements. For example, the
QSPI boot option requires fewer pins than the NAND or NOR boot options.

• The device meets the application's size requirements. NAND and SD boot options
provide higher memory density than the QSPI and NOR boot options.

• The device meets the application's configuration speed requirements. QSPI is the
fastest available boot option.

• Device management can be adequately handled by the application. NAND devices can
be more difficult to manage than other boot options. Bad blocks require design
decisions on how they will be managed when they occur.

Your choice of boot device affects the number of pins required, the maximum memory size,
the boot time, and the device management software complexity. Table 3-1 summarizes the
design trade-offs.
UltraFast Embedded Design Methodology Guide 64
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=64

Chapter 3: Hardware Design Considerations
More information on each boot option is provided in the following sections.

Quad-SPI with Optional Execute-in-Place Mode

The BootROM can detect the Quad-SPI interface's intended I/O width using the
width-detection parameter value (0xAA995566) and image-identification parameter value
(0x584C4E58). Quad-SPI is the fastest configuration solution available. Only the SD
memory card boot option has a lower pin count. You can access Quad-SPI as linear memory
in Zynq-7000 AP SoCs. Device management is simpler because bad blocks are of less
concern than they are in other devices, such as NAND flash. In linear mode, Quad-SPI
supports up to 16 MB in single mode and 32 MB in dual mode. More than 16 MB is also
supported when the QSPI is operated in IO mode. For the execute-in-place option, the
BootROM uses the linear addressing feature of the Quad-SPI controller for non-secure boot
modes. Multiboot is possible with QSPI.

For information on which vendor flash devices are currently supported by the Zynq-7000 AP
SoC tools, refer to Xilinx Answer Record 50991 [Ref 69].

Table 3-1: Flash Memory Comparison

Peripheral Pins Boot Device XIP Limitations Read/Write Max Size Boot
Time

QSPI 7 single,
8 dual
stacked,
13 dual
parallel

Yes.
Boot image
in 16MB
single and
stacked,
32MB for
parallel.

Yes Capacity limited to 16MB
per device as a boot
device.
Very slow erase/write –
usually used as read only.
Often used in with eMMC
or SD card.

Byte/Block 16MB in
Liner mode,
128MB in
IO mode,
per QSPI.
Each
controller
can support
up to two
QSPIs.

Fast

NAND X8–14
X16–22

Yes
Boot image
in the first
128MB

No Requires software
management of ECC, wear
leveling, bad block.
Requires file systems for
raw flash such as JFFS2 or
UBIFS.
Requires ECC.
Hardware support for
1-bit ECC only.

Block/Block 1GB Medium

SD 6 Yes No Requires Mechanical
connector

Block/Block Any size Slow

Parallel
NOR

37 Yes Yes Support capacity
comparable to large QSPI,
but with high pin count.

Byte/Block 64MB Fast

eMMC 6 No No Cannot boot from eMMC Block/Block Any size N/A
UltraFast Embedded Design Methodology Guide 65
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=65

Chapter 3: Hardware Design Considerations
NAND Flash

The NAND flash boot option is an inexpensive solution supporting large density devices.
The only restriction is the boot image must be located within the first 1 GB of address space
in the NAND flash device. Performance of this boot option is lower than that of the
Quad-SPI boot option. Typical NAND flash solutions require more pins and have lower
memory bandwidth than Quad-SPI solutions. The application design needs to have a
mechanism for managing bad clocks, including during boot. Multiboot is possible with
NAND.

Micron (on-die ECC) and Spansion (S34) are the recommended NAND boot device families.
Micron NAND devices typically require multi-bit ECC, which necessitates using only devices
with on-die ECC support.

NOR Flash with Optional Execute-in-Place Mode

You can access NOR flash as linear memory with Zynq-7000 AP SoCs. Also, bad blocks are
of less concern than they are in NAND flash devices. NOR flash density is comparable to
Quad-SPI. It uses more MIO pins compared to other boot options. A typical NOR flash (byte
peripheral interface) uses 40 MIO pins and can support up to 64 MB.

For information on which vendor flash devices are currently supported by the Zynq-7000 AP
SoC tools, refer to Xilinx Answer Record 50991 [Ref 69].

SD Memory Card

SD memory cards have higher densities than that of the NAND flash boot option. Devices
are generally managed as a file system. Bad blocks do not need to be managed by the
application design. SD memory is slower than the Quad-SPI boot option, and the SD cards
require an on-board connector. eMMC devices are not primary boot devices but you can
use them as a secondary boot source. In SD boot mode, BootROM does not perform header
search and a multi-boot option is not supported. You can improve boot time in the SD boot
mode by setting the CPU clock divisor to 2 in the ARM_CLK_CTRL register (0x1F000200).

JTAG

In JTAG boot mode, you can select the independent JTAG mode to support a debugger
connected to the ARM DAP controller and another tool connected to the Xilinx PL TAP
controller. The Xilinx PL TAP controller is accessible using the PL JTAG interface connected
to dedicated PL pins. Access to the ARM DAP controller (for another tool) is done using the
EMIO JTAG interface. This requires downloading a bitstream into the PL. You can download
the bitstream using the Xilinx PL TAP controller.
UltraFast Embedded Design Methodology Guide 66
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=66

Chapter 3: Hardware Design Considerations
eMMC

You can use the eMMC secondary boot option when QSPI is the primary boot option and a
small QSPI memory is used. Typically, the FSBL will be loaded in to the QSPI and other
partitions will be loaded into eMMC. Xilinx recommends using eMMC with the SDIO
controller only in standard speed mode (max frequency of 25 MHz).

PCIe, Ethernet, USB, UART, and Custom FPGA Interface

You can also implement secondary boot using PCIe, Ethernet, USB, UART, or a custom FPGA
interface. You can select an option appropriate to your application. The PCIe-based
secondary boot option is discussed below.

PCIe secondary boot uses the PCIe protocol to fetch the second-stage boot loader from a
host system that implements a PCIe root complex. The PCIe block in the Zynq-7000 AP SoC
PL implements the end point function and forms the communication link with the PCIe root
complex. You can fetch the FSBL image from external memory (QSPI, NAND, or NOR flash)
and after FSBL execution is done, the FSBL can fetch the secondary U-Boot image from the
host-system memory over PCIe.

To implement this option, you need to generate a bitstream instantiating the PCIe block in
the design. For example, you can implement the programmed IO (PIO) design using a Xilinx
7 Series PCIe IP block. You also need to implement a set of PL registers for handshake status
between the APU and the host CPU, and connect the register interface to the PS master GP
port. The boot flow is:

• The FSBL will be loaded from the primary boot device.
• The APU waits until the FSBL performs the peripheral initialization process.
• The FSBL programs the bit file with the PIO design and handshake status register set.
• The APU programs the bitDone register after the bit file programming is done.
• The host PIO driver reads the bitDone register and writes the U-Boot.elf file to PL

block RAM.
• After U-Boot.elf is written, the status is written to the U-BootDone register.
• The APU polls the U-BootDone bit, and after it is done copies the file to PS DDR

memory.
UltraFast Embedded Design Methodology Guide 67
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=67

Chapter 3: Hardware Design Considerations
File System
The flash choice influences the file system that can be implemented. The file system choices
described below are specific to Linux, but provide a good outline of the issues to be
considered.

eMMC and SD cards have a built-in controller that runs the Flash Translation Layer (FTL)
firmware, allowing the device to appear to the OS as a block device. Conventional file
systems, such FAT or ext3, work with block devices and can be implemented using these
devices.

A raw flash device (such as NAND, QSPI, or parallel NOR) requires software management so
that reads-from and writes-to memory cells function properly. Linux uses the memory
technology device (MTD) subsystem to provide an abstraction layer between the
hardware-specific device drivers and higher-level applications. Linux supports file systems
that are layered on top of MTD devices, such as JFFS2 and UBIFS. These file systems are
designed to include software management algorithms to handle issues like wear leveling
and bad block management, and must be used for the device to function properly.

Optimizing Boot Time
The BootROM settings used to read from each flash device type are selected for maximum
compatibility, often at the expense of performance. Boot interface performance can be
improved by setting the corresponding controller registers in the register initialization
portion of the BootROM header. The settings depend on the devices being used and the
board layout parameters. Optimized register values should be obtained from vendor data
sheets for the devices used. Examples of optimized values for each boot device can be
found in the Register Initialization to Optimize Boot Times section of the Zynq-7000 All
Programmable SoC Technical Reference Manual (UG585) [Ref 4] and the Xilinx Answer Record
55572 [Ref 71]. The optimized values can be added to the boot image header using
Bootgen. Refer to the “Using Bootgen” appendix in the Zynq-7000 All Programmable SoC
Software Developers Guide (UG821) [Ref 7] for more information. The BootROM
Performance section of the Boot and Configuration chapter in the Zynq-7000 All
Programmable SoC Technical Reference Manual (UG585) [Ref 4] provides methods to
improve timing and bandwidth results during different boot stages.
UltraFast Embedded Design Methodology Guide 68
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=68

Chapter 3: Hardware Design Considerations
Case Study: Variations in QSPI Boot Time
This case study describes boot-time measurements done on a Xilinx ZC702 board using
different QSPI devices running at 100MHz, and varying the PS frequency.

The boot time (measured from U-Boot start to the Linux prompt) for a 32 MB Spansion
single device with the PS running at 667 MHz is approximately 3036 milliseconds. The boot
time for a 64 MB Spansion dual-parallel device with the PS running at the same frequency
is approximately 2994 milliseconds. Therefore, using a dual-parallel QSPI device that is
twice the size of a single QSPI device improves boot time by approximately 42 milliseconds,
without changing the PS frequency.

Changing the PS frequency also affects boot time. As mentioned above, the boot time for a
32 MB Spansion single QSPI device with the PS running at 667 MHz is approximately 3036
milliseconds. Using the same QSPI device but increasing the PS speed to 867 MHz results in
a boot time of approximately 2523 milliseconds. Therefore, without changing the QSPI
device, increasing the PS operating frequency from 667 MHz to 867 MHz improves boot
time by approximately 513 milliseconds.

Memory Interfaces
DDR
The DDR multi-protocol memory controller in the Zynq-7000 AP SoC supports 1.8V DDR2,
1.2V LPDDR2, 1.5V DDR3, and 1.35V DDR3L. It can be configured to provide a 16-bit or
32-bit wide data bus. All devices support the 16-bit and 32-bit data bus width options,
except the 7z010 CLG225 device that supports only the 16-bit data bus width. The
controller optionally supports ECC in 32-bit configurations, with 16 data bits and 10 check
bits. When ECC is enabled the data width is limited to 16 bits. A 1 GB address map is
allocated to the DDR. However, if ECC is used, only 512 MB of address space is available.

The DDR memory controller contains three major blocks: an AXI memory port interface
(DDRI), a core controller with a transaction scheduler (DDRC), and a controller with digital
PHY (DDRP). The details of each block and other controller aspects are described at this link
in the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4].

The controller includes a digital PHY with a dedicated set of I/Os. On the fastest speed
grade for some Zynq-7000 AP SoC devices, the maximum supported bus clock is 666 2/3
MHz in DDR3 mode. The maximum supported bus clock is 533 MHz in DDR3 mode for all
other speed grades. The theoretical maximum bus bit-rate is:

Data transfer rate = 666 2/3 MHz * 2 bits (for double data rate) = 1333 Mb/s per data IO
UltraFast Embedded Design Methodology Guide 69
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xDDRMemoryController
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=69

Chapter 3: Hardware Design Considerations
Using the maximum bus width of 32 bits, the maximum bus bandwidth is 42.6 Gb/s, or
5.3 GB/s. This bandwidth is shared by multiple masters connected using the four DDRI slave
ports as shown in Figure 3-2. The DDRI block connects to four 64-bit synchronous AXI
interfaces to serve multiple AXI masters simultaneously. Each AXI interface has its own
dedicated transaction FIFO. Port S0 is connected to the L2-cache and services only the PL
CPU and ACP interfaces to ensure low latency and fast access. Port P1 is shared by all
central-interconnect masters, such as PS peripherals and AXI GP ports. The four PL AXI_HP
interfaces are multiplexed down in pairs and are connected to ports 2 and 3, as shown in
Figure 3-2.

The maximum bus bandwidth is 5.3 GB/s, but it is not sustainable. The DDR efficiency must
consider the overhead associated with DDR and is influence by the data access pattern.
Address patterns that minimize page and row changes reduce page and row change
overhead, resulting in higher utilization and higher system throughput. Refer to the
“Row/Bank/Column Address Mapping” subsection of the “DDR Memory Controller” chapter
(available at this link) in the Zynq-7000 All Programmable SoC Technical Reference Manual
(UG585) [Ref 4].

How PL AXI masters are connected to the HP ports also determines system throughput.
Multiple AXI masters are more likely to produce random address accesses that cause more
page misses, resulting in lower DDR efficiency. In Figure 3-2, the AXI_HP to DDR
interconnect multiplexes four PL AXI_HP down to two pairs connected to ports S2 and S3,
both arbitrated by the interconnect. When there are only two PL AXI masters, higher
performance can be achieved by connecting the masters to port AXI_HP0 and AXI_HP2, or
AXI_HP1 and AXI_HP3, thus using both port 2 and 3 of the DDR controller. In a typical
Linux-based video design, achievable system bandwidth from the AXI_HP ports is about
50%. This is described in Designing High-Performance Video Systems with the Zynq-7000 All
Programmable SoC (XAPP792) [Ref 36].

The controller DDRC block includes a three-stage arbiter for improved DDR control latency.
Latency can be controlled using register settings. For details on managing DDR latency,
refer to the “DDRC Arbitration” subsection of the “DDR Memory Controller” chapter
(available at this link) in the Zynq-7000 All Programmable SoC Technical Reference Manual
(UG585) [Ref 4].
UltraFast Embedded Design Methodology Guide 70
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xDDRMemoryController
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xDDRMemoryController
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=70

Chapter 3: Hardware Design Considerations
To facilitate high-bandwidth operation, the DDR interface timing must be properly
initialized and calibrated. DDRP includes a DRAM training feature to help automatically
determine the timing delays required to align data to the optimal window for reliable data
capture. This feature is described in the “Initialization and Calibration” subsection of the
“DDR Memory Controller” chapter (available at this link) in the Zynq-7000 All
Programmable SoC Technical Reference Manual (UG585) [Ref 4].

The Zynq-7000 AP SoC tool flow helps automate the DDR bring-up. To do this, the PS DDRC
board parameters need to be configured in accordance with Xilinx Answer Record 46778
[Ref 67]. This will import the delay characteristics of DDR signals on the board during the
hardware design process. Those characteristics are used to determine the initial values used
by the automatic training algorithm, or for calculating static interface timing when the
automatic algorithm is not supported by the particular DDR standard. The timing values are
part of the design's hardware platform specification and are exported to the SDK and used
in PS initialization code that is called by the FSBL. DDR is not used by the BootROM.

X-Ref Target - Figure 3-2

Figure 3-2: DDR Memory Controller Block Diagram and Interconnect to AXI_HP Ports

S0 S1 S2 S3

M0 M1 M2

AXI_HP

to DDR

Interconnect

AXI HP0 AXI HP1 AXI HP2 AXI HP3

S0 S1 S2 S3

CPUs and
ACP

Other Bus
Masters

DDR

Memory

Controller

DDR Interface

DDR Core

DDR PHY

to OCM

DDR DRAM Memory

Devices

16 or 32 bits

Zynq Device Boundary

X14178-073117
UltraFast Embedded Design Methodology Guide 71
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xDDRMemoryController
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=71

Chapter 3: Hardware Design Considerations
QSPI
The PS QSPI flash controller communicates to an external serial flash memory using the
QSPI interface. The memory flash cells are arranged in parallel and are sometimes referred
to as NOR flash. While this configuration is less dense and has smaller capacity than NAND
flash memory, it allows single-byte reads anywhere in the array. For reads, it can behave like
a standard address-mapped memory and is well-suited for code storage. Also, it supports
the execute-in-place (XIP) feature where a CPU can execute code directly out of QSPI
without reading the code into DDR or OCM first. The Zynq-7000 AP SoC Boot - Booting and
Running Without External Memory Tech Tip wiki page [Ref 61] provides a “hello world”
example design on a ZC702 board using XIP.

Of all the flash memories supported by a Zynq-7000 AP SoC, QSPI has the highest read
performance and provides the fastest boot solution with a very low pin count requirement.
It supports page-based write and sector-based erase, but at a substantially slower rate
compared with other types of devices. For a cost-effective solution with fast boot time and
large memory capacity, you can use a small QSPI as the primary boot device for storing the
FSBL. All other partitions can be placed in a larger flash, such as eMMC or SD. For
information on how to implement such a system, refer to the “eMMC Flash Devices” section
(available at this link) in the Zynq-7000 All Programmable SoC Software Developers Guide
(UG821) [Ref 7].

The QSPI flash controller supports three different modes of operation: I/O mode,
linear-addressing mode, and legacy SPI mode. In linear-addressing mode, the AXI
transactions received by the QSPI controller are automatically translated into the
corresponding command and data transactions on the QSPI bus connected to the flash
device. The controller supports only 24-bits of flash address, therefore the maximum size of
QSPI is limited to 16MB in linear mode. BootROM accesses the QSPI in linear mode. When
QSPI is used in XIP mode, the length of the FSBL is limited to the capacity of the QSPI in
linear mode, minus the length of the boot header. When XIP mode is enabled (through the
boot header), instead of copying the FSBL to OCM, BootROM hands control to the FSBL
executing directly from QSPI flash. When QSPI is not used in XIP mode, BootROM copies the
FSBL into OCM for execution. In this case, the size of FSBL is limited by the 192 KB OCM
capacity. The first three quarters of OCM is located at low memory, and the top one quarter
is mapped to high memory. The FSBL could use most of the top one quarter for items such
as stack and heap.

In I/O mode, software composes the command and data in the TXD registers, and the
controller drives the content of the register to the flash memory in the proper format. The
data driven by the flash memory is shifted into the corresponding RXD registers and the
data is extracted by software. Using I/O mode, the software can issue flash commands to
specifically modify specific register bits inside the flash memory, thus expanding the QSPI
flash address space by effectively switching between pages. Using this method, the
controller can support up to 128MB per QSPI. For more information on QSPI I/O mode,
refer to the I/O mode section in the Quad-SPI Flash Controller chapter (available at this link)
of the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4].
UltraFast Embedded Design Methodology Guide 72
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug821-zynq-7000-swdev.pdf;a=xeMMCFlashDevices
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xQuadSPIFlashController
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=72

Chapter 3: Hardware Design Considerations
When a QSPI larger than 16MB is used on the board, any Zynq-7000 AP SoC platform reset
must also trigger a reset to the QSPI so that the page register is reset. This ensures that
when BootROM reads from address 0x0 in linear mode it can access the boot image. Refer
to Xilinx Answer Record 57744 [Ref 72] for more information on the reset requirement when
using flash devices larger than 16 MB.

If either RSA encryption or XIP mode is used to store boot images in flash devices larger
than 16 MB, the boot image cannot be placed at offset 0x0. Instead, the boot image can be
located at offset 0x0+32K. If the image is located at 0x0, a duplicate header image can be
located at offset 0x0+16MB, or a single x1 QSPI can be used.

Different QSPI flash devices require different dummy clock cycles depending on the QSPI
clock frequency and the type of command used to perform the read. Depending on the way
the QSPI is configured on the board (x1, x2, x4, single, stacked, or parallel) and the
particular flash device used, the controller's LQSPI_CFG register must be set appropriately
for proper communication with the flash device. When using Xilinx-supported QSPI flash
devices, the Xilinx PS QSPI device driver automatically writes the appropriate values into the
LQSPI_CFG register. For information on which vendor flash devices are currently supported
by the Zynq-7000 AP SoC tools, refer to Xilinx Answer Record 50991 [Ref 69].

BootROM automatically issues read commands using either fast read (x1), quad output read
(x4), dual-output fast read (x2), single mode, or parallel mode by examining the
width-detection value and the image-identification value in the BootROM header. Based on
the values, BootROM uses the widest supported I/O bus width to read data from the
Quad-SPI device, but sends commands in x1. BootROM writes a set of initial values into the
LQSPI_CFG register. Further details on those values can be found in the Quad-SPI Boot
subsection of the Boot and Configuration chapter (available at this link) of the Zynq-7000
All Programmable SoC Technical Reference Manual (UG585) [Ref 4].

In a high-speed QSPI application where the memory-interface clock is greater than 40 MHz,
QSPI feedback mode must be used. For more information on the QSPI Feedback clock, see
the Quad-SPI Feedback Clock subsection in the Quad-SPI Flash Controller chapter (available
at this link) of the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)
[Ref 4].

The QSPI can be programmed by U-Boot, Linux, iMPACT, and the SDK.

The QSPI flash controller details can be found in the Quad-SPI Flash Controller chapter
(available at this link) of the Zynq-7000 All Programmable SoC Technical Reference Manual
(UG585) [Ref 4].
UltraFast Embedded Design Methodology Guide 73
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xBootAndConfiguration
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xQuadSPIFlashController
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xQuadSPIFlashController
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=73

Chapter 3: Hardware Design Considerations
Static Memory Controller
The static memory controller has two interface modes: a NAND flash interface mode and a
parallel port memory interface mode. The NAND flash interface mode supports NAND
flash, while the parallel-port interface mode supports NOR flash and asynchronous SRAM.
Because both QSPI and NOR flash use NOR-based memory cells, and because QSPI is
limited to 16MB in linear mode, capacity is the differentiating factor in selecting NOR flash
over QSPI. However, because the static memory controller limits the number of address
lines to 26 bits, it supports NOR flash sizes only up to 64MB. The 16MB QSPI limit applies
only during boot (the amount of data read by BootROM must not exceed 16MB). After
BootROM loads FSBL into either OCM or DDR memory, the QSPI controller can switch into
I/O mode and access up to 128MB of memory with the support of the flash-device's page
register. Consequently, the NOR-flash controller's ability to support 64MB devices (at the
expense of 40 pins) as compared to 128MB devices supported by QSPI (using just 8 pins)
makes QSPI a preferred solution over NOR flash.

The following section describes the NAND-flash interface mode. For more information
about using the parallel-port memory interface, refer to the Zynq-7000 All Programmable
SoC Technical Reference Manual (UG585) [Ref 4].

NAND Memory Controller

In NAND flash the memory cells are laid out in series, resulting in more densely-packed
memory cells, higher capacity per silicon area, and cheaper per-bit cost than NOR flash. The
NAND flash controller can support up to 1GB of external NAND flash with either an 8-bit or
16-bit I/O bus for address/data/command. It supports the Open NAND flash Interface 1.0
specification.

The dense memory-cell packing causes the cells to be stressed during programming and
erase cycles, making them more prone to bit errors. ECC is used to mitigate those errors.
The NAND flash controller includes hardware support for 1-bit ECC correction. Software is
used to run flash management algorithms that make use of the ECC data to manage the
various error modes, deal with bad blocks, homogenize wear across the memory cells, and
improve cell endurance and data retention.

Because the controller only supports 1-bit ECC, only NAND devices with on-chip ECC or
one-bit ECC can be used with Zynq-7000 AP SoCs. Currently, only single-level-cell (SLC)
devices meet the ECC criteria and multi-level-cell (MLC) devices are not supported. Also, the
controller only supports a single chip select. Xilinx supported NAND devices range in size
from 128MB to 1GB, in both x8 and x16 configurations. Xilinx officially supports NAND
devices from Micron and Spansion. For information on which vendor flash devices are
supported by the Zynq-7000 AP SoC tools, refer to Xilinx Answer Record 50991 [Ref 69].

Even in a high-capacity NAND device, the Zynq-7000 AP SoC BootROM will look for a boot
image to start in the first 128MB. Therefore, the start of both standard and fallback boot
images (if used) must begin in the first 128MB.
UltraFast Embedded Design Methodology Guide 74
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=74

Chapter 3: Hardware Design Considerations
Communication with the NAND flash is based on a set of AC timing parameters that vary
from device to device. For a Zynq-7000 AP SoC to communicate with a NAND device using
the correct timing, a designer should input the relevant timing parameters into the CS0
column on the SMC Timing Calculation page based on the device's AC timing values. This is
shown in Figure 3-3.

The CS0 cycle is automatically calculated based on the NAND clock frequency. The values
are exported to the SDK's PS initialization code as part of the design's Hardware Platform
Specification. The initialization code writes those values to the smc.SET_CYCLE register.

BootROM reads from NAND flash prior to executing PS initialization code, using a set of
initial values stored in the smc.SET_CYCLE register. Further details on those values can be
found in the NAND Boot subsection of the “Boot and Configuration” chapter in the
Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4].

In NAND flash, reads and writes occur in pages, while erasures occur in blocks. Because
NAND flash does not behave like random access memory, Linux systems use it as a memory
technology device (MTD) that provides an abstraction layer, allowing software to access the
device using the MTD subsystem API. That API is common among different flash types and
technologies. MTD is not a block device and it lacks the software management algorithms
to handle issues like wear leveling and bad block management. Instead of traditional file
systems like ext2, ext3, and FAT (which work on top of block devices), the file system must
be designed to work on top of raw flash, such as JFFS2 or UBIFS. JFFS2 works on top of MTD
subsystems. UBIFS works on top of UBI subsystems, and those work on top of MTD
subsystems to provide software management algorithms required for NAND devices.

X-Ref Target - Figure 3-3

Figure 3-3: SMC Timing Page Example
UltraFast Embedded Design Methodology Guide 75
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=75

Chapter 3: Hardware Design Considerations
Peripherals
The memory-mapped peripherals present in the Zynq-7000 AP SoC PS, and the interaction
of those peripherals with the APU and the memory controller, are described in this section.
It is assumed that the reader is familiar with the AMBA bus topology (AHB and APB) and has
an understanding of the USB, CAN, UART, Ethernet, and SPI protocols.

The Zynq-7000 AP SoC peripherals can be broadly categorized as:

• PS peripherals
• PL peripherals

The PS peripherals are hard-wired peripherals and are implemented as part of the standard
ASSP implementation. The PL peripherals are programmable and reconfigurable on the fly.
This section covers the PS peripherals and the PL peripherals are covered in the following
section.

The PS peripherals are memory mapped and the peripheral memory map is predefined.
Peripherals implement the Advanced Microcontroller Bus Architecture (AMBA)
protocol-compliant bus architecture and are connected to either the central interconnect or
part of the application processor unit. They communicate with the ARM Cortex-A9
processor using AMBA-specified transactions. The peripherals are ARM TrustZone security
aware and can optionally deny non-secure accesses coming from a non-secure master.
Peripherals connected to the central interconnect can optionally be routed to the PL that
enables PL access.
UltraFast Embedded Design Methodology Guide 76
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=76

Chapter 3: Hardware Design Considerations
Figure 3-4 shows the top-level block diagram of the peripherals present in PS.

Peripheral Descriptions
The following are key peripherals present in the PS block.

USB Peripheral

The PS USB controller is USB 2.0 compliant and can operate in any of the following modes:

• Device mode
• Host mode
• On-The-Go (OTG) mode

X-Ref Target - Figure 3-4

Figure 3-4: PS Peripheral Block Diagram

2X UART

Memory Peripherals

QSPI, NAND, NOR

Central

Interconnect

DDR Controller

SWDT

TTC

SLCR

2X USB

2X GEM

2X SDIO

2X CAN

2X SPI

2X I2C

GPIO

APU

L1/L2 CacheOCM

EMIO

MI

O

Processing System 7

PL Master/Slave PL Master

PL Interconnect

X14138-073117
UltraFast Embedded Design Methodology Guide 77
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=77

Chapter 3: Hardware Design Considerations
The USB controller attaches to an external PHY using the ULPI interface, which is
implemented as an 8-line SDR data bus using the MIO. The ULPI PHY is not part of the USB
controller, and you can implement any ULPI-compliant PHY to connect to the USB controller
in the Zynq-7000 AP SoC. The port-controller indication, power select, and power failure
signals can be routed to the PL via EMIO. The sideband signals can also be routed to the
SelectIO™ pins. The USB controller has a built-in DMA engine with a transmit and receive
FIFO that transfers the data to and from memory using the AHB bus.

Refer to the USB Host, Device, and OTG Controllers chapter (available at this link) of the
Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4] for more
information.

Data Flow

The data transferred by the DMA from memory is encapsulated using the USB 2.0 protocol
format and is transmitted over the ULPI interface to the PHY.

System Level Considerations

The USB controller is clocked from two clock domains:

• The AHB interface is clocked by the CPU_1x clock domain.
• The USB protocol engine and the port controller interface use the 60 MHz clock

generated by the ULPI PHY.

You can use three different methods to reset the USB controller:

• You can trigger a controller reset with a PS reset by writing to the USB command
register using the APB interface.

• You can trigger a ULPI PHY reset under the control of a GPIO signal.
• You can trigger a USB bus reset with the auto reset feature in OTG mode.

You can configure the controller as a USB host, USB device, or as an OTG. The configuration
is determined by your application. The controller host mode requires the USB host
controller interface be built in the Linux image. You can set different device mode options,
either USB mass storage, isochronous, or interrupt-based. For a high-speed endpoint, the
maximum packet size is 512 bytes for bulk transfers and 1024 bytes for isochronous devices.
You can use isochronous mode for streaming applications, such as video.
UltraFast Embedded Design Methodology Guide 78
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xUSBHostDeviceAndOTGController
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=78

Chapter 3: Hardware Design Considerations
Ethernet Peripheral

The gigabit Ethernet MAC (GEM) implements a 10/100/1000 Mb/s Ethernet MAC
compatible with the IEEE 802.3-2008 standard. It is capable of operating in either half mode
or full-duplex mode at all three speeds. You can configure each of the two GEM controllers
independently. To save pins, each controller uses an RGMII interface through the MIO.
Access to the PL is through the EMIO which provides the GMII interface.

You can create other Ethernet communication interfaces in the PL using the GMII available
on the EMIO interface.

Because the GEM controller in the Zynq-7000 AP SoC provides only the MAC function, you
must implement a separate PHY.

Data Flow

The DMA block present in the controller fetches data from system memory using the AHB
bus and stores data in the transmit FIFO. The FIFO data is converted to Ethernet protocol
format by the controller and is sent to the Ethernet PHY using an RGMII or GMII interface,
depending on whether the user selects the MIO or EMIO interface.

Registers are used to configure the features of the MAC, select different modes of
operation, and enable and monitor network management statistics

The controllers provide MDIO interfaces for PHY management. You can control the PHYs
from either of the MDIO interfaces.

System Level Considerations

The GEM controller offers a number of system-level features that can be implemented
based on system requirements. For example, you can enable checksum off-loading in a
system that requires better network efficiency and less CPU utilization. Another
system-level consideration is implementation of precision time protocol (PTP) as defined in
IEEE 1588. The controller detects and responds to PTP events and requires a PTP compliant
network peer.

You can optionally route Ethernet packets from the controller to the PL using the DMA
interface. This option may require implementation of packet acceleration or packet
inspection IP in the PL.

The GEM controller does not support jumbo frames. If you require jumbo frame support,
you can implement the Xilinx AXI Ethernet MAC IP in the PL. You can use the AXI DMA IP to
read and write Ethernet frames to and from PS DDR memory. The GEM controller does not
support 3.3V IO voltage. Refer to the Gigabit Ethernet Controller chapter (available at this
link) in Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4] for
more information.
UltraFast Embedded Design Methodology Guide 79
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xGigabitEthernetController
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xGigabitEthernetController
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=79

Chapter 3: Hardware Design Considerations
SDIO Peripheral

The SD/SDIO controller communicates with the SDIO devices and SD memory cards. You
can route the SDIO interface through the MIO multiplexer to the MIO pins, or through the
EMIO to SelectIO pins in the PL. The controller can support SD and SDIO applications in a
wide range of portable low-power applications such as 802.11 devices, GPS, WiMAX, and
others.

The SD/SDIO controller is compatible with the standard SD Host Controller Specification
Version 2.0 Part A2 with SDMA (single operation DMA), ADMA1 (4 KB boundary limited
DMA), and ADMA2 support. ADMA2 allows data at any location and any size to be
transferred in a 32-bit system memory using scatter-gather DMA. The core also supports up
to seven functions in SD1 and SD4, but does not support SPI mode. The core does support
the SD high-speed (SDHS) and SD High Capacity (SDHC) card standards. You should be
familiar with the SD2.0/SDIO 2.0 specifications [Ref 91].

The SD/SDIO controller is accessed by the ARM processor via the AHB bus. The controller
also includes a DMA unit with an internal FIFO to meet throughput requirements. The
SD/SDIO controller complies with the MMC 3.31 specification.

Data Flow

The SD/SDIO controller has a DMA built into the controller that can fetch data from system
memory using the AHB bus. The controller implements a pair of FIFOs to read and write
data to the attached card to maximize throughput. The data is written to the attached card
or read back based on an SD-specific command initiated by the APU.

System Level Considerations

SD cards are essentially NAND flash devices with built-in controllers that implement the
flash translation layer (FTL). The FTL handles ECC, block management, and wear leveling so
that the memory behaves like a block device. Because of this, conventional file systems
(such as FAT, ext2, and ext3) can be implemented. Because of multi-chip packaging
technologies and modern advances in multi-level cell technology, SD memory devices
provide the highest density and capacity of all flash memory choices available in a
Zynq-7000 AP SoC. The drawback of SD memory is the requirement for a mechanical SD
card connector. When a physical connector is undesirable, eMMC is an alternative. eMMC
consists of flash memory and a controller packaged in a small ball grid array (BGA) that can
be directly mounted onto a circuit board without a mechanical connector. The SD and
eMMC solutions differ in their ability to function as boot devices. A Zynq-7000 AP SoC can
boot directly from an SD card, but it cannot do so from an eMMC. eMMC solutions require
an additional boot device, such as QSPI.
UltraFast Embedded Design Methodology Guide 80
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=80

Chapter 3: Hardware Design Considerations
In addition to the CLK, CMD and Data signals, card detect (CDn) signals indicate the
insertion or presence of the SD card, and write protect (WPn) signals indicate the position
of the write protect switch on the memory card. Some software drivers rely on the use of
these signals. Thus, if the signals are not available, a simple solution is to tie CDn active and
WPn inactive.

You can also use the SD/SDIO peripheral as a boot mode device. Refer to Configuration and
Boot Devices and to the SD/SDIO Controller chapter (available at this link) in Zynq-7000 All
Programmable SoC Technical Reference Manual (UG585) [Ref 4] for more information.

UART Peripheral

The UART controller is a full-duplex asynchronous receiver and transmitter that supports a
wide range of programmable baud rates and I/O signal formats. The controller can
accommodate automatic parity generation and multi-master detection mode.

The UART operations are controlled by the configuration and mode registers. The state of
the FIFOs, modem signals, and other controller functions are read using the status, interrupt
status, and modem status registers.

Data Flow

The communication between the controller and the APU occurs over the APB bus. The
controller is structured with separate Rx and Tx data paths. Each path includes a 64-byte
FIFO. The data that arrives from system memory over the APB bus are stored into the
transmit FIFO. The received data from the MIO/EMIO interface is stored in the receive FIFO
and transmitted to system memory using the APB bus.

The controller serializes and de-serializes data in the Rx and Tx FIFOs and includes a mode
switch to support loopback configurations for the RxD and TxD signals. The FIFO interrupt
status bits support polling or an interrupt-driven handler. Software reads and writes data
bytes using the Rx and Tx data port registers.

System Level Considerations

Zynq-7000 AP SoCs include two UART controllers that are commonly used as debug ports
for embedded systems. They are also often used in providing a terminal connection with a
host PC. Because of their utility, they are supported by all layers of software: FSBL, U-Boot,
stand-alone, and various operating systems.

The UART is used by the FSBL early in the boot process to send information to the terminal.
The simplest connection to the UART controller requires two signals, TX and RX. It is
recommended that the user have access to UART1 for debug, even when using a PMOD with
two test points, TX and RX.
UltraFast Embedded Design Methodology Guide 81
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xSDSDIOController
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=81

Chapter 3: Hardware Design Considerations
Because of its low bandwidth, high voltage swings, and large connector, most modern
computers no longer have a UART port and instead use USB as the standard peripheral bus.
Therefore, it may be necessary to add a USB-to-UART bridge controller on the board to
enable connection between the host USB port and the Zynq-7000 AP SoC UART port. This
is shown in Figure 3-5. The host PC terminal software recognizes the bridge as a virtual
COM port and any of the widely-available terminal programs can be used to communicate
with a Zynq-7000 AP SoC.

Figure 3-6 is an example of the Cypress USB-to-UART bridge device being used to enable a
connection between a host computer and a Zynq-7000 AP SoC. In the simplest
implementation, only the UART controller's TXD and RXD signals are required to support a
terminal. If flow control is required, this can be added using the extended MIO. Cypress
provides a royalty-free Virtual COM Port (VCP) driver that allows the CY7C64225
USB-to-UART bridge to appear as a COM port to the communication software on the host
computer, such as TeraTerm or HyperTerm.

An alternative implementation uses the Silicon Labs CP2103GM USB-to-UART bridge
device. See the ZC702 Evaluation Board for the Zynq-7000 XC7Z020 All Programmable SoC
User Guide (UG850) [Ref 8] for details.

