LogiCORE IP Quad
Serial Gigabit Media
Independent v1.1

Product Guide

& XILINX.

Table of Contents

Chapter 1: Overview

System OVerview
Applications
Standards Compliance
Licensing
Performance
Resource Utilization.

Chapter 2: Core Interfaces and Management Register Space

CoreInterfaces..........
Management Register Space............ il

Chapter 3: Customizing and Generating the Core

Chapter 4: Designing with the Core

Design Guidelines
Clocking

Chapter 5: Constraining the Core

Device, Package, and Speed Grade Selections.
I/O Location Constraints
Placement Constraints.
Transceiver Placement
Constraints When Using External GMII/MIIL.

Chapter 6: Detailed Example Design

Directory Structure.
Directory and File Contents
Example Design.........
Demonstration Test Bench
Implementation..........
Functional Simulation.

QSGMII Product Guide www.Xxilinx.com
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 7: Using the Client Side GMII/MII Datapath

PG029 January 18, 2012

Using the Core Netlist Client-Side GMII/MII. 78
Additional Client-Side QSGMII Adaptation Logic Provided in
the Example Design........... 82
Chapter 8: Using the Transceiver
Transceiver Logic 90
Clock Sharing Across Multiple Cores with Transceivers 95
Appendix A: Additional Resources
Xilinx Resources 99
Solution Centerso i 99
References 99
Specifications. 99
Technical Support........ 100
Ordering Information 100
Revision History 100
Notice of Disclaimer 100
Appendix B: Verification, Compliance, and Interoperability
Simulation...... 102
Hardware Testing 102
Compliance Testing.......... i 102
Appendix C: Implementing External GMII/MII
External GMII Transmitter Logic (Virtex-7 and Kintex-7 Devices) 103
External MII Transmitter Logic (Virtex-7 and Kintex-7 Devices)............. 104
External GMII/MII Receiver Logic.. 105
Appendix D: Debugging
General Checks 107
Problems with the MDIO i, 107
Problems with Data Reception or Transmission............................. 107
Problems with Auto-Negotiation 108
Problems in Obtaining a Link (Auto-Negotiation Disabled)................. 108
Problems with a High Bit ErrorRate.. 109
QSGMII Product Guide www.xilinx.com

http://www.xilinx.com

& XILINX.

LOGICORE IP QSGMII v1.1

Introduction

The Quad Serial Gigabit Media Independent Interface
(QSGMII) core provides a flexible solution for
combining four Serial Gigabit Media Independent
Interfaces (SGMII) into a single 5 Gigabits per second
(Gb/s) Interface, to significantly reduce the number of
Input Outputs (I/0Os). This core supports Cisco
QSGMII specification Version 1.2 (EDCS-540123).

Features
® The core has two modes of operation.

e Media Access Controller (MAC) mode to
connect to a customized MAC or Xilinx®
Tri-Mode Ethernet MAC LogiCORE™ P
operating in Internal Mode

e Physical-side interface (PHY) mode to connect
to an external PHY through Gigabit Media
Independent Interface/Media Independent
Interface (GMII/MII)

e IEEE 802.3-2008 Clause 36 implementation of

Physical Coding Sublayer (PCS) for encapsulation,

line encoding and link synchronization

e Integrated transceiver interface using a Virtex®-7
and Kintex™-7 GTX transceiver

e Implements SGMII Adaptation to support 10/100/
1000 operation for each port

¢ Each port configured and monitored through
independent a serial Management Data Input/
Output (MDIO) Interface, which can optionally be
omitted from the core

* Supports Auto-Negotiation according to IEEE
802.3-2008 Clause 37 on each port for information
exchange with a link partner, which can optionally
be omitted from the core

e Transmitters of all ports transmit only /I1/ Idle
ordered set

¢ Lane alignment based on K28.1 character detection

e Implements QSGMII K28.5 swapper on Port 0
transmit path

e Implements QSGMII K28.1 swapper on Port 0
receive path

¢ Implements receive link synchronization state
machine

* Programmable Decoder running disparity
checking for each port

e Per port programmable Auto-Negotiation Link
timer

LogiCORE IP Facts Table

Core Specifics

Supported
Device Virtex-7 and Kintex-7
Family®
Supported User
Interfaces GMII/MII
Resources See Table 1-1 and Table 1-2.
Provided with Core

VHSIC Hardware Description Language

Design Files (VHDL) and Verilog,
Native Generic Circuit (NGC) Netlist

E 1 .
D)ésggﬁ € VHDL and Verilog
Test Bench Demonstration Test Bench in VHDL and Verilog

Constraints File

User Constraint Files (.ucf)

Simulation

Model Verilog and VHDL

Supported

S/W Dirivers NA
Tested Design Tools

Design Entry Integrated Software Environment (ISE®) v13.4

Tools design suite

Simulation ()

Mentor Graphics Modelsim
Cadence Incisive Enterprise Simulator (IES)
Synopsys VCS and VCS MX

Synthesis Tools

Xilinx Synthesis Technology (XST) 13.4

Support

Provided by Xilinx @ www.xilinx.com/support

1. For a complete listing of supported devices, see the release notes
for this core.

2. For the supported versions of the tools, see the ISE Design Suite 13:
Release Notes Guide.

3. Virtex-7 and Kintex-7 device designs incorporating a
device-specific transceiver require a Verilog LRM-IEEE
1364-2005 encryption-compliant simulator. For VHDL
simulation, a mixed HDL license is required.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 4

Product Specification

http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/irn.pdf
http://www.xilinx.com/support

& XILINX.
Chapter 1

Overview

QSGMIL is designed to reduce significantly the number of signals that are needed between
multiport 10/100/1000 PHYs and Ethernet MAC. QSGMII needs two data signals, each
operating at 5 Gb/s, to connect four instances of PHYs and Ethernet MAC.

System Overview

QSGMII core provides the functionality to implement the sublayers as specified by the
Cisco QSGMII specification.

The core interfaces to a device-specific transceiver. The transceiver provides some of the
PCS functionality, such as 8B/10B encoding/decoding, Physical Medium Attachment
(PMA) Serializer /Deserializer (SERDES), and clock recovery. Figure 1-1 illustrates the
remaining PCS sublayer functionality and also shows the major functional blocks of the
core.

QSGMII Product Guide www.Xilinx.com 5
PG029 January 18, 2012 Product Specification

http://www.xilinx.com

& XILINX. Chapter 1: Overview

MACIF 0
ELASTIC
MDIO IF 0
MAC IF 1
AGGREGATOR >
ELASTIC %
MDIO IF 1 g i
w 2
= 3 [ToPMD
H 2 | Layer
:
s
MAC IF 2 =
ALIGNER -
ELASTIC
MDIO IF 2
MACIF 3
ELASTIC
MDIO IF 3
Figure 1-1: QSGMII System Overview
Figure 1-2 illustrates the sub-blocks of the SGMII module.
PCS Transmit
MAC GMIIMII TX IF Engine To Aggregator
x
Q
o
2 Optional
2 Auto-Negotiation
s
0]
PCS Receive
MAC GMII/MII RX IF Engine and From Elastic Buffer
Synchronization
Optional
MDIO Interface Management
Interface
Figure 1-2: Functional Diagram of SGMII Block
QSGMIl Product Guide www.xilinx.com 6

PG029 January 18, 2012 Product Specification

http://www.xilinx.com

& XILINX.

Chapter 1: Overview

GMII/MII Block

A client-side GMII is provided with the core, which can be used as an internal interface for
connection to an embedded Media Access Controller (MAC) or other custom logic in MAC
mode. In PHY mode the GMII/MII can be routed to device Input Output Blocks (IOBs) to
provide an external (off-device) GMII/MIL

Virtex®-7 devices support GMII at 3.3 V or lower only in certain parts and packages. See
the Virtex-7 device documentation. Kintex™-7 devices support GMII at 3.3 V or lower.

PCS Transmit Engine

The Physical Coding Sublayer (PCS) transmit engine converts the GMII data octets into a
sequence of ordered sets by implementing the state diagrams of IEEE 802.3 -2008 (Figures
36-5 and 36-6). The transmit engine transmits only /I1/ characters instead of /12/, as
described in the QSGMII specification.

PCS Receive Engine and Synchronization

The synchronization process implements the state diagram of IEEE 802.3 - 2008 (Figure
36-9). The PCS receive engine converts the sequence of ordered sets to GMII data octets by
implementing the state diagrams of IEEE 802.3 -2008 (figures 36-7a and 36-7b). This
module can be programmed to optionally consider disparity. Disparity checking is
disabled by default.

Optional Auto-Negotiation Block

Clause 37 in the IEEE 802.3 -2008 specification describes the Auto-Negotiation function
that allows a device to advertise the modes of operation that it supports to a device at the
remote end of a link segment (link partner), and to detect corresponding operational
modes that the link partner may be advertising.

Auto-Negotiation is controlled and monitored through the PCS Management Registers.

Optional PCS Management Registers

Configuration and status of the core, including access to and from the optional
Auto-Negotiation function, uses the Management Registers defined in clause 37 of the
IEEE 802.3 -2008 specification. These registers are accessed through the serial Management
Data Input/Output Interface (MDIO), defined in clause 22 of the IEEE 802.3 -2008
specification, as if it were an externally connected PHY.

An additional configuration vector and status signal interface is provided to configure
Base Control Register (Register 0) and Auto-Negotiation Ability Advertisement Register
(Register 4).

QSGMII Product Guide
PG029 January 18, 2012

www.xilinx.com 7
Product Specification

http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/index.htm
http://www.xilinx.com

& XILINX.

Chapter 1: Overview

Aggregator

Aligner

The Aggregator implements a portion of a modified transmit path diagram (Figure 1 of the
QSGMII v1.2 specification). This module receives data and control from each instance of
the SGMII module which is aggregated to 32-bit data and 4-bit control and transferred to
Transceiver Interface block. The Aggregator also incorporates the K28.5 swapping function
on port 0 that assists in port matching at the peer receiver end.

The Aligner receives 32 bits of data from the transceiver interface. Port 0 data can be
received on any lane, so a search for the K28.1 character is done on all the lanes to start lane
alignment. After a match for K28.1 is found in the octet boundary in the 32-bit data, that
octet boundary becomes the start of arbitration and the octet assigned to port 0. The next
octet is assigned to port 1 and so on. This module also swaps any K28.1 character received
on port 0 with the K28.5 character.

Transceiver Interface Block

The Transceiver Interface Block enables the core to connect to a Virtex-7 or Kintex-7 Field
Programmable Gate Array (FPGA) serial transceiver.

Elastic Buffer

Applications

An Elastic Buffer is instantiated on each port to perform clock correction. The clock
correction involves additions and removal of /I1/ characters if disparity is ignored or /12/
if the disparity is considered. This buffer is 128 locations deep.

Typical applications for the QSGMII core include the following:

e QSGMII MAC
e QSGMII PHY

QSGMII MAC

Figure 1-3 illustrates a typical application for the QSGMII core when operating in MAC
mode using a device-specific transceiver to provide the serial interface.

¢ The device-specific transceiver is connected to an external off-the-shelf QSGMII PHY
(This can be a device that supports conversion of QSGMII to 10BASE-T, 100BASE-T, or
1000BASE-T.)

¢ The GMII interfaces of the QGMII core are connected to multiple instances of an
embedded Ethernet MAC, for example, the Xilinx® Tri-Mode Ethernet MAC core.

QSGMII Product Guide
PG029 January 18, 2012

www.xilinx.com 8
Product Specification

http://www.xilinx.com

& XILINX. Chapter 1: Overview

QSGMII

10/
XILINX FPGA o

1000
BASET

N

User Logic
(MAC
Controller)

» QSGMII LogiCORE
MAC Mode

A

v
v

User Logic
(MAC
Controller)

A
A\ 4

QSGMIl to
Transceiver 10/100/1000
BaseT PHY

Magnetics/
RJ45

User Logic
(MAC
Controller)

A\ 4

INTERNAL
QSGMII LOGIC
INTERFACE

y

TRANSCEIVER

A

A
y

User Logic
(MAC
Controller)

A

Figure 1-3: Typical Application of QSGMII in MAC Mode

QSGMII PHY

Figure 1-4 illustrates a typical application for the QSGMII core when operating in PHY
mode, using a device-specific transceiver to provide the serial interface.

* The device-specific transceiver is connected to an external off-the-shelf Ethernet MAC
device that also supports QSGMILI. (This can be multiple instances of tri-mode MAC
providing 10/100/1000 Mb/s operation, for example, the Xilinx Tri-Mode Ethernet
MAC core connected to QSGMII core in MAC mode.)

e The GMII/MII interface of QSGMII core is connected to a tri-mode PHY providing
10BASE-T, 100BASE-T, and 1000BASE-T operation.

asewt XILINX FPGA iM/"'M"

QSGMIl LogiCORE N
PHY Mode 1000000 | (e
BASET |g— PP

RXN/
RXP

PHY P
toroonooo | sted

BASET |— PP

A 4

Multiple
Instances of
Tri Mode Transceiver
MAC with
QSGMII

PHY |
1oMo0o00 | 1wisted

BASET jg— CoPPer

TRANSCEIVER
INTERFACE
INTERNAL

QSGMII LOGIC

g TXN/ <
XP

Y
foro0mo00 | 1visted

BASET jag— COPP

Figure 1-4: Typical Application of QSGMII in PHY Mode

QSGMII Product Guide www.Xilinx.com 9
PG029 January 18, 2012 Product Specification

http://www.xilinx.com

& XILINX.

Chapter 1: Overview

Standards Compliance

Licensing

Performance

Latency

e FEthernet Standard 802.3-2008 Clauses 22, 35, 36 and 38
e Cisco Serial GMII Specification (SGMII)
¢ Cisco Quad SGMII Specification (QSGMII)

The QSGMIIIP core does not require a license key. The QSGMII core is provided under the
terms of the Xilinx End User License Agreement.

These measurements are for the core only; they do not include the latency through the
Virtex-7 and Kintex-7 GTX transceiver, or the Transmitter Elastic Buffer added in the
example design.

Transmit Path Latency

As measured from a data octet inputinto gmii_txd[7:0] of the transmitter side GMII of
SGMII on port 0 (until that data appears on txdata[7:0] on the serial transceiver
interface), the latency through the core in the transmit direction is five clock periods of
userclk2.

