
Video Deinterlacer
v4.0

LogiCORE IP Product Guide

Vivado Design Suite

PG017 October 1, 2014

Discontinued IP

Video Deinterlacer v4.0 www.xilinx.com 2
PG017 October 1, 2014

Table of Contents
IP Facts

Chapter 1: Overview
Feature Summary. 7
Licensing and Ordering Information . 8

Chapter 2: Product Specification
Standards . 9
Performance. 9
Resource Utilization. 10
Core Interfaces . 13

Chapter 3: Designing with the Core
Architecture . 27
Deinterlacing . 27
T1 and T2 . 28
Cross Fade Ratio. 29
Initial State . 29
Memory Controller . 30
I/O Interface and Timing . 32
Clocking. 39
Resets . 40
Protocol Description . 40

Chapter 4: Design Flow Steps
Customizing and Generating the Core . 41
Constraining the Core . 45
Simulation . 46
Synthesis and Implementation . 47

Chapter 5: C-Model Reference
Features . 48
Overview . 48

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=2

Video Deinterlacer v4.0 www.xilinx.com 3
PG017 October 1, 2014

Installation . 50
Software Requirements. 50
Using the C Model . 50
C Model Example Code . 58
Command Line Options in Detail . 59

Chapter 6: Detailed Example Design
Case 1: SD480i to SD480p . 68
Case 2: HD1080i to HD1080p. 69

Chapter 7: Test Bench
Demonstration Test Bench . 71

Appendix A: Verification, Compliance, and Interoperability
Simulation . 73
Hardware Testing. 74

Appendix B: Migrating
Migrating to the Vivado Design Suite. 75
Upgrading in the Vivado Design Suite . 75

Appendix C: Debugging
Finding Help on Xilinx.com . 77
Debug Tools . 78
Simulation Debug. 79
Hardware Debug . 80
Interface Debug . 81
Debugging the Video Deinterlacer Core . 82
Debugging for Bandwidth Issues . 84

Appendix D: Additional Resources and Legal Notices
Xilinx Resources . 86
References . 86
Revision History . 87
Please Read: Important Legal Notices . 87

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=3

Video Deinterlacer v4.0 www.xilinx.com 4
PG017 October 1, 2014 Product Specification

Introduction
The Xilinx® Video Deinterlacer LogiCORETM IP
provides a flexible video processing block for
deinterlacing video into a progressive video
structure. The core supports image sizes up to
2k x 2k with YUV 4:4:4, 4:2:2 or 4:2:0 and RGB
image formats. The core is programmable
through a comprehensive register interface for
setting and controlling internal operations and
more using logic or a microprocessor. An
interrupt status mechanism is used for smooth
transitioning of changing input video streams
to alternative raster structures and planes. The
IP is provided with an AXI-4 Lite interface.

Features
• Supports video frame sizes up to

2048x2048 pixels

• Supports video frames sizes down to
128x128

• Supports YUV-4:4:4, 4:2:2 and 4:2:0 and
RGB color spaces

• Supports 8, 10 or 12-bit color depth per
plane

• Provides smooth transition of output video
when changing video standards

• Progressive Segmented Frame (PsF)
conversion

• Progressive or Interlaced Format Pass
Through

• AXI-MM interface for highest quality
deinterlacing

• AXI4-Stream data interfaces

• Optional AXI4-Lite control interface

° Supports easy integration with other
Xilinx Video IP Cores, including the OSD,
VDMA and Video Scaler

IP Facts

LogiCORE IP Facts Table

Core Specifics
Supported
Device Family(1)

UltraScale™ Architecture, Zynq®-7000,
7 Series

Supported User
Interfaces AXI4, AXI4-Lite, AXI4-Stream (2)

Resources See Table 2-1 through Table 2-3.

Provided with Core
Documentation Product Specification

Design Files Encrypted HDL

Example Design Not Provided

Test Bench Verilog

Constraints File XDC

Simulation
Models

Encrypted RTL, VHDL or Verilog Structural, C
Model

Supported
Software
Drivers

Standalone

Tested Design Flows
Design Entry
Tools

Vivado® Design Suite
IP Integrator

Simulation For supported simulators, see the Xilinx Design
Tools: Release Notes Guide.

Synthesis Tools Vivado Synthesis

Support
Provided by Xilinx, Inc.

1. For a complete listing of supported devices, see the Vivado
IP Catalog.

2. Video protocol as defined in the Video IP: AXI Feature
Adoption section of UG1037 AXI Reference Guide [Ref 2].

3. For the supported versions of the tools, see the Xilinx Design
Tools: Release Notes Guide.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;t=vivado+release+notes
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;t=vivado+release+notes
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;t=vivado+release+notes
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.1;t=vivado+release+notes
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=4

Video Deinterlacer v4.0 www.xilinx.com 5
PG017 October 1, 2014

Chapter 1

Overview
A vast majority of display technologies and video compression techniques use progressive
scanning techniques for applications. These technologies require a way to convert
interlaced material to progressive scanning methods. The Xilinx Video Deinterlacer core
provides the mechanism for achieving this goal.

The Xilinx Video Deinterlacer converts live incoming interlaced video streams into
progressive video streams. This process is performed in real time as the input video passes
through the Video Deinterlacer.

By definition, interlaced images have temporal motion between the two f ields that
comprise an interlaced frame. The conversion to a progressive format recombines these two
f ields into one single frame. The raw recombination of interlaced video streams results in
unsightly motion artifacts in the progressive output image. For this reason, the Video
Deinterlacer uses additional motion tracking and diagonal edge enhancement techniques
to ensure that these artifacts are removed where possible. This results in a high-quality
progressive output image.

In addition to deinterlacing, the Video Deinterlacer fully supports both progressive pass
through, "Progressive Segmented Frames" (PsF) and "Pull down" encoded streams.

The core supports a wide range of industry standard video encoding and packing methods,
including:

• 8, 10 or 12 bits per pixel

• YUV or RGB color spaces (static or dynamically configurable)

• 4:2:0, 4:2:2 or 4:4:4 packing (static or dynamically configurable)

The Video Deinterlacer requires an external memory store to maintain a three field triple
buffer. The core interfaces to external memory using axi-interconnect through the AXI-MM
port.

The Video Deinterlacer supports highly scalable resolutions with a range of 128x128 up to
2048x2048, such as:

• Supported standard SD formats are 480i, 480p, 576i, 576p

• Supported standard HD formats are 720p, 1080i, 1080p

• Digital Cinema 2K

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=5

Video Deinterlacer v4.0 www.xilinx.com 6
PG017 October 1, 2014

Chapter 1: Overview

• All PC resolutions (for example, 640x480, 1024x768, 1280x1024, 1920x1200)

The core is highly configurable and can be optimized for the smallest FPGA footprint.

Figure 1-1 illustrates the internal architecture of the Video Deinterlacer. The Video
Deinterlacer comprises two main video processing kernels and a memory controller
interface.

The Deinterlacer is a stream-based core that processes interlaced video on-the-fly to
produce a progressive video output. In a multiple video standard environment, the
Deinterlacer is software programmable to process interlaced, progressive or Progressive
Segmented Frame (PsF) video structures, allowing the Video Deinterlacer to remain in the
system datapath at all times.

The Deinterlacer is fully autonomous in its processing, but the deinterlacing effects of the
kernels can be altered by system software on a dynamic basis.

X-Ref Target - Figure 1-1

Figure 1-1: Architecture of Video Deinterlacer

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=6

Video Deinterlacer v4.0 www.xilinx.com 7
PG017 October 1, 2014

Chapter 1: Overview

The deinterlacing algorithm is based on a combination of motion adaptive concepts
combined with diagonal interpolation techniques, resulting in a high quality deinterlaced
image.

Figure 1-2 shows a traditional output from a motion adaptive deinterlacer. The staircase
effect of fast moving video causes a f ield interpolation distortion effect on the output
video.

Using the Deinterlacer core, a blend of motion and diagonal algorithms are combined to
create the image in Figure 1-3. The Deinterlacer's algorithms recognize motion and detect
diagonal vectors. These are combined to form a cleaner pixel that is used in the output
video.

Feature Summary
Applications include:

• Conversion of interlaced SD to progressive SD

• Conversion of interlaced HD to progressive HD

• Conversion of CCD image data to a progressive image

X-Ref Target - Figure 1-2

Figure 1-2: Classic Motion Adaptive Deinterlacing Techniques

X-Ref Target - Figure 1-3

Figure 1-3: Xilinx Video Deinterlacer Deinterlacing Algorithm

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=7

Video Deinterlacer v4.0 www.xilinx.com 8
PG017 October 1, 2014

Chapter 1: Overview

• Reconstruction of original 24P f ilm rate from an interlaced source

• Combined with Xilinx Video Scaler, SD to HD up-conversion system

Licensing and Ordering Information
This Xilinx LogiCORE IP module is provided under the terms of the Xilinx Core License
Agreement. The module is shipped as part of the Vivado Design Suite. For full access to all
core functionalities in simulation and in hardware, you must purchase a license for the core.
Contact your local Xilinx sales representative for information about pricing and availability.

For more information, visit the Video Deinterlacer product web page.

Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual
Property page. For information on pricing and availability of other Xilinx LogiCORE IP
modules and tools, contact your local Xilinx sales representative.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=8

Video Deinterlacer v4.0 www.xilinx.com 9
PG017 October 1, 2014

Chapter 2

Product Specification

Standards
The Video Deinterlacer core is compliant with the AXI4-Stream Video Protocol and
AXI4-Lite interconnect standards. Refer to the Video IP: AXI Feature Adoption section of the
AXI Reference Guide (UG1037) [Ref 2] for additional information.

Performance

Deinterlacing Quality Configurations
The Deinterlacer comprises these possible quality levels of deinterlacing:

• On-the-fly f ield interpolation (lowest quality)

• On-the-fly f ield interpolation with diagonal enhancement

• Motion adaptive

• Motion adaptive and diagonal enhancement (highest quality)

The Deinterlacer can either be statically configured at core generation time or dynamically
configured via the AXI4-Lite interface to perform any of the previous deinterlacing
techniques on input video.

Inclusion of the motion adaptive (C_MOTION=1) core requires an AXI-MM based external
memory interface. The external interface is used to provide the highest possible quality of
deinterlacing. Opting out of the motion adaption core (C_MOTION=0) removes the need for
an external memory interface and significantly reduces the FPGA resources required.
However, the trade-off is lower quality of the output image. The AXI-MM interface ports are
not used in this configuration.

Inclusion of the diagonal (C_DIAG=1) core requires only standard FPGA resources (DSP and
block RAM) with the benefit of increased image quality.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=9

Video Deinterlacer v4.0 www.xilinx.com 10
PG017 October 1, 2014

Chapter 2: Product Specification

Latency
Latency equals the average approximate 3 video lines from first pixel entering the core to
f irst pixel coming out of video output port.

Throughput
The Deinterlacer creates 2 pixels for every input pixel. Due to this, the Deinterlacer requires
that the video clock be at minimum twice the video input pixel rate, to allow the internal
processing enough clock cycles to generate the output pixels.

There is a 1 line push back buffer at the input of the Deinterlacer, to allow for a small
amount of sporadic pixel loading into the Deinterlacer. But systems that may exhibit more
fluctations on input data loading should consider external line buffer blocks that are
beyond the scope of the Deinterlacer.

There is a 1000 pixel output push back buffer, to allow for small fluctations in the ability for
a downstream component to accept data.

If either the input or output buffers overflow, the Deinterlacer will raise an interrupt and
automatically flush the video pipe and attempt to resynchronize with the passing video on
the next frame boundary. All input video will be dropped during this resynchronization
phase.

Resource Utilization
The maximum achievable clock can vary and can depend on the size of the device, various
aspects of the system design, and other variables.

Resources required for 7-series and Zynq-7000 devices are shown in the following tables.

The following estimates show the range of resources for a given feature set, which span 8,
10 and 12-bit video data path options per row.

Table 2-1: Kintex-7 and Zynq-7000 Devices with Kintex Based Programmable Logic

Feature Quality Memory
Interface Slice FFs Slice LUTs LUT-FF

Pairs DSP48 Clock Freq
(Mhz)

Basic Field
Interpolation

Low none 1016 ~
1151

1033 ~
1183

1184 ~
1349

6 304 ~ 320

Basic Field
Interpolation with

Diagonal
Enhancement

Average none 2033 ~
2447

1889 ~
2317

2100 ~
2485

19 304 ~ 328

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=10

Video Deinterlacer v4.0 www.xilinx.com 11
PG017 October 1, 2014

Chapter 2: Product Specification

Motion based, no
Diagonal, 32-bit

AXI-MM

High AXI - 32 bit 3022 ~
3212

2496 ~
2580

3107 ~
3203

7 304 ~ 320

Full Motion &
Diagonal, 32-bit

AXI-MM

Highest AXI - 32 bit 4023 ~
4455

3389 ~
3653

3907 ~
4331

20 312 ~ 328

Typical High Quality
Configuration

(10bit, 444, 32-bit
AXI + Motion +

Diagonal +
Cadence)

Highest AXI - 32 bit 4659 ~
5127

3888 ~
4195

4534 ~
5020

21 304 ~ 320

 Incremental Resource Changes Based on previous row (with Cadence)

Increase AXI to
64-bit instead of

32-bit

Highest AXI - 64 bit 4730 ~
5182

3931 ~
4232

4682 ~
4990

21 304 ~ 320

Increase AXI to
128-bit instead of

32-bit

Highest AXI - 128
bit

4865 ~
5317

3993 ~
4290

4942 ~
5276

21 296 ~ 328

Increase AXI to
256-bit instead of

32-bit

Highest AXI - 256
bit

5144 ~
5580

4054 ~
4336

5200 ~
5530

21 312 ~ 328

Table 2-1: Kintex-7 and Zynq-7000 Devices with Kintex Based Programmable Logic (Cont’d)

Feature Quality Memory
Interface Slice FFs Slice LUTs LUT-FF

Pairs DSP48 Clock Freq
(Mhz)

Table 2-2: Artix-7 and Zynq-7000 Devices with Artix Based Programmable Logic

Feature Quality Memory
Interface Slice FFs Slice LUTs LUT-FF

pairs DSP48 Clock Freq
(Mhz)

Basic Field
Interpolation

Low none 1032 ~
1151

1044 ~
1183

1154 ~
1318

6 242 ~ 258

Basic Field
Interpolation with

Diagonal
Enhancement

Average none 2033 ~
2447

1892 ~
2321

2123 ~
2499

19 219 ~ 242

Motion based, no
Diagonal, 32-bit

AXI-MM

High AXI - 32 bit 3022 ~
3212

2520 ~
2608

3093 ~
3173

7 250

Full Motion &
Diagonal, 32-bit

AXI-MM

Highest AXI - 32 bit 4009 ~
4471

3351 ~
3682

3985 ~
4321

20 226 ~ 234

Typical High Quality
Configuration

(10bit, 444, 32-bit
AXI + Motion +

Diagonal +
Cadence)

Highest AXI - 32 bit 4659 ~
5127

3903 ~
4217

4726 ~
5044

21 226 ~ 234

Incremental Resource Changes Based on previous row (with Cadence)

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=11

Video Deinterlacer v4.0 www.xilinx.com 12
PG017 October 1, 2014

Chapter 2: Product Specification

Increase AXI to
64-bit instead of

32-bit

Highest AXI - 64 bit 4746 ~
5198

3968 ~
4266

4639 ~
5084

21 226 ~ 234

Increase AXI to
128-bit instead of

32-bit

Highest AXI - 128
bit

4865 ~
5317

3993 ~
4290

4942 ~
5276

21 219 ~ 234

Increase AXI to
256-bit instead of

32-bit

Highest AXI - 256
bit

5128 ~
5580

4065 ~
4358

5360 ~
5612

21 226 ~ 234

Table 2-2: Artix-7 and Zynq-7000 Devices with Artix Based Programmable Logic (Cont’d)

Feature Quality Memory
Interface Slice FFs Slice LUTs LUT-FF

pairs DSP48 Clock Freq
(Mhz)

Table 2-3: Virtex-7 and Zynq-7000 Devices with Virtex Based Programmable Logic

Feature Quality Memory
Interface Slice FFs Slice LUTs LUT-FF

pairs DSP48 Clock Freq
(Mhz)

Basic Field
Interpolation

Low none 1032 ~
1167

1045 ~
1196

1192 ~
1364

6 304 ~ 344

Basic Field
Interpolation with

Diagonal
Enhancement

Average none 2033 ~
2447

1890 ~
2318

2132 ~
2545

19 312

Motion based, no
Diagonal, 32-bit

AXI-MM

High AXI - 32 bit 3006 ~
3228

2486 ~
2593

3147 ~
3200

7 312 ~ 336

Full Motion &
Diagonal, 32-bit

AXI-MM

Highest AXI - 32 bit 4009 ~
4471

3330 ~
3667

4067 ~
4338

20 304

Typical High Quality
Configuration

(10bit, 444, 32-bit
AXI + Motion +

Diagonal +
Cadence)

Highest AXI - 32 bit 4675 ~
5111

3902 ~
4186

4652 ~
5012

21 304 ~ 312

Incremental Resource Changes Based on previous row (with Cadence)

Increase AXI
too64-bit instead of

32-bit

Highest AXI - 64 bit 4730 ~
5182

3934 ~
4236

4738 ~
5133

21 304 ~ 312

Increase AXI
too128-bit instead

of 32-bit

Highest AXI - 128
bit

4865 ~
5317

3987 ~
4265

4944 ~
5237

21 312 ~ 320

Increase AXI
too256-bit instead

of 32-bit

Highest AXI - 256
bit

5144 ~
5580

4056 ~
4344

5343 ~
5608

21 296 ~ 312

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=12

Video Deinterlacer v4.0 www.xilinx.com 13
PG017 October 1, 2014

Chapter 2: Product Specification

Core Interfaces
This chapter provides detailed descriptions for each interface. In addition, detailed
information about configuration and control registers is included.

