Video On-Screen
Display v6.0

LogiCORE IP Product Guide

PG010 November 18, 2015

& XILINX.

& XILINX.

Table of Contents

IP Facts

Chapter 1: Overview

Featlure SUMMArY. . ..ottt ittt ittt ittt esosesasaasasssssssssasssssssssssasans 7
AN ¢ o] Lot Ao T 8
UNsSupported i Features.ottt ittt et teteneeneaneaneanensaneaneansansannnnns 8
Licensing and Ordering Information. ittt ittt ittt teneernnernnnnanas 8

Chapter 2: ProductSpecification

Standardsot et e e e et e 9
=T 0T 4 T T o 9
Resource Utilization.cd . i di i i it i ittt it ts e ansnsasannnnas 11
Port Descriptions oot et i it ettt i ettt ettt et 16
I/OInterface and TiMINg oo db i dl i it i ittt te e enaneeennnnannanns 22
Y= =] g o T T 27

Chapter 3: Designing with the Core

General Design Guidelinesc.ciiiiiiiii i ettt ittt it eeaaaaa 39
Algorithm it e e e e et 44
Clock, Enable, and Reset Considerationscciiiiiihiieiden it iiiinnneeeeennnnnns 46
System Considerationsc.itiiiiirinrnrnenneadoancnneeodoteniininnenanns 48

Chapter 4: Customizing and Generating the Core

Vivado Integrated Design Environment (IDE)iitiiiinirnennrnnrnnennnnens 49
41T g - o 49
Output Generation.ttt it ittt ttnetanntsnassnassanassnnssnnssnns 55

Chapter 5: Constraining the Core

Required Constraints.oiviiiiiiiiiiiniininetnereeensensantonsossosensansansans 56

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 2
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=2

& XILINX

Chapter 6: Simulation
Chapter 7: Synthesis and Implementation

Chapter 8: C Model Reference

Unpacking and Model Contentscciiiiiiiitntnrenrenrnnrnesasansennannnns 59
Installationot i i i i it e e ettt 61
Software ReqUirements.ottt ittt ittt iiereeeneeneeneensansesanasansannnns 61
Y= g - P 61
EXamPle Code.ottt ittt ittt et ettt et ettt a et et e e 71

Chapter.9: Test Bench

DemonstrationTestBenchiiiiiiii i ittt it iiieeettieennennereennnnnennenns 92

Appendix A: Verification, Compliance, and Interoperability

SIMUlAtioN ... i c i it i it e e et e 94
Hardware Testing.ttt it ettt iieiieieenaeentanteasessassnssnssnssssossasannanss 94
Interoperability 0 4 i it ittt e e e e, 95

Appendix B: Migrating and Upgrading
Migrating to the Vivado Design Suite. . .4 . . cd . ittt i et e ittt ieeearannannnns 96
Upgradingin Vivado Design Suite.4 . i ih ittt ittt tennereneeenaennaennns 96

Appendix C: Debugging

Finding Helpon XilinX.comttt it it i et teneeneennaennnenananns 98
7= oL T oY o L3 929
HardwareDebug ...ttt i e 101
Interface DebuUgottt it it i et et e e et e e 101

Appendix D: Additional Resources

XilinX RESOUICES . . oot ittt ittt iti it ie e e nnannnsasasnsnsnsesbnsasomiloneeesans 105
3= =] =T o 105
ReVISION HIiStOryo oottt it ittt ittt et iiettsnetenassnnsssenssnnsanassnness 106
Notice of Disclaimer.ottt it i i ittt s inenesasasassensanansnns 106

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 3
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=3

& XILINX.

IP Facts

Introduction

The Xilinx LogiCORE™ IP Video On-Screen
Display core provides a flexible video
processing block for alpha blending and
compositing as well as simple text and graphics
generation. Supportifor up to eight layers using
a combination/of external video inputs (from
frame buffef.or streamingyvideo cores via
AXI4-Stream interfaces) and internal graphics
controllers (including text generators) is
provided. The core is programmable through a
comprehensive registerinterface to set and
control screen size, background color, layer
position, and more using logic’or'a
microprocessor. A comprehensive set.of
interrupt status bits is provided forprocessor
monitoring.

Features

« Supports alpha-blending 8 video/graphics
layers

« Provides programmable background color

« Provides programmable layer position, size
and z-plane order

» Generates filled and outlined transparent
boxes

« Generates text with 1-bit or 2-bit per pixel
color depth

« Provides configurable internal text string
memory

« Provides configurable internal font memory
for 8x8 or 16x16 pixel fixed distance fonts

« Provides scaling text by 1x, 2x, 4x or 8x

« Supports graphics color palette of 16 or
256 colors

LogiCORE IP Facts Table

Core Specifics

Supported
Device Family()

UltraScale+™ Families,
UltraScale™ Architecture, Zynq®—7000, 7 Series

Supported User
Interfaces

AXl4-Lite, AX14-Stream (@)

Resources

See Table 2-3 through Table 2-6.

Provided with Core

Documentation

Product Guide

Design Files

Encrypted RTL

Example Design

Not Provided

Test Bench

Verilog ©)

Constraints File

XDC

Simulation Encrypted RTL, VHDL or Verilog Structural,
Models C-Model 3
Supported
Software Standalone
Drivers ¥

Tested Design Flows (5)

Design Entry
Tools

Vivado® Design Suite

Simulation

For supported simulators, see the Xilinx Design
Tools: Release Notes Guide.

Synthesis Tools

Vivado Synthesis

Support

Provided by Xilinx, Inc.

Catalog.

For a complete listing of supported.devices, see the Vivado IP

Video protocol as defined in the Video,/P: AXI Feature Adoption

section of AXI Reference Guide [Ref 1].

HDL test bench and C-Model available on the product page on

Xilinx.com at http://www.xilinx.com/products/ipcenter/
EF-DI-OSD.htm

Standalone driver details can be found in the SDK directory

(<install_directory>/doc/usenglish/xilinx_drivers.htm). Linux
OS and driver support information is available from

the Xilinx Wiki page.

For the supported versions of the tools, see the Xilinx Design

Tools: Release Notes Guide.

Video On-Screen Display v6.0

www.xilinx.com

PG010 November 18, 2015

Send Feedback 4
Product Specification

http://www.xilinx.com
http://www.xilinx.com/products/ipcenter/EF-DI-OSD.htm
http://www.xilinx.com/products/ipcenter/EF-DI-OSD.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;t=vivado+release+notes
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;t=vivado+release+notes
http://wiki.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;t=vivado+release+notes
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2015.4;t=vivado+release+notes
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=4

& XILINX

« Optional AXI4-Lite control interface
« AXI4-Stream data interfaces
« Supports 2 or 3 color component channels
« Supports 8, 10, and 12-bits per color component input and output
« Supports video frame sizes up to 4096x4096 pixels
> Supports 1080p@60 in all supported device families ()

1. Performance onflow power devices may be lower.

Video On-Screen Display v6.0 www.xilinx.com Send Feedback 5
PG010 November 18, 2015 ication

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=5

& XILINX.
Chapter 1

Overview

The Xilinx LogiCORE™ IP Video On-Screen Display (OSD) produces output video from
multiple external video sources and multiple internal graphics controllers. Each graphics
controller generates simple text and graphics overlays. Each video and graphics source is
assighed an image layer. Up to eight image layers can be dynamically positioned, resized,
broughti.forwardior backward, and combined using alpha-blending.

Alpha-blending is.the convex combination of two image layers allowing for transparency.
Each layer in the OSD has.a definite Z-plane order; or conceptually, each layer resides closer
or farther from the gbseryver having a different depth. Thus, the image and the image
directly "over” it are blendeduThe order and amount of blending is programmable in
real-time.

An example Xilinx Video On-Sereen Display Output is shown in Figure 1-1.

Uideo 1

__MENY ¥
PIP [Audio |

Figure 1-1: Example of OSD Output

Figure 1-1 shows an example OSD output with multiple video and graphics layers. The three
video layers (Video 1, 2 and 3) can be still images or live video, and are combined with
transparency to the programmable background color. Simple boxes and text are generated
with one or multiple internal graphics controllers (shown with yellow text and menu
buttons) and are blended with the other layers. Another video layer (the Xilinx logo), can be

Video On-Screen Display v6.0 www.xilinx.com Send Feedback 6
PG010 November 18, 2015 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=6

& XILINX. Feature Summary

generated from on-chip or external memory, showing that the OSD output can be easily
extended with external logic, a microprocessor, or memory storage.

Feature Summary

The Video On-Screen Display core supports the AXI4-Lite and a constant interface mode.
The AXI4-Lite interface allows the core to be easily integrated into an AXI microprocessor
system with,other AXI peripherals. The constant interface mode provides configuration
options by the core Graphical User Interface (GUI). The user can use the GUI to configure a
fixed.screen layout by setting the position and size of each AXI4-Stream input layer.
(Graphics controllers are not currently supported in constant mode). These configurable
interfaces allow the OSD to be easily integrated with AXI4 based processor systems,
non-AXI4-compliant processor systems with little logic, and systems without a processor.

In addition, the OSDssupports the AXI4-Stream Video Protocol on the input interfaces.
These configurable input interfaces allow easy integration with other Xilinx Video IP cores
including the AXI VDMA /Videa Scaler, Color Space Converters, Chroma Resampler and
Video Timing Controller."Other AXI4-Stream Video IP is also supported.

The Video On-Screen Display‘core is capable of operating at frequencies beyond those for
1080p60 or 1080p50 with 2 or 3 €olor'components channels at 8, 10 or 12 bits per color
component channel (equivalent supported bits per pixel: 16, 20, 24, 30 or 36 bits). This
allows frame sizes up to 4096 x 4096 pixels to be displayed. The OSD also accepts up to
eight input sources and performs alpha blending.«The user can configure multiple input
video sources from AXI4-Stream or external memory through the AXI VDMA. Each video
source layer can be displayed at different cropped.Sizes, positions, and transparency to a
programmable background color and other layers. In addition, each source layer can be
displayed on top of or below other layers with a few register writes. Each layer can use
pixel-level alpha values to enable non-rectangular masks and non-rectangular graphics
overlays.

When using the Video On-Screen Display core, the eight video layers arefnot limited to
external sources. The OSD also allows instantiating a set of internal graphics controllers.
Each layer can be driven by a graphics controller, and each graphicsicontroller can be
configured independently. The graphics controllers contain box and text generators that
can be reconfigured at runtime to move or resize text and boxes. Boxes can be filled or
outlined and the outline width is configurable. Text is generated from an internal font that
the user can load or reload at run time. Text can also be scaled up to eight times of the
internal font with two or four colors for each string on the screen. The graphics controllers
can be configured for 16 or 256 colors, and each color has an independent transparency
alpha value. The runtime configurability of the graphics controller allows the user to
generate dynamic animated displays that blend seamlessly with multiple video sources.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 7
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=7

& XILINX. Applications

Applications

Applications range from broadcast and consumer to automotive, medical and industrial
imaging and can include:

« Video Surveillance
* Machine Vision
« Video Conferencing

« Setstop box displays

Unsupported.Features

The Video On-Screen Display.core does not natively convert input layer data color spaces.
The OSD expects all input layers to be the same format as the output. However, video data
with different color spaces.can be used with the OSD with the addition of the Xilinx
RGB-to-YCrCb, YCrCb-to-RGB_and Chroma Resampler cores.

The internal graphics controllers are not cusrently supported when the AXI4-Lite interface is
disabled. The AXI4-Stream input interfaces are supported in a fixed size and position for
each layer.

Licensing and Ordering Information

This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado
Design Suite tools under the terms of the Xilinx End User License. Information about this
and other Xilinx LogiCORE IP modules is available at the Xilinx IntellectualtProperty page.
For information about pricing and availability of other Xilinx LogiCOREAIP modules and
tools, contact your local Xilinx sales representative.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 8
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?d=end-user-license-agreement.txt
http://www.xilinx.com/products/intellectual-property.html
http://www.xilinx.com/about/contact.html
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=8

& XILINX.
Chapter 2

Product Specification

Standards

The Video,On-S¢reen Display core is compliant with the AXI4-Stream Video Protocol and
AXI4-Lite interconnect standards. Refer to the Video IP: AXI Feature Adoption section of the
AXI Reference Guide [Ref 1] for additional information.

Performance

This section contains data about the typical performance of the Video On-Screen Display
core.

Maximum Frequencies

This section contains typical clock frequencies/for thertarget devices. The maximum
achievable clock frequency can vary. The maximum achievable clock frequency and all
resource counts can be affected by other tool options,‘additional logic in the device, using
a different version of Xilinx tools, and other factors.

» Virtex-7, Kintex-7, Zynq (XC7Z030, XC7Z045): 225MHz
« Artix-7, Zynqg (XC7Z010, XC7Z020): 150MHz

Latency

The Video On-Screen Display core can be configured for AXI4-Stream input interfaces. The
latency to and from AXI4-Stream interfaces is a minimum of 16 + 4*C_NUM_LAYERS, but
tready and tvalid will increase the overall latency of the core. The number of layers
affects the latency. Each layer (configured by C_NUM_LAYERS) adds approximately four
cycles.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 9
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=9

& XILINX

Performance

Throughput

The Video On-Screen Display core throughput is mostly limited by the clock frequency and
frame size (4096 x 4096 pixels). The other limiting factor is that the OSD also requires one
extra line of initialization time each frame. This time is usually absorbed by the vertical
blanking period in most video applications.

The typical maximum output throughput (AXI4-Stream output) is calculated by

Equation 2-1.

cyeles per second - lines per frame - channels per pixel - bits per channel

Equation 2-1
cycles per frame
For AXI4-Stream output, this reduces to Equation 2-2:
cycles per second - 4096 - channels per pixel - bits per channel Equation 2-2

4097

Table 2-1 shows the maximum achievable output throughput for the different target
frequencies for'AXI4-Stream interface.

Table 2-1: AXI4-Stream Throughput

chamnels | Aot | ST [g per | Mx st | wx Trougim
Width (Mbits/s) (Mbits/s)
2 0 8 16 2399414206 3599121308
2 0 10 20 2999267757 4498901635
2 0 12 24 3599121308 5398681962
3 0 8 24 3599121308 5398681962
3 0 10 30 4498901635 6748352453
3 0 12 36 5398681962 8098022944
2 1 8 24 3599121308 5398681962
2 1 10 30 4498901635 6748352453
2 1 12 36 5398681962 8098022944
3 1 8 32 4798828411 7198242617
3 1 10 40 5998535514 8997803271
3 1 12 48 7198242617 10797363925

In addition, the Video On-Screen Display core pads all input and output AXI4-Stream
interfaces to the nearest byte. Table 2-2 shows the maximum achievable output throughput

with the padding bits included.

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

l Send Feedback I 10

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=10

& XILINX

Resource Utilization

Table 2-2: AXl4-Stream Throughput with Padding Bits

Channes | Aot | SRl | giper | Man Throlghaut | Max Throughau
Width (bits/s) (bits/s)
2 0 8 16 2399414206 3599121308
2 0 10 32 4798828411 7198242617
2 0 12 32 4798828411 7198242617
3 0 8 32 4798828411 7198242617
3 0 10 32 4798828411 7198242617
3 0 12 64 9597656822 14396485233
2 1 8 32 4798828411 7198242617
2 1 10 32 4798828411 7198242617
2 1 12 64 9597656822 14396485233
3 1 8 32 4798828411 7198242617
3 1 10 64 9597656822 14396485233
3 1 12 64 9597656822 14396485233

This can be compared to the user required throughput for any given video size by
performing the calculation showndn Equation 2-3.

bits frames lines _pixels channels bits
= X X - X B
seconds second frame' line pixel channel

Equation 2-3

Resource Utilization

Resources required for devices are estimated in Table,2-3 through.Table 2-6 and use the
same configuration for estimating resources for Virtex-7 and Kintex-7 devices. UltraScale™
results are expected to be similar to 7 series results.

Resource usage values were generated using the Xilinx Vivado Design Suite.(Resource
usage values generated using Vivado tools are expected to be similar) They are derived
from post-MAP reports, but may change due to optimization settings or post-PAR
optimization.

All resource estimate configurations containing Graphics Controller layers have the
Graphics Controller parameters set to the following:

e Instructions = 48
« Number of Colors = 16
« Number of Characters = 96

« Character Width = 8

Video On-Screen Display v6.0 www.xilinx.com

PG010 November 18, 2015

l Send Feedback I 11

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=11

& XILINX. Resource Utilization

+ Character Height = 8

« ASCII Offset = 32

» Character Bits per Pixel = 1

* Number of Strings = 8

* Maximum String Length = 32

Different Graphics Controller parameter settings affect block RAM utilization. The following
equation yields the upper bound of the block RAM utilization for Virtex-7 devices. The
actual utilization may be lower due to block RAM data packing.

Number of Block RAMs <=
(Maximum Screen Width) * LOG2(Number of Colors) /8192
+ Instructions / 128

+ (Number of Characters) * (Character Width) * (Character Height) * (Character Bits per
Pixel) / 8192

+ (Number of Strings)™* (Maximum String Length) / 1024

The following equation yields thetuppéer bound of the block RAM utilization for Kintex-7
devices. The actual utilization may be lower due to block RAM data packing.

Number of Block RAMs <=
(Maximum Screen Width) * LOG-2(Number'of Colors) /4096
+ Instructions / 128

+ (Number of Characters) * (Character Width) * (Character Height) * (Character Bits per
Pixel) / 8192

+ (Number of Strings) * (Maximum String Length) / 1024

The Maximum Screen Width parameter does not affect the AXI4-Streamiinput layer
resources.

Table 2-3 shows the resource estimates for Virtex-7 devices, and Table 2-4 shows the
resource estimates for Kintex-7 devices.

Table 2-3: Virtex-7 FPGA Performance

Data . Maximum
Layer Type Channel F\:)I:Irﬁ:t Layers Screen XtrselriréstSP BRAM | LUTs FFs
Width Width
Graphics Controller 8 yuva_422 1 1280 2 2 2335 2500
Graphics Controller 8 yuva_422 2 1280 4 4 3804 3728

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 12
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=12

& XILINX. Resource Utilization

Table 2-3: Virtex-7 FPGA Performance (Cont’d)

Layer Type CI'Iuja_ar:zel F\grdn?:t Layers M::':l::;m Xtrsel?Z:ESP BRAM | LUTs FFs
Width Width
Graphics Controller 8 yuva_422 8 4095 16 24 11816 12344
Graphics Controller 8 yuva_444 1 1280 3 2 2338 2595
Graphics Controller 8 yuva_444 2 1280 6 4 3850 3898
Graphics Controller 8 yuva_444 8 4095 24 24 11746 13322
Graphics Controller 12 yuva_422 1 1280 2 2 2373 2723
Graphics Controller 12 yuva_422 2 1280 4 4 3893 4142
Graphics Controller 12 yuva_422 8 4095 16 24 12189 14162
Graphics Controller 12 yuva_444 1 1280 3 2 2384 2864
Graphics Controller 12 yuva_444 2 1280 6 4 3939 4419
Graphics Controller 12 yuva_444 8 4095 24 24 14107 16468
AXI4-Stream 8 yuva_422 1 1280 2 0 1245 1772
AXI4-Stream 8 yuva_422 2 1280 4 0 1536 2300
AXI4-Stream 8 yuva_422 8 4095 16 0 5119 7261
AXI4-Stream 8 yuva_444 1 1280 3 0 1256 1890
AXI4-Stream 8 yuva_444 2 1280 6 0 1565 2515
AXI4-Stream 8 yuva_444 8 4095 24 5560 8155
AXI4-Stream 12 yuva_422 1 1280 2 0 1261 1966
AXI4-Stream 12 yuva_422 2 1280 4 0 1639 2654
AXI4-Stream 12 yuva_422 8 4095 16 5865 8723
AXI4-Stream 12 yuva_444 1 1280 3 0 1282 2142
AXI4-Stream 12 yuva_444 2 1280 6 0 1694 3000
AXI4-Stream 12 yuva_444 8 4095 24 0 6991 11012
Table 2-4: Kintex-7 FPGA Performance
Layer Type Cl?a'ant 2el F\:)ifr::t Layers Msa:r_le:::l:\m Xtrselri'r;:;)SP BRAM | LUTs FFs
Width Width

Graphics Controller 8 yuva_422 1 1280 2 2 2335 2500
Graphics Controller 8 yuva_422 2 1280 4 4 3803 3728
Graphics Controller 8 yuva_422 8 4095 16 24 11118 | 12134
Graphics Controller 8 yuva_444 1 1280 3 2 2341 2595
Graphics Controller 8 yuva_444 2 1280 6 4 3842 3898
Graphics Controller 8 yuva_444 8 4095 24 24 11635 | 13321
Graphics Controller 12 yuva_422 1 1280 2 2 2379 2723
Graphics Controller 12 yuva_422 2 1280 4 4 3889 4142

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 13
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=13

& XILINX

Resource Utilization

PG010 November 18, 2015

l Send Feedback I

Table 2-4: Kintex-7 FPGA Performance (Cont’d)
Layer Type Cl?a?::el F\tlairdn?(a)t Layers Msaé(l:lgzz:m Xtrselri?:;)SP BRAM | LUTs FFs
Width Width
Graphics Controller 12 yuva_422 8 4095 16 24 13091 | 14701
Graphics Controller 12 yuva_444 1 1280 3 2 2377 2864
Graphics Controller 12 yuva_444 2 1280 6 4 3940 4419
Graphics Controller 12 yuva_444 8 4095 24 24 14103 | 16468
AXI4-Stream 8 yuva_422 1 1280 2 0 1244 1772
AXI4-Stream 8 yuva_422 2 1280 4 0 1529 2300
AXI4-Stream 8 yuva_422 8 4095 16 0 5129 7261
AXI4-Stream 8 yuva_444 1 1280 3 0 1252 1890
AXI4-Stream 8 yuva_444 2 1280 6 0 1568 2515
AXI4-Stream 8 yuva_444 8 4095 24 5516 8153
AXI4-Stream 12 yuva_422 1 1280 2 0 1261 1966
AXI4-Stream 12 yuva_422 2 1280 4 0 1637 2654
AXI4-Stream 12 yuva 422 8 4095 16 5827 8723
AXI4-Stream 12 yuval444 1 1280 3 0 1285 2142
AXI4-Stream 12 yuva_444 2 1280 6 0 1692 3000
Table 2-5: Artix-7 FPGA Performance
Data - Maximum Xtreme
Layer Type C‘Rla_nnel Video Format| Layers Scr:een DSP BRAM | LUTs FFs
idth Width Slices
Graphics Controller 8 yuva_422 1 1280 2 2 2334 2500
Graphics Controller 8 yuva_422 2 1280 4 4 3806 3728
Graphics Controller 8 yuva_422 8 4095 16 24 11004 12131
Graphics Controller 8 yuva_444 1 1280 3 2 2345 2595
Graphics Controller 8 yuva_444 2 1280 6 4 3845 3898
Graphics Controller 8 yuva_444 8 4095 24 24 12562 13511
Graphics Controller 12 yuva_422 1 1280 2 2 2361 2723
Graphics Controller 12 yuva_422 2 1280 4 4 3896 4142
Graphics Controller 12 yuva_422 8 4095 16 24 11987 14139
Graphics Controller 12 yuva_444 1 1280 3 2 2373 2864
Graphics Controller 12 yuva_444 2 1280 6 4 3938 4419
Graphics Controller 12 yuva_444 8 4095 24 24 12764 15835
AXI4-Stream 8 yuva_422 1 1280 2 0 1243 1772
AXI4-Stream 8 yuva_422 2 1280 4 0 1534 2300
AXI4-Stream 8 yuva_422 8 4095 16 0 5127 7261
Video On-Screen Display v6.0 www.xilinx.com 14