Receive Path Latency

Receive Path Latency is variable due to the presence of an elastic buffer on each lane for
clock compensation; therefore, the latency is measured from the output of the elastic
buffer until the octet appears on the receiver side GMIIL. As measured from a data octet
output from the elastic buffer until that data appears on gmii_rxd[7:0] of the receiver
side GMII of port 0, the latency through the core in the receive direction is six clock
periods of userclk?2.

Throughput

QSGMII Interface operates at a full line rate of 5 Gb/s.

Resource Utilization

Approximate resource utilization of the core for different devices is listed in the following
tables. Utilization figures are obtained by implementing the block-level wrapper for the
core. This wrapper is part of the example design and connects the core to the selected
physical interface.

BUFG usage does not consider multiple instantiations of the core, where clock resources
can often be shared. BUFG usage does not include the reference clock required for
IDELAYCTRL. This clock source can be shared across the entire device and is not core
specific.

QSGMII Product Guide
PG029 January 18, 2012

www.xilinx.com 10
Product Specification

http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com

& XILINX. Chapter 1: Overview

Virtex-7 Devices

Table 1-1 provides approximate utilization figures for various core options when a single
instance of the core is instantiated in a Virtex-7 device.

Table 1-1: Resource Utilization for Virtex-7 Devices

Parameter Values Device Resources
Mode MDIO Aut_o-_ Slices FFs LUTs LUTRAM BUFGs
Interface Negotiation
Yes Yes 1419 2509 2340 464 2
Yes No 1055 1869 1708 460 2
MAC Mode
No Yes 1179 2217 2017 432 2
No No 807 1629 1419 428 2
Yes Yes 1421 2573 2361 464 2
PHY GMH Yes No 1042 1873 1716 460 2
Mode No Yes 1178 2249 1986 432 2
No No 852 1629 1389 428 2
Yes Yes 1423 2577 2392 464 2
PHY MII Yes No 1047 1869 1715 460 2
Mode No Yes 1195 2249 1973 432 2
No No 806 1629 1432 428 2
Note: Resource Utilization numbers in PHY MIl mode are more than PHY GMII mode due to extra
logic required for 4-bit Mll to 8-bit internal conversion and nibble alignment to proper octet
boundaries.
QSGMII Product Guide www.Xxilinx.com 1

PGO029 January 18, 2012 Product Specification

http://www.xilinx.com

& XILINX.

Chapter 1: Overview

Kintex-7 Devices

Table 1-2: Resource Utilization for Kintex-7 Devices

Table 1-2 provides approximate utilization figures for various core options when a single

instance of the core is instantiated in a Kintex-7 device.

Parameter Values

Device Resources

Mode Inltvtle?flaoce Ne ;;jtti:;ion Slices FFs LUTs LUTRAM | BUFGs
Yes Yes 1410 2509 2399 464 2
Yes No 996 1869 1754 460 2

MAC Mode

No Yes 1174 2217 2036 432 2
No No 845 1625 1391 428 2
Yes Yes 1401 2577 2442 464 2
PHY GMII Yes No 1025 1873 1743 460 2
Mode No Yes 1178 2249 2017 432 2
No No 842 1629 1442 428 2
Yes Yes 1418 2573 2402 464 2
PEIY MII Yes No 1075 1873 1677 460 2
Mode No Yes 1199 2249 1991 432 2
No No 833 1629 1436 428 2

Note: Resource Utilization numbers in PHY MIl mode are more than PHY GMII mode due to extra
logic required for 4-bit Mll to 8-bit internal conversion and nibble alignment to proper octet
boundaries.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

12

Product Specification

http://www.xilinx.com

& XILINX.
Chapter 2

Core Interfaces and Management
Register Space

This chapter provides detailed descriptions for each interface. In addition, detailed
information about configuration and control registers is included.

Core Interfaces

All ports of the core are internal connections in FPGA logic. An HDL example design
(delivered with the core) connects the core, where appropriate, to a device-specific
transceiver, and/or add IBUFs, OBUFs, and IOB flip-flops to the external signals of the
GMII/MII. IOBs are added to the remaining unconnected ports to take the example design
through the Xilinx implementation software.

All clock management logic is placed in this example design, allowing you more flexibility
in implementation (such as designs using multiple cores). This example design is provided
in both VHDL and Verilog. For more information on the example design provided, see
Chapter 6, Detailed Example Design.

Figure 2-1 shows the pinout for the QSGMII core using a device-specific transceiver with
the optional MDIO Management and optional Auto-Negotiation. For more information
see Chapter 3, Customizing and Generating the Core.

The port name for multiple instances of an interface is generalized as “CHx”. “CHx” takes
the value “CHO0”, “CH1”, “CH2"”, and “CH3".

QSGMII Product Guide www.xilinx.com 13
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

_________________ - - B
Ml | | Transceiver Interface
| |

GMIL_TXD_CHx[7:0] — | | {—> MGT_RXRESET

GMIL_TX_EN_CHx - > : : 1 5 MGT_TX_RESET

GMIL_TX_ER_CHx — : : l«—— USERCLK

! ' le—— userclk

GMI_RXD_CHX(7:0] - ! |

| I le— RxRECCLK

GMII_RX_DV_CHx -] | !

! I le— Dem_LockeD

GMII_RX_ER_CHx - : :

| | «—— RXCHARISCOMMA[3:0]
GMIL_ISOLATE_CHx - | |
| | €«—— RXCHARISK[3:0]
| |
————————————————— — —1 | «—— RXDATA[31:0]
| |
MDIO | | <€—— RXDISPERR[3.0]
MDC_CHx — | |
| | [<€—— RXNOTINTABLE[3:0]
MDIO_IN_CHx —> | |
| | [<€—— RXRUNDISP[3:0]
MDIO_OUT_CHx A | |
| |
MDIO_TRI_CHx R | |
 «—— TXBUFERR
PHYAD_CHx(4:0] —> : :
| | +—» POWERDOWN
_________________ __! |
| 1— TXCHARDISPMODE[30]
T A T TS T T T T T T == — — |
Additional Configuration Interface | :] » TXCHARDISPVAL[3:0]
CONFIGURATION_VECTOR_CHx{4:0] ——] | |
| | TXCHARISKBO)
CONFIGURATION_VALID_CHx —> | |
| | > TXoAW3t)
STATUS_VECTOR_CHX{15:0] -] | |
| | [EnaBLEALIGN

AN_ADV_CONFIG_VECTOR_CHx[15:0] ——] | L

AN_ADV_CONFIG_VAL_CHx —> :

AN_RESTART_CONFIG_CHx — !
————————————————— — ! l—— RESET
_________________ -

Auto Negotiation |
AN_INTERRUPT_CHx — :
| «—— SIGNAL_DETECT

LINK_TIMER_VALUE_CHx{8:0] —> :

_________________ _ _1

Figure 2-1: Component Pinout of QSGMII with Optional MDIO and Auto-Negotiation

Figure 2-2 shows the pinout for the QSGMII core using a device-specific transceiver with
only the optional MDIO Management. For more information see Chapter 3, Customizing
and Generating the Core.

The port name for multiple instances of an interface is generalized as “CHx”. “CHx" takes
the value “CH0”, “CH1”, “CH2”, and “CH3".

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 14

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

___________________ - F—f—————————————————
Ml | | Transceiver Interface
GMII_TXD_CHx[7:0] —Pp | | —» MGT_RX_RESET
| |
GMII_TX_EN_CHx —> | | —» MGT_TX_RESET
GMII_TX_ER_CHx —> : : [4—— USERCLK
| | |4——— USERCLK2
GMII_RXD_CHX[7:0] <+ | |
| | [4—— RXRECCLK
GMII_RX_DV_CHx <+ | |
| | [€—— DCM_LOCKED
GMII_RX_ER_CHx <+ | |
| | |€——— RXCHARISCOMMA[3:0]
GMII_ISOLATE_CHx <+ | |
| | l——— RXCHARISK[3:0]
___________________ — _: : l——— RXDATA[31:0]
MDIO | | l4——— RXDISPERR([3:0]
MDC_CHx —> | |
l——— RXNOTINTABLE[3:0]
MDIO_IN_CHx —> ! !
| | l&——— RXRUNDISP[3:0]
MDIO_OUT_CHx < | |
| |
MDIO_TRI_CHx <+ | |
| | l¢—— TXBUFERR
PHYAD_CHx[4:0] —p
: : | » POWERDOWN
| —— TXCHARDISPMODE[3:0]
TAdditional Configuration Interface | - ! | B TXCHARDISPVAL[3:0]
CONFIGURATION_VECTOR_CHx[4:0] ———] ! !
| | |——p TXCHARISK[3:0]
CONFIGURATION_VALID_CHx —Pp | |
| | —» TXDATA[31:0]
STATUS_VECTOR_CHXx[15:0] 4—] | |
| | [ENABLEALIGN
| S
|
|
——————————————————— - [¢—— RESET
|—— SIGNAL_DETECT

Figure 2-2: Component Pinout of QSGMII with only Optional MDIO Management

Figure 2-3 shows the pinout for the QSGMII core using a device-specific transceiver with
only the optional Auto-Negotiation. For more information see Chapter 3, Customizing and
Generating the Core.

The port name for multiple instances of an interface is generalized as “CHx”. “CHx" takes
the value “CH0”, “CH1”, “CH2”, and “CH3".

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 15

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Transceiver Interface

| 5 TXCHARDISPVAL[3:0]

CONFIGURATION_VECTOR_CHx[4:0] ———>]
» TXCHARISK(3:0]

| 5 TXDATA31:0]

|——» ENABLEALIGN

-
GMII | |
GMII_TXD_CHx[7:0] R | | » MGT_RX_RESET
| |
GMII_TX_EN_CHx — | | » MGT_TX_RESET
GMII_TX_ER_CHx — : : <«—— USERCLK
| | ~«—— USERCLK2
GMII_RXD_CHx[7:0] P E— | |
| | <«—— RXRECCLK
GMII_RX_DV_CHx P E— | |
<e—— DCM_LOCKED
GMII_RX_ER_CHx D | |
| |
| | <«——— RXCHARISCOMMA[3:0]
GMII_ISOLATE_CHx P E— | |
| | <«——— RXCHARISK([3:0]
——————————————————— - = | < RXDATA[31:0]
|
| <«—— RXDISPERR[3:0]
: ~—— RXNOTINTABLE[3:0]
| <«—— RXRUNDISP[3:0]
|
|
: < TXBUFERR
| |, POWERDOWN
I TXCHARDISPMODE[3:0]
| —>
TAddiional Configuration Interface | -7 I
|
|
|
|
|
|

|

|

|

|
STATUS_VECTOR_CHx(15:0] s |
AN_ADV_CONFIG_VECTOR_CHX[15:0] ———>] |
|

|

|

AN_RESTART_CONFIG_CHx —]
——————————————————— -1 ~-—— RESET

Auto Negotiation

|

|
AN_INTERRUPT_CHx B a— |

| ~4—— SIGNAL_DETECT
LINK_TIMER_VALUE_CHx[8:0] — |

Figure 2-3: Component Pinout of QSGMII with only Optional Auto-Negotiation

Figure 2-4 shows the pinout for the QSGMII core using a device-specific transceiver
without optional MDIO or Auto-Negotiation. For more information see Chapter 3,
Customizing and Generating the Core.

The port name for multiple instances of an interface is generalized as “CHx”. “CHx” takes
the value “CHO0”, “CH1”, “CH2”, and “CH3".

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 16

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

GMII_TXD_CHX(7:0]
GMILTX_EN_CHx

GMII_TX_ER_CHx

GMII_RXD_CHX[7:0]
GMII_RX_DV_CHx

GMII_RX_ER_CHx

GMII_ISOLATE_CHx

Additional Configuration Interface
CONFIGURATION_VECTOR_CHx[4:0] ———]

STATUS_VECTOR_CHx[15:0] --—

Figure 2-4: Component Pinout for QSGMII without Optional MDIO or Optional

Client Side Interface

|

L » MGT_RX_RESET
— MGT_TX_RESET
<€—— USERCLK
€«—— USERCLK?
€—— RXRECCLK

[<¢— DCM_LOCKED

<—— RXCHARISCOMMA[3:0]
[€—— RXCHARISK[3.0]
€—— RXDATA[31:0]
€—— RXDISPERR[3:0]
<€—— RXNOTINTABLE[3:0]

<€—— RXRUNDISP[3:0]

[TXBUFERR

L » POWERDOWN
L » TXCHARDISPMODE[3:0]
| 5 TXCHARDISPVAL[30]
| TXCHARISK[3:0]
L » TXDATA31:0]

[—> ENABLEALIGN

[<¢—— RESET

[<—— SIGNAL_DETECT

Auto-Negotiation

Transceiver Interface

This interface contains four groups of interfaces, with each group containing a set of the

GMll interface, the optional management interface if supported and configuration vectors.
The interfaces end in “chx”, taking the values chO to ch3, indicating the port connection to
the respective GMII interface.

GMII Pinout

Table 2-1 describes the GMII-side interface signals of the core that are common to all
parameterizations of the core. These are typically attached to an Ethernet MAC, either
off-chip or internally integrated. The HDL example design delivered with the core

connects these signals to IOBs to provide a place-and-route example.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

17

http://www.xilinx.com

& XILINX. Chapter 2: Core Interfaces and Management Register Space

Table 2-1: GMII Interface Signals Pinout

Signal Direction Description
gmii_txd_chx[7:0](1) Input GMII Transmit data from MAC
gmii_tx_en_chx(l) Input GMII Transmit control signal from MAC
gmii_tx_er_chx(l) Input GMII Transmit control signal from MAC
gmii_rxd_chx[7:0]® | Output GMII Received data to MAC
gmii_rx_dv_chx® | Output GMII Received control signal to MAC
gmii_rx_er_chx® Output GMII Received control signal to MAC
IOB 3-state control for GMII Isolation. Only of use
gmii_isolate_chx® | Output when implementing an external GMII as illustrated
by the example design HDL.

1. When the Transmitter Elastic Buffer is present, these signals are synchronous to gmii_tx_clk. When the
Transmitter Elastic Buffer is omitted, see (2).

2. These signals are synchronous to the internal 125 MHz reference clock of the core. This is userclk2.

Common Signals
Table 2-2 describes the remaining signals common to all parameterizations of the core.

Table 2-2: Other Common Signals

Signal Dlrection Description

Asynchronous reset for the entire core. Active High.

reset Input Clock domain is not applicable.