X-Ref Target - Figure 3-5

Figure 3-5: Connecting a Zynq-7000 AP SoC UART to PC via USB-to-UART Bridge

Table 3-2: CY7C6 Connections

EPP Pin UART Function
in EPP

Schematic Net
Name CY7C6 Pin UART Function in

CY7C64225
D11 (MIO Bank 1/501) TX, data out USB_1_RXD 23 RXD, data in
C15 (MIO Bank 1/501) RX, data in USB_1_TXD 4 TXD, data out

X-Ref Target - Figure 3-6

Figure 3-6: Connection using a Cypress USB-to-UART Bridge

PC

Virtual

Com

Port

USB-to-UART

Bridge
Zynq DeviceUSB UART

X14181-073117

Zynq Device

D11

C14

1
.8

V
 t

o
 3

.3
V

CY7C6

D+

D-

RXD

TXD

RXD

TXD

USB

Connector

D-

D+

UART_D-

UART_D+

U_RXD

U_TXD

UART_RXD

UART_TXD

X14165-073117
UltraFast Embedded Design Methodology Guide 82
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=82

Chapter 3: Hardware Design Considerations
Only a two-pin UART can be routed through the MIO. A full 8-pin UART requires routing
through EMIO. It supports a programmable baud rate plus protocol and parity. Details of
the UART controller can be found in the UART Controller chapter (available at this link) in
the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4].

CAN Peripheral

The CAN controller in PS is a memory-mapped peripheral that supports bit rates up to 1
Mb/s. The controller implements a transmit and receive FIFO with a capability of storing 64
messages. The controller implements 16-bit time stamping for receive messages and
provides receive and transmit error counters.

Data Flow

The CAN controller has an APB interface connecting the peripheral to the central
interconnect and you can use it to configure the control registers. You can route the CAN
transmit and receive signals to either MIO or the PL through EMIO. The CAN controller
supports five modes of operation:

• Configuration mode
• Normal mode
• Sleep mode
• Loopback mode
• Snoop mode

You can initiate each of these modes with a register write operation using the APB bus
attached to the controller. Refer to the CAN Controller chapter (available at this link) in the
Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4] for more
information.

I2C Peripheral

I2C (Inter-Integrated Circuit) is a multi-master serial single-ended bus that uses two
bidirectional open-drain lines, Serial Data (SDA) and Serial Clock (SCL), both pulled up with
resistors. The protocol includes a slave address, an optional register address within the
slave device, and per-byte ACK/NACK bits. I2C is used for attaching low-speed peripherals
such as sensors, EEPROMs, I/O expanders, programmable clock devices, or A/D and D/A
converters to an embedded system. Several bus implementations are derived from the I2C
bus, including the System Management Bus (SMBus), Power Management Bus (PMBus), and
Intelligent Platform Management Interface (IPMI).

Zynq-7000 AP SoCs include two I2C controllers that can operate at the common I2C bus
speeds of 100 Kb/s (standard mode) and 400 Kb/s (fast mode). Each controller can function
as a master or a slave in a multi-master design. The master can be programmed to use both
normal (7-bit) addressing and extended (10-bit) addressing modes. The master is
UltraFast Embedded Design Methodology Guide 83
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xUARTController
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xCANController
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=83

Chapter 3: Hardware Design Considerations
responsible for generating the clock and controlling the data transfer. Data can be
transmitted or received in both master and slave mode configurations.

Data Flow

In slave monitor mode the I2C interface can be set to monitor slave-busy status. In this
mode the I2C continuously attempts a transfer to a particular slave device until that slave
device responds with an ACK.

In slave mode, extended address support is determined automatically by detecting a
specific code in bits [7:3] of the first address byte. You can set the HOLD bit to prevent the
master from continuing with the transfer, preventing an overflow condition in the slave.
However, you must clear the HOLD bit before a timeout occurs in the I2C controller. You can
program different timeout values.

You can program the I2C controller registers using the APB slave interface. The I2C interface
specific SCL and SDA signals can be routed either to the PL via EMIO, or they can be routed
to MIO. If routed through EMIO, the SCL and SDA signals are often implemented using
tri-stated I/O buffers to communicate with I2C devices connected to one of the PL I/O
banks. The controller raises the completion interrupt to indicate to the host that a transfer
is complete. In master mode, any NACK received by the controller is communicated to the
host using NACK interrupt. Refer to the I2C Controller chapter (available at this link) in the
Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 4] for more
information.

System Level Considerations

A pull-up resistor shall be placed at the far end of the SCL and SDA lines, furthest from the
Zynq-7000 AP SoC. See Design Calculations for Robust I2C Communications [Ref 78] for
pull-up resistor example calculation. Typical voltages are +5 V or +3.3 V. A
level-shifter/repeater might be required depending on the voltages of I2C devices and the
Zynq-7000 AP SoC I/O bank used. PCB and package delay skew for SDA to SCL should be
less than ±500 ps.

Not all I2C slave devices have programmable addresses, thus address conflicts can occur
when connecting multiple devices with identical addresses to a single bus. For this reason,
an I2C adapter port is typically routed through an I2C bus switch to connect I2C slaves with
identical addresses to different bus segments. Applications must first address and then
configure the bus switch to select the desired I2C channel before communicating with slave
devices on one of the I2C bus segments. There can be more than one device per I2C bus
segment if the I2C addresses are different and the capacitance of a bus segment is below
the allowable value. An example I2C bus topology including a 1:8 bus switch is shown in
Figure 3-7. For more information, refer to PCA9548A Low Voltage 8-Channel I2C Switch
With Reset [Ref 90].
UltraFast Embedded Design Methodology Guide 84
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xI2CController
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=84

Chapter 3: Hardware Design Considerations
Stand-alone, U-Boot, and Linux drivers are available to operate the I2C controller. The
stand-alone driver can be used inside the FSBL for early initialization of peripherals. All
common transfer modes are supported for both master and slave mode. Refer to the Xilinx
Linux I2C driver wiki page [Ref 54] for more information on the Linux driver as well as a
simple application example.

SPI Peripheral

SPI (Serial Peripheral Interface) is a synchronous serial bus that operates in full-duplex
mode. It uses four wires: SCLK (Serial Clock), MISO (Master Input, Slave Output), MOSI
(Master Output, Slave Input), and SS (Slave Select). Devices communicate in master/slave
mode where the master device initiates the data transfer. The master does not use an
addressing mechanism when communicating with a slave. Multiple slave devices are
allowed, using individual slave-select lines that are typically active-low. SPI is commonly
used to talk to A/D and D/A converters, flash and EEPROM memories, LCDs, and many other
peripherals. The JTAG standard is essentially an application stack for a three-wire SPI
protocol.

Zynq-7000 AP SoCs include 2 SPI controllers that can operate in master, slave, or
multi-master mode. The controller always operates in full-duplex mode, receiving and
transmitting data simultaneously.

Data Flow

In master mode, up to three slave devices can be targeted using individual slave-select
signals. It is possible to add an external peripheral-select 3-to-8 decoder on the board to
target up to eight slave devices. When using the 3-to-8 decoder option you can use
software to control the three output pins to the decoder. Software can use this feature to
control an external tri-state when a device has a single bidirectional SPI data pin.

X-Ref Target - Figure 3-7

Figure 3-7: Example I2C Bus Topology

XC7Z020

AP SoC

I2C0 Adapter

PS Bank 501

(VCCMIO_PS 1.8V)

PCA9517

I
2
C

Level Shifter

A B

VCCMIO_PS 1.8V 3.3V

PCA9548

I
2
C 1-to-8

Bus Switch

0X74

CH7 – PMBUS_DATA/CLK

X14174-073117

UCD9248 Power Controller 0x34

UCD9248 Power Controller 0x35

UCD9248 Power Controller 0x36

sI570 Programmable Oscillator 0x5D

CH6 – FMC2_LPC_IIC_SDA/SCL

CH5 – FMC1_LPC_IIC_SDA/SCL

CH4 – IIC_RTC_SDA/SCL

CH3 – PORT_EXPANDER_SDA/SCL

CH2 – EEPROM_IIC_SDA/SCL

CH1 – IIC_SDA/SCL_HDMI

CH0 – USER_CLK_SDA/SCL

ADV7511 HDMI Transmitter 0x39

M24C08 EEPROM 0x53

TCA6416APWR I/O Expander 0x21

RTC-8564JE Real Time Clock 0x51
UltraFast Embedded Design Methodology Guide 85
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=85

Chapter 3: Hardware Design Considerations
In slave mode, the controller receives messages from an external master and transmits a
simultaneous reply. The controller reads and writes to slave devices via the 128-byte TX/RX
FIFOs using the 32-bit register-mapped data-port registers. The read and write FIFOs
provide buffering between the SPI I/O interface and software servicing the controller via
APB slave interface. The FIFO is used for both slave and master I/O modes. Refer to the SPI
Controller chapter (available at this link) in the Zynq-7000 All Programmable SoC Technical
Reference Manual (UG585) [Ref 4] for more information.

CAUTION! All SPI transactions must be byte-aligned (multiple of 8 bits). Slave devices that implement
non-byte aligned SPI transactions, such as 10-bit address and 16-bit data, are not supported.

System Level Considerations

Both SPI interfaces, SPI[0,1] can be routed to MIO pins or to the PL via EMIO. If routed
through EMIO, the most common method is to implement the interface signals using
tri-stated I/O buffers to communicate with SPI devices connected to one of the PL I/O banks
(if this is done, the SPI interface cannot be used until the PL has been programmed). The
slave select signals SS[1,2] can be optionally enabled when using the core in master mode.
These signals are true outputs because they are only available when the core is configured
as a master. The SS0 signal is tri-stated because it is also used in slave mode. The SCLK clock
frequency can operate up to 50 MHz when the I/O signals are routed to MIO pins. When the
I/O signals are routed through EMIO, the SCLK frequency can operate up to 25 MHz.

Figure 3-8 shows the SPI controller configured for master mode and routed through MIO.
SS0 must be routed through an EMIO pin. In this configuration, when SS0 is used it needs
to be pulled high using a pull-up resistor and must not be driven low by an external device.
Up to three slave devices can be connected simultaneously and selected using the
corresponding slave-select line (SSn). If less than three slaves are connected, any of the SS
signals can be used. If SS0 is not used, it must be pulled to Vcc and not used for any other
purposes.
X-Ref Target - Figure 3-8

Figure 3-8: SPI Slave Connection to SPI Controller in Master Mode

SPI Master

Controller

MIO

SCLK

MOSI

MISO

SS0

SS1

SS2

MISO Slave 0

SS0

MOSI

SCLK

Slave 1

SS1

Slave 2

SS2

Zynq Device

Boundary

External DevicesZynq Device

X14171-073117

VCC
UltraFast Embedded Design Methodology Guide 86
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xSPIController
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=86

Chapter 3: Hardware Design Considerations
When routed via EMIO, connect the EMIOSPIxSSON0 output signal to the PL slave and tie
the EMIOSPIxSSIN input signal to Vcc. It is important that SS0 is high because the controller
snoops this signal in master mode to detect a multi-master mode situation. If SS0 is low, the
controller will assume multi-master mode and issue a Mode_Fail interrupt. Multi-master
mode is not recommended. For details on driving SPI control signals, refer to Xilinx Answer
Record 47511 [Ref 68].

Figure 3-9 shows the SPI controller configured for slave mode and routed through MIO. The
slave-select line SS0 is used to connect the external master device to the slave controller.
Other external slave devices can be connected off-chip depending on the capabilities of the
master device.

It is recommended that the SCLK, MISO, MOSI, and SS lines have matched lengths to help
meet setup and hold times. PCB and package delay skew for the MISO, MOSI, and SS lines
relative to SCLK should be less than ±50 ps.

Stand-alone, U-Boot, and Linux drivers are available to operate the SPI controller. The
stand-alone driver can be used inside the FSBL for early peripheral initialization if the
controller is routed via MIO. If the controller is routed via EMIO, the initialization can take
place only after the bitfile is downloaded. All common transfer modes are supported for
both master and slave mode. Refer to the Xilinx Linux SPI driver wiki page [Ref 55] for more
information on the Linux driver as well as a simple application example.

GPIO Peripheral

GPIO (General Purpose Input/Output) are generic pins that can be programmed by the user
at run-time, including whether it is an input or output. GPIO pins are typically used for
connecting LEDs, DIP switches and push buttons, or to connect the interrupt and reset
signals of board peripherals. Using GPIO via EMIO provides a solution for controlling PL

X-Ref Target - Figure 3-9

Figure 3-9: SPI Master Connection to SPI Controller in Slave Mode

SPI Slave

Controller
MIO

SCLK

MOSI

MISO

SS0

SS1

SS2

MISO

SS0

MOSI

SCLK

Other External

Slave Devices

Zynq Device

Boundary

External

Master

Device

Zynq Device

X14172-073117

nc

nc

MISO

SSa

MOSI

SCLK

SSb

SSc

SSd
UltraFast Embedded Design Methodology Guide 87
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=87

Chapter 3: Hardware Design Considerations
reset without worrying about the side affects of controlling FCLK_RST. It also provides
access to 64 inputs from the PL, 64 true outputs, and 64 output enables to the PL through
the EMIO interface. You can use output enables as an additional 64 outputs by controlling
the direction registers, if the output enables are not required. Each GPIO is independently
and dynamically programmed as input, output, or interrupt-sensing. When configured to
sense interrupts, it can be set to level-sensitive (high or low) or edge-sensitive (positive,
negative, or both).

System Level Considerations

The GPIO controller has four banks. Bank 0 has 32 pins and bank 1 has 24 pins. The total of
54 GPIO pins in the two banks are dedicated to MIO. These pins are tri-stated and can be
configured as inputs or outputs. Banks 2 and 3 have 32 pins each, and the total of 64 GPIO
pins are connected to the PL using EMIO. These GPIO contain three signals: input, output,
and output enable. Tri-state buffers can be instantiated at the device boundary, however,
the PS to PL connections are simple wires.

Each GPIO is independently and dynamically programmed as input, output, or
interrupt-sensing. When configured to sense interrupts, it can be set to level-sensitive (high
or low) or edge-sensitive (positive, negative, or both). Software can read all GPIO values
within a bank using a single load instruction, or write data to one or more GPIOs (within a
range of GPIOs) using a single store instruction.

CAUTION! MIO pins [8:7] are available as output only. GPIO channels 7 and 8 can only be configured
as outputs.

I/O standards and voltages for on-board peripherals need to match the MIO or PL I/O pin
configuration.

Both stand-alone and Linux drivers are available to operate the GPIO controller. The
stand-alone driver can be used inside the FSBL for early initialization of peripherals. Refer to
the Xilinx Linux GPIO driver wiki page [Ref 53] for more information on the Linux driver as
well as a simple application example.

Cortex-A9 Multiprocessing Peripherals

The Cortex-A9 multiprocessing peripherals include the SWDT and TTC with auto decrement
feature and they can be used as general purpose timers. These timers serve as a mechanism
to startup the processor from standby mode.

The System Level Control Register (SLCR) acts as a peripheral to the APU and external PL
master. You can access the SLCR only in the secure mode of the master requesting a register
access. The SLCR consists of registers that configure various clocking, reset, and security
settings of the peripherals.
UltraFast Embedded Design Methodology Guide 88
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=88

Chapter 3: Hardware Design Considerations
PS DMA Controller

You can use the PS DMA controller to transfer data from any PS or PL peripheral to DDR,
OCM, linear QSPI, SMC, a PL peripheral, or linear addressable memory connected to the
M_AXI_GP port in the PS-PL boundary.

You can use the DMA controller in an application requiring hardware co-processor
acceleration, where a PL algorithm is used to process data written by the Cortex-A9 into
DDR memory. In such an application where data is processed by both a PS and PL
peripheral, the DMA controller plays an important role.

You can use the DMA controller to save system power. The CPU can go into low-power
mode and bulk data transfers can occur over the PS DMA interface. Because the CPU clock
is much faster than the DMA clock, this approach saves considerable dynamic power. Refer
to the DMA Controller chapter in Zynq-7000 All Programmable SoC Technical Reference
Manual (UG585) [Ref 4] for more information.

XADC

The XADC contains two 12-bit 1-MSPS ADCs with separate track and hold amplifiers, an
on-chip analog multiplexer, and on-chip thermal and supply sensors. The two ADCs can be
configured to simultaneously sample two external analog-input channels. The track and
hold amplifiers support a range of analog input signal types including, unipolar, bipolar,
and differential. The external inputs include one pair of dedicated differential analog-input,
(Vp/Vn) and sixteen multi-function pins that can support analog input or can be used as
digital I/O (Vauxn/p). The dedicated analog inputs can support signal bandwidths of at least
500 KHz at sample rates of 1MSPS, or 250KHz on the auxiliary channels.

The XADC also includes a number of on-chip sensors that support measurement of the
on-chip power supply voltages and die temperature. The results of the ADC conversion
from any source (temperature, supply voltage, or analog input channels) are stored in a set
of status registers inside the XADC block. Because the temperature is available and the
clocks are programmable, you could adjust the Zynq-7000 AP SoC clocks as temperature
changes.

The XADC block also includes a set of control registers used to configure and control XADC
operations. This includes alarm registers that are used to specify automatic alarm
thresholds for the internally-measured sensors (temperature and voltage). The alarm
automatically triggers a PS interrupt when temperature or voltages falls outside the
acceptable ranges defined by the registers.

The XADC analog inputs can be used to support motor control, a touch sensor, or many
other applications that require an analog front-end. The voltage and temperature sensing
capability can be used to monitor system health and to react appropriately when the system
experiences abnormal temperature or voltage conditions.
UltraFast Embedded Design Methodology Guide 89
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=89

Chapter 3: Hardware Design Considerations
Two application notes describing the XADC used as a system monitor and to perform ADC
operations on external analog signals are:

• Using the Zynq-7000 Processing System (PS) to Xilinx Analog to Digital Converter (XADC)
Dedicated Interface to Implement System Monitoring and External Channel
Measurements (XAPP1172) [Ref 41]

• System Monitoring Using the Zynq-7000 AP SoC Processing System with the XADC AXI
Interface (XAPP1182) [Ref 43]

The XADC status and control registers are accessible using either the parallel DRP interface
or the serial JTAG-DRP interface, as shown in Figure 3-10. The LogiCORE™ IP can be used to
encapsulate the entire XADC hard block with the necessary logic to turn the XADC into a
32-bit AXI slave peripheral that can be connected to the master AXI_GP port of the PS. This
solution is required for the PS to access the data at a 1Mbps rate. The AXI XADC LogiCORE
IP has the disadvantage that it consumes PL resources to implement, however, it provides a
fast and clean interface to the XADC. It takes full advantage of the parallel data path and is
the only method that can realize the full 1MSPS, as demonstrated in System Monitoring
Using the Zynq-7000 AP SoC Processing System with the XADC AXI Interface (XAPP1182)
[Ref 43].

An alternative solution is to use the built-in PS_XADC interface block. The advantage is that
it requires no additional PL logic (the FPGA does not have to be configured when using
built-in features). Reading and writing the XADC DRP registers requires a write of the proper
command to XADCIF_CMDFIFO and a read from XADCIF_RDFIFO. However, because the
block serializes the FIFO contents and shifts data in and out of the XADC hard block one bit
a time via the DRP JTAG interface, this solution is slower and cannot keep up with the higher
data rate. As demonstrated in Using the Zynq-7000 Processing System (PS) to Xilinx Analog
to Digital Converter (XADC) Dedicated Interface to Implement System Monitoring and
External Channel Measurements (XAPP1172) [Ref 41], this interface was able to achieve only
100KHz. Also, the PL-JTAG interface and the internal PS-XADC interface cannot be used at
the same time.
UltraFast Embedded Design Methodology Guide 90
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=90

Chapter 3: Hardware Design Considerations
X-Ref Target - Figure 3-10

Figure 3-10: XADC Block Diagram

F
L

A
S

H

M
e

m
o

ry

In
te

rf
a

c
e

Zynq Processing System

IO
 P

e
rp

h
e
ra

ls

M
IO

APU

Arbiter

PS XADC

Interconnect

D
D

R
 C

o
n
tr

o
lle

r

DAP

Clk Gen Reset

Zynq Programmable Logic

PL JTAG

Interface MUX

Control

Register

M
U

X Status

Register

M
U

X
DevC

VP_0

VN_0

Vref_n

Vref_p

VAUXP

[0:15]
VAUXN

[0:15]

12-bit

 ADC B

12-bit

 ADC A

LogiCore IP

AXI_XADC

Core Logic

On-chip Ref 1.25V

JTAG

(Serial)

DRP

(Parallel)

Internal

Temp

Internal

Voltage

Fast XADC access path

Slow XADC access path
X14168-073117

XADC hard macro

Central

Interconnect

M AXI GP
UltraFast Embedded Design Methodology Guide 91
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=91

Chapter 3: Hardware Design Considerations
Communication with Peripherals

The peripherals discussed above implement an AMBA-specific bus structure to
communicate with the APU and the memory system. USB, GEM, SDIO, and SPI peripherals
have two types of communication interface:

• The APB interface connects the peripheral slave to the APU master. The interface
communicates using the central interconnect.

• The AHB interface enables high speed bus transactions between the DMA controller
embedded in the peripheral and the system memory. The interface connects to the
system memory using the central interconnect.

Figure 3-11 shows the peripheral bus connection to main memory and the APU. Figure 3-11
is a generic block diagram of a peripheral with DMA and control register sets implemented.
X-Ref Target - Figure 3-11

Figure 3-11: Peripheral Communication Bus

X14139-073117

DMA

Register Interface

Interface

Driver
Protocol Engine

AHB

Bus

APB

Bus
UltraFast Embedded Design Methodology Guide 92
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=92

Chapter 3: Hardware Design Considerations
Peripheral Design Example
This example shows things to consider when designing with peripherals. The example uses
the Zynq-7000 AP SoC GEM controllers and two different physical interfaces. One controller
has an RGMII PHY using the MIO interface and the other controller has a 1000BASE-X PHY
using the EMIO interface. You can select any supported interface to meet your
requirements.

1. The PS has two instances of a GEM controller. One uses the RGMII interface and the
other uses the 1000BASE-X interface.

2. TrustZone security aware access of the peripheral from the Cortex-A9 multiprocessing
core.

3. You can enable and disable the TCP checksum off-load to GEM hardware, noting the
CPU utilization and performance differences between the two options.

Figure 3-12 shows the hardware block diagram.

Although this example is built around a gigabit Ethernet peripheral, you can extend the
concepts to other PS peripherals.

X-Ref Target - Figure 3-12

Figure 3-12: Example GEM Instantiation

Programmable Logic

• • • • • • •• • • • • • • • • •

Processing System 7

UART

Central Interconnect

GEM0

GEM1

APU

GIC

DDR Controller

1000BASE-X

GTX

EMIO

PS-PL Interconnect

MIO

SFP Connector
UltraFast Embedded Design Methodology Guide 93
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=93

Chapter 3: Hardware Design Considerations
Hardware Design Considerations

You can create the hardware design using the Vivado® IP integrator flow. You must enable
MIO connectivity for GEM0 and EMIO connectivity for GEM1. Enabling EMIO for GEM1
brings the transmit and receive GMII signals to the PS IP top-level instance. The user must
instantiate the 1000BASE-X IP core from Xilinx in the IP integrator design and connect it to
the GEM1 EMIO ports. You can implement the design using the Vivado Design Suite
implementation flow to generate the bitstream. See PS and PL Ethernet Performance and
Jumbo Frame Support with PL Ethernet in the Zynq-7000 AP SoC (XAPP1082) [Ref 40] for
more information.

Software Design Considerations

The GEM peripheral supports off-loading the TCP checksum to hardware to boost Ethernet
performance and improve CPU utilization by performing compute-intensive checksum
calculations in hardware. The user can enable checksum off-load by writing into the GEM
configuration register using the APB interface.

The GEM driver configures the GEM DMA for a specific transfer size. The driver also sets up
the descriptor ring, DMA allocation, and recycling, and programs the source and
destination MAC addresses.

The DMA transfer begins after enabling the transmitter and receiver by writing to the
network control register.

Designing IP Blocks
Pre-verified intellectual property (IP) blocks are used to reduce time-to-market, and to
enable feature-rich digital and analog circuitry on the SoC. These IP blocks include
embedded processors, memory blocks, interface blocks, analog blocks, and components
that handle application-specific processing functions. Use of standard interface
specifications, such as the AMBA high-speed specification and AXI specification, improve IP
block reusability. You can refer to the Vivado IP catalog for more information on the IP
blocks supported by the selected Zynq-7000 AP SoC device.

There are two main categories of IP blocks:

• Soft IP Blocks: You can implement these blocks in an FPGA fabric and are specified
using RTL or higher-level descriptions. They are more suitable for digital cores, because
a hardware description language (HDL) is process-independent and can be synthesized
to the gate level. The HDL form has the advantage of flexibility, portability, and
reusability, with the drawback of not having guaranteed timing or power
characteristics.
UltraFast Embedded Design Methodology Guide 94
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=94

Chapter 3: Hardware Design Considerations
• PS IP Blocks: These blocks have fixed layouts and are optimized for a specific
application and process. Their primary advantage is predictable performance, which
comes with additional effort and cost, plus lack of portability, that may greatly limit the
areas of application. PS IP blocks are usually prequalified, meaning the provider has
tested it in silicon. This adds greater assurance to its correctness.

The inherent complexity of SoC designs leads to the implementation of more complex
interfaces around a processing block. The high-speed serial transceiver present on a
Zynq-7000 AP SoC is a typical example. The transceiver's high-speed serial IOs are capable
of transferring data in multiples of gigahertz. The transceiver block is capable of performing
byte-boundary alignment, clock data recovery, and skew elimination across multiple
transceiver lanes. It is also capable of clock compensation in systems that use independent
transmit and receive clocks with ppm variation. User logic connects to the transceiver
through a complex interface, and the functionality of that logic is complex because it must
control the various functional blocks within the transceiver.

An IP block plays a significant role in handling the transceiver configuration by masking the
underlying complexity from the user interface. An Aurora IP block from Xilinx with an AXI4
Stream-compliant user interface performs the transceiver initialization, clock
compensation, channel bonding, and byte-boundary alignment. A user can build a
transceiver application based on the AXI4 Stream interface without knowledge of the
underlying transceiver complexity.

Figure 3-13 shows how the Aurora IP plugs into the transceiver interface in a Zynq-7000 AP
SoC.

X-Ref Target - Figure 3-13

Figure 3-13: Aurora IP Example

Aurora IP User Interface

X14135-073117

Aurora IP Protocol Engine

High Speed Serial IO

Clock/Reset Interface

User Application

AXI4 Stream Interface

Complex Interface
UltraFast Embedded Design Methodology Guide 95
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=95

Chapter 3: Hardware Design Considerations
IP Core Design Methodology
Xilinx enables different methodologies for creating IP blocks and offers an easy
maintenance approach. You can reuse the IP blocks in the embedded system designs
created for Zynq-7000 AP SoCs and other processing systems, such as MicroBlaze™
processors. The following sections describe the IP creation methodologies using the Xilinx
tool chain.

System Generator

System Generator is a tool that can create DSP IP blocks based on a user configuration,
using MathWorks Simulink for FPGA system design. It offers a high-level model-based
environment for system designs. A large number of building blocks are available in System
Generator, from simple mathematical operators to complex DSP operations.

In the Vivado Design Suite, the IP Packager compilation target allows a user to package the
IP generated from the System Generator and include it in the Vivado IP Catalog. You can use
the System Generator design like other IP blocks from the IP Catalog and instantiate it in
your design.

HDL Coder

HDL Coder is a tool from MathWorks that generates synthesizable HDL code from MATLAB
functions and Simulink models. It provides a workflow that analyzes the MATLAB/Simulink
model and converts the model from floating-point to fixed-point, providing a high-level
abstraction. The workflow also provides verification code, allowing the HDL code to be
tested with the original MATLAB/Simulink model.

Not all the functions present in MATLAB and Simulink support HDL generation. Because of
this, some of a model's functionality may have to be modified to use functions or blocks
that support HDL generation.
UltraFast Embedded Design Methodology Guide 96
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=96

Chapter 3: Hardware Design Considerations
Vivado High Level Synthesis

Vivado High Level Synthesis (HLS) is a tool from Xilinx that is capable of converting C-based
designs to RTL design files for implementation on Xilinx FPGA devices. The Vivado HLS tool
flow is shown in Figure 3-14.

The Vivado HLS flow packages the RTL output into the following formats, allowing you to
easily integrate the output into other Xilinx design tools:

• IP Catalog: Contains a ZIP file that you can add to the Vivado IP Catalog.
• Synthesized Checkpoint (.dcp): A Vivado checkpoint file that you can add directly into a

design in the Vivado Design Suite.
• System Generator for DSP: You can add this output to the Vivado edition of System

Generator for DSP.
• System Generator for DSP (ISE®): You can add this output to the ISE edition of System

Generator for DSP.
• Pcore for EDK: You can add this output to the Xilinx Platform Studio.

In addition to the packaged output formats, the RTL files are available as stand-alone files
(not part of the recommended packaged formats).

X-Ref Target - Figure 3-14

Figure 3-14: Vivado HLS Flow

RTL Export RTL Simulation

Constraints/
Directives

C, C++,
OpenCL Kernel,

System C
Testbench

Verilog/VHDL RTL Wrapper

X14136-080117

Vivado HLS

d

UltraFast Embedded Design Methodology Guide 97
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=97

Chapter 3: Hardware Design Considerations
IP Core Design Considerations
When designing an IP block, reusability of that IP block across multiple embedded system
designs and across different user configuration options should be considered.
Parameterization and implementation of standard bus topologies allows an IP block to be
reusable in most system-level scenarios.

You should consider the following when designing an IP block:

• Parameterization: Parameterization includes interface-level configuration and IP
feature-specific configuration. Interface-level configuration is important when the IP
block interfaces with other IP blocks and the user must control different bus
parameters, including the data and address bus width, clocking, reset interface
configuration, etc. IP feature-specific configuration enables or disables a feature in the
IP block depending on the user selection.

You can handle parameterization in IP blocks in multiple ways. The basic level of
parameterization can be implemented in the HDL code. The HDL parameters can be
configured from the IP configuration wizard available after packaging the IP block using
Vivado IP integrator tool. You can implement a customized environment to
parameterize the IP block.

• Bus Topology: The reusability of IP blocks is an important consideration when
designing an IP block. You can enhance reusability by implementing a bus topology
that complies with industry-standard bus interfaces. One of the most widely used
standards is AMBA, and a broad class of IP blocks exist that comply with that bus
specification. A bus topology implemented with industry-standard interfaces enables
easy plug and play of master and slave IP blocks at the system level. Such IP blocks can
also offer flexibility in selecting a particular version of the standard protocol and
interface-level configurations.

The choice of bus interface depends on system-level requirements. The AXI4-Lite bus is
primarily used as a control bus from the PS, and the AXI4 Memory-Mapped bus is for
memory transfers between the IP core. The AXI4-Stream bus is used to connect to
streaming blocks in the design that do not have addressing context. The following
figure shows the AXI4-Lite, AXI4 Memory-Mapped, and AXI4-Stream buses in an AXI
DMA-based design. In this figure, the AXI DMA is responsible for moving data between
the PS system memory and the AXI4-Stream compliant Sobel IP using the high
performance port. The PS sets up the AXI DMA's buffer descriptor using the AXI4-Lite
interface.
UltraFast Embedded Design Methodology Guide 98
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=98

Chapter 3: Hardware Design Considerations
• IP Security and Documentation: Protecting a design against copyright infringement is
an important consideration in designing IP blocks. You can employ various security
algorithms to encrypt the HDL file. The Xilinx tools allow you to encrypt and decrypt
the HDL using the AES algorithm.

Connecting IP Blocks to the PS
When the interface between the PS and PL uses AMBA-compliant interfaces, you can
implement a design using soft IP blocks. The PS-PL interface has a GP port (master and
slave) that can implement an AXI3 or AXI4 interface, and can connect the PS to a soft IP core
register interface. You can use the high-performance (HP) ports as AXI3 slave ports that are
driven by an AXI3 or AXI4 master IP block in the PL. You can use the ACP interface in a
similar way. The ACP interface implements the AWCACHE and ARCACHE signals, and the
user IP block implementing the ACP master controller needs to implement these signals.
For more information, refer to ACP and Cache Coherency.

The ACP interface enables connectivity to the L2 cache, and the interface can be used where
the IP block in the PL is co-processing a compute-intensive operation requiring
considerable CPU utilization.

You can implement the AXI3/4 memory mapped or AXI4 stream protocol. The AXI3/4
memory mapped interface has read/write addressing signals and data interface signals. The
AXI4 stream interface does not have address signals.

X-Ref Target - Figure 3-15

Figure 3-15: AXI4-Lite, AXI4 Memory-Mapped, and AXI4-Stream Buses

Programmable LogicProcessing

System

AXI

DMA

A
X

I4
 S

tr
e
a
m

 S
o
b
e
l
IP

Master

GP

Slave HP

A
X

I4
 M

e
m

o
ry

 M
a
p
p
e
d
 I
n
te

rf
a
c
e

A
X

I4
 S

tr
e
a
m

 I
n
te

rf
a
c
e

AXI4 Lite Interface

X14214-080117
UltraFast Embedded Design Methodology Guide 99
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=99

Chapter 3: Hardware Design Considerations
When designing a Zynq AP SoC with an IP block, the PL must account for the following:

1. The IP block complies with the AXI3/4 protocol specification. The AXI interfaces in the
PS-PL boundary are AXI3-protocol compliant. You can use a Xilinx-provided AXI
interconnect IP block to connect the AXI4-compliant IP to the PS-PL interface ports.

2. The IP block is part of an IP integrator repository, simplifying integration of the IP block
into a system level design.

3. The PS-PL interface supports memory-mapped access of implemented peripherals.
4. You can select the AXI4 stream interface to connect IP blocks that do not require

addressing context. The AXI4 stream interface is widely used for video-based IP blocks.
You can store the stream video input from the video IP block in the PS DDR memory
using the video DMA IP block connected to the HP port interface.

Case Study: Designing with Xilinx IP Blocks
This section describes how to design a system using IP blocks from the Xilinx IP integrator
catalog. You can apply the methods to any IP block.

The case study is of a notch filter, which is a DSP IP that can process analog samples to
remove non-linearity introduced by an external sensor. When an analog signal passes
through a non-linear sensor, for example an RTD sensor, the sensor can introduce nonlinear
behavior at the analog signal output. This is due to variations in the sensor transfer function
based on temperature. The non-linear output requires compensation, and you can
implement the compensation algorithm in either the analog or digital domains. Digital
algorithms offer more cost effective and accurate reconstruction of the non-linear signal.

A Zynq-7000 AP SoC has a Xilinx ADC in the PL, and the IP block that instantiates the XADC
provides a user wrapper with an option to convert the XADC samples to an AXI4-Stream
compliant interface. The user can design an IP block that compensates for the non-linear
sensor by preemptively correcting the XADC's samples with lookup polynomial coefficients.

You can design the sensor-compensating IP block using DSP48 blocks available in the
Zynq-7000 AP SoC. The IP can implement two user interfaces: an AXI4-Stream interface for
data and an AXI4-Lite interface for control. The AXI4-Stream interface can connect to the
XADC Wizard IP, and the AXI4-Lite interface can connect to the PS's GP0 master-interface
for controlling the IP-specific parameters.

Figure 3-16 shows a block diagram of the IP block.
UltraFast Embedded Design Methodology Guide 100
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=100

Chapter 3: Hardware Design Considerations
The process of creating the IP block is:

1. Write HDL code that implements an AXI4-Stream interface for data and an AXI4-Lite
interface for control. Implement the function that multiplies the AXI4-Stream data with
the interpolated coefficients.

2. Package the HDL code using Vivado IP Packager. Auto-infer interfaces and associate
clocks with each of the interfaces.

3. Set up a local repository and copy the packed IP XACT files to the local repository.
4. Create a Vivado project and add the local repository.
5. Create the block design by instantiating the local IP block with other IP blocks and

connect them together.
6. Implement the design using Vivado Design Suite.
X-Ref Target - Figure 3-16

Figure 3-16: IP Use-Case Illustration

Zynq Processing System
DDR3

Memory

GP0 IRQ_F2P

3
2

 b
it
 @

 1
0

0
 M

H
z

UART

Programmable

Logic

Processing System

DDR Controller

Non Linear

Analog

AXI4 Stream

X14137-073117

XADC Wizard IP

Sensor Compensator

BRAM Block IP
UltraFast Embedded Design Methodology Guide 101
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=101

Chapter 3: Hardware Design Considerations
Hardware Performance Considerations
The PL on a Zynq-7000 AP SoC has multiple communication paths for software and
hardware to share data and resources. Each of these paths has configuration settings for
altering hardware-specific performance. In this section, hardware performance metrics will
be defined, and methods for tuning performance of AXI masters, AXI slaves, and AXI
datapaths will be described.

Hardware Performance Metrics
An important metric of PL performance is the AXI throughput and latency when accessing
performance-critical IP in a Zynq-7000 AP SoC. Xilinx uses ARM AMBA AXI interconnects in
PL to connect and map user IP into a global address space. Some application datapaths will
be throughput constrained (such as video and networking) or latency constrained (such as
real-time applications or protocol-specific constraints). Often when a Zynq-7000 AP SoC
design is started, the system architect can only specify performance using the two simple
metrics of throughput and latency, something observed by many Zynq-7000 AP SoC
customers.