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=14

& XILINX

Table 2-5: Artix-7 FPGA Performance (Cont’d)

Resource Utilization

Data _ Maximum Xtreme
Layer Type Cha_nnel Video Format| Layers Scr:een DSP BRAM | LUTs FFs
Width Width Slices
AXI4-Stream 8 yuva_444 1 1280 3 0 1256 1890
AXI4-Stream 8 yuva_444 2 1280 6 0 1566 2515
AXI4-Stream 8 yuva_444 8 4095 24 0 5703 8456
AXI4-Stream 12 yuva_422 1 1280 2 0 1262 1966
AXI4-Stream 12 yuva_422 2 1280 4 0 1641 2654
AXI4-Stréam 12 yuva_422 8 4095 16 0 6111 9122
AXI4-Stream 12 yuva_444 1 1280 3 0 1285 2142
AXI4-Stream 12 yuva_444 2 1280 6 0 1691 3000
Table 2-6: Zynq -7000 Device Performance
Layer Type Crll:)a?:ﬁel F\éirfjn?gt Layers MSa:r.lt;:lr‘\m Xtrglri'rztéls)SP BRAM | LUTs FFs
Width Width
Graphics Controller 8 yuvad422 1 1280 2 2 2077 1800
Graphics Controller 8 yuva_422 2 1280 4 4 3374 2978
Graphics Controller 8 yuva_422 8 4095 16 24 11326 12066
Graphics Controller 8 yuva_444 1 1280 3 2 2159 1895
Graphics Controller 8 yuva_444 2 1280 6 4 3498 3164
Graphics Controller 8 yuva_444 8 4095 24 24 11823 | 13292
Graphics Controller 12 yuva_422 1 1280 2 2 2256 2007
Graphics Controller 12 yuva_422 2 1280 4 4 3643 3339
Graphics Controller 12 yuva_422 8 4095 16 24 12201 14119
Graphics Controller 12 yuva_444 1 1280 3 2 2329 2134
Graphics Controller 12 yuva_444 2 1280 6 4 3820 3588
Graphics Controller 12 yuva_444 8 4095 24 24 13064 | 15896
AXI4-Stream 8 yuva_422 1 1280 2 0 1041 1130
AXI4-Stream 8 yuva_422 2 1280 4 0 1430 1656
AXI4-Stream 8 yuva_422 8 4095 16 0 6343 7108
AXI4-Stream 8 yuva_444 1 1280 3 0 1094 1232
AXI4-Stream 8 yuva_444 2 1280 6 0 1511 1850
AXI4-Stream 12 yuva_422 1 1280 2 0 1164 1306
AXI4-Stream 12 yuva_422 2 1280 4 0 1613 1959
AXI4-Stream 12 yuva_444 2 1280 6 0 1725 2240

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

| Send Feedback I

15

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=15

& XILINX

Port Descriptions

Port Descriptions

The Video On-Screen Display core uses industry standard control and data interfaces to
connect to other system components. The following sections describe the various interfaces
available with the core. Figure 2-1 illustrates an I/O diagram of the OSD core with one
AXI4-Stream input shown. Some signals are optional and not present for all configurations
of the core. The AXI4-Lite interface and the IRQ pin are present only when the core is
configured via the GUI with an AXI4-Lite control interface. The INTC_IF interface is present
only when'the core is configured via the GUI with the INTC interface enabled.

Video On-Screen Display

s_axis_videoO_tdata

m_axis_video_tdata (=

» s _axis_videoO_tvalid m_axis_video_tvalid >
AXI|4-Stream - s_axis_videoO_tready m_axis_video_tready |« AXI4-Stream
Slave (Input) > s_axis_videoQ_tlast m_axis_video_tlast > Master (Output)
Interface »_szaxis_videoO_tuser m_axis_video_tuser | » Interface

s_axidaclk irq
s_axi_aclken
s_axi_aresetn
s_axi_awaddr[8:0]
s_axi_awvalid
s_axi_awready
s_axi_wdata[31:0]
s_axi_wstrb[31:0]

INTC_if[63:0] t—

Optional
AXI4-Lite
Control
Interface

s_axi_wvalid
s_axi_wready
s_axi_bresp[1:0]
s_axi_bvalid

s_axi_bready
s_axi_araddr[8:0]
s_axi_arvalid
s_axi_arready
s_axi_rdata[31:0]
s_axi_rresp[31:0]
s_axi_rvalid
s_axi_rready

aclk
aclken
aresetn

Yyvy VATtAVLVAtAVLlAVLVVV

Figure 2-1: OSD Core Top-Level Signaling Interface

Core Interfaces

AXl4-Stream Interface

The Video On-Screen Display core uses an AXI4-Stream interface to connect to the AXI
VDMA and other Video IP with AXI4-Stream interfaces. The AXI VDMA core provides access
to external memory, and registers that allow the user to specify the location in memory of

Video On-Screen Display v6.0 www.xilinx.com 16

PG010 November 18, 2015

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=16

& XILINX. Port Descriptions

the various layer data buffers that the OSD core accesses. The OSD core provides registers
for configuring the placement, size and transparency of each video layer. The output is an
AXI4-Stream interface.

Processor Interface

There are many video systems that use an integrated processor system to dynamically
control the parameters within the system. This is important when several independent
image processing cores are integrated into a single FPGA. The Video On-Screen Display
core can be configured with an optional AXI4-Lite interface.

Common Interface Signals

Table 2-7 summarizes the signals which are NOT included in the AXI4 interfaces (AXI4-Lite
and AXI4-Stream).

Table 2-7: Common Interface Signals

Signal Name |Direction| Width Description
ACLK In 1 Video Core Clock
ACLKEN In 1 Videa Core Active High Clock Enable
ARESETn In 1 Video Cofre Active Law Synchronous Reset
INTC_IF INTERRUPT CONTROL INTERFACE

Out 6 Optional Extefnal Interrupt Controller Interface.
Available only when "Include INTC_IF" is selected on GUL

IRQ

PROCESSOR INTERRUPT.

Out 1 Optional Interrupt Request. Available only when "Include AXI4-Lite
interface" is selected on GUL

The ACLK, ACLKEN and ARESETn signals are shared between the core and the AXI4-Stream
data interfaces. The AXI4-Lite control interface has its own set.of clock, clock enable and
reset pins: S_AXI_ACLK, S_AXI_ACLKEN and S_AXI_ARESETn. Referto Interrupts for a
detailed description of the INTC_IF and IRQ pins.

ACLK

The AXI4-Stream interface must be synchronous to the core clock signal AcLK. All
AXI4-Stream interface input signals are sampled on the rising edge of ACLK. All
AXI4-Stream output signal changes occur after the rising edge of ACLK. The AXI4-Lite
interface is unaffected by the ACLK signal.

ACLKEN

The ACLKEN pin is an active-high, synchronous clock-enable input pertaining to
AXI4-Stream interfaces. Setting ACLKEN low (de-asserted) halts the operation of the core

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 17

PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=17

& XILINX

Port Descriptions

despite rising edges on the ACLK pin. Internal states are maintained, and output signal
levels are held until ACLKEN is asserted again. When ACLKEN is de-asserted, core inputs are
not sampled, except ARESETn, which supersedes ACLKEN. The AXI4-Lite interface is

unaffected by the ACLKEN signal.

ARESETn

The ARESETn pin is an active-low, synchronous reset input pertaining to only AXI4-Stream
interfaces. ARESETn supersedes ACLKEN, and when set to O, the core resets at the next
rising edge.of ACLK even if ACLKEN is de-asserted. The ARESETn signal must be
synchronous to the ACLK and must be held low for a minimum of 32 clock cycles of the
slowest clock. The AXI4-Lite interface is unaffected by the ARESETn signal.

Table 2-8idescribes the AXI4-Stream signal names and descriptions.

Table 2-8: Common Port Descriptions

Port Name

Dir

Width

Description

Slave AXI4-Stream Interfaces?)

s_axis_video<LAYER_NUM>_axis_tdata

I

[n-1: O](l)

AXI4- STREAM DATA IN
Input AXI4-Stream data.

Input layer data for layers set to External AXIS. Data
is read the clock cycle s<LAYER_NUM>_axis_tvalid
and s<LAYER_NUM>_axis_tready are both High.

muis C_DATA_WIDTH for the following bit definitions.
Data format for Layer 0 (2 Channels):

¢ Bits'(n-1)-3*m: RESERVED®)

* Bits (3*m-1)-2*m: Alpha Channel
 Bits«(2*m=L)=m: Data Channel 1

« Bits (m-1)=0: Data Channel 0

Data format for Layer O (3 Channels):

« Bits (n-1)-4*m: RESERVED®

* Bits (4*m-1)-3*miAlpha Channel

« Bits (3*m-1)-2*m: Data Chahnel 2

e Bits (2*m-1)-m: Data Channeld

« Bits (m-1)-0: Data Channel®©

Data format for Layers 1-7'is the same for Layer 0.

s_axis_video<LAYER_NUM> _axis_tuser

AXI4-STREAM VIDEO SOF

Indicates the start of frame of the video stream.
« 1 = Start of frame; first pixel of frame

« 0 = Not first pixel of frame

s_axis_video<LAYER_NUM> _axis_ tvalid

AXI4- STREAM VALID IN

Indicates AXI4-Stream data bus,
s<LAYER_NUM>_axis_tdata, is valid.

« 1 = Write data is valid.
« 0 = Write data is not valid.

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com l Send Feedback I 18

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=18

& XILINX

Table 2-8: Common Port Descriptions (Cont’d)

Port Descriptions

Port Name Dir| Width Description
s_axis_video<LAYER_NUM> _axis_ tready | O 1 AXI4- STREAM READY
Indicates AXI4-Stream target is ready to receive
stream data.
« 1 = Ready to receive data.
« 0 = Not ready to receive data.
s_axis_video<LAYER_NUM>_axis_ tlast I 1 AXI4-STREAM LAST

Indicates last data beat per video line of AXI4-Stream
data.

« 1 = Last data beat of video line.
* 0 = Not last data beat.

Master AXI4-Stream Interface

m_axis_video_tdata 0]

[n-1:0] @

AXI4- STREAM DATA OUT

Output AXI4-Stream data. Data format is the same as
the sO_axis_tdata format except the m_axis_tdata bus
has no alpha channel.

m_axis_video_tuser (0]

AXI4-STREAM VIDEO SOF

Indicates the start of frame of the video stream.
« 1 = Start of frame; first pixel of frame

« 0 = Not first pixel of frame

m_axis_ video_tvalid 0}

AXI4- STREAM VALID OUT

Indicates AXI4-Stream data bus, m_axis_tdata, is
valid.

» A1 = Write data is valid.
« 0= Write data is not valid.

m_axis_ video_tready I

AXI4- STREAM READY

Indicates/AXI4-Stream target is ready to receive
stream data.

« 1 = Readyto receive data.
« 0 = Not ready to receive data.

m_axis_ video_tlast (0]

AXI4-STREAM LAST

Indicates last data beat pervideodine of AXI4-Stream
data.

« 1 = Last data beat of video line.
* 0 = Not last data beat.

1. The data width, n of the s<LAYER_NUM>_axis_tdata bus is calculated as the next multiple of 8 (padded to nearest byte)
greater than the data channel width multiplied by the number of data channels including the alpha channel, or
(C_LNUM_DATA_CHANNELS+C_ALPHA_CHANNEL_EN)*C_DATA_WIDTH.

2. The data width, n, of the m_axis_tdata bus is calculated as the next multiple of 8 (padded to nearest byte) greater than the
data channel width multiplied by the number of data channels excluding the alpha channel, or

C_NUM_DATA_CHANNELS*C_DATA_WIDTH.
3. All reserved input pins must be driven by '0'".

4. LAYER_NUM in the Slave AXI4-Stream interfaces indicates the layer number for that input. For example, if layer 3 is
configured for AXI4-Stream Input, then the ports for this input ares_axis_video3_tdata, s_axis_video3_tuser,
s_axis_video3_tvalid, s_axis_video3_tready, and s_axis_video3_tlast.

Video On-Screen Display v6.0

www.xilinx.com

19

PG010 November 18, 2015

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=19

& XILINX. Port Descriptions

The ACLK, ACLKEN and ARESETn signals are shared between the core, the AXI4-Stream
data interfaces, and the AXI4-Lite control interface.

Control Interface

When configuring the core, the user has the option to add an AXI4-Lite register interface to
dynamically control the behavior of the core. The AXI4-Lite slave interface facilitates
integrating the core into a processor system, or along with other video or AXI4-Lite
compliant IP, connected via AXI4-Lite interface to an AXI4-Lite master. In a static
configuration with a fixed set of parameters (constant configuration), the core can be
instantiated without the AXI4-Lite control interface, which reduces the core Slice footprint.

Constant Configuration

The constant configuration enables users to instantiate the On-Screen Display core in a
fixed screen layout. The,number of layers, their size, their position, their priority and alpha
(if not using pixel-level alpha) is set at build time. Since there is no AXI4-Lite interface, the
core is not programmable,.but can be reset, enabled, or disabled using the ARESETn and
ACLKEN ports. OSD graphics controllers are currently not supported by the constant
configuration.

AXl4-Lite Interface

The AXI4-Lite interface allows a userto dynamically control parameters within the core.
Core configuration can be accomplished'using an AXI4-Lite or AXI4-MM master state
machine, or an embedded ARM or soft system processor such as MicroBlaze.

The OSD core can be controlled via the AXI4-Lite.interface using read and write transactions
to the OSD register space. Table 2-9 describes the I/O signals associated with the OSD core.

Table 2-9: AXl4-Lite Interface Signals

Signal Name Direction| Width Description
s_axi_aclk In 1 AXI4-Lite clock
s_axi_aclken In 1 AXI4-Lite clock enable
s_axi_aresetn In 1 AXI4-Lite synchronous Active Low reset
s_axi_awvalid In 1 AXI4-Lite Write Address Channel Write Address Valid.
s_axi_awread AXI4-Lite Write Address Channel Write Address
Out 1 Ready. Indicates DMA ready to accept the write
address.
s_axi_awaddr In 32 AXI4-Lite Write Address Bus
s_axi_wvalid In 1 AXI4-Lite Write Data Channel Write Data Valid.
s_axi_wready out 1 AXIfl-Lite Write.Data Channel Write Data) Ready.
Indicates DMA is ready to accept the write data.
s_axi_wdata In 32 AXI4-Lite Write Data Bus

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 20
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=20

& XILINX. Port Descriptions

Table 2-9: AXl4-Lite Interface Signals (Cont’d)

Signal Name Direction| Width Description
s_axi_bresp AXI4-Lite Write Response Channel. Indicates results of
Out 2 .
the write transfer.
s_axi_bvalid AXI4-Lite Write Response Channel Response Valid.
Out 1 . ;)
Indicates response is valid.
s_axi_bready n 1 AXI4-Lite Write Response Channel Ready. Indicates
target is ready to receive response.
s_axi_arvalid In 1 AXI4-Lite Read Address Channel Read Address Valid
s_axi_arready Ready. Indicates DMA is ready to accept the read
Out 1
address.
s, axi_araddr In 32 AXI4-Lite Read Address Bus
s_axi_rvalid Out 1 AXI4-Lite Read Data Channel Read Data Valid
s_axi_rready In 1 AXI4-Lite Read Data Channel Read Data Ready.
Indicates target is ready to accept the read data.
s_axi_rdata Out 32 AXI4-Lite Read Data Bus
s_axi_rresp out 5 AXI4-Lite Read Response Channel Response. Indicates
results of the read transfer.
S_AXI_ACLK

The AXI4-Lite interface must be synchrenous to the S_AXI_ACLK clock signal. The
AXI4-Lite interface input signals are sampled on the rising edge of ACLK. The AXI4-Lite
output signal changes occur after the rising edgefof ACLK. The AXI4-Stream interfaces
signals are not affected by the S_AXI_ACLK.

S_AXI_ACLKEN

The S_AXI_ACLKEN pin is an active-high, synchronous clock-enable input for the AXI4-Lite
interface. Setting S_AXI_ACLKEN low (de-asserted) halts'the/operation,of the AXI4-Lite
interface despite rising edges on the S_AXI_ACLK pin. AXI4-Lite interface states are
maintained, and AXI4-Lite interface output signal levels are held until SC AXT. ACLKEN is
asserted again. When S_AXI_ACLKEN is de-asserted, AXI4-Lite interfaceiinputs are not
sampled, except S_AXI_ARESETn, which supersedes S_AXI_ACLKEN. The AXI4-Stream
interfaces signals are not affected by the S_AXI_ACLKEN.

S_AXI_ARESETn

The S_AXI_ARESETn pin is an active-low, synchronous reset input for the AXI4-Lite
interface. S_AXI_ARESETn supersedes S_AXI_ACLKEN, and when set to O, the core resets
at the next rising edge of S_AXI_ACLK even if S_AXI_ACLKEN is de-asserted. The
S_AXI_ARESETn signal must be synchronous to the S_AXI_ACLK and must be held low
for a minimum of 32 clock cycles of the slowest clock. The S_AXI_ ARESETn input is

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 21
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=21

& XILINX. 1/0 Interface and Timing

resynchronized to the ACLK clock domain. The AXI4-Stream interfaces and core signals are
also reset by S_AXI_ARESETn.

1/0 Interface and Timing

This section describes the signals and timing of the different interfaces of the Xilinx Video
On-Screen Display.

Input’AXI4-Stream Slave Interface(s)

The Xilinx VideosOn-Screen Display can be configured to have up to eight input
AXI4-stream slavesinterfaces. These interfaces include and require the TDATA, TVALID,
TREADY and TLAST AXI4-Stream signals. The s<LAYER_NUM>_axis_tlast (TLAST)
must be asserted Highsduring the last TDATA transaction of each video line. The
s<LAYER_NUM>_axis_tdata (TDATA) width must be a multiple of 8, with valid widths of
16, 24, 32, 40 or 48.'Unused bits should be driven by zero. Figure 2-7 shows that the
s<LAYER_NUM>_axis_tlast portis asserted High during the last pixel transfer of each
line, denoted by Py4 and Pygs.

Video Data

The AXI4-Stream interface specification restricts TDATA widths to integer multiples of

8 bits. Therefore, 10 and 12 bit data must be padded with zeros on the MSB to form N*8 bit
wide vector before connecting to s_axis_video_tdata. Padding does not affect the size
of the core.

Similarly, data on the OSD output m_axis_video_ltdata is packed and padded to
multiples of 8 bits as necessary, as seen in the RGB/YCbCr.examples shown in Figure 2-2,
Figure 2-3, and Figure 2-4. Zero padding the most significant bits is only necessary for 10
and 12 bit wide data.

0 pad Component R Component B Component G
7777 I | “
40 32 24 16 8 bit 0

X12683

Figure 2-2: 12-bit RGB Data Encoding on TDATA

0 pad Component Cr Component Ch Component Y
77 I I ‘
40 32 24 16 8 bit 0

Figure 2-3: 12-bit YCbCr (4:4:4) Data Encoding on TDATA

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 22
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=22

& XILINX. 1/0 Interface and Timing

Component Cb/Cr Component Y
] | |
24 16 8 bit 0

Figure 2-4: 12-bit YCbCr (4:2:2) Data Encoding on TDATA

READY/VALID Handshake

A valid transfer occurs whenever READY, VALID, ACLKEN, and ARESETn are high at the
rising edge of ACLK, as seen in Figure 2-5. During valid transfers, DATA only carries active
vide6 data. Blank periods and ancillary data packets are not transferred via the AXI4-Stream
video protocol,

Guidelines on Driving s_axis_video_tvalid

Once s_axis_video_tvalid is asserted, no interface signals (except the OSD core
driving s_axis_video_sgtready) may change value until the transaction completes
(s_axis_video_tready, s_axis_video_tvalid, and ACLKEN are high on the rising
edge of ACLK). Once asserted,s_axis_video_tvalid may only be de-asserted after a
transaction has completed. Transactions‘may not be retracted or aborted. In any cycle
following a transaction, s_axisf{video_tvalid can either be de-asserted or remain
asserted to initiate a new transfer.

ACLK 0| |1| |2| |:=. 4 5 |E-| |?| |8| |9| Iml |11|
on TN~ e e,

|]] 1 L]
1 ! | I
i uL—H‘ i |
T =t \ .
]]
1 T
I

|

]

|

|

| [
| I
|]
| 1 | 1
T T
| |
J |
! L

\

1
|
|
]
|
1
|
|
|
|
|
)

|
I
|
I
Figure 2-5: Example of READY/VALID Handshake, Start of a New Frame

Guidelines on Driving m_axis_video_tready

The m_axis_video_tready signal may be asserted before, during or after the cycle in
which the OSD core asserted m_axis_video_tvalid. The assertion of
m_axis_video_tready may be dependent on the value of m_axis_video_tvalid. A slave
that can immediately accept data qualified by m_axis_video_tvalid, should pre-assert
its m_axis_video_tready signal until data is received. Alternatively,
m_axis_video_tready can be registered and driven the cycle following VALID

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 23
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=23

& XILINX. 1/0 Interface and Timing

assertion. It is recommended that the AXI4-Stream slave should drive READY
independently, or pre-assert READY to minimize latency.

Start of Frame Signals - m_axis_video_tuser0,
s_axis_video_tuser0

The Start-Of-Frame (SOF) signal, physically transmitted over the AXI4-Stream TUSERO
signal, marks the first pixel of a video frame. The SOF pulse is 1 valid transaction wide, and
must coincide with the first pixel of the frame, as seen in Figure 2-5. SOF serves as a frame
synchronization signal, which allows downstream cores to re-initialize, and detect the first
pixel of @ frame. The SOF signal may be asserted an arbitrary number of ACLK cycles before
the first pixel value is presented on DATA, as long as a VALID is not asserted.

End of Line Signals - m_axis_video_tlast, s_axis_video_tlast

The End-Of-Line,signal;"physically transmitted over the AXI4-Stream TLAST signal, marks
the last pixel of a line. The EOL pulse is 1 valid transaction wide, and must coincide with the
last pixel of a scan-linepas’seen in Figure 2-6.

aigigipiplglin el Nalsisl
1 I 1 X

oata e, | 7ue [o JENK *.) A3 BE N |

UALIDE I|I | f' \ | | | "._

1
|
I I
READY | 1 1
i L
[1
T 1
| i
| I
et
T
I

1
]
1
:
EOL | H' I|l
1
]
1
1
]

e R

SOF |

I Y
#usl Line ol nexd bame

T
1
|

T I

I |

1 1

I I

| |
T

1 I

| |

I 1

I [T

i Last line of lrame 1

Figure 2-6: Use of EOL and SOF Signals

Output AXI4-Stream Master Interface

The output interface of the Xilinx Video On-Screen Display can be«onfigured to be a
AXI14-Stream interface. This interface includes and requires the TDATA, TVALID, TREADY
and TLAST AXI4-Stream signals. The m_axis_tlast (TLAST) will be driven High during
the last TDATA transaction of each video line. The m_axis_tdata (TDATA) width must be
a multiple of 8, with valid widths of 16, 24, 32 or 40. Unused bits will be driven by zero.