Port Descriptions

Core Interfaces

Memory Mapped Interface

When configured to support motion based deinterlacing, the Video Deinterlacer requires
an external memory port to perform this operation. The core can be configured to support
a single bi-directional AXI4-Memory Mapped interface.

The core provides registers to allow you to specify the location in external memory of the
data-buffers that are used by the motion tracking algorithm.

Processor Interface

An AXI4-Lite interface is made available for use by a system CPU or other AXI master. The
processor interfaces gives full access to the Deinterlacer's internal registers and interrupt
systems. The internal status of the Deinterlacer can also be monitored through this interface

Video Streaming Input Interface

The core has a single video input port with AXI4-Streaming Protocol.

Video Streaming Output interface

The core has a single video output port with AXI4-Streaming Protocol.

Common I/O Signals

The interface share some common global signals. These are:

The cores video interface pins are shown below:

Table 2-4: Common Interfaces Signals

Port Name Dir Width Description

aclk I 1 Main system video clock. Synchronous to AXI4-Streaming in and out ports

aresetn I 1 Synchronous system reset.

aclken I 1 Main system video clock enable. Used to throttle data passing through the
Deinterlacer.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=13

Video Deinterlacer v4.0 www.xilinx.com 14
PG017 October 1, 2014

Chapter 2: Product Specification

External Memory Interface Signals

When configured with an AXI-MM interface the following signals are present:

Table 2-5: AXI4-Stream Data Signal Descriptions

Port Name Dir Width Description

m_axis_video_tdata O 16, 24, 32, 40 Output Video Data

m_axis_video_tstrb O [m_axis_video_tdata/8-1:0] Output Video Data Strobe

m_axis_video_tvalid O 1 Output Valid

m_axis_video_tready I 1 Output Valid

m_axis_video_tlast O 1 Output Video End Of Line

m_axis_video_tuser O 1 Output Video Start Of Frame

s_axis_tdata I 16, 24, 32, 40 Input Video Data

s_axis_tstrb I [s_axis_tdata/8-1:0] Input Video Data Strobe

s_axis_tvalid I 1 Input Valid

s_axis_tready O 1 Input Ready

s_axis_tlast I 1 Input Video End Of Line

s_axis_tuser I 1 Input Video End Of Line

Table 2-6: AXI-MM Interface Signals

Port Name Dir Width Description

AXI4-Lite Slave Interface

m_axi_aclk I 1 AXI master clock. The AXI MM port is
synchronous to this clock

m_axi_awaddr O [31:0] AXI Write Address

m_axi_awid O [C_M_AXI_THREAD_ID_WIDTH-1] AXI Write Thread ID

m_axi_awlen O [7:0] AXI Write Burst Length

m_axi_awsize O [2:0] AXI Write Beat Size

m_axi_awburst O [1:0] AXI Write Burst Type

m_axi_awlock O 1 AXI Write Transaction lock

m_axi_awcache O [3:0] AXI Write Cache Type

m_axi_awprot O [2:0] AXI Write Protection Level

m_axi_awqos O [3:0] AXI Write Quality of Service

m_axi_awvalid O 1 AXI Write Address Valid

m_axi_awready I 1 AXI Write Address acknowledge

m_axi_wdata O [C_M_AXI_DATA_WIDTH-1:0] AXI Write Data

m_axi_wstrb O [C_M_AXI_DATA_WIDTH/8-1:0] AXI Write Data Strobes

m_ax_wlast O 1 AXI Write Burst Last Beat

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=14

Video Deinterlacer v4.0 www.xilinx.com 15
PG017 October 1, 2014

Chapter 2: Product Specification

When configured with an AXI4-Lite interface the following signals are present:

m_axi_wvalid O 1 AXI Write Data Valid

m_axi_wready I 1 AXI Write Data acknowledge

m_axi_bid I [C_M_AXI_THREAD_ID_WIDTH-1:0] AXI Write Response Thread ID

m_axi_bresp I 2 AXI Write Response

m_axi_bvalid I 1 AXI Write Response Valid

m_axi_bready O 1 AXI Write Response Acknowledge

m_axi_arid O [C_M_AXI_THREAD_ID_WIDTH-1:0] AXI Read Thread ID

m_axi_araddr O [31:0] AXI Read Address

m_axi_arlen O [7:0] AXI Read Burst Length

m_axi_arsize O [2:0] AXI Read Burst beat size

m_axi_arburst O [1:0] AXI Read Burst type

m_axi_arlock O 1 AXI Read Transaction Locked

m_axi_arcache O [3:0] AXI Read Transaction Protection Level

m_axi_arprot O [2:0] AXI Read Cache type

m_axi_arqos O [3:0] AXI Read Quality of Service

m_axi_arvalid O 1 AXI Read Address Valid

m_axi_arready I 1 AXI Read Address acknowledge

m_axi_rid I [C_M_AXI_THREAD_ID_WIDTH-1:0] AXI Read Data Thread ID

m_axi_rdata I [C_M_AXI_DATA_WIDTH-1:0] AXI Read Data

m_axi_rresp I 2 AXI Read Response

m_axi_rlast I 1 AXI Read Data Burst Last beat strobe.

m_axi_rvalid I 1 AXI Read Response Valid

m_axi_rready O 1 AXI Reset Response acknowledge

Table 2-6: AXI-MM Interface Signals (Cont’d)

Port Name Dir Width Description

Table 2-7: AXI4-Lite Interfaces

Port Name Dir Width Description

AXI4-Lite Slave Interface

s_axi_aclk I 1 CPU clock. The AXI slave interface is synchronous to this clock

s_axi_awaddr I [31:0] AXI Write Address

s_axi_awvalid I 1 AXI Write Address Valid

s_axi_awready O 1 AXI Write Address acknowledge

s_axi_wdata I [31:0] AXI Write Data

s_axi_wvalid I 1 AXI Write Data Valid

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=15

Video Deinterlacer v4.0 www.xilinx.com 16
PG017 October 1, 2014

Chapter 2: Product Specification

Data Interface
The Video Deinterlacer core receives and transmits data using AXI-Stream interfaces that
implement a video protocol as defined in the AXI Reference Guide (UG1037), Video IP: AXI
Feature Adoption section.

AXI4-Stream Signal Name and Description

Table 2-5 describes the AXI4-Stream signal names and descriptions.

Video Data

The AXI4-Stream interface specif ication restricts TDATA widths to integer multiples of 8
bits. The Video Deinterlacer supports 4:2:2 YC and 4:4:4/RGB video streams for 8, 10 and 12
bit video data.

The active video data always observes the following principles on an AXI4-Stream TDATA
port:

For the 4:2:2 YC case,

• Y always occupies bits (Video_Data_Width-1:0)

• C always occupies bits ((2*Video_Data_Width)-1: Video_Data_Width)

An example showing 10-bit YC data is shown in Figure 2-1.

s_axi_wready O 1 AXI Write Data acknowledge

s_axi_bresp O 2 AXI Write Response

s_axi_bvalid O 1 AXI Write Response Valid

s_axi_bready I 1 AXI Write Response Acknowledge

s_axi_araddr I [31:0] AXI Read Address

s_axi_arvalid I 1 AXI Read Address Valid

s_axi_arready O 1 AXI Read Address acknowledge

s_axi_rdata O [31:0] AXI Read Data

s_axi_rresp O 2 AXI Read Response

s_axi_rvalid O 1 AXI Read Response Valid

s_axi_rready I 1 AXI Reset Response acknowledge

irq O 1 CPU interrupt request. Active High Level interrupt synchronous to s_axi_aclk

Table 2-7: AXI4-Lite Interfaces

Port Name Dir Width Description

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=16

Video Deinterlacer v4.0 www.xilinx.com 17
PG017 October 1, 2014

Chapter 2: Product Specification

For the RGB case,

° G occupies bits (Video_Data_Width-1:0)

° B occupies bits ((2*Video_Data_Width)-1: Video_Data_Width)

° R occupies bits ((3*Video_Data_Width)-1: (2*Video_Data_Width))

In all cases, the MSB of each component is the uppermost bit in the above scheme.
0-padding should be used for unused AXI4-Stream bits.

Figure 2-2 shows 12-bit RGB data.

READY/VALID Handshake
A valid transfer occurs whenever READY, VALID, and ARESETn are high at the rising edge of
ACLK, as seen in Figure 2-3. During valid transfers, DATA only carries active video data.
Blank periods and ancillary data packets are not transferred via the AXI4-Stream video
protocol.

Guidelines on Driving TVALID into Slave (Data Input) Interfaces.
When tvalid is asserted, no interface signals (except the Video Deinterlacer core driving
tready) can change value until the transaction completes (tready, tvalid High on the
rising edge of ACLK). When asserted, tvalid can only be deasserted after a transaction
has completed. Transactions can not be retracted or aborted. In any cycle following a
transaction, tvalid can either be deasserted or remain asserted to initiate a new transfer.

X-Ref Target - Figure 2-1

Figure 2-1: YUV Data Embedding on TDATA

X-Ref Target - Figure 2-2

Figure 2-2: RGB Data Embedding on TDATA

816243240

Component GComponent BComponent R

bit 0

0 pad

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=17

Video Deinterlacer v4.0 www.xilinx.com 18
PG017 October 1, 2014

Chapter 2: Product Specification

Deinterlacer uses tstrb when High to indicate a byte of data that contains valid
information and must be transmitted between source and destination.

.

Guidelines on Driving TREADY into Master (Data Output)
Interfaces
The tready signal can be asserted before, during, or after the cycle in which the Video
Deinterlacer core asserted tvalid. The assertion of tready can be dependent on the
value of tvalid. A slave that can immediately accept data qualif ied by tvalid, should
preassert its tready signal until data is received. Alternatively, tready can be registered
and driven the cycle following tvalid assertion.

RECOMMENDED: It is recommended that the AXI4-Stream slave should drive TREADY independently,
or preassert TREADY to minimize latency.

Start of Frame Signals - m_axis_video_tuser,
s_axis_video_tuser
The Start-Of-Frame (SOF) signal, physically transmitted over the AXI4-Stream TUSER signal,
marks the first pixel of f irst incoming video field at slave/input side and f irst pixel of every
outgoing video frame at the master/output side. Every incoming interlaced Video Frame
represented by two video fields, which are odd line and even line video f ield. The SOF pulse
is 1 valid transaction wide, and must coincide with the f irst pixel of the frame. Refer to
Figure 2-4.

SOF serves as a frame synchronization signal, which allows downstream cores to reinitialize,
and detect the first pixel of a frame/first f ield. The SOF signal can be asserted an arbitrary
number of ACLK cycles before the first pixel value is presented on TDATA, as long as a
TVALID is not asserted.

X-Ref Target - Figure 2-3

Figure 2-3: Example of TREADY/TVALID Handshake

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=18

Video Deinterlacer v4.0 www.xilinx.com 19
PG017 October 1, 2014

Chapter 2: Product Specification

End of Line Signals - m_axis_video_tlast, s_axis_video_tlast
The End-Of-Line signal, physically transmitted over the AXI4-Stream TLAST signal, marks
the last pixel of a line. The EOL pulse is 1 valid transaction wide, and must coincide with the
last pixel of a scan-line, as seen in Figure 2-5.

Register Space
This section provides the programming interface register information.

All registers power up with 0x0. Only the control, mode and interrupt control registers are
reset to 0x0 during a software reset, all other registers retain their current settings.

X-Ref Target - Figure 2-4

Figure 2-4: Example of SOF Handshake, Start of a New Frame

X-Ref Target - Figure 2-5

Figure 2-5: Use of EOL

Table 2-8: Register Name and Descriptions

Address (hex)
BASEADDR + Register Name Access

Type Default Value Register Description

0x0000 Control R/W 0x0 Bit 0: Update Request
Bit 1: Deinterlacer Enable (Bypass/
Passthru)
Bit 2: Deinterlacer Accept Video

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=19

Video Deinterlacer v4.0 www.xilinx.com 20
PG017 October 1, 2014

Chapter 2: Product Specification

0x0004 Mode R/W 0x0 Bit 0-1: Deinterlacing Algorithm
Bit 2: Color Space
Bit 3-4: Packing Format
Bit 5: Field Order
Bit 6: PsF Enable
Bit 7: Pull-down Enable 3:2
Bit 8: Pull-down Enable 2:2
Bit 9: Pull-down 2:2 Field Precedence
Bit 16: Colorize Motion
Bit 17: Colorize Diagonal

0x0008 Interrupt Control R/W 0x0 Bit 0: Update Interrupt
Bit 1: Synch on
Bit 2: Synch off
Bit 3: Deinterlacer Error
Bit 4: Pull-down on
Bit 5: Pull-down off
Bit 6: Frame Interrupt
Bit 8: Framestore Wr Marker
Bit 9: Framestore Wr Err
Bit 10: Framestore Rd Err 0
Bit 11: Framestore Rd Err 1

0x000C Interrupt Status R/W 0x0 Bit 0: Update Interrupt
Bit 1: Synch on
Bit 2: Synch off
Bit 3: Deinterlacer Error
Bit 4: Pull-down on
Bit 5: Pull-down off
Bit 6: Frame Interrupt
Bit 8: Framestore Wr Marker
Bit 9: Framestore Wr Err
Bit 10: Framestore Rd Err 0
bit 11: Framestore Rd Err 1

0x0010 Height R/W 0x0 Bit 0-10: Height

0x0014 Width R/W 0x0 Bit 0-10: Width

0x0018 Threshold T1 R/W 0x0 Bit 0-9: T1 setting

0x001C Threshold T2 R/W 0x0 Bit 0-9: T2 setting

0x0020 Cross Fade Scale R/W 0x0 Bit 0-15: Cross Fade Scale

0x0024 Buffer 0 Base R/W 0x0 Bit 0-31: Buffer 0 Base

0x0028 Buffer 1 Base R/W 0x0 Bit 0-31: Buffer 1 Base

0x002C Buffer 2 Base R/W 0x0 Bit 0-31: Buffer 2 Base

0x0030 Buffer Size R/W 0x0 Bit 0-23: Triple buffer segment size

Table 2-8: Register Name and Descriptions

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=20

Video Deinterlacer v4.0 www.xilinx.com 21
PG017 October 1, 2014

Chapter 2: Product Specification

0x0004 Mode R/W 0x0 Bit 0-1: Deinterlacing Algorithm
Bit 2: Color Space
Bit 3-4: Packing Format
Bit 5: Field Order
Bit 6: PsF Enable
Bit 7: Pull-down Enable 3:2
Bit 8: Pull-down Enable 2:2
Bit 9: Pull-down 2:2 Field Precedence
Bit 16: Colorize Motion
Bit 17: Colorize Diagonal

0x0008 Interrupt Control R/W 0x0 Bit 0: Update Interrupt
Bit 1: Synch on
Bit 2: Synch off
Bit 3: Deinterlacer Error
Bit 4: Pull-down on
Bit 5: Pull-down off
Bit 6: Frame Interrupt
Bit 8: Framestore Wr Marker
Bit 9: Framestore Wr Err
Bit 10: Framestore Rd Err 0
Bit 11: Framestore Rd Err 1

0x000C Interrupt Status R/W 0x0 Bit 0: Update Interrupt
Bit 1: Synch on
Bit 2: Synch off
Bit 3: Deinterlacer Error
Bit 4: Pull-down on
Bit 5: Pull-down off
Bit 6: Frame Interrupt
Bit 8: Framestore Wr Marker
Bit 9: Framestore Wr Err
Bit 10: Framestore Rd Err 0
bit 11: Framestore Rd Err 1

0x0010 Height R/W 0x0 Bit 0-10: Height

0x0014 Width R/W 0x0 Bit 0-10: Width

0x0018 Threshold T1 R/W 0x0 Bit 0-9: T1 setting

0x001C Threshold T2 R/W 0x0 Bit 0-9: T2 setting

0x0020 Cross Fade Scale R/W 0x0 Bit 0-15: Cross Fade Scale

0x0024 Buffer 0 Base R/W 0x0 Bit 0-31: Buffer 0 Base

0x0028 Buffer 1 Base R/W 0x0 Bit 0-31: Buffer 1 Base

0x002C Buffer 2 Base R/W 0x0 Bit 0-31: Buffer 2 Base

0x0030 Buffer Size R/W 0x0 Bit 0-23: Triple buffer segment size

Table 2-8: Register Name and Descriptions

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=21

Video Deinterlacer v4.0 www.xilinx.com 22
PG017 October 1, 2014

Chapter 2: Product Specification

Control (0x0000) Register

Bit 0 of the control register, Update Register, setting this bit to '1' arms the Deinterlacer to
perform a register shadow update on the next frame boundary. Setting this bit to ‘0’ cancels
any pending shadow request.