To highlight the trade-off between latency and throughput, an ACP master that issues eight
outstanding 32-byte transactions will have an average read latency 130% higher than a
single outstanding transaction master. However, the master with eight outstanding
transactions also has a 262% higher average throughput. This is because multiple
outstanding transactions are pipelined, leading to a higher throughput and latency
performance profile. The designer can decide if latency or throughput is more important to
system performance.

These two metrics form the foundation of visualizing and tuning application performance.
The AXI interfaces that IP might access within a Zynq-7000 AP SoC are described below. AXI
IP design best-practices are not considered.

High-Performance AXI Masters
An AXI master's design and configuration affects its ability to drive high-performance
traffic. Following are two examples of AXI masters that have different performance
characteristics as seen from an AXI interface.

AXI Master #1. Supports a 32-bit AXI-Lite interface and issues one outstanding AXI
transaction at a time. This master generates single-beat transactions and runs at 100 MHz
on a ZC702 board.

AXI Master #2. This master uses a 64-bit AXI4 interface and can issue 16 outstanding
transactions at a time, with a maximum burst length of 16 beats per transaction. This master
can run at 200 MHz on the same Zynq-7000 AP SoC board.
UltraFast Embedded Design Methodology Guide 102
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=102

Chapter 3: Hardware Design Considerations
Independent of the datapath and the AXI destination slave, the performance of AXI master
#1 will not match AXI Master #2. To minimize throughput constraints, the AXI master should
fully use the AXI address and data channels. To minimize latency constraints, limit the
number of outstanding transactions because transactions will pipeline sequentially in the
AXI data channel.

This simple example might be intuitive, but building high-performance AXI masters adds
design complexity and may consume more resources. Often, performance is only
considered after performance goals are not met. The following section outlines
performance considerations when designing an AXI master.

Building High-Performance AXI Masters

Many designs are generated using prebuilt IP, and performance choices are limited.
However, the following general guidelines can help build high-performance AXI masters, or
tune existing IP when parameterization is possible.

• For throughput-constrained masters, support multiple outstanding transactions.
This requirement adds complexity to AXI masters, but Zynq-7000 AP SoC interfaces can
internally support varying numbers of multiple transactions. This data pipelining
enables higher utilization of AXI data channels, often the only channel that matters in
throughput-based designs.

• For low latency masters, throttle the number of outstanding transactions to
maximize latency-throughput behavior. This item can be difficult to quantify, but
through experimentation, the latency curve can be shaped to minimize latency the
master sees while allowing multiple outstanding transactions. Figure 3-17 is an
example latency-throughput curve showing how an increase in the number of
requested transactions affects latency.

X-Ref Target - Figure 3-17

Figure 3-17: Example Latency Throughput Curve for HP Port Reads
UltraFast Embedded Design Methodology Guide 103
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=103

Chapter 3: Hardware Design Considerations
• Ignore the AXI response channel. If possible, use posted writes to reduce the
transaction latency. For example, consider a transaction complete on an AXI rdlast or
wrlast signal, ignoring the write response channel response. In a well-formed design,
there will be no channel or slave errors that an AXI master must manage. If writes
cannot be posted, then this channel cannot be ignored. However, the AXI write
response channel typically adds tens of cycles to a transaction in many Zynq-7000 AP
SoC datapaths.

• Consider AXI master addressing behavior and the destination AXI slave response.
The address sequence that an AXI master generates affects the destination slave's
ability to service that traffic. For example, if an AXI master generates random addresses
to a DDR-based memory, it can cause lower memory performance. Also, multiple
masters accessing DDR address ranges can cause suboptimal DDR scheduling. This is
not always an issue because some memory slaves, such as the OCM, are better at
handling random accesses. Also, if random access is kept within a small address range,
the L2 cache can service this traffic. These AXI slaves will be discussed later.

• Maximize clock rate, data width, and transaction burst size. These parameters
should be matched to what is supported natively by a Zynq-7000 AP SoC (such as
internal 64-bit datapaths and a maximum AXI3 burst length of 16 beats). Typically,
increasing the AXI master clock rate affects just a portion of the total datapath, because
a transaction likely also travels through the PS and its clock domains. PL data widths
will be internally translated to the PS data widths, when needed. Using burst size as an
example, if a PL AXI master drives AXI4 traffic into the PS, the transactions might be
translated into AXI3 transactions.

Using Performance-Critical AXI Slaves
Performance-critical slaves respond to data-movement requests from PL. Zynq-7000 AP
SoCs have three AXI slaves that are especially performance critical: the OCM, L2 cache, and
DDRC. The addition of a configurable memory-interface generator (MIG) to the PL is also
possible. The benefits of the different slaves are:

• On-Chip Memory. The OCM is a 256KB memory block accessible to both ARM cores
and the PL from the GP, HP, and ACP ports. The OCM is an ideal component for use in
synchronization or scratchpad applications.

• L2 Cache. The 512KB L2 cache is only accessible by the ACP from the PL. It is a shared
resource with the two ARM Cortex-A9 cores. This slave has excellent performance
characteristics when data traffic fits within 512KB. However, performance degrades if
there is heavy processor contention. The ACP and coherent memory access is described
in ACP and Cache Coherency.
UltraFast Embedded Design Methodology Guide 104
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=104

Chapter 3: Hardware Design Considerations
• DDR Controller. You can connect the DDRC to a variety of off-chip memory devices,
such as DDR3 and LPDDR2. The DDRC is accessible from the PL using the AXI master
interfaces (GP, HP, and ACP). Each PL interface has a unique datapath to the DDRC. The
DDRC has higher memory capacity and throughput performance than the OCM and L2
cache.

• PL Attached MIG (Optional). Zynq-7000 AP SoCs can support an MIG-generated
memory controller in the PL. This soft IP option provides another high-performance
memory interface that can isolate PL memory from the processor system's software
access to the DDRC. The MIG exports an AXI interface that allows designs to attach
standard AXI-master IP. The greatest benefit of this core is the ability to customize the
PHY into banking and addressing schemes for a specific application.

Selecting Performance-Critical AXI Slaves

The AXI slave selected for a datapath is often done so to meet functional requirements, such
as CPU coherency or memory size. The selection of an AXI slave can also be driven by
performance requirements. The following selection considerations have been used by
several Zynq-7000 AP SoC customers:

• Avoid or isolate performance-critical datapaths. Often during the design process,
certain datapaths are marked as critical to system performance and other paths are
marked as secondary. For example, a network-processing application may need
dedicated access to off-chip memory, whereas packet inspection can occur at a slower
rate on less critical datapaths. You can isolate ACP access to the L2 cache from HP to
DDRC traffic by limiting the memory footprint of the ACP access. Similarly, OCM
accesses from GP can be isolated from ACP and HP traffic.

• Low latency. The amount of latency that tolerated depends on the system-level
application and behavior of data traffic. The OCM has excellent low-latency
characteristics. Accessing small memory regions through the ACP enables an
application to take advantage of low-latency L2 cache access.

• High throughput. The high-performance ports provide high throughput to the PS
DDRC from the PL. A common problem with the HP performance is L2 cache contention
at the DDRC. A memory-intensive software application can cause a reduction in HP
throughput. However, you can reduce contention by using the DDRC priority settings
and the QoS 301 settings on the L2 cache to DDRC datapath.

• Configurability and confidence. Some designs might use a PL MIG to avoid memory
access contention with the processor subsystem. Other designs might use a custom
memory interface based on previous designs or developer experience. Prototyping
boards for Zynq-7000 AP SoC support MIG (such as the ZC706 board) and enable
designers to evaluate a custom MIG core and compare the results with standard
Zynq-7000 AP SoC datapaths to the DDRC.
UltraFast Embedded Design Methodology Guide 105
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=105

Chapter 3: Hardware Design Considerations
High-Performance Datapaths
There are two symmetric datapaths for the PS to communicate with the PL (master GP0,
master GP1), and there are seven datapaths for PL AXI Masters to drive traffic into the PS.

The AXI interfaces are described in the following sections:

• ACP and Cache Coherency
• PL High-Performance Port Access
• GPs and Direct PL Access from APU

The process of using the system-performance goals to select between those interfaces is
described below.

Selecting a High-Performance Datapath

The selection of a datapath is often based on design function. However, performance
considerations can also drive datapath selection.

• Choosing between the ACP and HP ports. When the cache and user AXI4 signals are
set for a cache access, the ACP port provides access to the L2 cache and maintains
cache coherency with the ARM Cortex-A9 cores. Using the ACP without the cache
enabled can be useful to a PL master because the memory map matches that seen by
the Cortex-A9 cores.The L2 cache is a shared resource, and using the ACP port can
impact processor memory bandwidth. Also, if the traffic generated by AXI masters
spans a large address range (such as video frames) or is random in nature (such as
scatter-gather DMA), L2 cache misses will increase, causing a corresponding increase in
latency and potentially lower throughput.

The HP ports support 32-bit and 64-bit data paths, providing high-throughput access to
the DDRC. The HP ports contain FIFOs for increased burst throughput and you can
control their prioritization. The HP ports also provide low latency and high bandwidth to
the OCM. You might find this useful if the accelerators are in the PL and the OCM is large
enough for the buffer.

• Selecting the GP ports. The slave GP ports provide PL masters direct access to many
resources isolated from performance-critical datapaths on the ACP and HP ports.

• Memory-access footprint. If a design uses the ACP for non-coherent access with poor
cache locality, then the DDRC serves the majority of ACP traffic. In an example
Zynq-7000 AP SoC deployment, ACP latency is reduced up to 53% by increasing cache
locality of transactions. HP and GP transactions do not access the L2 cache and are not
directly affected by cache behavior. For more information on using the ACP for
coherent access, see ACP and Cache Coherency.
UltraFast Embedded Design Methodology Guide 106
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=106

Chapter 3: Hardware Design Considerations
• PS datapath performance controls. System clock rates, QoS-301 signals, and DDRC
priority settings can all impact datapath performance. You can set most of the
memory-mapped registers and functions that use IP integrator when building the
design. You can set QoS-301 bits at runtime. Although higher system clock rates help
move data faster, the QoS-301 signals and DDRC priority settings can shift performance
between contending AXI masters. For example, QoS-301 settings on the L2 to DDRC
datapath can limit L2 cache transactions to the DDRC, allowing HP traffic to be serviced
by the DDRC more frequently. DDRC priority settings can also be used to prioritize read
and write transactions within the DDRC.

Monitoring Hardware Performance
Xilinx provides an AXI performance monitor (APM) core shown in Figure 3-18 that you can
use to observe and measure latency and throughput on PL AXI interfaces. This core is
available in IP integrator and is the basis for all AXI performance measurements referenced
in this document.

Zynq-7000 AP SoC developers can insert this APM into their PL design like other IP, and
verify performance metrics throughout the design cycle.

X-Ref Target - Figure 3-18

Figure 3-18: Adding an AXI Performance Monitor into a Vivado 2013.4 IP integrator Design
UltraFast Embedded Design Methodology Guide 107
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=107

Chapter 3: Hardware Design Considerations
Dataflow
This section provides an overview of the dataflow in a Zynq-7000 AP SoC. The first part
describes the dataflow within the PS, focusing on APU access of PS DDR, and of PS
peripherals to PS DDR. The second part describes dataflow from the PL to the PS, focusing
on the following PS-PL AXI interfaces: general purpose interfaces, ACP interface, and high
performance interfaces. Throughout, major system design characteristics and
considerations are described. For more information, refer to the Zynq-7000 All
Programmable SoC Technical Reference Manual (UG585) [Ref 4].

The various interconnect blocks used within the Zynq-7000 AP SoC devices are designed to
meet the needs of various functional blocks. The PS interconnect is based on
high-performance data path switches that enable data transfers between various
peripherals and DDR memory, or between the APU and DDR or OCM memories. The PS-PL
interface provides an AXI interface in the PL, enabling PL peripherals to connect to the PS
and subsequent dataflow.

The block diagram in Figure 3-19 shows the major data paths that are covered in this
section.
X-Ref Target - Figure 3-19

Figure 3-19: Block Level Data Path Overview

DDR Memory Controller

Memory Interconnect

On Chip RAM

High Performance Ports

F
IF

O

F
IF

O

F
IF

O

F
IF

O

OCM Interconnect

APU
APU

Snoop Control Unit

Accelerator
Coherency

Port

L2 Cache

Controller
Central Interconnect

Master Interconnect (for slave

peripherals)

General
Purpose AXI
(M_AXI_GP)

General
Purpose AXI
(S_AXI_GP)

Slave Interconnect

(for master

peripherals)

IOP (DMA/

Masters)

X14133-073117
UltraFast Embedded Design Methodology Guide 108
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=108

Chapter 3: Hardware Design Considerations
Interconnect within PS
There are two primary data paths within the PS: the APU interconnect to PS DDR, and the PS
peripheral interconnect to PS DDR.

The central interconnect is 64 bits and is the core of the ARM NIC-301 switches. The master
and slave interconnect route low-to-medium level traffic between the central interconnect
and the general purpose interconnects and IO peripherals in the PS. Memory interconnect
provides a direct, high-speed data path from the PL HP interface to the DDR memory
controller. It also provides access to on-chip RAM through the OCM interconnect.

The interconnect does not offer a full cross-bar structure; not all masters can access all
slaves. The details on which masters can access which slaves are available in the
Interconnect Datapaths table at this link in the Zynq-7000 All Programmable SoC Technical
Reference Manual (UG585) [Ref 4].

APU Access to PS-DDR

Each processor provides two 64-bit pseudo-AXI interfaces. All AXI transactions are routed
through the SCU to the OCM or L2-cache controller based on their addresses. The APU
accesses DDR memory through the SCU and L2-cache controller. Both the SCU and
L2-cache controller behave like switches because of their address-filtering feature. The SCU
also provides the lowest latency path from the APU or ACP peripherals in the PL to the
OCM, and also contains the intelligence to manage data coherency between the two
processors and L1cache.

When the L2-cache controller is disabled, the transactions are directed either to the DDR
controller or master interconnect based on their addresses.

PS Peripheral Access to PS-DDR

The IO peripherals (USB, GEM, and SDIO, for example) implement two interfaces for
communication:

• An APB interface for connecting peripheral slaves to the APU master
• An AHB interface that facilitates high-speed bus transactions for connecting an

embedded DMA controller in the high speed peripherals to system memory

The APB interface is used primarily to control peripherals. The AHB interface (from a DMA
master in a peripheral) is connected to central interconnect, providing access to the DDR
controller.
UltraFast Embedded Design Methodology Guide 109
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xDatapaths
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=109

Chapter 3: Hardware Design Considerations
PS-PL AXI Interfaces
This section describes the PS-PL AXI interfaces that are used to connect PL-based
peripherals and functions to the PS. Usage models for each interface are described in their
respective sections.

General Purpose AXI Interface (AXI_GP)

The AXI_GP interface has four 32-bit general-purpose ports with two master and two slave
ports; the PL is the master for two ports and the PS is the master for the other two ports.
The ports are connected to the master and slave interconnect ports in the PS.

The AXI_GP ports are provided for general purpose use and are not designed for high
performance.

A typical use model for the M_AXI_GP port is to connect it to the control-plane interface of
a peripheral implemented in the PL. You can use the S_AXI_GP port to communicate with
addressable PS peripherals from the PL. When PL peripheral performance requirements are
not high, you can also use S_AXI_GP to access PS-DDR.

Accelerator Coherency Port (ACP)

The ACP provides an interface to masters in the PL for direct connection to the SCU. The PL
masters maintain memory coherency with L1 caches and have direct access to the L2 cache
and OCM. The ACP has the same level of connectivity to peripherals and memory as the
CPU. For more information, refer to the address map in the System Addresses chapter
(available at this link) of the Zynq-7000 All Programmable SoC Technical Reference Manual
(UG585) [Ref 4].

Addresses on the ACP port are snooped by the SCU to provide full I/O coherency. Reads on
the ACP will hit in any CPU's L1 data cache, and writes will invalidate any stale data in L1 and
write through to L2. This results in significant performance benefits and simplifies driver
software.

The ACP allows a device, such as an external PL-DMA, direct access to CPU-coherent data
regardless of where the data is in the CPU cache or memory hierarchy. The resulting system
coherence relieves the software driver of performing costly operations such as cache
flushing and helps improve system performance.

The ACP is optimized for cache-line length transfers and also has certain limitations that
should be taken into account when designing a system with an ACP. Further details are
available in ACP and Cache Coherency.

Use of ACP for high performance applications should be considered with care because the
peripherals connected to the ACP will compete with the CPUs for access to caches and the
memory subsystem in the PS, impacting overall performance.
UltraFast Embedded Design Methodology Guide 110
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xSystemAddresses
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=110

Chapter 3: Hardware Design Considerations
High Performance Ports (AXI_HP)

Four high-performance AXI interfaces are provided to enable a high-throughput data path
between the PL masters, and DDR and OCM memory in the PS. Each datapath is selectable
between 32-bit and 64-bit. A dedicated memory interconnect provides direct connectivity
of these AXI-HP ports to the DDR memory controller in the PS. Also, FIFO buffers for read
and write traffic are present, providing high-performance capabilities. These ports are also
referred to as the AXI FIFO Interface (AFI).

The four AXI-HP ports are multiplexed down in pairs and are connected to two ports on the
memory controller. The memory interconnect switch arbitrates between the two ports.
When using two HP ports, use of port-0 and port-2 is recommended because these are on
separate DDR interfaces.

The HP AXI interface provides additional capabilities, such as QoS, FIFO occupancy, and
issuance throttling on interconnect. This enables bandwidth management when there are
multiple masters with different types of traffic flow. You can control the QoS signals using
PL signals or by statically configuring the APB registers.

In addition to the PS-PL AXI Interfaces discussed above, there are additional PS-PL
interfaces:

a. Extended MIO allows routing of IO peripheral signals to the PL. This provides an
interface between the PS IOP controller and user logic in PL, and it also enables use
of PL device pins. For more information, refer to this link in the Zynq-7000 All
Programmable SoC Technical Reference Manual (UG585) [Ref 4].

b. PS-PL clock, reset, and interrupt interfaces that provide clock, reset, and interrupt
signals in the PL. For more information, refer to this link in the Zynq-7000 All
Programmable SoC Technical Reference Manual (UG585) [Ref 4].

c. Device configuration interface, used to configure the PL under PS software control.
For more information, refer to this link in the Zynq-7000 All Programmable SoC
Technical Reference Manual (UG585) [Ref 4].

d. The DMA interface between PS and PL can be used for high-speed data transfer
between the PL IP block and other peripherals or memory blocks in the PS. The
interface between the PS and the fabric can be used to propagate CPU interrupt
events.
UltraFast Embedded Design Methodology Guide 111
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xDeviceConfigurationInterface
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xPSPLMIOEMIOSignalsAndInterfaces
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xPSPLMiscellaneousSignals
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=111

Chapter 3: Hardware Design Considerations
System Level Design Considerations

When managing the bandwidth of PS-PL AXI interfaces, the following should be considered:

• The general-purpose ports should be used for low-to-medium types of traffic, such as
controlling PL peripherals from the PS, or as a data path for low-speed PL peripherals.
For example, you can move Ethernet packets into the PL through the S_AXI_GP port
because the bandwidth and latency requirements are satisfied by the port. However, in
applications requiring guaranteed latency and high performance, such as video
implemented in PL, use of HP ports is preferable.

• The accelerator coherency port is useful when applications in the PL need to maintain
coherency with the processor L1 caches, and need reduced software overhead.

• The high-performance port is recommended when applications in the PL need
high-bandwidth access to the DDR controller or the OCM. Multiple ports are provided
so that you can distribute the PL masters across four HP ports for improved load
balancing, rather than restricting PL masters to a single HP port. You can obtain even
higher bandwidth for one PL master by using multiple HP port sets (HP0 and HP2, or
HP1 and HP3).

For more information about using multiple port sets, refer to this link in the Zynq-7000
All Programmable SoC Technical Reference Manual (UG585) [Ref 4].

PL Clocking Methodology
This section covers the clock methodology in Zynq-7000 AP SoC PL, describing the different
clock sources available in the PL and their recommended usage. Those clock sources are:

• Clock from PS (FCLK)
• Clock Recovered from a GT
• Clock from External Source
• Clock Generated by MMCM

At the end of this section a video system design is discussed as a typical model
demonstrating use of the various clock sources.

Clock from PS (FCLK)
Refer to the Clocking and Reset for information on using FCLK.
UltraFast Embedded Design Methodology Guide 112
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf;a=xExclusiveAXIAccesses
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=112

Chapter 3: Hardware Design Considerations
Clock Recovered from a GT
The receiver clock data recovery (CDR) circuit in the GT transceiver extracts clock and data
from an incoming data stream. The recovered clock has a direct relationship to the
transceiver line rate and the data-path width. You can use the recovered clock in a PL design
requiring a high-speed serial transceiver for communication with the link partner. The
recovered clock typically has inherent jitter, and that jitter must be corrected before using
the clock in a design that is sensitive to input jitter. In general, the recovered clock is used
to sample data received by the PL logic. The architecture of the CDR is shown in Figure 3-20.

For more information, refer to the Receiver chapter of 7 Series FPGAs GTX/GTH Transceivers
User Guide (UG476) [Ref 2] and 7 Series FPGAs GTP Transceivers (UG482) [Ref 3].

Clock from External Source
An FPGA clock-capable IO pin that supports differential clocks can supply a PL clock. If a
single-ended clock is used, it should be connected to the P (master) side of the
clock-capable input pin pair.

The choice of single-ended versus differential-input clocking depends on the design's
clocking requirements. Differential clocking is recommended because it eliminates
power-supply noise and line-coupling noise. If the design is pin limited, you can use
single-ended clocking.

When a single-ended clock is connected to the P side of an input pin pair, the N side cannot
be used for another single-ended clock. However, you can use it as a user IO.

The clock-capable pins provide dedicated, high-speed access to the internal global and
regional clock sources, as shown in Figure 3-21.

For more information, refer to 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 1].

X-Ref Target - Figure 3-20

Figure 3-20: CDR Architecture
UltraFast Embedded Design Methodology Guide 113
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=113

Chapter 3: Hardware Design Considerations
Clock Generated by MMCM
The MMCM is used to generate multiple clocks with different frequency and phase
relationships. The MMCM also de-skews the clock output. A use model is shown in
Figure 3-22.

The MMCM primitive, MMCME2_ADV, provides the functions listed above and the input
clock selection using the Dynamic Reconfiguration Port (DRP).

X-Ref Target - Figure 3-21

Figure 3-21: Clock Capable Inputs

X-Ref Target - Figure 3-22

Figure 3-22: MMCM Use Model

Global Clocking

Backbone

X14150-073117

Clock
Capable

Input
Dedicated Routing

BUFG

CLKOUT0

CLKOUT0B

CLKOUT1

CLKOUT1B

CLKOUT2

CLKOUT2B

CLKOUT3

CLKOUT3B

CLKOUT4

CLKOUT5

CLKOUT6

CLKFBOUT

CLKFBOUTB

LOCKED

CLKIN1
CLKFBIN

RST

MMCM

4 5
To Logic

BUFG

6

BUFG

IBUFG

1 2

3

X14151-073117
UltraFast Embedded Design Methodology Guide 114
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=114

Chapter 3: Hardware Design Considerations
FCLK Use Model
An example FCLK use model is a video application that displays a test pattern on a display
monitor. Figure 3-23 illustrates this model.

The use model has the following IP blocks:

• Test pattern generator (TPG): Generates video frames of different test patterns.
• Video timing controller (VTC): Generates the timing for TPG.
• Video direct memory access module (VDMA): Writes the video frames generated by

TPG in to the DDR memory.
• Display controller: Fetches the frames from the DDR through HP2 port and displays

on monitor.
• On-board clock synthesizer: Used as a video clock driving all input video modules and

the display controller. It is programmable by the PS.
• Clock derived from FCLK using the MMCM: This clock has a higher frequency than

Sys_clk. It is used by the VDMA and display controller AXI master interfaces because of
display controller latency requirements.

In this example, the design could use an external clock routed to PL and to an MMCM that
generates the desired Sys_clk output. The PS AXI interconnect provides the clock domain
between the HP/GP port and the PL.

X-Ref Target - Figure 3-23

Figure 3-23: FCLK Use Model

DDR Interconnect
DDR Memory

Controller

VTC TPG VDMA

Video

Clock

Display

Controller
Monitor

MMCM

DDR

Memory

HP0 HP2FCLK

PS

PL Sys_clk

X14152-073117
UltraFast Embedded Design Methodology Guide 115
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=115

Chapter 3: Hardware Design Considerations
ACP and Cache Coherency
The accelerator coherency port provides low-latency access for PL masters, including
optional cache coherency with the dual core ARM Cortex-A9 CPUs. From a system
perspective, the ACP interface has similar connectivity as the APU CPUs. Because of this, the
ACP competes with the APU CPUs for resource access outside the APU block. Figure 3-24
shows an overview of the ACP connectivity.

The ACP's main benefit, compared to other PL masters, is access to CPU cache-coherent
memory and use of the low-latency 512KB L2 cache. In a common Zynq-7000 AP SoC
implementation, a PL accelerator is connected to the ACP port. It is configured by the CPU
over one of the GP ports, and then the accelerator does its data movement over the ACP.
Coherent data movement is managed in hardware, allowing the PL ACP-master to issue
standard AXI reads and writes. The only requirement on ACP cache-coherent accesses is
that those transactions have the A*CACHE and A*USER bits set to all 1s.

X-Ref Target - Figure 3-24

Figure 3-24: ACP Connectivity Diagram

Accelerator Coherency

Port (ACP)
CPUs

Snoopable Data Buffers

and Caches

CPUs
Snoopable Data Buffers

and Caches

SCU

L1 Cache

Line UpdatesRead/Write

Requests
M

S S

OCM

M0 M1

Maintain L1 Cache

Coherency

Cache Tag

RAM Update

Flush Cache

Line to Memory Tag

RAM

L2 Cache

S

M0 M1

Tag RAM

Data RAM

System

Interconnect

Cacheable and
Non-cacheable

Accesses

Cacheable and Non-cacheable
Accesses to DDR, PL,
Peripherals, and PS Registers

DDR
System

Interconnect

X14132-073117

P
L
 L

o
g
ic

Cache Coherent
Transactions

APU
UltraFast Embedded Design Methodology Guide 116
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=116

Chapter 3: Hardware Design Considerations
This hardware-managed coherency model is an alternative to having PL accelerators use the
HP or GP ports to access non-coherent memory directly from the DDR Controller. Here,
software-managed coherency would be necessary, whereby the processor would have to
flush shared memory back to the DDR to guarantee coherency. While there are many ways
to implement software-managed coherency, the ACP does so in hardware, easing software
design.

Because the ACP supports cache coherency, ACP-attached AXI masters compete with the
CPUs for L2-cache resources (the L1 cache is only available to the CPU). Any AXI read or
write transaction coming from the ACP will use L2-cache resources to service the data
movement (arbitration, tag matching, and cache-line fetches to DDR Controller). If this data
movement is coordinated with CPU activity (such as the accelerator example above), then
sharing the memory resources benefits the larger system application. If this data movement
operates in parallel with unrelated CPU tasks, there are additional opportunities to mitigate
contention on the CPUs and ACP masters, as described in the next section.

ACP Design Methodology
The following design methodology best-practices for effectively using the ACP are based on
several customer use-cases plus performance analysis of the Zynq-7000 AP SoC ACP.

ACP-Master Design Methodology

• Avoid Thrashing the Cache. The 512KB L2 cache is a shared resource between the two
ARM processors and the ACP. The ability of the ACP to access large quantities of data
has the potential to lower software performance. Locking and partitioning the cache
can help ensure the shared data has a high cache hit rate. For example, video-style
accesses to the ACP port would have little cache locality and, without cache
management, hurt memory system performance.

In one example performance test case, ACP accesses that have good cache locality will
show 54% lower latency when compared to an ACP access pattern with no cache locality.
Results will vary by application.

• Match AXI Transaction Parameters to ACP. The ACP is an AXI3 compliant 64-bit
interface. Transactions for AXI3 or AXI4 compliant masters attached to the ACP will be
converted to 64-bit-wide transactions with a maximum burst length of 16 beats. All
conversion is done using soft IP such as the protocol converter or the AXI interconnect.
Converted non-64-bit transactions and high beat-count transactions have the potential
to cause extra data-transfer cycles. Additional ACP access optimizations and constraints
are described in the ARM Infocenter Accelerator Coherency Port web page [Ref 75].
UltraFast Embedded Design Methodology Guide 117
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=117

Chapter 3: Hardware Design Considerations
• Choose Blocking versus Non-blocking Transactions. Care must be taken with
transactions completing out of order on the ACP port. Under certain conditions, writes
and/or reads can complete out of order unless the axresp channel is used as a barrier
between subsequent transactions. Ideally, the response channel should be ignored,
allowing transactions to complete as soon as data is transferred. However, care is
required when issuing multiple reads and writes to the same address range. For DMA
bulk transfers, this is typically not a problem. However, you can see the problem when
multiple outstanding read and write transactions are issued to a small address range.

In an example use-case, if the ACP's response channel is ignored during multiple
read-modify-write operations to the same address, out-of-order read-after-write
collisions can occur.

• ACP use for non-coherent access. It is recommended that non-cache-coherent traffic
from PL be routed through the HP or GP ports. If required, however, you can set the AXI
4-bit cache fields to modify the behavior of ACP accesses. For more information, refer
to Section 2.4 Accelerator Coherency Port in the Cortex-A9 Technical Reference Manual
[Ref 77].

PS Configuration for the ACP Design Methodology

• L2-Cache Clocking and Prefetching. The L2 cache is clocked at the CPU clock rate
and, with good cache locality, will service the majority of ACP accesses. While you can
raise the PL clocks to decrease the access latency, you should also clock the L2 cache as
fast as possible. You can use L2 prefetch settings to turn prefetch on and off, and use
other settings to control the number of cache lines fetched per miss. For example, ACP
accesses with little cache locality may not benefit from prefetching because they can
cause mis-speculated fetches from the L2 to the DDR controller.

Refer to the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)
[Ref 4] for more information on optimizing the PS settings for ACP accesses and
modifying the L2 cache settings.
UltraFast Embedded Design Methodology Guide 118
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=118

Chapter 3: Hardware Design Considerations
Contention with Software on CPU Methodologies

• Consider CPU Memory Access Patterns. The effect of cache contention with the
processor is also dictated by the processor's memory-access patterns. Software that
runs entirely out of a processor's L1 cache will not be affected by ACP accesses.
However, ACP accesses can affect software with low cache locality, such as a
memory-striding application.

For example, a memory-intensive software application running on the ARM Cortex-A9 is
unaffected by heavy ACP traffic accessing a single 4 KB memory page from the L2 cache.

As a further example, running L1-cache-bound benchmarks, such as Dhrystone or
Coremark, on the CPU is unaffected by heavy ACP traffic accessing a 512 KB buffer held
within the L2 cache.

• Advanced Cache Management. You can use techniques such as cache locking and
cache partitioning to assist in cache sharing and cache isolation between multiple CPU
and ACP masters. These techniques may require you modify linker scripts and tailor
ARM memory descriptors to the applications memory layout. For a tutorial on how to
lock caches and the possible performance effects, refer to Zynq-7000 AP SoC Boot -
Locking and Executing out of L2 Cache Tech Tip wiki page [Ref 62].

• Monitoring Contention. It is important to monitor and measure contention when
design goals are not being met. You can monitor the L2 cache, the CPUs, and the ACP
itself for ACP performance. You can monitor the L2 cache using event counters,
processor cache accesses using the ARM Performance Monitoring Units (PMU), and the
ACP using Xilinx's AXI performance monitor implemented in the PL. These monitoring
methodologies are further described in Performance.
UltraFast Embedded Design Methodology Guide 119
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=119

Chapter 3: Hardware Design Considerations
PL High-Performance Port Access
The high performance (HP) ports give the PL direct access to the DDR controller and to the
On-Chip Memory (OCM). The Zynq-7000 AP SoC Technical Reference Manual provides an
excellent functional description of the HP ports and possible performance optimizations.
This section describes common design-driven optimizations implemented in customer
designs that use the HP ports.

The HP ports are typically used in a design needing PL high-throughput access to either the
OCM or, more commonly, DRAM attached to the DDR controller. Figure 3-25 shows that the
HP ports contend with each other and other PS masters at different points in the PS
architecture. Methods for achieving a high-throughput design on multiple HP interfaces
with system contention are described below.
X-Ref Target - Figure 3-25

Figure 3-25: High Performance (HP) Port Connectivity

High Performance

AXI Controllers

(AXI_HP)

Memory

Interconnect

M0

FIFO

S0

M1

FIFO

S1

M2

FIFO

S2

M3

FIFO

S3

M0 M1 M2

Central

Interconnect

OCM Interconnect

S0 S1

M

On-chip RAM

S1 S0

SCU

DDR Memory Controller

S3 S2 S1 S0

L2 Cache

X14134-073117
UltraFast Embedded Design Methodology Guide 120
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=120

Chapter 3: Hardware Design Considerations
HP Master Design Methodology
• Order of adding HP ports. Because of the HP data paths, HP ports should be added to

minimize data path contention. In general, HP ports should be added in the following
order: HP0, HP2, HP1, and HP3. Using this order, HP masters can take full advantage of
the two dedicated DDR controller ports.

For example, in a design requiring two HP ports, a 15% improvement in combined
throughput can be realized if heavy read traffic is routed through HP0 and HP2 instead
of HP0 and HP1. As higher throughput traffic is driven, the performance difference
increases.

If more than four HP masters are required, you can use an AXI interconnect in the PL to
multiplex the masters onto the four HP ports. When assigning the masters to HP ports,
the goal is to maximize HP port throughput. For example, you can assign high-traffic
masters to separate HP ports and pair them with low-traffic masters. An important
consideration is that a single HP port could saturate at a lower throughput than the
DDRC's saturation point.

• AXI Addressing Optimizations. Standard DRAM access optimizations should be
considered, including address optimizations and minimizing read/write mix, if possible.
Designing High-Performance Video Systems with the Zynq-7000 All Programmable SoC
(XAPP792) [Ref 36] provides guidance on using nonlinear addressing to match the
row-bank-column layout of DRAM for a video application. Also, whenever possible, the
read/write mix should be minimized, although this is not always possible due to design
behavior.

For example, in a system with read-only HP0 and HP2 ports, the read throughput on HP0
drops 0 12% when HP2 is changed to write-only. The performance degradation range
depends on traffic addressing and generated transaction rate.

• Increasing the PL clock rate. Increasing the programmable clock speeds is a common
method used to maximize application performance. However, there are diminishing
returns on increasing the PL clock rate when performance bottlenecks exist in moving
data between the PL and the DDR controller. Referring to the data path in Figure 3-25,
although the PL master initiates traffic in the PL clock domain, the majority of the data
path is in PS clock domains. Also, the maximum DDRC bandwidth should be considered
because the DDRC will eventually saturate due to increased PL master traffic.

For example, in a design where two HP ports are driving heavy read and write traffic to
the 533MHz DDR controller, increasing the PL clock speed from 50 MHz to 100 MHz
increases total HP throughput 92%, whereas an increase from 100MHz to 200 MHz
increases throughput 13%. In the latter case, traffic is driven more often from the PL,
resulting in a saturated DDR controller.
UltraFast Embedded Design Methodology Guide 121
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=121

Chapter 3: Hardware Design Considerations
PS Configuration for the HP Design Methodology
When designing with HP ports, the contention of high-throughput traffic at the DDR
controller and attached DRAM destination cannot be ignored. The HP ports have two
dedicated ports to the DDR controller, but those are arbitrated with the L2 Cache and the
central interconnect in the DDR controller. You can minimize contention from the 512KB L2
cache port because the L2 cache services CPU and ACP requests if the L2 cache holds the
requested data. However, if the CPUs or ACP access memory with little cache locality, those
cache accesses are serviced by the DDRC, potentially hurting HP performance. Also, the
central interconnect contention at the DDRC is application dependent, with the potential
for heavy traffic coming from USB or gigabit Ethernet masters.

You can use two advanced techniques to limit L2 and central interconnect access to the
DDRC, with a goal of improving HP throughput in high-contention implementations. You
should use these techniques after default settings are tried and an HP performance goal is
not met. You can modify either of the following:

• The DDRC priority settings
• The QoS-301 settings within the PS

The techniques can prioritize HP traffic to the DDR, but do not necessarily increase overall
performance. Instead, they slow down other PS masters to the benefit of the HP ports.

• DDR Controller Priority Settings. These settings control the order that transactions
are serviced at the DDR controller ports and at the DDR PHY. The high priority read
feature and go2critical counter values are the most important features controlled by
the DDR controller priority settings. You can use the high priority read options on each
DDR controller port to increase a port's read priority over that of other DDR controller
ports. This increase in priority can have an effect on the HP throughput of highly
loaded systems (such as where all HP ports are driving high throughput traffic). These
advanced features are useful when a Zynq-7000 AP SoC is pushed to its performance
limits, such as when the DDR controller is saturated at theoretical maximum
throughput. Refer to this link in the Zynq-7000 All Programmable SoC Technical
Reference Manual (UG585) [Ref 4] for more information.