Video On-Screen Display v6.0 www.xilinx.com l Send Feedback I 24
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=24

& XILINX. 1/0 Interface and Timing

Figure 2-7 shows example AXI4-Stream transactions for two video frames that are 5 pixels
by 2 lines.

Sl AYER_NUM=_a

S<LAYER_NUMs

s<LAYER_NUM:_nx

5<LAYER_NUM:_ax

5<LAYER_NUM>_axis_tast

Figure 2-7: Input AXI4-Stream Timing

Figure 2-8 shows example AXI4-Stream transactions for 2 video frames of size 5 pixels by 2
lines.

Figure 2-8:¢ Output AXI4-Stream Timing

Figure 2-8 shows that the m_axis_tlastiportis driven High during the last pixel transfer
of each line, denoted by Py, and Pq4.

Interrupts

The Xilinx Video On-Screen Display provides an optional64-bit output bus, INTC_IF[63:0],
for host processor interrupt status when the Include INTCLTIF option is set in the core GUL
All interrupt status bits can trigger an interrupt on the active High edge. Status bits are set
High when the internal event occurs and are cleared ether at the startior at the end of the
vertical blanking interval period defined by the vblank_in port.

Interrupt status bits 31-3 are cleared at the start of the vertical blanking interval period.
These bits include the graphics controller address overflow, the graphics controller
instruction error, the output FIFO overflow error, the input FIFOs underflow error and the
vertical blanking interval end interrupt status bits.

Interrupt status bits 2-0 are cleared at the end of the vertical blanking interval period. These
bits include the vertical blanking interval period start, frame error and frame done interrupt
status bits.

The interrupt status output bus can easily be integrated with an external interrupt controller
that has independent interrupt enable/mask, interrupt clear and interrupt status registers
and that allows for interrupt aggregation to the system processor. An example system

Video On-Screen Display v6.0 www.xilinx.com l Send Feedback I 25
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=25

& XILINX. 1/0 Interface and Timing

showing the OSD and other processor peripherals connected to an interrupt controller is
depicted in Figure 2-9.

ZYNQ"

AXI Interconnect

IRQ_F2P

Peripheral

Peripheral Y
X

Y

V_0OSD
Core

I
Interrupt Status [31:0]

Y

Interrupt
Controller

V_OSD Top

Figure 2-9: Interrupt Controller Processor Peripherals

The Xilinx Video On-Screen Display, when configured for the AXI4-Litednterface,
automatically contains an internal interrupt controller for enabling/masking and clearing
each interrupt. The 1-bit output port, IRQ, is the interrupt outputdin this mode.

AXl4-Lite Interface

The Xilinx Video On-Screen Display uses the AXI4-Lite Interface to interface to a
microprocessor. Refer to the AMBA AXI4 Interface Protocol website (http://www.xilinx.com/
ipcenter/axi4.htm) for more information on the AXI4 and AXI4-Lite interface signals.

Video On-Screen Display v6.0 www.xilinx.com l Send Feedback I 26
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/ipcenter/axi4.htm
http://www.xilinx.com/ipcenter/axi4.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=26

& XILINX

Register Space

Register Space

This section contains details about the OSD registers.

Address Map

All registers default to 0x00000000 on power-up or software reset unless configured

otherwise by the OSD GUL

Table 2-10: Address Map

Address Read/ | Double Default —
Offset Name Write | Buffered Value Description
0x0000 CONTROL R/W Yes 0 General Control
0x0004 STATUS R/W No 0 Core/Interrupt Status
0x0008 ERROR R/W No 0 Additional Status & Error

Conditions
0x000C IRQ_ENABLE R/W No 0 Interrupt Enable/Clear
0x0010 VERSION R N/A 0x0400a001 | Core Hardware Version
0x0014 RESERVED R N/A 0 RESERVED
0x001C
0x0020 OUTPUT ACTIVE_SIZE R/W Yes Specifiedvia | Horizontal and Vertical
GUI Frame Size (without
blanking)
0x0025 RESERVED R N/A 0 RESERVED
0x0028 OUTPUT ENCODING R N/A Specified via | Frame encoding
GUI
0x002C RESERVED R N/A 0 RESERVED
0x00FC
0x0100 OSD BACKGROUND COLOR 0 R/W Yes Specified via' | Background Color
GUI Channel 0
0x0104 OSD BACKGROUND COLOR 1 R/W Yes Specified via | Background Color
GUI Channel 1
0x0108 OSD BACKGROUND COLOR 2 R/W Yes Specifiedvia | Background Color
GUI Channel 2
0x010C RESERVED R N/A 0 RESERVED
0x0110 OSD LAYER 0 Control R/W Yes Specifiedvia | Video Layer Enable,
GUI Priority, Alpha. Each layer
must have a unique
priority setting.

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

l Send Feedback I 27

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=27

& XILINX

Table 2-10: Address Map (Cont’d)

Register Space

Address Read/ | Double Default —
Offset Name Write | Buffered Value Description
0x0114 OSD LAYER 0 Position R/W Yes Specifiedvia | Video Layer Position

GUI

0x0118 OSD LAYER 0 Size R/W Yes Specifiedvia | Video Layer Size
GUI

0x011C RESERVED R N/A 0 RESERVED

0x0120 OSD LAYER 1 Control R/W Yes Specifiedvia | Video Layer Enable,

GUI Priority, Alpha. Each layer
must have a unique
priority setting.

0x0124 @SD LAYER 1 Position R/W Yes Specifiedvia | Video Layer Position
GUI

0x0128 OSD LAYER 1 Size R/W Yes Specifiedvia | Video Layer Size
GUI

0x012C RESERVED R N/A 0 RESERVED

0x0130 OSD LAYER2:«Control R/W Yes Specifiedvia | Video Layer Enable,

GUI Priority, Alpha. Each layer
must have a unique
priority setting.

0x0134 OSD LAYER 2 Position R/W Yes Specifiedvia | Video Layer Position
GUI

0x0138 OSD LAYER 2 Size R/W Yes Specifiedvia | Video Layer Size
GUI

0x013C RESERVED R N/A 0 RESERVED

0x0140 OSD LAYER 3 Control R/W Yes Specifiedvia | Video Layer Enable,

GUI Priority, Alpha. Each layer
must have a unique
priority setting.

0x0144 OSD LAYER 3 Position R/W Yes Specifiedyia | Video Layer Position
GUI

0x0148 OSD LAYER 3 Size R/W Yes Specified via | Video layer Size
GUI

0x014C RESERVED R N/A 0 RESERVED

0x0150 OSD LAYER 4 Control R/W Yes Specifiedvia | Video Layer Enable,

GUI Priority, Alpha. Each layer
must have a unique
priority setting.

0x0154 OSD LAYER 4 Position R/W Yes Specified via | Video Layer Position
GUI

0x0158 OSD LAYER 4 Size R/W Yes Specifiedvia | Video Layer Size
GUI

0x015C RESERVED R N/A 0 RESERVED

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

l Send Feedback I 28

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=28

& XILINX

Table 2-10: Address Map (Cont’d)

Register Space

Address Read/ | Double Default —
Offset Name Write | Buffered Value Description
0x0160 OSD LAYER 5 Control R/W Yes Specifiedvia | Video Layer Enable,

GUI Priority, Alpha. Each layer
must have a unique
priority setting.

0x0164 OSD LAYER 5 Position R/W Yes Specifiedvia | Video Layer Position
GUI

0x0168 OSD LAYER 5 Size R/W Yes Specifiedvia | Video Layer Size
GUI

0x016C RESERVED R N/A 0 RESERVED

0x0170 OSD LAYER 6 Control R/W Yes Specifiedvia | Video Layer Enable,

GUI Priority, Alpha. Each layer
must have a unique
priority setting.

0x0174 OSD LAYER 6 Position R/W Yes Specifiedvia | Video Layer Position
GUI

0x0178 OSD LAYER 6 Size R/W Yes Specifiedvia | Video Layer Size
GUI

0x017C RESERVED R N/A 0 RESERVED

0x0180 OSD LAYER 7 Control R/W. Yes Specifiedvia | Video Layer Enable,

GUI Priority, Alpha. Each layer
must have a unique
priority setting.

0x0184 OSD LAYER 7 Position R/W Yes Specifiedvia | Video Layer Position

GUI
0x0188 OSD LAYER 7 Size R/W Yes Specifiedvia | Video Layer Size
GUI

0x018C RESERVED R N/A 0 RESERVED

0x0190 OSD GC Write Bank Address R/W No 0 Graphics Controller Write
Bank.Address. Used for
alldnstantiated Graphics
Controllers

0x0194 OSD GC Active Bank Address R/W Yes 0 Graphics Controller
Active Bank Addresses.
Selected after next
vblank. Used for all
Instantiated Graphics
Controllers

0x0198 OSD GC Data R/W No 0 Graphics Controller Data
Register Used to write
instructions, Character
Map, ASCII text strings
and color. Used for all
Instantiated Graphics
Controllers.

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

l Send Feedback I 29

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=29

& XILINX

Register Space

Note: All registers are little endian.

Table 2-11: Control Register (Address Offset 0x0000)
0x0000 CONTROL R/W
Name B its Description
SW_RESET 31 Core reset. Writing a '1" will reset the core. This bit automatically clears when
reset complete.
FSYNC_RESET 30 Frame Sync Core reset. Writing a '1" will reset the core after the start of the
next input frame. This bit automatically clears when reset complete.
RESERVED 29:2 Reserved
REG_UPDATE 1 OSD Register Update Enable Setting this bit to 1 will cause the OSD to
re-read all register values after the next start of frame. Setting this bit to 0
will cause the OSD to use its internally buffered register values. This Register
update enable is not used for Graphics Controller Registers.
SW_ENABLE 0 Enable/Start the OSD This will cause the OSD to start reading from external
memory and writing output
Table 2-12: Stats Register (AddressOffset 0x0004)
0x0004 STATUS R/W
Name B its Description
RESERVED 31:24 | Reserved
LAYER7_ERROR 23 Layer 7 Error. When high check Error Register (0x0008) bits [31:28] for error status.
LAYER6_ERROR 22 Layer 6 Error. When high check Error Register (0x0008) bits [27:24] for error status.
LAYER5_ERROR 21 Layer 5 Error. When high check ErrorsRegister (0x0008) bits [23:20] for error status.
LAYER4_ERROR 20 Layer 4 Error. When high check Error Register (0x0008) bits [19:16] for error status.
LAYER3_ERROR 19 Layer 3 Error. When high check Error¢Register (0x0008) bits [15:12] for error status.
LAYER2_ERROR 18 Layer 2 Error. When high check Error Register(0x0008) bits [11:8] for error status.
LAYER1_ERROR 17 Layer 1 Error. When high check Error Register (0x0008)bits [7:4] for error status.
LAYERO_ERROR 16 Layer O Error. When high check Error Register (0xQ008) bits [3:0) for error status.
RESERVED 15:2 Reserved
EOF 1 End-of-Frame.
1: Processing has reached end of frame. Occurs at the end‘of every.frame.
0: Not currently at EOF.
PROC_STARTED 0 Processing Started.

1: Processing of frame data has begun.

0: Not currently processing.

Note: Writing a '1' to a bit in the STATUS register clears the corresponding interrupt when set.
Writing a '1' to a bit that is cleared, has no effect.

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

| Send Feedback I 30

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=30

& XILINX

Register Space

Table 2-13: Error Register (Address Offset 0x0008)
0x0008 ERROR R/W
Name B its Description

LAYER7_SOF_LATE 31 AXI4-Stream input detected SOF later than configured.

LAYER7_SOF_EARLY 30 AXI4-Stream input detected SOF earlier than configured.

LAYER7_EOL_LATE 29 In AXI4-Stream Input mode: Slave input detected EOL later than configured.
In Graphics Controller mode: Instruction Overflow Interrupt
Indicates that the HOST tried to write beyond the maximum address for the
instruction ram, font ram, text ram or color ram (for the currently selected write
bank address).

LAYER7_EOL_EARLY 28 In AXI4-Stream Input mode: Slave input detected EOL earlier than configured.
In Graphics Controller mode: Instruction Error Interrupt
Indicates that the GC could not complete all instructions. This interrupt is asserted
if'an END opcode (binary 0000) is not found before the end of each graphics line.

LAYER6_SOF_LATE 27, |/AXI4-Stream input detected SOF later than configured.

LAYER6_SOF_EARLY 26 AXI4-Stream input detected SOF earlier than configured.

LAYER6_EOL_LATE 25 In"AXI4<Stream Input mode: Slave input detected EOL later than configured.
In Graphics Controller mode: Instruction Overflow Interrupt
Indicates that the HOST tried to write beyond the maximum address for the
instruction ram, font ramtext ram or color ram (for the currently selected write
bank address).

LAYER6_EOL_EARLY 24 In AXI4-Stream Inpdt mode: Slave input detected EOL earlier than configured.
In Graphics Controllerdmodeé: Instruction Error Interrupt
Indicates that the GC codld not.complete all instructions. This interrupt is asserted
if an END opcode (binary 0000) isshot found before the end of each graphics line.

LAYERS5_SOF_LATE 23 AXI4-Stream input detected SOF latersthan configured.

LAYER5_SOF_EARLY 22 AXI4-Stream input detected SOF earlief than configured.

LAYER5_EOL_LATE 21 In AXI4-Stream Input mode: Slave input,detectedsEOL later than configured.
In Graphics Controller mode: Instruction Overflow Interrupt
Indicates that the HOST tried to write beyond\,thefmaximum address for the
instruction ram, font ram, text ram or color ram‘(for the currently selected write
bank address).

LAYER5_EOL_EARLY 20 In AXI4-Stream Input mode: Slave input detected EOL earliérthan configured.
In Graphics Controller mode: Instruction Error Interrupt
Indicates that the GC could not complete all instructions. This interrupt is asserted
if an END opcode (binary 0000) is not found before the end of each graphics line.

LAYER4_SOF_LATE 19 AXI4-Stream input detected SOF later than configured.

LAYER4_SOF_EARLY 18 AXI4-Stream input detected SOF earlier than configured.

LAYER4_EOL_LATE 17 In AXI4-Stream Input mode: Slave input detected EOL later than configured.

In Graphics Controller mode: Instruction Overflow Interrupt

Indicates that the HOST tried to write beyond the maximum address for the
instruction ram, font ram, text ram or color ram (for the currently selected write
bank address).

Video On-Screen Display v6.0

PG010 November 18, 2015

www.xilinx.com 31

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=31

& XILINX

Register Space

Table 2-13: Error Register (Address Offset 0x0008) (Cont’d)
0x0008 ERROR R/W
Name B its Description
LAYER4_EOL_EARLY 16 In AXI4-Stream Input mode: Slave input detected EOL earlier than configured.
In Graphics Controller mode: Instruction Error Interrupt
Indicates that the GC could not complete all instructions. This interrupt is asserted
if an END opcode (binary 0000) is not found before the end of each graphics line.
LAYER3_SOF_LATE 15 AXI4-Stream input detected SOF later than configured.
LAYER3_SOF_EARLY 14 | AXI4-Stream input detected SOF earlier than configured.
LAYER3_EOL_LATE 13 In AXI4-Stream Input mode: Slave input detected EOL later than configured.
In Graphics Controller mode: Instruction Overflow Interrupt
Indicates that the HOST tried to write beyond the maximum address for the
instruction ram, font ram, text ram or color ram (for the currently selected write
bank address).
LAYER3_EOL_EARLY 12 In AXI4-Stream Input mode: Slave input detected EOL earlier than configured.
In Graphics Controller mode: Instruction Error Interrupt
Indicates.that the GC could not complete all instructions. This interrupt is asserted
if an END opcode (binary 0000) is not found before the end of each graphics line.
LAYER2_SOF_LATE 11 AXI4-Stream'input.detected SOF later than configured.
LAYER2_SOF_EARLY 10 AXI4-Stream{input detected SOF earlier than configured.
LAYER2_EOL_LATE 9 In AXI4-Stream Inputamode: Slave input detected EOL later than configured.
In Graphics Controller mode: Instruction Overflow Interrupt
Indicates that the HOST tried to write beyond the maximum address for the
instruction ram, font ram, text ram or color ram (for the currently selected write
bank address).
LAYER2_EOL_EARLY 8 In AXI4-Stream Input mode: Slave input detected EOL earlier than configured.
In Graphics Controller mode: Instruction Error Interrupt
Indicates that the GC could not complete allinstructions. This interrupt is asserted
if an END opcode (binary 0000) is not found before, therend of each graphics line.
LAYER1_SOF_LATE 7 AXI4-Stream input detected SOF later than configured.
LAYER1_SOF_EARLY 6 AXI4-Stream input detected SOF earlier than configured.
LAYER1_EOL_LATE 5 In AXI4-Stream Input mode: Slave input detected EOL later than configured.
In Graphics Controller mode: Instruction Overflow Interrupt
Indicates that the HOST tried to write beyond the maximum address for the
instruction ram, font ram, text ram or color ram (for the currently selected write
bank address).
LAYER1_EOL_EARLY 4 In AXI4-Stream Input mode: Slave input detected EOL earlier than configured.
In Graphics Controller mode: Instruction Error Interrupt
Indicates that the GC could not complete all instructions. This interrupt is asserted
if an END opcode (binary 0000) is not found before the end of each graphics line.
LAYERO_SOF_LATE 3 AXI4-Stream input detected SOF later than configured.
LAYERO_SOF_EARLY 2 AXI4-Stream input detected SOF earlier than configured.

Video On-Screen Display v6.0

PG010 November 18, 2015

www.xilinx.com 32

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=32

& XILINX. Register Space

Table 2-13: Error Register (Address Offset 0x0008) (Cont’d)

0x0008 ERROR R/W
Name B its Description
LAYERO_EOL_LATE 1 In AXI4-Stream Input mode: Slave input detected EOL later than configured.

In Graphics Controller mode: Instruction Overflow Interrupt

Indicates that the HOST tried to write beyond the maximum address for the
instruction ram, font ram, text ram or color ram (for the currently selected write
bank address).

LAYERO_EOL_EARLY 0 In AXI4-Stream Input mode: Slave input detected EOL earlier than configured.

In Graphics Controller mode: Instruction Error Interrupt

Indicates that the GC could not complete all instructions. This interrupt is asserted
if an END opcode (binary 0000) is not found before the end of each graphics line.

Note: Writing.a'l'te a bit in the ERROR register will clear the corresponding bit when set. If the bit
is cleared and'a,1%is written, this bit will be set.

Table 2-14: IRQ Enable Register (Address Offset 0x000C)

0x000C IRQ_ENABLE R/W
Name B its Description
RESERVED 31:24 Reserved
LAYER7_ERROR_EN 23 Layer 7 Error interrupt enable.
LAYER6_ERROR_EN 22 Layer 6¢Error.nterrupt enable.
LAYER5_ERROR_EN 21 Layer 5 Error interrupt enable.
LAYER4_ERROR_EN 20 Layer 4 Error interrupt_enable.
LAYER3_ERROR_EN 19 Layer 3 Error interrupt enable.
LAYER2_ERROR_EN 18 Layer 2 Error interrupt-€nable:
LAYER1_ERROR_EN 17 Layer 1 Error interrupt enable.
LAYERO_ERROR_EN 16 Layer O Error interrupt enable.
RESERVED 15:2 Reserved
EOF_EN 1 End-of-Frame interrupt enable.
PROC_STARTED_EN 0 Processing Started interrupt enable.

Note: Setting a bit high in the IRQ_ENABLE register enables the corresponding interrupt. Bits that
are low mask the corresponding interrupt from triggering.

Table 2-15: Version Register (Address Offset 0x0010)

0x0010 VERSION R
Name B its Description

MAJOR 31:24 Major version as a hexadecimal value (0x00 - OxFF)
MINOR 23:16 Minor version as a hexadecimal value (0x00 - OxFF)

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 33
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=33

& XILINX

Register Space

Table 2-15: Version Register (Address Offset 0x0010) (Cont’d)
0x0010 VERSION R
Name B its Description
REVISION 15:12 Revision letter as a hexadecimal character from (‘a' - 'f').
Mapping is as follows: 0XA->"a’, 0xB->"b', 0xC->'c', O0xD->"d',
etc.
PATCH_REVISION 11:8 Core Revision as a single 4-bit
Hexadecimal value (0x0 - OxF) Used for patch tracking.
INTERNAL_REVISION 7:0 Internal revision number.
Hexadecimal value (0x00 - OxFF)

Table'2-16: Output Active Size Register (Address Offset 0x0020)
0x0020 At?TlljvTEP_%TZE R/W
Name B.its Description
RESERVED 31:28 Reserved
ACTIVE_VSIZE 27:16 Vertical Active Frame Size. The height of the output frame without
blanking in number of lines.
RESERVED 15:12 Reserved
ACTIVE_HSIZE 11:0 Horizontal Active Frame Size. The width of the output frame without
blanking in .number of pixels/clocks.

Table 2-17: Output Encoding Register (Address Offset 0x0028)
OUTPUT
0x0028 ENCODING R
Name B its Description
RESERVED 31:6 Reserved
NBITS 5:4 Number of bits per color compenent channel
0: 8-bits
1: 10-bits
2: 12-bits
3: 16-bits (not currently supported)
VIDEO_FORMAT 3:0 Output Video Format
0: YUV 4:2:2
1: YUV 4:4:4
2: RGB
3: YUV 4:2:.0

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

l Send Feedback I 34

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=34

& XILINX

Register Space

Table 2-18: OSD Background Color 0 Register (Address Offset 0x0100)

0x0100 OSD BACKGROUND COLOR 0 R/W
Name B its Description
RESERVED 31: C_S_AXIS_VIDEO_DATA_WIDTH Reserved
BACKGROUND [C_S_AXIS_VIDEO_DATA_WIDTH-1:0] Background Color component of channel 0.
COLOR O Typically, Y (luma) or Green
Table 2-19: ©OSD Background Color 1 Register (Address Offset 0x0104)
0x0104 OSD BACKGROUND COLOR 1 R/W
Name B its Description
RESERVED 31:°CLS_AXIS_VIDEO_DATA_WIDTH Reserved

BACKGROUND COLOR 1

[C_S_AXIS_VIDEO_DATA_WIDTH-1:0]

Background Color component of channel 1.