Signal direct from the Physical Medium Dependent
(PMD) sublayer indicating the presence of light
detected at the optical receiver. If set to 1, indicates
signal_detect Input that the optical receiver has detected light. If set to 0,
this indicates the absence of light. If unused, this
signal should be set to 1 to enable correct operation
the core. Clock domain is not applicable.

MDIO Management Interface Pinout (Optional)

The optional MDIO Management Interface is provided for each instance of SGMIL The
“chx” suffix denotes a generic nomenclature for describing the interface. Each of the
interfaces are identified with “chx” taking values from “ch0” to “ch3”.

Table 2-3 describes the optional MDIO interface signals of the core that are used to access
the PCS Management Registers. Each of these interfaces is typically connected to the
MDIO port of a MAC device, either off-chip or to an internally integrated MAC core. For
more information, see Management Registers.

QSGMII Product Guide www.xilinx.com 18
PG029 January 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Core Interfaces and Management Register Space

Table 2-3: Optional MDIO Interface Pinout

Signal Direction CIOCk. Description
Domain

mdc_chx Input NA Management clock (<= 2.5 MHz).

Input data signal for communication with
the instance number “x” of the MDIO
controller (for example, an Ethernet
MAC). Tie High if unused.

mdio_in_chx® Input mdc_chx

Output data signal for communication
with the instance number “x” of the MDIO
controller (for example, an Ethernet
MACQ).

mdio_out_chx(l) Output mdc_chx

3-state control for MDIO signals. The
value 0 signals that the value on mdio_out
should be asserted onto the MDIO
interface.

Physical Addresses of the PCS
Management register set of each “x”
instance of SGMIL. It is expected that this
signal will be tied off to a logical value.

mdio_tri_chx(l) Output mdc_chx

phyad_chx[4:0] | Input NA

1. These signals can be connected to a 3-state buffer to create a bidirectional mdio signal suitable for
connection to an external MDIO controller (for example, an Ethernet MAC).

Auto-Negotiation Interface Pinout (Optional)

Table 2-4 describes the signals present when the optional Auto-Negotiation functionality is
present.

Table 2-4: Optional Auto-Negotiation Interface signal Pinout

Signal Direction Description

Used to configure the duration of the
Auto-Negotiation Link Timer period. The
duration of this timer is set to the binary
link_timer_value_chx[8:0]V) | Input number input into this port multiplied by
4096 clock periods of the 125 MHz reference
clock (8 ns). It is expected that this signal will
be tied off to a logical value.

When an optional management interface is
present, active High interrupt to signal the
completion of an Auto-Negotiation cycle. This
interrupt can be enabled /disabled and
cleared by writing to the appropriate PCS
an_interrupt_chx(!) Output Management Register.

When an optional management interface is
not present, this signal just indicates the
completion of the Auto-Negotiation cycle. Is
reset automatically if Auto-Negotiation
restarts. This bit cannot be cleared.

1. These signals are synchronous to the internal 125 MHz reference clock of the core. This is userclk2
when the core is used with the device-specific transceiver

QSGMII Product Guide www.xilinx.com 19
PG029 January 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Core Interfaces and Management Register Space

Additional Configuration Interface

This interface can be used over and above the optional management interface to write into
the Control Register (Register 0) and the Auto-Negotiation Advertisement Register
(Register 4).

Table 2-5: Additional Configuration Interface Signal Pinout

Signal Direction Description

¢ Bit[0]:Unidirectional Enable
When set to 1, Enable Transmit
irrespective of the state of RX. When set to
0, Normal operation.

* Bit[1]: Reserved

e Bit[2]: Power Down
When set to 1, the device-specific
transceiver is placed in a low-power state.
A reset must be applied to clear. MDIO
must be present to apply reset.
This bit is valid only on

Input configuration_vector_ch0 and is reserved
in other instances of configuration_vector.

¢ Bit[3] Isolate
When set to 1, the GMII should be
electrically isolated. When set to 0, normal
operation is enabled.

¢ Bit[4] Auto-Negotiation Enable
This signal is valid only if the
Auto-Negotiation (AN) module is enabled
through the CORE Generator™ tool.
When set to 1, the signal enables the AN
feature. When set to 0, AN is disabled.

configuration_vector_

chx[5:0]

This signal is valid only when the MDIO
interface is present. The rising edge of this
signal is the enable signal to overwrite the

configuration_vector_valid Register 0 contents that were written from the

_chx(Input MDIO interface. For triggering a fresh update
of Register 0 through
configuration_vector_chx, this signal should
be deasserted and then reasserted.
QSGMII Product Guide www.xilinx.com 20

PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-5: Additional Configuration Interface Signal Pinout (Cont’d)

Signal

Direction

Description

an_adv_config_vector_
chx[15:0]®

Input

QSGMII operating in MAC Mode, the AN_ADV
register is hardwired internally to "0x0001"
and this bus has no effect. For QSGMII
operating in PHY mode, the AN_ADV
register is programmed by this bus as
specified for the following bits.
¢ Bit[0]: Always 1
e Bits [9:1]: Reserved
e Bits [11:10]: Speed

11 Reserved

10 1000 Mb/s

01 100Mb/s

00 10Mb/s
e Bits [12]:Duplex Mode

1 Full Duplex

0 Half Duplex
e Bit[13]: Reserved
e Bit [14]: Acknowledge
e Bit [15]: PHY Link Status

1 Link Up

0 Link Down

an_adv_config_valid_
chx®

Input

This signal is valid only when the MDIO
interface is present. The rising edge of this
signal is the enable signal to overwrite the
Register 4 contents that were written from the
MDIO interface. For triggering a fresh update
of Register 4 through
an_adv_config_vector_chx, this signal should
be deasserted and then reasserted.

an_restart_conﬁg_chx(l)

Input

This signal is valid only when AN is present.
The rising edge of this signal is the enable
signal to overwrite Bit 9 of Register 0. For
triggering a fresh AN Start, this signal should
be deasserted and then reasserted.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

21

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-5: Additional Configuration Interface Signal Pinout (Cont’d)

Signal

Direction

Description

status_vector_chx[15:0] @

Output

e Bit[0]: Link Status

This signal indicates the status of the link.
When high, the link is valid;
synchronization of the link has been
obtained and Auto-Negotiation (if present
and enabled) has successfully completed.
When low, a valid link has not been
established. Either link synchronization
has failed or Auto-Negotiation (if present
and enabled) has failed to complete.

When auto-negotiation is enabled, this
signal is identical to Status Register Bit 1.2:
Link Status.

When auto-negotiation is disabled, this
signal is identical to status_vector_chx
Bit[1].

Bit[1]: Link Synchronization

This signal indicates the state of the
synchronization state machine (IEEE 802.3
figure 36-9) which is based on the
reception of valid 8B/10B code groups.
This signal is similar to Bit[0] (Link Status),
but is not qualified with Auto-Negotiation.

When high, link synchronization has been
obtained and in the synchronization state

machine, sync_status=OK.

When low, synchronization has failed.

Bit[2]: RUDI(/C/)

The core is receiving /C/ ordered sets
(Auto-Negotiation Configuration
sequences).

Bit[3]: RUDI(/1/)
The core is receiving /1/ ordered sets
(Idles).

Bit[4]: RUDI(INVALID)
The core has received invalid data while
receiving/C/ or /1/ ordered set.

Bit[5]: RXDISPERR

The core has received a running disparity
error during the 8B/10B decoding
function.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

22

http://www.xilinx.com

& XILINX. Chapter 2: Core Interfaces and Management Register Space

Table 2-5: Additional Configuration Interface Signal Pinout (Cont’d)

Signal Direction Description

¢ Bit[6]: RXNOTINTABLE
The core has received a code group that is
not recognized from the 8B/10B coding
tables.

e Bit[7]: PHY Link Status
This bit represents the link status of the
external PHY device attached to the other
end of the QSGMII link (high indicates that
the PHY has obtained a link with its link
partner; low indicates that is has not linked
with its link partner.)

¢ Bit[9:8]: Remote Fault Encoding
This signal indicates the remote fault
encoding (IEEE 802.3 table 37-3). This
signal is validated by bit 13 of the
status_vector_chx and is only valid when
Auto-Negotiation is enabled.

This signal has no significance when the
core is in PHY mode and indicates "00".

e Bit[11:10]: SPEED
This signal indicates that the speed is
status_vector_chx([15:0]'" Output negotiated and is only valid when
(continued) Auto-Negotiation is enabled. The signal
encoding follows:

Bit[11] Bit[10]
11 Reserved
10 1000 Mb/s
01 100Mb/s
00 10 Mb/s

¢ Bit[12]: Duplex Mode
This bit indicates the Duplex mode
negotiated with the link partner.

1 = Full Duplex
0 = Half Duplex

¢ Bit[13] Remote Fault
When this bit is logic 1, it indicates that a
remote fault is detected and the type of
remote fault is indicated by
status_vector_chx bits[9:8].

Note: This bit is only deasserted when an
MDIO read is made to status register
(register 1). This signal has no significance
in QSGMII PHY mode.

QSGMII Product Guide www.xilinx.com 23
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-5: Additional Configuration Interface Signal Pinout (Cont’d)

Signal

Direction

Description

status_vector_chx[15:0]V)
(continued)

Output

e Bits[15;14]: Pause
These bits reflect the bits [8:7] of Register 5
(Link Partner Base AN Register).

Bit[15] Bit[14]

00 No Pause

01 Symmetric Pause

10 Asymmetric Pause towards Link
partner

11 Both Symmetric Pause and
Asymmetric Pause towards link
partner

1. Signals are synchronous to the core internal 125 MHz reference clock userclk2 when used with a
device-specitic transceiver.

Physical Side Interface

Table 2-6 describes the interface to the device-specific transceiver. The core is connected to
the chosen transceiver in the appropriate HDL example design delivered with the core.

Table 2-6: Transceiver Interface Pinout

Signal

Direction

Description

mgt_rx_reset(l)

Output

Reset signal issued by the core to the
device-specific transceiver receiver path.
Connects to the RXRESET signal of the
device-specific transceiver.

mgt_tx_reset(z)

Output

Reset signal issued by the core to the
device-specific transceiver transmitter path.
Connects to the TXRESET signal of the
device-specific transceiver.

userclk

Input

Also connected to TXUSRCLK of the
device-specific transceiver. Clock domain is
not applicable.

userclk2

Input

Also connected to TXUSRCLK?2 of the
device-specific transceiver. Clock domain is
not applicable.

rxrecclk

Input

Also connected to RXUSRCLK2 of the
device-specific transceiver. Clock domain is
not applicable.

dem_locked

Input

A Digital Clock Manager (DCM) can be used
to derive userclk and userclk2. This is
implemented in the HDL design example
delivered with the core. The core uses this
input to hold the device-specific transceiver in
reset until the DCM obtains lock. Clock
domain is not applicable.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

24

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-6: Transceiver Interface Pinout (Contd)

Signal Direction Description
rxchariscomma[3:0]) | Input Connects to device-specific transceiver signal
' of the same name.
rxcharisk[3:0]") Inout Connects to device-specific transceiver signal
' P of the same name.
rxdata[31:0] " Inout Connects to device-specific transceiver signal
' P of the same name.
rxdisperr[3:0]") Inout Connects to device-specific transceiver signal
P ' p of the same name.
rxnotintable[3:0]() Input Connects to device-specific transceiver signal
' of the same name.
rxrundisp[3:0](V Inout Connects to device-specific transceiver signal
Pl p of the same name.
xbuferr® Inout Connects to device-specific transceiver signal
P of the sam e name.
owerdown®@ Output Connects to device-specific transceiver signal
P P of the same name.
txchardispmode[3:0]® | Output Connects to device-specific transceiver signal
of the same name.
txchardispval[3:0]® Output Connects to device-specific transceiver signal
' of the same name.
txcharisk[3:0]® Output Connects to device-specific transceiver signal
' P of the same name.
txdata[31:0]® Output Connects to device-specific transceiver signal
' P of the same name.
enablealign® Output Connects to device-specific transceiver signal

of the same name.

1. When the core is used with a device-specific transceiver, rxrecclk is used as the 125 MHz reference
clock for driving these signals.

2. When the core is used with a device-specific transceiver, userclk? is used as the 125 MHz reference
clock for driving these signals.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

25

http://www.xilinx.com

& XILINX. Chapter 2: Core Interfaces and Management Register Space

Management Register Space

MDIO Management System

This section gives the description of one instance MDIO_CHO of the four instances of the
MDIO Management System. The other instances follow the same actions.

When the optional MDIO Management Interface is selected, the configuration and status
of the SGMII module instance is achieved by the Management Registers accessed through
the serial Management Data Input/Output Interface (MDIO).

MDIO Bus System

The MDIO interface for 1 Gb/s operation (and slower speeds) is defined in IEEE
802.3-2008, clause 22. Figure 2-5 illustrates an example MDIO bus system. This two-wire
interface consists of a clock (MDC) and a shared serial data line (MDIO). The maximum
permitted frequency of MDC is set at 2.5 MHz. An Ethernet MAC is shown as the MDIO
bus master (the Station Management (STA) entity). Two PHY devices are shown connected
to the same bus, both of which are MDIO slaves (MDIO Managed Device (MMD) entities).

MAC (STA) PHY1 (MMD)

Configuration
Register 0 to 31
(REGAD)

Host
Bus IF

MDIO MDIO Physical Address
Master Slave (PHYAD = 1)

PHY2 (MMD)

Configuration
Register 0 to 31
(REGAD)

MDIO Physical Address
Slave (PHYAD = 2)

Figure 2-5: Typical MDIO Managed System

The MDIO bus system is a standardized interface for accessing the configuration and
status registers of Ethernet PHY devices. In the example illustrated, the Management Host
Bus I/F of the Ethernet MAC is able to access the configuration and status registers of two
PHY devices via the MDIO bus.

QSGMII Product Guide www.xilinx.com 26
PG029 January 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Core Interfaces and Management Register Space

MDIO Transactions

All transactions, read or write, are initiated by the MDIO master. All MDIO slave devices,
when addressed, must respond. MDIO transactions take the form of an MDIO frame,
containing fields for transaction type, address and data. This MDIO frame is transferred
across the MDIO wire synchronously to MDC. The abbreviations that are used in this
section are explained in Table 2-7.