• QoS-301 Settings. The AXI data path from the L2 cache to the DDR controller has
QoS-301 settings that are currently accessible only through direct register writes from
your application. You cannot modify them using the Vivado GUI. This feature allows
transaction throttling on that path, benefitting HP port performance under heavy DDR
traffic. This feature is best used when memory-intensive software with poor L2-cache
locality is running. Refer to this link in the Zynq-7000 All Programmable SoC Technical
Reference Manual (UG585) [Ref 4] for more information.
UltraFast Embedded Design Methodology Guide 122
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xDDRCArbitration
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xQualityOfService
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=122

Chapter 3: Hardware Design Considerations
Contention Mitigation for DDR Controller Methodologies
Similarly to the ACP contention sources, HP performance is affected by system loading,
specifically at the DDR controller. The biggest potential source of contention will be the L2
cache making cache line requests to service CPU or ACP accesses. CPU and ACP contention
will depend on memory access patterns exceeding the capacity of the 512KB L2 cache.
Ethernet and USB traffic from the central switch can also drive large amounts of traffic to
the DDR controller.

• Monitoring Contention. It is important to monitor and measure contention when
design goals are not being met. For HP performance, you can monitor the L2 cache,
Ethernet controller, and the HP ports. You can monitor the L2 cache and Ethernet
controller using event counters within the core, and monitor the HP ports using Xilinx's
AXI performance monitor implemented in PL.

• How much contention is an issue? Most contention-mitigation techniques noticeably
improve performance when the total system traffic to the DDR approaches the DDR
controller's theoretical maximum. For example, a 32-bit DDR controller running on the
ZC702 board at 533MHz can theoretically sustain 4.3GB/s of memory throughput. The
DDR controller is designed to arbitrate fairly and sustain several high-throughput
sources, and contention effects will not be visible at low DDR controller utilization.

• Using an attached PL Memory Interface Generator (MIG). Xilinx also provides PL
memory interfaces to off-chip DDR that can supplement or replace the HP to DDR
controller data path. Functionally, you can isolate this added memory from the PS
memory map, or you can access it using the GP ports. For more information, refer to
Xilinx Answer Record 58387 [Ref 73].

The MIG is typically a better-performing memory option for large bulk data transfers to
contiguous addresses from a single master, such as Ethernet and video frames. Also, this
memory option is best for buffering data isolated from PS accesses, because direct CPU
accesses to this PL DDR would go through the 32-bit GP ports, limiting MIG
performance. Otherwise, the PS DDR controller provides excellent memory performance
for HP workloads.
UltraFast Embedded Design Methodology Guide 123
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=123

Chapter 3: Hardware Design Considerations
System Management Hardware Assistance
This section describes the hardware components that enable system management in a
Zynq-7000 AP SoC PS. System management includes control of system-level parameters
based on user-specific inputs. Chip-level management includes control of die temperature,
management of errors, implementation of low-power mode during system inactivity,
management of secure and non-secure access to peripherals.

Software components play an important role while performing system management. The
focus of this section is on hardware assistance for system management on Zynq-7000 AP
SoCs.

Xilinx Analog-to-Digital Converter
The Xilinx analog-to-digital converter (XADC) is a flexible analog interface that resides in PL
and assists in monitoring temperature and power-supply sensors. The XADC has three
interfaces, JTAG, DRP and PS-XADC, with which system applications can monitor the
temperature and voltage status and take appropriate action. The JTAG and DAP interfaces
are present in all 7-series FPGAs. However, the PS-XADC interface is only present in
Zynq-7000 AP SoC devices.

Figure 3-26 shows how the XADC arbitrates between the AXI XADC DRP interface and the
PL-JTAG or PS-XADC interface.
X-Ref Target - Figure 3-26

Figure 3-26: XADC Arbitration

X14146-080117

JTAG

PS

AXI XADC

P

S

X

A

D

C

XADC

A

r

b

i

t

e

r

DRP
UltraFast Embedded Design Methodology Guide 124
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=124

Chapter 3: Hardware Design Considerations
TrustZone Security
The ARM TrustZone technology supports system-wide security at multiple levels, including
hardware, software, and memory. The Zynq-7000 AP SoC PS architecture supports multiple
operating modes, including supervisor, system, and user modes, to provide different levels
of protection at the application level.

A processor switches between two separate worlds, secure world and normal world,
through a processor mode called monitor mode, as shown in Figure 3-27. The TrustZone
technology is implemented in many PS components, including: APU, L1-cache controller,
memory management unit, SCU, SLCR, triple timer counter, watch-dog timer, I2C, GPIO, SPI,
CAN, UART, QSPI, NOR, DDR memory controller, L2-cache controller, AXI interconnects,
on-chip memory, DMAC, Gigabit Ethernet controller, SDIO controller, and USB controller.

DDR Memory Controller

You can configure DDR memory in 64MB segments, and configure each segment to be
secure or non-secure using a control register, TZ_DDR_RAM (0xF8000430).

• A bit value of 0 indicates a secure memory region for the associated memory segment.
• A bit value of 1 indicates a non-secure memory region for the associated memory

segment.

When there is non-secure access to a secure segment of DDR memory, a DECERR response
is returned to the initiator of the transaction. Write transactions are masked and result in no
write to the DDR memory, whereas read transactions return all zeroes.

X-Ref Target - Figure 3-27

Figure 3-27: Switching Between Secure and Non-Secure World

Non-Secure World Secure World

User Mode

Privileged Mode

User Mode

Privileged Mode

Monitor

Mode

X14147-073117
UltraFast Embedded Design Methodology Guide 125
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=125

Chapter 3: Hardware Design Considerations
L2 Cache Controller

The L2 cache controller supports TrustZone technology by adding an NS bit to cached data.
In this way, the cache controller treats secure and non-secure as being in two different
memory spaces. For a read transfer, the cache controller sends a line-fill command to
external memory, propagates any security errors from external memory to the processor,
and does not allocate the line in L2 cache if there is an error.

DDR Error Recovery
An error correction code (ECC) mechanism is supported for 16-bit DDR content. This allows
recovery of corrupted DDR data. Ten ECC bits for each 16 data bits support correction of
single-bit errors and detection of two-bit errors. When ECC is enabled for writes, ECC code
is computed and written to DDR along with the data. When ECC is read, the DDR controller
checks the data against the stored ECC code. Writing DDR memory without enabling ECC,
and then reading with ECC enabled, may return ECC errors.

When an error is correctable, the controller corrects the data and sends it without
generating an interrupt or AXI response. When an error is uncorrectable, the controller
sends an AXI SLVERR response along with the corrupted data to the AXI master. AXI masters
in the PS might also generate L2 or DMA interrupts, or CPU prefetch or data exceptions.
When they do, the same AXI SLVERR response is sent to the PS AXI master.

Low Power
You can power-optimize Zynq-7000 AP SoCs in various ways: PL power off, processor
standby mode, clock gating of PS subsystems, PLL configuration, or I/O voltage control.

When the PL is not in use, you can power-off the entire PL. However, the PL loses state when
it is powered off, and it must be reconfigured when it is powered on again. The system
software should determine when to power-off the PL and it should reconfigure the PL when
it is needed again.

Clock Gating

The PS has multiple clock domains, and each clock has gating control to stop the clock.
System software can enable gating of a particular clock when that clock domain is not in
use. This reduces dynamic power dissipation.

You can disable clocks using system-level control registers (SLCR), which starts at address
0xF8000000.

For example, when the SPI controller is not in use, you can disable the controller reference
clock by writing an appropriate value to register SPI_CLK_CTRL (0xF8000158).
UltraFast Embedded Design Methodology Guide 126
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=126

Chapter 3: Hardware Design Considerations
Figure 3-28 shows how clock gating of the SPI reference clock works.

Managing Hardware Reconfiguration
Partial reconfiguration is the ability to reconfigure a portion of an FPGA chip to implement
different logic functions without disturbing the remaining logic on the chip. The technology
enables an FPGA to implement different functional blocks in a time-sliced manner.

TIP: The Partial Reconfiguration Design Hub in the Documentation Navigator provides links to
additional information about Partial Reconfiguration. For more information, see Related Design Hubs.

FPGA partial reconfiguration is supported using the following constructs:

• A configuration-select line that enables partial reconfiguration of an SRAM FPGA
without powering down the supply voltage.

• A configuration latch that can store the configuration data used for partial
reconfiguration.

In the Zynq-7000 AP SoC PL architecture, the basic programmable unit is a configuration
frame composed of a LUT, DSP48, and BRAM. In partial reconfiguration, the configuration
frames are reprogrammed using a Processor Configuration Access Port (PCAP) that acts as
a reconfiguration agent. Each configuration frame has a unique address identified with a
top/bottom address bit, a major address, and a minor address. The partial bitstreams are
generated using a Xilinx Vivado Tool flow, and the partial bitstreams are parsed by the PCAP
to reconfigure the frames.

X-Ref Target - Figure 3-28

Figure 3-28: Clock Gating

IO PLL

ARM PLL

DDR PLL

6-bit Programmable

Divider
Clock Gate

SPI_CLK_CTRL [5:4]

SPI_CLK_CTRL [13:8] SPI_CLK_CTRL [0:1]

SPI Ref Clock

X14148-073117
UltraFast Embedded Design Methodology Guide 127
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=127

Chapter 3: Hardware Design Considerations
Partial reconfiguration offers the following advantages over a traditional full configuration:

• Reduced hardware resource utilization: A designer can fit more logic into an existing
device by dynamically time-slicing design functions.

• Increased productivity and scalability: Only the modified function needs to be
implemented in context with the already-verified design

• Enhanced maintainability and reduced system down-time: You can deploy new
functions and insert them dynamically while the system is up and running

Figure 3-29 shows a conceptual view of the partial reconfiguration methodology. The static
design does not change over time and establishes communication between the partial
reconfiguration modules and the static design. The communication between the static logic
and the partial reconfiguration modules occurs over a set of communication macros
consisting of a bidirectional communication entity and tri-state gates.

The Zynq-7000 AP SoC has a PL portion that you can reconfigure using partial
reconfiguration. The PL is programmed using the Processor Configuration Access Port
(PCAP) that is part of the PS Device Configuration Interface. The PCAP block communicates
with the CPU and system memory using a PCAP to APB bridge that converts APB
transactions to PCAP read/write transactions. You can store the partial bitstreams
generated using the Xilinx Vivado design tool into the PS DDR memory, and retrieve them
to configure the PL over the PCAP interface using the partial reconfiguration methodology.

X-Ref Target - Figure 3-29

Figure 3-29: Conceptual View of Partial Reconfiguration

Static

Logic

Input

Communication

Macro

Output

PR1PR1

PR2

PR3

• • • • • • •• • • • • • • • • • •

• •• • •• • • • • •• •• • • •• • • • • • • • • •

Processing System
UltraFast Embedded Design Methodology Guide 128
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=128

Chapter 3: Hardware Design Considerations
Partial Reconfiguration Terminology
The reconfigurable partition refers to the physical location on the FPGA selected for partial
reconfiguration. The remainder of the design is referred to as static logic. You can refer to
a specific design implementation as a reconfigurable module. A configuration defines a
complete FPGA design and produces a full bitstream for a reconfigurable module and static
logic, plus a partial bitstream for the reconfigurable module.

System Level Considerations
When using partial reconfiguration in your design flow, you should take the following
system-level considerations into account.

RECOMMENDED: To learn how to design with Partial Reconfiguration in Vivado, refer to the Partial
Reconfiguration Design Hub in the Documentation Navigator. For more information, see Related
Design Hubs.

Hardware Design Flow

The first step in creating a partially reconfigurable design is to create a design using a
reconfigurable module and static design flow. Implementation of a partial reconfiguration
design flow requires the Xilinx Vivado design tool, as described in the following steps:

• Create a partial reconfiguration project using the Xilinx Vivado design tool targeting
the evaluation platform, and import the netlists and constraint files.

• Define the reconfigurable partition. This partition ensures that the logic and routing
common to each of the multiple designs is identical.

• Create reconfigurable modules for the reconfigurable partition by adding the
corresponding netlist and constraint files. Constraints that apply only to specific
reconfigurable modules must be scoped to the module level and should be provided
with the corresponding netlist. Constraints applied to the static logic and any
constraints that are shared across all reconfigurable modules should be included in the
top-level constraint file.

• Floorplan the reconfigurable partition by setting the physical size of the partition and
the types of resources desired. Xilinx FPGAs support reconfiguration of CLBs
(Flip-Flops, LUTs, distributed RAM, Multiplexers, etc.), BRAM, and DSP blocks, plus all
associated routing resources. The designer must floorplan the reconfigurable partition
such that it can accommodate the resources required by the reconfigurable modules.
As a guide, 20% overhead should be assumed for routing resources. The location of a
reconfigurable partition inside the PL with respect to the static logic depends on the
data flow and how the reconfigurable modules communicate with the rest of the
design. A simple strategy is to implement the configuration with the highest resource
utilization without floorplanning, identify the region where most of the resources are
UltraFast Embedded Design Methodology Guide 129
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=129

Chapter 3: Hardware Design Considerations
placed, and create a partition around this region that is big enough to hold all the
resources.

• When building reconfigurable design configurations, the first configuration
implemented should be the most challenging one.

• Run the partial reconfiguration verify-configuration utility to validate consistency
between the reconfigurable-module implementations.

• Generate full and partial bitstreams for the reconfigurable modules.

Figure 3-30 shows the hardware design flow implementing partial reconfiguration.
X-Ref Target - Figure 3-30

Figure 3-30: HW Design Flow for Partial Reconfiguration

RTL Module 1 System RTL Module 2

Implementation Implementation

Bitgen Program Bitgen Program

Static BitstreamPartial Bitstream Partial Bitstream

Synthesis

RM 1 RM 2Static Design

X14142-080117

.

UltraFast Embedded Design Methodology Guide 130
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=130

Chapter 3: Hardware Design Considerations
System Design Flow

The Device Configuration (DevC) interface containing the AXI-PCAP bridge is used to
implement the partial reconfiguration flow on a Zynq-7000 AP SoC.

The following example summarizes the boot sequence for partial reconfiguration:

1. After power-on reset, the BootROM determines the external memory interface or boot
mode (SD flash memory) and the encryption status (non-secure). The BootROM uses the
DevC's DMA to load the First Stage Boot Loader (FSBL) into on-chip RAM (OCM).

2. The BootROM shuts down and releases CPU control to the FSBL which in turn configures
the PL with the full bitstream via the PCAP.

3. The FSBL loads and releases control to the user application in bare-metal OS.
4. The user application loads the partial bitstreams into DDR memory during start-up. This

is to maximize the configuration throughput over the PCAP interface, speed up the
configuration time, and take advantage of cache.

5. The application can use the partial bitstreams at any time to modify the pre-defined PL
regions while the rest of the FPGA remains fully active and uninterrupted. This is done
by transferring the reconfigurable module bitstream from DDR to the PL via PCAP.

6. A single configuration engine handles both full configuration and partial
reconfiguration. The task of loading a partial bitstream into the PL does not require
knowledge of the reconfigurable module's physical location because
configuration-frame addressing information is included in the partial bitstream

Figure 3-31 shows the system level flow for partial reconfiguration. The Xilinx device
configuration driver implements low-level APIs to interact with the PCAP block, and the
user application can call the APIs to initiate the partial reconfiguration flow. The user
application must be aware of the source addresses in the DDR where the partial bitstreams
are stored.
UltraFast Embedded Design Methodology Guide 131
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=131

Chapter 3: Hardware Design Considerations

The example above shows how to load partial bitstreams from the PS-DDR memory. In
general, the bitstreams can exist in any external memory that the device configuration
interface can access.

Managing Reconfiguration using U-Boot and Linux

You can use Linux and U-Boot to dynamically load the reconfigurable bitstream to the PL. If
an application is running on Linux and a portion of the hardware must be reconfigured, the
application can send a request to the Linux kernel to load the appropriate PL bitstream and
the corresponding kernel module supporting the hardware device.

If the FSBL execution time is critical, you can use partial reconfiguration to partition the
design so that the smaller bitstreams are loaded faster during FSBL execution. This reduces
overall boot time. U-Boot can configure and initialize the remaining design. Partitioning is
useful when a specific PL functions must be started within a specific time limit.

You can encrypt the partially reconfigured bitstream using an encryption key. You can
decrypt using either U-Boot or Linux, depending on the application requirements. Once
decrypted, you can use the bitstream to configure the PL using the PCAP interface.

X-Ref Target - Figure 3-31

Figure 3-31: System Level Flow for PR

Programmable Logic

Processing System 7

Configuration

Flash

Top Switch DDR

Controller

AXI Master Interface

PCAP Interface

CPU
Boot

ROM

FIFO FIFO

X14143-080117

.

.

UltraFast Embedded Design Methodology Guide 132
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=132

Chapter 3: Hardware Design Considerations
GPs and Direct PL Access from APU
This section describes APU access to registers and memory in the PL through its AXI
general-purpose interfaces, the address requirements for AXI slaves in PL, and issues
relating to security and performance. A system design is described that deals with direct PL
access by ARM Cores and represents a typical use case.

The APU in PS can access registers and memory in PL using GP master AXI interfaces, which
are part of the PS-PL interface. There are two GP master AXI interfaces that the APU can use
to initiate an AXI transaction to a slave implemented in PL.

M_AXI_GP ports have the following features:

• AXI-3 protocol.
• Data bus width of 32-bits.
• Master port ID width of 12-bits.
• Master-port issuing capability of eight reads and eight writes.

The AXI interfaces, M_AXI_GP0 and M_AXI_GP1, each occupy 1GB of system address space,
as shown in Table 3-3.

All APU accesses within the address ranges shown in Table 3-3 pass through the
Interconnect in the PS to either M_AXI_GP0 or M_AXI_GP1, depending on the address. If the
transactions initiated by the APU are outside these address ranges, the transactions will not
be routed to master GP ports.

Table 3-3: Address Range of GP Ports
Interface Low Address High Address

M_AXI_GP0 0x40000000 0x7FFFFFFF
M_AXI_GP1 0x80000000 0xBFFFFFFF
UltraFast Embedded Design Methodology Guide 133
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=133

Chapter 3: Hardware Design Considerations
Figure 3-32 shows the path used by an APU accessing an AXI slave in PL.

Performance
The GP ports are directly connected to the PS master interconnect ports without FIFO
buffering, unlike HP ports that have FIFO buffering to increase performance and
throughput. Therefore, GP ports are for general purpose and not for high performance. The
GP port has a latency of 38 M_AXI_GP interface clock cycles.

Design Considerations for AXI Master GP Port
• When AXI interconnect in the PL is connected to the PS GP master AXI interface and the

HP AXI slave interface, you need to disable HP slave port access from the master port
GP. In the IP integrator address editor under processing_system7 addressing, un-assign
the HP port address to avoid the address conflict.

• Accesses to the GP interface are not cached by default. You can cache accesses by
changing the Translation Lookaside Buffers (TLBs).

• When using the GP interface with an AXI interconnect in PL, system software should
never access an address that does not exist in the AXI interconnect. This will avoid
permanent AXI interconnect lock-up (there is no timeout set by the AXI interconnect).

• The voltage translators at the PS-PL boundary must be configured before the APU uses
the master GP interface to access the AXI slave in PL. This is normally done by the FSBL.

X-Ref Target - Figure 3-32

Figure 3-32: APU Accessing PL Slave through GP Port

Cortex A9

Snoop Control Unit

L2 Cache Controller

Master Interconnect

PL Slave

M_AXI_GP

X14144-080117

.

UltraFast Embedded Design Methodology Guide 134
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=134

Chapter 3: Hardware Design Considerations
Use Case
Figure 3-33 shows how the GP master AXI interface on the PS access AXI slave registers in
the PL to configure peripherals, read status, and access DDR memory.

The GP0 port is connected to a DDR controller to increase the DDR memory available to the
PS through the DDR controller in the PL. The GP1 port is used to configure the AXI IIC and
AXI GPIO IP blocks. The TLB has to be changed to allow caching of PL DDR memory.

X-Ref Target - Figure 3-33

Figure 3-33: APU Accessing AXI Slaves in PL

PL

PS

M_AXI_GP0 M_AXI_GP1

AXI Interconnect

AXI IIC AXI GPIO

DDR

Controller

DDR Memory

X14145-080117

.

UltraFast Embedded Design Methodology Guide 135
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=135

Chapter 4

Software Design Considerations
This chapter covers the following software design issues to be considered when designing
with a Zynq®-7000 AP SoC:

• Processor Configuration: Configuring the processor to meet system requirements is an
important consideration in implementing an embedded system. This section will help
you optimize the ARM cores to best fit your application needs.

• OS and RTOS Choices: This section will help you understand the pros and cons when
selecting the appropriate software platform for your embedded system — OS, RTOS, or
bare metal.

• Libraries and Middleware: Libraries help you combine common and useful functions in
a single place so that they can be re-used by your applications. Middleware sits on top
of the operating system and reduces complexity by centralizing software stacks that
otherwise would be redundant in an application layer. This section describes how you
use libraries and middleware to improve application-programming productivity and
reliability.

• Boot Loaders: There are a variety of ways you can use to boot and bring up applications
in your embedded system. This section describes the Zynq-7000 AP SoC boot flow
options from power-up to application execution.

• Software Development Tools: The Xilinx software development tools you can use to
build software components for your Zynq-7000 AP SoC are described in this section.
UltraFast Embedded Design Methodology Guide 136
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=136

Chapter 4: Software Design Considerations
Processor Configuration
To fully use an SoC in an embedded system, it is important to configure the processor to
meet system requirements. This section describes the aspects to consider. The content here
is specific to Zynq-7000 AP SoC systems, but it can be applied to any system.

Clock Speed and Multiple Cores
A good balance between power and performance can make an embedded system highly
effective and efficient. Processors can be configured to run at lower clock frequencies than
the maximum limit, potentially saving power. If an operating system supports multiple
processor cores, power could be saved by running the cores at a lower frequency instead of
a single core at a high frequency. Power savings can be determined by analyzing the power
requirements and consumption of the multiple processor cores running at the lower clock
frequency and comparing the result with a single core running at a high clock frequency.

The processor clock frequency can be dynamically changed by system software. When
running both processor cores, they always run at the same frequency. Multi-threaded
software that scales across cores helps take full advantage of a multicore system. Such
software can increase performance by executing threads in parallel, without pushing the
system to the maximum clock frequency.

SMP and AMP Configuration
Deciding to use a multicore processor affects the software system design, including
operating system selection. Most multicore SoCs have an option to run the system as an
asymmetric multiprocessor (AMP) or symmetric multiprocessor (SMP).

An AMP configuration uses each processor core for different (usually unrelated) tasks. Each
core works independently, and at various times signals or synchronizes with other cores to
exchange messages. Typically, each core has its own memory address space, except for the
memory used to pass messages. In practice, the AMP configuration is typically used to run
different operating systems or different, independent instances of the same operating
system.

An SMP configuration uses multiple processor cores to perform tasks within the same
operating environment, such as when multi-core Linux runs multiple tasks simultaneously. A
common scheduler is responsible for dispatching different tasks on different processor
cores. The operation is symmetrical because the system view from each core is identical.

Different AMP and SMP configurations use different cache coherency and memory-sharing
implementations. The system's AMP or SMP behavior can be controlled using the processor
core's system-control private registers (for example, CP15 in the ARM v7 core).
UltraFast Embedded Design Methodology Guide 137
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=137

Chapter 4: Software Design Considerations
Figure 4-1 and Figure 4-2 show typical examples of AMP and SMP systems, respectively
(processor refers to processor core).

Figure 4-1 shows two AMP examples:

• In example 1, each processor is allocated private memory, and that memory is not
shared between the processors. Both processors have access to common memory and
a set of peripherals.

• In example 2, one processor does all memory operations but cannot access the
peripherals. The second processor accesses the peripherals but does not perform
memory operations.

In Figure 4-2, both processors have equal access to all peripherals and memory.

.

Using Coprocessors
Hardware coprocessors can improve system performance. For example, using
NEON-specific instructions can improve performance if the system will perform lots of
floating-point or SIMD operations. Those instructions use the NEON media coprocessor
capability in the ARM Cortex-A9 MPCore processor.

X-Ref Target - Figure 4-1

Figure 4-1: Typical AMP Configurations

X-Ref Target - Figure 4-2

Figure 4-2: Typical SMP Configuration

Private

Memory
Processor Processor

Private

Memory

Common Memory I/O

Processor Processor

Memory

I/O

Asymmetric Multiprocessing Example 1 Asymmetric Multiprocessing Example 2

X14153-080117

.

Processor Processor

Memory I/O

Processor Processor

A Typical SMP Configuration

LAN

X14154-073117
UltraFast Embedded Design Methodology Guide 138
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=138

Chapter 4: Software Design Considerations
Although the NEON technology is power-optimized, most coprocessors are power-hungry.
However, because coprocessors are designed for specific tasks, they are faster and more
power efficient than using the main processor for performing those tasks. Coprocessors
reduce CPU bandwidth and allow CPU power reduction when workload is reduced.

Co-processors execute specific instructions designed for their use. For example, the
Zynq-7000 AP SoC Spectrum Analyzer part 2-Building ARM NEON Library Tech Tip [Ref 64]
shows how to use NEON libraries to target the NEON capabilities of a Zynq-7000 AP SoC.

Cache Considerations
Caches can greatly improve system performance and should be used when possible. Most
SoCs have integrated L1 and L2 caches. Each CPU core typically has a dedicated L1 cache
that can be individually configured for use by that core. The L2 cache is usually shared by all
CPU cores. Coherency between the caches is maintained by a snoop control unit (SCU), and
coherency decisions are determined by the AMP or SMP multi-processor configuration.

The caches should be invalidated before they are enabled. The L1 instruction cache must be
enabled at the beginning of the boot process (typically, by the first-stage boot loader), and
it should not be disabled thereafter. The L1 and L2 data caches can be configured and
enabled at a later time.

All cache operations are done on cache lines. The cache controller can write back (flush) and
invalidate cache lines by cache way or by physical address.

Usually, an SoC contains differently ordered memory (such as strongly ordered or device
memory), and the system can use or not use cache operations on that memory. Also, there
can be cache policies, such as write-through or write-back, that are program specific.

If any system peripheral uses memory that is shared with the CPU, coherency between that
memory and the CPU cache should be maintained by software using cache operations
(which are costly). Similarly, in some complex systems, a peripheral might have access to
cached memory for improved performance. In that case, coherency between the peripheral
cache, memory, and the CPU cache should be maintained by software. The software
overhead of maintaining coherency introduces latency. The latency can be avoided by using
the hardware coherency provided by cache-coherent ports, such as the accelerator
coherence port (ACP).

Zynq-7000 AP SoC systems provide an ACP that gives external ports access to processor
caches. An ACP allows other non-cached master peripherals and accelerators, such as a
DMA engine or cryptographic accelerator core, to be cache-coherent with the processor
core L1 caches.
UltraFast Embedded Design Methodology Guide 139
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=139

Chapter 4: Software Design Considerations
Processor State after Power on Reset
In the Zynq-7000 AP SoC, both processor cores start after power-on reset (POR). CPU0
starts at address 0x0, where BootROM loads the first-stage boot loader. CPU1 is sent into a
wait-for-event (WFE) loop. Any interrupt will cause CPU1 to wake up and exit the WFE state.
The boot loader, kernel, or equivalent software is typically responsible for starting CPU1 at
a later time, when it is going to be used.

In most cases, DDR memory is not initialized at POR, so the first-stage boot loader is loaded
into simpler memory, such as on-chip memory, and is mapped to address 0x0 in the SoC.

ARM processors start in supervisor (SVC) mode after POR. Then, the kernel or equivalent
software changes the ARM processor mode as required.

Interrupt Handling
ARM cores provide a generic interrupt controller (GIC) and private peripheral interrupt (PPI)
controller for handling interrupts. The GIC has a flexible approach to inter-processor
communication, and the routing and prioritization of system interrupts. Software can
control up to 224 independent interrupts. Each interrupt can be distributed to one or both
processor cores, hardware-prioritized, and routed between the operating system and the
ARM TrustZone technology software management layer (see Secure Configurations). There
are also priority mask registers that allow interrupts below a specified priority to be
ignored.

Apart from the GIC, a processor core can mask all incoming interrupts by setting an
interrupt mask in a processor system control register. In ARM processors, the IRQ and FIQ
lines can be masked independently for each processor core.

Interrupt handlers should be configured at the beginning of the kernel boot-up. There are
three possible interrupt sources:

• Private Peripheral Interrupts (PPIs):

These per-processor-core interrupts have limited function. They include FIQs, CPU
watchdogs, CPU timers, and some IRQs which might include interrupt signals from FPGA
logic.

• Shared Peripheral Interrupts (SPIs):

These interrupts are shared between the processor cores. The GIC decides how to
distribute the SPIs to particular processor cores. These are generally hardware
interrupts, and there can be large numbers of them.

• Software Generated Interrupts (SGIs):

These are synchronous interrupts generated by writing an interrupt number on a
particular SGI register on the system.
UltraFast Embedded Design Methodology Guide 140
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=140

Chapter 4: Software Design Considerations
You can configure the GIC registers to handle the interrupts listed above. Figure 4-3 shows
the interrupt routing mechanism of GIC v1.0 (PL310).

Timers
Each processor core has private timers that can be used in the context of that processor
core. The timers can be useful for tracking the core run time, instead of the entire system.
The SoC also has global timers that give system-wide timing information. Interrupts
generated by these timers are private peripheral interrupts (PPIs) and are assigned on a
per-processor-core basis. Timer interrupts are often essential to system operation, because
they are used for scheduling and time-slicing tasks.

MMU Configurations
Most operating systems, like Linux, require a virtual memory system. The memory
management unit (MMU) is a hardware block that facilitates virtual-memory access. The
MMU uses data structures, such as page tables, for address translation. The
operating-system kernel must configure the MMU and set up page tables to implement the
virtual-memory system. Different page tables are required for different operating-system
modes, such as the secure mode of TrustZone technology.

X-Ref Target - Figure 4-3

Figure 4-3: Interrupt Handling

Software

Generated

Interrupts

(SGI)

CPU 0

Distributor

Private

Peripheral

Interrupts (PPI)

Interrupt Control Distributor (ICD)

CPU 1

Distributor

Shared Peripheral

Interrupts (SPI)

Input/Output

Peripherals (IOPs)

Programmable

Logic (PL)

SGI Distributor

CPU 0 Timer

and AWDT

PL FIQ0, IRQ0

Private

Peripheral

Interrupts (PPI)

CPU 1 Timer

and AWDT

PL FIQ1, IRQ1

Software

Generated

Interrupts

(SGI)
n

IR
Q

n
F

IQ

n
IR

Q

n
F

IQ

nIRQ
nFIQ

n
IR

Q

n
F

IQ

nIRQ
nFIQ

System

Watchdog

Timer

n
IR

Q

n
F

IQ

CPU 1
CPU 0

X14155-073117
CPU 0

CPU 1

CPU 1
UltraFast Embedded Design Methodology Guide 141
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=141

Chapter 4: Software Design Considerations
Secure Configurations
The Zynq-7000 AP SoC provides an option of dividing a system into two worlds, secure and
non-secure, by using the TrustZone technology mechanism. The processor mode must be
switched to monitor mode (secure mode) to enter the secure world for performing secure
operations. Also, there must be a separate MMU configuration for the different worlds.

For more information on TrustZone technology, see TrustZone Security.

OS and RTOS Choices
Operating system software manages the operations and protects the hardware resources of
a computing system. An OS or RTOS can support multitasking and manage resource usage.
Bare-metal software can serve as a minimal implementation of necessary
system-management functions. This section covers comparisons of system-management
types, hardware requirements, available OS and RTOS ports, running multiple OSs, and
development and debug tools.

There are also security considerations between a monolithic OS and a microkernel. A
full-featured monolithic OS like Linux uses the MMU for secure and non-secure memory
regions, whereas a microkernel RTOS does not use the MMU and thus will not offer the
same memory protection as a monolithic kernel. For details, refer to the Xilinx Security
Solutions webpage [Ref 48].

Types of Embedded-System Software
Table 4-1 compares features of bare-metal, RTOS, and OS system-management software.

Table 4-1: Bare-Metal Software, RTOS, and OS Comparison
Bare Metal Software RTOS General-Purpose OS

Capabilities Simple Simple to Advanced Advanced
Hardware
abstraction

None Minimal High-level

Multi-tasking No Yes Yes
Real-time Guaranteed response time Guaranteed response time As quickly as possible
Memory
management

None Basic memory protection Advanced virtual-
memory management

Code footprint Small (KBs) Small to Medium (KBs to MBs) Medium to Large (MBs)
Example Bare-metal software with

SDK
VxWorks, FreeRTOS Windows Embedded,

Linux
Open-source
considerations

Available with Vivado®
and SDK tools. These tools
require specific licenses.

Some are available with
open-source licenses, some
are paid versions

Some are available with
open-source licenses,
some are paid versions
UltraFast Embedded Design Methodology Guide 142
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=142

Chapter 4: Software Design Considerations
The selection of system-management software can depend on the following factors:

• Prior-Experience and/or Existing Solutions: This approach to selecting
system-management software saves time and validation effort. It also simplifies
designing systems with variations of an existing OS or RTOS with added features. This is
because of the learning curve involved in using a new OS or RTOS with a different set of
supported features.

• Capabilities: OSs and RTOSs differ in their features and middleware support. It is
important to select one based on the needs of the overall system design, such as
middleware stacks for USB, TCP/IP, and file-system support.

• Configurability: Some RTOSs have GUI-based configuration options used to enable
caches, prioritize interrupts, select the RTOS tick periods, etc. Full-featured OSs like
Linux can be feature-configured using tools like menuconfig. These configuration
interfaces and tools save time and highlight available feature options.

• Performance: Interrupts and task-switching latencies may vary between different OSs
and RTOSs. Thoroughly investigate the hard real-time, soft real-time, and overall
latencies when choosing an OS or RTOS.

• Memory Size: Memory-size requirements for an OS, RTOS, and application tasks need
to be estimated when choosing an OS or RTOS.

• Cost: There are free GNU license-based OSs or RTOSs. Some vendors charge, based on
their support and services model:

° Bare-metal BSP and drivers are provided free with Xilinx development environments
like the SDK.

° RTOS selection can be based on free or paid commercial licenses, depending on the
features and support model.

° Linux selection can be based on free or paid commercial licenses, depending on the
features and support model.

° Commercial variants come with support and additional features, like USB
middleware stacks or RTOS file-system stack.

• Application Requirements:

° If an application needs advanced software with ready-made libraries, then consider
a full-featured OS, such as Linux.

° If an application needs hard real-time response for many tasks, then consider an
RTOS like freeRTOS.

° If an application needs both a full-featured OS and real-time response, then
consider a multi-OS environment like Linux Symmetric Multi-Processing (SMP) with
real-time patches, or asymmetric multiprocessing (AMP) with Linux and RTOS
running on the dual ARM cores or hypervisor.
UltraFast Embedded Design Methodology Guide 143
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=143

Chapter 4: Software Design Considerations
Hardware Requirements for Running an OS or RTOS
An OS or RTOS requires the following:

• System Timer: This is a hardware timer for the kernel heartbeat, like jiffies in the Linux
OS. The timer is used by the OS or RTOS for all time-related kernel activities, such as
scheduling and delays.

• Memory Footprint: As low as 5 to 30 KB of RAM and ROM for an RTOS. A few KBs to
100 MBs for Linux OS, based on the kernel and services configuration selections.

• Memory Management Unit (MMU): Required for a full-featured, general-purpose OS
like Linux. May be used for memory protection by some RTOS implementations.

The Zynq-7000 AP SoC has all the hardware resources to run an RTOS and/or a full-featured
OS like Linux. Achieving the time determinism of a real-time solution depends on many
other factors, like resource-allocation and access times, overall solution architecture, etc.,
along with an RTOS.

OS and RTOS Ports
There following describes several example OS and RTOS ports to the Zynq-7000 AP SoC, but
the full list is not limited to this information.

Linux OS and PetaLinux Tools

The Xilinx® Linux distribution includes the Linux OS and a complete configuration, build,
and deploy environment for the Zynq-7000 AP SoC. Because PetaLinux is full-featured,
integrated, tested, and documented, it is the recommended and supported Linux
deployment mechanism for Xilinx customers. As a Xilinx product, PetaLinux has the same
level of product management, support, bug-tracking, and emphasis that other Xilinx tools
receive.

Although the Linux OS built using the PetaLinux Tools is based on a stable and thoroughly
tested Linux kernel, also from the Xilinx Git server, PetaLinux offers much more than what
can be downloaded from the Xilinx Git server. PetaLinux includes an installer, development
tools, board support packages (BSPs), platform-management utilities, application and
library frameworks, and documentation. PetaLinux is available under no-charge and
commercial licenses, as described in the PetaLinux licensing page. All PetaLinux users are
entitled to community (forum-based) support; commercial licensees may also access
support directly from Xilinx. For details, see the Xilinx Linux wiki page [Ref 56] and the Xilinx
PetaLinux wiki page [Ref 58].

Xilinx's PetaLinux Tools supports configuring, customizing, building, and packaging a Linux
BSP for full-featured OS functionality on the Zynq-7000 AP SoC. For details on how to
configure and use these BSPs, refer to the Xilinx PetaLinux Tools web site [Ref 50].
UltraFast Embedded Design Methodology Guide 144
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=144

Chapter 4: Software Design Considerations
OS and RTOS Ecosystem

In addition to the Xilinx OS and RTOS ports, described above, the Zynq-7000 AP SoC has
strong ecosystem support products from 3rd-party and alliance members. These products
may have differences in supported features, context-switch performance, interrupt
latencies, technical support, and in their middleware support for file systems, USB, PCIe,
Ethernet, etc.