Bit 1 of the control register, Deinterlacer Enable, while the Deinterlacer is disabled, active
video passes through the Deinterlacer in its original form. Allowing the Video Deinterlacer
to operate in Bypass or Passthru mode, all Blanking information is always stripped by the
Deinterlacer.

Bit 2 of the control register, Deinterlacer Accept Video, instructs the video on whether to
accept or ignore all video at the input to the Deinterlacer. This bit takes affect on the
subsequent input video frame boundary.

Mode (0x0004) Register

Bit 1:0 of the Mode register, Deinterlacing Algorithm, is used to set the deinterlacing
method. When set to 0, pure f ield interpolating techniques are used. When set to 1, only the
diagonal engine is used. When set to 2, only motion adaptive engine is used. When set to
3, both motion and diagonal engines are used.

Bit 2 of the Mode register, Color Space, is used to set the color space of video. When set to
‘0’ YUV color space is used. When set to ‘1’ RGB color space is used.

Bit 4:3 of the Mode register, Packing Format, is used to set the packing formats used on the
input and output. When set to 0, 4:2:0 packing is used. When set to 1, 4:2:2 packing is used.
When set to 2, 4:4:4 packing is used. See the Video Interface, page 37 for more information.

Bit 5 of the Mode register, Field Order, is used to set the first f ield order of input video.
When set 1, the f ield order maps to NTSC/480i. When set 0 the f ield order maps to PAL/HD/
3G.

Bit 6 of the Mode register, PsF Enable, is used to enable the Progressive Segmented Frame
Enable which controls if the Deinterlacer is processing interlaced, PSF, or progressive image
structures. You must enable the motion adaptive when enabling PsF mode.

Bit 7 of Mode register, Pull-down Enable 3:2, allows detectors to automatically control
Deinterlacer.

0x00F0 Version ID R 0x04000000 Bit 16-19: Revision Letter
Bit 20-23: Minor Version
Bit 24-31: Major Version

0x0100 Soft Reset R/W 0x0 Bit 0: Soft Reset

Table 2-8: Register Name and Descriptions

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=22

Video Deinterlacer v4.0 www.xilinx.com 23
PG017 October 1, 2014

Chapter 2: Product Specification

Bit 8 of Mode register, Pull-down Enable 2:2, allows detectors to automatically control
Deinterlacer.

Bit 9 of Mode register, Pull-down 2:2 Field Precedence, allows the phase to be flipped inside
the Deinterlacer so inverted sequence encoding (for example, dodgy MPEG2) can be used.
When set to 0, normal mode is used and no flipping/swapping is done. When set to 1,
Deinterlacer swaps the phase of the interlaced video internally.

Bit 16 of Mode register, Colorize Motion enable colorizing output image with motion
algorithm output.

Bit 17 of Mode register, Colorize Diagonal enable colorizing output image with diagonal
algorithm output.

Interrupt Control (0x0008) Register

Bit 0 of the Interrupt Control register, Update Interrupt, enables the register shadow update
done interrupt when set to 1.

Bit 1 of the Interrupt Control register, Sync on, enables lock of input video detector.

Bit 2 of the Interrupt Control register, Sync off, enables loss of video lock detector.

Bit 3 of the Interrupt Control register, Deinterlacer Error, enables internal diagnostic error
interrupt.

Bit 4 of the Interrupt Control register, Pull-down on, enables pull-down activation detection.

Bit 5 of the Interrupt Control register, Pull-down off, enables pull-down loss detection.

Bit 6 of the Interrupt Control Register, Frame Interrupt, enables the video frame border
interrupt when set to 1, which indicates when a frame boundary has been passed.

Bit 8 of the Interrupt Control Register, Frame Wr Marker, enables Framestore integrity
checking.

Bit 9 of Interrupt Control Register, Framestore Wr Err, enable Framestore integrity check on
AXI-MM port for FIFO over run.

Bit 10-11 of Interrupt Control Register, Framestore Rd Err 1/0, enable Framestore integrity
check on AXI-MM port for FIFO under run.

Interrupt Status (0x000C) Register

Bit 0 of the Interrupt Status register, Update Interrupt, when set to '1' indicates an internal
register update has occurred.

Bit 2:1 of the Interrupt Status register, Synch on/off, when set indicate Deinterlacer is
in-sync/lost-sync to input video respectively.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=23

Video Deinterlacer v4.0 www.xilinx.com 24
PG017 October 1, 2014

Chapter 2: Product Specification

Deinterlacer synchronization: Indicates input video raster is stable and matches
programmed x/y sizes known to Deinterlacer.

Deinterlcaer has lost synchronization: Indicates different input video raster does not
match the programmed x/y sizes known to the Deinterlacer, or that the input video is
not stable.

Bit 3 of the Interrupt Status register, Deinterlacer Error, when set to '1' indicates internal
FIFO overrun error. This occurs if the AXI-Stream clock is not fast enough to process the
input video.

Bit 4 of the Interrupt Status register, Pull-down on, when set to '1' indicates pull-down
detector has found a pull down sequence and the output video is derived by the cadence.

Bit 5 of the Interrupt Status register, Pull-down off, when set to '1' indicates pull-down
detector has seen pull down sequence cadence disappeared and the Deinterlacer is
reverting to normal mode.

Bit 6 of the Interrupt Status register, Frame Interrupt, when set to '1' indicates a video frame
boundary has passed.

Bit 8 of the Interrupt Status register, Framestore Wr Marker, when set to '1' indicates
framestore experiencing video data frames that do not match the programmed settings.

Bit 9 of the Interrupt Status register, Framestore Wr Err, when set to '1' indicates the
AXI-MM port is experiencing FIFO overrun.

Bit 10-11 of the Interrupt Status register, Framestore Rd Err 1/0, when set indicates the
AXI-MM port is experiencing FIFO under run.

Height (0x0010) Register

Bits 10:0 of the Height register, Height, is to set the input pixel height of video frame. The
frame height should be set to the value of the deinterlaced video. The line count stats at 1
and only even fame sizes are supported. For example, for a 1080i input, the Height should
be set to 1080 = 0x438.

Width (0x0014) Register

Bits 10:0 of the Width register, Width, is to set the input pixel width of video frame. The
frame width should be set to the value of the deinterlaced video. The line count stats at 1.
When the motion engine is enabled, for 8 or 10-bit images, the width must be divisible by
4, and for 12-bit images, the width must be divisible by 2. For example, for a 1080i input the
height should be set to 1920 = 0x780
1920/4 = 480
1920/2 = 960

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=24

Video Deinterlacer v4.0 www.xilinx.com 25
PG017 October 1, 2014

Chapter 2: Product Specification

Threshold T1 (0x0018) Register

Bits 9:0 of the Threshold T1 register, T1 setting, is to set the low motion adaptive T1
threshold value. See T1 and T2, page 28 and Cross Fade Ratio, page 29 for more
information.

Threshold T2 (0x001C) Register

Bit 9:0 of the Threshold T2 register. T2 setting, is to set high motion adaptive T2 threshold
value. See T1 and T2, page 28 and Cross Fade Ratio, page 29 for more information.

Cross Fade Scale (0x0020) Register

Bit f ield of this register (0 to 15 bit) is used for Motion Adaptive cross fade scaling factor
and must be programmed with the equation = (4096*256)/(register T2- register T1). See T1
and T2, page 28 and Cross Fade Ratio, page 29 for more information.

Buffer 0 (0x0024) Register

Bit f ield of this register is used to set base address in external memory of the f irst f ield
buffer.

Buffer 1 (0x0028) Register

Bit f ield of this register is used to set base address in external memory of the second f ield
buffer.

Buffer 2 (0x002C) Register

Bit f ield of this register is used to set base address in external memory of the third f ield
buffer.

Buffer Size (0x0030) Register

Bit f ield of this register (0 to 23 bit) is used to set the framestore buffer size (in 32-bit
words). See Memory Size, page 31 for more information.

Version ID (0x00F0) Register

Bit f ields of the Version Register facilitate software identif ication of the exact version of the
hardware peripheral incorporated into a system. The core driver can take advantage of this
Read-Only value to verify that the software is matched to the correct version of the
hardware. See Table 2-8 for details.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=25

Video Deinterlacer v4.0 www.xilinx.com 26
PG017 October 1, 2014

Chapter 2: Product Specification

Soft Reset (0x0100) Register

A single bit that is used to initiate a soft reset when set to 1. This resets the internal
Deinterlacer to its default state and purges all video within the Deinterlacer. This bit clears
itself to zero after the soft reset has completed.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=26

Video Deinterlacer v4.0 www.xilinx.com 27
PG017 October 1, 2014

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to make designing with the
core easier.

Architecture
The Xilinx Video Deinterlacer converts a live input video stream into a progressive video
structure. Figure 1-1 illustrates a high-level view of the ports of the Deinterlacer.

In conjunction with the video path, the AXI4-MM ports read and write passing video f ields
to and from a memory buffer. These f ields of information are used by the Deinterlacer
internal processing blocks to produce the f inal progressive video output.

In creating progressive pictures, the output frame rate of the Deinterlacer is always twice
the input rate and produces one pixel per clock. The video clock used must meet this
system requirement. The input pixel rate must be less than or equal to the video clock rate
divided by two. The output pixel rate is always twice the input pixel rate. A single common
video clock is used for the entire video path.

The Video Deinterlacer input can be either from live video or a stored video feed. The
AXI4-Stream input bus allows for continuous or burst input rates. An optional full flag
allows for push back of input data when the Deinterlacer is receiving input from a non-live
video feed. The AXI4-Stream output bus produces output pixels whenever there is a pixel
inside the Deinterlacer to be generated. The Video Deinterlacer has only minimal buffering
inside. It is important to not overflow the input FIFO.

Deinterlacing
The Deinterlacer contains two processing kernels: the motion adaptive and the diagonal
detection and adaptation processing kernels. These kernels work together to form each
deinterlaced pixel.

The motion adaptive kernel has two threshold parameters that can be adjusted by the user
if required. These two parameters are T1 and T2. They are used as threshold points for
measuring between no motion, average motion, and excessive motion. In each of these

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=27

Video Deinterlacer v4.0 www.xilinx.com 28
PG017 October 1, 2014

Chapter 3: Designing with the Core

categories, the Deinterlacer generates the output pixels using different techniques.
Figure 3-1 shows the conceptual relationship of the T1 and T2 parameters to the
Deinterlacer pixel creator.

T1 and T2
T1 and T2 can be set to these default values:

• Typical SDI YUV defaults: T1 = 10, T2 = 70

• Typical SDI RGB defaults: T1 = 100, T2 = 200

Generally, they should not be altered, but users can alter them depending on the noise level
of the input video signal. If the input video source is noisy, this may be detected as

X-Ref Target - Figure 3-1

Figure 3-1: Output Pixel Decision Criteria

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=28

Video Deinterlacer v4.0 www.xilinx.com 29
PG017 October 1, 2014

Chapter 3: Designing with the Core

excessive motion and the output image may be of lower quality. In this case, the motion
detection threshold can be increased by the application software.

Cross Fade Ratio
The cross fade scale register is derived directly from T1 and T2 according to this f ixed
equation:

xfade ratio = (4096*256)/(T2-T1)

This value is used internally to control cross fading between kernel pixels and the frame
store pixels. This register must be changed whenever T1 or T2 are altered to ensure the
correct operation of the cross fader.

Initial State
When the motion engine is enabled, the Deinterlacer kernel must have two f ields of video
history to produce its desired output. During a video input standard change, start-up
condition, change of format or error state, there is no video history for the Deinterlacer to
use. For these frames (if enabled via software), the Deinterlacer produces progressive video
outputs without the aid of the motion adaptive kernel. As a result, these initial frames
appear softer in format until the memory interface has obtained suff icient history for
producing the required output quality.

Figure 3-2 illustrates the sequencing of the Deinterlacer output with respect to input
variance. The diagram shows the two initial frames (1 and 2) being created from raw passing
video and then the remainder being produced with the aid of the historical data.

The second image shows a normally operating Deinterlacer that is suddenly subjected to a
change in input video. The Deinterlacer then resets the memory interface and reverts to a
lower quality, while it builds up new picture history over the f irst two frames. It then reverts
to fully operational state.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=29

Video Deinterlacer v4.0 www.xilinx.com 30
PG017 October 1, 2014

Chapter 3: Designing with the Core

Memory Controller
When the motion engine is enabled, the deinterlacing process requires two previous fields
of video information to determine the amount of per-pixel motion present in the passing
video. It then selects the most appropriate method of deinterlacing each pixel using these
streams.

An external memory store is used in a triple buffer concept to store and extract passing
video f ields and associating sideband data. At the end of each output frame, the memory
controller moves its base pointers to the next buffer and starts again. Figure 3-3 illustrates
the triple buffer movement.

X-Ref Target - Figure 3-2

Figure 3-2: Examples of Deinterlacer Start-up Conditions

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=30

Video Deinterlacer v4.0 www.xilinx.com 31
PG017 October 1, 2014

Chapter 3: Designing with the Core

The memory ports operate in a unidirectional manner, 1 write and 2 read. It continuously
stores the incoming f ield with its motion vector and extracts f ields n-1 and f ield n-2 from
the other two buffers. For more information on AXI-MM streams, refer to AXI4 Memory and
Interface.

Memory Size
When calculating memory requirements for the Deinterlacer, the packing method and input
video f ield size must be considered. For 8 and 10-bit color depth, the ratio is (5/4) because
f ive words are required to store four pixel/error pairs. For 12-bit color depth, the ratio is (3/
2) because three words are required to store two pixel/error pairs.

• 8-bit image with 720 wide requires : 720 * (5/4) dwords = "900" per line

• 12-bit image with 1920 wide requires: 1920 * (3/2) dwords = "2880" per line

For an 8-bit image that is 720 wide and 240 lines per f ield, a buffer of 900 * 240 = 0.216
Mwords = 0.864 Mbytes is required. The total for the triple store is 2.592 Mbytes of storage.
And consequently, for a full 12-bit image that is 1920 wide and 540 lines per f ield, a buffer
of 2880 * 540 = 1.55 Mwords = 6.22 Mbytes is required. The total for the triple store is 18.7
Mbytes of storage.

IMPORTANT: The ratios of 5/4 and 3/2 impose a line width limitation on the Deinterlacer. The number
of dwords per line must result in an integer value. For example, this would not be allowed: 695 8-bit
pixels = 695* (5/4) = 868.75.

X-Ref Target - Figure 3-3

Figure 3-3: Triple Buffer Usage

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=31

Video Deinterlacer v4.0 www.xilinx.com 32
PG017 October 1, 2014

Chapter 3: Designing with the Core

I/O Interface and Timing

AXI4-Lite Interface
An AXI4-Lite interface is included in the IP module. This interface is used to configure the
Deinterlacer dynamically during run time. While the interface operates in its own clock
domain, the transfer of register information into the Deinterlacer and memory controller is
done synchronously. All registers are shadowed in their respective domains.

