
DS862 October 19, 2011 www.xilinx.com 1
Product Specification

© Copyright 2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in
the United States and other countries. ARM is a registered trademark of ARM in the EU and other countries. The AMBA trademark is a registered trademark of ARM
Limited. Simulink is a registered trademark of The MathWorks, Inc. All other trademarks are the property of their respective owners.

Features
• High speed, compact Reed-Solomon Decoder

• Implements many different Reed-Solomon (RS)
coding standards

• Fully synchronous design using a single clock

• Supports continuous input data with no gap
between code blocks

• Symbol size from 3 to 12 bits

• Code block length variable up to 4095 symbols

• Code block length and number of check symbols
can be dynamically varied on a block-by-block
basis

• Supports shortened codes

• Supports error and erasure decoding

• Supports puncturing (as in IEEE 802.16d standard)

• Supports multiple channels

• Parameterizable number of errors corrected

• Supports any primitive field polynomial for a
given symbol size

• Counts number of errors corrected and flags
failures

• Marker bits provided with same latency as input
data

• User-selectable control signal behavior

• Use with Xilinx CORE Generator™ software and
Xilinx System Generator for DSP v13.3

• Available under terms of the SignOnce IP Site
License

LogiCORE IP
Reed-Solomon Decoder v8.0

DS862 October 19, 2011 Product Specification

LogiCORE IP Facts Table

Core Specifics

Supported
Device Family(1)

Zynq™-7000, Artix™-7, Virtex-7, Kintex™-7,
Virtex-6, Spartan®-6

Supported User
Interfaces AXI4-Stream

Resources(2) Frequency

Configuration LUTs FFs DSP
Slices

Block
RAMs(3)

Max.
Freq.(4)

DVB 807 809 0 2/0 395

G.709 779 811 0 2/0 410

CCSDS 1332 1346 0 3/0 374

Provided with Core

Documentation Product Specification

Design Files Netlist

Example Design Not Provided

Test Bench VHDL

Constraints File Not Applicable

Simulation
Model VHDL and Verilog

Tested Design Tools

Design Entry
Tools

CORE Generator tool 13.3
System Generator for DSP 13.3

Simulation(5)

Mentor Graphics ModelSim
Cadence Incisive Enterprise Simulator (IES)

Synopsys VCS and VCS MX
ISim

Synthesis Tools XST 13.3

Support

Provided by Xilinx, Inc.

1. For a complete listing of supported devices, see the release notes for this
core.

2. Resources listed here are for Virtex-7 (-3) devices. For more complete
device performance numbers, see Table 8.

3. Based on 18K/36K block RAMs.
4. Performance numbers listed are for Virtex-7 (-3) FPGAs. For more

complete performance data, see Performance Characteristics, page 30.
5. For the supported version of the tools, see the ISE Design Suite 13:

Release Notes Guide

http://www.xilinx.com
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
http://www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/irn.pdf
www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/irn.pdf

DS862 October 19, 2011 www.xilinx.com 2
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

Applications
The Reed-Solomon decoder (with the Reed-Solomon algorithm) is used for Forward Error Correction (FEC) in sys-
tems where data are transmitted and subject to errors before reception, for example, communications systems, disk
drives, and so on.

The core meets the requirements of most standards that employ RS codes, such as CCSDS, DVB, ETSI-BRAN,
IEEE802.16, G.709, IESS-308.

Functional Description
Reed-Solomon codes are usually referred to as (n,k) codes, where n is the total number of symbols in a code block
and k is the number of information or data symbols. In a systematic code, the complete code block is formed from
the k data symbols, followed by the n-k check symbols.

A Reed-Solomon code is also characterized by two polynomials: the field polynomial and the generator polyno-
mial. The field polynomial defines the Galois field, of which the symbols are members. The generator polynomial
defines how the check symbols are generated. Both of these polynomials are usually defined in the specification for
any particular Reed-Solomon code. The core GUI allows both of these polynomials to be user-defined.

The Reed-Solomon decoder samples the n symbols on the S_AXIS_INPUT channel and attempts to correct any
errors. The corrected symbols are output on the M_AXIS_OUTPUT channel.

The maximum number of symbol errors in a block that can be guaranteed to be corrected by the Reed-Solomon
algorithm is t = (n-k)/2. (Each symbol error can contain any number of bit errors). This is always rounded down to
the nearest whole number. The decoder core implements the Reed-Solomon algorithm in full, but if a block is
received with more than t errors the decoder will fail.

The Reed-Solomon decoder algorithm can generally detect that an excess of errors has occurred and can therefore
indicate a failure to decode a block. However, it is possible for excessive errors to produce a codeword that the
decoder algorithm recognizes as a legitimate lower number of errors, in which case the failure is not detected. This
is a function of the Reed-Solomon algorithm and not a limitation of the core.

Shortened Codes

Normally, n = 2(Symbol Width)-1. If n is less than this, the code is referred to as a “shortened code.” The decoder core
handles both full-length and shortened codes. Only n symbols are input and output, where n is the value entered in
the CORE Generator GUI or supplied on the S_AXIS_CTRL channel. This is the case even if the code is shortened.
Shortening does not affect k or the number of check symbols or the number of errors that can be corrected.

Interface Description

Pinout

Some of the pins are optional. The outputs that are not required should be left unconnected. The Xilinx mapping
software removes the logic driving them, ensuring that FPGA resources are not wasted.

A representative symbol, with the signal names, is shown in Figure 1 and described in Table 1. The AXI slave
channel is indicated by s_* and the AXI master channel by m_*.

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 3
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

X-Ref Target - Figure 1

Figure 1: Core Schematic Symbol

Table 1: Core Signal Pinout

Signal Direction Optional Description

aclk INPUT No Rising edge clock

aclken INPUT Yes Active high clock enable

aresetn INPUT Yes Active low synchronous clear (overrides aclken)

s_axis_input_tvalid INPUT No TVALID for S_AXIS_INPUT channel. See AXI4-Stream Protocol for protocol.

s_axis_input_tready OUTPUT No TREADY for S_AXIS_INPUT

s_axis_input_tdata INPUT No Input data and erase flag, if applicable

s_axis_input_tuser INPUT Yes User bits, passed through core unmodified, with same latency as
s_axis_input_tdata

s_axis_input_tlast INPUT No Marks last symbol of input block. Only used to generate event outputs. Can
be tied low or high if event outputs not used.

s_axis_ctrl_tvalid INPUT Yes TVALID for S_AXIS_CTRL channel. This channel is only present if core has
variable block length, number of check symbols or variable puncturing

s_axis_ctrl_tready OUTPUT Yes TREADY for s_axis_ctrl_channel

s_axis_ctrl_tdata INPUT Yes Block length, number of check symbols and puncture select, if applicable

m_axis_output_tvalid OUTPUT No TVALID for M_AXIS_OUTPUT channel

m_axis_output_tready INPUT No TREADY for M_AXIS_OUTPUT channel. Tie high if downstream slave is
always able to accept data from M_AXIS_OUTPUT

m_axis_output_tdata OUTPUT No Corrected data output

m_axis_output_tuser OUTPUT Yes s_axis_input_tuser delayed by core latency

s_axis_input_tdata

s_axis_input_tvalid

s_axis_input_tlast

aresetn

aclk

aclken

s_axis_input_tuser

s_axis_input_tready

s_axis_ctrl_tdata

s_axis_ctrl_tvalid

s_axis_ctrl_tready

m_axis_output_tdata

m_axis_output_tvalid

m_axis_output_tlast

m_axis_output_tuser

m_axis_output_tready

m_axis_stat_tdata

m_axis_stat_tvalid

m_axis_stat_tlast

event_s_input_tlast_missing

event_s_input_tlast_unexpected

event_s_ctrl_tdata_invalid

m_axis_stat_tready

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 4
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

AXI4-Stream Protocol

The use of AXI4-Stream interfaces brings standardization and enhances interoperability of Xilinx IP LogiCORE™
solutions. Other than general control signals such as aclk, aclken and aresetn, and event outputs, all inputs
and outputs to the core are conveyed via AXI4-Stream channels. A channel consists of TVALID and TDATA always,
plus several optional ports and fields. In the RS Decoder core, the additional ports used are TREADY, TLAST and
TUSER. Together, TVALID and TREADY perform a handshake to transfer a value, where the payload is TDATA,
TUSER and TLAST. The payload is indeterminate when TVALID is deasserted.

The RS Decoder core operates on the values contained in the S_AXIS_INPUT channel TDATA fields and outputs the
results in the TDATA fields of the M_AXIS_OUTPUT channel. The RS Decoder core does not use inputs TUSER and
TLAST as such, but the core provides the facility to convey TUSER with the same latency as TDATA. This facility of
passing TUSER from input to output is intended to ease use of the core in a system. TLAST is provided purely as a
check that the core is in sync with the system and its use is optional.