Typically, U (Cb) or Blue

Table 2-20: OSD Background Color 2 Register (Address Offset 0x0108)

0x0108 OSD BACKGROUND COLOR2 R/W
Name B its Description
RESERVED 31: C_S_AXIS_VIDEO_DATA_WIDTH Réserved
BACKGROUND [C_S_AXIS_VIDEO_DATA_WIDTH-1:0] Background Color component of channel 2.
COLOR 2 Typically, V(Cr) or Red
Table 2-21: OSD Layer 0 Control Register (Address Offset 0x0110)
0x0110 OSD LAYER 0 CONTROL R/W
Name B its Description
RESERVED 31:17+ C_S_AXIS_VIDEO_DATA_WIDTH Reserved

LAYERO_ALPHA

16+ C_S_AXIS_VIDEO_DATA_WIDTH:16

Layer O Global Alpha Value
Maximum Value (MAX):

For Data Width of 8, MAX is 0x100.
For Data Width of 10, MAX is 0x400.
For Data Width of 12, MAX is 0x1000.
0: 100% Transparent (Layer Off)

MAX: 0% Transparent (Blending Off)

RESERVED

15:11

Reserved

Video On-Screen Display v6.0 www.xilinx.com

PG010 November 18, 2015

l Send Feedback I 35

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=35

& XILINX

Register Space

Table 2-21: OSD Layer 0 Control Register (Address Offset 0x0110) (Cont’d)
0x0110 OSD LAYER 0 CONTROL R/W
Name B its Description
LAYERO_PRIORITY 10:8 Layer O Priority
0 = Lowest
1 = Higher
7 = Highest
Note: Each layer must have a unique priority
setting. Setting 2 or more layers to the same
priority will have undesired effects on screen.
RESERVED 7:2 Reserved
LAYERO_GALPHA_EN 1 Layer O Global Alpha Enable
LAYERO_EN 0 Layer O Enable

Note: Setting the global alpha enable to 1 will override all alpha values for all colors in the graphics

controller color table.

Table 2-22: OSD Layer 0 Position/Register (Address Offset 0x0x114)
0x0x114 OSD Layer 0 Position R/W
Name Bits Description
Reserved 31:28 Reserved
Y position 27:16 Vertical start line'of origin of layer. Origin of screen is located at (0,0).
Reserved 15:12
X position 11:0 Horizontal start pixel of origin'of layer. Origin of screen is located at (0,0).
Table 2-23: OSD Layer 0 Size Register (Address Offset 0x0118)
0x0118 OSD Layer 0 Size R/W
Name Bits Description
Reserved 31:28
Y size 27:16 Vertical Size of Layer
Reserved 15:12
X size 11:0 Horizontal Size of Layer

Video
PGO10

Note: 0x0110 - 0x0118 are repeated for Layers 1 through 7 at addresses 0x120 - 0x0188.

On-Screen Display v6.0

www.xilinx.com

November 18, 2015

l Send Feedback I 36

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=36

& XILINX. Register Space

Table 2-24: OSD GC Write Bank Address Register (Address Offset 0x0190)

0x0190 OSD GC Write Bank Address R/W
Name Bits Description

Reserved 31:11

GC Number 10:8 Graphics Controller Number

The Graphics Controller Layer Number. If a layer is configured for a
graphics controller, then setting the layer number here will allow
writing data to that graphics controller.

Reserved 7:3
GC_Write_Bank_ 2:0 OSD GC Bank Write Address
Addr. Controls which memory bank to write data.

000: Write data into Instruction RAM 0
001: Write data into Instruction RAM 1
010: Write data into Color RAM 0

011: Write data into Color RAM 1

100: Write data into Text RAM 0

101: Write data into Text RAM 1

110: Write data into Font RAM 0

111: Write data into Font RAM 1

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 37
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=37

& XILINX. Register Space

Table 2-25: OSD GC Active Bank Address Register (Address Offset 0x0194)

0x0194 OSD GC Active Bank Address R/W
Name Bits Description
GC_Char_ActBank 31:24 Sets the Active CharacterMap/Font Bank.

Bit 31 = Active Font RAM Bank for GC 7
Bit 30 = Active Font RAM Bank for GC 6
Bit 29 = Active Font RAM Bank for GC 5
Bit 28 = Active Font RAM Bank for GC 4
Bit 27 = Active Font RAM Bank for GC 3
Bit 26 = Active Font RAM Bank for GC 2
Bit 25 = Active Font RAM Bank for GC 1
Bit 24 = Active Font RAM Bank for GC 0

GC_Text_ActBank 23:16 Sets the active Text Bank.

Bit 23 = Active Text RAM Bank for GC 7
Bit 22 = Active Text RAM Bank for GC 6
Bit 21 = Active Text RAM Bank for GC 5
Bit 20 = Active Text RAM Bank for GC 4
Bit 19 = Active Text RAM Bank for GC 3
Bit 18 = Active Text RAM Bank for GC 2
Bit 17 = Active Text RAM Bank for GC 1
Bit 16.= Active Text RAM Bank for GC 0

GC_Col_ActBank 15:8 Sets thedactive’Color Table Bank.

Bit 15 = Active Color RAM Bank for GC 7
Bit 14 = Active Color RAM Bank for GC 6
Bit 13 = Active Color RAM Bank for GC 5
Bit 12 = Active Color RAM Bank for GC 4
Bit 11 = Active Color RAM Bank for GC 3
Bit 10 = Active Color RAM Bank for GC 2
Bit 09 = Active Color RAM Bank/for GC 1
Bit 08 = Active Color RAM Bank for GC 0

GC_Ins_ActBank 7:0 Sets the active Instruction Bank:

Bit 07 = Active Instruction RAM Bank for GC 7
Bit 06 = Active Instruction RAM Bank for GC 6
Bit 05 = Active Instruction RAM Bank for GC 5
Bit 04 = Active Instruction RAM Bank for GC'4
Bit 03 = Active Instruction RAM Bank for GC 3
Bit 02 = Active Instruction RAM Bank for GC 2
Bit 01 = Active Instruction RAM Bank for GC 1
Bit 00 = Active Instruction RAM Bank for GC 0

Table 2-26: 0OSD GC Data Register (Address Offset 0198)

0x0198 OSD GC Data R/W
Name Bits Description
GC _Data 31:.0 Graphics Controller Data

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 38
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=38

& XILINX.
Chapter 3

Designing with the Core

This chapter includes guidelines and additional information to make designing with the
core easief.

General Design Guidelines

The Xilinx LogiCORE ™ IP ©On-Screen Display core reads 2D video image data in raster order
from up to eight sources.’Each data source can be configured to be an AXI4-Stream or
internal graphics controtler. If an AXI4-Stream interface is selected, ports on the OSD are
available for connecting to and reading data from other Xilinx Video IP or from the AXI
Video Direct Memory Access Cantroller (AXI VDMA). These ports are also generic enough
for easy integration with any FIFO. If an.internal graphics controller is selected to be a
source, then the OSD automatically handles interfacing to each graphics controller.

Pixel data from each source is combined usingalpha-blending. The resultant output is a 2D
video image stream will be presented to'an AXI4-Stream interface. The m_axis_tready
and the s<LAYER_NUM>_axis_tvalid (from_each slave AXI4-Stream video layer input
source) will halt operation of the OSD. Each AXI4-Stream input has a small internal FIFO with
a depth of 8. See Chapter 2, AXI4-Lite Interface for more information.

An example OSD configuration with three data sourcess(layers)is shown in Figure 3-1. Data
for layer 0 and layer 1 are read from input FIFOs. Data for layer 2 are read from a graphics
controller instance.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 39
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=39

& XILINX. General Design Guidelines

AXIS/XSVI Input AXIS/XSVI Input
(Layer 0) (Layer 1)
Graphics
Controller
(Layer 2)
[
N Priority O Priority Priority 2
Rriorty Mux 1 Mux
(Lowest) Mux (Highest)
[[
[] [] []
AXI4-Lite of Control Alpha Alpha Alpha)
GPP Host Control Registers Bacckglrg:md Blend Blend Blend gﬁeo Data
Element Element Element
T Alpha B\endTPipeIine l
Fosition Alpha Alpha Alpha
Soroon Sizs Blend Blend Blend
Control Control Control
! T T T
Host Interrupt Y]
Statee Status Counters

X12322

Figure 3-1: Example OSD Block Diagram

In addition to the video data interfaces, thé Xilinx On-Screen Display has a control interface
for setting registers that control the background color and screen size. The size, (x,y)
position and priority (Z-plane order) of each layer can also be configured. Registers for
overriding pixel based alpha values with a global alpha and for enabling/disabling layers
are also provided.

All control registers can be set dynamically in real time"The OSD.internally double-buffers
all control registers every frame. Thus, control registers can be updated without introducing
artifacts on screen. In addition, the OSD provides a "Register Update Enable” bit in the
control register that allows controlling the timing of the double-bufferediregister updates
for further flexibility.

A 32-bit interrupt status register output is also provided that flags internal errors or general
events that may require host processor intervention. Interrupt status bits flag events for
vertical blanking start and end, frame error, frame complete, incorrect AXI4-Stream tlast
placement, and graphics controller errors (discussed later).

Alpha-Blending Pipeline

The Xilinx On-Screen Display alpha-blending pipeline includes from one to eight
alpha-blending elements connected in succession. Each element blends the pixel data from
one layer to the pixel data from the layer underneath, and controls whether a layer is

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 40
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=40

& XILINX. General Design Guidelines

enabled and if pixel-level alpha should be read from the input alpha channel or a global
alpha value should be used.

Layer data is blended in the order dictated by the priority setting for each layer in the
control registers. The priority values are used to multiplex layer data to the correct
alpha-blending element.

A basic flow chart diagram showing the alpha-blending process is shown in Figure 3-2.

The alpha-blending pipeline architecture takes advantage of the high-performance
XtremeDSP™ DSP48 slices available in the target device families. These slices are utilized for
multiplicationiand some addition operations and time-shared efficiently between color
component channels.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 41
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=41

& XILINX

Start
of Frame

Yes

Zero
HV
Counters

Read Alpha
From Input

|-gNo

[

Priority

Use Global
Alpha?

Read Alpha
From Register

I

Zero
Alpha

[~gNo:

Layer.
Active?

Yes]

Read Data
From Input

’

Y

Blend
To Layer z-1

Write
Output

Figure 3-2:

Video On-Screen Display v6.0
PG010 November 18, 2015

Ye

Line?

@

X12323

Alpha-Blending Pipeline Flow Chart

www.xilinx.com

l Send Feedback I

General Design Guidelines

42

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=42

& XILINX

Graphics Controller

General Design Guidelines

The Xilinx On-Screen Display internal graphics controller can generate two graphics
elements: boxes and text strings. Boxes can be drawn filled or outlined. The color, position,
size and outline weight of each box are configurable via host control registers (graphics
controller host interface). Text strings can be drawn with a scale factor of 1x, 2x, 4x, or 8x the
original size. The color and position are also configurable.

Figure 3-3 shows the internal structure of the graphics controller.

From Host
Text Font Instruction
RAMO RAM 0 RAM O
Text Font Instruction
RAM 1 RAM 1 RAM 1
Draw StatedMachine
Line Buffers
Color
RAM O
Pixel Fetch State Machine
Color
RAM 1

From|Host To Alpha-Blen

Figure 3-3:

ding Pipeline

X12324

OSD Graphics Controller Block Diagram

The graphics controller is configured to draw boxes and text by a host processor. The host
processor must write graphics instructions into an Instruction RAM. Each instruction can

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

l Send Feedback I 43

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=43

& XILINX. Algorithm

configure the graphics controller to draw a box, a text string, a combined box/text graphics
element or to perform an internal function. The maximum number of instructions is
configured with the "Instructions” field of the CORE Generator™ tool GUL

During every video line, the draw state-machine fetches instructions from an Instruction
RAM and draws multiple graphics elements to a line buffer. A box draw instruction will
cause the draw state-machine to draw a box of the selected color to a line buffer. A text
draw instruction will cause the draw state-machine to fetch a text string from a Text RAM.
This text string is used to fetch character data from a Font RAM. The character data along
with the color selected by the instruction is used to write pixels in a line buffer.

The pixel fetch state-machine generates output pixel data. It reads the data in the line
buffers and uses this data to select a color from the Color RAM for any given pixel. Output
pixel data.isi@enerated in real-time in raster order. The color and alpha for each output pixel
is decided upon when requested. This eliminates the need for external memory storage. The
pixel fetch state-machine never reads from the same line buffer that is being written to by
the draw state-machine:

Note that for each memorystype (Instruction, Color, Text and Font), there are two memories
— RAM 0 and RAM 1. This duplication allows the host processor to write to one memory
while the graphics controllerds reading from another. This eliminates screen artifacts while
the processor is configuring the graphics.controller.

Memory boundaries are conceptual only. Some graphics controller memories may be
efficiently combined to save Block RAM or Distributed RAM storage.

Each graphics controller has a set of parameteérs that controls its configuration. These
parameters affect the size of each memory andthe resources used by the Xilinx On-Screen
Display.

If the OSD is configured for 2 color channels (YUV 4:2:2°of YUV 4:2:0 modes), then the box
and text draw instructions are drawn on even horizontal pixel boundaries. Odd horizontal
start positions are rounded down to the nearest even start position. Odd horizontal stop
positions are rounded up to the nearest even start position, automatically

Algorithm

This section explains the alpha-blending concept used in the Xilinx On-Screen Display. For
more information on the internal structure of the OSD and the Alpha-Blending Pipeline, see
Alpha-Blending Pipeline.

Alpha-Compositing and Alpha-Blending

Alpha-compositing is the process of combining two images with the appearance of partial
transparency. To perform this composition, a matte (or array) is created that contains the

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 44
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=44

& XILINX. Algorithm

coverage information for each pixel within each image. This matte information is typically
stored in a channel and transmitted alongside each pixel color. This is referred to as the
alpha channel. The alpha channel range of values is from 0 to 1, where "0" represents that
the current pixel does not contribute to the final image and is fully transparent. “1”
represents that the current pixel is fully opaque. Any value in between represents a partially
transparent pixel.

Different algebraic compositing algorithms define different image blending operations.
These operations range from “over,” “in,” "out,” "atop,” to "xor” and other logical operations.
For this design, the only concern is the “over” operation. The "over” operation describes the

combination .of one image that resides over another.

Alpha blending is the convex combination of two pixels, allowing for transparency, and
describes. one subset of the alpha compositing operations—the over alpha-compositing
operation. Thé twompixels to be blended reside within two different image layers. Each layer
has a definite Z-plane order. In other words, each layer resides closer or farther from the
observer and has a different depth. Thus, the image pixel and the image pixel directly "over”
it are to be blended.

The equation for alpha-blending one layer to the layer directly behind in the Z-plane is
below. This operation is conceptually simple linear interpolation between each color
component of each layer. Sincé the operation is the same for each color component, this
implies that the same hardware could be reused for each color component given a high
enough operating frequency.

Component' =, ,CoOmponent +(@1- .,)Component, .,

(xy.2) (X,y.2)

Where:

* Oy, is the alpha value in the range {0.0 .. 1.0} from the alpha channel associated with
the pixel at coordinates (x,y) in Layer z.

« Component,, , represents one color component channel from the color space triplet
(RGB, YUV, etc.) associated with the pixel at coordinates{x,y) in Layer z.

« Component,, , ;) represents the same color component at thesame(x,y),coordinates
in Layer z-1 (one layer below in Z-plane order).

« Component’y ;) is the resulting output component value after alpha-blending the
component values from coordinates (x,y) from Layer z and Layer z-1.

The same equation for the next layer above, Layer z+1:

Component' = Q(y.y..snCOMpONeNt

(xy.2+) = + (- .,.1)COMponent

(x,y,z+1) (x.y,2)

These alpha-blending operations can be chained together simply by taking the resultant
output, Component'(, , ,), and substituting it into the Layer z+1 equation for
Component, ,). This implies that the result of blending Layer z with the background
becomes the new background for Layer z+1, or the layer directly over it. In this way, any

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 45
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=45

& XILINX. Clock, Enable, and Reset Considerations

number of image layers can be blended by taking the blended result of the layer below it.
This also implies that the Z-plane order could affect the final result. This is especially true if
all alpha values are 1.

Typically, the order in which layers are blended is determined by their priority setting. Each
image layer is assigned a priority number. The higher the priority, the more in the
foreground it is and the “closer” it is to the observer. Thus, those layers with a higher
priority reside on top of layers with a lower priority. This priority is also referred to as the
Z-plane order and is real-time configurable.

Clock, Enable, and Reset Considerations

ACLK

The master and slave AXI4-Stream video interfaces use the ACLK clock signal as their shared
clock reference, as showndin Figure 3-4.

Video IP “Source” On-Screen Display Video IP “Sink”
—>{ s_axis_video_tdata m_axis_video_tdata s_axis_video_tdata m_axis_video_tdata s_axis_videoO_tdata m_axis_videoO_tdata f=—s-
—»| s_axis_video_tvalid m_axis_video_tvalid s_axis_video_tvalid m_axis_video_tvalid s_axis_videoO_tvalid m_axis_videoO_tvalid j|—»
-+—{ s_axis_video_tready m_axis_video_tready s_axis_video_tready m_axis_video_tready s_axis_videoO_tready m_axis_video0_tready fe—
—{ s_axis_video_tlast m_axis_video_tlast s_axis_video_tlast m_axis_video_tlast s_axis_videoO_tlast m_axis_videoO_tlast f|—»
—| s_axis_video_tuser m_axis_video_tuser s_axis_video_tusef m_axis_video_tuser s_axis_videoO_tuser m_axis_videoO_tuser |—»
] H] H] H
. L] [} L] [} L]
N ' N ' '
aclk aclk aclk
aclken aclken aclken
aresetn aresetn aresetn
aclk
aclken
aresetn * ® X12686
Figure 3-4: Example of ACLK Routing in an ISP Processing Pipeline

The AXI4-Lite interface uses the S_AXI_ACLK pin as its clock source.The ACLK pin is not
shared between the AXI4-Lite and AXI4-Stream interfaces. The On-Screen Display core
contains clock-domain crossing logic between the ACLK (AXI4-Stream and Video
Processing) and S_AXI_ACLK (AXI4-Lite) clock domains. The core automatically ensures
that the AXI4-Lite transactions will complete even if the video processing is stalled with
ARESETn, ACLKEN or with the video clock not running.

ACLKEN

The On-Screen Display core has two enable options: the ACLKEN pin (hardware clock
enable), and the software reset option provided via the AXI4-Lite control interface (when
present).

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 46
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=46

& XILINX. Clock, Enable, and Reset Considerations

ACLKEN is by no means synchronized internally to AXI4-Stream frame processing therefore
de-asserting ACLKEN for extended periods of time may lead to image tearing.

The ACLKEN pin facilitates:

« Multi-cycle path designs (high speed clock division without clock gating),
« Standby operation of subsystems to save on power

« Hardware controlled bring-up of system components

ﬁ IMPORTANT: \Jo prevent transaction errors when ACLKEN (clock enable) pins are used (toggled) in
conjunction with.a common clock source driving the master and slave sides of an AXI4-Stream
interfdce, the ACLKEN pins associated with the master and slave component interfaces must also be
driven by.thesame signal.

S_AXI_ACLKEN

The S_AXI_ACLKEN.s theclock enable signal for the AXI4-Lite interface only. Driving this
signal low will only affect the AX14-Lite interface and will not halt the video processing in
the ACLK clock domain.

ARESETn

The On-Screen Display core has two reset.source: the ARESETn pin (hardware reset), and
the software reset option provided via the AXI4-Lite control interface (when present).

& CAUTION! ARESETn is not synchronized internally to AXI4-Stream frame processing. Therefore,
de-asserting ARESETn while a frame is being process ledads to'image tearing.

The external reset pulse needs to be held for 32 ACLK cycles to reset the core. The ARESETn
signal will only reset the AXI4-Stream interfaces. The AXI4-Lite.interface is unaffected by the
ARESETn signal to allow the video processing core to be reset withouthalting the AXI4-Lite
interface.

f IMPORTANT: When resetting a system with multiple-clocks and corresponding resetisignals, the reset
generator must ensure that all reset signals are asserted/de-asserted long enough for all interfaces and
clock-domains in all IP cores to correctly reinitialize.

S_AXI_ARESETn

The S_AXI_ARESETn signal is synchronous to the S_AXI_ACLK clock domain, but is
internally synchronized to the ACLK clock domain. The S_AXI_ARESETn signal will reset
the entire core including the AXI4-Lite and AXI4-Stream interfaces.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 47
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=47

& XILINX. System Considerations

System Considerations

The On-Screen Display core must be configured for the actual image frame-size to operate
properly. To gather the frame size information from the incoming video stream, it can be
connected to the Video In to AXI4-Stream input and the Video Timing Controller. The
timing detector logic in the Video Timing Controller will gather the image sensor timing
signals. The AXI4-Lite control interface on the Video Timing Controller allows the system
processor to read out the measured frame dimensions, and program all downstream cores,
such as the On-Screen Display, with the appropriate image dimensions.

If the‘target system uses only one configuration of the On-Screen Display (i.e. does not
need toybe réeproagrammed ever), you may choose to create a constant configuration by
removing thed/AXI4=Lite interface. This reduces the core Slice footprint.

Clock Domain Interaction

The ARESETn and ACLREN input signals will not reset or halt the AXI4-Lite interface. This
allows the video processing to'be reset or halted separately from the AXI4-Lite interface
without disrupting AXI4-Lite'transactions.

ﬁ IMPORTANT: The AX|I4-Lite interface will respond-with an error if the core registers cannot be read or
written within 128 S_AXI_ACLK clock cycles. The core registers cannot be read or written if the ARESETn
signal is held low, if the ACLKEN signal is held low orif the ACLK signal is not connected or not running.
If core register read does not complete, the AXI4-Lite read transaction will respond with 10 on the
S_AXI_RRESP bus. Similarly, if a core register writé does not complete, the AXI4-Lite write transaction
will respond with 10 on the S_AXI_BRESP bus. The S_AXI_ARESETn input signal resets the entire core.

Programming Sequence

If processing parameters such as the image size needs to be changed.on the fly, or the
system needs to be reinitialized, it is recommended that pipelined Video/IP\cores are
disabled/reset from system output towards the system input, and programmed/enabled
from system input to system output. STATUS register bits allow system progessors to
identify the processing states of individual constituent cores, and successively disable a
pipeline as one core after another is finished processing the last frame of data.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 48
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=48

& XILINX.
Chapter 4

Customizing and Generating the Core

This chapter includes information about using Xilinx tools to customize and generate the
core in the'Vivado® Design Suite environment.

Vivado‘ntegrated Design Environment (IDE)

You can customize the IP'for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.

2. Double-click on the selected IP orselect the Customize IP command from the toolbar or
popup menu.

For details, see the sections, "Working with IP” and "Customizing IP for the Design” in the
Vivado Design Suite User Guide: Designingwith IP (UG896) [Ref 3] and the "Working with the
Vivado IDE" section in the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 5].

If you are customizing and generating the core in the Vivado IP Integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems Using IP.Integrator (UG994) [Ref 7] for
detailed information. IP Integrator might auto-compute'certain configuration values when
validating or generating the design. To check whetherthewalues.do change, see the
description of the parameter in this chapter. To view the parameter value you can run the
validate_bd_design command in the Tcl console.

Note: Figures in this chapter are illustrations of the Vivado IDE. This layout might vary from the
current version.

Interface

The Video On-Screen Display core is easily configured to meet the developer's specific
needs through the Vivado interface shown in Figure 4-1, Figure 4-2, and Figure 4-3. This
section provides a quick reference to parameters that can be configured at generation time.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 49
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/support/documentation/sw_manuals_j/v=latest/ug910-vivado-getting-started.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=49

& XILINX.