There are three categories of registers inside the core:

• Global Registers

Located in the AXI4-Lite clock domain and used internally by the Deinterlacer for core
wide operations, including forcing modes and completely disabling the Deinterlacer.

• Deinterlacer Configuration Registers

Used to specify most of the aspects in deinterlacing, including algorithm selection,
threshold control, raster size, color space and so on.

• Memory Controller Configuration Registers

Used to set up the triple f ield buffer memory regions that are required by the
Deinterlacer core.

Dynamic Reconfiguration

When working with multiple input standard streams that can change from frame to frame,
the Deinterlacer can transition smoothly from one format to the next without producing any
unnecessary data at its output. This is achieved through the AXI4-Lite interface scheduler.

When system software programs the AXI4-Lite registers, only registers within the
AXI4-Lite domain are affected. These registers can be freely written to or read from. After
the software has committed to a new configuration, it writes to the global register and
asserts an update request.

After this request is queued, all of the Deinterlacer registers become read-only (apart from
the global register). Upon the next frame boundary, the Deinterlacer shadows all registers
and begins processing using the new settings. This synchronous transfer ensures a clean
transition from one format to the next.

If the software decides to stop the update request, it can cancel it using the global register.
This operation occurs immediately as a force operation and should generally not be used
under normal operating conditions. The disabling can occur coincident with the actual
internal update and can cause the Deinterlacer to generate unnecessary output.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=32

Video Deinterlacer v4.0 www.xilinx.com 33
PG017 October 1, 2014

Chapter 3: Designing with the Core

Interrupts

The Deinterlacer core provides eleven interrupt events to ensure efficient use of the system
AXI4-Lite when using a Deinterlacer. All interrupts have their own status register and can be
independently enabled, disabled, and cleared. Under normal operating conditions, the
Deinterlacer does not require AXI4-Lite interaction. However, interrupts can be used to aid
in monitoring the system state. See the Interrupt definitions in Register Space, page 19 for
more information.

AXI4-Lite Timing
The AXI4-Lite interface is used for programming the Video Deinterlacer operational modes
and interrupt system. Read or write accesses to the AXI4-Lite port are considered low
bandwidth and as such the slave port only processes one AXI4-Lite access at a time. If the
Deinterlacer is presented with a simultaneous read and write operation, the write operation
takes precedence and the read operation stalls. Once the write operation is complete, the
read operation completes.

Figure 3-4 shows several write operations followed by several read operations and
illustrates the read and write timing of the AXI4-Lite interface.

All AXI4-Lite signals not required by the AXI4-Lite specif ication have no connection to the
Deinterlacer.

Control Interface

Control Values

The ports are driven by registers on a AXI4-Lite bus. The address is decoded in the wrapper.
A software driver is provided in source code form to drive these ports. See Register Space,
page 19 for more information.

X-Ref Target - Figure 3-4

Figure 3-4: AXI Slave Write and Read Operations

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=33

Video Deinterlacer v4.0 www.xilinx.com 34
PG017 October 1, 2014

Chapter 3: Designing with the Core

Memory Interface
When the motion engine is enabled, the Video Deinterlacer motion kernel requires video
frame history to deinterlace the input video stream. The input video stream is processed
and stored into an external memory store along with specif ic associating sideband
information. The external memory store is then used in the reconstruction of the output
video stream.

The memory controller splits up external memory into a rolling three video-field store,
where one f ield is written to while two fields are read from. This triple f ield buffer is
controlled autonomously by the Deinterlacer and driven through the AXI4-MM streams.

The AXI4-Lite interface allocates the base addresses of the three field buffers and the
physical size of a buffer. System software can dynamically alter this on-the-fly if required to
adapt to changing video formats.

The memory interface runs in its own clock domain. The clock rate of this interface must run
at a slightly higher rate than the video interface clock.

AXI4 Memory and Interface
The key features of the AXI-MM port are:

• Single port to move all 3 Deinterlacer streams, reducing AXI-interoconnect overhead.

• Asynchronous clock to Deinterlacer video path, allowing AXI clock to match
interconnect to ensure highest efficiency bursting.

• Mutli thread support. To allow multiple data streams to move across a common bus.

• Multiple outstanding requests. To reduce system latency impacts.

• Scalable from 32 to 256 bits wide.

The AXI4-MM port stores and extracts video f ields and error information used by the
Deinterlacer core. The AXI4-MM port operates in a multi-threaded bi-directional manner.
The internal Deinterlacer has 3 independent data streams all moving the internal packed
data format. These streams comprise of one write stream and two read streams.

To further provide efficient memory utilization, the pixel stream and error stream are
packed into the AXI data streams. Depending on the configured bit depth, there are three
different packing formats.

Figure 3-5 illustrates the memory packing algorithm. Fields marked "pix" indicate 4:4:4
pixels and f ields marked "err" are the associated motion error vector.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=34

Video Deinterlacer v4.0 www.xilinx.com 35
PG017 October 1, 2014

Chapter 3: Designing with the Core

Write Stream

The AXI memory controller uses the AXI-Write channel to push all write data onto the
AXI-interconnect at the configured data-width given. All bursts are a f ixed length of 32
beats in length (m_axi_awlen). Thus for wider data bus widths more data is conveyed per
burst.

All write operations ensure highest bus eff iciency with back-to-back data packing and no
narrow transactions. The Deinterlacer will only request a AXI transaction if it has data to
immediately move.

The write stream will only generate 1 outstanding transaction at a time. A typical burst is
shown below of beat length 0x1F, to address 0x41700E00. The initial queing of the burst can
be seen, followed by a continuos of 32 beat burst of data. Whilst "m_axi_wvalid" is
constantly high, the "m_axi_wready" pushback from the AXI-interconnect is demonstrating
possible throttling by a downstream memory controller.

X-Ref Target - Figure 3-5

Figure 3-5: AXI4-MM Data Packing Format

X-Ref Target - Figure 3-6

Figure 3-6: Write Stream Burst

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=35

Video Deinterlacer v4.0 www.xilinx.com 36
PG017 October 1, 2014

Chapter 3: Designing with the Core

Read Stream

The AXI memory controller uses the RD channels of AXI to extract 2 streams of video
information from the external memory interface. To ensure efficient use of the AXI bus and
external memory controller, the Deinterlacer's memory controller uses :

• Multiple outstanding reads to ensure system latency's have no impact on the
Deinterlacer processing.

• Multiple thread-id's to all for 2 read-streams to share a single common AXI port.

Any downstream memory controller must be configured to support the above features. The
Xilinx AXI-Memory controller can easily be configured for such a usage model.

To ensure no wasted AXI bandwidth or interconnect throttling occurs, the Deinterlacer will
only issue read requests if it can fully accept the read data. The read-ready strobe is
permanently tied high (m_axi_rready).

All bursts are a f ixed length of 32 beats in length (m_axi_arlen). Thus for wider data bus
widths more data is conveyed per burst. No narrow bursting is done

Each of the 2 streams are given a static unique AXI "thread-id", these being 0 & 1.When
transactions are posted onto the AXI-interconnect, the downstream module will maintain a
list of the id's of each request and return the id alongside the returning data burst. The
Deinterlacer then routes the inbound data to the correct internal read stream.

In order to cater for unpredictable system latencies the Deinterlacer per thread-id issues up
to 2 outstanding read request. A maximum of 4 outstanding requests can be seen in
systems with high read latency, and the target memory control should be configured to
support this mode of operation.

Shown below is a multi-threaded read operation, the diagram is highlighted to indicate
thread 0 and 1's independent read requests, followed by the returning data (tagged with
the correct id) The diagram also illustrates an external memory controller that is unable to
fully supply data to the axi-interconnect at its line rate, and thus m_axi_rvalid is toggling
throughout the read data bursts.

X-Ref Target - Figure 3-7

Figure 3-7: Read Stream Burst

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=36

Video Deinterlacer v4.0 www.xilinx.com 37
PG017 October 1, 2014

Chapter 3: Designing with the Core

Clocking

There is a minimum clock requirement on the AXI clock (m_axi_aclk). The AXI-MM
domain must provide the Deinterlacer with its data in a timely manner. This requirement
combined with the packing formats inside the AXI controller and the data width of the
AXI-MM bus yield a minimum clock rate.

The formulas below are theoretical minimums that assume the read and write streams can
process data with 100% efficiency. If the system cannot achieve this, the AXI clock rate
should be scaled accordingly to cater for the correct system efficiency.

The base formula is:

write_32bit_words_second = packing ratio * pixel rate

read_32bit_words_second = 2 * packing ratio * pixel rate

axi_clk= read_32bit_words_second*(32/axi_data_width)

Shown below is a selection of examples of the above equations.

Video Interface
The Video Deinterlacer has one input and output video port. The input video
Start-Of-Frame (SOF) signal is used solely to identify the f irst pixel of each input frame. The
specific width of the horizontal and height of vertical blanking intervals are not signif icant
but must have a minimum width of one video clock pulse.

The Deinterlacer only processes the active video portion of the input video, all other
blanking data is discarded. Critically, the core generates pixels at twice the input rate of
input video data.

With the tready signal on the input side is always High (indicating input FIFO is ready and
not full), the tvalid signal can be used to throttle the input video up to half of the video
clock rate. The waveform of the tvalid must only maintain an average of 50% active and the
period of this signal can be random. Figure 3-8 illustrates an example video clocking of the
Deinterlacer.

AXI Clock
Rate Pixel Rate Packing Ratio Reads/Sec Writes/Sec AXI Data

Width

33.75MHz (SD) 13.5MHz 8bit = (5/4) 33.75MHz 16.875MHz 32bits

185.6MHz (HD) 74.25MHz 8bit = (5/4) 185.6MHz 92.8MHz 32bits

46.4MHz (HD) 74.25MHz 8bit = (5/4) 185.6MHz 92.8MHz 128bits

111.3MHz (HD) 74.25MHz 12bit = (3/2) 222.75MHz 111.3MHz 64bits

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=37

Video Deinterlacer v4.0 www.xilinx.com 38
PG017 October 1, 2014

Chapter 3: Designing with the Core

The core output is always progressive in format when the Deinterlacer is enabled and a
synthetic video timing frame is constructed around the output stream to provide vertical
and horizontal blanking strobes for downstream cores.

Figure 3-9 illustrates typical input and output frame structures.

The Video Deinterlacer can process either 4:2:0, 4:2:2 or 4:4:4 video formats. These can
either be statically set at core configuration time or can be configured to be dynamically
controllable by system software.

Figure 3-10 illustrates the video timing of the various supported packing formats.

X-Ref Target - Figure 3-8

Figure 3-8: Input to Output Video Clock Ratio for SD

X-Ref Target - Figure 3-9

Figure 3-9: Input and Output Video Timing Formats

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=38

Video Deinterlacer v4.0 www.xilinx.com 39
PG017 October 1, 2014

Chapter 3: Designing with the Core

Clocking
To provide a compact design, the Deinterlacer provides only minimal buffering required in
performing the deinterlacing operation. Extra buffering required by the use of the full/
pause-flags as system push back are outside the scope of this module.

The Video Deinterlacer comprises these clock domains:

• Video Clock Domain: All video passes through this common clock domain and the
Deinterlacer core resides here.

• AXI4-Lite Clock Domain: The AXI4-Lite interface and interrupt signalling operates on
its own exclusive domain.

• Memory Clock Domain: All memory ports use a common clock that is exclusive to the
memory interface(s).

• You can combine or keep these clock domains separate as per their architecture
requirements. See Clocking for more information.

X-Ref Target - Figure 3-10

Figure 3-10: Input and Output Packing Formats

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=39

Video Deinterlacer v4.0 www.xilinx.com 40
PG017 October 1, 2014

Chapter 3: Designing with the Core

Resets
The Video Deinterlacer core has multiple reset inputs, one for each clock domain. The
Video Deinterlacer core comprises these reset inputs.

• Video Clock Domain: aresetn (active Low)

• AXI4-Lite Clock Domain: s_axi_aresetn (active Low)

• Memory Clock Domain: m_axi_aresetn (active Low)

Protocol Description
The Video Deinterlacer core register interface is compliant with the AXI4-Lite interface. The
memory interface is compliant with the AXI4 Memory Mapped interface. The Video
Deinterlacer input and output interfaces can be configured to be compliant with the
AXI4-Stream interface.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=40

Video Deinterlacer v4.0 www.xilinx.com 41
PG017 October 1, 2014

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows in the IP Integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 8]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4]

• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 6]

• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 7]

Customizing and Generating the Core
This section includes information about using Xilinx tools to customize and generate the
core in the Vivado® Design Suite.

If you are customizing and generating the core in the Vivado IP Integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 8] for
detailed information. IP Integrator might auto-compute certain configuration values when
validating or generating the design. To check whether the values do change, see the
description of the parameter in this chapter. To view the parameter value, run the
validate_bd_design command in the Tcl console.

Vivado Integrated Design Environment
You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.

2. Double-click on the selected IP or select the Customize IP command from the toolbar or
popup menu.

For details, see the sections, “Working with IP” and “Customizing IP for the Design” in the
Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4] and the “Working with the

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=41

Video Deinterlacer v4.0 www.xilinx.com 42
PG017 October 1, 2014

Chapter 4: Design Flow Steps

Vivado IDE” section in the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 6].

If you are customizing and generating the core in the Vivado IP Integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994) [Ref 8] for
detailed information. IP Integrator might auto-compute certain configuration values when
validating or generating the design. To check whether the values do change, see the
description of the parameter in this chapter. To view the parameter value you can run the
validate_bd_design command in the Tcl console.

Note: Figures in this chapter are illustrations of the Vivado IDE. This layout might vary from the
current version.

Interface
The Deinterlacer core is easily configured to your specific needs through the Vivado IDE.
This section provides a quick reference to the parameter that can be configured at
generation time. Figure 4-2 and Figure 4-2 show the main and second screen of
Deinterlacer, respectively.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals_j/v=latest/ug910-vivado-getting-started.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=42

Video Deinterlacer v4.0 www.xilinx.com 43
PG017 October 1, 2014

Chapter 4: Design Flow Steps

X-Ref Target - Figure 4-1

Figure 4-1: Vivado GUI Screen

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=43

Video Deinterlacer v4.0 www.xilinx.com 44
PG017 October 1, 2014

Chapter 4: Design Flow Steps

The GUI display a representation of the IP symbol on the left side, and the parameter
assignment on the right side, which are described as following:

Main Page (Deinterlacer Mode)

• Component Name: the component name is used as the base name of output files
generated for the module. Name must begin with a letter and must be composed from
characters: a to z, 0 to 9 and "_". The name v_deinterlacer_v4_0 cannot be used as a
component name.

• Maximum Active Video Line Width: Specif ies the input pixel height of video frame.
ranged from 128 to 2048 pixel lines.

• Video Format: Specifies the color space and packing format. When using IP Integrator,
this parameter is automatically computed based on the Video Format of the video IP
core connected to the slave AXI-Stream video interface.

X-Ref Target - Figure 4-2

Figure 4-2: Vivado GUI Screen - Page 2

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=44

Video Deinterlacer v4.0 www.xilinx.com 45
PG017 October 1, 2014

Chapter 4: Design Flow Steps

• Bit Depth of Color Component: Specif ies the number of bits for each pixel
component. Permitted value are 8, 10 and 12 bits.

• Dynamic Colorspace Support: When enabled, the color space is dynamically
configurable in the core.

• Include Diagonal Algorithm: When enabled, the diagonal engine is used in the core.

• Include Motion Algorithm: When enabled, the motion adaptive engine is used in the
core.

• Include Pulldown/Cadence Detectors: When enabled, the pulldown controller is used
in the core.

Second Page (Interface and Protocol Selection)

• AXI4-Lite CPU Base Address: Specifies the base address of CPU domain which also
included the AI4-Lite register space.

• AXI4-Lite CPU High Address: Specif ies the high address of CPU domain. The high
minus base address must be equal or more than the CPU register address space.

• AXI4-Lite CPU Interface Clock Frequency: Specif ies the clock frequency that used in
the CPU AXI4-Lite domain.

• AXI4-Memory Interface Clock Frequency: Specifies the clock frequency that used in
the AXI4 - Memory Mapped domain.

• AXI4-Memory Interface Data Width: Specif ies the Data signal width of AXI-Memory
Mapped Interface.

• AXI4-Memory Interface Thread Width: Specifies the thread ID width of AXI-Memory
Mapped Transaction.