For further details on AXI4-Stream Interfaces see [Ref 1] and [Ref 2].

Basic Handshake

Figure 2 shows the transfer of data in an AXI4-Stream channel. TVALID is driven by the source (master) side of the
channel and TREADY is driven by the receiver (slave). TVALID indicates that the value in the payload fields
(TDATA, TUSER and TLAST) is valid. TREADY indicates that the slave is ready to receive data. When both TVALID
and TREADY are true in a cycle, a transfer occurs. The master and slave set TVALID and TREADY respectively for
the next transfer appropriately.

m_axis_output_tlast OUTPUT No High when last symbol of last channel is on m_axis_output_tdata

m_axis_stat_tvalid OUTPUT No TVALID for M_AXIS_STAT channel

m_axis_stat_tready INPUT No TREADY for M_AXIS_STAT channel. Tie high if downstream slave is always
able to accept data from M_AXIS_STAT, or if stat channel is not used

m_axis_stat_tdata OUTPUT No Status information for the last block processed

m_axis_stat_tlast OUTPUT Yes High when status information for the last channel is on m_axis_output_tdata.
This output is only present in multichannel mode.

event_s_input_tlast_mi
ssing

OUTPUT No Flags that s_axis_input_tlast was not asserted when expected. Leave
unconnected if not required.

event_s_input_tlast_un
expected

OUTPUT No Flags that s_axis_input_tlast was asserted when not expected. Leave
unconnected if not required.

event_s_ctrl_tdata_inv
alid

OUTPUT No Flags that values provided on s_axis_ctrl_tdata were illegal. Core must be
reset if this is asserted. Leave unconnected if not required.

Table 1: Core Signal Pinout (Cont’d)

Signal Direction Optional Description

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 5
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

The full flow control of AXI4-Stream aids system design because the flow of data is self-regulating. Data loss is
prevented by the presence of back pressure (TREADY), so that data is only propagated when the downstream
datapath is ready to process it.

The core has two input channels: S_AXIS_INPUT and S_AXIS_CTRL. If any of the block parameters, such as block
length, have been selected to be run time configurable then a block cannot be processed until the control values for
that block have been loaded on S_AXIS_CTRL. A new control value must be loaded for every new block or the core
will stall the S_AXIS_INPUT channel by deasserting s_axis_input_tready. Some data can be input without a
control value until the input FIFO fills. It is recommended to write control values before the data is supplied. To
guarantee that the input channel is not stalled due to lack of control information, the control value should be written
no later than one clock cycle before the first data symbol is sampled. Control values are stored in a FIFO inside the
core and used when a new input block is started. Up to 16 control values can be stored before any input data is
provided. After the control FIFO fills, s_axis_ctrl_tready is deasserted.

The core has two output channels: M_AXIS_OUTPUT and M_AXIS_STAT. If the output is prevented from
off-loading data because m_axis_output_tready is low then data accumulates in the core. When the core’s
internal buffers are full the core stops further operations. This prevents the input buffers from off-loading data for
new operations so the input buffers fill as new data is input. When the input buffers fill, their respective TREADYs
(s_axis_input_tready and s_axis_ctrl_tready) are de-asserted to prevent further input. This is the
normal action of back pressure. One status value is output on M_AXIS_STAT for each block output on
M_AXIS_OUTPUT. In multichannel mode a separate status value is output for each channel, with
m_axis_stat_tlast indicating the last channel. If m_axis_stat_tready is low and this status information
is not read then the status information is buffered inside the core. When this buffer fills and the core needs to output
more status information, the input channel is eventually blocked and s_axis_input_tready is deasserted. To
prevent the output channel stalling, it is recommended to read the status information for a block before the status
information for the next block is output.

aclken

The clock enable input (aclken) is an optional pin. When aclken is deasserted (low), all the other synchronous
inputs are ignored, except aresetn, and the core remains in its current state. This pin should be used only if it is
genuinely required because it has a high fan out within the core and can result in lower performance.

aclken is a true clock enable and causes the entire core to freeze state when it is low.

An example of aclken operation is shown in Figure 3. In this case, the decoder ignores symbol D4 as input to the
block, and the current m_axis_output_tdata value remains unchanged. (The decoder still samples n symbols.)

X-Ref Target - Figure 2

Figure 2: Data Transfer in an AXI-Stream Channel

ACLK

TVALID

TREADY

TDATA

TLAST

TUSER

D1 D2 D3 D4

L1 L2 L3 L4

U1 U2 U3 U4

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 6
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

As D4 is not included in the code block, the output sequence ...D0,D1,D2,D3,D5... appears on
m_axis_output_tdata during the output stage of this block.

aresetn

The synchronous reset (aresetn) input is an optional pin. It can be used to re-initialize the decoder at any time,
regardless of the state of aclken. aresetn needs to be asserted low for at least two clock cycles to initialize the cir-
cuit. The decoder becomes ready for normal operation two cycles after aresetn goes high. This pin should be
selected with caution, as it increases the size of the core and can reduce performance.

The timing for the aresetn input is illustrated in Figure 4. Note that some outputs are not reset by aresetn.

X-Ref Target - Figure 3

Figure 3: Clock Enable Timing

X-Ref Target - Figure 4

Figure 4: Synchronous Reset Timing

aclk

aclken

s_axis_input_tvalid

s_axis_input_tdata

m_axis_output_tdata

D0 D1 D2 D3 D4 D5 D6

aclk

aclken

aresetn

s_axis_input_tready

s_axis_ctrl_tready

m_axis_output_tdata

m_axis_output_tuser

m_axis_output_tvalid

m_axis_output_tlast

m_axis_stat_tdata

m_axis_stat_tvalid

m_axis_stat_tlast

event_s_input_tlast_missing

event_s_input_tlast_unexpected

event_s_ctrl_tdata_invalid

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 7
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

S_AXIS_INPUT Channel

s_axis_input_tdata

Data to be processed is passed into the core on this port. The port is composed of a number of subfields, depending
on parameter settings. To ease interoperability with byte-oriented buses, each subfield within TDATA is padded
with zeros, if necessary, to fit a bit field which is a multiple of 8 bits. The padding bits are ignored by the core and
do not result in additional resource use. The structure is shown in Figure 5.

DATA_IN Field

This is the input bus for the incoming Reed-Solomon coded data. The width of the DATA_IN portion of the field is
set by the Symbol Width parameter in the GUI.

ERASE Field

This field is only present when erasure support is required. It only contains a single bit of information: the ERASE
input. Erasure handling is described later in this document.

s_axis_input_tuser

This optional input is used to pass information through the core with exactly the same latency as
s_axis_input_tdata. This could be used to tag each symbol sampled on DATA_IN with marker bits, for
example. The number of TUSER bits is parameterizable and set by the Number of Marker Bits parameter in the
GUI. The TUSER bits are delayed with the same latency as DATA_IN to DATA_OUT and output on
m_axis_output_tuser. For example, if “5” is sampled on s_axis_input_tuser at the same time as the first
symbol on s_axis_input_tdata, then “5” is output on m_axis_output_tuser at the same time the first
symbol is output on m_axis_output_tdata.

This feature can be used to mark special symbols within a frame or to tag data from different blocks with block
identification numbers.

In general, using a small number of marker bits makes very little difference to the core size. However, a point is
reached where extra marker bits cause more memory to be used. This point is dependent on the symbol width and
latency.

s_axis_input_tlast

This input can be tied low or high if the event outputs (event_s_input_tlast_missing and
event_s_input_tlast_unexpected) are not used. It is present purely to provide a check that the system and
core are in sync with block sizes. If the event outputs are used then s_axis_input_tlast must be asserted high
when the last symbol of a block is sampled on s_axis_input_tdata. In the multichannel case it must be asserted
when the last symbol of the last channel of the block is sampled on s_axis_input_tdata. The core maintains its
own internal count of the symbols, so it knows when the last symbol is being sampled. If s_axis_input_tlast
is not sampled high when the last input symbol is sampled then event_s_input_tlast_missing is asserted
until the next input sample is taken. Similarly, if s_axis_input_tlast is sampled high when the core is not
expecting it, event_s_input_tlast_unexpected is asserted until the next input sample is taken. If either of
these events occurs then the system and the core are out of sync and the core, and possibly the system, should be
reset.

X-Ref Target - Figure 5

Figure 5: Input Channel TDATA Structure

DATA_INERASEPAD PAD

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 8
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

S_AXIS_CTRL Channel

s_axis_ctrl_tdata

If the S_AXIS_CTRL channel is present, control data for each block is passed into the core on this port. The port is
composed of a number of subfields, depending on parameter settings. Each subfield is padded to make it a multiple
of 8 bits. The padding bits are ignored by the core and do not result in additional resource use. The structure is
shown in Figure 6. Care should be taken to ensure only valid combinations of N_IN and R_IN are provided, as the
core might need to be reset if invalid values are written.