Table 2-7: Abbreviations and Terms

Abbreviation Term
PRE Preamble
ST Start of Frame
or Operation Code
PHYAD Physical Address
REGAD Register Address
TA Turnaround

Write Transaction

Figure 2-6 shows a write transaction across the MDIO, defined as OP="01.” The addressed
PHY device (with physical address PHYAD) takes the 16-bit word in the Data field and
writes it to the register at REGAD.

STA Drives MDIO

< »

< »
N I I N I U I I N A I I A Ay A I A A N A A O |

[A |
[|
T T [l
| N S S |

|

Lo Lo [I I P
o o [B I I I O O A I
I_JT I I T T T T 1 T T T T T T T T T T | |
mdio ==, [[I P T S S N By
Zzl1l1l1lol1 10l 1lpalpalp2!pilpolRaIR3IR2IR1IROI 1 10 D1d D13 b1d bl Ip7! Ips! Ipsl Ip1l 1zl z!
! ! ! ! ! ! | D14 D1z D10 ‘D8 ‘D6’ ‘D4’ 'D2" Do
IDLE | 32bits | ST | OP | PHYAD I REGAD I TA I 16 bit WRITE DATA | IDLE
PRE I I I I I I
! !

Figure 2-6: MDIO Write Transaction

Read Transaction

Figure 2-7 shows a read transaction, defined as OP="10.” The addressed PHY device (with
physical address PHYAD) takes control of the MDIO wire during the turn-around cycle
and then returns the 16-bit word from the register at REGAD.

STA Drives MDIO Addressed MMD Drives MDIO

| |
| |
]]
| |
T T T T
0 IP41P31P21 P11POIR4IR3IR2IRTIR0
| |
| |
| |
| |
| |

|

2Z1114111011 11 1z D9l ID7I ID5I ID3I DMl 1 ZIZ
| : : : D14 D12 D0 D8 D6 D4 D2 D0:

IDLE 1 32bits | ST | OP PHYAD REGAD | TA 16 bit READ DATA I IDLE
| PRE | I I I
| | | | |

Figure 2-7: NMDIO Read Transaction
QSGMII Product Guide www.Xxilinx.com 27

PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

MDIO Addressing

MDIO Addresses consists of two stages: Physical Address (PHYAD) and Register Address
(REGAD).

Physical Address (PHYAD)

As shown in Figure 2-5, two PHY devices are attached to the MDIO bus. Each of these has
a different physical address. To address the intended PHY, its physical address should be
known by the MDIO master (in this case an Ethernet MAC) and placed into the PHYAD
field of the MDIO frame (see MDIO Transactions).

The PHYAD field for an MDIO frame is a 5-bit binary value capable of addressing 32
unique addresses. However, every MDIO slave must respond to physical address 0. This
requirement dictates that the physical address for any particular PHY must not be set to 0
to avoid MDIO contention. Physical Addresses 1 through to 31 can be used to connect up
to 31 PHY devices onto a single MDIO bus.

Register Address (REGAD)

Having targeted a particular PHY using PHYAD, the individual configuration or status
register within that particular PHY must now be addressed. This is achieved by placing the
individual register address into the REGAD field of the MDIO frame (see MDIO
Transactions).

The REGAD field for an MDIO frame is a 5-bit binary value capable of addressing 32
unique addresses. The first 16 of these (registers 0 to 15) are defined by the IEEE 802.3-2008.
The remaining 16 (registers 16 to 31) are reserved for PHY vendors own register
definitions.

For details of the register map of PHY layer devices and a more extensive description of the
operation of the MDIO Interface, see IEEE 802.3-2008.

Connecting the MDIO to an Internally Integrated STA

The MDIO ports of the QSGMII core can be connected to the MDIO ports of an internally
integrated Station Management (STA) entity, such as the MDIO port of multi-instances of
the Tri-Mode Ethernet MAC core.

Connecting the MDIO to an External STA

Figure 2-8 shows the MDIO ports of the QSGMII core connected to the MDIO of an
external STA entity. In this situation, mdio_in_chx, mdio_out_chx, and
mdio_tri_chx mustbe connected to a 3-state buffer to create a bidirectional wire,
mdio_chx.

This 3-state buffer can either be external to the FPGA or internally integrated by using an

IOB IOBUF component with an appropriate SelectlO™ interface standard suitable for the
external PHY.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 28

http://www.xilinx.com

& XILINX. Chapter 2: Core Interfaces and Management Register Space

QSGMII LogiCORE

I0B LOGIC

mdc_ch0

mdio_tri_ch0

|

mdio_out_ch0 mdio_ch0 |
[

|

mdio_in_chO

mdc_ch1

mdio_tri_ch1

|

mdio_out_ch1 mdio_ch1 |
[

|

mdio_in_ch1

mdc_ch2

mdio_tri_ch2

mdio_out_ch2 mdio_ch2

mdio_in_ch2
mdc_ch3
mdio_tri_ch3

mdio_out_ch3

mdio_in_ch3

Figure 2-8: Creating an External MDIO Interface

Management Registers

The contents of the Management Registers can be accessed using the REGAD field of the
MDIO frame. Contents vary depending on the Xilinx® CORE Generator tool options, and
are defined in the following sections in this guide.

¢ QSGMII Using Optional Auto-Negotiation

¢ QSGMII Without Optional Auto-Negotiation

QSGMII Product Guide www.xilinx.com 29
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

QSGMII Using Optional Auto-Negotiation

The registers provided are duplicated for each instance of the SGMII module in this core.
The registers are adaptations of those defined in clauses 22 and 37 of the IEEE 802.3-2008

specification. In a QSGMII implementation, two different types of links exist. They are the
QSGMII link between the MAC and PHY (QSGMII link) and the link across the Ethernet

Medium itself (Medium).

Information regarding the state of both of these links is contained within the following
registers. Where applicable, the abbreviations QSGMII link and Medium are used in the
register descriptions. Registers at undefined addresses are read-only and return Os.

Table 2-8: Management Registers for QSGMII with Auto-Negotiation

Register Address

Register Name

0 SGMII Control Register

1 SGMII Status Register

2,3 PHY Identifier

4 SGMII Auto-Negotiation Advertisement Register

5 SGMII Auto-Negotiation Link Partner Ability Base Register
6 SGMII Auto-Negotiation Expansion Register

7 SGMII Auto-Negotiation Next Page Transmit Register

8 SGMII Auto-Negotiation Next Page Receive Register

15 SGMII Extended Status Register

16 SGMII Vendor Specific: Auto-Negotiation Interrupt Control
18 SGMII Generic Control

Register 0: SGMII Control Register

Management Registers Channel/Module 0

MDIO REGISTER 0: SGMII CONTROL CHANNEL 0

%5 14 13 12 11 10 9 8 7 6 5 4 0
recol [[LT[P T[]
mm % Z23 g R 289 s a
8B 354 2ER S 2
i3 o @ > @mog U 2 3
ZzZ X T x 2
5 mg M3 o) P 5
o ® O > % b4 i S
D3 S o o o}
> o m <
& z = 2
m m m
m ® z
5
m
Figure 2-9: MDIO Register 0: SGMII Control Register Channel/Module 0

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 30

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-9: SGMII Control Register Channel/Module 0 (REGISTER 0)
Table 2-10:
Table 2-11:

Bit(s)

Name

Description

Attributes

Default
Value

0.15

Reset

1 = SGMII module 0 Reset
0 = Normal Operation

read /write self
clearing

0.14

Reserved

Returns what is written

read /write

0.13

Speed Selection (LSB)

Always returns a ‘0" for
this bit. Together with bit
0.6, speed selection of 1000
Mb/s is identified.

returns 0

0.12

Auto-Negotiation
Enable

1 = Enable SGMII
Auto-Negotiation Process

0 = Disable SGMII
Auto-Negotiation Process

read /write

0.11

Power Down

1 =Power down
0 = Normal operation

When set to 1, the
device-specific transceiver
is placed in a low-power
state. This bit requires a
reset (see bit 0.15) to clear.

read/ write

0.10

Isolate

1 = Electrically Isolate
SGMII logic from GMII

0 = Normal operation

read /write

0.9

Restart Auto-
Negotiation

1 = Restart
Auto-Negotiation Process
across SGMII link

0 = Normal Operation

read /write self
clearing

0.8

Duplex Mode

Always returns a 1 for this
bit to signal Full-Duplex
Mode

returns 1

0.7

Collision Test

Always returns a 0 for this
bit to disable Collision
(COL) test

returns 0

0.6

Speed Selection (MSB)

Always returns a 1 for this
bit. Together with bit 0.13,
speed selection of 1000
Mb/s is identified.

returns 1

0.5

Unidirectional al
Enable

Enable transmitregardless
of whether a valid link has
been established provided
AN is disabled.

read/ write

0.4:0.0

Reserved

Always return 0Os, writes
ignored.

returns Os

00000

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

31

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Management Registers Channels/Modules 1-3

MDIO REGISTER 0: SGMII CONTROL CHANNELS 1-3

15 14 13 12

1 10 9 8 7 6 5

reeo [][]

13s3d
a3ads

a3ng3s3d

Figure 2-10:

319VN3 O3IN-OLNY

a3ng3s3d

31V10SI

O3IN-OLNV LHVLS3H
3IA0NW X31dna

1S31 NOISITI0D

3719VN3 TYNOILOIHIAINN

[EENYSEREX]

MDIO Register 0: SGMII Control Channels/Modules 1-3

Table 2-12: SGMII Control Register Channels/Modules 1-3 (REGISTER 0)

Bit(s)

Name

Description

Attributes

Default
Value

0.15

Reset

1 = SGMII module 1-3
Reset

0 = Normal Operation

read /write self
clearing

0.14

Reserved

Returns what is
written

read/write

0.13

Speed Selection (LSB)

Always returns a 0 for
this bit. Together with
bit 0.6, speed selection
of 1000 Mb/s is
identified.

returns 0

0.12

Auto-Negotiation Enable

1 = Enable SGMII
Auto-Negotiation
Process

0 = Disable SGMII
Auto-Negotiation
Process

read/write

0.11

Reserved

Returns what is
written

read/ write

0.10

Isolate

1 = Electrically Isolate
SGMII logic from
GMII

0 = Normal operation

read/write

0.9

Restart Auto-
Negotiation

1 = Restart
Auto-Negotiation
Process across SGMII
link

0 = Normal Operation

read /write self
clearing

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

32

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-12: SGMII Control Register Channels/Modules 1-3 (REGISTER 0)

Bit(s)

Name

Description

Attributes

Default
Value

0.8

Duplex Mode

Always returns a 1 for
this bit to signal
Full-Duplex Mode

returns 1

0.7

Collision Test

Always returns a 0 for
this bit to disable COL
test

returns 0

0.6

Speed Selection (MSB)

Always returns a 1 for
this bit. Together with
bit 0.13, speed
selection of 1000 Mb /s
is identified.

returns 1

0.5

Unidirectional Enable

Enable transmit
regardless of whether
a valid link has been
established provided
AN is disabled.

read/ write

0.4:0.0

Reserved

Always return 0s,
writes ignored

returns Os

00000

Register 1: SGMII Status Register

15 14

13 12

MDIO REGISTER 1: SGMII STATUS

REG 1 | | |

¥1-3Svd00L

X37dNad 711N4 X-3Svd00l
X31dNA 47vH X-3Sva00k

Figure 2-11:

X31dNA 11N4 S/AN0 L

X37dNA 47vH s/anoL
X37dNaA 11N4 2L-3Sva00L
X31dNA 47vH 21-3Sv400L

SNLVLS d3AN3LX3
ALITIEY TIVNOILOIHIAINN
3137dWOD 93N OLNY

NOISS3HddNS 319AVIYd 4N

17Nv4 3LON3S

ALY ©3N OLNY
SNLVLS MNIT
103130 ¥3ggavr

ALITIgYdYD d3AN3LX3

MDIO Register 1: SGMII Status Register

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

33

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-13: SGMII Status Register (REGISTER 1)

Bit(s) Name Description Attributes Default
Value
Always returns a 0 for this bit
1.15 100BASE-T4 because 100BASE-T4 is not returns 0 0
supported.
Always returns a 0 for this bit
1.14 100BASE-X Full because 100BASE-X Full Duplex is returns 0 0
Duplex
not supported.
Always returns a 0 for this bit
1.13 100BASE-X Half because 100BASE-X Half Duplex is returns 0 0
Duplex
not supported.
Always returns a 0 for this bit
1.12 10 Mb/s Full because 10 Mb/s Full Duplex is not | returns 0 0
Duplex
supported.
Always returns a 0 for this bit
1.11 10 Mb/s Half because 10 Mb/s Half Duplex is not | returns 0 0
Duplex
supported.
Always returns a 0 for this bit
1.10 100BASE-T2 because 100BASE-T2 Full Duplex is | returns 0 0
Full Duplex
not supported.
Always returns a 0 for this bit
1.9 100BASE-T2 because 100BASE-T2 Half Duplex is | returns 0 0
Half Duplex
not supported.
Always returns a 1 for this bit to
1.8 Extended Status | indicate the presence of the Extended | returns 1 1
Register (Register 15).
Unidirectional o
1.7 Ability Always returns 1, writes ignored. returns 1 1
Always returns a 1 for this bit to
1.6 2/1[11: P;ssggie indicate that Management Frame returns 1 1
PP Preamble Suppression is supported.
1 = Auto-Negotiation process
Auto—' . completed across SGMII link.
1.5 Negotiation . read only 0
Complete 0 = Auto-Negotiation process not
completed across SGMII link.
1 = A fault on the Medium has been
read only
14 R to Fault detected. 0
. emote Fau i
0 = No fault of the Medium has been self clearing
on read
detected.
Auto- Always returns a 1 for this bit to
1.3 Negotiation indicate that the SGMII core is returns 1 1
Ability capable of Auto-Negotiation.
QSGMII Product Guide www.xilinx.com 34

PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-13: SGMII Status Register (REGISTER 1) (Cont’d)

Bit(s) Name Description Attributes Default
Value
1 = SGMII Link is up
0 = SGMII Link is down
SGMII Link Latches 0 if SGMII Link Status goes read Onl}f
12 Status down. Clears to current SGMII Link | self clearing | 0
Status on read. on read
See the following Link Status section
for further details.
Always returns a 0 for this bit
1.1 Jabber Detect because Jabber Detect is not returns 0 0
supported.
Extended Always returns a 0 for th'ls bit '
1.0 o1 because no extended register set is returns 0 0
Capability
supported.
Link Status

When high, the link is valid and has remained valid after this register was last read;
synchronization of the link has been obtained and Auto-Negotiation (if enabled) has
completed.