Output Generation
For details, see “Generating IP Output Products” in the Vivado Design Suite User Guide:
Designing with IP (UG896).

Constraining the Core
This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints
The only constraints required are clock frequency constraints for the video clock - aclk,
AXI4-lite clock - s_axi_aclk , and AXI Memory Mapped clock - m_axi_aclk . Constraint
for m_axi_aclk only required if motion kernel enabled. Paths between these clock

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=45

Video Deinterlacer v4.0 www.xilinx.com 46
PG017 October 1, 2014

Chapter 4: Design Flow Steps

domains should be constraint with a max delay constraint and use the datapathonly flag,
causing the setup and hold checks to be ignored for the signals that cross clock domains.
These constraints are provided in the XDC constraints f ile included with the core.

Device, Package, and Speed Grade Selections
There are no Device, Package or Speed Grade requirements for this core.

Clock Frequencies
There are no specific clock frequency requirements for this core.

This core has not been characterized for use in low power devices.

Clock Management
There are no specific Clock management requirements for this core.

Clock Placement
There are no specific Clock placement requirements for this core.

Banking
There are no specific Banking rules for this core.

Transceiver Placement
There are no Transceiver Placement requirements for this core.

I/O Standard and Placement
There are no specific I/O standards and placement requirements for this core.

Simulation
This chapter contains information about simulating IP in the Vivado® Design Suite
environment. For comprehensive information about Vivado simulation components, as well
as information about using supported third party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 7].

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=46

Video Deinterlacer v4.0 www.xilinx.com 47
PG017 October 1, 2014

Chapter 4: Design Flow Steps

Synthesis and Implementation
For details about synthesis and implementation, see “Synthesizing IP” and “Implementing
IP” in the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4].

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=47

Video Deinterlacer v4.0 www.xilinx.com 48
PG017 October 1, 2014

Chapter 5

C-Model Reference
The Deinterlacer core has a bit accurate C-model designed for system modeling.

Features
• Bit-accurate model

• Statically linked library (.lib for Windows)

• Dynamically linked library (.so for Linux)

• Available for 32-bit and 64-bit Windows platforms and 32-bit and 64-bit Linux platform

• Not cycle accurate

• Example C code showing how to use the function is provided

Overview
The Deinterlacer core has a bit accurate C-model for 32-bit and 64-bit Windows platforms
and 32-bit and 64-bit Linux platforms. the model's interface consists of a set of C functions
residing in statically linked library (shared library).

See Using the C Model for full details of the interface. A C code example of how to call the
model is provided in C Model Example Code.

The model is bit accurate, as it produces exactly the same output data as the core on a
frame-by-frame basis. However, the model is not cycle accurate, and it does not model the
core's latency or its interface signals.

Unpacking and Model Contents
Unzip the deinterlacer_v4_0_bitacc_model.zip f ile, containing the bit accurate
models for the Video Deinterlacer IP Core. This creates the directory structure and f iles in
Table 5-1.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=48

Video Deinterlacer v4.0 www.xilinx.com 49
PG017 October 1, 2014

Chapter 5: C-Model Reference

Table 5-1: Bit Accurate C-Model Directory Structures and Files

File Name Contents

deinterlacer_v4_0_bitacc_cmodel.h Model header file

yuv_utils.h header file declaring the YUV image / video container type and
support functions including .yuv file I/O

rgb_utils.h header file declaring the RGB image / video container type and
support functions

bmp_utils.h header file declaring the bitmap (.bmp) image file I/O functions.

video_utils.h header file declaring the generalized image / video container type,
I/O and support functions

video_fio.h header f ile declaring support functions for testbench stimulus f ile
I/O

run_bitacc_cmodel.c example code calling the C model

./lin64 Directory containing Precompiled bit accurate ANSI C reference
model for simulation on 64-bit Linux platforms.

libIp_deinterlacer_v4_0_bitacc_cmodel.so Model shared object library

run_bitacc_cmodel 64-bit Linux fixed configuration executable

run_bitacc_cmodel_config 64-bit Linux programmable configuration executable

./lin Directory containing Precompiled bit accurate ANSI C reference
model for simulation on 32-bit Linux platforms.

libIp_deinterlacer_v4_0_bitacc_cmodel.so

Model shared object library

run_bitacc_cmodel 32-bit Linux fixed configuration executable

run_bitacc_cmodel_config 32-bit Linux programmable configuration executable

./nt64 Directory containing Precompiled bit accurate ANSI C reference
model for simulation on 64-bit Windows platforms.

libIp_deinterlacer_v4_0_bitacc_cmodel.dll Precompiled dynamic link library f ile for 64-bit Windows platforms
compilation

libIp_deinterlacer_v4_0_bitacc_cmodel.lib Precompiled static library f ile for 64-bit Windows platforms
compilation

run_bitacc_cmodel.exe 64-bit Windows f ixed configuration executable

run_bitacc_cmodel_config.exe 64-bit Windows programmable configuration executable

./nt Precompiled bit accurate ANSI C reference model for simulation on
32-bit Windows platforms.

libIp_deinterlacer_v4_0_bitacc_cmodel.dll Precompiled dynamic link library f ile for 32-bit Windows platforms
compilation

libIp_deinterlacer_v4_0_bitacc_cmodel.lib Precompiled static library f ile for 32-bit Windows platforms
compilation

run_bitacc_cmodel.exe 32-bit Windows f ixed configuration executable

run_bitacc_cmodel_config.exe 32-bit Windows programmable configuration executable

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=49

Video Deinterlacer v4.0 www.xilinx.com 50
PG017 October 1, 2014

Chapter 5: C-Model Reference

Installation
For Linux, make sure the following f iles are in a directory in the $LD_LIBRARY_PATH
environment variable:

• libIp_deinterlacer_v4_0_bitacc_cmodel.so

Software Requirements
The Video Deinterlacer C models were compiled and tested with the software listed in
Table 5-2.

Using the C Model
The bit-accurate C model is accessed through a set of functions and data structures,
declared in the header file deinterlacer_v4_0_bitacc_cmodel.h. A higher-level
software project may make function-calls to the functions below:

./examples Example input files to be used with the run_bitacc_cmodel
executable

 FormulaOne_035.yuv Example YUV input f ile

 FormulaOne_036.yuv Example YUV input f ile

 FormulaOne_037.yuv Example YUV input f ile

 FormulaOne_038.yuv Example YUV input f ile

 FormulaOne_039.yuv Example YUV input f ile

 FormulaOne_040.yuv Example YUV input f ile

 FormulaOne_041.yuv Example YUV input f ile

 FormulaOne_042.yuv Example YUV input f ile

Table 5-1: Bit Accurate C-Model Directory Structures and Files (Cont’d)

File Name Contents

Table 5-2: Compilation Tools for the Bit Accurate C Models

Platform C Compiler

Linux 32-bit and 64-bit GCC 3.4.6 & 4.1.1

Windows 32-bit and 64-bit Microsoft Visual Studio 2008

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=50

Video Deinterlacer v4.0 www.xilinx.com 51
PG017 October 1, 2014

Chapter 5: C-Model Reference

/**
 * Create a new state structure for this C-Model.
 *
 * IMPORTANT: Client is responsible for calling
 * xilinx_ip_deinterlacer_v4_0_destroy_state()
 * to free state memory.
 *
 * @param generics Generics to be used to configure C-Model
 * state.
 *
 * @returns xilinx_ip_deinterlacer_v4_0_state* Pointer to the internal
 * state.
 */
struct xilinx_ip_deinterlacer_v4_0_state*
xilinx_ip_deinterlacer_v4_0_create_state(struct
xilinx_ip_deinterlacer_v4_0_generics generics);

/**
 * Simulate this bit-accurate C-Model.
 *
 * @param state Internal state of this C-Model. State
 * may span multiple simulations.
 * @param inputs Inputs to this C-Model.
 * @param outputs Outputs from this C-Model.
 *
 * @returns Exit code Zero for SUCCESS, Non-zero otherwise.
 */
int xilinx_ip_deinterlacer_v4_0_bitacc_simulate
(
 struct xilinx_ip_deinterlacer_v4_0_state* state,
 struct xilinx_ip_deinterlacer_v4_0_inputs inputs,
 struct xilinx_ip_deinterlacer_v4_0_outputs* outputs
);

Before using the model, the structures holding the generics, inputs, and outputs of the
Deinterlacer instance have to be defined:

struct xilinx_ip_deinterlacer_v4_0_generics generics;
struct xilinx_ip_deinterlacer_v4_0_inputs inputs;
struct xilinx_ip_deinterlacer_v4_0_outputs outputs;

Declaration of the above structures can be found in
deinterlacer_v4_0_bitacc_cmodel.h.

Before making the function calls, the following steps are necessary:

1. Populate the 'generics' structure. It defines the values of build-time parameters. Please
see Deinterlacer Generics Structure for more information on the structure and an
example of how to initialize.

2. Populate the 'inputs' structure. It defines the values of run-time parameters. Please see
Deinterlacer Inputs Structure for more information on the structure and an example of
how to initialize.

3. Populate the 'outputs' structure. Please see Deinterlacer Outputs Structure for more
information on the structure and an example of how to initialize.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=51

Video Deinterlacer v4.0 www.xilinx.com 52
PG017 October 1, 2014

Chapter 5: C-Model Reference

After the inputs are defined and all video_structs initialized the model can be simulated
by calling the following functions

 state = xilinx_ip_deinterlacer_v4_0_create_state(generics);
 if (state == NULL) {
 printf("ERROR: could not create state object\n");
 return 1;
 }

 // Simulate the core
 printf("Running the C model...\n");
 if(xilinx_ip_deinterlacer_v4_0_bitacc_simulate(state, inputs, &outputs) != 0) {
 printf("ERROR: simulation did not complete successfully\n");
 return 1;
 } else {
 printf("Simulation completed successfully\n");
 }

Results are provided in the outputs structure, which contains only one member of type
video_struct. More information on the video_struct structure can be found in
Deinterlacer Video Structure. Successful execution of all provided functions return value 0,
otherwise a non-zero error code indicates that problems were encountered during function
calls.

Deinterlacer Generics Structure
The Xilinx LogiCORE IP Video Deinterlacer Core bit accurate C model takes multiple generic
parameters. All generic parameters are integers or integer arrays. See Table 5-3 for generic
definitions.

Table 5-3: Deinterlacer Generics Structure

Generic Designation

C_STREAMS Number of simultaneous color planes
Valid values are 2 or 3.

C_DEPTH Bit depth of a pixel
Valid values are 8, 10 or 12

C_DIAG Enable the diagonal kernel
0 = disables the diagonal kernel
1 = enables the diagonal kernel

C_MOTION Enable the motion kernel
0 = disables the motion kernel
1 = enables the motion kernel

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=52

Video Deinterlacer v4.0 www.xilinx.com 53
PG017 October 1, 2014

Chapter 5: C-Model Reference

Calling xilinx_ip_deinterlacer_v4_0_get_default_generics() initializes the
generics structure, xilinx_ip_deinterlacer_v4_0_generics, with the Deinterlacer
defaults. An example of initialization of the generics structure is as follows:

generics = xilinx_ip_deinterlacer_v4_0_get_default_generics(); //Get Defaults

Deinterlacer Inputs Structure
The structure xilinx_ip_deinterlacer_v4_0_inputs defines the values of run time
parameters and the actual input video frames/images.

struct xilinx_ip_deinterlacer_v4_0_inputs
{
 struct video_struct video_in;

 struct deinterlacer_cfg_struct *cfg;
 struct deinterlacer_pull_struct *pull;

}; // end xilinx_ip_deinterlacer_v4_0_inputs

The video_in variable is an array of video_struct structures, one structure per layer.
See the Deinterlacer Video Structure for a description of the video_in structure. The
video_in structure must be initialized.

C_PULLDOWN Cadence/Pull-down detection
0 = No pull-down detection
1 = Full pull-down detection

C_COL Static color space setting
0 = YUV
1 = RGB

Table 5-3: Deinterlacer Generics Structure (Cont’d)

Generic Designation

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=53

Video Deinterlacer v4.0 www.xilinx.com 54
PG017 October 1, 2014

Chapter 5: C-Model Reference

Deinterlacer Config Structure
The cfg variable is a pointer to the deinterlacer_cfg_struct. The
deinterlacer_cfg_struct is defined as:

struct deinterlacer_cfg_struct
{
 int frame;
 int bmpfiles;
 int txtfiles;
 int rate;
 int t1;
 int t2;
 int pull_lo;
 int pull_hi;
 int pixel_scale;
 int filewidth;
 int fileheight;
 int depth;
 int format;
 int mode;
 int order;
 int pulldown;
 int cropx;
 int cropy;
 int width;
 int height;
 int length;
 int index;
 int debug;
 int pixel_mask;
 char source[256];
 char prefix[256];
 char num_len;
 char suffix[256];
 char golden[256];
 FILE *avifile;

 int lut[4096];

};

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=54

Video Deinterlacer v4.0 www.xilinx.com 55
PG017 October 1, 2014

Chapter 5: C-Model Reference

Pull-down Structure
The pull variable is a pointer to the deinterlacer_pull_struct. The
deinterlacer_pull_struct is defined as:

struct deinterlacer_pull_struct{
 // Internal 22 State Machine
 int trained_22;
 int trained_22_d1;
 int last_22_delta;
 int confidence_22;

 // Internacer 32 State Machine
 int cx_32;
 int switch_32;
 int next_field_32;
 int bad_time_32;
 int bad_32;
 int trained_32;
 int trained_32_d1;
 int state_32;
 int p24_32;

 // Top level cotrol
 int active_32_early;
 int active_32;
 int active_22_early;
 int active_22;
 int mux_switch;
 int next_field;
 int p24;
};

Deinterlacer Outputs Structure
The structure xilinx_ip_deinterlacer_v4_0_outputs provides the actual output
video frames/images of the Deinterlacer core. This structure is a wrapper to the standard
video_struct used by other Xilinx video core C models.

struct xilinx_ip_ deinterlacer_v4_0_outputs
{
struct video_struct video_out;
}; // xilinx_ip_deinterlacer_v4_0_outputs
The video_out structure must be initialized. The following code shows a typical
video_out initialization.
// Setup Output Video Buffer
outputs.video_out.frames = inputs.num_frames;
outputs.video_out.rows = inputs.frame_cfg->y_size;
outputs.video_out.cols = inputs.frame_cfg->x_size;
outputs.video_out.mode = FORMAT_C444;
outputs.video_out.bits_per_component = generics.C_DATA_WIDTH;
outputs.video_out.data[0] = NULL;
outputs.video_out.data[1] = NULL;
outputs.video_out.data[2] = NULL;

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=55

Video Deinterlacer v4.0 www.xilinx.com 56
PG017 October 1, 2014

Chapter 5: C-Model Reference

Deinterlacer Video Structure
Input images or video streams can be provided to the Deinterlacer v4.0 reference model
using the video_struct structure, defined in video_utils.h. Output images or video
streams are also placed within a video_struct structure. The video_struct is defined
as:

struct video_struct{
 int frames, rows, cols, bits_per_component, mode;
 uint16*** data[5];
};

The structure member variables are defined in Table 5-4.

Table 5-5 shows the named constants for video modes with corresponding planes and
representations.

Table 5-4: Member Variables of the Video Structure

Member Variable Designation

frames Number of video/image frames in the data structure

rows Number of rows per frame
Pertains to the image plane with the most rows and columns, such as the
luminance channel for YUV data. Frame dimensions are assumed constant
through the all frames of the video stream, however different planes, such as y,
u and v can have different smaller dimensions.

cols Number of columns per frame
Pertains to the image plane with the most rows and columns, such as the
luminance channel for YUV data. Frame dimensions are assumed constant
through the all frames of the video stream, however different planes, such as y,
u and v can have different smaller dimensions.

bits_per_component Number of bits per color channel/component.
All image planes are assumed to have the same color/ component
representation. Maximum number of bits per component is 16.

mode Contains information about the designation of data planes.
Named constants to be assigned to mode are listed in Table 5-5.

data Of 5 pointers to 3 dimensional arrays containing data for image planes. data is
in 16 bit unsigned integer format accessed as data[plane][frame][row][col]

Table 5-5: Named Constants for Video Modes

Mode Planes Video Representation

FORMAT_MONO 1 Monochrome - Luminance only.