N_IN Field

This field is only present if “Variable Block Length” is selected in the GUI. This allows the block length to be
changed every block. Selecting this input significantly increases the size of the core. Unless there is an R_IN field,
the number of check symbols is fixed, so varying n automatically varies k.

For example, if N_IN is set to 255 and R_IN is set to 16 in the control word C1 in Figure 8, the next input block
(starting D1) is treated as a (n=255, k=239) codeword. If C2 has N_IN equal to 64 and R_IN is equal to 8, then the next
input block (starting DN) is treated as a (n=64, k=56) codeword. For this example, n should be set to 255 and k to 239
in the GUI, as the largest expected R_IN value is 16. This would give an R_IN field width of 5 bits (plus 3 padding
bits).

R_IN Field

This field is only present if “Variable Number of Check Symbols” is selected in the GUI. It allows the number of
check symbols to be changed every block.

The width of the R_IN field is the minimum number of bits required to represent the maximum n value minus the
minimum k value, padded with unused inputs to round up to the nearest multiple of 8.

The value input on R_IN must correspond to the generator polynomial (and, hence, number of check symbols) used
to encode the codeword. Some specifications appear to vary the number of check symbols, but in reality the
codewords are all generated by the same generator polynomial, and the number of check symbols is varied by
deleting some of them. The R_IN field should not be used in these cases. The PUNC_SEL field is provided to handle
this.

PUNC_SEL Field

This field is only present if the number of puncture patterns is greater than one. It selects a puncture pattern to be
applied to the code block. Puncturing is explained in Puncturing, page 19.

M_AXIS_OUTPUT Channel

m_axis_output_tdata

Raw data with errors sampled on s_axis_input_tdata is corrected and output from the core on this port. The
port is composed of a number of subfields, depending on parameter settings. All output fields are padded with
zeroes to fit a bit field which is a multiple of 8 bits. The structure is shown in Figure 7.

X-Ref Target - Figure 6

Figure 6: Control ChannelTDATA Structure

N_INR_INPAD PADPUNC_SELPAD

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 9
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

DATA_OUT Field

This is the output field for the corrected symbols. This field always has the same width as DATA_IN.

Corrected symbols start to appear at a number of clock cycles after the first symbol is sampled on DATA_IN. This
delay is termed the latency of the decoder and is explained in Latency, page 19. Latency can vary if the block size is
dynamically varied with the N_IN field or if the output is stalled by deassertion of a TREADY input.

DATA_DEL Field

This optional output field is an uncorrected version of DATA_OUT. It is DATA_IN delayed by the latency of the
core. DATA_DEL is useful for making comparisons of corrected and uncorrected data. This field always has the
same width as DATA_IN.

This field can be compared to DATA_OUT to gather error statistics and examine the position of error bits. The
positions of individual bit errors can be obtained by XORing DATA_OUT and DATA_DEL.

INFO Field

This optional output field contains a single information bit, INFO, which is high when data symbols are on
DATA_OUT and low when check symbols are on DATA_OUT (that is, the last n-k symbols of the block).

m_axis_output_tuser

This optional output is s_axis_input_tuser delayed by the same latency as s_axis_input_tdata to
m_axis_output_tdata. The width is the same as s_axis_input_tuser.

m_axis_output_tlast

This output is high when the last symbol of a block is on m_axis_output_tdata. This is either the kth symbol (if
the “Output Check Symbols” option is not selected in the GUI) or the nth symbol (if the “Output Check Symbols”
option is selected in the GUI) of the code word block. In the multichannel case, m_axis_output_tlast is only
asserted high when the last symbol of the last channel is present on m_axis_output_tdata.

X-Ref Target - Figure 7

Figure 7: Output Channel TDATA Structure

DATA_OUTINFOPAD PADDATA_DELPAD

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 10
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

M_AXIS_STAT Channel

m_axis_stat_tdata

Status information for the block just output is provided on this port. One status word is provided for each output
block, one word for each channel in multichannel case. The status word is output after the last symbol has been
processed inside the core. The status word(s) must be read before the core needs to write more status information to
its internal buffer or the input channel is eventually blocked. If the status channel is not required then
m_axis_stat_tready should be tied high.

The port is composed of a number of elements, depending on parameter settings. The port is padded with zeroes to
be a multiple of 8 bits. The elements are always packed into the least significant bits. For example, if erasures are not
required there is no ERASE_CNT element and BIT_ERR_0_TO_1 abuts ERR_CNT, assuming “Error Statistics” is
selected in the GUI. The structure is shown in Figure 9.

FAIL Element

The decoder sets FAIL high if it determines that there were more errors in the code block than it could correct. In
this case, ERR_FOUND, ERR_CNT, ERASE_CNT, BIT_ERR_0_TO_1 and BIT_ERR_1_TO_0 status outputs are now
undefined and should not be relied upon until FAIL goes low again.

With Reed-Solomon codes, if the error correcting capacity of the code is exceeded, it is usually possible to detect this
and assert FAIL. However, there might be some cases where it is impossible. For example, consider a (5,1) code. This

X-Ref Target - Figure 8

Figure 8: Block Input to Output Timing

X-Ref Target - Figure 9

Figure 9: Stat Channel TDATA Structure

aclk

s_axis_ctrl_tdata

s_axis_ctrl_tvalid

s_axis_ctrl_tready

s_axis_input_tdata

s_axis_input_tuser

s_axis_input_tvalid

s_axis_input_tlast

s_axis_input_tready

m_axis_output_tready

m_axis_output_tvalid

m_axis_output_tlast

m_axis_output_tdata

m_axis_output_tuser

m_axis_stat_tdata

m_axis_stat_tvalid

m_axis_stat_tready

C1 C2

D1 D2 D3 DN-2 DN-1 DN

U1 U2 U3 UN-2 UN-1 UN

D1 D2 D3 DN-2 DN-1 DN

U1 U2 U3 UN-2 UN-1 UN

S1

Input code word Process code word Output code word

FAILBIT_ERR_0_TO_1PAD ERR_FOUNDERR_CNTERASE_CNTBIT_ERR_1_TO_0

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 11
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

code can correct up to two symbol errors. Any more than two symbol errors should result in a failure. Assume the
transmitted codeword symbol sequence was [a, b, c, d, e]. Also assume that [g, h, i, j, k] is another legitimate
codeword. Suppose the received codeword is [a, b, i, j, k]. This contains three symbol errors; however, this is the
same as [g, h, i, j, k] with two symbol errors.

The decoder corrects this to yield [g, h, i, j, k], and FAIL is not asserted. This is a function of the codes themselves
and not the decoder implementation. As the block sizes become larger, it is extremely unlikely that one codeword
will be converted into another, and FAIL generally detects that the correction capacity of the code has been
exceeded.

If the error correction capacity of the code is exceeded in a particular code block, then the values on DATA_OUT
when that block is output are undefined.

ERR_FOUND Element

If the decoder detected any errors, erasures, or punctures in the code block, ERR_FOUND is high. If no errors,
erasures, or punctures are found, ERR_FOUND is low.

ERR_CNT Element

The ERR_CNT element gives the number of errors, erasures, and punctures that were corrected. The width of the
element depends on the input parameters n and k. The width is equal to the number of binary bits required to
represent (n-k). If n-k = 16, for example, the ERR_CNT element is five bits wide.

If decoding fails, then FAIL is asserted and the ERR_CNT value cannot be relied upon.

ERASE_CNT Element

This element is only included when erasure or puncture support is required. The element width is equal to the
number of binary bits required to represent n. Erasure handling is described later in this document.

BIT_ERR_0_TO_1 Element

This element is only included when “Error Statistics” is selected in the GUI. It gives the number of bits that were
received as 1 but corrected to 0 in the block. As long as the error correction capability of the code has not been
exceeded, this is the same as the number of 0 bits that were corrupted to 1 during transmission. The element width
is the number of binary bits required to represent ((n-k) * Symbol_Width).

BIT_ERR_1_TO_0 Output

This element is included when BIT_ERR_0_TO_1 is included. It has the same functionality and width as
BIT_ERR_0_TO_1, except it counts the number of bits received as 0 but corrected to 1.

m_axis_stat_tlast

This output is only driven in the multichannel case. It is asserted high when m_axis_stat_tdata holds the
information for the last channel. This is illustrated in Figure 10.