Video On Screen Display (6.0)
[Docurmentation [1P Location

] show disabled ports

ll|==actk_intf

irg
Yl E’,OUTH,}:-

" dhs_axi_arasetn_i
= <RVIDEO_SO_IN,
= =LVIDEQ 52 _IN

K|

Bought IP license available

Figure 4-1:

Video On-Screen Display v6.0
PG010 November 18, 2015

(2]

D&

Interface

=
|

Companent Mame | pip_sys_w_osd_0_0

LAYER Configurations Screen Layout Optiohs

LAYER 1 Oprions

Optinnal Fearures
#Include AXI4-Lite Interface

[Jinclude INTC Interface

Options

TEOMElL) video Formar |yuy 422+
o) Auto) video Component Width

Nurmber of Layers

€

Maximum Screen Width

1920 [128,40986]

L&YER Configuration

h ‘

LAYERO Type [Extarnal AXIS

LAYERL Type [Internal Graphics Contraller ~ |

e ‘

LAYER2 Type [External Axis

¢
alog GUI

Vivad

www.Xilinx.com

-
- Main Window

50

| Send Feedback l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=50

& XILINX. Interface

¥isleo On SarasnEIER gy >
|

W Docurnentation E IP Location

Component Name | pip_sys v osd 0.0

[show disabled parts
= LAYER Configurations Screen Layout Options | LAYER 1 Options

Background Size

Width ‘1280 [0,1920]
et 10,4096

Background Colar

Lurra 10.2551
e w 10,2551

“I#adk"mf C 128 0,255
' ,
II dbaclken _in & [!
“ qraresa : Horizonal Wertical La
: er Caver Clobal Alpha | Giobal Apha

Hl : L3R | pasition Pasition | MEh | HEON | oo | Enaple | walue Enable
Il rar 0 0 0 1280 720 0 O 256 =)

~ VIgECTOUT R & 1 o 0 1280 | 720 1 . P O
ll[=k5 _axi_aresatn_i 2 o o 1280 | 720 2 O |[ess @
&L yIDEC_SO_IN
=L VIDED_52_IN

©

Bought IP license available

Figure 4-2:

¢
GUL - Constant Mode Options Window

Vivado IP Cata

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback l 51

PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=51

& XILINX

Yideo On Screen Display (6.0)
ifJ Documentation [IP Location

[show disabled parts

“ abaclk_intf

II abaclken _inkf

II dbaresaff ntf

H| gl

“ obs Saki_aclk_intf

“ dbs_axi dehken@intt
“ dbs_axi_aresatn_ingf

SR VIDEC_SO_IN,
= LYIDED_S2_IN

irg
VIRECY QUT qp

Bought IP license available

Figure 4-3:

Component Name

LAYER Configurations = Screen Lavout Options LAYER 1 Options

Interface

Instruction Memaory

Instructions [4,4096]

Instruction Set

MBox MText

Color Tahle

4

Number of Colors |16
Color Merory Type | Auto-Configure -

Font Options
Number of Characters [1,256]
ssci omse 255

Character Width
Bits per Pixel

Text Options
| MNurnber of Strings [

Bimum sring Lengen

1,256]

| ok || cancel

Vivado IP Catalog/GUIl+ Graphics Controller Options Window

Note: The Graphics Controller Options Window isavailable only if the Layer Type is set to "Internal

Graphics Controller.”

Global Parameters

« Component Name: The component name is usedias the'base name of output files
generated for the module. Names must begin with a letter and must be composed
from characters: a to z, 0 to 9and “_". The name v_osd v6:0 is not allowed.

« Optional Features:

o Include AXI4-Lite Interface: When selected, the core will beigenerated with an
AXI4-Lite interface, which gives access to dynamically program and change
processing parameters. For more information, refer to Chapter 2, Core Interfaces.

o Include INTC Interface: When selected, the core will generate the optional INTC_IF
port, which gives parallel access to signals indicating frame processing status and
error conditions. For more information, refer to Interrupts in Chapter 2.

« Video Format: This field configures the input format of the AXI4-Stream interfaces.
Valid values are YUV 422, YUV 444, RGB, YUVa 422, YUVa 444 and RGBa. When using IP
Integrator, this parameter is automatically computed based on the Video Format of the
video IP cores connected to the slave AXI-Stream video interfaces.

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

l Send Feedback I 52

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=52

& XILINX

Scr

Interface

Note: If the input is YUVa 422, YUVa 444 or RGBa the output will be YUV 422, YUV 444 or RGB
respectively (no alpha on output stream).

Video Component Width: This field configures the data width of each color
component channel. Valid values are 8, 10 and 12. Configuring the Video Component
Width and the Video Format yields an effective bits per pixel of 16, 24, 32, 40 or 48 bits.
When using IP Integrator, this parameter is automatically computed based on the Video
Component Width of the video IP cores connected to the slave AXI-Stream video
interfaces.

Number of Layers: This field configures the number of layers to alpha blend together.
Each layer can be configured to read data from the FIFO inputs or from one of the
internal Graphics Controllers. Valid range is (1 .. 8).

Maximum Screen Width: This field configures the maximum allowed screen size. The
Maximum screen width is configurable. Changing this field affects several counters,
comparators and memory (Block RAM) usage. Increased screen size increases resource
usage. Valid range for Screen Width is {128 .. 4095}.

Layer Configuration = Layer # Type: These fields configure the type, or data source,
of each layer, one'field foreach layer. Each layer is numbered from 0 to 7. The
maximum number oflayers'is set by the Number of Layers field. Three data sources are
valid:

- External AXIS: This is an input AXI4-Stream slave interface with tdata, tvalid, tready
and tlast. See Input AXI4-Stream Slave Interface(s) in Chapter 2.

- Internal Graphics Controller:If the layer is configured for this type, then the
AXI14-Stream slave interfaces are femoyed and all data is generated and read from
an internal Graphics Controller.

een Layout Parameters

Background Size:

o Width: This field configures the horizontal size of thesbackground.
- Height: This filed configures the vertical size of the background.
Background Color: The fields configure the default background«olor.
Layer:

- Horizontal Position: This field configures the horizontal position, starting from
pixel 0, of the upper left corner of each layer.

- Vertical Position: This field configures the vertical position, starting from line 0, of
the upper left corner of each layer.

Width: This field configures the horizontal size of each layer.

Height: This field configures the vertical size of each layer.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 53

PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=53

& XILINX

Interface

Layer Priority: These fields configure the Z-plane order of each layer. Layers with
higher priority will be on-top layers with lower priority. Each layer must have a unique
priority setting.

Layer Enable: These fields configure if a layer is enabled or disabled by default.
Global Alpha Value: These fields configure the Alpha Value used for the entire layer.
Note: This should be used if no Alpha is supplied with the AXI4-Stream input.

Global Alpha Enable: These fields enable or disable the use of the global alpha value
for the given layer. If the Global Alpha Enable is disabled, then the alpha-value supplied
from the AXI4-Stream input (for each pixel) is used.

Note: Graphics Controller Layers should not have the Global Alpha enabled.

Graphics Controller Parameters

Instructions: This field configures the maximum number of Graphics Controller
instructions that/can be executed per frame. Increasing this number increases the
number of Block RAMs.utilized.

Instruction Set: This'field configures which instructions are valid for the Graphics
Controller implementation. Two instructions are currently configurable: box and text.
Other instructions, including NoOpgare always available.

Number of Colors: This field configures the size of the color palette used by the
Graphics Controller. Valid valuesare 16.and 256.

Color Memory Type: This field configuresthow the color palette is implemented in
hardware, as Distributed RAM, as Block RAMr Auto-Configured. In auto-configuration
mode, distributed RAM will be used if the colorspalette is small enough. The RAM type
can be overridden if it is known which type is‘preferred for the application.

Number of Characters: This field configures the numbertof characters to be stored
within the internal Font RAM. Valid values are 1 to 256. This field, along with the
Character Width, Character Height, ASCII Offset and Bit.pér Pixel fields, affects the
overall size of the Font RAM.

Character Width: This field configures the width of each chafacter. The width is in
pixels. Valid values are 8 and 16.

Character Height: This field configures the height of each character. The height is in
video lines. Valid values are 8 and 16.

ASCII Offset: This field configures the ASCII value of the first location in the Font RAM.
This is useful if it is known that certain ASCII values will not be used.

Bits per Pixel: This field configures the bits per pixel of each character. Valid values are
1and 2.

o 1 = One bit per pixel. This yields a foreground and a background color for each
character.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 54

PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=54

& XILINX. Output Generation

o 2 = Two bits per pixel. This allows each character pixel to be programmed to one of
four different colors.

« Number of Strings: This field configures the maximum number of strings to be stored
within the Text RAM. This field, along with the Maximum String Length field, affects the
overall size of the Text RAM. The maximum number of strings cannot exceed 256.

« Maximum String Length: This field configures the maximum string length allowed for
each string within the Text RAM. Valid values are 32, 64, 128 and 256.

Output Generation

For details, see "Generating IP Output Products” in the Vivado Design Suite User Guide:
Designing with, IP (UG896).

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 55
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=55

& XILINX.
Chapter 5

Constraining the Core

Required Constraints

The onlysconstraints required are clock frequency constraints for the video clock, ac1k, and
the AXI4-Liteiclockins_axi_aclk. Paths between the two clock domains should be
constrained with @amax_delay constraint and use the datapathonly flag, causing setup
and hold checksito befighored for signals that cross clock domains. These constraints are
provided in the XDC constraints file included with the core.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 56

PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=56

& XILINX.
Chapter 6

Simulation

This chapter contains information about simulating IP in the Vivado® Design Suite
environment. For comprehensive information about Vivado simulation components, as well

as information about using supported third party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 6].

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 57
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=57

& XILINX.
Chapter 7

Synthesis and Implementation

For details about synthesis and implementation, see “Synthesizing IP” and “Implementing
IP" in the Mivado Design Suite User Guide: Designing with IP (UG896) [Ref 3].

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 58
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=58

& XILINX.

Chapter 8

C Model Reference

The Xilinx LogiCORE™ IP Video OSD has a bit accurate C model for 32-bit Windows, 64-bit
Windows,32-bit Linux and 64-bit Linux platforms. The model has an interface consisting of
a set of«C functions, which reside in a statically link library (shared library). Full details of the
interface are given.in Interface, page 61. An example piece of C code is provided in Example
Code, page71 to show how to call the model.

The model is bit accurate, as it produces exactly the same output data as the core on a
frame-by-frame basis..However, the model is not cycle accurate, as it does not model the
core's latency or its interface signals. The latest version of the model is available for
download on the Xilinx LogiCORE IP Video OSD web page at:

http://www.xilinx.com/proeducts/ipcenter/EF-DI-OSD.htm

Unpacking and Model Contents

Unzip the v_osd_v6_0_bitacc_model. zip file, containing the bit accurate models for
the On-Screen Display IP Core. This creates the directory structure and files in Table 8-1.

Table 8-1: Directory Structure and Files of the Video On-Screen Display v6.0 Bit Accurate C Model

File Name Contents
/doc C Model documentation
README.txt Release notes
pg010_v_osd.pdf LogiCORE IP Video On-Screen Display Product Guide
Makefile Makefile for running GCC via make for 32-bit and'64-bit Linux
platforms
v_osd_v6_0_bitacc_cmodel.h Model header file
rgb_utils.h Header file declaring the RGB image/video container type and
support functions
yuv_utils.h Header file declaring the YUV (.yuv) image file I/O functions
bmp_utils.h Header file declaring the bitmap (.bmp) image file I/O functions
video_utils.h Header file declaring the generalized image/video container type,
I/O and support functions

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 59

PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/products/ipcenter/EF-DI-OSD.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=59

& XILINX

Unpacking and Model Contents

Table 8-1: Directory Structure and Files of the Video On-Screen Display v6.0 Bit Accurate C Model

File Name

Contents

video_fio.h

Header file declaring support functions for test bench stimulus file
I/0

run_bitacc_cmodel.c

Example code calling the C model

run_bitacc_cmodel_config.c

Example code calling the C model; uses command line and config
file arguments

/lin64

Precompiled bit accurate ANSI C reference model for simulation on
64-bit Linux platforms

liblp_v_osd_v6{0_bitacc_cmodel.so

Model shared object library

run_bitacc_emodel

64-bit Linux fixed configuration executable

run_bitacc_cmodel_config

64-bit Linux programmable configuration executable

/lin

Precompiled bit accurate ANSI C reference model for simulation on
32-bit Linux platforms.

liblp_v_osd_v6_0_bitacc_cmodel.so

Model shared object library

run_bitacc_cmodel

32-bit Linux fixed configuration executable

run_bitacc_cmodel_config

32-bit Linux programmable configuration executable

/nt64

Precompiled bit accurate ANSI C reference model for simulation on
64-bit Windows platforms

libIp_v_osd_v6_0_bitacc_cmodel.lib

Precompiled library file for 64-bit Windows platforms compilation

run_bitacc_cmodel.exe

64-bit Windows fixéd configuration executable

run_bitacc_cmodel_config.exe

64-bit Windows programmable configuration executable

/nt

Precompiled bit accurate ANSI.C reference model for simulation on
32-bit Windows platforms

liblp_v_osd_v6_0_bitacc_cmodel.lib

Precompiled library file for 32-bit Windows platforms compilation

run_bitacc_cmodel.exe

32-bit Windows fixed configuration executable

run_bitacc_cmodel_config.exe

32-bit Windows programmable configuration executable

examples

Example input files to be used with the run_bitacc_cmodel_config
executable

example0.cfg

Example config file; internal test patterns, no graphics controller
and BMP output

examplel.cfg

Example config file; no input, internal test patterns, no graphics
controller and YUV output

example2.cfg

Example config file; BMP input, no graphics controller and BMP
output

example3.cfg

Example config file.,, BMP input, graphics overlay and BMP output

clut.txt

Example graphics controller color look-up table/pallet file

string.txt

Example graphics controller text/strings file

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

l Send Feedback I 60

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=60

& XILINX

Installation

Table 8-1: Directory Structure and Files of the Video On-Screen Display v6.0 Bit Accurate C Model

File Name

Contents

font.txt

Example graphics controller font file

instructions.txt

Example graphics controller instruction list

bridge.bmp

Example 24-bit 576x720 bitmap

Installation

For Linux, make sure the following files are in a directory in the $LD_LIBRARY_PATH

environment variable:

e libIp Vv_esd v6_0_bitacc_cmodel.so

Software Requirements

The Video On-Screen Display‘C models were compiled and tested with the software listed

in Table 8-2.

Table 8-2: Compilation Tools for the Bit/Accurate C Models

Platform

C Compiler

Linux 32-bit and 64-bit

GCC3.46 &4.1.6

Windows 32-bit and 64-bit

Microsoft Visual Studie:2008

Interface

The video OSD bit accurate C model core function is a statically linkeddibrary. This model is
accessed through a set of functions and data structures that are de¢lared inithe
v_osd_v6_0_bitacc_cmodel.h file. A higher level software project can make function

calls to this function:

*

at theparam generics

* ok Kk ok kX ok ok *

Video On-Screen Display v6.0
PG010 November 18, 2015

Create a new state structure for this C-Model.

IMPORTANT: Client is responsible for calling
xilinx ip_v_osd_v6_0_destroy_state()
to free state memory.

Generics to be used to configure C-Model
state.

www.xilinx.com

l Send Feedback I 61

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=61

& XILINX. Interface

*

* @returns xilinx ip_v_osd_v6_0_state* Pointer to the internal
* state.

*/

struct xilinx ip_v_osd_v6_0_state*
xilinx_ ip_v_osd_v6_0_create_state(struct xilinx_ip_v_osd_v6_0_generics generics) ;

/**

* Simulate this bit-accurate C-Model.
*

* @param state Internal state of this C-Model. State
* may span multiple simulations.

* @param inputs Inputs to this C-Model.

* @param outputs Outputs from this C-Model.

*

* @retu¥ns Exit code Zero for SUCCESS, Non-zero otherwise.
*/

int xilinx_ip_v_osd_v6. 0_bitacc_simulate

(

) .

struct xilinx_ip v _osd v6_0_state* state,
struct xilinx_ip_wvaosd w6 0. inputs inputs,
struct xilinx_ip_v_osd_v6_0 outputs* outputs

’

Before using the model, the structures holding the generics, inputs, and outputs of the OSD
instance must be defined:

struct xilinx_ip_v_osd_v6_04Lgenerics generics;
struct xilinx_ip_v_osd_v6_0_inputs inputs;
struct xilinx_ip_v_osd_v6_0_outputs .Outputs;

The declaration of these structures is in‘the v£osd_v6_0 bitacc_cmodel.h file.
Before making the function call, complete these steps:

1. Populate the generics structure. It defines the values,of build time parameters. See OSD
Generics Structure for more information on the structure’and an example of how to
initialize.

2. Populate the inputs structure. It defines the values of runtime parameters. See OSD
Inputs Structure for more information on the structure and an example of how to
initialize.

3. Populate the outputs structure. See OSD Outputs Structure for more information on the
structure and an example of how to initialize.

After the inputs are defined and all video_structs are initialized, the model can be
simulated by calling the following functions:

state = xilinx_ip_v_osd_v6_0_create_state(generics);

if (state == NULL) {
printf (*ERROR: could not create state object\n”);
return 1;

// Simulate the core

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 62

PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=62

& XILINX. Interface

printf (“Running the C model...\n”);

if(xilinx ip_v_osd_v6_0_bitacc_simulate(state, inputs, &outputs) != 0) {
printf (*ERROR: simulation did not complete successfully\n”);
return 1;

} else {

printf(“Simulation completed successfully\n”);
}

The results are provided in the outputs structure, which contains only one member of type
video_struct. See OSD Video Structure for more information on video_struct.

The successful execution of all provided functions return a value of 0, otherwise a non-zero
error code indicates that problems occurred during function calls.

OSD Generics Structure

The Xilinx Logi€CORE'IP Video OSD Core bit accurate C model takes multiple generic
parameters. All'\generic'parameters are integers or integer arrays. See Table 8-3 for generic
definitions.

Table 8-3: OSD Generics Structure

Generic Designation
C_DATA_WIDTH Data width of each color component
channel; valid values are 8, 10 and 12.
C_NUM_LAYERS The‘humber of layers.
C_LAYER_TYPE[8] Defines the layer type of each layer:

« ¢1=Graphics Controller
o 2=AXI4-Stream

All other values are'reserved.

C_LAYER_INS_BOX_EN[8] Enable box instructions.
C_LAYER_INS_TEXT_ENI[8] Enable text instructions:
C_LAYER_CLUT_SIZE[8] Maximum number of colors.
C_LAYER_TEXT_NUM_STRINGSI8] Maximum number of strings.
C_LAYER_TEXT_MAX_STRING_LENGTH]I8] Maximum string length.
C_LAYER_FONT_NUM_CHARSI[8] Maximum number of characters.
C_LAYER_FONT_WIDTHI]8] Maximum font width.
C_LAYER_FONT_HEIGHT[8] Maximum font height.
C_LAYER_FONT_BPP[8] Font bits per pixel.
C_LAYER_FONT_ASCII_OFFSET[8] The ASCII value of the first character in
the font file.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 63
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=63

& XILINX. Interface

Calling xilinx_ip_v_osd_v6_0_get_default_generics () initializes the generics
structure, xilinx_ip_v_osd_v6_0_generics, with the OSD defaults. An example of
initialization of the generics structure with layer two configured as a graphics controller is

as follows:
generics = xilinx_ip_v_osd_v6_0_get_default_generics(); //Get Defaults
generics.C_NUM_LAYERS = 3;
generics.C_LAYER_TYPE[2] = 1; // Graphics Controller

// Setup Graphics Controller
generics.C_LAYER_INS_BOX_EN[2] 1;
generics.C_LAYER_INS_TEXT_EN[2] 1;
generics.C LAYER CLUT _SIZE[2] = 256;

// Setup. Font RAM
generics.CuLAYER_ FONT_ NUM_CHARS[2] = 128;
generics.C_LAYER FONT WIDTH[2] = 8;

generics.C_LAYER_FONT_HEIGHTI[2] = 8
generics.C_LAYER FONT_ BPP[2] = 1;
generics.C_LAYER FONT_ASCII OFFSET[2] = 0

// Setup Text RAM
generics.C_LAYER_TEXT NUMASTRINGS[2] = 16; // Set number of strings
generics.C_LAYER_TEXT MAX_STRING_LENGTH[2] = 64; //Set max string length

OSD Inputs Structure

The structure xilinx_ip_v_osd_v640_imputs defines the values of run time
parameters and the actual input video frames/images for each layer.

struct xilinx_ ip_v_osd_v6_0_inputs
{
struct video_struct video_in[OSD_MAX_LAYERS]4

struct frame_cfg_struct * frame_cfg;
struct layer_cfg_struct *layer_cfg[OSD_MAX_ LAYERS];
struct graphics_cfg_struct * gfx cfg[OSD_MAX LAYERS];

int num_frames;
int color_space;

}; // end xilinx_ip_v_osd_v6_0_inputs

The video_in variable is an array of video_struct structures, one structure per layer.

See the OSD Video Structure for a description of the video_in structure. The video_in
structure must be initialized if neither the internal graphics controller nor the test pattern
generator is used.

Frame Configuration

The frame_cfg variable is a pointer to the frame_cfg_struct. The
frame_cfg_struct is defined as:

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 64
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=64

& XILINX. Interface

struct frame_cfg_struct
{

int y_size;

int x_size;

int bg_color[3];

struct frame_cfg_struct * next; // For Changing parameters each Frame
Y

The frame_cfg variable points to the first element in the frame config linked list. For each
frame, the OSD model reads the x and y size of output frame and the background color from
the frame.cfg_struct pointed to by frame_cfg. At the end of the frame, if the next
pointer is’not NULL, the OSD model updates the background color and the output size from
the next structure in the linked list. Consequently, if the number of video frames is more
than the number of elements in the linked list, the last element is used for the remaining
frames. The user is responsible for initializing the linked list.

Layer Configuration

The layer_cfg variable is.an array of pointers to the layer_cfg_struct structure, one
pointer per layer. The layer_c¢fg_struct is defined as:

struct layer_cfg_struct
{

int enable;

int g_alpha_en;

int priority;

int alpha;

int x_pos;

int v _pos;

int x_size;

int y_size;

int chan_mode[4];
int chan_color[4];

struct layer_cfg_struct * next; // For Changing parameters each Frame
Y

Each pointer must be initialized to point to the first element in the layef config linked list.
For each frame, the OSD model reads the layer registers and the test'parameter arrays
(chan_mode[4] and chan_color[4]) from the layer_cfg_struct pointed to by the
layer_cfg pointer. This linked list enables the user to change the layer configuration (size,
position, transparency, z-plane, and so on) for each video frame.