Table 4-2 and the following sections describe the 3rd-party and alliance member ecosystem
solutions. For additional information, refer to the Xilinx Zynq-7000 AP SoC Ecosystem
webpage [Ref 49].

Quadros Systems Features

RTXC RTOS, from Quadros Systems, has these features:

Table 4-2: OS, RTOS, and Middleware Products

Alliance Member OS, RTOS, and Middleware Products More
Information

Adeneo Embedded Windows Embedded Compact 7, Linux, Android, and QNX [Ref 86]
Discretix Security-centric software and IP solutions [Ref 79]
ENEA Software AB OSE RTOS and ENEA Linux [Ref 80]
eSOL uITRON 4.0 RTOS, T-Kernel RTOS and IDE [Ref 81]
Green Hills Software INTEGRITY RTOS [Ref 83]
Express Logic ThreadX RTOS [Ref 82]
iVeia Android On Zynq-7000 AP SoC [Ref 86]
Mentor Graphics Nucleus RTOS [Ref 87]
Micrium µC/OS RTOS [Ref 88]
MontaVista Software MontaVista Carrier Grade Linux [Ref 89]
Open Kernel Labs OKL4 Microvisor [Ref 92]
QNX QNX Neutrino RTOS [Ref 93]
Quadros RTXC RTOS

For information about features, see Quadros Systems
Features, page 145

[Ref 94]

Real Time Engineers Ltd. FreeRTOS [Ref 95]
Sciopta Sciopta RTOS [Ref 96]
Sierraware Open source SierraVisor Hypervisor and SierraTEE Trusted

Execution Environment
[Ref 97]

SYSGO PikeOS [Ref 98]
[Ref 99]

Timesys LinuxLink [Ref 101]
Wind River VxWorks, Linux, and Workbench IDE [Ref 102]
UltraFast Embedded Design Methodology Guide 145
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=145

Chapter 4: Software Design Considerations
• Small, scalable footprint to fit any ROM or RAM budget (typically 25 KB or less)
• Delivered in source code, with sample code for a working project using ARM DS-5

development tools
• Graphical configuration program, RTXCgen, for ease of building the application's RTOS
• Graphical trace tool, RTXCview, for visibility into system performance and behavior
• RTXC/mp available for asymmetric multiprocessing (AMP)
• License fees apply

The following middleware stacks are supported along with RTXC RTOS:

• Ethernet TCP/IP v4 and v6
• Ethernet packet prioritization
• Ethernet security suite
• Application server:

° AJAX, JSON, and XML-RPC

° Remote device management, with persistent sockets (WebSockets)

° Remote GUI
• USB host and device
• High performance, fail-safe file systems:

° NAND and NOR

° SD, MMC, and flash drive

Support for Zynq-7000 AP SoC and ZC702 development boards:

• Timer initialization
• UART initialization
• MMU initialization
• Interrupt controller setup and initialization
UltraFast Embedded Design Methodology Guide 146
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=146

Chapter 4: Software Design Considerations
• Instruction- and data-cache initialization.
• Advanced support for ARM Vector Floating Point (VFP) and NEON:

° Explicit or automatic enabling of VFP-register context extensions for tasks that use
VFP or NEON.

° Optional support for a VFP and NEON register set that reduces context-switch
overhead.

° Uses “lazy swapping” to minimize interrupt latency and context-switch overhead for
VFP and NEON register sets.

° Control of VFP context, such as manual suspend and automatic or manual resume.
Fine-level control allows application to minimize VFP-register context overhead in
non-VFP and non-NEON execution paths. Useful in mostly integer environments in
which tasks rarely need VFP or NEON, except in isolated functions. When used with
lazy swapping, explicit suspend control can be used to improve overall system
throughput.

Real Time Engineers Ltd.

FreeRTOS is free to use without any need to expose custom code. FreeRTOS supports
real-time tasks, queues, binary semaphores, counting semaphores, mutexes, etc., for
communication and synchronization between tasks and interrupt-service routines. The
FreeRTOS memory footprint is about 4 to 9KB. The middleware stacks supported with
freeRTOS include:

• FAT file system
• UDP/IP and TCP/IP stacks
• CLI
• Safety
• CyaSSL SSL/TSL

Multi-OS
There are multiple ways to enable multiple operating systems running on both CPU cores of
the dual-core ARM Cortex-A9 MPCore processor in the Zynq-7000 AP SoC. See the
following links for information about the symmetric and asymmetric multi-processing
options:

• Zynq-7000 All Programmable SoC Software Developers Guide (UG821) [Ref 7]
• Xilinx Multi-OS Support wiki page [Ref 57]
UltraFast Embedded Design Methodology Guide 147
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=147

Chapter 4: Software Design Considerations
Simple AMP

A simple multi-OS AMP implementation can consist of running, for example, Linux OS and
a bare-metal application or of running two bare-metal applications.

The two CPU cores of the ARM processor share memory and peripherals. Asymmetric
multi-processing (AMP) is a mechanism that allows both cores to run their own operating
systems or bare-metal applications with the possibility of loosely coupling those
applications via shared resources. Figure 4-4 shows an example of AMP with Linux OS and
a bare-metal application. Figure 4-5 shows an example of AMP with Linux OS and an RTOS.

Referring to Figure 4-4, AMP with Linux OS and a bare-metal application operates as
follows:

• Linux runs on CPU0.

° Linux then starts the CPU1 executable loaded into memory by the FSBL.
• The bare-metal application runs in dedicated memory space on CPU1.

° MMU0 is used by Linux as normal. MMU1 is used to define the bare-metal
application’s memory context, but no special coding is required.

° The bare-metal application does not run within the Linux memory context.

° Linux is not aware of the memory used by CPU1.

X-Ref Target - Figure 4-4

Figure 4-4: AMP with Linux OS and Bare-Metal Application

Zynq

CPU 0 CPU 1

Linux Executable Code

Linux User

Apps

X14160-073117
UltraFast Embedded Design Methodology Guide 148
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=148

Chapter 4: Software Design Considerations
The MMU can be used to contain the application.

° The MMU defines what addresses (memory and AXI devices) the application can
access normally.

° CPU1 is not restricted from accessing the Linux memory spaces or shared devices
(ICD or SCU), but Linux can detect if and when that occurs and take the appropriate
action.

• Implementation approach.

° Communication between Linux and the bare-metal application use the OCM.

° OCM caching is disabled for improved determinism.
• The use case is supported by Xilinx Worldwide Technical Support department.

For more information, refer to:

• Simple AMP: Bare-Metal System Running on Both Cortex-A9 Processors (XAPP1079)
[Ref 39]

• Simple AMP Running Linux and Bare-Metal System on Both Zynq-7000 AP SoC Processors
(XAPP1078) [Ref 38]

Referring to Figure 4-5, AMP with Linux OS and RTOS operates as follows:

• The firmware runs in dedicated memory space at address 0x0000_0000.

° The FreeRTOS kernel does not run within the Linux memory context.

° Linux can read and write this address space just like it can read any other device
memory.

X-Ref Target - Figure 4-5

Figure 4-5: AMP with Linux OS and RTOS

Zynq

CPU 0 CPU 1

Linux FreeRTOS Kernel

Non Critical

Apps

X14161-073117

Critical Tasks
UltraFast Embedded Design Methodology Guide 149
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=149

Chapter 4: Software Design Considerations
• The MMU limits how firmware affects Linux.

° The MMU defines what addresses (memory and AXI devices) the application can
access normally.

° The granularity is 1 MB. If two devices lie in a 1 MB region you cannot isolate one
without the other.

° The GIC is shared between firmware and Linux.
- Interrupts are routed to firmware or Linux by the GIC.
- Firmware is not prevented from reconfiguring the GIC.

• The Linux kernel is not prevented from corrupting firmware.

° However, violations should only occur from explicit calls or through specific types of
crashes.

° System design and comprehensive testing may mitigate customer real-world
concerns.

• Implementation approach.

° Should be applicable to other flat RTOS.

° Might be applicable to RTOS using virtual memory (such as kernel and user space).

For an overview of the Linux OS and FreeRTOS AMP design shown in Figure 4-5, refer to
PetaLinux Tools User Guide: Zynq All Programmable SoC Linux-FreeRTOS AMP Guide (UG978)
[Ref 17].

ARM Cortex-A9 TrustZone

The Zynq-7000 AP SoC supports the ARM Cortex-A9 TrustZone technology, according to
the recommendations of the Trusted Base System Architecture specification. This
technology enables the development of platforms that support a Trusted Execution
Environment (TEE) and security-aware applications and secure services, or Trusted
Applications (TA). A TEE is a small, secure kernel that is typically developed with standard
APIs according to the TEE specification evolved by the Global Platform industry forum.

The TrustZone technology supports development of separate Rich Operating System and
TEE environments by creating operating modes, in addition to the Normal domain, that are
known as the Monitor mode and the Secure domain. The Secure domain has the same
capability as the Normal domain but it operates in a separate memory space. A Secure
Monitor acts as a virtual gatekeeper to control migration between the domains.
UltraFast Embedded Design Methodology Guide 150
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=150

Chapter 4: Software Design Considerations
Development and Debugging Tools
The development and debugging tools available to support your application are described
below.

Xilinx Software Development Kit

The Xilinx Software Development Kit (SDK) provides a variety of Xilinx software packages,
including drivers, libraries, board-support packages, and complete operating systems, for
developing a software platform.

TIP: The Software Development Kit Design Hub in the Documentation Navigator provides links to
additional information about Using the Software Development Kit and embedded design. For more
information, see Related Design Hubs.

The Xilinx SDK is a complete development environment, including:

• Platform-aware BSP generation
• Sample application-code generation, ranging from memory tests to TCP/IP echo

servers
• Cross-compilation tools
• Application profiling
• Linker-script generation
• Debug interfaces through JTAG
• Target communication framework
• Remote debugging
• Heterogeneous multicore debugging
• Flash loaders
• Boot-file creation for secure and non-secure environments
• First-stage boot loader (FSBL) generation

SDK supports Linux-kernel debugging through JTAG and application thread-level
debugging using the target communications framework (TCF) agent and GNU GDB
infrastructure.
UltraFast Embedded Design Methodology Guide 151
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=151

Chapter 4: Software Design Considerations
ARM DS-5 Development Studio

ARM DS-5 Development Studio is a complete development environment that supports
Linux, Android, and RTOS debugging. For details on using the DS-5 with a Zynq-7000 AP
SoC, refer to the Xilinx XC702 DS-5 Getting Connected Guide [Ref 103] and the Zynq-7000
Platform Software Development Using the ARM DS-5 Toolchain (XAPP1185) [Ref 44].

IAR

The IAR Systems' debugger supports OS and RTOS kernel-level debugging. For more
information, see the IAR Integrated Solutions Partner Program web site [Ref 85].

Libraries and Middleware
This section summarizes how static and dynamic libraries and middleware can be used to
improve application-programming productivity and reliability.

Libraries
Libraries are a convenient method of combining common and useful functions into a single
unit that can be re-used by programs. A library abstracts implementation details and
provides a tested and optimized behavior that can be easily incorporated into programs.
Libraries support static and dynamic linking.

Libraries can be categorized into commonly used libraries and domain-specific libraries:

• Examples of commonly used libraries include GNU C, GNU C++ library, POSIX Pthread
libraries.

• Examples of domain-specific libraries include Intel Threading Building Blocks (parallel
processing), FFmpeg audio, OpenCV, direct rendering manager (DRM), kernel mode
setting (KMS), ARM OpenMAX DL sample software library (audio/video processing),
and MATLAB engine library (mathematical processing).

Benefits of Libraries

• Provide behavior and code reusability (the write-once, use-many approach).
• Speed up application development by abstracting underlying hardware and software.
• Provide easily maintainable code that reduces testing resources.

For example, the GNU C library is well-tested, and bugs are fixed regularly. Because of this,
using the library saves substantial testing and development resources.
UltraFast Embedded Design Methodology Guide 152
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=152

Chapter 4: Software Design Considerations
Xilinx Libraries for Stand-Alone Systems

The Xilinx Software Development Kit (SDK) provides a set of reusable libraries and drivers
for Zynq-7000 AP SoC processing system (PS) and programmable logic (PL) components.
These libraries and drivers include:

• libxil.a — Device drivers for peripherals.
• LibXil MFS — A memory file system.
• LibXil FFS — A generic FAT file system based on an open source implementation. It is

primarily used with the SD/eMMC driver and a glue layer is implemented to link it to
that driver.

• LibXil Flash — A library that provides read, write, erase, lock, unlock, and
device-specific functions for parallel flash devices.

• LibXil Isf — An in-system flash library that supports the Xilinx in-system flash hardware
and serial flash on SPI/QSPI.

• LibXil SKey — The LibXil SKey library provides a programming mechanism for
user-defined eFUSE bits. The PS eFUSE holds the RSA primary key hash bits and user
feature bits, which can enable or disable some Zynq-7000 AP SoC processor features.

• lwIP — A third-party, light-weight TCP/IP networking library.

Libraries are classified into two types, static and dynamic, according to the type of linkage
object.

Static Libraries

Static libraries are a collection of object files that become, after linking, part of an
application image. In Linux, these libraries are called archives. The file names of static
libraries conventionally end with a.a suffix.

Advantages

• Simple to use; external dependencies are resolved at compile time.
• Shorter compilation time.
• Runs slightly faster. In theory, code in static ELF libraries that is linked into an

executable should run 1% to 5% faster than a shared library or a dynamically loaded
library.

• Simplifies makefile link steps, because the linker takes care of searching and extracting
object files required by the application.
UltraFast Embedded Design Methodology Guide 153
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=153

Chapter 4: Software Design Considerations
Disadvantages

• Changes to static libraries require rebuilding all dependent applications.
• Executable memory footprint becomes larger.
• If processes that share an object library run simultaneously, the code and data sections

of the object library are copied into the address space of each process.

When to Use

Static linking is often the easiest way to distribute an application because it relieves the user
from the task of distributing any dependent library with the target application.

Dynamic Libraries

Dynamic libraries are loaded when an application that uses them is executed. A single copy
of the object library is shared among multiple applications, so that the library's code and
data sections do not become part of application's address space. Shared objects are not
copied into each application program area. Instead, a single copy of the object library is
loaded into memory at run time when the first application requiring that library is executed.

In Linux, the naming convention for dynamic-library files has a lib prefix, the name of the
library, and the string .so followed by a version number that is incremented whenever the
interface or implementation changes.

Advantages

• Smaller executable memory footprint than for static libraries.
• If an object library is changed, dependent applications simply need to be re-executed.

Disadvantages

• Libraries are dependent on the run time loader. In Linux, the dynamic loader (ld.so) is
part of the GNU C library and is responsible for loading all dependent shared libraries.

• Symbol relocation is performed at run time. Because of this, applications using a shared
dynamic library may take slightly more time to execute than a static-library
counterpart.

Running an executable on a target platform requires that the custom shared library path be
added to the search path of the dynamic linker. The LD_LIBRARY_PATH environment variable
specifies to the run time linker that the custom shared library resides at some particular
location.
UltraFast Embedded Design Methodology Guide 154
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=154

Chapter 4: Software Design Considerations
When to Use

Use a dynamic library when the library is shared between multiple applications. For
example, use embedded run time libraries like the GNU C library in this manner.

One such use case can be found in a Xilinx Zynq-7000 AP SoC Tech Tip demonstrating use
of the ARM NEON Library on a ZC702 platform. Refer to Xilinx Zynq-7000 AP SoC Spectrum
Analyzer part 2-Building ARM NEON Library Tech Tip [Ref 64].

The Tech Tip describes the process of obtaining and building a set of filtering functions
targeting the Zynq-7000 AP SoC ZC702 platform. Many applications that can take
advantage of the processing capabilities of the Zynq-7000 AP SoC involve complex
calculations used in filtering, video manipulation, and signal processing.

An open source project within the ARM community provides a library of common, useful
functions accelerated by NEON that you can use when developing applications. This has
evolved into the Ne10 project and the Ne10 library.

Middleware
Middleware is a set of libraries that runs between the operating-system and application
layers. In embedded systems, middleware is system software that sits on top of the
operating system or is sometimes included as part of the operating system. For example,
common middleware such as a TCP/IP communication stack is typically part of modern
operating systems.

Middleware reduces complexity by centralizing software stacks that otherwise would be
redundant in an application layer. There are many type of middleware, including
message-oriented middleware (MOM), remote procedure call (RPC), and networking
protocols above the device-driver layer and below the application layer.

Examples

• TCP/IP stacks
• USB host stack
• Controller area network (CAN) stack
• Multimedia middleware stack

Advantages

• Fast development of robust and powerful applications
• Does only what is unique to the application
• Supports scalability and abstraction
• Reliability
UltraFast Embedded Design Methodology Guide 155
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=155

Chapter 4: Software Design Considerations
Use Case

lwIP is an open source TCP/IP protocol suite available under the BSD license. Although it
can be used with an operating system, lwIP is a stand-alone stack without operating system
dependencies. The use-case demonstrates how you can integrate middleware, such as a
lightweight IP (lwIP) network stack, into a stand-alone application.

The Xilinx software development kit (SDK) provides lwIP software customization. The lwIP
stack supports IP, ICMP, IGMP, UDP, TCP, and other networking protocols. By using the lwIP
stack, you can focus on developing your application core and leave the TCP/IP
implementation to the lwIP stack.

For more information about how to integrate an open-source network stack into an
application development, refer to LightWeight IP (lwIP) Application Examples (XAPP1026)
[Ref 37].

Boot Loaders
A boot loader is the software that initializes the system in preparation for execution of the
next level of software, such as an operating system. Usually, each operating system has a set
of boot loaders specific for it. Boot loaders usually contain several ways to boot the OS
kernel and also contain commands for debugging and/or modifying the kernel
environment.

Details of the boot process depend on the complete system design and choice of OS, such
as embedded Linux, RTOS, or bare-metal OS. The number of stages in booting also may vary
based on the system design. This section describes the boot flow of the Zynq-7000 AP SoC,
from power-up to application execution.

Boot Process
The Zynq-7000 AP SoC boot process can be a multistage boot, depending on the system
requirements. This section describes three broadly divided stages of booting and their role
in the booting process. Figure 4-6 shows the steps while booting embedded Linux and
application code on a Zynq-7000 AP SoC.

When power is applied to the SoC, the boot process starts from the BootROM. This process
loads and then starts executing the first-stage boot loader (FSBL) from on-chip memory
(OCM). The FSBL configures the specific initialization. Then, based on the software
architecture, the second-stage boot loader (SSBL), such as U-Boot in the case of embedded
Linux, is initialized and executed. The FSBL and/or SSBL start the RTOS or embedded Linux
and the application code.
UltraFast Embedded Design Methodology Guide 156
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=156

Chapter 4: Software Design Considerations
Stage 0

At power-on or reset, the ARM core runs initialization code from the BootROM. The
BootROM code cannot be changed; it is a factory pre-programmed code that comes with
each Zynq-7000 AP SoC. The BootROM code determines the device on which the next-level
loader is located by reading the boot-mode pins. Depending on the boot-mode setting, the
FSBL is copied from either NAND, parallel NOR, serial NOR (Quad-SPI), or Secure Digital
(SD) flash memories to the OCM.

X-Ref Target - Figure 4-6

Figure 4-6: Boot Flow

Start

BootROM

First Stage Boot Loader

(FSBL)

BitStream (Optional)

Next Executable Image: Either U-

Boot or Standalone application

Linux OS & ApplicationIs U-Boot?
Yes

X14156-073117

Standalone Application

No – Execute

standalone app
UltraFast Embedded Design Methodology Guide 157
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=157

Chapter 4: Software Design Considerations
Figure 4-7 shows the standard (non-secure) boot flow. The secure boot flow is described in
Embedded Device Security

Stage 1

The FSBL gets execution control from the BootROM and either runs from the OCM or
execute-in-place flash based on the boot mode settings. The FSBL initializes the PS and
looks for a bit file in the boot device. If found, the FSBL writes the bit file to the PL. Whether
or not a bit file is found, the FSBL loads application binaries and data files into memory until
the complete image has been read from the boot device. Then the FSBL starts executing the
first application binary that was loaded.

Typically, the FSBL initializes the external RAM and loads the second-stage boot loader
(SSBL) or a stand-alone application. Based on the software architecture, if it is a full featured
OS like embedded Linux the SSBL (such as U-Boot in the case of embedded Linux) is
initialized and executed. The FSBL and/or SSBL start the RTOS or embedded Linux and the
application. Then, the FSBL hands over control by jumping to the start address of the SSBL,
in the case of a full-featured OS like embedded Linux, or to an RTOS or application.

Stage 1 can include the user application if it is small enough to fit in OCM memory.

The Zynq-7000 AP SoC supports both secure and non-secure boot methods. The boot-ROM
code flow for both methods is described below.

X-Ref Target - Figure 4-7

Figure 4-7: Non-Secure Boot Flow

Found
Valid

Image?

Yes

X14157-073117

Execute
In-Place?

BootROM

Increment to the next
32K offset

Load FSBL
To OCM

Jump to FSBL
StartJump to

Flash Offset

Yes

No

No

Start
UltraFast Embedded Design Methodology Guide 158
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=158

Chapter 4: Software Design Considerations
For secure boot, the principal security objective of the SoC is to lay a foundation of trust. It
does this using integrity, confidentiality, and authentication from the time power is applied
to the time control is asserted. The SoC also provides a method for maintaining this trust.
The SoC does this by using the PL's built-in Advanced Encryption Standard (AES-256) and
hashed message authentication code (HMAC) engines, and the RSA authentication
capability of the PS.

The SoC boots securely unless it is changed from a secure to a non-secure mode. The first
decision point is the initial load of the FSBL. If the FSBL is encrypted, the BootROM code
boots securely and hands control off to the FSBL securely, while disabling JTAG. If the FSBL
is not encrypted, the AES 256 and HMAC engines are disabled and the JTAG ports can be
accessed. To enable RSA authentication, the RSA Enable eFUSE must be programmed.

The Xilinx design tools allow specifying whether the software and bit-stream partitions are
authenticated using the public-key RSA algorithm and whether subsequent images are
encrypted and authenticated using the AES and HMAC engines. An unencrypted partition
can also be specified. This allows use of both public- and private-key algorithms on a
partition basis.

Alternatively, when configuration time is critical, a trade off can be made between security
and boot time, because configuration speed is faster for unencrypted partitions than for
encrypted partitions. A relatively large, open-source U-Boot or Linux image, for example,
loads faster if the image is unencrypted. If any of the secure features are selected, the initial
FSBL, at a minimum, must be encrypted with AES-256 and authenticated with the HMAC
algorithm.

Figure 4-8 shows the FSBL flow for secure boot mode. Figure 4-9 shows the FSBL flow for
non-secure boot mode.

For more information about secure boot of the Zynq-7000 AP SoC, refer to the following
documents:

• Secure Boot in the Zynq-7000 All Programmable SoC (WP426) [Ref 35]
• Secure Boot of Zynq-7000 All Programmable SoC (XAPP1175) [Ref 42]
UltraFast Embedded Design Methodology Guide 159
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=159

Chapter 4: Software Design Considerations
X-Ref Target - Figure 4-8

Figure 4-8: FSBL Flow for Secure Boot

Authentication Certificate?

Initialization

Read Partition Header

RSA Verify Partition

Partition Encrypted?

Route Partition to
AES-HMAC Engine

Route Partition to
Destination

Last Partition?

Handoff Executable
Partition

X14158-073117

Yes

No

No

Yes

No
UltraFast Embedded Design Methodology Guide 160
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=160

Chapter 4: Software Design Considerations
Stage 2

This stage could be a second-stage boot loader (SSBL) like U-Boot, or it could be an RTOS
or application. In the case of a full-featured OS like embedded Linux, the SSBL U-Boot runs
in CPU0 to initialize and set up the environment in which the OS will boot. The initialization
includes configuring the MMU to use flat memory (that is, virtual and physical locations are
the same). The boot loader then fetches the kernel image (per the boot-mode setting) and
other information, such as boot arguments, into RAM. Then the loader passes control to the
OS, such as embedded Linux.

In the case of Linux, the OS detects and enables the second processor core, configures and
activates the MMU and data caches, and performs other actions to make a complete system
available to applications.

There is no limit to what each stage can actually do, although some things can be done
more easily in one stage than in others. For example, reading a file from an NTFS USB drive
is possible from Linux, but it requires some development effort to do it from the boot
loader. U-Boot can be adapted to such requirements.

Zynq-7000 All Programmable SoC Software Developers Guide (UG821) [Ref 7] covers the
architecture details, programming model, OS considerations, and complete development
steps for running Linux and applications on Zynq-7000 AP SoC.

X-Ref Target - Figure 4-9

Figure 4-9: FSBL Flow for Non-Secure Boot

Start FSBL

(from OCM)

MIO, Clock, DDR Initialization

and device initialization

Increment Multiboot

Register to the next 32K

Offset in Flash and do a

Soft Reset (Fallback)

Get the

partition and

validate the

header?

No

Load the partitions from the

selected boot flash.

If bitstream, program the PL.

If application, copy it to DDR.

Application

handoff to DDR

location

Yes

X14159-073117
UltraFast Embedded Design Methodology Guide 161
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=161

Chapter 4: Software Design Considerations
Software Development Tools
Xilinx provides a variety of software development tools that can be used to build various
software components used by the Zynq-7000 AP SoC, including:

• Board Support Package (BSP). This is a set of APIs used to access low-level hardware.
These APIs are grouped based on the peripheral they access and functions they
perform. The BSP also includes startup, CPU initialization, and EABI code.

• Stand-alone (bare-metal) applications. These are simple applications that do not
support complex kernel features such as multi-tasking. Such applications use the BSP
APIs to access low-level hardware.

• FSBL (first stage boot loader). This is a small application that performs PS hardware
initialization, loads the fabric with a bit stream, optionally loads additional data, and
loads the second-stage boot loader. The FSBL is an example of a stand-alone
(bare-metal) application.

• U-Boot (second stage boot loader). This boot loader performs the necessary
hardware initialization for the kernel to begin execution. When done, the Linux kernel is
loaded and starts executing.

• Linux kernel. Linux is an open source operating system. The hardware-dependent
parts of the Linux kernel (device drivers, etc.) are provided for the Zynq-7000 AP SoC.
The hardware independent parts of the kernel (file systems, networking, etc.) are similar
to other Linux machines. The kernel is configured as needed and targeted to the ARM
processor.

• User applications. Typical user applications run in the Linux environment and are
hardware independent. Hardware access is done through the driver APIs.

• Device tree blob. The device tree is a structure of nodes and properties describing
components and features supported by the hardware (PS peripherals, ARM processors,
and PL peripherals). The nodes provide information such as the hardware-component
map address, interrupt number, default settings, etc. The device tree is compiled and
provided to the Linux kernel at boot time. While booting, the kernel uses this
information to load the corresponding device drivers.

Also, the software development tools are used to selectively debug and profile the software
on the hardware platform.
UltraFast Embedded Design Methodology Guide 162
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=162

Chapter 4: Software Design Considerations
The software development tools for Zynq-7000 AP SoCs include:

• GUI-based tool chain. These tools provide you with a graphical user interface. The tool
and build features are selected through a set of menu options. After this is done, the
compiler/linker is started in the background and the compilation progress is shown
visually. The GNU tools are integrated into the GUI-based tool chain applications. The
Xilinx software development kit (SDK) is an example of a GUI-based tool chain.

With the IDE (integrated development environment), programmers can build a variety of
software components, such as:

° BSP

° User applications on a stand-alone platform

° User applications on a Linux platform
• Command-line based tool chain. These tools are standard GNU tools (such as gcc)

that are configured for the ARM processor. CodeSourcery (a gcc toolchain from Mentor
Graphics supporting the ARM architecture) is used in the development tools for the
Zynq-7000 AP SoC. The compiler and linker options are supplied using the command
line or with makefiles. The arm-linux-xilinx-gnueabi-gcc is an example of a
command-line based tool chain.

With the GNU-based tool chain, programmers can build a variety of software
components, such as:

° The Linux kernel and device drivers

° Device tree blob

° User applications

° Reusable libraries
• Hybrid tool chain. These tools are a combination of GUI and command-line based

tools. The configuration of all project components is done through GUI-based tools.
However, each component build is done using command-line tools. PetaLinux is an
example of a hybrid tool chain.

The GNU tools that are configured for ARM processors are integrated into a hybrid tool
chain. With a hybrid tool chain, programmers can build a variety of software
components, such as:

° The Linux kernel and device drivers

° Device tree blob

° User applications

° Reusable libraries

° Completely packaged image
UltraFast Embedded Design Methodology Guide 163
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=163

Chapter 4: Software Design Considerations
GUI-Based Tool Chain
The Xilinx SDK is an integrated development environment (IDE) based on Eclipse. The Xilinx
SDK provides an environment for creating, compiling, and debugging software applications.

The SDK runs the GNU-based compiler tool chain in the background. The supported utilities
include the GCC compiler, a linker, the GDB debugger, and other utilities such as a JTAG
debugger, flash programmer, and libraries. Also, the tool integrates drivers for all Xilinx IP
cores, example applications, software service packages (such as lwIP), and bare-metal BSPs.
Programmers can integrate any of these components to build the application. The SDK
supports applications developed using assembly, C, and C++.

Features of the Xilinx SDK include:

• Support for Zynq-7000 AP SoCs and MicroBlaze™ processors.
• Based on the Eclipse C/C++ Development Tooling (CDT).
• Complete IDE that directly interfaces to Vivado tools.
• Complete software design and debug processes are supported including multicore,

hardware, and software debug capabilities.
• The editor, compilers, build tools, flash memory management, JTAG, and GDB

debuggers are integrated.
• Supported by the Xilinx edition of Mentor Sourcery CodeBench Lite.
• Custom libraries and device drivers.
• The SDK includes user-customizable drivers for all supported Xilinx hardware IP cores, a

POSIX-compliant kernel library, and networking and file-handling libraries. The libraries
and drivers can be customized based on feature needs, memory requirements, and
hardware capabilities.

• Managed makefiles, management of hardware platforms, remote debug, cross probing
support between hardware and software debug, flash programming, boot image
(boot.bin) creation, linker script generation, repository management, and FPGA
programming.

• Profiling support.

Features of the Xilinx SDK debugger include:

• Based on the Eclipse Target Communication Framework (TCF).
• Homogenous and heterogeneous multi-processor support.
• Linux application debug on the target platform.
• Hierarchical profiling.
• Bare-metal and Linux application development.
UltraFast Embedded Design Methodology Guide 164
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=164

Chapter 4: Software Design Considerations
• Support for symmetric multi-processing and asymmetric multi-processing designs.
• Associate hardware and software breakpoints per core.
• NEON library support.

Applications are developed based on either a stand-alone or a Linux platform model.

Stand-Alone Platform

In a stand-alone platform, an application is built as monolithic, executable code.
Multi-tasking is not supported, so device drivers are loaded with the application and the
application invokes the driver APIs directly.

The stand-alone software platform is a single-threaded environment used when an
application accesses processor functions directly. The stand-alone software platform
supports program profiling and provides functions such as processor interrupt handling,
exception handling, and cache handling.

Stand-alone platforms are used by small, dedicated systems that do not require an
operating system. The advantages include:

• Application development is typically simple and quick.
• The overall complexity is minimized because context switching and multi-tasking is not

used.
• Developers can have a more detailed and comprehensive understanding of the

top-to-bottom system implementation.
• Ideal for the initial development stages of new hardware.
• A console (text) based application can be built using this platform.

The disadvantages include:

• A complex application system requiring multi-tasking cannot be built.
• Not ideal for GUI-based applications.

The steps for developing a stand-alone application include:

• Creating a new workspace and importing the hardware platform into the workspace
(the hardware platform is exported from the Vivado design tools).

• Creating a new board support package (BSP) and application.
• Alternatively, importing an existing BSP and software application into the workspace. A

board support package (BSP) in the SDK contains libraries and drivers that software
applications can use when the provided APIs are used.

• Modifying the BSP settings.
UltraFast Embedded Design Methodology Guide 165
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=165

Chapter 4: Software Design Considerations
• Building the BSP and application.
• Debugging software applications.
• Profiling software applications.

Figure 4-10 shows the development cycle using the SDK tool.

More details on SDK usage can be found in the following documents:

• K7 Embedded TRD 2013.2 [Ref 51]
• OS and Libraries Document Collection (UG643) [Ref 5]
X-Ref Target - Figure 4-10

Figure 4-10: SDK Software Development Flow

Hardware Platform Exported

from Vivado to SDK

Create an SDK workspace

Import the hardware platform

into the workspace

Create or import a BSP

Create or import a software

project

Develop the software

application

Generate a Linker script

Download the hardware

bitstream to the FPGA device

Profile software applicationDebug software application Run software application

X14163-073117
UltraFast Embedded Design Methodology Guide 166
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=166

Chapter 4: Software Design Considerations
Linux Platform

Linux is a multi-process operating system, and applications written for a Linux platform are
code compatible with any system that runs Linux. The applications use the Linux library APIs
and therefore access the hardware resources in an abstract manner.

Application development for a Linux platform is similar to other Linux application
development processes that are hardware-platform independent. The procedure for
creating applications in the SDK workspace is similar to the stand-alone platform except the
Linux-platform BSP is selected.

GNU-Based Compiler Tool Chain
The Zynq-7000 AP SoC supports launch of the GNU tool chain in two ways:

• GNU open-source tool chain
• PetaLinux framework

These variants are described in the following sections.

GNU Open-Source Tool Chain

The open-source tool chain is based on Mentor Graphics' CodeSourcery tool chain.
Sourcery CodeBench is a complete development environment for embedded C/C++
development on ARM, Power, ColdFire, and other architectures. Sourcery CodeBench Lite
Edition includes:

• GNU C and C++ compilers
• GNU assembler and linker
• C and C++ runtime libraries
• GNU debugger

For ARM processors, the tool chain supports the ARM, Thumb, and Thumb-2 instructions
for the active architectures, including version 7 of the ARM architecture.

The GNU open source tool chain is described in more detail on the Xilinx Zynq-7000 AP SoC
Linux wiki page [Ref 65].

PetaLinux Framework

The PetaLinux Tools is a development environment that works with the Xilinx
hardware-design flow for Zynq-7000 AP SoCs. Tailored to accelerate design productivity,
the solution contains everything necessary to build, develop, test and deploy embedded
Linux systems.
UltraFast Embedded Design Methodology Guide 167
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=167

Chapter 4: Software Design Considerations
PetaLinux consists of three key elements:

• Pre-configured binary bootable images.
• Fully customizable Linux operating system for Xilinx devices.
• PetaLinux Tools, including tools and utilities to automate complex tasks across

configuration, build, and deployment.

Because PetaLinux is fully featured, integrated, tested, and documented, it is the Xilinx
recommended and supported Linux deployment mechanism for Xilinx customers. PetaLinux
BSPs provide a complete, integrated and tested, Linux operating system for Xilinx devices
including:

• BSP
• Boot loader
• Linux kernel
• Linux applications & libraries
• C & C++ application development
• Debug
• Thread and FPU support
• Integrated web server for easy remote management of network and firmware

configurations

Although PetaLinux is based on a stable and thoroughly tested version of Linux, the
PetaLinux Tools includes more than what is available from the Xilinx Git server. The
PetaLinux Tools includes an installer, development tools, BSPs, platform management
utilities, application and library frameworks, and documentation that are not found in the
Xilinx open source Linux (OSL) offering.

All PetaLinux users are entitled to community (forum-based) support. Commercial licensees
can get support directly from Xilinx.

The PetaLinux tool chain is described in more detail on the Xilinx PetaLinux Tools web site
[Ref 50].
UltraFast Embedded Design Methodology Guide 168
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=168

Chapter 4: Software Design Considerations
JTAG Debugger
The GUI-based SDK includes debugging capabilities, enabling programmers to debug code
in the following ways:

• Single step
• Break points
• Memory watch
• Disassembly
• Call-stack
• Processor register dump

The SDK provides various ways to use the debug capabilities. The system debugger is based
on the Vivado hardware server (which is based on TCF). The system debugger performs
debug operations over JTAG or a TCP/IP link. The JTAG link is used for local debug and the
TCP/IP link is used for communicating with the TCF agent in Linux. The debugger is also
available as a command line debugger called XSDB. XSDB can be used without invoking the
SDK.

The GUI-based SDK debugger is described in more detail in K7 Embedded TRD 2013.2
[Ref 51]

The command-line XMD debugger is described in more detail in the Embedded System Tools
Reference Manual (UG1043) [Ref 22].

JTAG Profiler

The GUI-based SDK also includes a software profiler. The profiler enables programmers to
monitor function calls, time spent by the processor on each function, a graphical display of
processor usage, etc. As with the debug capabilities, the profiler is based on the TCF-based
XMD tool, which performs the profiling operations over the JTAG link.