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 12
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

event_s_input_tlast_missing

This output is asserted high if s_axis_input_tlast is not sampled high when the last symbol of a block is
sampled. It should be left unconnected if not required and the logic used to generate it is optimized away. This
output is only asserted until the next input sample starts to be processed inside the core, so care must be taken not
to miss a pulse on this output. This output can be used to interrupt the system and possibly instigate a reset
sequence.

event_s_input_tlast_unexpected

This output is asserted high if s_axis_input_tlast is sampled high when an input symbol that is not the last
symbol of a block is sampled. Its timing and operation are the same as event_s_input_tlast_missing.

event_s_ctrl_tdata_invalid

This output is asserted high if the core has an S_AXIS_CTRL channel and values are sampled on N_IN or R_IN that
are outside the absolute limits the core can handle. The limits are computed at core generation time, based on the
parameters selected. When asserted, this output remains asserted until the core is reset. The core must be reset if this
output is asserted, as invalid N_IN or R_IN values can cause the core to malfunction for subsequent blocks and not
recover. Control values should be within the limits defined in Table 3.

Erasure Decoding

An erased symbol is an input symbol that is known to be wrong. The symbol is flagged as being erased by asserting
the ERASE input high while the symbol is being sampled. In the example shown in Figure 11, D2 is flagged as an
erasure.

The decoder corrects the code block if 2e + E ≤ n-k, where e is the number of errors and E is the number of erasures.

X-Ref Target - Figure 10

Figure 10: TLAST Timing for 3 Channel Example

aclk

m_axis_output_tlast

m_axis_output_tdata

m_axis_output_tvalid

m_axis_output_tready

m_axis_stat_tlast

m_axis_stat_tdata

m_axis_stat_tvalid

m_axis_stat_tready

AN-1 BN-1 CN-1 AN BN CN

A B C

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 13
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

The ERASE_CNT output provides a count of the number of erasures that were flagged for the block just output. It
is updated at the same time as ERR_CNT and the other status outputs. If erasure decoding is selected, ERR_CNT
provides a count of the number of erasures plus errors that were corrected.

Erasure decoding increases the size of the core considerably. It should be selected only if it is essential as there is a
large area overhead compared to the same core without erasure support. See the example implementations toward the
end of this data sheet.

Parameters
The core GUI provides a number of preset parameter values for several common Reed-Solomon standards. It also
allows the user to define the following parameters.

Code Block Specification Parameters

Code Specification (including CCSDS)

The GUI aids creation of cores for a number of common Reed-Solomon specifications. Upon selecting a particular
specification, the GUI automatically selects the parameter values necessary to meet the specification.

When implementing the CCSDS specification, the core automatically implements the dual-basis conversions
defined in the CCSDS specification. This is illustrated in Figure 12. If the dual-basis conversions are not wanted,
select custom specification instead of CCSDS and enter all the code parameters manually. Short CCSDS codes are
also supported by selecting the appropriate values of n and k from the GUI. If IEEE 802.16d is selected, then the GUI
uses a predefined COE file to define the required puncture patterns. This file can be modified if required.

X-Ref Target - Figure 11

Figure 11: ERASE Timing

aclk

s_axis_input_tvalid

ERASE

DATA_IN D0 D1 D2 D3 D4

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 14
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

Symbol Width

This is the width of DATA_IN and DATA_OUT.

Field Polynomial

This is the Galois Field polynomial, used to generate the Galois Field for the code. Polynomials are entered as
decimal numbers. The bits of the binary equivalent correspond to the polynomial coefficients. For example,

285 = 100011101 => x8+x4+x3+x2+1

A value of zero causes the default polynomial for the given symbol width to be selected.

Scaling Factor (h)

This is the scaling factor for the generator polynomial root index. Normally h is 1.

To ensure correct operation, the value of h must be chosen so that the greatest common divisor of h and
2(Symbol_Width)-1 is 1, that is, h and 2(Symbol_Width)-1 must be relative primes.

X-Ref Target - Figure 12

Figure 12: CCSDS Decoder

Table 2: Default Polynomials

Symbol Width Default Polynomial Decimal Representation

3 x3+x+1 11

4 x4+x+1 19

5 x5+x2+1 37

6 x6+x+1 67

7 x7+x3+1 137

8 x8+x4+x3+x2+1 285

9 x9+x4+1 529

10 x10+x3+1 1033

11 x11+x2+1 2053

12 x12+x6+x4+x+1 4179

CCSDS Symbols

Dual-Basis to Normal

Conventional Decoder

Normal to Dual-Basis

CCSDS Symbols
DS252_11_061506

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 15
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

GeneratorStart

This is the Galois Field logarithm of the first root of the generator polynomial.

Normally, GeneratorStart is 0 or 1; however, the core accepts other values.

Variable Block Length

This is selected when the N_IN field is required in s_axis_ctrl_tdata.

Symbols Per Block (n)

This is the number of symbols in an entire code block. If this is a shortened code, n should be the shortened number.

Data Symbols (k)

This is the number of information or data symbols in a code block. If the core has an N_IN or R_IN input, then k is
used to specify the maximum number of check symbols supported. For example, if n=255 and k=239, then there can
be a maximum of 16 check symbols.

Variable Number of Check Symbols

This is selected when the R_IN field is required in s_axis_ctrl_tdata. Take care that this is actually required,
and variable check symbols are not to be implemented using puncture patterns.

Define Supported R_IN Values

If only a subset of the possible values that could be sampled on R_IN is actually required, then it is possible to
reduce the size of the core slightly. For example, for the Intelsat standard, the R_IN input is 5 bits wide but it only
requires r values of 14, 16, 18, and 20. The core size can be slightly reduced by defining only these four values to be
supported. If any other value is sampled on R_IN, the core does not decode the data correctly.

Number of Supported R_IN Values

If “Define Supported R_IN Values” has been selected, then the number of supported R_IN values must be entered.

Supported R_IN Definition File

This is a COE file that defines the R values to be supported. It has the following format:

radix=10;

legal_r_vector=14,16,18,20;

The number of elements in the legal_r_vector must equal the “Number of Supported R_IN Values” set in the GUI.

Implementation Parameters

Self-Recovering

Selecting this option causes extra logic to be generated in the core to detect if the controlling state machine has
entered an illegal state. This should never happen; however, in some systems illegal timing conditions can be
generated by switching clocks outside of the core, for example. If the core is not reset after a violation like this, then

g x() x αh GeneratorStart i+()×
–()

i 0=

n k– 1–

∏=

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 16
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

it might end up in an illegal state. If this is detected, then the core automatically synchronously resets itself.
Selecting this option means that all the logic to handle synchronous reset is included in the core.

Memory Style

The following options are available:

• Distributed – The core should not use any block memories if possible. This is useful if they are required
elsewhere in the design. For symbol widths of 8 and under, this option results in no block memories being
used. For symbol widths greater than 8, some block memories are used, but their use is kept to a minimum.

• Block – The core should use block memories wherever possible. This keeps the number of CLBs used to a
minimum, but might use block memory wastefully.

• Automatic – This option allows the core to use the most appropriate style of memory for each case, based on
required memory depth.

Number of Channels

This parameter defines how many channels the core should support. Multichannel operation is described in
Multiple Channels, page 24.

Output Check Symbols

If selected, then the entire n symbols of each block are output on the M_AXIS_OUTPUT channel. If not selected,
then only the k information symbols are output.

Puncture Options

Number of Puncture Patterns

This defines how many puncture patterns the core needs to handle. It is set to 0 if puncturing is not required, which
is explained in Puncturing, page 19. This parameter is not available if erasures are selected. The puncturing can be
handled externally by asserting the ERASE input in this case.

Puncture Definition File

This is the .coe file that defines the punctured symbol positions within a block for each PUNC_SEL value. This is
explained in Puncturing, page 19.

Optional Pins

Clock Enable

This is selected when the aclken input is required.

Synchronous Reset

This is selected when the aresetn input is required.

Erase

This is selected when erasure support is required. See the explanation in Erasure Decoding, page 12.

Info

This is selected when the INFO field is required in m_axis_output_tdata. This option is not available if “Output
Check Symbols” is de-selected, as it is redundant in that case.

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 17
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

Original Delayed Data

This is selected when the DATA_DEL field is required in m_axis_output_tdata.

Error Statistics

This is selected when the BIT_ERR_0_TO_1 and BIT_ERR_1_TO_0 elements are required in m_axis_stat_tdata.

Marker Bits

This is selected when s_axis_input_tuser and m_axis_output_tuser are required.

Number of Marker Bits

This sets the width of s_axis_input_tuser and m_axis_output_tuser.

Parameter Ranges

Valid ranges for the parameters are given in Table 3.