At the end of the frame, if the next pointer is not NULL, the OSD model updates the layer
configuration from the next structure in the linked list. Consequently, if the number of video
frames is more than the number of elements in the linked list, the last element is used for
the remaining frames. The user is responsible for initializing the linked list.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 65
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=65

& XILINX. Interface

Graphics Configuration

The gfx_cfg variable is an array of pointers to the graphics_cfg_struct structure, one
pointer per layer. This variable is only used if the layer is configured for graphics controller
input. The graphics_cfg_struct is defined as:

struct graphics_cfg_struct
{

int layer_num;

uintlé * clut; // Color Table
char’ * text_ram; // Text Ram
int * font_ram; // Font Ram

struct graphics_list * graph_instruction;

struct graphies_cfg_struct * next; // For Changing parameters each Frame

Y

Each pointer must be initialized to point to the first element in the graphics config linked
list. For each frame, the OSD.model reads the graphics controller memories from the
graphics_cfg_struct pointed to by the gfx_cfg pointer. This linked list enables the
user to change the graphics controller output (boxes, text, color, size, position,
transparency, font and strings).for each video frame.

The CLUT pointer points to an array of 16-bit unsigned integers. This array contains the
color entries for the current video fframe: Each color entry contains four integers, one for
each color component and one for alpha..The CLUT array must contain 4*16 or 4*256
integers.

The text_ram pointer points to an array of charactefs. This array contains all strings for the
current video frame. The number of characters inthe arraymust equal the (maximum string
length) * (the number of strings).

The font_ram pointer points to an array of integers. This array contains the font for the
current video frame. The number of integers in the array must equal the (number of
characters) * (font width) * (font height). The number of bits used in each integer is 8, 16 or
32 depending on the setting of the font_width and font_bpp:

The graph_instruction pointer points to a linked list of graphics instructions (defined
by the graphics_1ist structure). This linked list contains the graphics instructions for the
current video frame. The Graphics Controller draws each instruction in the linked list until a
NULL pointer is encountered. The graphic_1list structure is defined as:

struct graphics_list
{

int opcode;

int xstart;

int xstop;

int ystart;

int ystop;

int color_index;

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 66
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=66

& XILINX

int text_index;
int object_size;

struct graphics_list * next;

Y

Interface

This structure contains the same fields as in the instruction file defined previously. The
opcode variable can be 0SD_INS_BOX, OSD_INS_TEXT or OSD_INS_BOXTEXT (each
defined in the v_osd_v_2_0_bitacc_cmodel.h file). See Table D-1, page 106 through
Table D-5, page 109 for more information on xstart, xstop, ystart, ystop, color_index and

text_indexddefinitions.

At the'end of the frame, if the next pointer is not NULL, the OSD model updates the
graphies controller configuration from the next structure in the linked list. Consequently, if
the number ofwvideo frames is more than the number of elements in the linked list, the last
element is used for the remaining frames. The user is responsible for initializing the linked
list. Example initialization code of the inputs structure is as follows:

inputs. frame_cfg =
frame_cfg_struct));

(struct frame_cfg_struct *)

calloc(1l, sizeof (struct

inputs. frame_cfg->x_ size = 1280;
inputs. frame_cfg->y_size = 720;
inputs. frame_cfg->bg_color[0] = 0x88;
inputs.frame_cfg->bg_color[l] =0x3a;
inputs.frame_cfg->bg_color[2] = 0xbd;
inputs. frame_cfg->next = NULL;, // End of Frame Config

// Setup Layer 0 Configuration

inputs.layer_cfg[0] = (struct layer_ cfg_struct *) calloc(l, sizeof(struct
layer_cfg_struct));
inputs.layer_cfg[0]->enable = 1;
inputs.layer_cfg[0]->g_alpha en = 0;
inputs.layer_cfg[0]->priority = 2;
inputs.layer_cfg[0]->alpha = 0x80;
inputs.layer_cfg[0]->x_pos = 0;
inputs.layer_cfg[0]->y_pos = 0;
inputs.layer_cfg[0]->x_size = 1280;
inputs.layer_cfg[0]->y_size = 720;
inputs.layer_cfg[0]->chan_mode[0] = OSD_SOLID_MODE;
inputs.layer_cfg[0]->chan_mode[l] = OSD_SOLID_MODE;
inputs.layer_cfg[0]->chan_mode[2] = OSD_SOLID_MODE;
inputs.layer_cfg[0]->chan_mode[3] = OSD_HRAMP_MODE;
inputs.layer_cfg[0]->chan_color[0] = 0xe0;
inputs.layer_cfg[0]->chan_color[1l] = 0x5a;
inputs.layer_cfg[0]->chan_color[2] = 0xbf;
inputs.layer_cfg[0]->chan_color[3] = 0x80; // Alpha
inputs.layer_cfg[0]->next = NULL;

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

67

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=67

& XILINX. Interface

OSD Outputs Structure

The structure xilinx_ip_v_osd_v6_0_outputs provides the actual output video
frames/images of the OSD core. This structure is a wrapper to the standard video_struct
used by other Xilinx video core C models.

struct xilinx_ip_v_osd_v6_0_outputs
{

struct wvideo_struct video_out;
}; // xilinx ip_v_osd_v6_0_outputs

The video_out structure must be initialized. The following code shows a typical
videol out initialization.

//»Setup Output Video Buffer

outputs .video. out.frames = inputs.num_frames;
outputs.video_out.rows = inputs.frame_cfg->y_size;
outputs.video_out.cols = inputs.frame_cfg->x_size;
outputs.video olUt.mode = FORMAT_C444;
outputs.video/fout.bits_per_component = generics.C_DATA_WIDTH;
outputs.video_ out.data0] = NULL;
outputs.video_out.datall] = NULL;
outputs.video_out.datal[2] = NULL;

OSD Video Structure

Input images or video streams can be provided to the OSD v6.0 reference model using the
video_struct structure, defined in video_utils.h. Output images or video streams
are also placed within a video_struct structuré. The video_struct is defined as:

struct video_struct{
int frames, rows, cols, bits_per_ component, mode;
uintlée*** datal[5]; };

The structure member variables are defined in Table 8-4.

Table 8-4: Member Variables of the Video Structure

Member Variable Designation
frames Number of video/image frames in the data structure
rows Number of rows per frame

Pertains to the image plane with the most rows and columns, such as the
luminance channel for YUV data. Frame dimensions are assumed constant
through the all frames of the video stream, however different planes, such as
y, u and v can have different smaller dimensions.

cols Number of columns per frame

Pertains to the image plane with the most rows and columns, such as the
luminance channel for YUV data. Frame dimensions are assumed constant
through the all frames of the video stream, however different planes, such as
y, u and v can have different smaller dimensions.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 68
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=68

& XILINX. Interface
Table 8-4: Member Variables of the Video Structure (Cont’d)

bits_per_component Number of bits per color channel/component.
All image planes are assumed to have the same color/component
representation. Maximum number of bits per component is 16.

mode Contains information about the designation of data planes.
Named constants to be assigned to mode are listed in Table 8-5.

data Set of 5 pointers to 3 dimensional arrays containing data for image planes.
data is in 16 bit unsigned integer format accessed as
data[plane][frame][row][col]

Note: The OSD core supports four formats: FORMAT_RGB, FORMAT_C444, FORMAT_C422, and
FORMAT_C420.

Table 8-5:»Named Constants for Video Modes With Corresponding Planes and Representations

Mode Planes Video Representation
FORMAT_MONO 1 Monochrome — luminance only
FORMAT_RGB 3 RGB image/video data
FORMAT_C444 3 444 YUV, or YCrCb image/video data
FORMAT_C422 3 422-format YUV video, (u, v chrominance channels horizontally

sub-sampled)

FORMAT_C420 3 420 format YUV video, (u, v sub-sampled both horizontally and
vertically)

FORMAT_MONO_M 3 Monochrome (luminance) video with motion

FORMAT_RGBA 4 RGB image/video data with alpha (transparency) channel

FORMAT_C420_M 5 420 YUV video with motion or alpha

FORMAT_C422_ M 5 422 YUV video withimotion oralpha

FORMAT_C444_M 5 444 YUV video with motion or alpha

FORMAT_RGBM 5 RGB video with motion

Working With Video_struct Containers

The video_utils.h file defines functions to simplify access to video data in
video_struct.

int video_planes_per_mode (int mode) ;
int video_rows_per_plane(struct video_struct* video, int plane);
int video_cols_per_plane(struct video_struct* video, int plane);

Function video_planes_per_mode returns the number of component planes defined by
the mode variable, as described in Table 8-5. Functions video_rows_per_plane and
video_cols_per_plane return the number of rows and columns in a given plane of the
selected video structure. The following example demonstrates using these functions in
conjunction to process all pixels within a video stream stored in variable in_video, with
this construct:

Video On-Screen Display v6.0 www.xilinx.com

PG010 November 18, 2015

l Send Feedback I 69

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=69

& XILINX. Example Code

for (int frame = 0; frame < in_video->frames; frame++) {
for (int plane = 0; plane < video_planes_per_mode (in_video->mode); plane++) {
for (int row = 0; row < rows_per_plane(in_video,plane); row++) {
for (int col = 0; col < cols_per_plane(in_video,plane); col++) {
// User defined pixel operations on
// in_video->datal[plane] [frame] [row] [col]
}

}

Delete the Video Structure

Finally/large arrays such as the video_in element in the video structure must be deleted
to free.up memory: As an example, the following function is defined as part of the
video_utilsdpackage.

void free_video_buff(struct video_struct* video)

{

int plane, frame, row;

if (video->datal[0] != NULL) {
for (plane = 0; plane <video_planes_per_mode (video->mode); plane++) {
for (frame = 0; frame <,video~>frames; frame++) {

for (row = 0; row<video_rows_per_plane(video,plane); row++) {
free(video->datal[plane] [frame] [row]) ;

}

free(video->datal[plane] [frame]) ;

}

free(video->datalplane]) ;

This function can be called in the following way to freethe video input buffers (up to eight)
and the video output buffer:

// Free Layer Buffers

for(i=0; i1 < generics.C_NUM_LAYERS; i++)

{
printf (“Freeing Layer Video Buffer #%d...\n”, i);
free_video_buff (&inputs.video_in[i]);

}

printf (“Freeing Output Buffer...\n”);

free_video_buff (&outputs.video_out) ;

Example Code

Two example C files, run_bitacc_cmodel.c and bitacc_cmodel_config.c,are
provided. The 32-bit and 64-bit Windows and Linux executables for these examples are also
included. This C file has these characteristics:

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 70
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=70

& XILINX. Example Code

The run_bitacc_cmodel example executable provides:

« Shows a fixed implementation of the OSD, including two AXI4-Stream layers populated
from the internal test pattern generator and one graphics controller layer.

« Contains an example of how to write an application that makes all necessary function
calls to the OSD C model core function.

« Contains an example of how to populate the video structures at the input and output,
including allocation of memory to these structures.

« Uses a YUV file reading function to extract video information from YUV files for use by
the model.

« Uses a YUV filewriting function to provide an output YUV file, which allows the user to
visualize theresult of the core.

The run_bitaec.cmodel example executable does not use command line parameters. To
run the executable:

1. Use the ed command torge to the platform directory (lin64, lin, win64 or win32).

2. Enter this command at the/shell or DOS prompt:
run_bitacc_cmodel
The run_bitacc_cmodel_config example executable provides:

« Shows configurable implementations‘of the OSD configured from a config file or
command line arguments.

« Includes a config file parser, allowing the user to pass parameters into the model for
multiple test cases.

+ Uses YUV or BMP file reading functions to extract,videodnformation from YUV or BMP
files for use by the model.

« Uses YUV or BMP file writing functions to provide an output YUV of BMP file, which
allows the user to visualize the result of the core.

The run_bitacc_cmodel _config example executable uses multiple command line
parameters. To run the executable:

1. Use the ed command to go to the platform directory (lin64, lin, win64 or win32).

2. Enter this command at the shell or DOS prompt:

run_bitacc_cmodel_config -c <Config Filename> <-parameter=value ...>

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 71
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=71

& XILINX. Example Code

Config File Format

The config file defines configuration generics, register settings and test parameters for
each video frame to be simulated by the C model. The basic file format is a series of lines
each containing a parameter-value pair separated by an '=". An example config file snippet
is provided here:

C_DATA_WIDTH = 8
C_NUM_LAYERS =
T_NUM_FRAMES = 2

FORMAT. RGB
T_COLORSPACE = 8
C_NUM_DATA. CHANNELS = 3
C{OUTPUT_MODE = 1
C_LAYEROLTYPE = 2
C_LAYER]1_TYPE = 2

T _OUTFILE = examplel.bmp

N

[FRAME 1]

R_X SIZE = 1280
R_Y SIZE = 720
R_BGCOLORO 0x10
R_BGCOLOR1 = 0x80
R_BGCOLOR2 = 0x80

R_LAYERO ENABLE = 1
R_LAYERO_G_ALPHA EN =
R_LAYERO_PRIORITY = 1
R_LAYERO_ALPHA = Oxff
R_LAYERO_X_POS = 0
R_LAYERO_Y POS = 0
R_LAYERO_X SIZE = 640
R_LAYERO_ Y SIZE = 720

T _LAYERO_CHANO_MODE
T _LAYERO_CHAN1_MODE
T LAYERO_CHAN2_MODE
T LAYERO_CHAN3_MODE =
T LAYERO_CHANO_COLOR = 2

T LAYERO_CHAN1_COLOR = 0xa0
T LAYERO_CHAN2_COLOR = 0xb0
T _LAYERO_CHAN3_COLOR = 0xc0

Configuration generics are prefixed with “C_", OSD hardware registers are prefixed with “R_"
and test parameters are prefixed with "T_". Settings can be changed for each video frame.
Video frame settings are delineated by a single line containing “"[FRAME <num>]", where
<num> is an integer denoting the frame number. Global parameters (generics and some test
parameters) must be before the first “[FRAME <num>]" line. Comment lines are those lines
in which the first non-white-space character is '#' or ';'. See Table 8-6 for a full list of all valid
parameters.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 72
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=72

& XILINX

Table 8-6: Global Parameters

Example Code

STRINGS

Parameter Valid Range Description
Global Parameters Global parameters must be outside of
[FRAME <num>] sections.
C_DATA_WIDTH 8,10,12 Data width of each color component channel.
C_NUM_LAYERS 1-8 Number of layers.
C_LAYER<num>_TYPE 1,23 Defines the layer type:
1 = Graphics Controller
2 = AXI4-Stream. Loads data from a file or from an
internally generated test pattern. The
T_LAYER<num>_CHANO_MODE (see below)
defines if the layer data is from internal test pattern
or from file. If the T_COLORSPACE is set to 8, the
file format expected is .bmp. If T_COLOR_SPACE is
set to 1,2 or 3, the file format expected is .yuv.
C_LAYER<num>_INS_BOX_.EN 0,1 Enable Box instructions. If 0, then all box
instructions in the instruction files are ignored.
C_LAYER<num>_INS_TEXT_EN 01 Enable Text Instructions. If 0, then all text
instructions in the instruction files are ignored.
Both C_LAYER<num>_INS_BOX_EN and
C_LAYER<num>_INS_TEXT_EN must be enabled to
enable the box text instruction.
C_LAYER<num>_IMEM_SIZE 4-4096 Maximum number of instructions .
C_LAYER<num>_CLUT_SIZE 16 or 256 Maximum number of colors.
C_LAYER<num>_TEXT_NUM_ 1-256 Maximum number of strings.

C_LAYER<num>_TEXT_MAX_
STRING_LENGTH

32,64,128,256

Maximum string length.

OFFSET

(C_LAYER<num>_FONT
_NUM_CHARS) -1

C_LAYER<num>_FONT_NUM_ 1-256 Maximum number of<«haracters.

CHARS

C_LAYER<num>_FONT_WIDTH 8,16 Maximum FontWidth.

C_LAYER<num>_FONT_HEIGHT 8,16 Maximum Font Height:

C_LAYER<num>_FONT_BPP 1,2 Font bits per pixel. 1 corfesponds to 2 color font
and 2 corresponds to 4 color font.

C_LAYER<num>_FONT_ASCII_ 0 - ASCII value of the first character in the font file.

T_NUM_FRAMES 1- Number of frames to simulate
T_COLORSPACE 1,2,3,8 Color space:

1=YUV 420

2 =YUV 4:2:2

3=YUV 444

8 = RGB

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

l Send Feedback I 73

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=73

& XILINX

Table 8-6: Global Parameters (Cont’d)

Example Code

Parameter

Valid Range

Description

T_OUTFILE

Any String

Destination file name to write output data. If the
T_COLORSPACE is set to 8, this file will be in 24-bit
.bmp format, otherwise this file is a planar .yuv file.

T_LAYER<num>_VIDEO_FILE

Any String

Defines the .bmp or .yuv file used to read layer
data if the C_LAYER<num>_TYPE is set to 2.

LE

T_LAYER<num>_INSTRUCTION_FI

Any String

File name of instruction file. The OSD C model does
not include a default set of instructions internally.
This parameter must be set if using the graphics
controller. See Instruction File Format.

T_LAYER<num>_CLUT_FILE

Any String

File name of color LUT file. The OSD C model does
not include a default color LUT internally. This
parameter must be set if using the graphics
controller. See Color LUT File Format.

T _LAYER<num>_FONT_FILE

Any String

File name of font file. The OSD C model does not
include a default font internally. This parameter
must be set if using the graphics controller. See
Font File Format.

T_LAYER<num>_TEXT_FILE

Any String

File name of string file. The OSD C model does not
include a default set of strings internally. This
parameter must be set if using the graphics
controller. See String File Format.

Frame Parameters

Frame Parameters can be defined and redefined
for each frame.

R_X_SIZE

1-4096

W.idth of OSD output frames.

R_Y_SIZE

1-4096

Height of OSD output frames.

R_BGCOLORO

0x00 — Oxfff

Background'color component 0 — R or Y.
Maximum value for data width of 8 is Oxff.
Maximum value for data width of 10 is 0x3ff.
Maximum value for data width of 12 is 0xfff.

R_BGCOLOR1

0x00 — Oxfff

Background color componént 1.—- G or U.
Maximum value for data width of 8 is Oxff.
Maximum value for data width of 10 is 0x3ff.
Maximum value for data width of 12 is 0xfff.

R_BGCOLOR2

0x00 — Oxfff

Background color component 2 — B or V.Maximum
value for data width of 8 is Oxff.

Maximum value for data width of 10 is Ox3ff.
Maximum value for data width of 12 is Oxfff.

R_LAYER<num>_ENABLE

0,1

Enables layer when 1.

R_LAYER<num>_G_ALPHA_EN

0,1

Enables global alpha when 1. When 0, pixel alpha
values are used.

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

l Send Feedback I 74

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=74

& XILINX

Table 8-6: Global Parameters (Cont’d)

Example Code

Parameter Valid Range Description
R_LAYER<num>_PRIORITY 0-7 Z-plane order. Lower values denotes layers that are
below layers with higher priority. Each layer must
have a unique priority setting.
R_LAYER<num>_ALPHA 0-Oxfff Alpha value for 100% opaque to 100% transparent.

Maximum value for data width of 8 is Oxff.
Maximum value for data width of 10 is Ox3ff.
Maximum value for data width of 12 is Oxfff.

R_LAYER<num>_X{POS

0 - (R_LX_SIZE-1)

X position of upper-left corner of layer.

R_LAYER<num>_Y_PQOS

0 - (R_Y_SIZE-1)

Y position of upper-left corner of layer.

R_LAYER<num>_X_SIZE

0 - R_X_SIZE

Width of layer.

R_LAYER<num>_Y_SIZE

0 - R_Y_SIZE

Height of layer.

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com l Send Feedback I 75

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=75

& XILINX

Table 8-6: Global Parameters (Cont’d)

Example Code

Parameter

Valid Range

Description

T_LAYER<num>_CHANO_MODE 0-7

The test mode of color channel/component O (R or
Y)

0 = OSD_PREFILL_MODE: Denotes that the layer
buffer is pre-filled with data before the OSD core
simulation begins. The OSD model will expect to
read input data from the
T_LAYER<num>_VIDEO_FILE in this mode.

1 = OSD_GRAPHICS_MODE: Denotes that the layer
data will be generated from the graphics controller.
All the graphics controller files must be setup.

2 = OSD_CHECKER_MODE: Channel data is
generated from internal test pattern generator.
Channel data filled with
T_LAYER<num>_CHANO_COLOR in the upper-left
and lower-right quadrants and filled with the
bit-reversed color in the upper-right and lower-left
guadrants.

3 = OSD_RAND_MODE: Channel data is generated
from internal test pattern generator. Channel data
is filled with random data. The value of
T_LAYER<num>_CHANO_MODE is used as the
seed.

4 = OSD_SOLID_MODE: Channel data is generated
from internal test pattern generator. Channel data
is filled with the value of

T LAYER<num>_CHANO_MODE.

5 =OSD_HRAMP_MODE: Channel data is
dgenerated from internal test pattern generator.
Channel data is filled with a horizontal ramp, values
incremented,every pixel.

6 = OSD VRAMP_MODE: Channel data is
generated. frompinternal test pattern generator.
Channel data is filled with a vertical ramp, values
incremented every line.

7 = OSD_TEMPR_MODE: Channel data is generated
from internal test pattern generator. Channel data
is filled with a temporal ramp, values incremented
every frame.

NOTE: If T_LAYER<num>_CHANO_MODE is set to 0
or 1, then T_LAYER<num>_CHAN1_MODE through
T_LAYER<num>_CHAN3_MODE is ignored.

T_LAYER<num>_CHAN1_MODE 0-7

Same as T_LAYER<num>_CHANO_MODE for
channel 1

T_LAYER<num>_CHAN2_MODE 0-7

Same as T_LAYER<num>_CHANO_MODE for
channel 2

T_LAYER<num>_CHAN3_MODE 0-7

Same as T_LAYER<num>_CHANO_MODE for
channel 3 (alpha)

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com l Send Feedback I 76

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=76

& XILINX. Example Code

Table 8-6: Global Parameters (Cont’d)

Parameter Valid Range Description

T_LAYER<num>_CHANO_COLOR | 0 — Oxfff Used when T_LAYER<num>_CHANO_MODE is set
to 2-7. Used to set the color or to configure the
internal test pattern generator for channel 0.

Maximum value for data width of 8 is Oxff.
Maximum value for data width of 10 is Ox3ff.
Maximum value for data width of 12 is Oxfff.

T LAYER<num>_CHAN1_COLOR | 0 — Oxfff Same as T_LAYER<num>_CHANO_COLOR for
channel 1

Maximum value for data width of 8 is 0xff.
Maximum value for data width of 10 is Ox3ff.
Maximum value for data width of 12 is Oxfff.

T_LAYER<num>_CHAN2 CQLOR | 0 — Oxfff Same as T_LAYER<num>_CHANO_COLOR for
channel 2

Maximum value for data width of 8 is Oxff.
Maximum value for data width of 10 is Ox3ff.
Maximum value for data width of 12 is Oxfff.

T_LAYER<num>_CHAN3_COLOR | 0 — Oxfff Same as T_LAYER<num>_CHANO_COLOR for
channel 3 (alpha)

Maximum value for data width of 8 is Oxff.
Maximum value for data width of 10 is Ox3ff.
Maximum value for data width of 12 is Oxfff.

Color LUT File Format

The color LUT file defines the color pallet used by the graphics controller. Each graphics
controller can have a different color LUT file justas the OSD hardware can have different
color LUT memory. The format of the file is plain text eantaining a series of decimal or
hexadecimal numbers separated by white space or newliné characters. Only the lower
8-bits of each number are used.