Refer to the AXI Interface Based KC705 Embedded Kit MicroBlaze Processor Subsystem
Software Tutorial (UG915) [Ref 12] for more information.
UltraFast Embedded Design Methodology Guide 169
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=169

Chapter 5

Hardware Design Flow
This chapter covers the following hardware design flows to be considered when designing
with a Zynq®-7000 AP SoC:

• Using the Vivado IDE to Build IP Subsystems: You can use the Vivado® Design Suite to
build IP subsystems using a variety of tools, which are described in this section.

• Rule-Based Connection: You can catch errors by running the design validation process,
which runs design-rule checks on the block design and reports warnings and errors.
This section describes the design validation process.

• Creating Hierarchical IP Subsystems: You can use the Vivado IP integrator tool to create
hierarchical IP subsystems.

• Board Window: The Board window in IP integrator shows all the interfaces that are
present on a particular board.

• Generating Block Designs: When a block design or IP subsystem has been created, the
source files, IP constraints, and structural netlist can be generated. After this is done,
the design can be integrated into a higher-level HDL design, or taken through synthesis
and implementation.

• Creating and Packaging IP for Reuse: The Vivado IP packager enables Vivado IDE users
and third-party IP developers to easily prepare an IP design for use in the Vivado IP
catalog. The custom IP can then be instantiated into a design using the Vivado Design
Suite.

• Creating Custom Interfaces: The Vivado Design Suite requires that all memory-mapped
interfaces use an AXI interface. The suite has a wizard that assists converting a custom
IP interface to one that adheres to the AXI interface standard.

• Managing Custom IP: The Vivado IP Catalog contains built-in repository management
features for adding IP cores from another source.

• Vivado High-Level Synthesis (HLS): The high-level synthesis (HLS) tool transforms a C,
C++, OpenCL Kernel, or SystemC design specification into a register transfer level (RTL)
implementation that in turn can be synthesized into a Xilinx All Programmable device.
UltraFast Embedded Design Methodology Guide 170
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=170

Chapter 5: Hardware Design Flow
Overview
As programmable devices become larger and more complex, and as design schedules
become shorter, use of third-party IP and design reuse are becoming mandatory. Xilinx
recognizes the challenges designers face and has created a powerful feature within the
Vivado Design Suite to help solve these challenges. This feature is called the Vivado IP
integrator.

The IP integrator enables the creation of block designs. These block designs are essentially
IP subsystems containing any number of user-configured IP and interconnect. IP integrator
is the feature for doing embedded-processor design in Vivado design tools with Zynq-7000
AP SoCs, MicroBlaze™ processor designs, and non-processor-based designs. It is used to
instantiate high-level synthesis (HLS) modules from Vivado HLS, DSP modules from System
Generator, and custom IP made available using the create-and-package IP flow. Designs can
be created interactively on the IP integrator GUI canvas or programmatically through a Tcl
programming interface. Xilinx recommends using the IP integrator tool for processor based
designs. For details, see the Vivado Design Suite User Guide: Embedded Processor Hardware
Design (UG898) [Ref 18]and Vivado Design Suite User Guide: Designing IP Subsystems Using
IP Integrator (UG994) [Ref 19].

Using the Vivado IDE to Build IP Subsystems
The Vivado IDE can be used to build IP subsystems with the IP integrator GUI, scripted tcl
flow, or the designer assistance that is part of IP integrator.

Using the GUI to Create an IP Subsystem
The IP integrator has a powerful GUI environment for creating IP subsystems. IP cores can
be instantiated and interconnected using various automation features. Custom IP can also
be packaged for use in IP integrator. Designs should be reassembled in the GUI
environment and taken through the flow. After the design is stable, a script can be written
that creates and implements the design. For more information about features of the GUI,
refer to the Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator
(UG994) [Ref 19].

Using a Scripted Flow to Create an IP Subsystem
Every action in the IP integrator GUI canvas results in an equivalent tcl command. These Tcl
commands are also logged in the Vivado Design Suite journal file. A script can be written
based on the journal file, and that script can be re-used to create and implement the design
later.
UltraFast Embedded Design Methodology Guide 171
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=171

Chapter 5: Hardware Design Flow
Designer Assistance
To expedite the creation of a processor-based design, use the Block Automation and
Connection Automation features of IP integrator. The Block Automation feature should be
used to configure the processor and related IP cores, whereas the Connection Automation
feature should be used to make repetitive connections to different pins or ports in the
design. IP integrator is also board-aware and supports Xilinx® evaluation boards. This
means that when an evaluation board is used as the target hardware, IP integrator knows all
the interfaces present on that particular board. A design's I/O ports can be connected to
existing interfaces on the target board using the Connection Automation feature. Designer
assistance also helps with clocks and reset connectivity. Several kinds of tabs, such as the
Signals tab and the Board Part Interface tab, help make connections in the block design.
Designer assistance helps expedite interconnectivity and eliminates unintended design
errors.

Block Automation

For some complex IP and processor-based designs, IP integrator has a feature called Block
Automation. This feature supports quick assembly of processor- or IP-based subsystems
with commonly used components. After the basic building blocks for an embedded design
are assembled, this basic system can be extended by adding IP cores from the catalog.

Connection Automation

When the Block Automation is done and a basic system has been built, external I/O pins
need to be connected. The Connection Automation serves this purpose. Connection
Automation helps make connections to the I/O pins and it helps make connections to
different sources on the design itself. Combined with board awareness, the Connection
Automation feature helps connect the block design ports to external interfaces on the
target board and to create physical constraints for these ports. Use of this feature,
therefore, is highly recommended.
UltraFast Embedded Design Methodology Guide 172
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=172

Chapter 5: Hardware Design Flow
Rule-Based Connection
IP integrator runs basic design-rule checks in real time as the design is being assembled.
However, there is a potential for something to go wrong during design creation. As an
example, the frequency of a clock pin may not be set correctly. Such errors can be caught by
running design validation. Design validation runs design-rule checks on the block design
and reports any warnings or errors regarding the design. The warnings and/or errors can
then be cross-probed from the messages view into the block diagram. Design validation is
recommended to catch design errors that may go unnoticed until later in the design flow.

Running design validation also runs parameter propagation on the block design, one of the
most powerful features of IP integrator. The feature lets an IP core auto-update its
parameterization based on how it is connected in the design. IP cores can be packaged with
specific propagation rules, and IP integrator runs these rules as the diagram is generated.

Creating Hierarchical IP Subsystems
The IP integrator can be used to create hierarchical IP subsystems. This feature can be
useful for designs having a large number of blocks that could otherwise become hard to
manage on the GUI canvas. Multiple hierarchical levels are supported, so blocks can be
grouped based on design function. The use of hierarchy within IP integrator can keep
designs modular and neat on the IP integrator canvas.

The visual aspects of design objects can be changed. For example, clocks and resets can be
colored differently, and various layers can be enabled and disabled.

Board Window
As mentioned above, IP integrator is board-aware. When a block design is targeted to a
particular Xilinx evaluation board, the Board window shows all the interfaces that are
present on that particular board. The interfaces present in the Board Part Interfaces Tab can
be connected to create a target design with or without a processor. This is a powerful
mechanism for creating a block design. When an interface is selected for connection, all IP
cores that can connect to that particular interface are displayed. For example, on a Kintex®
KC705 board, if the 8-bit LEDs are selected, three IP choices are presented (the GPIO, the IO
Module, and the MicroBlaze MCS IP) that can connect to this interface. Based on the IP
selection, a connection can be made to LEDs on the board or, using the Designer Assistance,
to the rest of the block design.
UltraFast Embedded Design Methodology Guide 173
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=173

Chapter 5: Hardware Design Flow
Generating Block Designs
When a block design or IP subsystem has been created, the source files, IP constraints, and
structural netlist can be generated. After this is done, the design can be integrated into a
higher-level HDL design, or taken through synthesis and implementation.

Using Out-of-Context Synthesis for Block Designs
Hierarchical design flows enable the partitioning of designs into smaller, more manageable
modules that can be processed independently. In the Vivado Design Suite, these flows are
based on the ability to synthesize a partitioned module out-of-context (OOC) from the rest
of the design. The most common use with IP integrator is for synthesizing an OOC module
and creating a design checkpoint (DCP) file. This block design, if used as a part of the larger
Vivado design, does not need to be re-synthesized each time other parts of the design
(outside of IP integrator) are modified. This results in considerable run-time improvements
and should be considered if run-times are a matter of concern, specifically during the early
stages of design exploration.

Creating Remote Block Designs
IP integrator can create stand-alone block designs that can be re-used by multiple Vivado
Design Suite projects. After the design is created and put under revision control, multiple
design teams can re-use the same block design for creating multiple projects. This is an
important re-use feature of IP integrator that should be considered in a team-based
environment.

Creating and Packaging IP for Reuse
The Vivado IP packager enables Vivado IDE users and third-party IP developers to easily
prepare an IP design for use in the Vivado IP catalog. The custom IP can then be
instantiated into a design using the Vivado Design Suite. Use of the following packaging
flow results in a consistent user experience, whether using Xilinx IP, third-party IP, or
customer-developed IP within the Vivado Design Suite.

Packaging Custom IP and IP Subsystems
The Vivado Create and Package IP function supports the creation of custom IP for delivery
in the Vivado IP Catalog. The industry standard IP-XACT format is used for packaging the IP
core. The location of the packaged IP can be added to the Repository Manager section of
the Vivado Design Suite Settings. When a repository of one or more IP cores is added, the
IP is shown in the IP Catalog. Users can select and customize IP cores from this catalog.
UltraFast Embedded Design Methodology Guide 174
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=174

Chapter 5: Hardware Design Flow
The flow for using the Vivado IP Packager is:

1. Use the Vivado IP Packager to create and package the IP HDL and associated data files.
The IP Packager currently does not support SystemVerilog sources as the top level. A
Verilog or VHDL wrapper around the SystemVerilog source is required.

2. Provide the Packaged IP to a team member or customer.
3. Have the end-user add the IP location to the Repository section of the Vivado Design

Suite Settings.
4. The IP core is shown in the IP Catalog, and the end-user can select and customize the IP

core in a way similar to Xilinx-delivered IP.

The Create and Package IP function provides two ways of creating custom IP. The first way
is to use the Create and Package IP function to create a new IP core with one or more AXI
interfaces. When the interfaces have been created, insert the custom IP and connect to
these interfaces. The second way is to package the IP core and include it in the IP catalog for
later use in IP integrator. This second way can be used when all HDL files for the custom IP,
including the AXI interface, are available.

The Create and Package IP function allows IP end-users to have a consistent experience,
whether using Xilinx IP, third-party IP, or custom IP. For more information on creating and
packaging IP, see the Vivado Design Suite User Guide: Creating and Packaging Custom IP
(UG1118) [Ref 23].

Updating the IP Catalog
The Vivado Design Suite IP catalog is a unified repository that supports searching,
reviewing detailed information, and viewing documentation for an IP core. After an IP core
has been packaged, users can point to the IP repository containing the newly packaged IP
core in the Vivado tool and add the IP core to the IP catalog. The newly packaged IP core is
then ready to be used in the IP integrator.
UltraFast Embedded Design Methodology Guide 175
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=175

Chapter 5: Hardware Design Flow
Creating Custom Interfaces
The Vivado Design Suite requires that all memory-mapped interfaces use an AXI interface.
The suite has a wizard that assists converting a custom IP interface to one that adheres to
the AXI interface standard. The Create and Package IP flow can generate three AXI interface
types:

• AXI4: For memory-mapped interfaces that allow bursts of up to 256 data-transfer
cycles with a single address phase.

• AXI4-Lite: A lightweight, single-transaction, memory-mapped interface.
• AXI4-Stream: An interface that removes the requirement for an address phase and

allows unlimited data-burst sizes.

The Create and Package IP flow can create a template AXI4 peripheral that includes HDL,
drivers, a test application, verification intellectual property (VIP), and an example template.
After the peripheral has been created, design files can be added to complete the custom IP.
See the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 23] and Vivado
Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994) [Ref 19] for
details.

Managing Custom IP
The Vivado IP Catalog contains built-in repository management features for adding IP cores
from another source. To make the custom IP visible, place the custom IP in a location that
is accessible from the host machine. Then, launch the Vivado Design Suite and run the IP
Settings functions from the IP Catalog to register the new user repository location and
include the new IP core in the IP catalog.

There are two types of repositories:

• Standard Xilinx Repositories: The Vivado Design Suite ships standard Xilinx repositories.
These repositories are always enabled, and they cannot be changed in the Xilinx IP
Catalog.

• Configured User Repositories: User repositories are visible from the active machine that
contains one or more IP cores.

The Repository Manager allows adding or removing user repositories and establishing
precedence between repositories. IP is distinguished through a unique ordered list of
elements corresponding to the vendor, library, name, and version (VLNV).
UltraFast Embedded Design Methodology Guide 176
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=176

Chapter 5: Hardware Design Flow
If multiple repositories are referenced and have the same IP VLNV in multiple locations, the
Vivado IDE displays the IP core in the repository with highest precedence. The Xilinx IP
repositories are always enabled, and they always have lowest precedence.

When the repository setup for a given project is changed, the Repository Manager stores
the changes within the settings. Consequently, changes are visible when the project is
reopened on any machine (assuming the repository paths are also available).

Vivado High-Level Synthesis (HLS)
The high-level synthesis (HLS) tool transforms a C, C++, OpenCL Kernel, or SystemC design
specification into a register transfer level (RTL) implementation that in turn can be
synthesized into a Xilinx All Programmable device.

HLS performs two types of synthesis on the design:

• Algorithm Synthesis: This synthesizes the functional statements into RTL statements
over potentially multiple clock cycles.

• Interface Synthesis: This transforms the function arguments (or parameters) into RTL
ports with specific timing protocols, allowing the design to communicate with other
designs in the system.

Like the many decisions made during manual RTL design, the number of available
implementations and optimizations is large, and the combinations of how they impact each
other is very large. HLS abstracts these details and helps create an optimal design in the
shortest time.

Typically, HLS is used after a software bottleneck has been identified by profiling the
software application within the SDK or third-party tools. When the bottleneck function(s)
have been identified, the next step is to move those function(s) into hardware using HLS.
Finally, the HLS design can be exported as an IP core to be used in IP integrator. HLS also
generates a simulation model for the IP core that can be used to verify the IP function. Refer
to the Vivado Design Suite User Guide: High-Level Synthesis (UG902) [Ref 9] for more
information.
UltraFast Embedded Design Methodology Guide 177
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=177

Chapter 5: Hardware Design Flow
Summary
In general, the following steps should be followed to capture an embedded design in IP
integrator:

1. Add processor IP, such as the Zynq-7000 AP SoC or the MicroBlaze processor.
2. When the processor IP is instantiated, designer assistance is available. Use designer

assistance to configure the processor and peripherals.
3. Customize the processor further, if needed. This step is needed if more function and

control over clocks, resets, I/O ports, etc., is desired.
4. Add peripherals, and connect them using designer assistance, when available.
5. Add connectivity IP for external interfaces, such as GPIO, Ethernet, etc.
6. Add custom accelerators for the Processing Logic, if needed.
7. Connect and review clock and reset domains, using the Signals tab or the Make

Connection wizard.
8. Run design-rule checks by validating design. Resolve any errors or warnings flagged

during design validation, and run design validation until no further errors are flagged.
9. Synthesize, implement, and generate bit-stream for the design.
10. Export the design to the SDK for software development.
UltraFast Embedded Design Methodology Guide 178
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=178

Chapter 6

Software Design Flow
This chapter describes software design flow for the Zynq®-7000 AP SoC and provides
guidance for various software development roles, referred to as personas. The design flow
for each persona includes an overview of the tool flow and available solutions—from Xilinx
and its partners—at each stage. References are provided to external documents and other
sections in this guide if more information is needed.

Unlike ASICs and ASSPs, the Zynq-7000 AP SoC has programmable logic (PL, the
hardware-configurable FPGA portion of the device) and a processing system (PS, the two
ARM Cortex-A9 cores). The hardware design and configuration of PL can be done using the
Xilinx® Vivado® tools. Refer to Chapter 5, Hardware Design Flow. The hardware design files
from the Vivado tools are sent to the Xilinx SDK for software development. Figure 6-1
shows the hardware and software development flow for the Zynq-7000 AP SoC.
X-Ref Target - Figure 6-1

Figure 6-1: Hardware and Software Development Flow

Hardware Design

and Configuration

Software Application

Compile

Download and Debug

Profile

Xilinx SDK

Generate HW

Handoff Files

Hardware

Bitstream

Performance

OK?

No

Yes

X14203-

073117
UltraFast Embedded Design Methodology Guide 179
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=179

Chapter 6: Software Design Flow
Referring to Figure 6-1, the files sent from the hardware flow to the software flow (referred
to as handoff files) contain information such as the hardware specification, PS peripheral
information, register memory map, and a bitstream for the PL. The handoff files insulate
software developers from the Zynq-7000 AP SoC reconfigurable hardware. The handoff files
make the hardware appear to software as an ASSP. Software developers can use the handoff
files to design firmware, drivers, and a board-support package (BSP).

Typically, the software design flow of Zynq7000-AP SoCs involves development of one or
more of the software layers shown in Figure 6-2.

The remaining sections cover software development flow of three personas: board bring-up
developer, driver developer, and application developer. Each persona works on one of the
layers in Figure 6-2. A persona can refer to the corresponding section in this chapter to
understand software development flow pertaining to their area of work.

X-Ref Target - Figure 6-2

Figure 6-2: Software Development Layers

Applications

Middleware Framework (Optional)

Operating System (Optional)

Firmware Board Support Package

Hardware

X14204-

073117
UltraFast Embedded Design Methodology Guide 180
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=180

Chapter 6: Software Design Flow
Board Bring-Up Development
Board bring-up activities include developing low-level firmware, setting up the boot
sequence, and basic tests for the interfaces and the peripherals. This section describes the
Xilinx development solutions available for basic board bring-up activities, divided into the
following phases:

1. PS initialization
2. PL configuration
3. Memory and peripheral testing
4. Hardware and software debug

PS Initialization
Xilinx tools auto generate the ps7_init.tcl and ps7_init.c files when Vivado exports
a design. The ps7_init.c file is an initialization file auto generated by Vivado and used
by the first stage boot loader (FSBL) to initialize the PS. When bringing up the board, the
first step is to connect to the target Zynq-7000 AP SoC through the Xilinx debugger and run
the ps7_init.tcl script (provides the same results as ps7_init.c) to initialize the PS
peripherals, clocks, DDR, PLL, and MIO. To verify the PS initialized successfully, execute
memory reads and verify commands from the XSDB debugger. System peripherals can be
read and written to verify basic functionality.

The FSBL can load a second stage boot loader, such as U-Boot, or it can load and boot an
operating system. In bare-metal implementations, FSBL directly loads the application code.

Refer to the Zynq-7000 All Programmable SoC Software Developers Guide (UG821) [Ref 7]
for more information on the FSBL, including normal and secure boot.

On third-party debuggers, the FSBL can be used to initialize DDR memory and load the
application code, which can be debugged using the debugger. For example, the FSBL can be
loaded in OCM, executed for a few seconds, stopped, and then the debug tool can be used
(via JTAG) to load the application code in DDR for debug. Most debuggers support script
mechanisms for automating this process.

The Xilinx SDK repository provides bare-metal drivers that can be used for board bring-up.
UltraFast Embedded Design Methodology Guide 181
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=181

Chapter 6: Software Design Flow
U-Boot

U-Boot is an open-source universal boot loader that can act as a primary or secondary boot
loader. U-boot can be used to load a stand-alone application, a bitstream, or a Linux OS
kernel. On Zynq-7000 AP SoCs, U-Boot is used as a secondary boot loader, but it can be
configured and rebuilt to act as a primary boot loader. The FSBL is designed to bring up a
secondary boot loader like U-Boot. U-Boot can be loaded from an external device, and it
can be used to initialize PS peripherals not initialized by the primary boot loader. U-Boot or
any other secondary boot loader can be removed from the final product to reduce boot
time.

The flow charts in Figure 6-3 outline the boot sequence and the files involved in the boot
process.

The open-source Xilinx U-Boot project is available at the Xilinx Git repository. Xilinx U-Boot
is also released as a part of the PetaLinux offerings. Refer to the Xilinx U-Boot wiki page
[Ref 59] for more information on configuring and building U-Boot.

X-Ref Target - Figure 6-3

Figure 6-3: Boot Sequence and Boot Files

Boot ROM

Load & Run FSBL

Load Bitstream

[optional]

Load & Run Application

Running a Standalone Application

Boot ROM

Load & Run FSBL

Load Bitstream

[optional]

Load & Run U-boot

Running Linux

Load Linux Kernel

Load Device Tree

Load RAM Disk

Run Linux Kernel

X14205-

073117
UltraFast Embedded Design Methodology Guide 182
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=182

Chapter 6: Software Design Flow
PL Configuration
The PL is configured either by software running on the ARM core or through JTAG. Xilinx
supports PL configuration using the FSBL, U-Boot, or Linux.

On production boards, the FSBL can configure the PL using the PCAP interface. During the
development and debug phase, the PL can be configured through JTAG from either the
Vivado tools or Xilinx SDK. After the PL is configured, the processor can access PL
peripherals in the same manner as PS peripherals. The debugger can read and write PL
peripheral registers at this stage.

Memory and Peripheral Testing
The Xilinx SDK has a memory test that can verify the DDR memory and the signal integrity
of the memory controller and DDR interface. The bare-metal memory test application can
be used to exercise a DDR memory power-on self-test. The DRAM test application template
is located in your installation directory at
SDK\2014.2\data\embeddedsw\lib\sw_apps\zynq_dram_test.

Example drivers are available for many PS peripherals. They can be found in the
SDK\<Version>\data\embeddedsw\XilinxProcessorIPLib\drivers\
<Peripheral> folder of your installation directory. The folder also contains sample test
applications for Xilinx Soft IP cores. These tests can be used to test peripherals during the
board bring-up phase. Also, the tests can be modified to develop a comprehensive
power-on self-test or built-in test.

Hardware and Software Debug
There may be cases when DDR initialization fails. If this occurs, a connection to the
debugger can be made by debugging the FSBL stage. Any application downloaded to DDR
can be debugged after that. The Xilinx SDK supports heterogeneous multicore debugging,
allowing debug of both MicroBlaze™ processors and the ARM cores. Also, cross triggers can
be used when it is unclear whether the problem is in software or hardware. Refer to the
Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940) [Ref 15] for
more information on setting up cross triggers.
UltraFast Embedded Design Methodology Guide 183
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=183

Chapter 6: Software Design Flow
Driver Development
Driver developers create software drivers for SoC and on-board peripherals, establishing
interfaces for higher software layers such as the OS or bare-metal applications. Peripheral
drivers must be created for the ARM Cortex-A9 and MicroBlaze cores. This section covers
points to consider when developing bare-metal and Linux drivers for the configured
hardware, and it highlights available Xilinx solutions.

Bare-Metal Drivers
The Xilinx SDK supports various file types used in driver development (both Xilinx IP drivers
and custom drivers) and used during the software development cycles. The file types and
directory structure are shown in Figure 6-4.

X-Ref Target - Figure 6-4

Figure 6-4: Directory Structure of Drivers, OSs, and Libraries

<Library Name>

drivers sw_services bsp poores

<my_driver> <my_library> <my_os> <my_driver>

src data

MDD Tcl.c files .h files

src data

MDD Tcl.c files .h files

src data

MDD Tcl.c files .h files

src data

MDD Tcl.c files .h files

X14206-

073117
UltraFast Embedded Design Methodology Guide 184
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=184

Chapter 6: Software Design Flow
Handoff File Details

The software development cycle — from handoff to debug — is shown in Figure 6-5.

The software development cycle begins with handoff files created during the hardware
design flow. After preparing the hardware design with the Vivado tools, a hardware handoff
folder is created for use by the SDK in driver and application development. Beginning with
release 2014.2, Vivado hardware export creates a single, compressed hardware definition
file (*.hdf) and writes it to the SDK_Export folder. This file contains hardware details,
such as base addresses and version information. From the SDK workspace, a hardware
platform project is created and the project within the workspace is configured by pointing
it to the *.hdf file. The SDK (beginning with release 2014.2) supports import of traditional
XML files in addition to the *.hdf files.

When building the BSP project, the SDK generates an xparameters.h file, populating it
with hardware details (such as base addresses and interrupt IDs) in the form of #define

X-Ref Target - Figure 6-5

Figure 6-5: Software Development Cycle with the SDK

Hardware Design Tool

(example Vivado)

.bit

.bmm

Board

SDK

Create/Identify a Workspace

(Automatic)

Create a New Project/Board

Support Package

Application Development

Download to FPGA

Debug

.elf

X14207-

073117
UltraFast Embedded Design Methodology Guide 185
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=185

Chapter 6: Software Design Flow
constants. Software drivers (stand-alone platform) and applications can reference these
constants in the code.

Driver File Organization

The drivers for Xilinx IPs (PS peripheral IPs and soft IPs) are shipped with the SDK. These
drivers are located in the data/embeddedsw/XilinxProcessorIPLib/drivers
folder in your SDK installation folder. Each driver is located in a separate folder. For
example, the IIC PS driver version 2.0 is located in the
data/embeddedsw/XilinxProcessorIPLib/drivers/iicps_v2_0 folder of your
SDK installation.

Each driver folder contains four subfolders:

• data: This folder contains the MDD file and Tcl script file.
• doc: This folder contains help files that provide details of APIs and data structures

implemented in the driver.
• examples: This folder contains C source files demonstrating examples on how to use

the driver. These examples are ready to build and launch on the hardware. The
examples can be used as-is when following the procedure for building stand-alone
applications. The examples can also be modified as needed.

• Src: This folder contains the driver source code (C and H files).
UltraFast Embedded Design Methodology Guide 186
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=186

Chapter 6: Software Design Flow
The source file repository is organized as shown in Figure 6-6.

To load driver source code into the project workspace, the SDK reads the MDD file in each
version folder. The SDK selects the corresponding driver version based on parameter values
in the MDD file. When the SDK finds a driver with multiple versions, it takes the highest
version as default. However, the programmer can select the required version from a drop
box.

X-Ref Target - Figure 6-6

Figure 6-6: Source File Repository
UltraFast Embedded Design Methodology Guide 187
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=187

Chapter 6: Software Design Flow
The MDD is used to assist with the following tasks:

• Integrating custom drivers into the SDK.
• Modify existing drivers and integrate the variants into the SDK.
• Modify the BSP, such as adding new software services.

IP Blocks and Drivers

The IP blocks and drivers can be characterized as shown in Table 6-1. As can be seen in the
table, the SDK can identify and load any driver source code for either type of IP block.

PS IP

PS IP blocks are hardware blocks that are part of the Zynq-7000 AP SoC PS. The PS includes
several peripherals (USB, I2C, Ethernet, etc.) plus the ARM Cortex-A9 processor.

The application requires driver support to access the peripherals. Bare metal and Linux
drivers are provided. The SDK provides pre-built bare-metal drivers and Linux kernel (Xilinx
supported) drivers for all PS IP peripherals.

Soft IP

Soft IP blocks are hardware blocks built as part of the design and loaded into the Zynq-7000
AP SoC PL. Some examples of soft IP blocks in the PL are VDMA, AXI-Ethernet, and third
party IP blocks.

The application requires driver support to access the peripherals. Bare metal and Linux
drivers are provided. Bare-metal drivers are provided by the SDK and Linux drivers are
provided by the Linux kernel source tree from Xilinx.

The following steps must be followed so that a third-party IP driver can be used in the SDK:

• Create a driver for the IP block.
• Create the associated data definition file (MDD) and data generation file (Tcl) for use by

the SDK.
• Set the driver path as an external repository of the SDK project. The SDK can now

recognize and load the driver normally.

The bare-metal driver and application development flow is shown in Figure 6-7.

Table 6-1: IP Block and Driver Combinations Supported by the SDK
Soft IP (PL) PS IP (PS)

Xilinx drivers Supported Supported

Custom drivers Supported Supported
UltraFast Embedded Design Methodology Guide 188
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=188

Chapter 6: Software Design Flow
For more information, refer to the Zynq-7000 All Programmable SoC Software Developers
Guide (UG821) [Ref 7].

Xilinx Driver Flow

Soft IP drivers are shipped with the tool installation. The drivers can be directly imported
into the BSP from the standard driver location.

There are two methods for modifying and using the standard drivers:

• Method 1:

° Modify the driver source code in the default driver path.

° Reload and build the BSP. This action will cause the modified driver to be loaded.
• Method 2:

° Create a driver folder structure in a local path.

° Copy the standard driver and assign a different version number.

° Modify the source code and the corresponding MDD file.

° In the SDK, point to the local repository path so that the SDK uses the modified
driver.

For more information on MDD parameters, refer to the “Microprocessor Driver Definition
(MDD)” information in the Generating Basic Software Platforms: Reference Guide (UG1138)
[Ref 24].

X-Ref Target - Figure 6-7

Figure 6-7: Bare-Metal Application Development Overview

Hardware

Specification

File (XML)

.PS

Configuration

PL

Configuration

(bitstream)

BRAM

Configuration

(BMM)

Hardware

Handoff

Xilinx SDK

Eclipse

IDE

GNU

Compiler

Tool

Chain

C/C++

Toolkit
Debugger

BSP Middleware

Drivers Applications

Xilinx

Embedded

Software

Import Hardware Platform

Create Bare-Metal BSP

Create Bare-Metal Application

Build Application

Configure PS and PL

Run the Application

Debug The Application

Add Custom IP Driver Support

Deploy Application

. . .

Bare-Metal Application Development Overview X14208-

073117
UltraFast Embedded Design Methodology Guide 189
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=189

Chapter 6: Software Design Flow
Custom Driver Flow

Custom IP software can be in the form of libraries or drivers. The Xilinx MDD and MLD files
provide the capabilities needed to create drivers for custom IP blocks, enabling developers
to:

• Develop new drivers and integrate them into the SDK
• Customize existing drivers
• Customize a BSP format and folder structure tailored to the OS tool chain
• Customize the OS based on the hardware

The MLD format describes the parameters that can be used to customize libraries and
operating systems. For more information on user-written libraries and operating systems
that must be configured by the Libgen tool, refer to the “Microprocessor Software
Specification (MSS)” chapter in the Generating Basic Software Platforms: Reference Guide
(UG1138) [Ref 24].

MDD files contain directives for customizing or creating software drivers. For more
information on the MDD format and the parameters that can be used to customize or create
drivers, refer to the “Microprocessor Driver Definition (MDD)” chapter in the Generating
Basic Software Platforms: Reference Guide (UG1138) [Ref 24].

The method for modifying and using custom drivers is the same as method two for Xilinx
drivers, described in Xilinx Driver Flow in .

Linux Driver Development
Linux on Zynq-7000 AP SoCs requires drivers for both PS IP (peripherals) and soft IP
(custom logic implemented in the PL). Drivers can be added to Linux as a part of the kernel
or as loadable kernel modules. Xilinx provides a complete Linux source targeted to the
Zynq-7000 AP SoC. For more information and to download a copy, see The Official Linux
Kernel from Xilinx web page [Ref 100]. The Xilinx Wiki's Linux drivers page lists information
on drivers from Xilinx. The Xilinx Wiki's Linux page also provides information on
Linux-related offerings from Xilinx.

Xilinx releases pre-built images for Zynq-7000 AP SoC evaluation boards (ZC702, ZC706,
and ZedBoard) with the release of Xilinx tools.
UltraFast Embedded Design Methodology Guide 190
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=190

Chapter 6: Software Design Flow
Device Tree

Information about hardware added or removed (such as an IP block in the PL) can be sent
to the kernel using a device tree. The device tree can also be used to convey specific
information about the hardware.

The Xilinx Wiki's build device tree page describes how to build a device tree BSP using the
Xilinx SDK. The SDK requires the following two files when creating a device tree BSP:

• Hardware handoff files from the Vivado tools.
• Device tree files (.tcl and .mld) from the device tree release in the SDK repository.

Root File System

Xilinx provides the initial root file system for Zynq-7000 AP SoCs: ramdisk/initrd. Other
supported file systems can be mounted on the root file system after system boot. The Xilinx
Wiki has more information on how to build and modify the root file-system.

Linux Kernel Debug

The Xilinx SDK's system debugger can be used for Linux kernel debug through JTAG. The
system debugger is a heterogeneous multicore debugger that enables simultaneous debug
of MicroBlaze and ARM cores. Processor cores can be controlled individually by the system
debugger when the Linux kernel is running in SMP mode. PL address space can be
debugged, and during debug PL memory space is shown in the memory view.

The SDK help has information on how to use the system debugger to debug a Linux kernel
on a Zynq-7000 AP SoC. The SDK help also describes how Linux kernel symbol files can be
added during debug configuration and the steps for mapping the compilation path from
the Linux host machine to the Linux source tree in a Windows environment.

By default, when debugging using attach to running target mode, the PL registers will not
be accessible. The environment variable HW_SERVER_ALLOW_PL_ACCESS must be set using
the SDK shell, and the hw_server started using the following sequence:

1. Kill all running instances of hw_server.
2. Launch a terminal command prompt from the SDK and set

HW_SERVER_ALLOW_PL_ACCESS.
3. Launch hw_server from the same shell.

Alternatively, the GDB debugger can be used for Linux kernel debug through JTAG. The ARM
DS-5 also supports Linux kernel debug on Zynq-7000 AP SoC devices.
UltraFast Embedded Design Methodology Guide 191
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=191

Chapter 6: Software Design Flow
Application Developer
Applications are developed to run on bare metal or an operating system such as Linux or
FreeRTOS. This section describes how applications can be developed, debugged, and
analyzed for Linux and bare-metal platforms running on Zynq-7000 AP SoCs. Use cases are
provided to illustrate how the SDK tools assist in developing, debugging, and analyzing the
software application.

Bare Metal
The SDK supports software application development on the exported hardware design. The
SDK extracts hardware information from the design exported by the Vivado tools. Based on
that information the SDK provides a complete application development environment.
Application development requires a board-support package, including hardware
initialization, drivers, and a set of libraries, such as TCP/IP Stack (lwIP), and FAT File System
(FFS).

The Xilinx SDK provides two template types:

• Hardware (PS only) templates for Zynq-7000 AP SoCs. Using this template, an
application can be developed without creating a design with the Vivado tools.
Templates are available for the ZC702, ZC706, ZedBoard, and MicroZed boards.

• Application templates. Predefined applications, such as hello world and an empty
application can be generated for any hardware design using the available peripherals.
Other applications, such as lwip, can be created with minimal effort in the SDK.

The SDK can also be used in batch mode, where you can create and build applications
through a command line interface, without invoking the SDK IDE.

For more information, refer to the Xilinx Software Development Kit Help (UG782) [Ref 6].

The Xilinx SDK comes with a set of libraries you can use to facilitate stand-alone application
development. For more information, see Xilinx Libraries for Stand-Alone Systems.
UltraFast Embedded Design Methodology Guide 192
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=192

Chapter 6: Software Design Flow
Use Case: Develop, Debug, and Integrate

The dialog box in Figure 6-8 shows the creation of a C/C++ application. For more
information, refer to the SDK Help [Ref 6]: Xilinx C/C++ New Project Wizard.

After an application is created, it must be built. For more information, refer to the SDK Help
[Ref 6]: Building Projects web page.

For more information on running and debugging applications, refer to the SDK Help [Ref 6]:
Running, Debugging, and Profiling Projects.

X-Ref Target - Figure 6-8

Figure 6-8: C/C++ Application Dialog Box
UltraFast Embedded Design Methodology Guide 193
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=193

Chapter 6: Software Design Flow
Linux Application Developer
Linux applications use the Linux software stack, which includes the Linux kernel, libraries,
file system, and the driver APIs.

Some of the architectural choices that affect the development of Linux applications are:

1. Symmetric multiprocessing (SMP) or asymmetric multiprocessing (AMP) system.
2. Resource sharing in AMP systems. AMP systems require memory mapping for separate

cores. For more information, refer to the sample AMP configurations.
3. SMP system interrupt affinity.
4. Third party libraries. Refer to Libraries and Middleware, for more information. Licensing

for open-source libraries and software used on proprietary projects should be
considered.

5. Secure execution, such as TrustZone execution.
6. Driver support for custom IP.
7. Inter-processor communication mechanism. For more information, refer to How a

MicroBlaze can peaceably coexist with the Zynq-7000 AP SoC [Ref 84].

For more information on architectural design considerations, see Chapter 4, Software
Design Considerations.

Xilinx provides documents, basic software blocks, and reference designs that can be used
during the architecture design and evaluation stage. For more information, refer to the
Xilinx Linux wiki page [Ref 56].

Application Development Flow

The Xilinx SDK provides a set of tools and a suggested development flow for developing
Linux applications. This is described in detail in the “Software Application Development
Flows” chapter of the Zynq-7000 All Programmable SoC Software Developers Guide (UG821)
[Ref 7].

Alternatively, in-house or third-party solutions can be used to develop Linux applications.
The following support is required by the tools for developing applications for Zynq-7000 AP
SoCs:

• A build system, including a cross-development tool chain on the host system.
• A Linux kernel, device tree, software stack, and libraries.
• A Zynq-7000 AP SoC Linux target or emulation platform.
UltraFast Embedded Design Methodology Guide 194
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=194

Chapter 6: Software Design Flow
Xilinx Tool Flow for Linux Application Development

Xilinx provides Linux drivers, BSPs, and source code as a part of the PetaLinux tool flow and
Xilinx Linux distribution. The PetaLinux flow is designed for FPGAs and devices similar to the
Zynq-7000 AP SoC. It offers configuration and Linux deployment capabilities for the
Zynq-7000 AP SoC, including a complete tool chain, BSPs, and Xilinx evaluation boards. For
more information on configuring PetaLinux, refer to the Xilinx Wiki's PetaLinux page.