Table 3: Parameter Ranges

Parameter Min Max Notes

n 5 2(Symbol_Width)-1 [1]

k 1 2(Symbol_Width)-3 [2]

h 1 2(16)-1

Polynomial 0 2(13)-1

r=n-k 2 256 [3] [4]

Symbol Width 3 12

Gen Start 0 1023

Number of Puncture Patterns 0 128

Number of Channels 1 128

Number of Marker Bits 1 16 [5]

Notes:
1. The lower limit for the variable n decoder is Maximum(5, r+1).
2. Max=n-r
3. In reality, r is limited by the maximum size of the device available. If the core exceeds the device size because r is so large, and a

larger FPGA cannot be selected, the size of the core can be reduced by increasing the number of clock periods per symbol.
4. For CCSDS the minimum value of r is 3.
5. Only used if Marker Bits option is selected in the GUI.

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 18
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

Processing Delay
The core inputs a block, processes it and outputs the corrected block. The times to input and output the block are
dependent on the block length. The time to process the block is dependent on the number of check symbols, (n-k).
The Processing Delay (PD) in clock cycles, for a given t, is shown in Figure 13. The Processing Delay should not be
confused with latency. It is a component of the latency. Processing delay is important because it determines if blocks
can be indefinitely input without pause.

The core can still accept a new code block immediately after the previous one has been sampled, even if the
Processing Delay is greater than n, due to its internal buffering. However, if new blocks are continually fed to the
decoder with n less than PD, at some point it is unable to accept a new code block and s_axis_input_tready is
deasserted. If PD is less than or equal to n then blocks can be input continuously, without pause, providing the
output is not stalled by deasserting one of the output channel TREADY inputs. The timing is described in Variable
Block Length, page 21.

The number of clock cycles can be calculated using Equation 1:

Equation 1

If erasure decoding or puncturing is enabled, Equation 2 should be used:

Equation 2

X-Ref Target - Figure 13

Figure 13: Processing Delay against t, where t = (n-k)/2

DS252_12_061506

PD 2t
2

9t 3+ +=

PD n k–()2 6 n k–() 4+ +=

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 19
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

If PD <= n then the maximum throughput is equal to the clock frequency * symbol width Mb/s. If PD > n then
maximum throughput is approximately (n/PD) * clock frequency * symbol width Mb/s.

Latency
The latency is the number of clock edges from a symbol being sampled on DATA_IN to the corrected version of that
symbol appearing on DATA_OUT.

An example, with a latency of three, is shown in Figure 14. In reality, the latency is usually much greater than this.

The latency is dependent on the values of n (the number of symbols in a code block), t (the number of correctable
errors), whether erasures or puncturing are selected, symbol width, number of channels and code specification. The
GUI computes the actual latency based on the entered parameters and displays the value on the last page.

Puncturing
Puncturing can be thought of as erasure decoding where the erasure positions are known prior to the block being
received. For example, in the IEEE802.16d standard, the RS codeword always has 16 check symbols; however, some
of those symbols might not be transmitted. If only the first 12 check symbols are transmitted, the number of errors
that can be corrected is reduced from 8 to 6. The decoder still decodes as if there were 16 check symbols. The last 4
check symbols are sampled, but ignored. One way of handling this is to flag the last 4 symbols of the block as
erasures; however, the complexity of the full erasure decoding logic is not required. It is possible to define the
known erasure positions in a file when generating the core. The core then automatically compensates for the
deleted symbols. Erasure decoding must be unselected if puncturing is required. If both puncturing and erasure
decoding are required, then the puncturing must be handled externally by asserting the ERASE input at the
appropriate time.

As far as the core is concerned, the length of the block (n) still includes the punctured symbols. So for variable N
codes, the value sampled on N_IN must include the number of punctured symbols. For example, IEEE802.16d
specifies a (120,108,6) code, that is, n=120, k=108, and t=(n-k)/2=6. It would seem this code has only 12 check
symbols, but it is actually a 16 check symbol code with 4 punctured check symbols. Therefore, the real value of n is
124 and N_IN must be set to 124 to allow for the 4 dummy symbols that are sampled after the 120 real symbols.

The PUNC_SEL field can be used to select between a number of predefined puncture patterns. The number of
puncture patterns is set in the core GUI. If this is fewer than two, then PUNC_SEL is not required. If it is greater than
zero, then a puncture definition file must be supplied to define the puncture patterns. For example, the file for
IEEE802.16d is as follows:

X-Ref Target - Figure 14

Figure 14: Latency = 3

aclk

s_axis_input_tvalid

s_axis_input_tdata

m_axis_output_tvalid

m_axis_output_tdata

0 1 2 3 4 5

D0 D1 D2 D3 D4

D0 D1

Latency=3

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 20
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

radix=10;

puncture_select_vector=0,4,8,12;

puncture_vector= 0,1,2,3,

0,1,2,3,4,5,6,7,

0,1,2,3,4,5,6,7,8,9,10,11;

In this example, there are four possible puncture patterns. The number of symbols to be punctured from a block is
defined in the puncture_select_vector. The number of symbols punctured for each PUNC_SEL value in this
example is shown in Table 4.

The puncture_select_vector entries can be in the range 0 to n-k. This is because the maximum number of
punctured symbols that can be recovered is n-k.

The puncture_vector defines which symbols are punctured for each of the puncture_select_vector
entries. In the previous example, there are no entries for PUNC_SEL=0, as the puncture_select_vector has
defined 0 symbols to be punctured in this case. If PUNC_SEL=1, then the puncture_select_vector has defined
that four symbols are to be punctured. The first four entries of the puncture_vector define the symbol positions.
The entries count back from the last symbol in a block, with 0 being the last symbol. Thus if PUNC_SEL=1, symbols
0, 1, 2 and 3 are all punctured, that is, the last four symbols in the block. If PUNC_SEL=2, then the last eight symbols
in the block are punctured. If PUNC_SEL=3, then the last twelve symbols in the block are punctured.

The number of entries in the puncture_vector must equal the sum of the entries in the
puncture_select_vector.

Each puncture_vector entry must be less than n. If n is variable, then the selected puncture_vector entry for
a given block must be less than the value sampled on N_IN.

If the number of puncture patterns is not a power of two and an illegal PUNC_SEL value is sampled, then the
punctured pattern applied by the core is not defined. For example, if the number of puncture patterns was set to 3,
then only 0, 1, and 2 are legal values for PUNC_SEL. A value of 3 should never be sampled on PUNC_SEL.

Timing for the IEEE802.16 example is shown in Figure 15. PUNC_SEL is set to 1 using the control channel. The
puncture_select_vector defines this as four punctured symbols. The puncture_vector specifies that the
last four symbols of the block are to be punctured (symbols 0, 1, 2, and 3). The core still samples DATA_IN for the
four punctured symbols. Dummy symbols must be provided to the core in the puncture positions, as shown in
Figure 15. The value on DATA_IN is irrelevant at this time. DN-4 is the last real symbol received.

The decoder actually determines the values of the punctured symbols and outputs them in the correct sequence.
The ERASE_CNT element of S1 shows how many symbols were punctured. The ERROR_CNT element shows the
number of errors plus the number of punctures. So, if there were no errors in the block, ERROR_CNT would be 4
and ERASE_CNT would be 4 as well. The number of true errors is ERROR_CNT-ERASE_CNT.

Table 4: puncture_select_vector Example

PUNC_SEL Number of Symbols
Punctured

0 0

1 4

2 8

3 12

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 21
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

If puncturing is used, the latency and Processing Delay are derived from the same equation as if erasures were
enabled. See Processing Delay, page 18.

Variable Block Length
If the N_IN field of s_axis_ctrl_tdata is used, the block length can be different for every new block. N_IN can
vary within the ranges shown in Table 3, page 17. It must also be greater than the number of check symbols, r. The
number of check symbols can be fixed or variable, depending on whether “Variable Number of Check Symbols” is
selected in the GUI.

When variable block length is used the latency and Processing Delay for each individual block are the same as for
the fixed block core and can be checked in the core GUI. The values sampled on N_IN and R_IN can be used in the
equations to compute the Processing Delay for each block sampled. The Processing Delay depends only on the
number of check symbols.

A block might actually take longer to appear on DATA_OUT than the calculated latency, as an earlier, larger block
might still be being processed. Figure 16 shows an example where the Processing Delay is greater than the block
length. In this example block N2 is input while block N1 is still being processed. Block N2 cannot be processed until
processing has completed for block N1. It is buffered until the Processing Delay for N1 completes. N3 is also input
and buffered. The start of N4 is also input but the input FIFO fills at this point and s_axis_input_tready is
deasserted. When the processing of N1 has completed, processing of N2 begins and N3 is prepared for processing.
This preparation takes r cycles. When this is complete the rest of N4 can be loaded.

Note that if all the block lengths had been greater than or equal to the Processing Delay then
s_axis_input_tready would not have been deasserted.