When low, either:

¢ Avalid link has not been established; link synchronization has failed or
Auto-Negotiation (if enabled) has failed to complete.

OR

* Link synchronization was lost at some point after this register was previously read.
However, the current link status may be good. Therefore read this register a second time to
get confirmation of the current link status.

Regardless of whether Auto-Negotiation is enabled or disabled, there can be some delay in
the deassertion of Link Status following the loss of synchronization of a previously
successful link. This is due to the Auto-Negotiation state machine that requires that
synchronization is lost for an entire link timer duration before changing state. For more
information, see the 802.3 specification (the an_sync_status variable).

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

35

http://www.xilinx.com

& XILINX. Chapter 2: Core Interfaces and Management Register Space

Registers 2 and 3 (PHY IDENTIFIER)

MDIO REGISTER 2 &3 : PHY IDENTIFER

REG2

air 3INDINN
IZINVOHO

REG3 | |

ON

al INDINN
IAZINVOHO
ON 13aown

NOISINTH

HIHNLOVANNVYIN

Figure 2-12: MDIO Registers 2 and 3: (PHY IDENTIFIER)

Table 2-14: PHY Identifier (Registers 2 and 3)

Bit(s) Name Description Attributes | Default Value
215 | Orsanizationally o0 etum0s | returnsOs | 0000000000000000
Unique Identifier
Organizationally
3.15:10 ; . Always return Os returns Os 000000
Unique Identifier
3.9:4 Manufacturer Always return Os returns Os 000000
model number
3.3:0 Revision Number Always return Os returns Os 0000

Register 4: SGMII Auto-Negotiation Advertisement
MAC Mode Of Operation

MDIO REGISTER 4: SGMII AUTO-NEGOTIATION ADVERTISEMENT

15 1

REG 4

o

$.0 01901
1 21901

Figure 2-13: MDIO Register 4: SGMII Auto-Negotiation Advertisement

Table 2-15: SGMII Auto-Negotiation Advertisement (Register 4)

Bit(s) Name Description Attributes | Default Value
) . SGMII defined value sent from
4.15:0 | Allbits the MAC to the PHY. read only 0000000000000001
QSGMII Product Guide www.Xilinx.com 36

PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

PHY Mode Of Operation

MDIO REGISTER 4: SGMII AUTO-NEGOTIATION ADVERTISEMENT

15 14 13 12 11 10 9 1 0
reea | [T]] | |

I » @I O (%) P X

I o m ¢] m m

< X O 3T m 2] 4]

- Z m m m m

z 2 2% ° 2 2

A ,§ m = m m

2] o o o

4 0 o

58 8

c m

»

Figure 2-14: NMDIO Register 4: SGMII Auto-Negotiation Advertisement

Table 2-16: SGMII Auto-Negotiation Advertisement in PHY Mode (Register 4)

Bit(s) | Name Description Attributes Default
Value
This refers to the link status of the PHY
) with its link partner across the
4.15 ‘IS)‘f_ItY Link Medium. read/write | 0
atus 1=Link Up
0 = Link Down
Used by Auto-Negotiation function to
4.14 Acknowledge | indicate reception of a link partner’s read/write | 0
base or next page.
413 Reserved Always returns 0, writes ignored returns 0 0
1= Full Duplex .
4.12 Duplex Mode read/write | 0
0 = Half Duplex
11 = Reserved
411:10 | Speed 10=1Gb/s d/write | 00
A1 ee read /write
P 01 =100 Mb/s
00=10Mb/s
4.9:1 Reserved Always return 0Os returns Os | 000000000
4.0 Reserved Always returns 1 returns 1 1

Register 5: SGMII Auto-Negotiation Link Partner Ability

MDIO REGISTER 5: SGMII AUTO-NEGOTIATION LINK PARTNER

ABILITY

%5 14 13 12 11 10 9 0

reos| | [[]] [|
I » X[O (2] Py Py
I Q m [U m m
< X O T m [22] 2]
S350 O 3 g
= 2 5 2 & &
® m © 3 o o
(7]

Figure 2-15: MDIO Register 5: SGMII Auto-Negotiation Link Partner Ability

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

37

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

The Auto-Negotiation Ability Base Register (Register 5) contains information related to the
status of the link between the PHY and its physical link partner across the Medium.

Table 2-17: SGMII Auto-Negotiation Link Partner Ability Base (Register 5)

Bit(s) | Name Description Attributes Default
Value
This refers to the link status of the PHY
PHY Link with its link partner across the Medium.
5.15 . read only |1
Status 1 =Link Up
0 = Link Down
Used by Auto-Negotiation function to
5.14 Acknowledge | indicate reception of a link partner’s read only |0
base or next page
513 Reserved Always returns 0, writes ignored returns0 | 0
1= Full Duplex
512 Duplex Mode read only |0
0 = Half Duplex
11 = Reserved
10=1Gb/s
5.11:10 | Speed read only | 00
01 =100Mb/s
00=10Mb/s
5.9:1 Reserved Always return 0s returnsOs | 000000000
5.0 Reserved Always returns 1 returns1 |1

Register 6: SGMII Auto-Negotiation Expansion

REG 6

MDIO REGISTER 6: SGMII AUTO-NEGOTIATION EXPANSION

a3nyg3s3d

319v3AOVd LX3N
a3AI303y 39Vd
[CENYSERER]

Figure 2-16: MDIO Register 6: SGMII Auto-Negotiation Expansion

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

38

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-18: SGMII Auto-Negotiation Expansion (Register 6)

Bit(s) | Name Description Attributes Default Value
6.15:3 | Reserved | Always return Os returns Os 0000000000000
This bit is ignored as the core
Next Page | currently does not support next
62 Able page. This feature can be enabled returns 1 1
on request.
1= A new page has been read only
61 Page received £ cleas 0
' Received | 0 = A new page has not been st cleating on
. read
received
6.0 Reserved | Always return Os returns Os 0000000

Register 7: SGMII Auto-Negotiation Next Page Transmit

MDIO REGISTER 7: SGMII AUTO-NEGOTIATION NEXT PAGE

TRANSMIT

15 14 13 12 11 10

reer [T

39vd LX3AN
[EENYSERER]

3OVd 3OVSSIN
23903 TMONMIY
3719901

300D 39VSSAN

Figure 2-17: MDIO Register 7: SGMII Auto-Negotiation Next Page Transmit

Table 2-19: SGMII Auto-Negotiation Next Page Transmit (Register 7)

. " . Default
Bit(s) | Name Description Attributes Value(!
1 = Additional Next Page(s) will read/
7.15 | Next Page follow , 0
write
0 = Last page
7.14 Reserved Always returns 0 returns 0 0
1 = Message Page read/
7.13 Message Page . 1
0 = Unformatted Page write
1 = Comply with message read/
7.12 Acknowledge 2 . . 0
0 = Cannot comply with message | write
Value toggles between
7.1 Togsle subsequent Next Pages readonly |0

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

39

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-19: SGMII Auto-Negotiation Next Page Transmit (Register 7)

. - . Default
Bit(s) | Name Description Attributes value(
. 00000000001
Message / Message Code Field or ' read/ (Null
7.10:0 | Unformatted Unformatted Page Encoding as)
Code Field dictated by 7.13 write Message
Code)
1. This register returns the default values because the core does not support next page. The feature can be
enabled, if requested.

Register 8: SGMII Next Page Receive

15

MDIO REGISTER 8: SGMII AUTO-NEGOTIATION NEXT PAGE

RECEIVE

14 13 12 11 10

recs | | | |

3OVd LX3N

319901

JOAITMONMOVY
3OVd IOVSSIN
Z39ATTMONMOVY
3000 3FOVSSIAN

Figure 2-18: MDIO Register 8: SGMII Auto-Negotiation Next Page Receive

Table 2-20: SGMII Auto-Negotiation Next Page Receive (Register 8)

Bit(s) | Name Description Attributes | Default Value
1 = Additional Next Page(s) will
8.15 | Next Page follow read only | 0
0 = Last page
Used by Auto-Negotiation
8.14 Acknowledge function to indicate reception ofa | read only | 0
link partner’s base or next page
1 = Message Page
8.13 Message Page read only |0
0 = Unformatted Page
1 = Comply with message
8.12 Acknowledge 2 . readonly |0
0 = Cannot comply with message
Value toggles between subsequent
8.11 Toggle Next Pages readonly |0
Message / Message Code Field or
8.10:0 | Unformatted Unformatted Page Encoding as read only | 00000000000
Code Field dictated by 8.13

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

40

http://www.xilinx.com

& XILINX. Chapter 2: Core Interfaces and Management Register Space

Register 15: SGMII Extended Status

MDIO REGISTER 15: SGMII EXTENDED STATUS

15 14 13 12 11 0
reets| || []

[CENYSEREX]

X37dNA 711N4 X-3Sv49000}
X31dNa 47vH X-3Sv4a0004
X37dNA 711N4 L-3SvE0004
X37dNa 47vH L-3Sv8000L

Figure 2-19: MDIO Register 15: SGMII Extended Status

Table 2-21: SGMII Extended Status (Register 15)

Bit(s) | Name Description Attributes Default Value

Always returns a 1 for this bit
because 1000BASE-X Full Duplex | returns 1 1
is supported

1000BASE-X

15.15 Full Duplex

Always returns a 0 for this bit
1514 | JOUOBASE-X 1 o ise 1000BASE-X Half returns 0 0

Half Duplex Duplex is not supported
Always returns a 0 for this bit
15.13 1000BASE-T because 1000BASE-T Full Duplex | returns 0 0
Full Duplex | .
is not supported
Always returns a 0 for this bit
15.12 1000BASE-T because 1000BASE-T Half returns 0 0
Half Duplex .
Duplex is not supported
15:11:0 | Reserved Always return Os returns 0Os 000000000000

Register 16: SGMII Auto-Negotiation Interrupt Control

MDIO REGISTER 16: SGMII AUTO-NEGOTIATION INTERRUPT
CONTROL

15 2 1 0
REG 16 | | |

[EENYSEREN]

SNLVLS 1dNYH3LNI
319VN3 LdNHHYILNI

Figure 2-20: MDIO Register 16: SGMII Auto-Negotiation Interrupt Control

QSGMII Product Guide www.Xxilinx.com 4
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-22: SGMII Auto-Negotiation Interrupt Control (Register 16)

Bit(s)

Name

Description

Attributes

Default Value

16.15:2

Reserved

Always return Os

returns 0s

(0000000000000

16.1

Interrupt Status

1 = Interrupt is asserted
0 = Interrupt is not asserted

If the interrupt is enabled,
this bit is asserted on
completion of an
Auto-Negotiation cycle
across the SGMII link; it is
only cleared by writing 0 to
this bit.

If the Interrupt is disabled,
the bit is set to 0.

Note: The an_interrupt port
of the core is wired to this bit.

read/
write

0

16.0

Interrupt Enable

1 = Interrupt enabled
0 = Interrupt disabled

read/

write

Register 18: SGMII Generic Control

MDIO REGISTER 18: SGMII GENERIC CONTROL

o

REG 18

Figure 2-21:

[EENYSEREN]

379vN3
ALIIVASIA ONINNNY

MDIO Register 18: SGMII Generic Control

Table 2-23: SGMII Generic Control (Register 18)

Bit(s) Name Description Attributes | Default Value
18.15:1 | Reserved | Always return Os returns Os | 000000000000000
. 1 =Running Disparity Checking

RL.IIlIllI‘.lg enabled read/
18.0 Disparity 0

Enable 0 = Running Disparity Checking | write

disabled
QSGMII Product Guide www.xilinx.com 42

PG029 January 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Core Interfaces and Management Register Space

QSGMII Without Optional Auto-Negotiation

The registers provided are duplicated for each instance of the SGMII module in this core.
The registers provided for SGMII operation in this core are adaptations of those defined in
clauses 22 and 37 of the IEEE 802.3-2008 specification. In a QSGMII implementation, two
different types of links exist. They are the QSGMII link between the MAC and PHY
(QSGMII link) and the link across the Ethernet Medium itself (Medium). Information
about the state of the QSGMII link is available in the registers that follow.

The state of the link across the Ethernet Medium itself is not directly available when
QSGMII Auto-Negotiation is not present. For this reason, the status of the link and the
results of the PHYs Auto-Negotiation (for example, Speed and Duplex mode) must be
obtained directly from the management interface of the connected PHY module. Registers
at undefined addresses are read-only and return Os.