The order of the file is channelO, channell, channel2, and alpha for each color entry starting
at entry zero. Here is an example color LUT file:

0x00 0x00 0x00 0x00
0x10 0x80 128 0xcO
0x51 0x5a Oxef 0x80
0x89 0x52 0Ox46 128
0x6b 0xba 0x65 0x80

The first line shows all color 0 and has all channels including alpha set to zero. The second
line defines color 1 to be black in YUV with an alpha of 192. The remaining lines define color
2, 3 and 4 as red, green and blue in YUV, all with an alpha of 128 or 50% transparent.

The OSD can have a color LUT with 16 colors or 256 colors (64 or 1024 separate numbers for
all channels). Not all entries need to be defined. Those entries not defined are set to zero.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 77
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=77

& XILINX. Example Code

Consequently, the previous example defines only color entries 0, 1, 2, 3 and 4. Entries 5
through to the end of the table are zero.

Colors can be changed for each video frame (just as in the OSD hardware) by providing
multiple color LUTs within the file. The first C_LAYER<num>_CLUT_SIZE numbers are used
for frame 1, the next C_ LAYER<num>_CLUT_SIZE numbers are used for the next frame, and
so on. If the number of frames is more than the number of color LUTs in the file, then the
last color LUT is used for all remaining frames.

The Xilinx LogiCORE IP Video OSD C model does not include a default color LUT internally.
The color LUT must be initialized from file if using the graphics controller.

Font File Format

The font filedefines the bits used to define each pixel of each line of each character used
by the graphics controller. Each graphics controller can have a different font file just as the
OSD hardware can have'different font memory. The format of the file is plain text
containing a series of decimal or hexadecimal numbers separated by white space or
new-line characters.

The order of the file is linew0;dinelline 2, etc for each character. The number of lines for
each character is defined by the C_LAYER<num>_FONT_HEIGHT parameter. The number of
bits for each line is defined by C_LAYER<num>_FONT_WIDTH * C_LAYER<num>_FONT_BPP.
The first character in the font file dees not have to define character 0. Instead, the first
character is set by the C_LAYER<num>_FONT=ASCII_OFFSET. Here is an example font file:

0x18
0x24
0Ox66
0Ox66
Ox7e
0Ox66
0Ox66
0Ox66

This example shows a snippet of the font file for C_LAYER<num>_FONT_WIDTH=8,
C_LAYER<num>_FONT_HEIGHT=8, C_LAYER<num>_FONT_BPP=1 and
C_LAYER<num>_FONT_ASCII_OFFSET=32. The eight lines shown are for the capital letter
'A', ASCII 65. These lines would be the 33rd (65-32) character definition and lines 265
through 272 in the font file.

Fonts can be changed in each video frame (just as in the OSD hardware) by providing
multiple fonts within the file. The first C_LAYER<num>_FONT_NUM_CHARS *

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 78
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=78

& XILINX. Example Code

C_LAYER<num>_FONT _WIDTH * C_LAYER<num>_FONT_HEIGHT numbers are used

for frame 1, the next C_ LAYER<num> _FONT_NUM_CHARS *C_LAYER<num>_FONT WIDTH
* C_LAYER<num>_FONT_HEIGHT numbers are used for the next frame, and

so on. If the number of frames is more than the number of fonts in the file, then the last font
is used for all remaining frames.

The Xilinx LogiCORE IP Video OSD C model does not include a default font internally. The
font must be initialized from a file if using the graphics controller.

String File Format

The string file'defines the text strings used by the graphics controller. Each graphics
controller can‘have a different font file just as the OSD hardware can have different font
memory.:The format of the file is plain text containing one string of characters including
spaces per line.

The order of the\file is'string 0, string 1, string 2, and so on, again, one string per line. The
number of strings for each graphics controller is defined by this parameter:

C_LAYER<num>_TEXT_NUM_STRINGS

The maximum number of characters (including the terminating NULL character) is defined
by this parameter:

C_LAYER<num>_TEXT_MAX_STRING_LENGTH parameter

Here is an example string file:

This is String # 0. It is on one line!
String 1

Xilinx

OSD

Menu

1&7%1@#*

In the previous example file, only the first lines (up to C_LAYER<nums_TEXT_NUM
_STRINGS number of lines) are used. All other lines are ignored. Also, the'first.characters of
each line (up to C_LAYER<num>_TEXT_MAX_STRING_LENGTH) are used./All other
characters are ignored. If the maximum string length was set to 8, the first'string would be
truncated to “This is\0".

Note: In the OSD hardware, any character after the first NULL character in a string is ignored and
not displayed.

Strings can be changed in each video frame by providing multiple sets of strings within the
string file. The first C_LAYER<num>_TEXT_NUM_STRINGS number of lines are used for
frame 1, the next C_LAYER<num> _TEXT_NUM_STRINGS number of lines are used for the
next frame, and so on. If the number of frames is more than the number of sets of strings in
the file, then the last set of strings are used for all remaining frames.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 79
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=79

& XILINX

Example Code

The Xilinx LogiCORE IP Video OSD C model does not include a default set of strings
internally. The text strings must be initialized from a file if using the graphics controller.

Instruction File Format

The instruction file defines the instructions used by the graphics controller. Each graphics
controller can have a different instruction file just as the OSD hardware can have different
instruction memory. The format of the file is plain text containing one string of characters
including spaces per line. One full instruction is contained on each line.

The orderof the file is instruction, x_start, x_stop, y_start, y_stop, color_index, text_index
and object_size on each line. The instruction field is a text string describing the graphics

instruction. All other fields are either decimal or hexadecimal numbers for the parameters

of t

he instruction.

Here is an example instruction file:

RS SRR R ki
Frame 1 Instructions
HHH AR R HHHHA AR R HFFAAHH
80 1.0
903 0
50 241
40 2 2

BOX 10 20
BOX 40 60
TEXT 100 100

BOXTEXT 30 40
END

40
70
50
30

HAHHAHHH A SRS H AR SRS
Frame 2 Instructions
HAHHAH SRS SRS SR AR AR HA S

TEXT 100 100

BOX 20 40
BOX 40 80
TEXT 200 100

BOXTEXT 30 40
END

50
40
70
50
30

50
80
90
50
40

2

NN W R

N P O O B

4
4
0x40
0x14

0x40
4
4
0x40
0x14

Each field is described in Table 8-7.

Table 8-7: Instruction File Fields
Field Valid Range Description
Instruction BOX, TEXT, BOXTEXT, END The graphics instruction.
Xstart 0 — end of line Starting draw x position of the instruction.
Xstop 0 — end of line Ending draw x position of the instruction.
Ystart 0 — end of frame Starting draw y position of the instruction.
Ystop 0 — end of frame Ending draw y position of the instruction.

Video On-Screen Display v6.0

PG010 November 18, 2015

www.xilinx.com

l Send Feedback I

80

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=80

& XILINX. Example Code

Table 8-7: Instruction File Fields (Cont’d)

Color index 0 - 15 or 255 The color to be used for the graphics object.

For boxes, this color index is used directly.

For Text with BPP=1, the color index is used for the
background and the color index + 1 is used for the
foreground.

For Text with BPP=2, the color index is used for bits
"00" in the font, color index + 1 for bits “01”, color

index + 2 for “10” and color index + 3 for "11".

Text index 0 — (number of strings -1) The text string to draw.

Object Size 0 — Oxff For BOX, Size of boxes.
For BOXTEXT, [3:0] size of boxes, [7;4] size of text.
For TEXT, bits [7:4] size of text.

See Instruction RAMiin Appendix D for more information on the format of each instruction.

There are two "END"sqdin the example instruction file because the file is used to describe the
instructions for each video frame. All instructions from the beginning of the file to the first
END are displayed onsframe 1.:For each frame following, the instructions between each
subsequent "END" are displayed. If the number of frames is more than the number of
“END"s in the file, then the"last set of instructions are displayed for all remaining frames.

The Xilinx LogiCORE IP Video OSD C modeldoes not include a default set of instructions
internally. The instructions must be'initialized from a file if using the graphics controller.

Initializing the OSD Input Video Structure

The easiest way to assign stimuli values to the input video structure is to initialize it with an
image or video. The bmp_util.h, yuv_utils.h, ¥rgb utils.h and video_util.h
header files packaged with the bit accurate C models.contain.functions to facilitate file I/0O.

Bitmap Image Files

The rgb_utils.h and bmp_utils.h files declare functions thatshelp@access files in
Windows bitmap format (http://en.wikipedia.org/wiki/BMP_file_format)..However, this
format limits color depth to a maximum of 8 bits per pixel, and operates on‘images with
three planes (R,G,B). Consequently, the following functions operate on arguments type
rgb8_video_struct, which is defined in rgb_utils.h. Also, both functions support only
true color, non-indexed formats with 24 bits per pixel.

int write_bmp (FILE *outfile, struct rgb8_video_struct *rgb8_video) ;
int read_bmp (FILE *infile, struct rgb8_video_struct *rgb8_video) ;

These functions are used to dynamically allocate and free memory for RGB structure
storage:

int alloc_rgb8_frame_buff (struct rgb8_video_struct* rgb8video);

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 81
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=81

& XILINX. Example Code

int
int
int
int

void free_rgb_frame_buff (struct rgb_video_struct* rgb_video);

Exchanging data between rgb8_video_struct and general video_struct type frames/videos is
facilitated by functions:

int copy_rgb8_to_video(struct rgb8_video_struct* rgb8_in,
struct video_struct* video_out);

int copy_video_to_rgb8(struct video_struct* video_in,
struct rgb8_video_struct* rgb8_out);

Note: All image / video manipulation utility functions expect both input and output structures
initialized; for example, pointing to a structure that has been allocated in memory, either as static or
dynamic variables. Additionally, the input structure must have the dynamically allocated containers
(data, rg, b, y, uy and v arrays) already allocated and initialized with the input frame(s). If the output
container structure is pre-allocated at the time of the function call, the utility functions verify and
issue anerror if the output container size does not match the size of the expected output. If the
output container'structure is not pre-allocated, the utility functions create the appropriate container
to hold results.

YUV Image/Video'Files

The yuv_utils.h file'declares functions that support file access in YUV format. These
functions are used to dynamically.allocate and free memory for YUV structure storage:

int alloc_yuv8_frame_buff (struct yvuwv8_ video_struct* yuv8video);
void free_yuv_frame_buff (struct vuav.ovideo_struct* yuv_video);

These functions allow reading and writing of YUV functions (used to initialize or write
yuv8_video data):

int write_yuv(FILE *outfile, struct yuv8_wvideo_struct *yuv8_video) ;
int read_vyuv(FILE *infile, struct yuv8_video_sgtruct *yuv8_video) ;

Exchanging data between yuv8_video_struct and general video_struct type frames/videos is
facilitated by functions:

int copy_vyuv8_to_video(struct yuv8_video_struct* yuv8_in,
struct video_struct* video_out);

int copy_video_to_yuv8(struct video_struct* video_in,
struct yuv8_video_struct* yuv8_out);

YUV formats (4:2:0, 4:2:2 and 4:4:4) can be converted with these functions:

yuv8_420to444 (struct yuv8_video_struct* video_in, struct yuv8_video_struct* video_out) ;
yuv8_422to444 (struct yuv8_video_struct* video_in, struct yuv8_video_struct* video_out) ;
yuv8_444to0420 (struct yuv8_video_struct* video_in, struct yuv8_video_struct* video_out)
yuv8_444to422 (struct yuv8_video_struct* video_in, struct yuv8_video_struct* video_out)

’

Binary Image/Video Files

The video_utils.h file declares functions that help load and save generalized video files
in raw, uncompressed format. These functions effectively serialize the video_struct
structure:

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 82

PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=82

& XILINX. Example Code

int read_video(FILE* infile, struct video_struct* in_video) ;
int write_video (FILE* outfile, struct video_struct* out_video) ;

The corresponding file contains a small, plain text header defining, “Mode”, "Frames”,

“Rows”, "Columns”, and "Bits per Pixel”. The plain text header is followed by binary data,

16-bits per component in scan line continuous format. Subsequent frames contain as many
component planes as defined by the video mode value selected. Also, the size (rows,
columns) of component planes can differ within each frame as defined by the actual video
mode selected.

These functions are used to dynamically allocate and free memory for video structure
storage:

int alloc4video_buff (struct video_struct* video);
void free video_buff (struct video_struct* video);

Compiling on 32-bit and 64-bit Windows Platforms

Precompiled library.v_osd_v6_0_bitacc_cmodel.1lib, top level demonstration code
run_bitacc_cmodel_c¢onfig.c and example code run_bitacc_cmodel.c must be
compiled with an ANSI C compliant compiler under Windows 32-bit or Windows 64-bit.
This section describes an example using Microsoft Visual Studio.

In Visual Studio create a new, empty Win32 Console Application project. As existing items,
add:

e 1libIpv_osd_v6_0_bitacc_cmodel. lib to the “Resource Files” folder of the
project

e run_bitacc_cmodel.c orthe run_bitaccdcmoedel config.c to the “Source
Files” folder of the project

* v_osd v6_0_bitacc_cmodel.h header file to the "HeaderFiles” folder of the
project

 bmp_utils.h file to the "Header Files” folder of the project
« rgb_utils.h file to the "Header Files” folder of the project
+ wvideo_fio.h file to the "Header Files” folder of the project
+ wvideo_utils.h file to the "Header Files” folder of the project

« yuv_utils.h file to the "Header Files” folder of the project

To build the x64 executable for 64-bit Windows platforms, perform these steps. These steps
can be skipped if building the Win32 executable.

1. Right-click on the solution in the Solution Explorer and click Properties at the bottom
of the pop-up menu.

2. Click Configuration Manager.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 83
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=83

& XILINX. Example Code

3. In the Active solution platform drop-down box, select <New...>.

4. In the new platform drop-down box, select x64 and click OK.

Make sure that all the projects now have x64 as the default platform in the
Configuration Manager.

5. After the project is created and populated, it must be compiled and linked (built) to
create a Win32 or x64 executable. To perform the build step, select Build Solution from
the Build menu. An executable matching the project name is created either in the Debug
or Release subdirectories under the project location based on whether “Debug” or
“Release”has been selected in the “Configuration Manager” under the Build menu.

Note: The run/ bitacc_cmodel.c file is an example demonstration that reads no input but
generates an©utput .yuv file from internally generated test patterns. The

run_bitacc_emodel config.c fileis a configurable demonstration and requires several input
files to run. See Running the Executables for information on command line arguments and input file
formats.

Compiling under 32-bit and 64-bit Linux Platforms

Example Demonstration

To compile the example demonstration, go to the directory where the header files, the
library files and run_bitacc_cmodel .€ were unpacked. The libraries and header files are
referenced during the compilation and linking process. In this directory, perform these
steps:

1. Setyour LD_LIBRARY_PATH environment variableto include the root directory where the
model zip file was unzipped. For example:
setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY PATH}

2. Copy these files from the /lin32 or /lin64 directory to/the root directory:

libIp_v_osd_v6_0_bitacc_cmodel.so
libIp_v_tc_v6_0_bitacc_cmodel.so

3. Inthe root directory, compile using the GNU C Compiler by typing.this command at the
shell prompt:

gcc -m32 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o run_bitacc_cmodel -L.
-1TIp_v_osd_v6_0_bitacc_cmodel -Wl,-rpath, .

gcc -mb64d -xX c++ ../run_bitacc_cmodel.c ../parsers.c -o run_bitacc_cmodel -L.
-1Tp_v_osd_v6_0_bitacc_cmodel -Wl,-rpath, .

4. This results in the creation of the executable run_bitacc_cmodel, which can be run using
this command:

./run_bitacc_cmodel

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 84
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=84

& XILINX. Example Code

A make file is also included that runs GCC. To clean the executable and compile the
example code, enter this command at the shell prompt:

make clean all

Configurable Demonstration

To compile the configurable demonstration, go to the directory where the header files, the
library files and run_bitacc_cmodel_config.c were unpacked. The libraries and
header files are referenced during the compilation and linking process. In this directory,
perform these steps:

1. Setyour LD_LIBRARY_PATH environment variable to include the root directory where the
model zip-file was unzipped. For example:
setenv LD_LIBRARY PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy these files from the /lin64 directory to the root directory:

libIp_v_osd_v6_0_bitacc_cmodel.so
libIp_v_tc_v6_0_bitacelecmodel.so

3. In the root directory,'compile using the GNU C Compiler by entering this command at
the shell prompt:

gcc -x c++ run_bitacc_cmodel_config.c o run_bitacc_cmodel_config -L.
-1Ip_v_osd_v6_0_bitacc_cmodel -Wl, -rpath, .

4. This results in the creation of the executable run_bitacc_cmodel, which can be run using
this command:

./run_bitacc_cmodel_config -c¢ <Config ‘Filename>_ <-parameter=value ...>

A make file is also included that runs GCC. Torcleanthe executable and compile the
example code, enter this following command at the'shell prompt:

make clean run_bitacc_cmodel_config

Running the Executables

Included in the zip file are precompiled executable files for use with/32-bit and 64-bit
Windows and Linux platforms. The instructions for running on each platform are included in
this section.

Example Demonstration

The example demonstration does not use command line parameters. To run on a 32-bit or
64-bit Linux platform, perform these steps:

1. Set your $LD_LIBRARY_PATH environment variable to include the root directory where
the model zip file was unzipped. For example:

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 85
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=85

& XILINX. Example Code

setenv LD_LIBRARY_PATH <unzipped_ c_model_dir>:${LD_LIBRARY_ PATH}

2. Copy these files from the /lin64 (for 64-bit Linux) or from the /lin (for 32-bit Linux)
directory to the root directory:

libIp_v_osd_v6_0_bitacc_cmodel.so
libIp_v_tc_v6_0_bitacc_cmodel.so
run_bitacc_cmodel

3. Execute the model. From the root directory, enter this command at a shell prompt:

run_bitacc_cmodel

-bit or 64-bit Windows platform, perform these steps:

ef om the /nt64 (for 64-bit Windows) or from the /nt (for 32-bit Windows)
e root directory:

run_blt

2. Execute th el.From the root directory, enter this command at a DOS prompt:

run_bitacc_cmod
During successful execu test.yuv file is created in the directory containing the
run_bitacc_cmodel execu Ie is a planar YUV file in 4:4:4 format. The example
demonstration is set up to ge ames of video data at 1280x720 resolution. Each
frame contains the output of thr | Iaprs and background color.

Figure 8-1 shows frame 1 of the te . The image shows a background color of
orange, a video layer with a horlzonta r ther video layer with random data, and a

Figure 8-1: Example Demonstration Output Image

Configurable Demonstration

The configurable demonstration takes multiple command line parameters. To run on a
32-bit or 64-bit Linux platform, perform these steps:

Video On-Screen Display v6.0 www.xilinx.com Send Feedback 86
PG010 November 18, 2015 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=86

& XILINX. Example Code

1. Set your $LD_LIBRARY_PATH environment variable to include the root directory where
the model zip-file was unzipped. For example:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_ PATH}

2. Copy these files from the /lin64 (for 64-bit Linux) or from the /lin (for 32-bit Linux)
directory to the root directory:

libIp_v_osd_v6_0_bitacc_cmodel.so
1libIp_v_tc_v6_0_bitacc_cmodel.so

run_bitacc_cmodel_config

3. Execute the model. From the root directory, enter this command at a shell prompt:

run, bitacé_cmedel_config -c <Config Filename> <-parameter=value ..>

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 87
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=87

& XILINX. Example Code

To run on a 32-bit or 64-bit Windows platform, perform these steps:

1. Copy this file from the /nt64 (for 64-bit Windows) or from the /nt (for 32-bit Windows)
directory to the root directory:

run_bitacc_cmodel_config.exe

2. Execute the model. From the root directory, enter this command at a DOS prompt:

run_bitacc_cmodel_config -c¢ <Config Filename> <-parameter=value ..>

The configlirable demonstration reads parameters from the config file specified with the
-i <config_file> argument where <config_file> is the relative path and filename of the
config file. See Config File Format for more information. Parameters in the config file can
be overridden on the command line by prefixing the parameter with a dash ('-') and
removing white spaces. For example, the number of frames to simulate can be overridden
with this command line argument "-T_NUM_FRAMES=2". Config parameters set on the
command line'must besset after the -i argument to take effect.

Figure 8-2 shows frame.1 ofsthe output of the configurable demonstration from this
command line:

run_bitacc_cmodel_config -¢ examples/exampleO.cfg

The image shows a background color.of green, a video layer with a horizontal ramp and
another video layer with random data.

Figure 8-2: Configurable Demonstration Output Image (Example 0)

Video On-Screen Display v6.0 www.xilinx.com Send Feedback 88
PG010 November 18, 2015 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=88

& XILINX. Example Code

Figure 8-3 shows frame 1 of the output of the configurable demonstration from this
command line:

run_bitacc_cmodel_config -c examples/examplel.cfg

The image shows a background color of grey, a video layer with a horizontal ramp and
another video layer with a vertical ramp. Each ramp layer (vertical and horizontal) have
different ramp starting values for each color component.

Figure 8-3: Configurable Demonstration Qutput Image (Example 1)

Figure 8-4 shows frame 1 of the output of the/configlirable demonstration from this
command line:

run_bitacc_cmodel_config -c examples/example2.cfg

Video On-Screen Display v6.0 www.xilinx.com l Send Feedback I 89
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=89

& XILINX. Example Code

The image shows a background color of red, a video layer from a BMP file input and another
video layer with random data.

Figure 8-4: - Configurable Demonstration Output Image (Example 2)

Video On-Screen Display v6.0 www.xilinx.com Send Feedback 20
PG010 November 18, 2015 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=90

& XILINX. Example Code

Figure 8-5 shows frame 1 of the output of the configurable demonstration from this
command line:

run_bitacc_cmodel_config -c examples/example3.cfg

The image shows a background color of grey, a video layer from a BMP file input, six other
video layers with checkerboard, horizontal ramp and vertical ramp patterns. One graphics
controller layer is also displayed generating multi-colored lines, boxes and text.

]
|
|

: Sy - a
| / 4]
L ighin A‘l L_Color]|

Figure 8-5: Configurable Demonstration Output Image (Example 3)

s

Video On-Screen Display v6.0 www.xilinx.com Send Feedback 91
PG010 November 18, 2015 I—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=91

& XILINX.
Chapter 9

Test Bench

This chapter contains information about the provided test bench in the Vivado® Design
Suite environment.

Demonstration Test Bench

A demonstrationstestibench is provided with the core which enables you to observe core
behavior in a typical scenario. This test bench is generated together with the core in
Vivado Design Suite. Youare encouraged to make simple modifications to the
configurations and observe the changes in the waveform.

Directory and File Contents

The following files are expected to be generated in the in the demonstration test bench
output directory:

e axidlite mst.v
e axids_video_mst.v
e axids video_slv.v
e cCce_generator.v

e tb <IP instance_name>.v

Test Bench Structure
The top-level entity is tb_<IP_instance_name>.
It instantiates the following modules:
+ DUT
The <IP> core instance under test.

e axidlite_mst

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 92
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=92

& XILINX. Chapter 9: Test Bench

The AXI4-Lite master module, which initiates AXI4-Lite transactions to program core
registers.

e axids_video_mst

The AXI4-Stream master module, which generates ramp data and initiates AXI4-Stream
transactions to provide video stimuli for the core and can also be used to open stimuli
files generated from the reference C models and convert them into corresponding
AXI4-Stream transactions.