X-Ref Target - Figure 15

Figure 15: Puncture Timing

aclk

PUNC_SEL

s_axis_ctrl_tvalid

s_axis_input_tdata

s_axis_input_tvalid

s_axis_input_tlast

s_axis_input_tready

m_axis_output_tready

m_axis_output_tvalid

m_axis_output_tlast

m_axis_output_tdata

m_axis_stat_tdata

m_axis_stat_tvalid

m_axis_stat_tready

1

D1 D2 DN-5 DN-4

D1 D2 DN-3 DN-2 DN-1 DN

S1

Punctured by transmitter

Input code word Output code word

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 22
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

is

The core always samples data and outputs results as soon as possible. If the Processing Delay is not greater than any
sampled block size there are never gaps between output blocks. However, it is possible for
s_axis_input_tready to go low, even if the Processing Delay is not greater than all the sampled block sizes.
This can happen if a large block is followed by many relatively small blocks: see Figure 17 for example. Because the
large block (N1) takes a long time to output, the small input blocks start to back up inside the core. Thus, the input
data might need to be temporarily held up, as in Figure 17, because a large block was followed by many small ones.
An additional FIFO could be placed in front of the core to smooth out these effects if necessary. The input symbols
to the FIFO would not need to have any gaps, and there would never be any gaps between output symbols from the
core.

Note that the overall latency for block N2 is larger than predicted by the latency equation. This is because it had to
wait for N1 to be output.

The processing section can also buffer results for up to two blocks. This is illustrated in the example in Figure 17. As
the processing for N2 (that is, PD2) completes, the core is still outputting N1, so it stores the PD2 results in a buffer.
These results are then used when outputting N2. PD3 completes before the PD2 results have been used, so the PD3
results are also buffered. The processing buffer can hold two blocks, so it is now full, and PD4 cannot begin until the
PD3 results have been unloaded. N5 can still be input as the core can hold just over two complete blocks of data (or
more if the blocks are extremely small) in its input stage. PD4 can begin when the N2 values begin to be output, as
this is when the PD2 values are unloaded from the processing buffer. PD4 then begins and completes while the core
is still outputting values from earlier blocks so its results are buffered until N3 has been output. PD 5 can begin
immediately after PD4, as the processing buffer can hold two blocks. The first few samples of block N6 can be
loaded into the core’s input stage but the input stage already contains N4 and N5, so the input FIFO soon fills up

X-Ref Target - Figure 16

Figure 16: Variable n – TREADY Operation

X-Ref Target - Figure 17

Figure 17: Processing Delay Buffer

N1 In N1 OutProcessing Delay

N3 In PD

s_axis_input_tready

N4 In

N2 In N2 OutProcessing Delay

N1 In N1 OutPD1

N2 In PD2

s_axis_input_tready

N6 In

N2

N3 In PD3 N3

N4 In PD4 N4

N5 In PD5 N5

PD6 N6

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 23
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

and s_axis_input_tready goes low. The input buffer frees up again as the N4 values are fed into the processing
section at the start of PD4 and the rest of N6 can be read in.

Note that there is no gap between the output blocks, even though there were gaps at the input side. This is because
the core always outputs results as soon as possible.

These figures are a slight simplification of what actually happens, but they serve to illustrate the core behavior. For
example, there are some small fixed latencies between the input section, the processing section, and the output
section.

Block Code Settings
The core decodes a systematic (n_block, k_block) block code, where the input block is n_block symbols long,
comprised from k_block data symbols followed by r_block check symbols. The block code settings n_block, k_block,
and r_block are optionally variable on a block-by-block basis. For multichannel configurations, all channels have the
same settings for n_block, k_block, and r_block. See Table 5.

n_block

The block code setting n_block specifies the total number of symbols in the current code block.

• When a variable block length is not required, n_block is set to the parameter n for every code block.

• When a variable block length is required, n_block is written on the S_AXIS_CTRL channel prior to each new
block.

Table 5: Block Code Settings – Value and Range

Block Code Settings Value (1)

Fixed Block Length, Fixed Number of Check Symbols

n_block n(2)

k_block k(2)

r_block (n-k)

Fixed Block Length. Variable Number of Check Symbols

n_block n

k_block n - R_IN

r_block R_IN

Variable Block Length, Fixed Number of Check Symbols

n_block N_IN

k_block N_IN - (n-k)

r_block (n-k)

Variable Block Length, Variable Number of Check Symbols

n_block N_IN

k_block (3) N_IN - R_IN

r_block R_IN

Notes:
1. The minimum and maximum values are defined in Table 3.
2. n and k are the values set in the GUI.
3. Set k in GUI so that (n-k) equals the largest value the core needs to handle on R_IN. For example, if n=255 and the largest legal

R_IN value is 20, then set k to 235.

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 24
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

k_block

The block code setting k_block specifies the number of data symbols in the current code block.

• When a variable block length is not required and a variable number of check symbols is not required, k_block is
set to the parameter k for every block.

• When a variable block length is not required and a variable number of check symbols is required, k_block is set
to the parameter n minus the value written on R_IN.

• When a variable block length is required and a variable number of check symbols is not required, k_block is set
to the value written on N_IN minus the parameter (n-k).

• When a variable number of check symbols is required, k_block is set to the value written on N_IN minus the
value written on R_IN.

r_block

The block code setting r_block specifies the number of check symbols in the current code block.

• When a variable number of check symbols is not required, r_block is set to parameter (n-k) for every block.

• When a variable number of check symbols is required, r_block is written on R_IN prior to each new block.

Multiple Channels
The core can process multiple input channels simultaneously with a relatively small increase in the number of LUTs
used. There is a larger increase in the number of registers used. A multichannel core generally runs at a higher clock
frequency than a single-channel core. Using one multichannel core in a high-speed application can be more efficient
than instantiating several single-channel RS decoder cores. Multichannel is available only for fixed n and r
decoders. All channels have the same code parameters.

When a new block is started for one channel, a new block is started for all the other channels as well. The code
settings (n, k, etc.) are the same for all channels. If puncturing is used, then a single PUNC_SEL value that applies to
all channels is written on S_AXIS_CTRL.

With multiple channels, there is still only one S_AXIS_INPUT channel. Incoming symbols for the channels are
interlaced, so that the core samples the first symbol of channel 1 on the first rising clock edge, then the first symbol
of channel 2 on the second rising clock edge, and so on, assuming s_axis_input_tvalid and
s_axis_input_tready are asserted. Symbols (both information and check) are output on
m_axis_output_tdata in the same sequence. An example with three channels is shown in Figure 18.

X-Ref Target - Figure 18

Figure 18: Multi-Channel Operation

aclk

s_axis_ctrl_tvalid

s_axis_ctrl_tdata

s_axis_input_tvalid

s_axis_input_tdata

m_axis_output_tdata

m_axis_output_tvalid

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C1

A1 B1 C1 A2 B2 C2

A1 B1 C1 A2 B2 C2

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 25
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

A single control value (C1) is written. This is only required if there is more than one puncture pattern and sets
PUNC_SEL for all three channels. A new block is started for all three channels when s_axis_input_tvalid is
asserted. A1, B1 and C1 are the first symbols of the new block for channels A, B and C. s_axis_input_tvalid
can be deasserted at any time. For example, no value is sampled at the start of clock cycle 8.

If erasures are enabled, then the ERASE field can be asserted at any time for each channel independently.

Symbols on m_axis_output_tdata are interlaced in the same way as symbols on s_axis_input_tdata.

The timing for the output of the end of the block and the status channel is shown in Figure 10, page 12.

The Processing Delay is the single-channel Processing Delay multiplied by the number of channels. This must be
less than or equal to n multiplied by the number of channels for continuous input of code blocks with no input
stalling.

The latency is multiplied by an amount roughly proportional to the number of channels. See the GUI for the exact
latency value for a given set of parameters.

Examples

Example 1:

Symbol Width = 8
Symbols per Block (n) = 255
Data Symbols (k) = 239

RS(255,239) is a configuration of 255 symbols, including 239 8-bit data symbols. This code is capable of correcting 8
symbol errors, that is, up to 64 bit errors. The Processing Delay is 203 cycles, which is less than 255, so this
configuration is capable of continuous processing and the throughput in Mb/s is 8 times the clock frequency
(MHz).

Example 2:

Symbol Width = 8
Symbols per Block (n) = 255
Data Symbols (k) = 229

RS(255,229) is a configuration of 255 symbols, including 229 8-bit data symbols. This has a greater error correcting
capability than Example 1, in that 13 symbols, or 104 bits of data, can be corrected. However, as the Processing
Delay is 458 cycles, and is therefore greater than 255, continuous processing cannot be done.

Maximum throughput is approximately (255/458) * 8 * clock frequency.

Example 3:

Symbol Width = 12
Symbols per Block (n) = 400
Data Symbols (k) = 376

The requirement is to be able to detect and correct a minimum of 3% of the symbols in a block of 12-bit data and
have continuous operation. As this is 12-bit data, the maximum number of symbols in the block is 4095, and to meet
the correction criteria the configuration would be RS(4095,3849). The Processing Delay (31369 symbol periods)
would be prohibitive due to the n-k value of 246.