Table 2-24: MDIO Registers for SGMII without Optional Auto-Negotiation

Register Address | Register Name

0 SGMII Control Register

1 SGMII Status Register

2,3 PHY Identifier

15 SGMII Extended Status Register
18 SGMII Generic Control

Register 0: SGMII Control Register
Management Registers Channel/Module 0

MDIO REGISTER 0: SGMII CONTROL CHANNEL 0

%5 14 13 12 11 10 9 8 7 6 5 4 0

reco| | | [P TT]
x O v >» VW »p N G O 0 C)
m M T T O o M ¢ O 1 Z m
(/JUJ[TI—!E,—U)‘UI_I'HG 2]
m m m O > d o C m = m
- Zx 0o L 0 3 > m g O 3 X
< I m "™ X = m <
m m O 3 o o) m
o ® O > = Z 3]

13 §$84 3

£ = o m o £

@ : 4 F

m

m ® Z

>

[or]

—

m

Figure 2-22: MDIO Register 0: SGMII Control Register Channel/Module 0

QSGMII Product Guide www.xilinx.com 43
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-25: SGMII Control Register Channel/Module 0 (REGISTER 0)

Bit(s)

Name

Description

Attributes

Default
Value

0.15

Reset

1 = SGMII module 0 Reset

0 = Normal Operation

read/write
self clearing

0.14

Reserved

Returns what is written

read/write

0.13

Speed Selection (LSB)

Always returns a 0 for this
bit. Together with bit 0.6,
speed selection of 1000
Mb/s is identified.

returns 0

0.12

Auto-Negotiation
Enable

1 = Enable SGMII
Auto-Negotiation Process

0 = Disable SGMII
Auto-Negotiation Process

read/write

0.11

Power Down

1 = Power down
0 = Normal operation

When set to 1, the
device-specific transceiver
is placed in a low-power
state. This bit requires a
reset (see bit 0.15) to clear.

read/ write

0.10

Isolate

1 = Electrically Isolate
SGMII logic from GMII

0 = Normal operation

read/write

0.9

Restart
Auto-Negotiation

1 = Restart
Auto-Negotiation Process
across SGMII link

0 = Normal Operation

read/write
self clearing

0.8

Duplex Mode

Always returns a 1 for this
bit to signal Full-Duplex
Mode.

returns 1

0.7

Collision Test

Always returns a 0 for this
bit to disable COL test.

returns 0

0.6

Speed Selection (MSB)

Always returns a 1 for this
bit. Together with bit 0.13,
speed selection of 1000
Mb/s is identified.

returns 1

0.5

Unidirectional al
Enable

Enable transmit regardless
of whether a valid link has
been established provided
AN is disabled.

read/write

0.4:0.0

Reserved

Always return Os, writes
ignored.

returns Os

00000

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

44

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Management Registers Channels/Modules 1-3

MDIO REGISTER 0: SGMII CONTROL CHANNELS 1-3

15 14 13 12 11 10 9 8 7 6 5 4 0

T D v > A B o » c
mh S Zm2 a2 8 % S a
(2] 2} m — [0} — [} v} - m S w
m m m o m > = — - m = m
- 3 ©o L I 5 =2 M s O I P!
< < m X X = m <
m m m 4z 9 ¢} m
o ® o :(C> 3 3 3 o

g = 9 m g

> o m £

& p = 2

m

m ® 2

>

@

-

m

Figure 2-23: MDIO Register 0: SGMII Control Channels/Modules 1-3

Table 2-26: SGMII Control Register Channels/Modules 1-3 (REGISTER 0)

Bit(s) Name Description Attributes Default
Value

1 = SGMII module 1-3 Reset | read /write

0.15 Reset . . 0
0 = Normal Operation self clearing

0.14 Reserved Returns what is written read /write 0
Always returns a 0 for this

. bit. Together with bit 0.6,

0.13 Speed Selection (LSB) speed selection of 1000 returns 0 0
Mb/s is identified.
1 = Enable SGMII

012 Auto-Negotiation Auto-.Negotiation Process read /write 1

Enable 0 = Disable SGMII

Auto-Negotiation Process

0.11 Reserved Returns what is written read/ write 0
1 = Electrically Isolate

0.10 Isolate SGMII logic from GMII read /write 1
0 = Normal operation
1 = Restart

0.9 Restart Auto- Auto-Negotiation Process read/write 0

: Negotiation across SGMII link self clearing

0 = Normal Operation
Always returns a 1 for this

0.8 Duplex Mode bit to signal Full-Duplex returns 1 1
Mode

. Always returns a 0 for this

0.7 Collision Test bit to disable COL test returns 0 0
Always returns a 1 for this

0.6 Speed Selection (MSB) bit. Together with bit 0.13, returns 1 1

speed selection of 1000 Mb/
s is identified.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

45

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-26: SGMII Control Register Channels/Modules 1-3 (REGISTER 0) (Contd)

Bit(s) Name Description Attributes Default
Value
Enable transmit regardless
e of whether a valid link has .
0.5 Unidirectional Enable been established provided read /write 0
AN is disabled
0.4:0.0 | Reserved Always return Os, writes returns 0Os 00000
ignored
Register 1: SGMII Status Register
MDIO REGISTER 1: SGMII STATUS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
et | [LTI TP TTT]
183233855358 583%
A R EEEE R
m m m m T m m © m O m s 3§ A O
L% x €2 45 439 285386 3 onm
"2 3I5gr:IgofgEss oo
FLcgezr3yE 5 cE 83
g g @ g e L oc @ 2 g
AR EREEE :
g b p 23 <
2
Figure 2-24: MDIO Register 1: SGMII Status Register
Table 2-27: SGMII Status Register (REGISTER 1)
Bit(s) | Name Description Attributes Default
Value
Always returns a 0 for this bit because
1.15 100BASE-T4 100BASE-T4 is not supported returns 0 0
Always returns a 0 for this bit because
1.14 100BASE-X 100BASE-X Full Duplex is not returns 0 0
Full Duplex
supported
Always returns a 0 for this bit because
1.13 100BASE-X 100BASE-X Half Duplex is not returns 0 0
Half Duplex
supported
112 10 Mb/s Full | Always returns a 0 for this bit because roturns 0 0
’ Duplex 10 Mb/s Full Duplex is not supported
111 10 Mb/s Half | Always returns a 0 for this bit because returns 0 0
’ Duplex 10 Mb/s Half Duplex is not supported
Always returns a 0 for this bit because
1.10 100BASE-T2 100BASE-T2 Full Duplex is not returns 0 0
Full Duplex
supported

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

46

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Table 2-27: SGMII Status Register (REGISTER 1) (Cont’d)

Bit(s) | Name Description Attributes Default
Value
Always returns a 0 for this bit because
1.9 100BASE-T2 14 00B ASE-T2 Half Duplex is not returns 0 0
Half Duplex
supported
Extended Always returns a 1 for this bit to indicate
1.8 Status the presence of the Extended Register | returns 1 1
(Register 15)
1.7 Efi%ﬁfglon Always returns 1, writes ignored returns 1 1
Always returns a 1 for this bit to indicate
1.6 ME Prean.lble that Management Frame Preamble returns 1 1
Suppression Lo
Suppression is supported
1 = Auto-Negotiation process
Auto-. . completed across SGMII link
1.5 Negotiation o read only 0
Complete 0 = Auto-Negotiation process not
completed across SGMII link
1 = A fault on the Medium has been
detected read only
14 Remote Fault i 0
0 = No fault of the Medium has been (s)(;lfrieczlirmg
detected
Auto- Always returns a 1 for this bit to indicate
1.3 Negotiation | that the SGMII core is capable of returns 1 1
Ability Auto-Negotiation
1 = SGMII Link is up
0 = SGMII Link is down
SGMII Link | Latches 0 if the SGMII Link Status goes read only
12 Status down. Clears to current SGMII Link self clearing | 0
Status on read. on read
See the following Link Status section for
further details.
Always returns a 0 for this bit because
11 Jabber Detect Jabber Detect is not supported returns 0 0
10 Extended Always returns a 0 for this bit because returns 0 0
’ Capability no extended register set is supported
QSGMII Product Guide www.xilinx.com 47

PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Link Status

When high, the link is valid and has remained valid after this register was last read;
synchronization of the link has been obtained and Auto-Negotiation (if enabled) has
completed.

When low, either:

* Avalid link has not been established; link synchronization has failed or
Auto-Negotiation (if enabled) has failed to complete.
OR

e Link synchronization was lost at some point because this register was previously

read. However, the current link status may be good. Therefore read this register a second
time to get confirmation of the current link status.

Regardless of whether Auto-Negotiation is enabled or disabled, there can be some delay in
the deassertion of Link Status following the loss of synchronization of a previously
successful link. This is due to the Auto-Negotiation state machine which requires that
synchronization is lost for an entire link timer duration before changing state. For more
information, see the 802.3 specification (the an_sync_status variable).

Registers 2 and 3 (PHY IDENTIFIER)

MDIO REGISTER 2 &3 : PHY IDENTIFER

REG 2

dl 3NDINN
3ZINVOHO

15 10 9 4 3 0
REG 3

ai 3INDINN
3ZINVOHO

ON 13dOn
HIHNLOVANNYIN
ON

NOISIAIY

Figure 2-25: MDIO Register 2 and 3: PHY Identifier

Table 2-28: PHY Identifier (Registers 2 and 3)

Bit(s) | Name Description Attributes | Default Value
Organizationally Unique

2.15:0 . Always return Os | returns Os 0000000000000000
Identifier

3.15:10 Orgam; ationally Unique Always return Os | returns Os 000000
Identifier

3.9:4 Manufacturer model Always return Os | returns Os 000000
number

3.3:0 Revision Number Always return Os | returns Os 0000

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 48

http://www.xilinx.com

& XILINX.

Chapter 2: Core Interfaces and Management Register Space

Register 15: SGMII Extended Status

MDIO REGISTER 15: SGMII EXTENDED STATUS

15 14 13 12 1 0
rects| | | []

[EENYSERER]

X31dNa 71N4 X-3Sv4000L
X37dNA 47vH X-3Sv8000}
X37dNaA 77N4 1-3Sv40001
X31dNA 47vH L-3Sv80004

Figure 2-26: NMDIO Register 15: SGMII Extended Status

Table 2-29: SGMII Extended Status (Register 15)

Bit(s) | Name Description Attributes | Default Value
Always returns a 1 for this bit
15.15 1000BASE-X because 1000BASE-X Full Duplex | returns1 |1
Full Duplex -
is supported
Always returns a 0 for this bit
15.14 1000BASE-X because 1000BASE-X Half Duplex | returns0 |0
Half Duplex .
is not supported
Always returns a 0 for this bit
15.13 1000BASE-T because 1000BASE-T Full Duplex | returns0 | 0
Full Duplex .
is not supported
Always returns a 0 for this bit
15.12 1000BASE-T because 1000BASE-T Half Duplex | returns0 | 0
Half Duplex .
is not supported
15:11:0 | Reserved Always return Os returns Os | 000000000000
Register 18: SGMII Generic Control (Register 18)
MDIO REGISTER 18: SGMIl GENERIC CONTROL
15 10
REG 18 | |
f 2
m z
m z
g
2
3

Figure 2-27: MDIO Register 18: SGMII Generic Control

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 49

http://www.xilinx.com

& XILINX. Chapter 2: Core Interfaces and Management Register Space

Table 2-30: SGMII Generic Control (Register 18)

Bit(s) | Name Description Attributes | Default Value
18.15:1 | Reserved | Always return Os returns Os | 000000000000000
. 1 =Running Disparity Checking

Rl..ll’ll’lll’.lg enabled read/
18.0 Disparity 0

Enable 0 = Running Disparity Checking | write

disabled
QSGMII Product Guide www.xilinx.com 50

PG029 January 18, 2012

http://www.xilinx.com

& XILINX.
Chapter 3

Customizing and Generating the Core

The QSGMII core is generated using the CORE Generator™ tool. This chapter describes
the GUI options used to generate and customize the core.

GUI

Core Customization Screen

Figure 3-1 displays the QSGMII customization screen, used to set core parameters and
options. For help starting and using CORE Generator software on your system, see the
documentation included with the ISE® design suite, including the CORE Generator Guide,
at www.xilinx.com/support/software_manuals.htm.

¥ osGmil E“@@
Wigw
1P Symbol X it

- "-‘ Iﬁg'c .*P'! QSGMII wilinx.com:ipigegrmii: 1.1

RESET—3 > MGT_RY_RESET

—>MGT_TH_RESET .
Component Name |gsgmii_v1_1
USERCLK —3

USERCLKZ —3 — DCM_LOCKED Select Mode
RURECCLK —3 @& MAC Maode O PHY Made
—MDC_CHO
T R bt e GWILMIT with Clock Enables to interface with Xilinx
i) i i Tri Mode Ethernet MaC LogiCore
GMI_TH_EN_CHD — > MOI0_0UT_CHo
GMI_TH_ER_CH) — |3 MOI0_TRI_CHD Management Options
GIL_RAD_CHO 0] e o FHTAD_CHO[4:0]
MDIO Management Interface
Ghll_R)C_DV_CHD ¢—]
BAII_RY_ER_CHD 6—] e CONFIGURATION_VECTOR_CHO[Autn Negotiation
GMI_ISOLETE_CHD ¢—f K— CONFIGURATION_ALID_CHO

= STATUS_VECTOR_CHO[15.0]
GUIL_TD_CH1 0] e

GMII_TH_EN_CH1 —3 —MDC_CH1
GMII_TX_ER_CH1 —3 f—MDI0_IN_CHI
GMII_RXD_CH1 [7:0)] s —>MDI0_0UT_CHI
Gll_RI_DY CHI 6—] > MOIO_TRI_CHI
BMI_R}_ER_CH1 ¢— e P HYAD_CH1 [4:0]
- it ten e rute) - | I Generate I l Cancel I I Help

Figure 3-1: Core Customization Screen

Component Name

The component name is used as the base name of the output files generated for the core.
Names must begin with a letter and must be composed from the following characters: a
through z, 0 through 9 and “_.”

QSGMII Product Guide www.xilinx.com 51
PG029 January 18, 2012

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

& XILINX. Chapter 3: Customizing and Generating the Core

Select Mode

QSGMII has two main modes of operation.

e MAC Mode

When configured in this mode, QSGMII interfaces with Xilinx® CORE Generator tool
Tri-mode Ethernet IP on the GMII client side.

e PHY Mode

When configured in this mode, QSGMII can interface with third-party Ethernet IPs.
The client interface can further be selected as GMII or MIL

MDIO Management Interface

Select this option to include the MDIO Management Interface to access the PCS
Configuration Registers. An additional configuration interface is provided independent of
the MDIO Management Interface to program configuration registers 0 and 4. MDIO
Management Interface is selected by default.

Auto-Negotiation
Select this option to include Auto-Negotiation functionality with the core. Auto-

Negotiation functionality is selected by default.

Select Interface Screen

Figure 3-2 displays the QSGMII Interface selection screen. This screen is only displayed if
“PHY” Mode is selected in the “Select Mode” section in the initial customization screen

% osamil o)X
=0
1P Symbol ax P
| logit SGMII wiling, corm:ipigsgmii Ll
FRESET —3 | MGT_Ri_RESET
> MBT_T_RESET
T Select Interface
USERCLK —
USERCLKZ —3 k— Dt LOCKED @ GMI
RERECCLE — (@R
K—MDC_CHO G Interface is selected,
GMIL_THDL_CHO 7 o] s K— MOIO_IN_CHD
GMI_TH_EN_CHD — > MOI0_0UT_CHo
GMI_TH_ER_CHI — |3 MOID_TRI_CHD
GII_RXD_CHOF-0] e e FHYAD_CHO:0]

Ghl_R)_DV_CHD ¢—]
GMI_RY_ER_CHD 6—1 e CONFIGURATION_VECTOR_CHOR

GMI_ISOLETE_CHD ¢—] K— CONFIGURATION_MALID_CHD

| STATUS_VECTOR_CHO[15:0]

GMII_THO_GH1 0] s
GMI_TH_EN_CH1 —f —MDC_CH1

GMII_TX_ER_CH1 —3 k—nDI0_IN_CH1
GMII_RXD_CH1 [7:0] s t—> MDIO_OUT_CHI
GhI_RI_D CHI 6—] 2 MOIO_TRI_CHI
BMI_R}_ER_CH1 ¢— N P YAD_CH1 [4:01]
- anan 1ennare cure | - & Page 20f2 Mext> Generate J [Cancel] l Help

Figure 3-2: Select Interface Screen

QSGMII Product Guide www.xilinx.com 52
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 3: Customizing and Generating the Core

Parameter Values in the XCO File

XCO file parameters are used to run the CORE Generator tool from the command line. The

text in an Xilinx CORE Generator (XCO) file is not case sensitive.