To do this, edit tb_<IP_ instance name>.vV:

a.<Add define macro for the stimuli file name and directory path
define STIMULI_FILE_NAME<path><filename>.

b. Comment-out/remove the following line:
MST.igr ramp_gen (C_ACTIVE_ROWS, ‘C_ACTIVE_COLS, 2);
and replace with'the following line:
MST.use_file(VSTIMULI_FILE_NAME) ;

For information on how to generate stimuli files, see Chapter 4, C Model Reference.
e axids_video_slv

The AXI4-Stream slave module, which acts as a passive slave to provide handshake
signals for the AX14-Stream transactionsfrom the core output, can be used to open the
data files generated from the reference C model and verify the output from the core.

To do this, edit tb_<IP_instance_name>.v:

a. Add define macro for the golden file name and directory path
define GOLDEN_FILE_NAME “<path><filename>".

b. Comment out the following line:
SLV.1is_passive;
and replace with the following line:
SLV.use_file(GOLDEN_FILE_NAME) ;

For information on how to generate golden files, see Chapter 4,"C Model'Reference.
e cCce_gen

Programmable Clock Enable (ACLKEN) generator.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 93
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=93

& XILINX.
Appendix A

Verification, Compliance, and
Interoperability

This appendixiincludes information about how the IP was tested for compliance with the
protacol to which it was designed.

Simulation

A highly parameterizabletest bench was used to test the Video On-Screen Display core.
Testing included the following:

« Register accesses

« Processing of multiple frames of data

« Testing of various frame sizes including 1080p, 720p and 480p
« Varying instantiations of the core

« Varying the data width including 8, 10 and 12

« Varying the number of data channels including 2 and 3

« Varying the number and type of layers including AXI4-Stream input interfaces and
Graphics controllers

« Varying size, location, transparency and over/under of video layers
« Varying the background color

« Varying the number, size, color and transparency of boxes, text generated from the
internal graphics controller

Hardware Testing

The Video On-Screen Display core has been tested in a variety of hardware platforms at
Xilinx to represent a variety of parameterizations, including the following:

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 94
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=94

& XILINX. Interoperability

« A test design was developed for the core that incorporated a MicroBlaze™ processor,
AXI4 Interconnect and various other peripherals. The software for the test system
included live video input and output for the Video On-Screen Display core. Various
tests could be supported by varying the configuration of the Video On-Screen Display
core or by loading a different software executable. The MicroBlaze processor was
responsible for:

- Initializing the appropriate input and output buffers in external memory
- Initializing the Video On-Screen Display core

- Initializing the HDMI/DVI input and output cores for live video

o AlLaunching the test

- Configuring the Video On-Screen Display for various input frame sizes, positions
and transparency

- Launching various graphics controller tests for box and text placement, color, size
and transparency

o Launching OSD.demosiincluding video/graphics resize/movement and on-screen
menu demos

- Controlling the peripherals including the UART and AXI VDMAs

Interoperability

The core slave (input) AXI4-Stream interface can work directly with any Video core which
produces RGB, YCrCb 4:4:4, YCrCb 4:2:2, or YCrCb4:2:0:data. The core master (output) RGB
interface can work directly with any Video core which consumes RGB, YCrCb 4:4:4, YCrCb
4:2:2, or YCrCb 4:2:0 data.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 95
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=95

& XILINX.
Appendix B

Migrating and Upgrading

This appendix contains information about migrating from an ISE design to the Vivado
Design Suite, and for upgrading to a more recent version of the IP core. For customers
upgrading their IP core, important details (where applicable) about any port changes and
other impact to user logic are included.

Migrating to'the Vivado Design Suite

For information about'migration to Vivado Design Suite, see ISE to Vivado Design Suite
Migration Guide (UG911) [Ref 2].

Upgrading in Vivado Design Suite

This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more currentwersion of this IP core in the Vivado
Design Suite.

Parameter Changes

There are no parameter changes.

Port Changes

The Video On-Screen Display v5.01.a removed all TKEEP ports form the AXI4-Stream
interfaces.

TUSER ports were added to the AXI4-Stream interfaces.
All XSVI ports were removed.
The IP2INTC_ Irpt output port was renamed to IRQ.

The INTC_IF output bus was added.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 96
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=96

& XILINX. Upgrading in Vivado Design Suite

The Video On-Screen Display v3.0 changed the port widths of all VFBC interfaces, and
added the video_data_in input port.

Other Changes

Migrating to the AXIl4-Lite Interface

The Video On-Screen Display v3.0 changed from the PLB processor interface to the
AXI4-Lite interface. As a result, all of the PLB-related connections have been replaced with
an AXI4-Litesinterface. For more information, see:

http://Xilinx Support web page/documentation/ip_documentation/ug761_axi_reference_guide.pdf

Migrating to'the AXI4-Stream Interface

The Video On-Screen Display v5.01.a removed all XSVI inputs and outputs, replacing the
functionality with AXI4-Stream interfaces. For more information bridging the XSVI and
AXI4-Stream interfaces, see:

http://www.xilinx.com/support/documentation/application_notes/xapp521 XSVI_AXI4.pdf

The Video On-Screen Displayw3.0 changed from the Video Frame Buffer Controller (VFBC)
native interfaces to the AXI4-Stream interfaces. As a result, all of the VFBC-related
connections have been replaced with anf/AXI4-Lite interface. For more information, see:

http://www.xilinx.com/support/documentation/ip .documentation/
ug761 axi_reference _quide.pdf

Functionality Changes

The Video On-Screen Display v3.0 added the ability to dfive'the video output from one XSVI
input video source. This allows overlaying graphics (from Internal Graphics Controller) from
live streaming video without the use of external memory. The option to select an XSVI
output has been removed in v5.01.a. If live video out is needed, then thewser can use the
AXI4-Stream to Video Out or AXI4-Stream to XSVI, using components from XAPP521 (v1.0),
Bridging Xilinx Streaming Video Interface with the AXI4-Stream Protocol located at:

http://www.xilinx.com/support/documentation/application_notes/xapp521 XSVI AXI4.pdf.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 97
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/support/documentation/ip_documentation/ug1037-vivado-axi-reference.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp521_XSVI_AXI4.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug1037-vivado-axi-reference.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug1037-vivado-axi-reference.pdf
http://www.xilinx.com/support/documentation/application_notes/
xapp521_XSVI_AXI4.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=97

& XILINX.
Appendix C

Debugging

This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding'Help on Xilinx.com

To help in the designiandidebug process when using the On-Screen Display, the Xilinx
Support web page (Xilinx'Support web page) contains key resources such as product
documentation, release notes, answer records, information about known issues, and links
for opening a Technical Support Web Case.

Documentation

This product guide is the main document associated with the On-Screen Display. This
guide, along with documentation relatedo all products that aid in the design process, can
be found on the Xilinx Support web page orby using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more
information about this tool and the features avatlable, open the online help after
installation.

Answer Records

Answer Records include information about commonly encountered'problems, helpful
information on how to resolve these problems, and any known issueswith a Xilinx product.
Answer Records are created and maintained daily ensuring that users haveaccess to the
most accurate information available.

Answer Records for this core are listed below, and can also be located by using the Search
Support box on the main Xilinx support web page. To maximize your search results, use
proper keywords such as

Product name
+ Tool message(s)

« Summary of the issue encountered

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 98
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support/download.html
http://www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=98

& XILINX. Appendix C: Debugging

A filter search is available after results are returned to further target the results.
Answer Records for the On-Screen Display Core

AR 54539
http://www.xilinx.com/support/answers/54539.htm

Technical Support

Xilinx provides technical support in the Xilinx Support web page for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timingg/functionality, or support if you do any of the following:

« Implement the solution in devices that are not defined in the documentation.
» Customize the solution beyond that allowed in the product documentation.

« Change any:section'of the design labeled DO NOT MODIFY.

Xilinx provides premier.technical support for customers encountering issues that require
additional assistance.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

1. Open a WebCase by selecting thetWebCase link located under Support Quick Links.

« A block diagram of the video system that'explains the video source, destination and IP
(custom and Xilinx) used.

Note: Access to WebCase is not available in all‘cases. Please login to the WebCase tool to see your
specific support options.

Debug Tools

There are many tools available to address On-Screen Display design issués. It is important
to know which tools are useful for debugging various situations.
Example Design

The Video On-Screen Display is delivered with an example test bench. Information about
the example test bench can be found in Chapter 6, Example Design for the Vivado™ Design
Sutte.

Vivado Design Suite Debug Feature

Vivado inserts logic analyzer and virtual I/O cores directly into your design. Vivado Lab
Tools allows you to set trigger conditions to capture application and integrated block port

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 929
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/support/answers/54539.htm
http://www.xilinx.com/support
http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=99

& XILINX. Appendix C: Debugging

signals in hardware. Captured signals can then be analyzed. This feature represents the
functionality in the Vivado IDE that is used for logic debugging and validation of a design
running in Xilinx FPGA devices in hardware.

The Vivado logic analyzer is used to interact with the logic debug LogiCORE IP cores,
including:

« ILA 2.0 (and later versions)

« VIO 2.0 (and later versions)

Reference Boards

Various,Xilinx development boards support On-Screen Display. These boards can be used
to prototype designs and establish that the core can communicate with the system.

« 7 series evaluation boards
. KC705
o ZC702

C-Model Reference

Please see C Model Reference in Chapter 8'in this guide for tips and instructions for using
the provided C Model files to debug your design.

License Checkers

If the IP requires a license key, the key must be verified. The Vivado tool flows have a
number of license check points for gating licensed IP through the flow. If the license check
succeeds, the IP may continue generation. Otherwise;xgeneration halts with error. License
checkpoints are enforced by the following tools:

« Vivado flow: RDS, RD], Bitgen

f IMPORTANT: /P license level is ignored at checkpoints. The test confirms a valid license exists. It does
not check IP license level.

Hardware Debug

Hardware issues can range from link bring-up to problems seen after hours of testing. This
section provides debug steps for common issues. The Vivado Lab Tools are a valuable
resource to use in hardware debug. The signal names mentioned in the following individual
sections can be probed using the Vivado Lab Tools for debugging the specific problems.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 100
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=100

& XILINX. Appendix C: Debugging

Many of these common issues can also be applied to debugging design simulations. Details
are provided on General Checks

General Checks

Ensure that all the timing constraints for the core were properly incorporated from the
example design and that all constraints were met during implementation.

« Does it work in post-place and route timing simulation? If problems are seen in
hardware but not in timing simulation, this could indicate a PCB issue. Ensure that all
clockssources are active and clean.

« Ifausing MMCMs in the design, ensure that all MMCMs have obtained lock by
monitoring the LOCKED port.

« If your outputs go to 0, check your licensing. The evaluation version of the core will
time out after running for 8 hours at 75 MHz.

Evaluation Core Timeout

The On-Screen Display hardware €valuation core times out after approximately eight hours
of operation. The output is driven to zero. This results in a black screen for RGB color
systems and in a dark-green screen for YUV color systems.

Interface Debug

AXl4-Lite Interfaces

Table C-1 describes how to troubleshoot the AXI4-Lite intérface.

Table C-1: Troubleshooting the AXl4-Lite Interface

Symptom Solution
Readback from the Version Are the S_AXI_ACLK and ACLK pins connected?
Register via the AXI4-Lite interface | The VERSION_REGISTER readout issue may be indicative of the
times out, or a core instance core not receiving the AXI4-Lite interface.

without an AXI4-Lite interface
seems non-responsive.

Readback from the Version Is the core enabled? Is s_axi_aclken connected to vcc?
Register via the AXI4-Lite interface | Verify that signal ACLKEN is connected to either net_vcc orto a
times out, or a core instance designated clock enable signal.

without an AXI4-Lite interface
seems non-responsive.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 101
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=101

& XILINX

Table C-1:

Appendix C: Debugging

Troubleshooting the AXI4-Lite Interface (Cont’d)

Symptom

Solution

Readback from the Version
Register via the AXI4-Lite interface
times out, or a core instance
without an AXI4-Lite interface

seems non-responsive.

Is the core in reset?

S_AXI_ARESETn and ARESETn should be connected to vcc for
the core not to be in reset. Verify that the S_AXI_ARESETn and
ARESETn signals are connected to either net_vcc orto a
designated reset signal.

Readback value for the

VERSION_REGISTER is different
from expected default values

The core and/or the driver in a legacy SDK project has not been
updated. Ensure that old core versions, implementation files, and
implementation caches have been cleared.

Assuming the AXI4-Lite interface works, the second step is to bring up the AXI4-Stream

interfaces.

AXIl4-Stream Interfaces

Table C-2 describes how to troubleshoot the AXI4-Stream interface.

Table C-2:

Troubleshooting AXI4-Stream Interface

Symptom

Solution

Bit
0,4,8,12,16,20,24,28 of
the ERROR register
reads back set.

These bits of the ERROR register, EOL_EARLY, indicates the number of pixels
received between thelatest and the preceding End-Of-Line (EOL) signal for the
given AXI4-Stream Slave/Layer was less than the value programmed into the
OSD Layer # Size registers.If the values were provided by the Video Timing
Controller core, read out ACTIVE_SIZE register value from the VTC core again,
and make sure that the TIMING_LOCKED flag is set in the VTC core. Otherwise,
measure the number of activef/AXI4-Stream transactions between EOL pulses.

Bit
1,5,9,13,17,21,25,29 of
the ERROR register
reads back set.

These bits of the ERROR register,.EOL_LATE, indicates the number of pixels
received between the last End-Of-Line (EOL) signal for the given AXI4-Stream
Slave/Layer surpassed the value programmed into the OSD Layer # Size
register. If the values were provided bysthe«Video Timing Controller core, read
out ACTIVE_SIZE register value from the VIIC core @again, and make sure that the
TIMING_LOCKED flag is set in the VTC core, Otherwise, measure the number of
active AXI4-Stream transactions between EOL pulses.

Bit
2,6,10,14,18,22,26,30
or

Bit
3,7,11,15,19,23,27,31
of the ERROR register
reads back set.

These bits of the ERROR register, SOF_EARLY, and SOF_LATE indicate the
number of pixels received between the latest and the préceding Start-Of-Frame
(SOF) for the given AXI4-Stream Slave/Layer differ from the value programmed
into the OSD Layer # Size register. If the values were provided by the Video
Timing Controller core, read out ACTIVE_SIZE register value from the VTC core
again, and make sure that the TIMING_LOCKED flag is set in the VTC core.

Otherwise, measure the number EOL pulses between subsequent SOF pulses.

s_axis_video#_tready
stuck low, the
upstream core cannot
send data.

During initialization, line-, and frame-flushing, the OSD core keeps its
s_axis_video#_tready input low. Afterwards, the core should assert
s_axis_video#_tready automatically. Is m_axis_video_tready low? If so, the OSD
core cannot send data downstream, and the internal FIFOs are full. Typically the
OSD only needs one output size line time to initialize.

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com

l Send Feedback I 102

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=102

& XILINX

Appendix C: Debugging

Table C-2: Troubleshooting AXI4-Stream Interface (Cont’d)

Symptom

Solution

m_axis_video_tvalid
stuck low, the
downstream core is
not receiving data

* No data is generated during the first two lines of processing.

« If the programmed Layer size or is radically smaller than the actual incoming
size, the core drops most of the pixels waiting for the
(s_axis_video#_tlast) End-of-line signal. Check the ERROR register.

Generated SOF signal
(m_axis_video_tuser[0
1) signal misplaced.

Check the ERROR register.

GeneratedEOL signal
(m_axis«video_tlast)
signal'misplaced.

Check the ERROR register.

Data samples lost
between Upstream
core and thef{OSD
core.

Inconsistent EOL and/
or SOF periods
received.

» Are the Master and Slave AXI4-Stream interfaces in the same clock domain?

+ Is proper clock-domain crossing logic instantiated between the upstream
core and the OSD core (Asynchronous FIFO)?

+oPid the design meet timing?
« Is the frequency of the clock source driving the OSD ACLK pin lower than the
reported Fmax reached?

Data samples lost
between Downstream
core and the OSD
core.

Inconsistent EOL and/

or SOF periods
received.

* Are the Master and Slave AXI4-Stream interfaces in the same clock domain?

« Is propef clock-domain crossing logic instantiated between the upstream
core and the.OSDicore (Asynchronous FIFO)?

» Did the design.meet timing?

« Is the frequency ofithe clock source driving the OSD ACLK pin lower than the
reported Fmax réached?

If the AXI4-Stream communication is healthy, bat the data seems corrupted, the next step is
to find the correct configuration for this core.

Other Interfaces

Table C-3 describes how to troubleshoot third-party interfaces.

Video On-Screen Display v6.0
PG010 November 18, 2015

www.xilinx.com l Send Feedback I 103

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=103

& XILINX. Appendix C: Debugging

Table C-3: Troubleshooting Third-Party Interfaces

Symptom Solution
Severe color Verify that the color component logical addressing on the AXI4-Stream TDATA
distortion or signal is valid. If misaligned:
color-swap when In HDL, break up the TDATA vector to constituent components and manually
interfacing to connect the slave and master interface sides.
third-party video IP. | In Vivado, use the xlIslice and xlconcat cores to rearrange the TDATA bus.
Severe color Unless the particular software driver was developed with the AXI4-Stream TDATA
distortion or signal color component assignments in mind, there are no guarantees that the
color-swap when software correctly identifies bits corresponding to color components.
processing video Verify that the color component logical addressing TDATA is in alignment with
writtenito external | the data format expected by the software drivers reading/writing external
memory using the | memory. If misaligned:
AXI-VDMA core. In HDL, break up the TDATA vector to constituent components, and manually

connect the slave and master interface sides.
In Vivado, use the xlIslice and xlconcat cores to rearrange the TDATA bus.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 104
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=104

& XILINX.
Appendix D

Additional Resources

Xilinx Resources

For suppertresources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

http://Xilinx.Suppoertiweb page.
For a glossary of technical.terms used in Xilinx documentation, see:

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

For a comprehensive listing of Video and Imaging application notes, white papers,
reference designs and related IP«€ores, see the Video and Imaging Resources page at:

http://www.xilinx.com/esp/video/reéfdes listing.htm#ref des.

References

These documents provide supplemental material useful with thisduser guide:

Vivado AXI Reference Guide (UG1037)

ISE to Vivado Design Suite Migration Guide (UG911)

Vivado Design Suite User Guide: Designing with IP (UG896)

Vivado Design Suite User Guide: Programming and Debugging (UG908)
Vivado Design Suite User Guide: Getting Started (UG910)

Vivado Design Suite User Guide: Logic Simulation (UG900)

N o v b~ w N

Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 105
PG010 November 18, 2015

http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com/esp/video/refdes_listing.htm#ref_des
http://www.xilinx.com/support/documentation/ip_documentation/ug1037-vivado-axi-reference.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=105

& XILINX. Revision History

Revision History

The following table shows the revision history for this document.

Date Version Revision

11/18/2015 6.0 Added UltraScale+ support.

10/01/2014 6.0 Removed Application Software Development appendix.

12/18/2013 6.0 Added UltraScale Architecture support.

10/0272013 6.0 Synch document version with core version. Updated Constraints.

03/20/2013 4.0 Updated for core version. Updated Debugging appendix. Updated
Application Software Development appendix. Removed ISE chapters.

12/18/2012 31 Updated fore core version. Added Maximum Frequencies, Clocking, and
System Considerations. Updated OSD Layer Register Space and Debugging
appendix.

07/25/2012 3.0 Updated for core version. Added Vivado information.

4/24/2012 2.0 Updated for core version. Added Zyng-7000 devices, added AXI4-Stream
interfaces, deprecated GPP interface.

10/19/2011 1.0 Initial Xilinx release of Product Guide, replacing DS837 and UG684.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) forany loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of.the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill; or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correctiany errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modifydistribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions ofithe, Limited Warranties
which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty ands$upport terms contained in
a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use inany application requiring
fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:http://www.xilinx.com/
warranty.htm#critapps.

© Copyright 2011-2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

Video On-Screen Display v6.0 www.xilinx.com I Send Feedback I 106
PG010 November 18, 2015

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG010&Title=Video%20On-Screen%20Display%20v6.0&releaseVersion=6.0&docPage=106

	Video On-Screen Display v6.0
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Feature Summary
	Applications
	Unsupported Features
	Licensing and Ordering Information

	Ch. 2: Product Specification
	Standards
	Performance
	Maximum Frequencies
	Latency
	Throughput

	Resource Utilization
	Port Descriptions
	Core Interfaces
	Common Interface Signals
	Control Interface
	S_AXI_ACLK
	S_AXI_ACLKEN
	S_AXI_ARESETn

	I/O Interface and Timing
	Input AXI4-Stream Slave Interface(s)
	Video Data
	READY/VALID Handshake
	Guidelines on Driving s_axis_video_tvalid
	Guidelines on Driving m_axis_video_tready
	Start of Frame Signals - m_axis_video_tuser0, s_axis_video_tuser0
	End of Line Signals - m_axis_video_tlast, s_axis_video_tlast
	Output AXI4-Stream Master Interface
	Interrupts
	AXI4-Lite Interface

	Register Space
	Address Map

	Ch. 3: Designing with the Core
	General Design Guidelines
	Alpha-Blending Pipeline
	Graphics Controller

	Algorithm
	Alpha-Compositing and Alpha-Blending

	Clock, Enable, and Reset Considerations
	ACLK
	S_AXI_ACLK
	ACLKEN
	S_AXI_ACLKEN
	ARESETn
	S_AXI_ARESETn

	System Considerations
	Clock Domain Interaction
	Programming Sequence

	Ch. 4: Customizing and Generating the Core
	Vivado Integrated Design Environment (IDE)
	Interface
	Output Generation

	Ch. 5: Constraining the Core
	Required Constraints

	Ch. 6: Simulation
	Ch. 7: Synthesis and Implementation
	Ch. 8: C Model Reference
	Unpacking and Model Contents
	Installation
	Software Requirements
	Interface
	OSD Generics Structure
	OSD Inputs Structure
	OSD Outputs Structure
	OSD Video Structure

	Example Code
	Config File Format
	Initializing the OSD Input Video Structure
	Compiling on 32-bit and 64-bit Windows Platforms
	Compiling under 32-bit and 64-bit Linux Platforms
	Running the Executables

	Ch. 9: Test Bench
	Demonstration Test Bench
	Directory and File Contents
	Test Bench Structure

	Appx. A: Verification, Compliance, and Interoperability
	Simulation
	Hardware Testing
	Interoperability

	Appx. B: Migrating and Upgrading
	Migrating to the Vivado Design Suite
	Upgrading in Vivado Design Suite
	Parameter Changes
	Port Changes
	Other Changes

	Appx. C: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Technical Support

	Debug Tools
	Example Design
	Vivado Design Suite Debug Feature
	Reference Boards
	C-Model Reference
	License Checkers

	Hardware Debug
	General Checks
	Evaluation Core Timeout

	Interface Debug
	AXI4-Lite Interfaces
	AXI4-Stream Interfaces
	Other Interfaces

	Appx. D: Additional Resources
	Xilinx Resources
	References
	Revision History
	Notice of Disclaimer