 PetaLinux is covered in more detail in OS and RTOS Choices.

Figure 6-9 shows the Xilinx tools used in Linux application development.

Application Development Using the Xilinx SDK

The Xilinx SDK supports development and debug of Linux applications for Zynq-7000 AP
SoCs. It supports the ARM Linux GCC tool chain (Sourcery CodeBench Lite) and offers
various Xilinx tools for Linux application development. The Xilinx SDK also comes bundled
with Linux application templates and supporting libraries to help developers evaluate the
Zynq-7000 AP SoC with minimal setup.

For more information on Linux application development flow, refer to the “Software
Application Development Flows” chapter of the Zynq-7000 All Programmable SoC Software
Developers Guide (UG821) [Ref 7].

Figure 6-10 shows how a Linux application development project can be created in SDK,
using an OpenCV Example Application template. SDK provides the libraries required for
OpenCV applications.

X-Ref Target - Figure 6-9

Figure 6-9: Linux Application Development using Xilinx Tools

Hardware

Specification

File (XML)

.PS

Configuration

PL

Configuration

(bitstream)

BRAM

Configuration

(BMM)

Hardware

Handoff

Xilinx SDK

Eclipse

IDE

GNU

Compiler

Tool

Chain

C/C++

Toolkit
Debugger

BSP Middleware

Drivers Applications

Xilinx

Embedded

Software

Import Hardware Platform

Boot Linux

Create Linux Application

Build Application

Run the Application

Debug The Application

Add Custom IP Driver Support

Profile Application

Add Application to Filesystem

Modify Linux BSP

X14209-080117
UltraFast Embedded Design Methodology Guide 195
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=195

Chapter 6: Software Design Flow
Figure 6-11 shows how different build settings and libraries can be selected when building
Linux applications using SDK.

SDK enables users to connect to a Zynq-7000 AP SoC Linux target using an IP address. After
the connection is made, the application executable can be copied to the Linux target and
run.

X-Ref Target - Figure 6-10

Figure 6-10: Creating a New Linux Application in the Xilinx SDK

X-Ref Target - Figure 6-11

Figure 6-11: Xilinx SDK Build Setting and Libraries
UltraFast Embedded Design Methodology Guide 196
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=196

Chapter 6: Software Design Flow
Linux Application Debug

Linux applications can be debugged on Zynq-7000 AP SoCs using GDB or the Xilinx system
debugger. The Xilinx SDK also enables local-target or remote-target Linux application
debug. Linux application debug is supported by the Xilinx SDK using gdbserver for GDB, or
a TCF agent for the system debugger. A TCF agent process must be running on the Linux
target to debug Linux applications using the system debugger.

Linux applications can also be developed and debugged using other IDEs, such as ARM
DS-5. If a command-line approach is preferred, a build system developed in-house can be
used, or one can be obtained from an OS vendor. The Zynq-7000 AP SoC ecosystem is
supported by a variety of OS partners. A list of OS partners is can be found in OS and RTOS
Choices.

Xilinx SDK Tools and Packages
Xilinx provides tools and software packages for developing Zynq-7000 AP SoC software. The
development utilities are released as:

• Xilinx tools released in the SDK IDE.
• Software packages, including a bare-metal BSP and drivers, plus source code.
• Software released through Xilinx Git.

Tools Released in the Xilinx SDK
Tools and utilities released in the Xilinx SDK are described in the following sections.

X-Ref Target - Figure 6-12

Figure 6-12: Xilinx SDK Build Setting and Libraries
UltraFast Embedded Design Methodology Guide 197
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=197

Chapter 6: Software Design Flow
Boot Image Creation

The Xilinx SDK provides facilities for creating a boot image. Bootgen can stitch the
boot-loader FSBL, the bitstream, and application executable files (including U-Boot) to
generate a boot image file in .bin or .mcs format. The SDK also has a Create Boot Image
wizard option for adding the partition images and creating a bootable image. For more
information, refer to the following:

• “Creating a Zynq Boot Image for an Application” in Xilinx Software Development Kit
Help (UG782) [Ref 6].

• “Using Bootgen” appendix (available at this link) in the Zynq-7000 All Programmable
SoC Software Developers Guide (UG821) [Ref 7].

• Vivado Design Suite QuickTake Video: How to Create Zynq Boot Image Using Xilinx
SDK

Programming Utilities

Program Flash

The program flash utility allows users to download .bin and .mcs files to on-board flash
devices. Figure 6-13 shows the flash devices supported by this utility.

Program FPGA

The PL bitstream can be programmed in different ways. One method is to use the Program
FPGA utility in the SDK GUI.

X-Ref Target - Figure 6-13

Figure 6-13: Flash Devices Supported by the Program Flash Utility
UltraFast Embedded Design Methodology Guide 198
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug821-zynq-7000-swdev.pdf;a=xUsingBootgen
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/create-zynq-boot-image-using-xilinx-sdk.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/create-zynq-boot-image-using-xilinx-sdk.html
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=198

Chapter 6: Software Design Flow
Debuggers

The Xilinx SDK provides heterogeneous debuggers that support ARM and MicroBlaze
debug. The debug capability is supported by the GUI and command line interface. The
command line interface supports Tcl scripting, enabling command execution in JTAG mode.
The following debuggers are supported by the Xilinx SDK:

• System Debugger.
• XSDB: Xilinx System Debugger (command line flow).
• XMD: Xilinx Microprocessor Debugger.
• GDB debugger.

To ensure that the MicroBlaze core is visible to the debugger, MDM must be enabled when
creating the hardware design in Vivado.

The SDK system debugger provides hardware-software debug features that assist in
debugging code running on Zynq-7000 AP SoCs. The debugger also facilitates
hardware-software cross triggers.

For more information, see Chapter 7, Debug.

Performance Analysis

Performance analysis is an important step in identifying code bottlenecks. The Xilinx SDK
provides code profilers and a performance analyzer. For more information, see Chapter 2,
Profiling and Partitioning.
UltraFast Embedded Design Methodology Guide 199
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=199

Chapter 6: Software Design Flow
Application Templates

Figure 6-14 shows the application templates bundled in the SDK for bare-metal
programming.

Xilinx Git Software Solutions Release
Xilinx releases system software for Zynq-7000 AP SoCs and MicroBlaze targets on the Xilinx
Git page. Some of the packages released on the Git page include:

1. Linux xlnx: The Xilinx Linux kernel
2. U-Boot-xlnx: The Xilinx U-Boot repository
3. Device tree: The Xilinx SDK Linux device tree generator
4. meta-xilinx: Xilinx device and board support for Yocto/OE-core.

X-Ref Target - Figure 6-14

Figure 6-14: SDK Application Templates
UltraFast Embedded Design Methodology Guide 200
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=200

Chapter 6: Software Design Flow
Xilinx Software Development Tools
Software development tools provided by Xilinx include the SDK and the Xilinx Yocto Project.

Xilinx SDK
The Xilinx SDK is an Eclipse-based IDE and contains Xilinx tools and software packages. It
enables embedded software development for Xilinx FPGAs and Zynq-7000 AP SoC devices.
The SDK contains essential software packages, such as pre-defined hardware configurations
for Xilinx evaluation boards, peripheral and IP device drivers, a bare-metal BSP repository,
firmware with required supported libraries, and application templates. The packages are
released with the latest source code so that they can be modified as-needed. The SDK also
contains other tools that are used to create a boot image, program the processor, and test
performance.

The Xilinx SDK is free and can be downloaded from https://www.xilinx.com/tools/sdk.htm.

PetaLinux

PetaLinux offers a solution for the development and deployment of Linux-based software
on All Programmable devices. The PetaLinux tool set includes an installer, development
tools, Linux-based BSPs for Xilinx evaluation boards, and library frameworks. The Xilinx Wiki
contains a detailed description of PetaLinux. The wiki page also contains documentation on
the overall Xilinx Linux offerings and Xilinx open-source software.

Xilinx Yocto Project
The Xilinx Yocto Project provides templates, tools and methods for creating custom
Linux-based systems for embedded products built on MicroBlaze and Zynq-7000 AP SoCs.
Included are meta files, development boards, and a QEMU emulator. The Xilinx Wiki Yocto
page provides links to Xilinx Yocto releases. This includes meta-xilinx, a Yocto BSP layer
supporting Linux kernel build, U-Boot and Poky distributions.

The Xilinx Yocto project also enables up-streaming of relevant drivers and software
packages from non-Xilinx entities. Customers and OS vendors are encouraged to develop
compliant software and upstream drivers, which helps enhance the product and overall
Xilinx community.

For more information on the Xilinx Yocto Project, refer to the following:

• Xilinx Yocto wiki page [Ref 60]
• Yocto Project web page [Ref 104]
UltraFast Embedded Design Methodology Guide 201
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/tools/sdk.htm
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=201

Chapter 7

Debug
This chapter covers the following information about the debug methodology:

• Overview: This section provides an overview of the debug methodology for developing
applications using a Zynq®-7000 AP SoC.

• Software-Only Debug: Embedded software debug is done using the Xilinx® Software
Development Kit (SDK). The SDK debug perspective provides a comprehensive debug
environment.

• Simulation-Based Debug: Simulation emulates the final design's behavior in a software
environment. Simulation helps verify design functionality by injecting stimulus and
observing the output result.

• Board Debug: After a design is implemented, it must be tested on hardware. Software
debug of hardware can be done using the SDK tool. Debug can be useful in finding
problems in the FPGA or fabric side.

• Hardware and Software Co-Debug: Xilinx provides a solution allowing you to
simultaneously debug the processing system (PS) and the peripherals in the
programmable logic (PL).

• Virtual Platforms: Virtual platforms are software systems that mimic the behavior of
hardware. They are fast, functional models of an embedded platform.

Because of the programmable logic (PL) density and the processor system complexity, the
debug methodology described in this section is critical to the development of applications
using a Zynq-7000 AP SoC.

The test and debug capability of Zynq-7000 AP SoCs combined with the ARM CoreSight
technology enables you to debug the processing system (PS) and PL using intrusive and
non-intrusive debug methods. Users can debug a complete system, including the PS and PL
together. In addition to debugging software, users can debug hardware points in the PS and
user-selected hardware points in the PL.

The test and debug capability is based on the ARM CoreSight v1.0 architecture and defines
four classes of CoreSight technology components: access and control, trace source, trace
link, and trace sink. Also, the Debug Access Port (DAP), which is not a CoreSight
component, provides access to CoreSight components and other system features.
UltraFast Embedded Design Methodology Guide 202
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=202

Chapter 7: Debug
Overview
The software tools allow both intrusive and non-intrusive debug. There are break and watch
points for intrusive debug. Non-intrusive debug is done using ARMs Program Trace
Macrocell (PTM), which captures instruction flow. Flow is compressed by capturing only
changes in the program flow. Data can be sent off-chip through 2 to 32 trace output port
pins that are part of the MIO/EMIO. The other option is to load the trace data into the
Embedded Trace Buffer (ETB) and use third-party tools to upload the trace data through
JTAG.

Software-only debug can be done, or the Vivado® Integrated Logic Analyzer (ILA) cores can
be added to the design for combined hardware and software debug. The PL JTAG port is
daisy chained with the ARM Debug Access Port (DAP). The Vivado logic analyzer cores are
accessed through the PL JTAG. ARM and third-party tools attach to the ARM Debug Access
Port (DAP).

For more information on PS and PL debug configurations, refer to the “JTAG and DAP
Subsystem” (available at this link) and “System Test and Debug” (available at this link)
chapters of the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)
[Ref 4].

PS Debug
The Zynq-7000 AP SoC PS provides the following capabilities for system-wide trace:

• Debug and trace visibility of whole systems with a single debugger connection
• Cross triggering support between SoC subsystems
• Multi-source trace in a single stream
• Higher data compression than previous solutions
• Standard programmer's models for tools support
• Automatic topology discovery
• Open interfaces for third party soft cores
• Low pin-count options
UltraFast Embedded Design Methodology Guide 203
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xSystemTestAndDebug
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf;a=xJTAGAndDAPSubsystem
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=203

Chapter 7: Debug
PL Debug
Xilinx provides the fabric trace monitor (FTM) for PL test and debug. It is based on the ARM
CoreSight architecture, and is a component of the trace source class in the CoreSight
system within Zynq-7000 AP SoCs. The FTM receives trace data from the PL and formats it
into trace packets to be combined with the trace packets from other trace source
components, such as program trace macrocell (PTM) and instrumentation trace macrocell
(ITM). With this capability, PL events can be traced simultaneously with PS events. The FTM
also supports cross-triggering between the PS and PL, except for the trace dumping
feature. Also, the FTM provides general-purpose debug signals between the PS and PL.

The PL test and debug features are:

• ARM CoreSight compliant
• 32-bit trace data from the PL
• 4-bit trace ID from the PL
• Clock domain crossing between the PL and PS
• FIFO buffering for trace packets to absorb PL trace data bursts
• FIFO overflow indication by generating an overflow packet
• Trace packets are compatible with ARM trace port software and hardware
• Trigger signals to and from the PL
• General-purpose I/Os to and from the PL

Software-Only Debug
Embedded software debug is done using the Xilinx Software Development Kit (SDK). The
SDK debug perspective provides a comprehensive debug environment. The debug window
shows the session state, including a call stack, source code, disassembled code, process
memory, register information, and the XMD console. Breakpoints can be set and execution
controlled using standard debugger commands.
UltraFast Embedded Design Methodology Guide 204
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=204

Chapter 7: Debug
A typical application development and debug process overview includes the steps shown in
Figure 7-1.

System Debugger and Target Connections
When debugging applications, the System Debugger connects to the target board through
JTAG using the Target Communication Framework (TCF). When debug starts, the System
Debugger runs a hardware server agent on the local host. Alternatively, it can run on a
remote host when one machine is running the debug application and another machine is
connected to the board, such as in a remote lab environment. The System Debugger
target-connections window allows management of the board under debug.

System Debugger
The Xilinx System Debugger (XSDB) is the preferred software debug method for Zynq-7000
AP SoCs. System Debugger provides heterogeneous debug of dual ARM and multiple
MicroBlaze™ processors in the same session, on either bare metal or Linux-based systems.
It also includes hierarchical profiling, ARM NEON library support, and the XSDB command

X-Ref Target - Figure 7-1

Figure 7-1: Application Development and Debug Overview

Create/Edit Source Code (C/C++)

Compile/Link (C/C++ Perspective)

Debug using System Debugger (Debug

Perspective)

Profile using System Debugger (optional)

Program to Flash Memory (including HW

bitstream)

X14201-080117
UltraFast Embedded Design Methodology Guide 205
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=205

Chapter 7: Debug
interface. After a board is connected, the status of each CPU in the system can be identified.
The debugger also provides a way to attach target applications (.elf files) to each CPU,
assign symbols for Linux debug, view and set registers, view and set breakpoints, and
monitor memory locations. Commands can be issued to the system through XSDB, and
disassembled application code can be viewed using halts and breakpoints.

For more information, including how to connect to a board, refer to the Xilinx Software
Development Kit Help (UG782) [Ref 6].

Xilinx System Debugger (Command Line)

XSDB is the command interface for loading and controlling CPUs. It can be invoked either
from the command line or using an interactive GUI built into the SDK. It includes a Tool
Command Language (Tcl) interface that supports scripting of repetitive or complex tasks.
XSDB also provides ways to read registers, memory locations, and set code breakpoints. The
XSDB supports dynamic help for command usage.

Profiling
The System Debugger in the SDK also supports code profiling that displays function call
execution time, so that the most time-consuming parts of an application can be identified.
Function calls can be isolated and the called sub-functions profiled, and the user can
cross-probe to the source code for reference. Profiling can be used to determine where
software applications might be converted into PL or DSP functions for faster system
performance.

GNU Tool Chain Support
In addition to System Debugger, the SDK supports application debug using the GNU tool
chain, including the GNU Debugger (GDB) and gprof for application profiling.

Drivers and BSP Debug
Software applications must link to or run on top of a software platform using the provided
APIs. Therefore, before creating and using software applications in the SDK, a board
support package (BSP) must be created. A board support package is a collection of libraries
and drivers that forms the lowest layer of an application software stack.

The SDK includes a stand-alone board support package for application development. This
package is a simple, semi-hosted, and single-threaded environment that provides basic
features, such as standard input/output and access to processor hardware features.

Board support packages and their libraries can be configured using the SDK Board Support
Package settings dialog box. Multiple board support packages can be created in the SDK
workspace. This allows users to work simultaneously with different board support package
configurations, and to re-target applications from one package to another.
UltraFast Embedded Design Methodology Guide 206
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=206

Chapter 7: Debug
Drivers can be used to create applications. The applications and drivers can be debugged
using Xilinx System Debugger in stand-alone debug mode or attached to a running target.
The debugger can be configured for each core, and user-selectable options can run
initialization files before downloading and running the stand-alone application through
JTAG.

For more information, refer to the Xilinx Software Development Kit Help (UG782) [Ref 6] and
the Zynq-7000 All Programmable SoC Software Developers Guide (UG821) [Ref 7].

OS Debug
Xilinx System Debugger can be used in the attach-to-running-target mode for debugging
the operating system and supporting drivers. The System Debugger configurations allow
users to add the kernel symbol files and to provide the compilation path mapping to enable
source-code debugging. The kernel source must be compiled with following flags set.

CONFIG_DEBUG_KERNEL=y
CONFIG_DEBUG_INFO=y

The debugger can also debug code running in PL address space, and the memory view
supports PL memory space during debugging.

When debugging using attach-to-running-target mode, the default is that the PL registers
will not be accessible. The environment variable HW_SERVER_ALLOW_PL_ACCESS needs to
be set through the SDK shell and then the hw_server as follows:

1. Kill any instance of hw_server that is running.
2. Launch a terminal command prompt from the SDK, and set

HW_SERVER_ALLOW_PL_ACCESS.
3. Launch hw_server from the same shell.

Alternatively, the GDB debugger can also be used for Linux kernel debugging. Like system
debugger, GDB is a remote debugger connected to a server that translates between TCP
and JTAG. The ARM DS-5 Development Studio also supports Linux kernel debugging for
Zynq-7000 AP SoCs.

For more information, refer to the “Attach and Debug Linux Kernel Using Xilinx System
Debugger” topic in the Xilinx Software Development Kit Help (UG782) [Ref 6].

Linux Application Debug
Developers can debug Linux applications by selecting the System Debugger's Linux
application debug mode. The Xilinx SDK also enables local target or remote target debug
for Linux applications. Linux application debug is supported by the Xilinx SDK using the TCF
agent. A TCF agent process must be running on the Linux target to debug Linux applications
using System Debugger.
UltraFast Embedded Design Methodology Guide 207
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=207

Chapter 7: Debug
The GDB debugger can also debug Linux applications. The remote ARM Linux application
debugger supports debug by communicating with the gdbserver process running on the
Zynq-7000 AP SoC target. An example System Debugger window is shown in Figure 7-2.

Developers can use IDEs other than the Xilinx SDK, such as the ARM DS-5 Development
Studio, for Linux application development and debug. Some developers prefer using a
command-line tool when developing Linux applications. Those developers can use tools
built in-house or obtained from OS vendors. The Zynq-7000 AP SoC ecosystem is supported
by a variety of OS partners. A list of OS partners is found in OS and RTOS Choices.

Trace
The Cortex-A9 includes a program trace module (PTM) that is compatible with the ARM
CoreSight program-flow trace capabilities. This can be used on either Cortex-A9 processor
and provides full visibility into the processor instruction flow. The Cortex-A9 PTM has
visibility over all code branches and program flow changes with cycle-counting, enabling
profile analysis. The PTM block and the CoreSight design kit provides the ability to
non-obtrusively trace the execution history of multiple processors. The instruction
execution results can be stored in an on-chip buffer, or sent off-chip using a standard trace
interface for improved visibility during development and debug.

The ARM DS-5 Development Studio with DSTREAM supports ETB and PTM instruction trace
functions for Zynq-7000 AP SoC devices. Lauterbach Trace32 also supports trace data from
PTM, FTM, ETB, and AXI Monitor.

For more information on SDK software debug, refer to the following:

• Zynq-7000 All Programmable SoC Software Developers Guide (UG821) [Ref 7]
• Xilinx Software Development Kit Help (UG782) [Ref 6]

X-Ref Target - Figure 7-2

Figure 7-2: SDK System Debugger Window
UltraFast Embedded Design Methodology Guide 208
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=208

Chapter 7: Debug
Simulation-Based Debug
Simulation emulates the final design's behavior in a software environment. Simulation helps
verify design functionality by injecting stimulus and observing the output result.

System Simulation
Zynq-7000 AP SoCs can be simulated at the RTL level using the Zynq-7000 AP SoC
verification intellectual property (VIP). The VIP supports functional simulation of Zynq-7000
AP SoC applications. It enables functional verification of PL by mimicking the PS-PL
interfaces, and the PS OCM/DDR memories. The VIP is delivered as a package of encrypted
Verilog modules. The VIP operation is controlled using a sequence of Verilog tasks
contained in a Verilog syntax file. For more information on the Zynq-7000 AP SoC VIP, refer
to the product specification for the Zynq-7000 All Programmable SoC Verification IP v1.0
(DS940) [Ref 32].

If the design is created using IP integrator, the Vivado tools automatically use the
Zynq-7000 AP SoC VIP when the design simulation files are generated. The PL logic is
simulated using the IP RTL and the Zynq-7000 AP SoC VIP. A typical use case generates
transactions from the PS using GP ports. This can be done using one of the Verilog tasks
defined as part of the Zynq-7000 AP SoC VIP.

When using a PL-side DDR memory, the MIG slave interface will be connected to the
Zynq-7000 AP SoC VIP with the AXI-interconnect. If a Micron memory module is used, the
associated Micron simulation model must be connected to the test bench during design
simulation.

Verifying Custom IP
Custom IP packaged using the Vivado tools can be verified using simulation and on
hardware. When creating custom IP using the Create and Package IP feature, the Verify the
Peripheral IP using the AXI VIP Simulation Interface option should be used. Selecting
this option ensures that a template IP integrator design is created with AXI VIP, thus
simulating the core functionality. The test bench used by this template design uses the API's
defined in the AXI VIP. For more details on the AXI Verification Intellectual Property with
respect to APIs and response codes, refer to the AXI Verification IP v1.1 Product Guide (AXI)
(PG267) [Ref 33].

The default test bench template should be modified when testing IP cores generated by the
CIP wizard. For more information about the process of mapping HDLs with custom IP
templates, refer to this link in the Vivado Design Suite User Guide: Creating and Packaging
Custom IP (UG1118) [Ref 23]. Also, if ports are exposed, the template IP integrator design
and the template test bench must be modified accordingly before design simulation.
UltraFast Embedded Design Methodology Guide 209
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1118-vivado-creating-packaging-custom-ip.pdf;a=xCreatingAndPackagingCustomIP
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=209

Chapter 7: Debug
Board Debug
After a design is implemented, it must be tested on hardware. Software debug of hardware
can be done using the SDK tool. Debug can be useful in finding problems in the FPGA or
fabric side.

FPGA-Only Debug
The PL can be debugged using the Vivado Integrated Logic Analyzer (ILA). The ILA can be
included in the RTL code or inserted in the PL after synthesis. It can be configured to
monitor design interfaces and nets. A trigger condition can be specified during run-time
that exposes a specific problem. Nets marked for debug and connected to the ILA can be
monitored to locate the problem source.

Processor-Only Debug
The SDK is used to debug software issues. The SDK allows a user to view the code, view
variable values, follow control flow, and set-up and analyze break points.

Before using the SDK, the design must be exported to hardware. The export process creates
a design directory containing files from the Vivado tools describing the hardware
configuration. The files contain information about all design IP blocks and their memory
map. Using this information, the SDK can create the IP drivers. Different software
applications can be created in the SDK using the information provided by the export
function.

After a software application has been built in the SDK, the FPGA can be programmed using
the design bitstream and the application can be launched on the hardware. System
Debugger can then be used to debug the software application.
UltraFast Embedded Design Methodology Guide 210
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=210

Chapter 7: Debug
Hardware and Software Co-Debug
Zynq-7000 AP SoCs give you outstanding design potential, allowing you to combine
processor function with custom FPGA logic. With this high potential comes greater
complexity and the need for a powerful set of tools. Xilinx provides a solution allowing you
to simultaneously debug the PS and the peripherals in the PL.

Hardware and software co-debug is done using the Vivado ILA and the Xilinx SDK. The ILA
enables nets to be marked for debug and analyzed. The SDK allows setting breakpoints or
watchpoints, stepping through program execution, viewing program variables and the
stack, and viewing system memory contents. Co-debug is used to debug system-level
issues when the software and hardware are combined.

Cross Triggering
Embedded Cross Trigger (ECT) is the cross-triggering mechanism to debug interactions
between hardware and software. Using ECT, a CoreSight component can interact with other
components by sending and receiving triggers. ECT contains two components:

• CTM: Cross Trigger Matrix
• CTI: Cross Trigger Interface

Cross triggering can be used to co-debug an application running on the processor and the
PL hardware. Vivado Hardware Manager and the SDK are used for this purpose.
Cross-trigger ports in the Zynq-7000 AP SoC enable this feature using handshake signals
with ILA. There are specific interfaces, TRIGGER_IN and TRIGGER_OUT, for each ARM core.
Designers can choose either or both of the ARM cross trigger interfaces at the PS-PL
interface. Also, the designer must use the ILA IP in the PL and set cross triggers in the SDK
GUI. Processor software can be interrupted when a hardware trigger condition occurs and,
similarly, hardware signals can be probed when a software breakpoint occurs. For more
information on the procedure to set cross triggers and debug using Vivado, refer to the
Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940) [Ref 15].

Custom IP Hardware Validation
The CIP wizard enables custom IP design template generation in IP integrator that can be
debugged on hardware. The Create and Package IP feature provides you with the capability
to generate an example design connecting JTAG to the custom IP using an AXI Master core.
The design incorporates Master and Slave AXI VIPs based on the peripheral IP created and
stitches them with the peripheral IP. After the corresponding bitstream is programmed on
the board, you can modify the generated test vector Tcl file to test the peripheral IP
function tested on the board. The test vector file contains a series of writes and reads that
are used to validate the IP.
UltraFast Embedded Design Methodology Guide 211
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=211

Chapter 7: Debug
Virtual Platforms
Virtual platforms are software systems that mimic the behavior of hardware. They are fast,
functional models of an embedded platform. They execute the same software binaries as
hardware and run on traditional desktops, laptops, or servers. Virtual platforms enable
system design to be done earlier and at a higher level of abstraction. They enable software
development to progress before hardware (board or HDL) is available. They also support
unlimited fault injection and test, thereby catching and eliminating bugs in early
development phases. Virtual platforms can be easier and faster to modify than hardware
because hardware parameters can be changed quickly.

Zynq-7000 AP SoC Virtual Platform
The Zynq-7000 AP SoC virtual platform uses models of PS components found in a typical
SoC, including:

• The Cortex-A9 MPCore processor
• Peripherals around the processor, such as UART, Ethernet, USB, CAN, and others
• Component models frequently used in the programmable fabric, such as PCIe

technology and video

The virtual platform can connect the models to a variety of interfaces, including Ethernet,
USB, serial console, and graphical displays.

The virtual platform enables developers to create and integrate new device models within
the Zynq-7000 AP SoC PL. Models can also be created and integrated within the board
containing the Zynq-7000 AP SoC. Unlike other solutions that require a hardware
implementation of custom IP to be connected to the virtual target, the Xilinx virtual
platform can be modified entirely in software to represent a custom hardware design.

Xilinx virtual platforms are beneficial to all stages of product development, from
pre-architecture product definition, system design, development, integration, test, to final
delivery.

The benefits include:

• Time to Market

° Early software development: Software teams can start developing device drivers
and applications prior to hardware availability.

° Fast software development: Unlike simulators for hardware design and
verification, the virtual platform runs fast enough to satisfy software developers.

° Smarter software development: Virtual platforms enable software developers to
explore new techniques and tricks that can significantly reduce development time.
UltraFast Embedded Design Methodology Guide 212
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=212

Chapter 7: Debug
° No retargeting: Register and instruction-accurate models ensure that the virtual
platform will run the same production binaries used by the hardware
implementation, simplifying software migration to the physical platform.

° No hardware and software dependencies: The need for developers to share
scarce development equipment is eliminated.

• Product Quality

° Improved system design: Concurrently experiment with alternative software and
hardware configurations to yield the best system design.

° Complete system visibility and control: Any register and memory location can be
monitored and debugged, even at points that are inaccessible on a physical device.

° Improved testing iterations: Software and hardware can be debugged and tested
in parallel for more comprehensive test coverage.

° Enhanced software regression testing: Nightly software builds and tests can be
run on the virtual platform.

° Enhanced Fault injection and Metric driven verification: A virtual platform
enables hardware fault injection, even at points that are inaccessible on a physical
device.

Cadence Virtual System Platform
Although traditional virtual platforms enable new development approaches that result in
changes in product design, they often fall short when product teams move from a
development platform to their product-specific hardware. Extensible virtual platforms offer:

• Convenient, well-defined model: The Zynq-7000 SoC virtual platform is out-of-box
ready. Software teams can use it immediately to start developing Linux, RTOS, and
bare-metal applications.

• Extensibility: Xilinx and Cadence enable developers to extend the virtual platform with
new devices (instantiated within the Zynq-7000 SoC programmable fabric or on the
board) or system models. The extensible virtual platform has the flexibility and
configurability of physical hardware. Using Cadence tools, it supports models written in
C or System-C, as well as models written in SystemVerilog or VHDL.
UltraFast Embedded Design Methodology Guide 213
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=213

Chapter 8

SDSoC Environment
This chapter covers the following information about designing in the SDSoC environment:

• Overall Usage Flow in : You should understand the overall usage flow for using the
SDSoc design environment, as well as supported OSs and hardware platforms.

• Profiling: SDSoC integrates profiling capabilities on top of the ones available in Xilinx®
SDK, allowing you to profile the application without code instrumentation.

• Performance Estimation: The SDSoC environment provides tools to quickly estimate the
performance improvement that can be expected when you identify functions for
hardware acceleration.

• Generating and Running a Complete Software-Hardware System: After running the
performance estimation flow, you can rebuild the system and see the actual
performance of the generated system.

• Optimizing Performance Using C-Callable RTL IP Library: You can use the C-Callable RTL
IP library to optimize performance.

• Optimizing IP Performance Using HLS: You can use Vivado high-level synthesis (HLS) to
compile application code that is sent to hardware in the SDSoC environment, and then
improve code using common strategies used by the SDSoC tool.

• Optimizing System Performance: With SDSoC, you can use various techniques to
optimize your system performance.

• Debugging the System: SDSoC allows projects to be created and debugged using the
SDSoC environment. SDSoC shares the debugging infrastructure and methodology
with the Xilinx SDK System Debugger.

• Performance Measurement and Analysis: SDSoC shares many of the advanced
system-level performance measurement and analysis capabilities with Xilinx SDK. It
provides optional functions for measuring performance and for identifying
performance bottlenecks.

• Expert Use Models: Expert users can override design decisions made by SDSoC.
UltraFast Embedded Design Methodology Guide 214
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=214

Chapter 8: SDSoC Environment
Introduction
SDSoC provides a C/C++ programming experience with an easy-to-use Eclipse-based
development environment, including design tools for Zynq®-7000AP SoC development by
software engineers and system architects. SDSoC includes a full-system optimizing C/C++
compiler that provides automated software acceleration in programmable logic combined
with automated system connectivity generation between the software and the hardware.

The SDSoC programming model is designed to be intuitive to software engineers. An
application is written as C/C++ code, with the programmer identifying a target platform
and a subset of the functions within the application to compile into hardware. The SDSoC
C/C++ compiler and linker then compile the application into hardware and software to
realize the complete embedded system implemented on a Zynq device, including a
complete boot image with firmware, operating system, and application executable.
Figure 8-1 shows the complete system flow.

SDSoC unifies the hardware and software design flows presented in this guide into a single
C/C++ based flow and automates many of the time-consuming tasks, especially the system
connectivity generation and the hardware-software integration. Figure 8-2 illustrates the

X-Ref Target - Figure 8-1

Figure 8-1: Complete C/C++ Application to Zynq System Flow with SDSoC
UltraFast Embedded Design Methodology Guide 215
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=215

Chapter 8: SDSoC Environment
difference between the traditional hardware-software design flow and the design flow
using SDSoC. By automating many of the design tasks, SDSoC enables a software engineer
and system architect to quickly implement an application and perform rapid design
iteration.

The hardware/software interface is defined by the interactions and data flow among
functions mapped to hardware and the rest of the program. Each function mapped to
hardware runs as an independent thread, but the compiler ensures that the program
semantics are preserved. Rather than recoding an application to invoke device drivers for
each hardware function, SDSoC compiler automatically maps the original application onto
the generated hardware system using its own library of efficient data movers to
communicate data between the processing system and the programmable logic.

The easiest way to understand the mapping is to realize that the SDSoC compiler analyzes
the program structure and its data flow and generates a hardware and software system that
efficiently implements the program's data flow, including optimizations to communicate
data directly from one hardware block to another, rather than always going through the
processing system main memory.

Applications can link with C-callable IP libraries to support IP reuse. When application code
links with C-callable libraries provided as part of the platform, the interface to these
libraries essentially encapsulates the platform-specific portions of the application. In this
way, applications can achieve considerable portability across platforms.

Overall Usage Flow
Figure 8-3 shows the overall usage flow using the SDSoC design environment. For a given
user application, the first step is to identify the compute-intensive parts of the application
using profiling or by other means. These parts should either be already present or
refactored into functions. In the SDSoC design environment, these functions can then be
assigned to hardware. SDSoC supports a fast performance estimation without generating

X-Ref Target - Figure 8-2

Figure 8-2: The Traditional Design Flow(a) and the Design Flow with SDSoC (b)
UltraFast Embedded Design Methodology Guide 216
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=216

Chapter 8: SDSoC Environment
full bit-stream to enable rapid design optimization. Based on the performance estimation,
optimizations can be done with the following goals:

• To migrate more computation to hardware
• To optimize the performance of functions moved to hardware; for example, using

high-level synthesis (HLS) pragmas
• To optimize the data transfer performance between the processing system and

programmable logic; for example, using different data movers or different memory
allocation
UltraFast Embedded Design Methodology Guide 217
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=217

Chapter 8: SDSoC Environment
After achieving the desired performance, SDSoC can generate the SD card image for the full
system to run the application on the target platform. Based on running the generated
system, further optimizations can be done.
X-Ref Target - Figure 8-3

Figure 8-3: SDSoC User Flow
UltraFast Embedded Design Methodology Guide 218
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=218

Chapter 8: SDSoC Environment
By default, SDSoC targets the Linux operating system. The SD card image that is generated
includes the Linux kernel, file system, and user application. SDSoC also supports FreeRTOS
and a standalone (bare metal) mode as choices of OS. For FreeRTOS and standalone, the
user application is compiled with support from Xilinx Standalone system (LibXil). For more
details on options to control the OS choice, refer to the SDSoC Environment User Guide
(UG1027) [Ref 26] and the SDSoC Environment Tutorial: Introduction (UG1028) [Ref 27].

SDSoC comes with support for a few hardware platforms out of the box. This list of
supported platforms includes popular boards such as ZC702, ZC706, Zed board, and
MicroZed. You can select the target platform for an application either in SDK while setting
up the project, or by specifying the -sds-pf command line option within a Makefile. You
can view the list of all available platforms by running the command line tool sdscc with the
option -sds-pf-list.

SDSoC also allows users and third-parties to generate platforms starting with their own
Vivado designs. Such platforms can be selected by pointing to the top-level platform
directory either in SDK or the command line. For more details on creating SDSoC platforms,
refer to the SDSoC Environment Platform Development Guide (UG1146) [Ref 28].

Profiling
The importance of performance analysis and profiling has been well documented in
previous chapters. SDSoC integrates those principles through hooks and features inside the
tool. Profiling capabilities build on top of the ones in Xilinx SDK, and therefore, application
developers can use the non-intrusive TCF profiler to profile the application without any
code instrumentation. Based on the profile information, a first pass at moving functions to
hardware can be started. For more details, refer to Chapter 6, Software Design Flow.

SDSoC also supports the standard Eclipse based tools, such as gprof, for profiling the user
application; refer to Chapter 7, Debug for references. An SDSoC user can modify the build
properties of the application and select the –pg and –g1 options to obtain the profiling
information. Once these options are selected, the user can build the project and execute it
on the board to obtain the profile information file (gmon.out). The SDSoC environment
includes the standard Eclipse-based graphical view of the gmon.out file, which shows a
hierarchical view of functions with the percentage of time spent in each of them.
UltraFast Embedded Design Methodology Guide 219
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=219

Chapter 8: SDSoC Environment
Performance Estimation
After functions have been identified for hardware acceleration, the SDSoC environment
provides tools to quickly estimate the performance improvement that can be expected by
these choices. For example, a full build cycle for a typical application might take 40 minutes,
whereas the performance estimation flow can give an estimate of the application speedup
in the order of minutes. The performance estimation flow can be run by changing the build
configuration to “SDEstimate” and building the project. More details on this flow can be
found in SDSoC Environment User Guide (UG1027) [Ref 26] and the SDSoC Environment
Tutorial: Introduction (UG1028) [Ref 27].