Table 3-1 describes the XCO file parameters and values and summarizes the GUI defaults.

The following is an example of the CSET parameters in an XCO file.

CSET component_name=gsgmii_vl_1
CSET mode=MAC_MODE

CSET management_interface=true
CSET auto_negotiation=true
CSET gmii_or_mii_mode=GMII

Table 3-1: Parameters

Parameter XCO File Values Defa.ult Gul
Setting

mponent nam ASCII text starting with a letter and based upon i vl 1

component_name the following character set: a..z, 0.9 and _ qsgmiL_Vvi_

One of the following keywords: MAC_MODE,

mode PHY MODE MAC_MODE

management_interface | One of the following keywords: true, false true

auto_negotiation One of the following keywords: true, false true

gmii_or_mii_mode One of the following keywords: GMII, MII GMIL

Output Generation

See Directory and File Contents in Chapter 6 for details about the files and directories

created when generating the core.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

53

http://www.xilinx.com

& XILINX.

Chapter 4

Designing with the Core

This chapter provides an introduction about creating your own designs using the QSGMII
core.

Design Guidelines

Understand the Features and Interfaces Provided by the Core Netlist

Chapter 1, Overview introduces the features and Chapter 2, Core Interfaces and
Management Register Space introduces the interfaces and registers that are present in the
logic of the QSGMII netlist. This chapter assumes a working knowledge of the IEEE
802.3-2008 Ethernet specification, in particular the Gigabit Ethernet 1000BASE-X sections:
clauses 34 through to 37 and SGMII and QSGMII Cisco Specifications.

Customize and Generate the Core

Generate the core with your desired options using the CORE Generator™ tool, as
described in Chapter 3, Customizing and Generating the Core.

Examine the Example Design Provided with the Core

An HDL example design built around the core is provided through the CORE Generator
tool and allows for a demonstration of core functionality using either a simulation package
or in hardware if placed on a suitable board.

Example designs are provided depending upon the core customization options that have
been selected. See Example Design in Chapter 6.

Before implementing the core in your application, examine the example design provided
with the core to identify the steps that can be performed:

1. Edit the HDL top level of the example design file to change the clocking scheme, add
or remove IOBs as required, and replace the GMII IOB logic with user-specific
application logic (for example, an Ethernet MAC).

2. Synthesize the entire design.

The Xilinx Synthesis Technology (XST) script and Project file in the / implement
directory can be adapted to include any added user HDL files.

3. Run the implement script in the /implement directory to create a top-level netlist for
the design.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 54

http://www.xilinx.com

& XILINX.

Chapter 4: Designing with the Core

The script also runs the Xilinx tools map, par, and bitgen to create a bitstream that
can be downloaded to a Xilinx device. SIMPRIM-based simulation models for the
entire design are also produced by the implement scripts.

4. Download the bitstream to a target device.

Implement the QSGMII Core in Your Application

Before implementing your application, examine the example design delivered with the
core for information about the following:

¢ Instantiating the core from HDL

¢ Connecting the physical-side interface of the core

® Deriving the clock management logic

It is expected that the block-level module from the example design will be instantiated

directly into customer designs rather than the core netlist itself. The block level contains
the core and a completed physical interface.

Write an HDL Application

After reviewing the example design delivered with the core, write an HDL application that
uses single or multiple instances of the block level module for the QSGMII core.

Synthesize your Design

Synthesize your entire design using the desired synthesis tool. The QSGMII core is
pre-synthesized and delivered as an NGC netlist—for this reason, it appears as a black box
to synthesis tools.

Create a Bitstream

Run the Xilinx tools map, par, and bitgen to create a bitstream that can be downloaded to
a Xilinx device. The UCF produced by the CORE Generator tool should be used as the basis
for your User Constraint File (UCF) and care must be taken to constrain the design
correctly. See Chapter 5, Constraining the Core for more information.

Simulate and Download your Design

After creating a bitstream that can be downloaded to a Xilinx device, simulate the entire
design and download it to the desired device.

Know the Degree of Difficulty

An QSGMII core is challenging to implement in any technology and as such, all QSGMII
core applications require careful attention to system performance requirements.
Pipelining, logic mapping, placement constraints, and logic duplication are all methods
that help boost system performance.

Keep it Registered

To simplify timing and to increase system performance in an FPGA design, keep all inputs
and outputs registered between the user application and the core. All inputs and outputs
from the user application should come from, or connect to, a flip-flop. While registering
signals may not be possible for all paths, it simplifies timing analysis and makes it easier
for the Xilinx tools to place and route the design.

QSGMII Product Guide www.xilinx.com 55
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 4: Designing with the Core

Recognize Timing Critical Signals

The UCF provided with the example design for the core identifies the critical signals and
the timing constraints that should be applied. See Chapter 5, Constraining the Core for
more information.

Use Supported Design Flows

The core is pre-synthesized and is delivered as an NGC netlist. The example
implementation scripts provided currently uses ISE® v13.4 tools as the synthesis tool for
the HDL example design delivered with the core. Other synthesis tools can be used for the
user application logic. The core will always be unknown to the synthesis tool and should
appear as a black box. Post synthesis, only ISE v13.4 tools are supported.

Make Only Allowed Modifications

Clocking

The QSGMII core should not be modified. Modifications can have adverse effects on
system timing and protocol compliance. Supported user configurations of the QSGMII
core can only be made by selecting the options from within the CORE Generator tool when
the core is generated. See Chapter 3, Customizing and Generating the Core.

For clocking constraints see Chapter 5, Constraining the Core.
For clocking information on client interface, see Clock Generation Module in Chapter 7.

For clocking information on transceiver interface, see Chapter 8, Using the Transceiver.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 56

http://www.xilinx.com

& XILINX.
Chapter 5

Constraining the Core

This chapter defines the constraint requirements of the QSGMII core. An example UCF is
provided with the HDL example design for the core to implement the constraints defined
in this chapter.

Device, Package, and Speed Grade Selections

The QSGMII core can be implemented in Virtex®-7 and Kintex™-7 devices. When
selecting a device, be aware of the following considerations:

¢ Device must be large enough to accommodate the core.
* Device must contain a sufficient number of IOBs.

* -1 speed grade for Virtex-7 and Kintex-7 devices

I/O Location Constraints

No specific I/O location constraints are required.

However, when employing BUFIO and BUFR regional clock routing (Virtex-7 and Kintex-7
devices), ensure that a BUFIO capable clock input pin is selected for input clock sources,
and that all related input synchronous data signals are placed in the respective BUFIO
region. The device user guide should be consulted.

Placement Constraints

No specific placement constraints are required.
Transceiver Placement

Virtex-7 FPGA GTX Transceivers

The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from the UCF are copied into the following
descriptions to serve as examples and should be studied with the HDL source code for the
example design. Also see the 7 Series FPGAs GTX Transceivers User Guide.

QSGMII Product Guide www.xilinx.com 57
PG029 January 18, 2012

http://www.xilinx.com

& XILINX. Chapter 5: Constraining the Core

Transceiver Placement Constraint

The provided UCF uses placement constraints to specify the serial transceiver that is used
when the core is implemented. This can be moved around according to the application.

INST
"core_wrapper?transceiver_inst?gtwizard_inst?gt0_gtwizard_i?gtxe2_i"
LOC = "GTXE2_CHANNEL_XO0Y1"

Clock Period Constraints

The gtrefclk clockis provided to the GTX transceiver. It is a high-quality reference clock
with a frequency of 125 MHz and should be constrained.

The txoutclk clock of frequency 125 MHz is provided by the GTX transceiver for the
transmit path which is placed onto global clock routing and is input back into the GTXE2
transceiver on the user interface clock ports txusrclk and txusrclk2. This clock also
clocks the core logic and TX PCS logic of the transceiver.

The rxrecclk clock of frequency 125 MHz is provided by the GTX transceiver for the
receiver path which is placed onto global clock routing and is input back into the GTXE2
transceiver on the user interface clock ports rxusrclk and rxusrclk2.

#***‘k*‘k*‘k*‘k**********‘k*‘k***‘k’k*~k***~k***‘k*‘k***‘k’k*’k*’k*’k***‘k*‘k*‘k

PCS/PMA Clock period Constraints: please do not relax *

#***

NET "gtrefclk" TNM_NET = "gtrefclk";

TIMESPEC "ts_gtrefclk" = PERIOD "gtrefclk" 8 ns HIGH 50 %;
NET "txoutclk" TNM_NET = "txoutclk";

TIMESPEC "TS_txoutclk" = PERIOD "txoutclk" 8 ns HIGH 50 %;
NET "core_wrapper/gsgmii_core/rxrecclk" TNM_NET = "rxrecclk";
TIMESPEC "ts_rxrecclk" = PERIOD "rxrecclk" 8 ns HIGH 50 %;

GTX Transceiver Attributes

The Virtex-7 FPGA GTX transceiver has many attributes that are set directly from the HDL
source code for the transceiver wrapper file delivered with the example design. These can
be found in the gtwizard_gt.vhd file (for VHDL design entry) or the gtwizard_gt.v file (for
Verilog design entry); these files were generated using the 7 series FPGA transceiver
wizard. To change the attributes, re-run the wizard.

Kintex-7 FPGA GTX Transceivers

The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from the UCF are copied into the following
descriptions to serve as examples, and should be studied with the HDL source code for the
example design. Also see the 7 Series FPGAs GTX Transceivers User Guide.

QSGMII Product Guide www.xilinx.com 58
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 5: Constraining the Core

Transceiver Placement Constraint

The provided UCF uses placement constraints to specify the serial transceiver that is used
when the core is implemented. This can be moved around according to the application.

INST
"core_wrapper?transceiver_inst?gtwizard_inst?gt0_gtwizard_i?gtxe2_i"
LOC = "GTXE2_CHANNEL_X0Y10"

Clock Period Constraints

The gtrefclk clockis provided to the GTX transceiver. It is a high-quality reference clock
with a frequency of 125 MHz and should be constrained.

The txoutclk clock of frequency 125 MHz is provided by the GTX transceiver for the
transmit path which is placed onto global clock routing and is input back into the GTXE2
transceiver on the user interface clock ports txusrclk and txusrclk2. This clock also
clocks the core logic and TX PCS logic of the transceiver.

The rxrecclk clock of frequency 125 MHz is provided by the GTX for the receiver path
which is placed onto global clock routing and is input back into the GTXE2 transceiver on
the user interface clock ports rxusrclk and rxusrclk2.

#***‘k*‘k*‘k*‘k*********‘k‘k*‘k‘k*‘k‘k’k*~k***~k***‘k*‘k***‘k’k*’k*’k*’k***‘k*‘k*‘k

PCS/PMA Clock period Constraints: please do not relax *

#***

NET "gtrefclk" TNM_NET = "gtrefclk";

TIMESPEC "ts_gtrefclk" = PERIOD "gtrefclk" 8 ns HIGH 50 %;
NET "txoutclk" TNM_NET = "txoutclk";

TIMESPEC "TS_txoutclk" = PERIOD "txoutclk" 8 ns HIGH 50 %;
NET "core_wrapper/gsgmii_core/rxrecclk" TNM_NET = "rxrecclk";
TIMESPEC "ts_rxrecclk" = PERIOD "rxrecclk" 8 ns HIGH 50 %;

GTX Transceiver Attributes

The Kintex-7 FPGA GTX transceiver has many attributes that are set directly from the HDL
source code for the transceiver wrapper file delivered with the example design. These can
be found in the gtwizard_gt.vhd file (for VHDL design entry) or the gtwizard_gt.vhd.v file
(for Verilog design entry); these files were generated using the 7 series FPGA transceiver
wizard. To change the attributes, re-run the wizard.

Constraints When Using External GMII/MII

The constraints defined in this section are used when the core is operated in
“PHY_MODE".

Clock Period Constraints

The core has four instances of SGMII cores. These constraints are valid only when the core
is generated with the MODE parameter set to “PHY_MODE” and the Interface parameter
set to “GMII” in the GUL When implementing an external GMII, the Transmitter Elastic
Buffer delivered with the example design (or similar logic) must be used. The input
transmitter GMII signals are then synchronous to their own clock domain (gtx_clk_chx
is used in the example design). These clocks must be constrained for a clock frequency of
125 MHz. The following UCF syntax shows the necessary constraints being applied to the
example design.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 59

http://www.xilinx.com

& XILINX.

Chapter 5: Constraining the Core

#**k****k*********

GMII GTX transceiver CLK for clocking in GMII TX Interface *
#***

NET "gtx_ clk_ch0" TNM_NET = "gtx clk chO0";
TIMESPEC "ts_gtx_clk ch0" = PERIOD "gtx clk_chO" 8 ns HIGH 50 %;
NET "gtx_clk _chl" TNM_NET = "gtx_clk_chl";
TIMESPEC "ts_gtx_clk_chl" = PERIOD "gtx_clk_chl" 8 ns HIGH 50 %;
NET "gtx_ clk_ch2" TNM_NET = "gtx clk ch2";
TIMESPEC "ts_gtx clk ch2" = PERIOD "gtx_clk_ch2" 8 ns HIGH 50 %;
NET "gtx_clk_ch3" TNM_NET = "gtx_clk_ch3";
TIMESPEC "ts_gtx_clk _ch3" = PERIOD "gtx_clk_ch3" 8 ns HIGH 50 %;

GMII/MII IOB Constraints

The following constraints target the flip-flops that are inferred in the top-level HDL file
for the example design. These constraints are defined for receive signals; the transmit
GMII/MII interface passes through IDELAY modules to adjust for latency. See GMII

Input Setup /Hold Timing. Constraints are set to ensure that these are placed in IOBs.