FORMAT_RGB 3 RGB image / video data

FORMAT_C444 3 4:4:4 YUV, or YCrCb image / video data

FORMAT_C422 3 4:2:2 format YUV video, (u,v chrominance channels horizontally
sub-sampled)

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=56

Video Deinterlacer v4.0 www.xilinx.com 57
PG017 October 1, 2014

Chapter 5: C-Model Reference

Working With video_struct Containers
The video_utils.h f ile defines functions to simplify access to video data in
video_struct.

int video_planes_per_mode(int mode);
int video_rows_per_plane(struct video_struct* video, int plane);
int video_cols_per_plane(struct video_struct* video, int plane);

Function video_planes_per_mode returns the number of component planes defined by the
mode variable, as described in Table 5-5. Functions video_rows_per_plane and
video_cols_per_plane return the number of rows and columns in a given plane of the
selected video structure. The following example demonstrates using these functions in
conjunction to process all pixels within a video stream stored in variable in_video, with
this construct:

for (int frame = 0; frame < in_video->frames; frame++) {
 for (int plane = 0; plane < video_planes_per_mode(in_video->mode); plane++) {
 for (int row = 0; row < rows_per_plane(in_video,plane); row++) {
 for (int col = 0; col < cols_per_plane(in_video,plane); col++) {
 // User defined pixel operations on
 // in_video->data[plane][frame][row][col]
 }
 }
 }
}

Delete the Video Structure
Large arrays such as the video_in element in the video structure must be deleted to free
up memory. As an example, the following function is defined as part of the video_utils
package.

void free_video_buff(struct video_struct* video)
{
 int plane, frame, row;

FORMAT_C420 3 4:2:0 format YUV video, (u,v sub-sampled both horizontally and
vertically)

FORMAT_MONO_M 3 Monochrome (Luminance) video with Motion.

FORMAT_RGBA 4 RGB image / video data with alpha (transparency) channel

FORMAT_C420_M 5 4:2:0 YUV video with Motion or Alpha

FORMAT_C422_M 5 4:2:2 YUV video with Motion or Alpha

FORMAT_C444_M 5 4:4:4 YUV video with Motion or Alpha

FORMAT_RGBM 5 RGB video with Motion

Table 5-5: Named Constants for Video Modes (Cont’d)

Mode Planes Video Representation

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=57

Video Deinterlacer v4.0 www.xilinx.com 58
PG017 October 1, 2014

Chapter 5: C-Model Reference

 if (video->data[0] != NULL) {
 for (plane = 0; plane <video_planes_per_mode(video->mode); plane++) {
 for (frame = 0; frame < video->frames; frame++) {
 for (row = 0; row<video_rows_per_plane(video,plane); row++) {
 free(video->data[plane][frame][row]);
 }
 free(video->data[plane][frame]);
 }
 free(video->data[plane]);
 }
 }
}

This function can be called in the following way to free the video input buffers (up to eight)
and the video output buffer:

// Free Layer Buffers
for(i=0; i < generics.C_NUM_LAYERS; i++)
{
printf("Freeing Layer Video Buffer #%d...\n", i);
free_video_buff(&inputs.video_in[i]);
}
printf("Freeing Output Buffer...\n");
free_video_buff(&outputs.video_out);

C Model Example Code
Two example C f iles, run_bitacc_cmodel.c and run_bitacc_cmodel_config.c, are
provided. The 32-bit and 64-bit Windows and Linux executables for these examples are also
included.

The run_bitacc_cmodel example executable provides:

• Shows a f ixed implementation of the Deinterlacer

• Contains an example of how to write an application that makes all necessary function
calls to the Deinterlacer C model core function.

• Contains an example of how to populate the video structures at the input and output,
including allocation of memory to these structures.

• Uses a YUV file reading function to extract video information from YUV files for use by
the model.

• Uses a YUV file writing function to provide an output YUV file, which allows the user to
visualize the result of the core.

The run_bitacc_cmodel example executable does not use command line parameters. To
run the executable:

1. Use the cd command to go to the platform directory (lin64, lin, win64 or win32).

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=58

Video Deinterlacer v4.0 www.xilinx.com 59
PG017 October 1, 2014

Chapter 5: C-Model Reference

2. Enter this command at the shell or DOS prompt:

run_bitacc_cmodel

The run_bitacc_cmodel_config example executable provides:

• Shows configurable implementations of the Deinterlacer configured from command
line arguments.

• Includes a command line parser, allowing the user to pass parameters into the model
for multiple test cases.

• Uses YUV or BMP file reading functions to extract video information from YUV or BMP
files for use by the model.

• Uses YUV or BMP file writing functions to provide an output YUV or BMP file, which
allows the user to visualize the result of the core.

The run_bitacc_cmodel_config example executable uses multiple command line
parameters. To run the executable:

1. Use the cd command to go to the platform directory (lin64, lin, win64 or win32).

2. Enter this command at the shell or DOS prompt:

./run_bitacc_cmodel_config <-parameter> <value> …

For example:

run_bitacc_cmodel_config -width 720 -height 576 -depth 8 -mode full -length 2 -source
test_000.yuv

Command Line Options in Detail
The following is a detailed list of the options:

• -core: selects which gate-level model is run; excluding this option defaults to RTL
simulation.

• -format: selects the input f ile format; possible input formats are 422YUV8, 422YUV10,
444BMP.

• -rate: selects output frame rate.

• -order : selects which f ield order is used to store the source files. By choosing "pal", line
1 is temporally used before line 2. By choosing NTSC, this order is reversed,

• -pulldown: selects the operation of the pulldown detector; it can be either switched on
or off.

• -mode: selects what internal processing is used to generate a deinterlaced image.
If "none" is selected, the output is f ield interpolated. If "motion" is selected, then only

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=59

Video Deinterlacer v4.0 www.xilinx.com 60
PG017 October 1, 2014

Chapter 5: C-Model Reference

the motion adaptive algorithm is used. If "diag" is selected, then only the diagonal
algorithm is used. If "full", then all features are enabled.

• -cropx, -cropy, -cropxsize, -cropysize: allow for a region of interest to be extracted
from a given source image; the origin of a picture is assumed to be 0,0 and only even x
offsets are allowed.

• -width: sets the full pixel width of the input file image and is required.

• -height: sets the full pixel height of the input f ile image and is required.

• -length: sets the number of f iles read by the chosen core; it should be set greater than
three to allow enough priming of the motion adaptive datapath.

• -txt: used by the C model to generate a .txt equivalent f ile set of the source images,
which are then used by the VHDL or Verilog models.

• -source: path and file name of the f irst f ile to be read.

• -debug: enables colorized images to be generated.

The main parameters are used to steer the test and its target. The options for a test are
shown in Table 5-6.

Table 5-6: Simulation Options

Option Name Description Option Values Default

depth Bit depth of video stream 8 | 10 | 12 10

format File format used yuv8 | yuv10 | bmp| yuv8

packing Pixel packing structure 444 | 422 | 420 444

pulldown Cadence detector off | on off

mode Deinterlacing type full | none | motion | diag full

cropx Cropping Top Left X <numeric value> 0

cropy Cropping Top Left Y <numeric value> 0

cropxsize Cropping X size <numeric value> <default to width>

cropysize Cropping Y size <numeric value> <default to height>

width Input File Pixel width <numeric value> <error if missing>

height Input File Pixel height <numeric value> <error if missing>

length Number of f iles in sequence <numeric value> <error if missing>

source Sequence f ilename <filename> <error if missing>

golden Sequence f ilename <filename> <used only by
compare>

debug Generate debug images <numeric value> 0

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=60

Video Deinterlacer v4.0 www.xilinx.com 61
PG017 October 1, 2014

Chapter 5: C-Model Reference

Initializing the Deinterlacer Input Video Structure
The easiest way to assign stimuli values to the input video structure is to initialize it with an
image or video. The bmp_util.h, yuv_utils.h, rgb_utils.h and video_util.h
header f iles packaged with the bit accurate C models contain functions to facilitate file I/O.

Bitmap Image Files

The rgb_utils.h and bmp_utils.h f iles declare functions that help access f iles in Windows
bitmap format (http://en.wikipedia.org/wiki/BMP_file_format). However, this format limits
color depth to a maximum of 8 bits per pixel, and operates on images with three planes
(R,G,B). Consequently, the following functions operate on arguments type
rgb8_video_struct, which is defined in rgb_utils.h. Also, both functions support only true
color, non-indexed formats with 24 bits per pixel.

int write_bmp(FILE *outfile, struct rgb8_video_struct *rgb8_video);
int read_bmp(FILE *infile, struct rgb8_video_struct *rgb8_video);

These functions are used to dynamically allocate and free memory for RGB structure
storage:

int alloc_rgb8_frame_buff(struct rgb8_video_struct* rgb8video);
void free_rgb_frame_buff(struct rgb_video_struct* rgb_video);

Exchanging data between rgb8_video_struct and general video_struct type frames/videos is
facilitated by functions:

int copy_rgb8_to_video(struct rgb8_video_struct* rgb8_in,
struct video_struct* video_out);
int copy_video_to_rgb8(struct video_struct* video_in,
struct rgb8_video_struct* rgb8_out);

Note: All image / video manipulation utility functions expect both input and output structures
initialized; for example, pointing to a structure that has been allocated in memory, either as static or
dynamic variables. Additionally, the input structure must have the dynamically allocated containers
(data, r, g, b, y, u, and v arrays) already allocated and initialized with the input frame(s). If the output
container structure is pre-allocated at the time of the function call, the utility functions verify and
issue an error if the output container size does not match the size of the expected output. If the
output container structure is not pre-allocated, the utility functions create the appropriate container
to hold results.

YUV Image/Video Files

The yuv_utils.h f ile declares functions that support f ile access in YUV format. These
functions are used to dynamically allocate and free memory for YUV structure storage:

int alloc_yuv8_frame_buff(struct yuv8_video_struct* yuv8video);
void free_yuv_frame_buff(struct yuv_video_struct* yuv_video);

These functions allow reading and writing of YUV functions (used to initialize or write
yuv8_video data):

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=61

Video Deinterlacer v4.0 www.xilinx.com 62
PG017 October 1, 2014

Chapter 5: C-Model Reference

int write_yuv(FILE *outfile, struct yuv8_video_struct *yuv8_video);
int read_yuv(FILE *infile, struct yuv8_video_struct *yuv8_video);

Exchanging data between yuv8_video_struct and general video_struct type frames/ videos
is facilitated by functions:

int copy_yuv8_to_video(struct yuv8_video_struct* yuv8_in,
struct video_struct* video_out);
int copy_video_to_yuv8(struct video_struct* video_in,
struct yuv8_video_struct* yuv8_out);

YUV formats (4:2:0, 4:2:2 and 4:4:4) can be converted with these functions:

int yuv8_420to444(struct yuv8_video_struct* video_in, struct yuv8_video_struct*
video_out);
int yuv8_422to444(struct yuv8_video_struct* video_in, struct yuv8_video_struct*
video_out);
int yuv8_444to420(struct yuv8_video_struct* video_in, struct yuv8_video_struct*
video_out);
int yuv8_444to422(struct yuv8_video_struct* video_in, struct yuv8_video_struct*
video_out);

Binary Image/Video Files

The video_utils.h f ile declares functions that help load and save generalized video f iles in
raw, uncompressed format. These functions effectively serialize the video_struct structure:

int read_video(FILE* infile, struct video_struct* in_video);
int write_video(FILE* outfile, struct video_struct* out_video);

The corresponding file contains a small, plain text header defining, "Mode", "Frames",
"Rows", "Columns", and "Bits per Pixel". The plain text header is followed by binary data,
16-bits per component in scan line continuous format. Subsequent frames contain as many
component planes as defined by the video mode value selected. Also, the size (rows,
columns) of component planes can differ within each frame as defined by the actual video
mode selected.

These functions are used to dynamically allocate and free memory for video structure
storage:

int alloc_video_buff(struct video_struct* video);
void free_video_buff(struct video_struct* video);

Compiling on 32-bit and 64-bit Windows Platforms
Precompiled library deinterlacer_v4_0_bitacc_cmodel.lib, top level demonstration code
run_bitacc_cmodel_config.c and example code run_bitacc_cmodel.c must be compiled with
an ANSI C compliant compiler under Windows 32-bit or Windows 64-bit. This section
describes an example using Microsoft Visual Studio. In Visual Studio create a new, empty
Win32 Console Application project. As existing items, add:

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=62

Video Deinterlacer v4.0 www.xilinx.com 63
PG017 October 1, 2014

Chapter 5: C-Model Reference

• libIpdeinterlacer_v4_0_bitacc_cmodel.lib to the "Resource Files" folder of
the project

• run_bitacc_cmodel.c or the run_bitacc_cmodel_config.c to the "Source
Files" folder of the project

• deinterlacer_v4_0_bitacc_cmodel.h header f ile to the "Header Files" folder
of the project

• bmp_utils.h f ile to the "Header Files" folder of the project

• rgb_utils.h f ile to the "Header Files" folder of the project

• video_fio.h f ile to the "Header Files" folder of the project

• video_utils.h f ile to the "Header Files" folder of the project

• yuv_utils.h f ile to the "Header Files" folder of the project

To build the x64 executable for 64-bit Windows platforms, perform these steps. These steps
can be skipped if building the Win32 executable.

1. Right-click on the solution in the Solution Explorer and click Properties at the bottom of
the pop-up menu.

2. Click Configuration Manager.

3. In the Active solution platform drop-down box, select <New…>.

4. In the new platform drop-down box, select x64 and click OK.
Make sure that all the projects now have x64 as the default platform in the
Configuration Manager.

5. After the project is created and populated, it must be compiled and linked (built) to
create a Win32 or x64 executable. To perform the build step, select Build Solution from
the Build menu. An executable matching the project name is created either in the Debug
or Release subdirectories under the project location based on whether "Debug" or
"Release" has been selected in the "Configuration Manager" under the Build menu.

Note: The run_bitacc_cmodel.c f ile is an example demonstration that reads no input but
generates an output .yuv f ile from internally generated test patterns. The
run_bitacc_cmodel_config.c f ile is a configurable demonstration and requires several input f iles
to run. See Running the Executables for information on command line arguments and input f ile
formats.

Compiling under 32-bit and 64-bit Linux Platforms

Example Demonstration

To compile the example demonstration, go to the directory where the header files, the
library f iles and run_bitacc_cmodel.c were unpacked. The libraries and header files are

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=63

Video Deinterlacer v4.0 www.xilinx.com 64
PG017 October 1, 2014

Chapter 5: C-Model Reference

referenced during the compilation and linking process. In this directory, perform these
steps:

1. Set your LD_LIBRARY_PATH environment variable to include the root directory where the
model zip f ile was unzipped. For example:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy this f ile from the /lin32 or /lin64 directory to the root directory:

libIp_deinterlacer_v4_0_bitacc_cmodel.so

3. In the root directory, compile using the GNU C Compiler by typing this command at the
shell prompt:

gcc -m32 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o
run_bitacc_cmodel -L. -lIp_deinterlacer_v4_0_bitacc_cmodel -Wl,-rpath,.
gcc -m64 -x c++ ../run_bitacc_cmodel.c ../parsers.c -o
run_bitacc_cmodel -L. -lIp_deinterlacer_v4_0_bitacc_cmodel -Wl,-rpath,.

4. This results in the creation of the executable run_bitacc_cmodel, which can be run
using this command:

./run_bitacc_cmodel

A make f ile is also included that runs GCC. To clean the executable and compile the
example code, enter this command at the shell prompt:

make clean all

Configurable Demonstration

To compile the configurable demonstration, go to the directory where the header files, the
library f iles and run_bitacc_cmodel_config.c were unpacked. The libraries and
header f iles are referenced during the compilation and linking process. In this directory
perform these steps:

1. Set your LD_LIBRARY_PATH environment variable to include the root directory where the
model zip-file was unzipped. For example:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy this f ile from the /lin64 directory to the root directory:

libIp_deinterlacer_v4_0_bitacc_cmodel.so

3. In the root directory, compile using the GNU C Compiler by entering this command at
the shell prompt:

gcc -x c++ run_bitacc_cmodel_config.c -o run_bitacc_cmodel_config -L.
-lIp_deinterlacer_v4_0_bitacc_cmodel -Wl,-rpath,.

4. This results in the creation of the executable run_bitacc_cmodel, which can be run using
this command:

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=64

Video Deinterlacer v4.0 www.xilinx.com 65
PG017 October 1, 2014

Chapter 5: C-Model Reference

./run_bitacc_cmodel_config <-parameter> <value> …

For example:

run_bitacc_cmodel_config -width 720 -height 576 -depth 8 -mode full -length 2 -source
test_000.yuv

A make f ile is also included that runs GCC. To clean the executable and compile the
example code, enter this following command at the shell prompt:

make clean run_bitacc_cmodel_config

Running the Executables
Included in the zip f ile are precompiled executable f iles for use with 32-bit and 64-bit
Windows and Linux platforms. The instructions for running on each platform are included in
this section.