The solution could be to use a shortened code. If RS(400,376) was used, this would correct 3% within the 400
symbols block. The Processing Delay is 399, so continuous code blocks are possible.

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 26
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

Example 4:

Symbol Width = 8
Symbols per Block (n) = 255
Data Symbols (k) = 239
Variable Block Length Checked
Variable Number of Check Symbols Checked

In this case there is a requirement to vary the number of symbols and the number of check symbols in the block. The
symbol width is 8 bits, so n must be set to 255, or less. The largest expected R_IN value is 16, so k must be set to
n-16=239. This gives an R_IN field width of 5 bits, plus 3 padding bits.

So N_IN can have a value up to 255 and R_IN can have a value up to 16. Lower limits are defined in Table 3.

Demonstration Test Bench
When the core is generated using CORE Generator, a demonstration test bench is created. This is a simple VHDL
test bench that exercises the core.

The demonstration test bench source code is one VHDL file: demo_tb/tb_<component_name>.vhd in the
CORE Generator output directory. The source code is comprehensively commented.

Using the Demonstration Test Bench

You must have access to a compiled XilinxCoreLib library: see [Ref 3] for information on how to compile
XilinxCoreLib.

The demonstration test bench instantiates the generated RS Decoder core. If the CORE Generator project options
were set to generate a structural model, a VHDL or Verilog netlist named <component_name>.vhd or
<component_name>.v was generated. If this file is not present, generate it using the netgen program, for
example:

netgen -sim -ofmt vhdl <component_name>.ngc <component_name>.vhd

Compile the netlist and the demonstration test bench into the work library, referencing the compiled XilinxCoreLib
library (see your simulator documentation for more information on how to do this). Then simulate the
demonstration test bench. View the test bench's signals in your simulator's waveform viewer to see the operations
of the test bench.

The Demonstration Test Bench in Detail

The demonstration test bench performs the following tasks:

• Instantiates the core

• Generates a source codeblock consisting of a sinusoid

• RS encodes the source codeblock to create input codeblocks for the RS Decoder core

• Generates a clock signal

• Drives the core's input signals to demonstrate core features

• Checks that the core's output signals obey AXI protocol rules

• Checks that the core’s output corrected data values match the source data values

• Provides signals showing the separate fields of AXI TDATA and TUSER signals

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 27
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

The demonstration test bench drives the core input signals to demonstrate the features and modes of operation of
the core. The operations performed by the demonstration test bench are appropriate for the configuration of the
generated core and are a subset of the following operations:

1. An initial phase where the core is initialized and no operations are performed.

2. Decode a codeblock containing no errors.

3. Decode and correct a codeblock containing the maximum number of errors the core can correct.

4. Try and fail to decode and correct a codeblock containing more errors than the core can correct.

5. Decode and correct a codeblock containing errors and erasures.

6. Use a different codeblock configuration, with fewer symbols, fewer check symbols, and a different puncture
pattern, as appropriate to the core: decode and correct a codeblock containing errors.

7. Decode and correct 20 codeblocks, streaming data continuously as fast as the core can process it.

8. Decode and correct 10 more codeblocks which demonstrating the AXI control signals’ use and effects.

9. If ACLKEN is present: Demonstrate the effect of toggling aclken.

10. If ARESETn is present: Demonstrate the effect of asserting aresetn.

Customizing the Demonstration Test Bench

It is possible to modify the demonstration test bench to use different codeblock data or different control
information.

Source data is pre-generated in the create_src_table function and stored in the SRC_DATA constant. Data from
this constant is RS encoded and driven into the core by the drive_input_codeblock procedure. The RS
encoding is performed by the rs_encode function from the XilinxCoreLib library: this function is obfuscated and
its source code is not available. It is recommended to use the drive_input_codeblock procedure to drive a
codeblock into the core.

For cores with an S_AXIS_CTRL control channel, control information is generated and driven into the core by the
ctrl_stimuli process. Ensure that control information is provided for each data codeblock to prevent the core
stalling.

The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.

System Generator for DSP Graphical User Interface
The Reed-Solomon Decoder core is available through Xilinx System Generator, a DSP design tool that enables the
use of The Mathworks model-based design environment Simulink® for FPGA design. The Reed-Solomon Decoder
core is one of the DSP building blocks provided in the Xilinx blockset for Simulink. The core can be found in the
Xilinx Blockset in the Communication section. The block is called “Reed-Solomon Decoder 8.0." See the System
Generator User Manual for more information.

The controls in the System Generator GUI work identically to those in the CORE Generator GUI, although the
layout has changed slightly. See Parameters, page 13, for detailed information about all other parameters.

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 28
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

Migrating to RS Decoder v8.0 from Earlier Versions

XCO Parameter Changes

The CORE Generator core update functionality can be used to update an existing XCO file from v7.1 to v8.0, but the
update mechanism alone does not create a core compatible with v7.1. See Instructions for Minimum Change
Migration. Table 6 shows the changes to XCO parameters from v7.1 to v8.0.

Table 6: XCO Parameter Changes from v7.1 to v8.0

Version v7.1 Version v8.0 Notes

component_name component_name Unchanged

code_specification code_specification Unchanged

symbol_width symbol_width Unchanged

field_polynomial field_polynomial Unchanged

scaling_factor scaling_factor Unchanged

generator_start generator_start Unchanged

variable_block_length variable_block_length Unchanged

symbols_per_block symbols_per_block Unchanged

data_symbols data_symbols Unchanged

variable_number_of_check_symbols variable_number_of_check_symbols Unchanged

define_supported_r_in_values define_supported_r_in_values Unchanged

number_of_supported_r_in_values number_of_supported_r_in_values Unchanged

supported_r_in_definition_file supported_r_in_definition_file Unchanged

self_recovering self_recovering Unchanged

memory_style memory_style Unchanged

number_of_channels number_of_channels Unchanged

output_check_symbols New parameter. v7.1 always output check
symbols. This is optional in v8.0.

number_of_puncture_patterns number_of_puncture_patterns Unchanged

puncture_definition_file puncture_definition_file Unchanged

clock_enable aclken Name change

synchronous_reset aresetn Name change. aresetn is active low.

erase erase Unchanged

info_end info Marked last info symbol in v7.1. Marks all info
symbols in v8.0.

original_delayed_data original_delayed_data Unchanged

error_statistics error_statistics Unchanged

marker_bits marker_bits Unchanged

number_of_marker_bits number_of_marker_bits Unchanged

clocks_per_symbol Feature removed in v8.0. Input timing now
controlled with s_axis_input_tvalid.

optimization v8.0 is always optimized for speed.

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 29
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

Port Changes

Latency Changes

The latency and timing of the v8.0 core is different to the v7.1 core. The update process cannot account for this.
Latency and timing of the v8.0 core are similar to the variable block length timing of the v7.1 core. The exact latency
and processing delay are reported in the GUI.

Instructions for Minimum Change Migration

To configure the v8.0 core to mimic the v7.1 core as closely as possible the translation is as follows:

Parameters
output_check_symbols (Implementation): set to true

If clocks_per_symbol was set to a value greater than one in the v7.1 core then the equivalent behavior can be
obtained with the v8.0 core by asserting s_axis_input_tvalid once every clocks_per_sym clock cycles.

Table 7: Port Changes from v7.1 to v8.0

Version v7.1 Version v8.0 Notes

CLK aclk Rename only

CE aclken Rename only

SR aresetn Rename and change on sense (now active low). Must now be asserted for at least
2 cycles.

SYNC v8.0 does not require a pulse at the start of each block. s_axis_input_tvalid is used
to detect this automatically.

DATA_IN Now exists as a field within s_axis_input_tdata

ERASE Now exists as a field within s_axis_input_tdata

MARK_IN s_axis_input_tuser

N_IN Now exists as a field within s_axis_ctrl_tdata

R_IN Now exists as a field within s_axis_ctrl_tdata

PUNC_SEL Now exists as a field within s_axis_ctrl_tdata

DATA_OUT Now exists as a field within m_axis_output_tdata

DATA_DEL Now exists as a field within m_axis_output_tdata

INFO_END Replaced with info field in m_axis_output_tdata

MARK_OUT m_axis_output_tuser

ERASE_CNT Now exists as an element within m_axis_stat_tdata

ERR_CNT Now exists as an element within m_axis_stat_tdata

ERR_FOUND Now exists as an element within m_axis_stat_tdata

FAIL Now exists as an element within m_axis_stat_tdata

BLK_STRT v8.0 provides m_axis_output_tvalid and m_axis_output_tlast for output timing
control

BLK_END m_axis_output_tlast

READY s_axis_input_tready

RFFD Control data can be written when s_axis_ctrl_tready is asserted in v8.0 core. Input
data stream can be sampled when s_axis_input_tready is asserted.