Generating and Running a Complete
Software-Hardware System
Once you are satisfied with the estimated performance obtained by performing iterations
using the performance estimation flow, you can change the build configuration to
“SDRelease” and rebuild the project. You can also copy the generated SD card image to an
SD card and run on the board to see the actual performance of the generated system.

Optimizing Performance Using C-Callable RTL IP
Library
As described in Introduction, the data flow defined by a software application can be
automatically mapped onto hardware and software in an application-specific SoC. The
SDSoC compiler maps and schedules operations onto hardware functions based on
program data flow. An application can also link to a library that provides a function call
mapping onto an IP block defined in a hardware description language like Verilog. From the
point of view of the application code and the SDSoC compiler, the scheduling and mapping
are identical whether the function is synthesized at compile time using HLS or mapped onto
an HDL IP block. Any call to a hardware function will be mapped into hardware by the
SDSoC compiler.

A traditional “software driver” approach to targeting an IP block peripheral typically
exposes only the control interface; the hardware system captures the data flow. Using a
full-system compiler like SDSoC, application code can instead directly invoke the data
processing functions as it would any other functional library. The data transport, such as
using DMA, is abstracted and automatically invoked to implement the function call
efficiently.
UltraFast Embedded Design Methodology Guide 220
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=220

Chapter 8: SDSoC Environment
For more information, refer to the SDSoC Environment Platform Development Guide
(UG1146) [Ref 28].

Optimizing IP Performance Using HLS
The application code that is sent to hardware in the SDSoC environment is compiled
through the Vivado high-level synthesis (HLS) compiler. This is described in Chapter 5,
Hardware Design Flow. Several optimization strategies are presented in the Vivado Design
Suite User Guide: High-Level Synthesis (UG902) [Ref 9]. Some common strategies to improve
code are used by the SDSoC tool, such as adding a pragma for enabling pipelining before
a compute intensive loop and increasing the memory bandwidth for the inner loop by
specifying the array_partition pragma for the variables accessed inside the inner loop. For
more high-level details for optimization strategies, refer to SDSoC Environment User Guide
(UG1027) [Ref 26].

Optimizing System Performance
System performance improvements through acceleration is one of the key principles
integrated in the SDSoC. Chapter 2, System Level Considerations and Chapter 3, Hardware
Design Considerations touched upon the different ways to improve performance from both
Software and Hardware perspective. This section describes some additional techniques
used by SDSoC and how the it implements some of the previously described techniques
such as storing data in system memory and data pipelining.

Using Physically Contiguous Memory
The SDSoC system-optimizing compiler incorporates memory allocation trade-offs in
software and hardware functions. On Linux based systems, memory allocated by malloc()
is paged. The kernel keeps track of the pages for the user and presents a unified view to the
user application. However, when memory allocated by malloc() is transferred to the
accelerator, there is a performance penalty to collect individual pages and transfer them
using the scatter-gather mode in the AXI-DMA. SDSoC provides a user-accessible function
sds_alloc(), which behaves like malloc() but allocates physically contiguous memory.
This results in faster performance when using data movers like scatter-gather DMA, but it
also allows SDSoC to choose data movers like simple-mode of the AXI-DMA with
significantly better performance due to lower overhead.
UltraFast Embedded Design Methodology Guide 221
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=221

Chapter 8: SDSoC Environment
Using Local Caches and Streaming Data
The data transferred to the code compiled through Vivado HLS can be sent once to reside
in BRAMs in the programmable logic for the duration of the computation, if the amount of
data is small. If the data is too large to fit in BRAMs in the programmable logic, or if it is not
used multiple times during the computation, then it can be sent as a datastream to the
generated accelerator. You can control these choices for caching or streaming data being
transferred between the processor and accelerator, as detailed in the SDSoC Environment
User Guide (UG1027) [Ref 26].

Using Shared Memory
Instead of transferring data from the processor's memory to the accelerator's local memory
or streaming it through the accelerator, it is also possible for the processor and accelerator
to access a common region of shared memory. You can achieve this by adding code
pragmas to the function that is mapped to hardware. Using this technique requires the user
application to allocate the memory using sds_alloc() instead of malloc(). More
details about this can be found in the SDSoC Environment User Guide (UG1027) [Ref 26].

Using Direct Accelerator-Accelerator Data Transfers
If multiple functions are selected for hardware acceleration, the SDSoC environment can
automatically pipeline them. This means that it passes the data transferred between them
directly in hardware, without copying it to the processor first, so long as there is no use on
the processor side.

Using Multiple Instances of the Same Hardware Function
Multiple calls from a single source location to a function mapped to hardware are mapped
to a single accelerator. However, SDSoC provides an async code pragma, which directs the
compiler to generate multiple accelerator instances to improve the performance of the
application by processing more data in parallel.

Pipelining Data Communication with Computation
Multiple successive calls to an accelerator can be pipelined by the SDSoC compiler under
user pragma control. This allows the overlap of accelerator computation with the data
transfer of the subsequent call to the accelerator. Consider Figure 8-4, which shows
sequential calls to an accelerator with two inputs and one output.
UltraFast Embedded Design Methodology Guide 222
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=222

Chapter 8: SDSoC Environment
Figure 8-5 shows two calls to the same accelerator executing in a pipelined fashion.
Multiple buffers, automatically inserted by the compiler, are used so that the data transfer
for the second call can start as soon as the data transfer for the first call is done. This is
achieved in the SDSoC environment by using the async pragma as described in Chapter 7
of the SDSoC Environment User Guide (UG1027) [Ref 26].

Debugging the System
SDSoC shares the debugging infrastructure and methodology with the Xilinx SDK System
Debugger, including enhancements to support debugging applications for the standalone
platform and having the ability to look into IP registers in the physical address space. Refer
to Chapter 6, Software Design Flow.

SDSoC allows projects to be created and debugged using the SDSoC IDE. Projects can also
be created outside the SDSoC IDE using user-created Makefiles and debugged either on the
command line or using the SDSoC IDE. For details about debugging, refer to the SDSoC
Environment User Guide (UG1027) [Ref 26] and the SDSoC Environment Tutorial: Introduction
(UG1028) [Ref 27].

X-Ref Target - Figure 8-4

Figure 8-4: Sequential Execution of Calls to the Accelerator

X-Ref Target - Figure 8-5

Figure 8-5: Pipelined Execution of Calls to the Accelerator
UltraFast Embedded Design Methodology Guide 223
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=223

Chapter 8: SDSoC Environment
Performance Measurement and Analysis
For simple performance measurement and to identify performance bottlenecks, SDSoC
provides the function sds_clock_counter(), which returns a cycle-accurate timestamp
from a free-running counter in hardware. You can use this counter to instrument your code
and collect performance data. You also have access to Vivado_HLS reports under the _sds
folder in the build directory, from which you can gain more insight about the generated
hardware and changes you could make to improve performance.

SDSoC shares many of the advanced system-level performance measurement and analysis
capabilities with Xilinx SDK; refer to Chapter 6, Software Design Flow. The SDSoC compiler
optionally inserts an AXI Performance Monitor (APM) into the generated system to monitor
traffic between the Zynq device Programming Logic (PL) and Processing System (PS). By
observing activity at the PS/PL boundary using the APM, a designer can determine whether
a system is saturating the capacity of a particular resource, such as the cache-coherent ACP
port.

A hardware function observing an idle data transport interface for long periods between
computations might indicate a compute-bound system that would benefit from accelerator
micro-architecture optimization to increase throughput and decrease latency. Conversely, a
data transport interface that is saturated might indicate a situation where traffic can be
redirected to other available transport interfaces on the PS. For more information, refer to
the Xilinx Software Development Kit (SDK) User Guide: System Performance Analysis
(UG1145) [Ref 25].

Expert Use Models
You can override every design decision made by SDSoC as needed, either by inserting
pragmas into application code or by using IDE/command-line parameters.

Specific controls for more advanced users provide the following capabilities.

• Data mover selection: To control the mapping of data transfers on to different IP
blocks, such as simple mode DMA, scatter-gather DMA, and 2-D DMA.

• Zynq-7000AP SoC processing system interfaces to CPU and DDR selection: To control
the mapping onto cache-coherent or high-throughput AXI interfaces.

• Hardware function "port" interface selections: To control the hardware interfaces on
hardware accelerator; for example, as "shared memory" between hardware function
and controlling software thread, or as "copy-in, copy-out" for caching data in local
BRAMs.

• Run-time variable size data transfers: For transfers that obey "copy-in, copy-out"
semantics, limiting transfer sizes when possible can improve system performance.
UltraFast Embedded Design Methodology Guide 224
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=224

Chapter 8: SDSoC Environment
• Hardware function microarchitecture using Vivado HLS: For compute-bound systems,
you can employ Vivado HLS pragmas and directives to improve throughput and latency.

• Blocking vs. non-blocking function invocation: By default, functions preserve the
original function call semantics, but you can instruct the compiler, using pragmas in the
code, to return control "immediately", such as, to implement software task pipelining.

• Mapping subsets of hardware functions into different bitstreams that the application
will time-multiplex during run-time: To time multiplex the programmable logic fabric to
realize more hardware functions than can fit in the target device concurrently.

For more details regarding each of these controls, refer to the “SDSoC Pragma
Specification” section in the SDSoC Environment User Guide (UG1027) [Ref 26].

Advanced users, hardware designers, and system software teams might want to build their
own SDSoC platform, including partial hardware design and software components like OS,
drivers, file system, and libraries. They can also package their own HDL IP as C-callable IP
libraries. There is a well-defined, low-overhead methodology for exporting a Vivado
hardware system to support SDSoC, as well as to create C-callable libraries for HDL IPs. For
more information, refer to the SDSoC Environment Platform Development Guide (UG1146)
[Ref 28].

SDSoC is a tool that brings a lot of techniques described in earlier chapters under one
umbrella to aid you in effectively architecting, designing, and debugging a system. It
provides a means to implement methodology principles described earlier and also
highlights new principles that become visible when seen under one umbrella. The biggest
benefits of the tool are reaped by the Software designer. This is a must have in a Software
designer's toolbox to accelerate development of systems with hardware components.
UltraFast Embedded Design Methodology Guide 225
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=225

Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.
UltraFast Embedded Design Methodology Guide 226
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=226

Appendix A: Additional Resources and Legal Notices
Xilinx Documentation Navigator
The Xilinx Documentation Navigator is a free tool that you can use to access documentation
while using Xilinx products. The Documentation Navigator is available as part of the Vivado
Installer. When it is installed on your system, you can access it by going to Start > Programs
> Xilinx Design Tools > DocNav and clicking the DocNav icon.

For detailed information about using the Xilinx Documentation Navigator, refer to this link
in Vivado Design Suite User Guide: Getting Started (UG910) [Ref 11].

Related Design Hubs
Design hubs provide quick access to documentation, training, and information for specific
design tasks. The following design hubs are applicable to embedded development and the
methods described in this guide:

• Partial Reconfiguration Design Hub
• Software Development Kit (SDK) Design Hub

References
The references below provide additional information.

Xilinx User and Reference Guides
1. 7 Series FPGAs Clocking Resources (UG472)
2. 7 Series FPGAs GTX/GTH Transceivers (UG476)
3. 7 Series FPGAs GTP Transceivers (UG482)
4. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)
5. OS and Libraries Document Collection (UG643)
6. Xilinx Software Development Kit Help (UG782)
7. Zynq-7000 All Programmable SoC Software Developers Guide (UG821)
8. ZC702 Evaluation Board for the Zynq-7000 XC7X020 All Programmable SoC User Guide

(UG850)
9. Vivado Design Suite User Guide: High-Level Synthesis (UG902)
10. Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)
11. Vivado Design Suite User Guide: Getting Started (UG910)
UltraFast Embedded Design Methodology Guide 227
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf;a=LearningAboutTheVivadoDesignSuite
https://www.xilinx.com/cgi-bin/docs/ndoc?v=latest;t=user_guides;d=ug472_7Series_Clocking.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;v=latest;d=ug476_7Series_Transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;v=latest;d=ug482_7Series_GTP_Transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=oslib_rm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=SDK_Doc/index.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=227

Appendix A: Additional Resources and Legal Notices
12. AXI Interface Based KC705 Embedded Kit MicroBlaze Processor Subsystem Software
Tutorial (UG915)

13. Zynq-7000 All Programmable SoC ZC702 Base Targeted Reference Design (Vivado Design
Suite 2014.2) User Guide (UG925)

14. Zynq-7000 All Programmable SoC PCB Design Guide (UG933)
15. Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940)
16. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)
17. PetaLinux Tools User Guide: Zynq All Programmable SoC Linux-FreeRTOS AMP Guide

(UG978)
18. Vivado Design Suite User Guide: Embedded Processor Hardware Design (UG898)
19. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
20. Programming ARM TrustZone Architecture on the Xilinx Zynq-7000 All Programmable SoC

User Guide (UG1019)
21. Zynq-7000 All Programmable SoC Secure Boot Getting Started Guide (UG1025)
22. Embedded System Tools Reference Manual (UG1043)
23. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)
24. Generating Basic Software Platforms Reference Guide (UG1138)
25. Xilinx Software Development Kit (SDK) User Guide: System Performance Analysis

(UG1145)

SDSoC Documentation

26. SDSoC Environment User Guide (UG1027)
27. SDSoC Environment Tutorial: Introduction (UG1028)
28. SDSoC Environment Platform Development Guide (UG1146)
29. SDSoC Environment Optimization Guide (UG1235)

Other Xilinx References

Data Sheets

30. Zynq-7000 All Programmable SoC (Z-7007S, Z-7012S, Z-7014S, Z-7010, Z-7015, and
Z-7020): DC and AC Switching Characteristics (DS187)

31. Zynq-7000 All Programmable SoC Overview (DS190)
32. Zynq-7000 All Programmable SoC Verification IP v1.0 (DS940)
UltraFast Embedded Design Methodology Guide 228
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1138-generating-basic-software-platforms.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1028-sdsoc-intro-tutorial.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/ug915-axi-interface-kc705-microblaze-software-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=zc702_zvik;v=latest;d=ug925-zynq-zc702-base-trd.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;v=latest;d=ug933-Zynq-7000-PCB.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/support/documentation/sw_manuals/petalinux2014_2/ug978-petalinux-zynq-amp.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;v=latest;d=ug1019-zynq-trustzone.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;v=latest;d=ug1025-zynq-secure-boot-gsg.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1043-embedded-system-tools.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1145-sdk-system-performance.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds187-XC7Z010-XC7Z020-Data-Sheet.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=processing_system7_vip;v=latest;d=ds940-zynq-vip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug898-vivado-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=228

Appendix A: Additional Resources and Legal Notices
Product Guides

33. AXI Verification IP v1.1 Product Guide (AXI) (PG267)

White Papers

34. Get Smart about Reset: Think Local, Not Global Whitepaper (WP272)
35. Secure Boot in the Zynq-7000 All Programmable SoC (WP426)

Application Notes

36. Designing High-Performance Video Systems with the Zynq-7000 All Programmable SoC
(XAPP792)

37. LightWeight IP (lwIP) Application Examples (XAPP1026)
38. Simple AMP Running Linux and Bare-Metal System on Both Zynq-7000 AP SoC Processors

(XAPP1078)
39. Simple AMP: Bare-Metal System Running on Both Cortex-A9 Processors (XAPP1079)
40. PS and PL Ethernet Performance and Jumbo Frame Support with PL Ethernet in the

Zynq-7000 AP SoC (XAPP1082)
41. Using the Zynq-7000 Processing System (PS) to Xilinx Analog to Digital Converter (XADC)

Dedicated Interface to Implement System Monitoring and External Channel
Measurements (XAPP1172)

42. Secure Boot of Zynq-7000 All Programmable SoC (XAPP1175)
43. System Monitoring Using the Zynq-7000 AP SoC Processing System with the XADC AXI

Interface (XAPP1182)
44. Zynq-7000 Platform Software Development Using the ARM DS-5 Toolchain (XAPP1185)

Web Pages

45. AXI Performance Monitor web page
46. AXI Timer/Counter web page
47. LogiCORE™ AXI Traffic Generator web page
48. Xilinx Security Solutions web page
49. Xilinx Zynq-7000 AP SoC Ecosystem web page
50. Xilinx PetaLinux Tools web page
UltraFast Embedded Design Methodology Guide 229
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_vip;v=latest;d=pg267-axi-vip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp272.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp426-zynq-7000-secure-boot.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp792-high-performance-video-zynq.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1026.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1078-amp-linux-bare-metal.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1079-amp-bare-metal-cortex-a9.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1082-zynq-eth.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1172_zynq_ps_xadc.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1175_zynq_secure_boot.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1182_zynq_axi_xadc_mon.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1185-Zynq-software-development-with-DS-5.pdf
https://www.xilinx.com/products/intellectual-property/axi_perf_mon.htm
https://www.xilinx.com/products/intellectual-property/axi_timer.htm
https://www.xilinx.com/products/intellectual-property/axi_tg.htm
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000/security.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000/ecosystem/index.htm
https://www.xilinx.com/tools/petalinux-sdk.htm
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=229

Appendix A: Additional Resources and Legal Notices
Wiki Pages

51. K7 Embedded TRD 2013.2 wiki page
52. Xilinx Linux Drivers wiki page
53. Xilinx Linux GPIO driver wiki page
54. Xilinx Linux I2C driver wiki page
55. Xilinx Linux SPI driver wiki page
56. Xilinx Linux wiki page
57. Xilinx Multi-OS Support wiki page
58. Xilinx PetaLinux wiki page
59. Xilinx U-Boot wiki page
60. Xilinx Yocto wiki page
61. Zynq-7000 AP SoC Boot - Booting and Running Without External Memory Tech Tip wiki

page
62. Zynq-7000 AP SoC Boot - Locking and Executing out of L2 Cache Tech Tip wiki page
63. Zynq-7000 AP SoC Low Power Techniques part 1 - Installing and Running the Power

Demo Tech Tip wiki page
64. Xilinx Zynq-7000 AP SoC Spectrum Analyzer part 2-Building ARM NEON Library Tech Tip
65. Xilinx Zynq Linux wiki page
66. Xilinx Zynq Power Management wiki page

Answer Records

67. Xilinx Answer Record 46778
68. Xilinx Answer Record 47511
69. Xilinx Answer Record 50991
70. Xilinx Answer Record 52847
71. Xilinx Answer Record 55572
72. Xilinx Answer Record 57744
73. Xilinx Answer Record 58387
UltraFast Embedded Design Methodology Guide 230
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://www.wiki.xilinx.com/K7+Embedded+TRD+2017.2
http://www.wiki.xilinx.com/Linux+I2C+Driver
http://www.wiki.xilinx.com/Linux+GPIO+Driver
http://www.wiki.xilinx.com/Linux+I2C+Driver
http://www.wiki.xilinx.com/Linux+SPI+Driver
http://www.wiki.xilinx.com/Linux
http://www.wiki.xilinx.com/Multi-OS+Support+%28AMP+%26+Hypervisor%29
http://www.wiki.xilinx.com/petalinux
http://www.wiki.xilinx.com/U-boot
http://www.wiki.xilinx.com/Yocto
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Boot+-+Booting+and+Running+Without+External+Memory+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Boot+-+Booting+and+Running+Without+External+Memory+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Boot+-+Locking+and+Executing+out+of+L2+Cache+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Low+Power+Techniques+part+1+-+Installing+and+Running+the+Power+Demo+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Low+Power+Techniques+part+1+-+Installing+and+Running+the+Power+Demo+Tech+Tip
http://www.wiki.xilinx.com/Zynq-7000+AP+SoC+Spectrum+Analyzer+part+2-Building+ARM+NEON+Library+Tech+Tip
http://www.wiki.xilinx.com/Zynq+Linux
http://www.wiki.xilinx.com/Zynq+Power+Management
https://www.xilinx.com/support/answers/46778.html
https://www.xilinx.com/support/answers/47511.html
https://www.xilinx.com/support/answers/50991.html
https://www.xilinx.com/support/answers/52847.html
https://www.xilinx.com/support/answers/55572.html
https://www.xilinx.com/support/answers/57744.html
https://www.xilinx.com/support/answers/58387.html
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=230

Appendix A: Additional Resources and Legal Notices
Information from Other Companies
74. ARM DS-5 Development Studio Streamline Performance Analyzer documentation:

http://ds.arm.com/ds-5/optimize
75. ARM Infocenter Accelerator Coherency Port web page:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CACGGBCF.ht
ml

76. ARM Security Technology: Building a Secure System using TrustZone® Technology:
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC
-009492C_trustzone_security_whitepaper.pdf

77. Cortex-A9 Technical Reference Manual:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388e/DDI0388E_cortex_a9_r2p
0_trm.pdf

78. Design Calculations for Robust I2C Communications:
http://www.edn.com/design/analog/4371297/Design-calculations-for-robust-I2C-communic
ations

79. Discretix: http://www.discretix.com/
80. ENEA Software AB Solutions: http://www.enea.com/solutions/
81. eSOL Embedded Engineering and Enabling Solution: http://www.esol.com/
82. Express Logic ThreadX RTOS: http://rtos.com/products/threadx/xilinx_arm
83. GreenHills INTEGRITY RTOS: http://www.ghs.com/products/xilinx_zynq.html
84. How a MicroBlaze can peaceably coexist with the Zynq-7000 AP SoC:

http://www.eetimes.com/document.asp?doc_id=1280680
85. IAR Integrated Solutions Partner Program:

http://www.iar.com/Products/RTOS/Integrated-RTOSes/
86. iVeia Adeneo Embedded Board Support Packages:

http://www.adeneo-embedded.com/Products/Board-Support-Packages
87. Mentor Graphics Nucleus RTOS:

http://www.mentor.com/embedded-software/nucleus/?sfm=auto_suggest
88. Micrium µC/OS RTOS: http://micrium.com/products/
89. MontaVista Carrier Grade Edition 7:

http://www.mvista.com/product-carrier-grade-edition7.html
90. PCA9548A Low Voltage 8-Channel I2C Switch With Reset:

http://www.ti.com/lit/ds/symlink/pca9548a.pdf
91. SD Association, Latest Simplified Specifications:

https://www.sdcard.org/downloads/pls/simplified_specs/
92. Open Kernel Labs OKL4 Microvisor: http://www.ok-labs.com/products/okl4-microvisor
UltraFast Embedded Design Methodology Guide 231
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
http://ds.arm.com/ds-5/optimize
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CACGGBCF.html
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388e/DDI0388E_cortex_a9_r2p0_trm.pdf
http://www.edn.com/design/analog/4371297/Design-calculations-for-robust-I2C-communications
http://www.discretix.com/
http://www.enea.com/solutions/
http://www.esol.com/
http://rtos.com/products/threadx/xilinx_arm
http://www.ghs.com/products/xilinx_zynq.html
http://www.eetimes.com/document.asp?doc_id=1280680
http://www.iar.com/Products/RTOS/Integrated-RTOSes/
http://www.adeneo-embedded.com/Products/Board-Support-Packages
http://www.mentor.com/embedded-software/nucleus/?sfm=auto_suggest
http://micrium.com/products/
http://www.mvista.com/product-carrier-grade-edition7.html
http://www.ti.com/lit/ds/symlink/pca9548a.pdf
https://www.sdcard.org/downloads/pls/simplified_specs/
http://www.ok-labs.com/products/okl4-microvisor
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=231

Appendix A: Additional Resources and Legal Notices
93. QNX Neutrino RTOS:
http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html#overview|

94. Quadros RTOS: http://www.quadros.com/products/operating-systems
95. Real Time Engineers FreeRTOS Interactive webpage:

http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freert
os.org/entries/23277857-Updated-Xilinx-FreeRTOS-port-for-Zynq-to-SDK-14-4-release

96. Sciopta RTOS: http://www.sciopta.com/news/ZYNQ-7000.html
97. Sierraware Hypervisor and SierraTEE Trusted Execution Environment:

http://www.sierraware.com/arm_hypervisor.html
98. SYSGO PikeOS BSPs for ZC702, Zed, and Zynq-7000 All Programmable SoC BSP:

http://www.sysgo.com/products/board-support-packages/pikeos-bsp-list/
99. SYSGO PikeOS Product Information:

http://www.sysgo.com/news-events/press/press/details/article/sysgos-certified-pikeos
-supports-xilinxs-zynq-7000-all-programmable-soc/

100.The Official Linux Kernel from Xilinx webpage: https://github.com/Xilinx/linux-xlnx
101.Timesys LinuxLink: http://www.timesys.com/embedded-linux/linuxlink
102.Wind River VxWorks, Linux, and Workbench IDE: http://www.windriver.com/
103.Xilinx XC702 DS-5 Getting Connected Guide:

http://www.arm.com/files/pdf/zc702_ds5_2.pdf
104.Yocto Project webpage: http://git.yoctoproject.org/cgit/cgit.cgi/meta-xilinx/about/

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related videos:

1. Vivado Design Suite QuickTake Video: How to Create a Zynq Boot Image Using Xilinx
SDK

2. Vivado Design Suite QuickTake Video Tutorials
UltraFast Embedded Design Methodology Guide 232
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/create-zynq-boot-image-using-xilinx-sdk.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/create-zynq-boot-image-using-xilinx-sdk.html
http://git.yoctoproject.org/cgit/cgit.cgi/meta-xilinx/about/
http://www.windriver.com/
http://www.arm.com/files/pdf/zc702_ds5_2.pdf
http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html#overview|
http://www.quadros.com/products/operating-systems
http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/entries/23277857-Updated-Xilinx-FreeRTOS-port-for-Zynq-to-SDK-14-4-release
http://www.sciopta.com/news/ZYNQ-7000.html
http://www.sierraware.com/arm_hypervisor.html
http://www.sysgo.com/products/board-support-packages/pikeos-bsp-list/
http://www.sysgo.com/news-events/press/press/details/article/sysgos-certified-pikeos-supports-xilinxs-zynq-7000-all-programmable-soc/
https://github.com/Xilinx/linux-xlnx
http://www.timesys.com/embedded-linux/linuxlink
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=232

Appendix A: Additional Resources and Legal Notices
Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2014-2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.
UltraFast Embedded Design Methodology Guide 233
UG1046 (v2.3) April 20, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1046&Title=UltraFast%20Embedded%20Design%20Methodology%20Guide&releaseVersion=2.3&docPage=233

	UltraFast Embedded Design Methodology Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Embedded Design Methodology Checklist
	Accessing Documentation and Training
	Using the Documentation Navigator
	Accessing the QuickTake Video Tutorials

	Ch. 2: System Level Considerations
	Performance
	System Performance Design Goals
	Hardware Engineer
	Software Engineer
	System Engineer

	System Data Movement
	System Computation
	System Monitoring

	Power Consumption
	Power Challenges
	Power and Signaling
	PS Power Domains
	PL Power Domains

	Board-Level Power-Distribution System
	Power Management
	PS Power Management
	System Design Considerations
	Software Support

	PL Power Management
	Logic Resource Utilization
	Managing Control Sets
	Managing Sets and Resets
	Clock Gating
	Block RAM
	Floorplanning
	IO Power
	Partial Reconfiguration

	Power Estimation
	Xilinx Power Estimator (XPE)
	System-Level Power Analysis
	Vivado Power Analysis

	PL Power Optimization in Vivado
	Correcting Over-Budget PL Power Consumption
	Experiment Using the Vivado Power Optimizer Feature
	Experiment with the Vivado Power Analysis Feature
	Experiment with Xilinx Power Estimator (XPE)

	Conclusion

	Clocking and Reset
	External Clocks
	PS_CLK
	Others

	Internal Clocks
	PS
	PS - PL Interface
	PL

	PS Power-On Reset
	PS System Reset
	System Software Reset
	Watchdog Timer Resets
	CPU Resets
	Debug Resets
	Peripheral Resets
	PL Resets

	Interrupts
	Generic Interrupt Controller
	Interrupt Architecture
	PS Interrupt Sources
	PL Interrupt Sources
	Interrupt IDs

	Unique Capabilities
	Interrupt Processing in Fabric
	Processor as an Extension of Fabric
	Using OCM for Handlers
	Processor Affinity
	Using FIQ and IRQ
	TrustZone

	System Design Considerations

	Embedded Device Security
	Secure Boot
	PS Software Boot Flow
	Power-On BootROM CRC Check
	RSA Authentication of FSBL
	Secure BOOT Image
	AES & HMAC Authentication Engines
	Bootgen
	Generating Keys
	eFuse / BBRAM for Security

	Partitioning a System in Separate Secure Zones (Trust Zone)
	Security using Asynchronous Multiprocessing (AMP)
	Linux Deployment

	Profiling and Partitioning
	Software Profiling
	Xilinx SDK System Debugger
	TCF Profiling
	Performance Monitoring

	ARM Development Studio 5 (DS-5)
	Practical Applications
	Boot Time
	Processor Loading
	System Latency
	Interrupt Latency

	Hardware Profiling
	Program Trace Module (PTM)
	Performance Monitor Unit (PMU)
	Level 2 (L2) Cache Event Counters
	AXI Performance Monitor (APM)
	Ethernet Statistics Registers

	Software/Hardware Partitioning

	Ch. 3: Hardware Design Considerations
	Configuration and Boot Devices
	Typical Boot Flow
	Selecting a Boot Device
	Quad-SPI with Optional Execute-in-Place Mode
	NAND Flash
	NOR Flash with Optional Execute-in-Place Mode
	SD Memory Card
	JTAG
	eMMC
	PCIe, Ethernet, USB, UART, and Custom FPGA Interface

	File System
	Optimizing Boot Time
	Case Study: Variations in QSPI Boot Time

	Memory Interfaces
	DDR
	QSPI
	Static Memory Controller
	NAND Memory Controller

	Peripherals
	Peripheral Descriptions
	USB Peripheral
	Data Flow
	System Level Considerations

	Ethernet Peripheral
	Data Flow
	System Level Considerations

	SDIO Peripheral
	Data Flow
	System Level Considerations

	UART Peripheral
	Data Flow
	System Level Considerations

	CAN Peripheral
	Data Flow

	I2C Peripheral
	Data Flow
	System Level Considerations

	SPI Peripheral
	Data Flow
	System Level Considerations

	GPIO Peripheral
	System Level Considerations

	Cortex-A9 Multiprocessing Peripherals
	PS DMA Controller
	XADC
	Communication with Peripherals

	Peripheral Design Example
	Hardware Design Considerations
	Software Design Considerations

	Designing IP Blocks
	IP Core Design Methodology
	System Generator
	HDL Coder
	Vivado High Level Synthesis

	IP Core Design Considerations
	Connecting IP Blocks to the PS
	Case Study: Designing with Xilinx IP Blocks

	Hardware Performance Considerations
	Hardware Performance Metrics
	High-Performance AXI Masters
	Building High-Performance AXI Masters

	Using Performance-Critical AXI Slaves
	Selecting Performance-Critical AXI Slaves

	High-Performance Datapaths
	Selecting a High-Performance Datapath

	Monitoring Hardware Performance

	Dataflow
	Interconnect within PS
	APU Access to PS-DDR
	PS Peripheral Access to PS-DDR

	PS-PL AXI Interfaces
	General Purpose AXI Interface (AXI_GP)
	Accelerator Coherency Port (ACP)
	High Performance Ports (AXI_HP)
	System Level Design Considerations

	PL Clocking Methodology
	Clock from PS (FCLK)
	Clock Recovered from a GT
	Clock from External Source
	Clock Generated by MMCM
	FCLK Use Model

	ACP and Cache Coherency
	ACP Design Methodology
	ACP-Master Design Methodology
	PS Configuration for the ACP Design Methodology
	Contention with Software on CPU Methodologies

	PL High-Performance Port Access
	HP Master Design Methodology
	PS Configuration for the HP Design Methodology
	Contention Mitigation for DDR Controller Methodologies

	System Management Hardware Assistance
	Xilinx Analog-to-Digital Converter
	TrustZone Security
	DDR Memory Controller
	L2 Cache Controller

	DDR Error Recovery
	Low Power
	Clock Gating

	Managing Hardware Reconfiguration
	Partial Reconfiguration Terminology
	System Level Considerations
	Hardware Design Flow
	System Design Flow
	Managing Reconfiguration using U-Boot and Linux

	GPs and Direct PL Access from APU
	Performance
	Design Considerations for AXI Master GP Port
	Use Case

	Ch. 4: Software Design Considerations
	Processor Configuration
	Clock Speed and Multiple Cores
	SMP and AMP Configuration
	Using Coprocessors
	Cache Considerations
	Processor State after Power on Reset
	Interrupt Handling
	Timers
	MMU Configurations
	Secure Configurations

	OS and RTOS Choices
	Types of Embedded-System Software
	Hardware Requirements for Running an OS or RTOS
	OS and RTOS Ports
	Linux OS and PetaLinux Tools
	OS and RTOS Ecosystem
	Quadros Systems Features
	Real Time Engineers Ltd.

	Multi-OS
	Simple AMP
	ARM Cortex-A9 TrustZone

	Development and Debugging Tools
	Xilinx Software Development Kit
	ARM DS-5 Development Studio
	IAR

	Libraries and Middleware
	Libraries
	Benefits of Libraries
	Xilinx Libraries for Stand-Alone Systems
	Static Libraries
	Advantages
	Disadvantages
	When to Use

	Dynamic Libraries
	Advantages
	Disadvantages
	When to Use

	Middleware
	Examples
	Advantages
	Use Case

	Boot Loaders
	Boot Process
	Stage 0
	Stage 1
	Stage 2

	Software Development Tools
	GUI-Based Tool Chain
	Stand-Alone Platform
	Linux Platform

	GNU-Based Compiler Tool Chain
	GNU Open-Source Tool Chain
	PetaLinux Framework

	JTAG Debugger
	JTAG Profiler

	Ch. 5: Hardware Design Flow
	Overview
	Using the Vivado IDE to Build IP Subsystems
	Using the GUI to Create an IP Subsystem
	Using a Scripted Flow to Create an IP Subsystem
	Designer Assistance
	Block Automation
	Connection Automation

	Rule-Based Connection
	Creating Hierarchical IP Subsystems
	Board Window
	Generating Block Designs
	Using Out-of-Context Synthesis for Block Designs
	Creating Remote Block Designs

	Creating and Packaging IP for Reuse
	Packaging Custom IP and IP Subsystems
	Updating the IP Catalog

	Creating Custom Interfaces
	Managing Custom IP
	Vivado High-Level Synthesis (HLS)
	Summary

	Ch. 6: Software Design Flow
	Board Bring-Up Development
	PS Initialization
	U-Boot

	PL Configuration
	Memory and Peripheral Testing
	Hardware and Software Debug

	Driver Development
	Bare-Metal Drivers
	Handoff File Details
	Driver File Organization

	IP Blocks and Drivers
	PS IP
	Soft IP

	Xilinx Driver Flow
	Custom Driver Flow

	Linux Driver Development
	Device Tree
	Root File System
	Linux Kernel Debug

	Application Developer
	Bare Metal
	Use Case: Develop, Debug, and Integrate

	Linux Application Developer
	Application Development Flow
	Xilinx Tool Flow for Linux Application Development
	Application Development Using the Xilinx SDK
	Linux Application Debug

	Xilinx SDK Tools and Packages
	Tools Released in the Xilinx SDK
	Boot Image Creation
	Programming Utilities
	Program Flash
	Program FPGA

	Debuggers
	Performance Analysis
	Application Templates

	Xilinx Git Software Solutions Release

	Xilinx Software Development Tools
	Xilinx SDK
	PetaLinux

	Xilinx Yocto Project

	Ch. 7: Debug
	Overview
	PS Debug
	PL Debug

	Software-Only Debug
	System Debugger and Target Connections
	System Debugger
	Xilinx System Debugger (Command Line)

	Profiling
	GNU Tool Chain Support
	Drivers and BSP Debug
	OS Debug
	Linux Application Debug
	Trace

	Simulation-Based Debug
	System Simulation
	Verifying Custom IP

	Board Debug
	FPGA-Only Debug
	Processor-Only Debug

	Hardware and Software Co-Debug
	Cross Triggering
	Custom IP Hardware Validation

	Virtual Platforms
	Zynq-7000 AP SoC Virtual Platform
	Cadence Virtual System Platform

	Ch. 8: SDSoC Environment
	Introduction
	Overall Usage Flow
	Profiling
	Performance Estimation
	Generating and Running a Complete Software-Hardware System
	Optimizing Performance Using C-Callable RTL IP Library
	Optimizing IP Performance Using HLS
	Optimizing System Performance
	Using Physically Contiguous Memory
	Using Local Caches and Streaming Data
	Using Shared Memory
	Using Direct Accelerator-Accelerator Data Transfers
	Using Multiple Instances of the Same Hardware Function
	Pipelining Data Communication with Computation

	Debugging the System
	Performance Measurement and Analysis
	Expert Use Models

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	Xilinx Documentation Navigator
	Related Design Hubs

	References
	Xilinx User and Reference Guides
	SDSoC Documentation

	Other Xilinx References
	Data Sheets
	Product Guides
	White Papers
	Application Notes
	Web Pages
	Wiki Pages
	Answer Records

	Information from Other Companies

	Training Resources
	Please Read: Important Legal Notices