Example Demonstration

The example demonstration does not use command line parameters. To run on a 32-bit or
64-bit Linux platform, perform these steps:

1. Set your $LD_LIBRARY_PATH environment variable to include the root directory where
the model zip file was unzipped. For example:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy these files from the /lin64 (for 64-bit Linux) or from the /lin (for 32-bit Linux)
directory to the root directory:

libIp_deinterlacer_v4_0_bitacc_cmodel.so
run_bitacc_cmodel

3. Execute the model. From the root directory, enter this command at a shell prompt:

run_bitacc_cmodel

To run on a 32-bit or 64-bit Windows platform, perform these steps:

1. Copy this f ile from the /nt64 (for 64-bit Windows) or from the /nt (for 32-bit Windows)
directory to the root directory:

run_bitacc_cmodel.exe

2. Execute the model. From the root directory, enter this command at a DOS prompt:

run_bitacc_cmodel

During successful execution, the c_deint0000.bmp f ile is created in the directory
containing the run_bitacc_cmodel executable. This f ile bitmap file. The example
demonstration is set up to generate 15 frames of video data at 200x120 24-bit format.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=65

Video Deinterlacer v4.0 www.xilinx.com 66
PG017 October 1, 2014

Chapter 5: C-Model Reference

Configurable Demonstration

The configurable demonstration takes multiple command line parameters. To run on a
32-bit or 64-bit Linux platform, perform these steps:

1. Set your $LD_LIBRARY_PATH environment variable to include the root directory where
the model zip-file was unzipped. For example:

setenv LD_LIBRARY_PATH <unzipped_c_model_dir>:${LD_LIBRARY_PATH}

2. Copy these files from the /lin64 (for 64-bit Linux) or from the /lin (for 32-bit Linux)
directory to the root directory:

libIp_deinterlacer_v4_0_bitacc_cmodel.so
run_bitacc_cmodel_config

3. Execute the model. From the root directory, enter this command at a shell prompt:

./run_bitacc_cmodel_config <-parameter> <value> …

For example:

run_bitacc_cmodel_config -width 720 -height 576 -depth 8 -mode full -length 2 -source
test_000.yuv

To run on a 32-bit or 64-bit Windows platform, perform these steps:

1. Copy this f ile from the /nt64 (for 64-bit Windows) or from the /nt (for 32-bit Windows)
directory to the root directory:

run_bitacc_cmodel_config.exe

2. Execute the model. From the root directory, enter this command at a DOS prompt:

./run_bitacc_cmodel_config <-parameter> <value> …

For example:

run_bitacc_cmodel_config -width 720 -height 576 -depth 8 -mode full -length 2 -source
test_000.yuv

During successful execution, multiple bitmap files are created in the directory containing
the run_bitacc_cmodel_config executable.

Each individual simulation is invoked using a binary executable script and some command
line parameters.

The "source", "length", "width" and "height" parameters are mandatory, all other missing
f ields are set to their default.

The following command line shows how to run a C model based, 8-bit full Deinterlacer on
sequence files "test000":

run_bitacc_cmodel_config -width 720 -height 576 -depth 8 -mode full -length 2 -source
test_000.yuv

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=66

Video Deinterlacer v4.0 www.xilinx.com 67
PG017 October 1, 2014

Chapter 5: C-Model Reference

When running the C model output, two additional AVI f iles are generated. The first is an
animated version of the full deinterlaced sequence, and the second is a side-by-side
comparison movie of the motion adaptive and full Deinterlacer in operation. This second
AVI f ile allows for easy visual comparison of the outputs. The user can preset the AVI frame
rate on the command line.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=67

Video Deinterlacer v4.0 www.xilinx.com 68
PG017 October 1, 2014

Chapter 6

Detailed Example Design
The Deinterlacer is typically used in the broadcast video conversions of SD and HD material
to progressive formats for subsequent display on a display monitor.

Case 1: SD480i to SD480p
Another typical use of the Deinterlacer is for the conversion of NTSC to 480p video. In this
application, the Deinterlacer uses the AXI4-Lite interface and the configuration values are
dynamically set by the system software.

The core is configured to process an 8-bit 4:2:2 YUV stream coming from an AXI4-Stream.
The T1, T2 and cross fade ratio settings are wired to their default values. Full deinterlacing
is enabled.

Given a pixel rate of 13.5 MHz for SD video, the video clock required is at least 27 MHz as
shown in Figure 6-1. This can be derived from the incoming video and passed through a
DCM to double the clock rate.

X-Ref Target - Figure 6-1

Figure 6-1: Example SD Data Path

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=68

Video Deinterlacer v4.0 www.xilinx.com 69
PG017 October 1, 2014

Chapter 6: Detailed Example Design

The memory clock is set by considering the bit depth and pixel rate. Since 8-bit video is
used, the packing ratio is 5/4. A safety margin of 70% AXI4-MM utilization is used. Taking
these factors into account, the minimum memory clock rate is:

Memory clock = [13.5 MHz * (5/4) *] / 0.70 = 24.1 MHz

The SDI system clock minimum is 13.5 MHz. Using a minimal clock approach, the video
clock and memory clock can be connected and run at a common multiple of 13.5 MHz.
27 MHz is the f irst DCM multiple to satisfy the requirements of both the memory clock and
video clock.

The memory bandwidth can now be determined. The Deinterlacer has three memory
streams, so the effective memory bandwidth of SD is:

24.1 MWords/Second * 3 streams = 72.3 MW/s or 289 Mbytes/s or 2.3 Gbps

Case 2: HD1080i to HD1080p
Another typical use of the Deinterlacer is for the conversion of 1080iHD to 1080pHD video.
In this application, the Deinterlacer uses the AXI4-Lite interface and the configuration
values are dynamically set by the system software.

The core is configured to process a 12-bit 4:4:4 YUV stream from a AXI4-Stream. The T1, T2
and cross fade ratio settings are set to their default values; full deinterlacing is enabled.

Given a pixel rate of 74.25 MHz for HD video, the video clock required is at least 148.5 MHz
as shown in Figure 6-2.

X-Ref Target - Figure 6-2

Figure 6-2: Example HD Data Path

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=69

Video Deinterlacer v4.0 www.xilinx.com 70
PG017 October 1, 2014

Chapter 6: Detailed Example Design

The memory clock is set by considering the bit depth and pixel rate. Using 12-bit video, the
packing ratio is 3/4, and with a safety margin of 60% AXI4-MM utilization, the minimum
memory clock rate is:

Memory clock = [74.25 MHz * (3/2)] / 0.60 = 185 MHz

The memory bandwidth can now be determined. The Deinterlacer has three memory
streams, so the effective memory bandwidth of SD is:

185 MWords/Second * 3 streams = 556 MW/s or 2.2 GBytes/s or 17.82 Gbps

For example, selecting a 32-bit DDR interface with a fabric clock rate of 200 MHz, physical
clock rate of 400 MHz and DDR3-800 device, the theoretical bandwidth is 3.2 GBytes/s. This
device configuration would sustain the Deinterlacer, leaving 1 GB/s for other applications.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=70

Video Deinterlacer v4.0 www.xilinx.com 71
PG017 October 1, 2014

Chapter 7

Test Bench
This chapter contains information about the provided test bench in the Vivado® Design
Suite environment.

Demonstration Test Bench
A demonstration test bench is provided with the core which enables you to observe core
behavior in a typical scenario. This test bench is generated together with the core in
Vivado Design Suite. You are encouraged to make simple modif ications to the
configurations and observe the changes in the waveform.

Directory and File Contents
The following files are expected to be generated in the in the demonstration test bench
output directory:

• axi4lite_mst.v

• axi4s_video_mst.v

• axi4s_video_slv.v

• ce_generator.v

• tb_<IP_instance_name>.v

Test Bench Structure
The top-level entity is tb_<IP_instance_name>.

It instantiates the following modules:

• DUT

The <IP> core instance under test.

• axi4lite_mst

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=71

Video Deinterlacer v4.0 www.xilinx.com 72
PG017 October 1, 2014

Chapter 7: Test Bench

The AXI4-Lite master module, which initiates AXI4-Lite transactions to program core
registers.

• axi4s_video_mst

The AXI4-Stream master module, which generates ramp data and initiates AXI4-Stream
transactions to provide video stimuli for the core and can also be used to open stimuli
f iles generated from the reference C models and convert them into corresponding
AXI4-Stream transactions.

To do this, edit tb_<IP_instance_name>.v:

a. Add define macro for the stimuli f ile name and directory path
define STIMULI_FILE_NAME<path><filename>.

b. Comment-out/remove the following line:
MST.is_ramp_gen(`C_ACTIVE_ROWS, `C_ACTIVE_COLS, 2);
and replace with the following line:
MST.use_file(`STIMULI_FILE_NAME);

For information on how to generate stimuli f iles, see Chapter 4, C Model Reference.

• axi4s_video_slv

The AXI4-Stream slave module, which acts as a passive slave to provide handshake
signals for the AXI4-Stream transactions from the core output, can be used to open the
data files generated from the reference C model and verify the output from the core.

To do this, edit tb_<IP_instance_name>.v:

a. Add define macro for the golden f ile name and directory path
define GOLDEN_FILE_NAME “<path><filename>”.

b. Comment out the following line:
SLV.is_passive;
and replace with the following line:
SLV.use_file(`GOLDEN_FILE_NAME);

For information on how to generate golden f iles, see Chapter 4, C Model Reference.

• ce_gen

Programmable Clock Enable (ACLKEN) generator.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=72

Video Deinterlacer v4.0 www.xilinx.com 73
PG017 October 1, 2014

Appendix A

Verification, Compliance, and
Interoperability

Simulation
A validation suite consisting of a precompiled Windows C model and RTL test bench
framework is included with the Video Deinterlacer. Both environments allow users to stream
their own 24-bit true color BMP or YUV8/YUV10 files into the simulator and produce real
BMP output f iles. This advantage allows for real world examples to be tested with the
Deinterlacer in advance. Additionally, BMP files are also generated by the C model, allowing
users to view animated results of the simulation in their chosen video program.

Additional system simulation and FPGA colorization is available via the AXI4-Lite interface
to illustrate the algorithms operation and decision matrix in live operation. This can be
useful if dynamic control of the thresholds is done by the system software. Figure A-1
shows a normal fully deinterlaced output. Note the smoothed lines of the Deinterlacer.

X-Ref Target - Figure A-1

Figure A-1: No Colorization

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=73

Video Deinterlacer v4.0 www.xilinx.com 74
PG017 October 1, 2014

Appendix A: Verification, Compliance, and Interoperability

Figure A-2 is the same image with full diagonal colorization enabled. The green highlight
shows the diagonal edges that were detected and then enhanced.

Figure A-3 is the same image with full motion colorization enabled. The three lines are
moving upward. The three trailing motion vectors are in red around each white line. The red
lines show the front and back edge motion of the line.

Hardware Testing
The Video Deinterlacer has been verif ied in the KC705 Kintex-7 FPGA Platform.

X-Ref Target - Figure A-2

Figure A-2: Diagonal Colorization

X-Ref Target - Figure A-3

Figure A-3: Motion Colorization

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=74

Video Deinterlacer v4.0 www.xilinx.com 75
PG017 October 1, 2014

Appendix B

Migrating
This appendix contains information about migrating a design from ISE® to the Vivado®
Design Suite, and for upgrading to a more recent version of the IP core. For customers
upgrading in the Vivado Design Suite, important details (where applicable) about any port
changes and other impact to user logic are included.

Migrating to the Vivado Design Suite
For information about migrating to the Vivado Design Suite, see the ISE to Vivado Design
Suite Migration Guide (UG911) [Ref 3].

Upgrading in the Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

From version v3.00.a to v4.0 of the deinterlacer core the following signif icant changes look
place:

• The core is for native Vivado design tools release.

• Removal of XSVI ports and has f ixed to AXI4-Stream protocol only.

• Core upgrade from v3.00.a to v4.0 in Vivado will replace both GUI options for static
color space and number of color planes with only one GUI option - video format. Also
remove the selection for XSVI ports.

• Core upgrade from v2.00.a to v4.0 in Vivado will replace both GUI options for static
color space and number of color planes with only one GUI option - video format. Also
remove the selection for XSVI ports and GPP ports.

Parameter Changes
There were no parameter changes in the XCO file.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=75

Video Deinterlacer v4.0 www.xilinx.com 76
PG017 October 1, 2014

Appendix B: Migrating

Port Changes
There is only one type of data stream interface which is AXI4-Stream.

Other Changes
The Deinterlacer’s internal algorithms have not changed in this revision.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=76

Video Deinterlacer v4.0 www.xilinx.com 77
PG017 October 1, 2014

Appendix C

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the Video Deinterlacer core, the Xilinx
Support web page (www.xilinx.com/support) contains key resources such as product
documentation, release notes, answer records, information about known issues, and links
for opening a Technical Support WebCase.

Documentation
This product guide is the main document associated with the Video Deinterlacer core. This
guide, along with documentation related to all products that aid in the design process, can
be found on the Xilinx Support web page (www.xilinx.com/support) or by using the Xilinx
Documentation Navigator.

Download the Xilinx Documentation Navigator from the Design Tools tab on the Downloads
page (www.xilinx.com/download). For more information about this tool and the features
available, open the online help after installation.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Send Feedback

Discontinued IP

http://www.xilinx.com
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/download
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=77

Video Deinterlacer v4.0 www.xilinx.com 78
PG017 October 1, 2014

Appendix C: Debugging

Answer Records for this core are listed below, and can also be located by using the Search
Support box on the main Xilinx support web page. To maximize your search results, use
proper keywords such as

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Answer Records for the Video Deinterlacer core

AR54537
http://www.xilinx.com/support/answers/54537.htm

Contacting Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support:

1. Navigate to www.xilinx.com/support.

2. Open a WebCase by selecting the WebCase link located under Support Quick Links.

When opening a WebCase, include:

• Target FPGA including package and speed grade.

• All applicable Xilinx Design Tools and simulator software versions.

• Additional f iles based on the specif ic issue might also be required. See the relevant
sections in this debug guide for guidelines about which f ile(s) to include with the
WebCase.

Debug Tools
There are many tools available to address Video Deinterlacer core design issues. It is
important to know which tools are useful for debugging various situations.

Send Feedback

Discontinued IP

http://www.xilinx.com
www.xilinx.com/support
http://www.xilinx.com/support
www.xilinx.com/support
http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com/support/answers/54537.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=78

Video Deinterlacer v4.0 www.xilinx.com 79
PG017 October 1, 2014

Appendix C: Debugging

Vivado Lab Tools
Vivado Lab Tools inserts logic analyzer, bus analyzer, and virtual I/O cores directly into your
design. Vivado Lab Tools allows you to set trigger conditions to capture application and
integrated block port signals in hardware. Captured signals can then be analyzed.

Reference Boards
Various Xilinx development boards support Video Deinterlacer core. These boards can be
used to prototype designs and establish that the core can communicate with the system.

• 7 series FPGA evaluation boards

° KC705

C-Model Reference
Please see Chapter 5, C-Model Reference in this guide for tips and instructions for using the
provided C-Model f iles to debug your design.

Third-Party Tools

License Checkers
If the IP requires a license key, the key must be verif ied. The Vivado design tools have
several license check points for gating licensed IP through the flow. If the license check
succeeds, the IP can continue generation. Otherwise, generation halts with error. License
checkpoints are enforced by the following tools:

• Vivado design tools: Vivado Synthesis, Vivado Implementation, write_bitstream (Tcl
command)

IMPORTANT: IP license level is ignored at checkpoints. The test confirms a valid license exists. It does
not check IP license level.

Simulation Debug
The simulation debug flow for Questa SIM is illustrated in Figure C-1. A similar approach can
be used with other simulators.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=79

Video Deinterlacer v4.0 www.xilinx.com 80
PG017 October 1, 2014

Appendix C: Debugging

Hardware Debug
Hardware issues can range from link bring-up to problems seen after hours of testing. This
section provides debug steps for common issues. The Vivado Lab Tools are a valuable
resource to use in hardware debug. The signal names mentioned in the following individual
sections can be probed using the Vivado Lab Tools for debugging the specif ic problems.