BIT_ERR_0_TO_1 Now exists as an element within m_axis_stat_tdata

BIT_ERR_1_TO_0 Now exists as an element within m_axis_stat_tdata

BIT_ERR_RDY m_axis_stat_tvalid

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 30
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

Ports

v7.1 ports should be mapped to the ports shown in Table 7.

Status information was output coincident with the BLK_END pulse in v7.1. In v8.0, the status information is made
available around the same time but is flagged with the m_axis_stat_tvalid output. Unlike v7.1, the status
information must be read, using m_axis_stat_tready, to avoid blocking the output interface.

Core Resource Utilization
The area of the core increases with n, n-k, and the symbol width. Some example configurations are shown in Table 8.
In this table, optional pins were not used, unless otherwise stated. Memory style was always set to automatic. The
option to map primary I/O registers into IOBs during placement should be selected if the core I/Os are to be
connected directly onto a PCB via the FPGA package pins. This gives lower output clock-to-out times and
predictable setup and hold times. In this case, it is especially important to register signals that might not be
registered inside the core, such as TVALID and TREADY inputs.

Performance Characteristics
It is important to set a maximum period constraint on the core clock input. The figures in Table 8 show clock speeds
that can be achieved when this is done. Apart from high map and par effort, default implementation tools options
were used. It might be possible to improve slightly on these values by trying different options for the place and
route software. Performance increases as n, n-k, and the symbol width decrease.

Table 8 provides resource and performance data for Virtex®-7 FPGAs. For other devices, generate a core and consult
a map report to determine device utilization.

Table 8: Example Decoder Implementations

ATSC DVB1 DVB2 CCSDS G.709
G.709
Two-

Channel

ETSI-
BRAN

IEEE-
802.16d

Generator Start 0 0 0 112 0 0 0 0

h 1 1 1 11 1 1 1 1

k 187 188 188 223 239 239 239 239

n 207 204 204 255 255 255 255 255

Polynomial 285 285 285 391 285 285 285 285

Symbol Width 8 8 8 8 8 8 8 8

Erasure
Decoding No No Yes No No No No No

Variable Block
Length No No No No No No Yes Yes

Number of
Channels 1 1 1 1 1 2 1 1

Puncture
Patterns 0 0 0 0 0 0 0 4

Processing
Delay[1] 293 203 356 659 203 406 203 356

Latency[1] 512 419 572 929 470 930 Variable Variable

Xilinx Part XC7V330T XC7V330T XC7V330T XC7V330T XC7V330T XC7V330T XC7V330T XC7V330T

LUT/FF Pairs 1024 846 1903 1563 890 1303 986 1402

LUTs[3] 966 807 1831 1372 765 894 861 1140

http://www.xilinx.com

DS862 October 19, 2011 www.xilinx.com 31
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

Evaluation
An evaluation license is available for this core. The evaluation version of the core operates in the same way as the
full version for several hours, dependent on clock frequency. Operation is then disabled and the data output does
not change. If you notice this behavior in hardware, it probably means you are using an evaluation version of the
core. The Xilinx tools warn that an evaluation license is being used during netlist implementation. If a full license is
installed for the core to run on hardware, delete the old XCO file and recreate the core from new.

References
1. Xilinx AXI Design Reference Guide (UG761)

2. AMBA 4 AXI4-Stream Protocol Version: 1.0 Specification

3. Synthesis and Simulation Design Guide (UG626)

Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE IP product when used as
described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if
implemented in devices that are not defined in the documentation, if customized beyond that allowed in the
product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for further information on this core. On the first page there is a link to “All
DSP IP.” The relevant core can then be selected from the displayed list.

For each core, there is a master Answer Record that contains the Release Notes and Known Issues list for the core
being used. The following information is listed for each version of the core:

• New Features

• Bug Fixes

• Known Issues

Ordering Information
This Xilinx LogiCORE IP product is provided under the terms of the SignOnce IP Site License.

FFs 941 809 1399 1346 811 1554 866 1178

Block RAMs
(36k) 0 0 0 0 0 1 0 1

Block RAMs
(18k) 2 2 2 3 2 1 3 2

Maximum Clock
Frequency[2] 304/406 292/395 284/396 266/374 294/410 318/413 297/409 277/388

Notes:
1. Measured in clock periods.
2. Maximum clock frequencies are shown in MHz for -1/-3 parts. Clock frequency does not take clock jitter into account and should

be derated by an amount appropriate to the clock source jitter specification. ISE speed file version used for both speed grades was
"ADVANCED 1.01c 2011-08-29."

3. LUT count includes route-thrus and might vary when the core is packed with other logic. Resource information is for -1 speed
grade.

Table 8: Example Decoder Implementations (Cont’d)

ATSC DVB1 DVB2 CCSDS G.709
G.709
Two-

Channel

ETSI-
BRAN

IEEE-
802.16d

http://www.xilinx.com
www.xilinx.com/ipcenter/ip_license/ip_licensing.htm
www.xilinx.com/ipcenter/doc/xilinx_click_core_site_license.pdf
www.xilinx.com/support/documentation/dt_ise13-3_userguides.htm
http://www.xilinx.com/support/mysupport.htm
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
www.xilinx.com/support/documentation/axi_ip_documentation.htm
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html

DS862 October 19, 2011 www.xilinx.com 32
Product Specification

LogiCORE IP Reed-Solomon Decoder v8.0

To evaluate this core in hardware, generate an evaluation license, which can be accessed from the Xilinx
IP Evaluation page.

After purchasing the core, you will receive instructions for registering and generating a full core license. The full
license can be requested and installed from the Xilinx IP Center for use with the Xilinx CORE Generator software
v13.3. The CORE Generator software is bundled with the ISE® Design Suite software v13.3 at no additional charge.

Contact your local Xilinx sales representative for pricing and availability on Xilinx LogiCORE products and
software.

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To
the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby
DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including
your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss
of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such
damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no
obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent.
Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at
http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to
you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:
http://www.xilinx.com/warranty.htm#critapps.

Date Version Description of Revisions

10/19/11 1.0 Initial Xilinx release for AXI version of core. Previous (non-AXI) version is DS252.

http://www.xilinx.com
www.xilinx.com/ipcenter/ipevaluation/index.htm
www.xilinx.com/ipcenter/
www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

	LogiCORE IP Reed-Solomon Decoder v8.0
	Features
	Applications
	Functional Description
	Shortened Codes

	Interface Description
	Pinout
	AXI4-Stream Protocol
	Basic Handshake

	aclken
	aresetn
	S_AXIS_INPUT Channel
	s_axis_input_tdata
	s_axis_input_tuser
	s_axis_input_tlast

	S_AXIS_CTRL Channel
	s_axis_ctrl_tdata

	M_AXIS_OUTPUT Channel
	m_axis_output_tdata
	m_axis_output_tuser
	m_axis_output_tlast

	M_AXIS_STAT Channel
	m_axis_stat_tdata
	m_axis_stat_tlast

	event_s_input_tlast_missing
	event_s_input_tlast_unexpected
	event_s_ctrl_tdata_invalid
	Erasure Decoding

	Parameters
	Code Block Specification Parameters
	Code Specification (including CCSDS)
	Symbol Width
	Field Polynomial
	Scaling Factor (h)
	GeneratorStart
	Variable Block Length
	Symbols Per Block (n)
	Data Symbols (k)
	Variable Number of Check Symbols
	Define Supported R_IN Values
	Number of Supported R_IN Values
	Supported R_IN Definition File

	Implementation Parameters
	Self-Recovering
	Memory Style
	Number of Channels
	Output Check Symbols

	Puncture Options
	Number of Puncture Patterns
	Puncture Definition File

	Optional Pins
	Clock Enable
	Synchronous Reset
	Erase
	Info
	Original Delayed Data
	Error Statistics
	Marker Bits
	Number of Marker Bits

	Parameter Ranges

	Processing Delay
	Latency
	Puncturing
	Variable Block Length
	Block Code Settings
	n_block
	k_block
	r_block

	Multiple Channels
	Examples
	Demonstration Test Bench
	Using the Demonstration Test Bench
	The Demonstration Test Bench in Detail
	Customizing the Demonstration Test Bench

	System Generator for DSP Graphical User Interface
	Migrating to RS Decoder v8.0 from Earlier Versions
	XCO Parameter Changes
	Port Changes
	Latency Changes
	Instructions for Minimum Change Migration
	Parameters
	Ports

	Core Resource Utilization
	Performance Characteristics
	Evaluation
	References
	Support
	Ordering Information
	Revision History
	Notice of Disclaimer