X-Ref Target - Figure C-1

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=80

Video Deinterlacer v4.0 www.xilinx.com 81
PG017 October 1, 2014

Appendix C: Debugging

General Checks
Ensure that all the timing constraints for the core were properly incorporated from the
example design and that all constraints were met during implementation.

• Does it work in post-place and route timing simulation? If problems are seen in
hardware but not in timing simulation, this could indicate a PCB issue. Ensure that all
clock sources are active and clean.

• If using MMCMs in the design, ensure that all MMCMs have obtained lock by
monitoring the LOCKED port.

• If your outputs go to 0, check your licensing.

Evaluation Core Timeout
The Deinterlacer hardware evaluation core times out after approximately eight hours of
operation. The output is driven to zero. This results in a dark-green screen for YUV color
systems

Interface Debug

AXI4-Lite Interfaces
Read from a register that does not have all 0s as a default to verify that the interface is
functional. Output s_axi_arready asserts when the read address is valid, and output
s_axi_rvalid asserts when the read data/response is valid. If the interface is
unresponsive, ensure that the following conditions are met:

• The S_AXI_ACLK and ACLK inputs are connected and toggling.

• The interface is not being held in reset, and S_AXI_ARESET is an active-Low reset.

• The interface is enabled, and s_axi_aclken is active-High (if used).

• The main core clocks are toggling and that the enables are also asserted.

• If the simulation has been run, verify in simulation and/or a Vivado Lab Tools
debugging tool capture that the waveform is correct for accessing the AXI4-Lite
interface.

AXI4-Stream Interfaces
If data is not being transmitted or received, check the following conditions:

• If transmit <interface_name>_tready is stuck low following the
<interface_name>_tvalid input being asserted, the core cannot send data.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=81

Video Deinterlacer v4.0 www.xilinx.com 82
PG017 October 1, 2014

Appendix C: Debugging

• If the receive <interface_name>_tvalid is stuck low, the core is not receiving data.

• Check that the ACLK inputs are connected and toggling.

• Check core configuration.

• Add appropriate core specif ic checks.

Debugging the Video Deinterlacer Core

Step 1: Video Pass Through Bring Up
When initially bringing up the Deinterlacer in a simulator or FPGA environment, the
Deinterlacer can be configured to use minimal external interfaces.

RECOMMENDED: Use of the interrupt mechanism is strongly advised, as this gives a real time indication
of possible system issues.

After the system resets, the Deinterlacer starts in bypass mode. This mode requires no
external memory interface for the Deinterlacer to move video through itself. It does require
that the input and output video streams are operational.

By using the interrupt mechanism, you can determine if the system is stable with no error
interrupts occurring. At this point, video should pass through the Deinterlacer data path in
its native format, with all blanking removed. System designers should observe the video
output matches the video input.

If error interrupts occur, it is likely that either the input or output FIFOs have over run. This
occurs only when ports are enabled. For AXI4-Streaming interfaces, the Deinterlacer pauses
until data can be moved through the Deinterlacer.

• Input FIFO overrun occurs if the output FIFO is stalled for too long, or the vid_clk is
not running fast enough.

• Output FIFO overrun occurs if the output FIFO is stalled for too long (>1000 clks)

Step 2: Basic Deinterlacing
You should configure the Deinterlacer registers for the correct video raster size, basic "f ield
interpolation mode", and then schedule the Deinterlacer to start on the next frame. At the
next frame boundary, the Deinterlacer becomes synchronized. This can be seen at the top
level pin "deint_sync" and also by an interrupt or reading the status register.

At this point, the Deinterlacer start to produce deinterlaced video output. The output video
interface pixel rate will double. If a fault occurs, then the Deinterlacer either loses sync or
generates a FIFO error. The reasons for this include:

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=82

Video Deinterlacer v4.0 www.xilinx.com 83
PG017 October 1, 2014

Appendix C: Debugging

• Loss of sync
Due to automatic recovery from an internal FIFO overrun error, or the X/Y dimensions
do not match the input video X/Y dimensions. The Deinterlacer must internal track X/Y
so these registers must match.

• System error
If this is the f irst time the error has been seen, then the likelihood is either that the
vid_clk is not fast enough to allow pixel output at 2x the input rate, or the output
FIFO has stalled the video and a backlog of less than 1000 pixels has occurred inside the
Deinterlacer.

Step 3: Full Deinterlacing Using Memory Controller
At this point, the Deinterlacer should be doing on-the-fly deinterlacing without the use of
the AXI-MM port. Program the base addresses of the triple buffers to target a unique area
of external memory. Update the mode register to select motion/full deinterlacing method.
The Deinterlacer will on the next frame boundary start the memory interface port.

Under normal operation only the frame interrupt should ever trigger.

If a system error occurs, they can be broken down into 3 types:

• Write stream overflow
The AXI-Write port does not have enough bandwidth to keep up with the demand off
the Deinterlacer. If possible and applicable, either increase the m_axi_aclk rate or in
the case of AXI, increase the data width of this port.

• Read stream 0, Read stream 1 underflow
Either of the two internal read data paths FIFO's have under run. This is generally due to
excessive system latency, or to slow a m_axi_aclk rate.

Possible Vivado Lab Tools analysis using an AXI -Bus-Monitor would best help understand
the bottleneck here.

Step 4: Check the Algorithms for Incorrect Video Output
By using the built-in colourisation mode, the diagonal and motion kernel operations can be
tracked. Turn on the colourisation modes and observe the output video. Using a known
video test sequence the colourisation should show the motion artifacts and diagonal edge
detections (only in moving objects). If the motion trails do not match the image then there
is most likely data corruption in the external memory interface port. Although the
transactions might be running cleanly, the triple buffers data would seem to be corrupt.

If corruption is visible, by activating PsF mode, the Deinterlacer is forced to use the external
memory for every Deinterlaced video line. By enabling this mode, the user can validate the
external memory is not corrupt.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=83

Video Deinterlacer v4.0 www.xilinx.com 84
PG017 October 1, 2014

Appendix C: Debugging

Step 5: Pull-down Testing and Pitfalls
When applicable, the built-in cadence detectors can be individually enabled or disabled.
Once enabled, the detectors periodically activate and deactivate. In images with low or no
motion, the cadence detectors may disable until signif icant motion occurs again. This is
normal operation. If you monitor the pulldown interrupts, you can see periodic cycling.

For instance, in the case of scene changes through black, the cadence detector may also
drop out momentarily. As no motion is visible at this point, the quality of the video output
will still be of highest quality even though the cadence detector is inactive.

Failure to detect a cadence in a known sequence that should have 3:2 or 2:2 is generally
down to poor quality video that has undergone various compression's/re-authoring steps.
For example in converting a DVD to SDI, the quality of the hardware decoders and
subsequent scalers, color-space converters, chroma-resamplers, etc., can all introduce
suff icient noise and artifacts that makes the cadence become undetectable. This is specially
in the case of 2:2 footage, 3:2 encoding is a more robust mechanism.

Debugging for Bandwidth Issues
This section is for debugging the loss of sync between the memory domain and the video
domain of Deinterlacer.

When initially bringing up the Deinterlacer in a simulator or FPGA environment, the
Deinterlacer can be configured to use minimal external interfaces.

RECOMMENDED: Turn off the Motion Engine to exclude the need for external memory interface for the
Deinterlacer.

Enable the Interrupt control by setting the register upper bits 11, 10 and 9 to high for error
detection on AXI-MM port (refer Interrupt Control (0x0008) Register in Chapter 2).

By removing the Motion Engine, you can make sure that the video passes through and basic
Deinterlacing is working and refer to Step 1: Video Pass Through Bring Up and Step 2: Basic
Deinterlacing if any errors occur in between the process. Make sure the upper bits 11, 10
and 9 are always set to Low (Interrupt Status (0x000C) Register in Chapter 2). By doing this,
you can eliminates the external variable that not origin from memory controller and it also
serves as a good indicator that they have bandwidth problem or memory interface problem
for full Deinterlacing using memory controller process.

At this point, you should enable the Motion Engine so that the Deinterlacer does on-the-fly
deinterlacing with the use of memory controller. The Interrupt status register is a good
indicator for f inding the causes of the loss-of-sync. The upper IRQ bits 11, 10 and 9 lists the
reason, typically either base software configuration or insuff icient memory bandwidth.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=84

Video Deinterlacer v4.0 www.xilinx.com 85
PG017 October 1, 2014

Appendix C: Debugging

Below are two scenarios that can used to explain the reason out of sync happen during
deinterlacing.

THE MCB is running DDR2 RAM at 400 MHz 16-bits and theoretically it can deliver
800Mbytes per second. Assuming a 80% utilization of the DDR, you can infer 800 * 80%
= 640Mbytes per second. This is not enough for the Deinterlacer to do a 1080i to 1080p
conversion. For 10-bit video, the Deinterlacer requires 933 Mbytes per second
bandwidth. The loss of sync comes from the Deinterlacer not being able to read/write
enough data. This under run can be seen in the simulation due to the DDR memory
device being saturated. To observe tis, you can probe the top-level MCB pins.

Consider a case where the main m_axi_aclk is running at 66 MHz, when the pixel clock
is 74.25 MHz. This means the Deinterlacer cannot move pixels from the memory domain
to the video domain fast enough. To avoid this, m_axi_aclk must be less than or equal
to vid_clk .

The following solutions can be implemented for loss of sync issue.

• Increasing the memory speed to 533 Mbits/S DDR2. (This requires simulation due to the
high eff iciency from DDR.)

• Using DDR3.

• Removing the Motion Engine from the Deinterlacer and do “basic deinterlacing”. This
requires No DDR at all, but produces a lower quality image.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=85

Video Deinterlacer v4.0 www.xilinx.com 86
PG017 October 1, 2014

Appendix D

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

http://For a glossary of technical terms used in Xilinx documentation, see the Xilinx
Glossary.

http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf.

For a comprehensive listing of Video and Imaging application notes, white papers,
reference designs and related IP cores, see the Video and Imaging Resources page at:

http://www.xilinx.com/esp/video/refdes_listing.htm#ref_des.

References
These documents provide supplemental material useful with this user guide:

1. AXI Interconnect IP Data Sheet (DS768)

2. Vivado AXI Reference Guide (UG1037)

3. ISE to Vivado Design Suite Migration Guide (UG911)

4. Vivado Design Suite User Guide: Designing with IP (UG896)

5. Vivado Design Suite User Guide: Programming and Debugging (UG908)

6. Vivado Design Suite User Guide: Getting Started (UG910)

7. Vivado Design Suite User Guide: Logic Simulation (UG900)

8. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

9. Xilinx Real-Time Video Engine Targeted Reference Design

10. Xilinx Video and Image Processing Pack

Send Feedback

Discontinued IP

http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf
http://www.xilinx.com
http://www.xilinx.com/esp/video/refdes_listing.htm#ref_des
http://www.xilinx.com/support/documentation/ip_documentation/ug1037-vivado-axi-reference.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support/documentation/sw_manuals/v=latest/ug908-vivado-programming-debugging.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/support/documentation/sw_manuals/v=latest/ug896-vivado-ip.pdf
http://www.xilinx.com/support/documentation/sw_manuals_j/v=latest/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/v=latest/ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/support/documentation/sw_manuals/v=latest/ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/applications/broadcast/brtve-tdp/index.htm
http://www.xilinx.com/products/intellectual-property/EF-DI-VID-IMG-IP-PACK.htm
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=86

Video Deinterlacer v4.0 www.xilinx.com 87
PG017 October 1, 2014

Appendix D: Additional Resources and Legal Notices

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
© Copyright 2011-2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

Date Version Revision
10/01/2014 4.0 Removed Application Software Development appendix.

04/02/2014 4.0 Updated AXI-S signals.

10/02/2013 4.0 Synch document version with core version. Updated Register Space
information to synch up with the core.

03/20/2013 3.0 Updated for core version. Removed ISE chapters. Updated Debugging
appendix. Updated Example Design chapter.

10/16/2012 3.0 Updated for core version. Added Vivado section. Removed GPP.

04/24/2012 2.0 Updated for core version.

10/19/2011 1.0 Initial Xilinx release of the IP core.

Send Feedback

Discontinued IP

http://www.xilinx.com
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG017&Title=Video%20Deinterlacer%20v4.0&releaseVersion=4.0&docPage=87

	Video Deinterlacer v4.0
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Feature Summary
	Licensing and Ordering Information

	Ch. 2: Product Specification
	Standards
	Performance
	Deinterlacing Quality Configurations
	Latency
	Throughput

	Resource Utilization
	Core Interfaces
	Port Descriptions
	Core Interfaces
	Common I/O Signals

	Data Interface
	AXI4-Stream Signal Name and Description
	Video Data

	READY/VALID Handshake
	Guidelines on Driving TVALID into Slave (Data Input) Interfaces.
	Guidelines on Driving TREADY into Master (Data Output) Interfaces
	Start of Frame Signals - m_axis_video_tuser, s_axis_video_tuser
	End of Line Signals - m_axis_video_tlast, s_axis_video_tlast
	Register Space
	Control (0x0000) Register
	Mode (0x0004) Register
	Interrupt Control (0x0008) Register
	Interrupt Status (0x000C) Register
	Height (0x0010) Register
	Width (0x0014) Register
	Threshold T1 (0x0018) Register
	Threshold T2 (0x001C) Register
	Cross Fade Scale (0x0020) Register
	Buffer 0 (0x0024) Register
	Buffer 1 (0x0028) Register
	Buffer 2 (0x002C) Register
	Buffer Size (0x0030) Register
	Version ID (0x00F0) Register
	Soft Reset (0x0100) Register

	Ch. 3: Designing with the Core
	Architecture
	Deinterlacing
	T1 and T2
	Cross Fade Ratio
	Initial State
	Memory Controller
	Memory Size

	I/O Interface and Timing
	AXI4-Lite Interface
	Dynamic Reconfiguration
	Interrupts

	AXI4-Lite Timing
	Control Interface
	Control Values

	Memory Interface
	AXI4 Memory and Interface
	Write Stream
	Read Stream
	Clocking

	Video Interface

	Clocking
	Resets
	Protocol Description

	Ch. 4: Design Flow Steps
	Customizing and Generating the Core
	Vivado Integrated Design Environment
	Interface
	Output Generation

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Simulation
	Synthesis and Implementation

	Ch. 5: C-Model Reference
	Features
	Overview
	Unpacking and Model Contents

	Installation
	Software Requirements
	Using the C Model
	Deinterlacer Generics Structure
	Deinterlacer Inputs Structure
	Deinterlacer Config Structure
	Pull-down Structure
	Deinterlacer Outputs Structure
	Deinterlacer Video Structure
	Working With video_struct Containers
	Delete the Video Structure

	C Model Example Code
	Command Line Options in Detail
	Initializing the Deinterlacer Input Video Structure
	Bitmap Image Files
	YUV Image/Video Files
	Binary Image/Video Files

	Compiling on 32-bit and 64-bit Windows Platforms
	Compiling under 32-bit and 64-bit Linux Platforms
	Example Demonstration
	Configurable Demonstration

	Running the Executables
	Example Demonstration
	Configurable Demonstration

	Ch. 6: Detailed Example Design
	Case 1: SD480i to SD480p
	Case 2: HD1080i to HD1080p

	Ch. 7: Test Bench
	Demonstration Test Bench
	Directory and File Contents
	Test Bench Structure

	Appx. A: Verification, Compliance, and Interoperability
	Simulation
	Hardware Testing

	Appx. B: Migrating
	Migrating to the Vivado Design Suite
	Upgrading in the Vivado Design Suite
	Parameter Changes
	Port Changes
	Other Changes

	Appx. C: Debugging
	Finding Help on Xilinx.com
	Documentation
	Solution Centers
	Answer Records
	Contacting Technical Support

	Debug Tools
	Vivado Lab Tools
	Reference Boards
	C-Model Reference
	Third-Party Tools
	License Checkers

	Simulation Debug
	Hardware Debug
	General Checks
	Evaluation Core Timeout

	Interface Debug
	AXI4-Lite Interfaces
	AXI4-Stream Interfaces

	Debugging the Video Deinterlacer Core
	Step 1: Video Pass Through Bring Up
	Step 2: Basic Deinterlacing
	Step 3: Full Deinterlacing Using Memory Controller
	Step 4: Check the Algorithms for Incorrect Video Output
	Step 5: Pull-down Testing and Pitfalls

	Debugging for Bandwidth Issues

	Appx. D: Additional Resources and Legal Notices
	Xilinx Resources
	References
	Revision History
	Please Read: Important Legal Notices