#**k****k*********

GMII Receiver Constraints: place flip-flops in IOB *
#***
INST "gmii_rxd_chO*" 1IOB = true;
INST "gmii_rx_dv_chO0" IOB = true;
INST "gmii_rx_er_chO" IOB = true;

INST "gmii_rxd_chl*" 1IOB = true;
INST "gmii_rx_dv_chl" IOB = true;
INST "gmii_rx_er_chl" IOB = true;

INST "gmii_rxd_ch2*" 1IOB = true;
INST "gmii_rx_dv_ch2" IOB = true;
INST "gmii_rx_er_ch2" IOB = true;

INST "gmii_rxd_ch3*" 1IOB = true;
INST "gmii_rx_dv_ch3" IOB = true;
INST "gmii_rx_er_ch3" IOB = true;

Virtex-7 devices support GMII at 3.3 V or lower only in certain parts and packages. See
the Virtex-7 device documentation. GMII/MII by default is supported at 3.3 V and the
UCEF contains the following syntax. Use this syntax together with the device I/O
Banking rules.

#***

GMII IOSTANDARD Constraints: please select an I/O *
Standard (LVTTL is suggested). *

#***

INST "gmii_txd_chO<?>" IOSTANDARD = LVCMOS33;
INST "gmii_tx_en_ch0" IOSTANDARD = LVCMOS33;
INST "gmii_tx_er_chO" IOSTANDARD = LVCMOS33;
QSGMII Product Guide www.Xxilinx.com 60

PG029 January 18, 2012

http://www.xilinx.com

& XILINX. Chapter 5: Constraining the Core

INST "gmii_rxd_chO<?>" TOSTANDARD = LVCMOS33;
INST "gmii_rx_dv_chO" TOSTANDARD = LVCMOS33;
INST "gmii_rx_er_chO" TOSTANDARD = LVCMOS33;
INST "gmii_txd_chl<?>" TOSTANDARD = LVCMOS33;
INST "gmii_tx_en_chl" TOSTANDARD = LVCMOS33;
INST "gmii_tx_er_chl" TOSTANDARD = LVCMOS33;
INST "gmii_rxd_chl<?>" TOSTANDARD = LVCMOS33;
INST "gmii_rx_dv_chl" TOSTANDARD = LVCMOS33;
INST "gmii_rx_er_chl" TOSTANDARD = LVCMOS33;
INST "gmii_txd_ch2<?>" TOSTANDARD = LVCMOS33;
INST "gmii_tx_en_ch2" TOSTANDARD = LVCMOS33;
INST "gmii_tx_er_ch2" TOSTANDARD = LVCMOS33;
INST "gmii_rxd_ch2<?>" TOSTANDARD = LVCMOS33;
INST "gmii_rx_dv_ch2" TIOSTANDARD = LVCMOS33;
INST "gmii_rx_er_ch2" TIOSTANDARD = LVCMOS33;
INST "gmii_txd_ch3<?>" TOSTANDARD = LVCMOS33;
INST "gmii_tx_en_ch3" TOSTANDARD = LVCMOS33;
INST "gmii_tx_er_ch3" TIOSTANDARD = LVCMOS33;
INST "gmii_rxd_ch3<?>" TIOSTANDARD = LVCMOS33;
INST "gmii_rx_dv_ch3" TOSTANDARD = LVCMOS33;
INST "gmii_rx_er_ch3" TOSTANDARD = LVCMOS33;
INST "gtx_ clk _chO" TOSTANDARD = LVCMOS33;
INST "gtx clk chl" TOSTANDARD = LVCMOS33;
INST "gtx_clk ch2" TOSTANDARD = LVCMOS33;
INST "gtx_clk_ch3" TOSTANDARD = LVCMOS33;

GMII Input Setup/Hold Timing

gk N AT N

gmii_txd_chx[7:0]
gmii_tx_en_chx
gmii_tx_er_chx

teetup B _ 14— | thold

Figure 5-1: Input GMII Timing Specification
Figure 5-1 and Table 5-1 illustrate the setup and hold time window for the input GMII

signals. These are the worst-case data valid window presented to the FPGA device pins.

Observe that there is, in total, a 2 ns data valid window of guaranteed data that is
presented across the GMII input bus. This must be correctly sampled by the FPGA devices.

Table 5-1: Input GMII Timings

Symbol Min Max Units
tSETUP 2.00 - ns
tHOLD 0.00 - ns
QSGMII Product Guide www.Xxilinx.com 61

PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 5: Constraining the Core

Virtex-7 and Kintex-7 Devices

Figure C-2 illustrates the GMII input logic provided by the example design for the Virtex-7
and Kintex-7 family.

Figure C-2 illustrates the MII input logic provided by the example design for the Virtex-7
and Kintex-7 family.

IODELAY elements are instantiated on the GMII/MII data input path as illustrated. Fixed
tap delays are applied to these IODELAY elements to delay the GMII/MII input data
signals so that data is correctly sampled at the IOB IDDR registers, thereby meeting GMIL/
MII input setup and hold timing constraints.

The number of tap delays are applied using the following UCF syntax.
#***

To Adjust GMII Tx Input Setup/Hold Timing *
#***‘k*****************************~k*‘k***‘k***‘k***************

These constraints will be set at a later date when device speed files
have matured

INST "delay_gmii_tx_en_chO" IDELAY VALUE = 0;
INST "delay_gmii_tx_er_chO" IDELAY_VALUE = 0

1

INST "gmii_data_bus_ch0[7].delay_gmii_txd_chO" IDELAY_ VALUE = 0;
INST "gmii_data_bus_ch0[6].delay_gmii_txd_chO" IDELAY_VALUE = 0;
INST "gmii_data_bus_ch0[5].delay_gmii_txd_chO" IDELAY_VALUE = 0;
INST "gmii_data_bus_ch0[4].delay_gmii_txd_chO" IDELAY_VALUE = 0;
INST "gmii_data_bus_ch0[3].delay_gmii_txd_chO" IDELAY VALUE = 0;
INST "gmii_data_bus_ch0[2].delay_gmii_txd _chO0" IDELAY_ VALUE = 0;
INST "gmii_data_bus_chO[1l].delay_gmii_txd chO0" IDELAY_ VALUE = 0;
INST "gmii_data_bus_ch0[0].delay_gmii_txd_ch0" IDELAY_VALUE = 0;
INST "delay_gmii_tx_en_chl" IDELAY VALUE = 0;

INST "delay gmii_tx_er_chl" IDELAY VALUE = 0;

INST "gmii_data_bus_chl[7].delay_gmii_txd _chl" IDELAY_ VALUE = 0;
INST "gmii_data_bus_chl[6].delay_gmii_txd _chl" IDELAY_VALUE = 0;
INST "gmii_data_bus_chl[5].delay_gmii_txd_chl" IDELAY_VALUE = 0;
INST "gmii_data_bus_chl[4].delay_gmii_txd_chl" IDELAY_VALUE = 0;
INST "gmii_data_bus_chl[3].delay_gmii_txd_chl" IDELAY VALUE = 0;
INST "gmii_data_bus_chl[2].delay_gmii_txd_chl" IDELAY_ VALUE = 0;
INST "gmii_data_bus_chl[1l].delay_gmii_txd _chl" IDELAY_ VALUE = 0;
INST "gmii_data_bus_chl[0].delay_gmii_txd _chl" IDELAY_VALUE = 0;
INST "delay_gmii_tx_en_ch2" IDELAY VALUE = 0;

INST "delay_gmii_tx er_ch2" IDELAY _VALUE = 0;

INST "gmii_data_bus_ch2[7].delay_gmii_txd_ch2" IDELAY_ VALUE = 0;
INST "gmii_data_bus_ch2[6].delay_gmii_txd ch2" IDELAY_VALUE = 0;
INST "gmii_data_bus_ch2[5].delay_gmii_txd_ch2" IDELAY_VALUE = 0;
INST "gmii_data_bus_ch2[4].delay_gmii_txd_ch2" IDELAY_VALUE = 0;
INST "gmii_data_bus_ch2[3].delay_gmii_txd_ch2" IDELAY_ VALUE = 0;
INST "gmii_data_bus_ch2[2].delay_gmii_txd_ch2" IDELAY_ VALUE = 0;
INST "gmii_data_bus_ch2[1].delay_gmii_txd_ch2" IDELAY_ VALUE = 0;
INST "gmii_data_bus_ch2[0].delay_gmii_txd _ch2" IDELAY_VALUE = 0;
INST "delay_gmii_tx_en_ch3" IDELAY VALUE = 0;

INST "delay_gmii_tx er_ch3" IDELAY VALUE = 0;

QSGMII Product Guide www.xilinx.com 62

PG029 January 18, 2012

http://www.xilinx.com

& XILINX. Chapter 5: Constraining the Core

INST "gmii_data_bus_ch3 .delay_gmii_txd_ch3" IDELAY_VALUE =
INST "gmii_data_bus_ch3 .delay_gmii_txd_ch3" IDELAY_VALUE =
INST "gmii_data_bus_ch3 .delay_gmii_txd_ch3" IDELAY_ VALUE =

[7]
[6]
[5]
INST "gmii_data_bus_ch3[4].delay_gmii_txd_ch3" IDELAY_ VALUE =
[3]
[2]
[1]
[0]

INST "gmii_data_bus_ch3 .delay_gmii_txd_ch3" IDELAY_ VALUE =
INST "gmii_data_bus_ch3 .delay_gmii_txd_ch3" IDELAY_VALUE =
INST "gmii_data_bus_ch3 .delay_gmii_txd_ch3" IDELAY_VALUE =
INST "gmii_data_bus_ch3 .delay_gmii_txd_ch3" IDELAY_VALUE =

O OO O o o oo

The number of tap delays are preconfigured in the example designs to meet the setup and
hold constraints for the example GMII/MII pinout in the particular device. The setup/
hold timing, which is achieved after place-and-route, is reported in the data sheet section
of the TRCE report (created by the implement script).

QSGMII Product Guide www.xilinx.com 63
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.
Chapter 6

Detailed Example Design

This chapter provides detailed information about the deliverables provided by the CORE
Generator™ tool for the QSGMII core.

Directory Structure

1 <project directory>
Top-level project directory; name is user-defined.

] <project directory>/<component name>
Core release notes file

) <component name>/doc
Product documentation

) <component name>/example design
Verilog and VHDL design files

) <component name>/implement
Implementation script files
) implement/results

Results directory, created after implementation scripts are run, and
contains implement script results

) <component name>/simulation
Simulation scripts

) simulation/functional
Functional simulation files

QSGMII Product Guide www.xilinx.com 64
PG029 January 18, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

Directory and File Contents

The core directories and their associated files are defined in the following tables.

<project directory>

The project directory contains all the CORE Generator tool project files.
Table 6-1: Project Directory

Name Description

<project_dir>

<component_name>.ngc Top-level netlist. This is instantiated by
the Verilog or VHDL example design.

<component_name>.v[hd] Verilog or VHDL simulation model;
UNISIM-based
<component_name>.v{ho | eo} Verilog or VHDL instantiation template

for the core

<component_name>.Xco Log file that records the settings used to
generate a core. An XCO file is
generated by the CORE Generator tool
for each core that it creates in the
current project directory. An XCO file
can also be used as an input to the
CORE Generator tool.

<component_name>_flist.txt List of files delivered with the core

<project directory>/<component name>

The <component name> directory contains the release notes file provided with the core,
which can include last-minute changes and updates.

Table 6-2: Component Name Directory

Name Description

<project_dir>/<component_name>

gsgmii_readme.txt Core release notes file

<component name>/doc

The doc directory contains the PDF documentation provided with the core.
Table 6-3: Doc Directory

Name Description

<project_dir>/<component_name>/doc

pg029_gsgmii.pdf QSGMII Product Guide

QSGMII Product Guide www.xilinx.com 65
PG029 January 18, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

<component name>/example design

The example design directory contains the example design files provided with the core,
and can contain files and subdirectories other than those defined in Table 6-4.

Table 6-4: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design

sync_block.v[hd] This is a synchronization flip-flop pair, used
for passing signals across a clock domain.

reset_sync.v[hd] This is a reset synchronization module for
creating a synchronous reset output signal
from an asynchronous input.

_example_design.ucf Example User Constraints File (UCF)
provided for the example design.

_example_design.v[hd] Top-level file that allows example design to
be implemented in a device as a standalone
design.

_block.v[hd] A block-level file that is a useful part of

example design and should be instantiated in
all customer designs.

<component name>/implement

The implement directory contains the core implementation script files.
Table 6-5: Implement Directory

Name Description

<project_dir>/<component_name>/implement

implement.sh Linux shell script that processes the example
design through the Xilinx tool flow. See
Implementation for more information.

implement.bat Windows batch file that processes the
example design through the Xilinx tool flow.
See Implementation for more information.

xst.p1j XST project file for the example design
(VHDL only); it enumerates all of the VHDL
files that need to be synthesized.

xst.scr XST script file for the example design

QSGMII Product Guide www.xilinx.com 66
PG029 January 18, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

implement/results

The results directory is created by the implement script, after which the implement script
results are placed in the results directory.

Table 6-6: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

routed.v[hd] Back-annotated SIMPRIM-based model used
for timing simulation

routed.sdf Timing information for simulation

<component name>/simulation

The simulation directory and subdirectories that provide the files necessary to test a
Verilog or VHDL implementation of the example design.

Table 6-7: Simulation Directory

Name Description
<project_dir>/<component_name>/simulation

arbiter_tb.v[hd] This module outputs the input of the module
in a round robin fashion.

clk_en_gen_tb.v[hd] This module generates clock enables
according to the configured speed.

clk_rst_xInx_tb.v[hd] This module generates clocks and resets.

decode_8b10b_tb.v[hd] This module decodes 10 bits to 8 bits.

encode_8b10b_tb.v[hd] This module encodes 8 bits to 10 bits.

frame_typ_pack.vhd Functions to convert std_logic to boolean

k28p1_swapper_tb.v[hd] Detects K28.1 and assigns data to correct
channel.

mdio_cfg_tb.v[hd] This module contains the frame for MDIO
transaction.

monitor_tb.v[hd] Monitors and reports the frames received
from example design (Device Under Test
(DUT))

send_frame_tb.v[hd] Frame generation module for exciting the
DUT

serdes_tb.v[hd] Serializes and de-serializes the 10 bit data

demo_tb.v[hd] Top-level file of the demonstration test bench
for the example design. Instantiates the
example design (DUT), generates clocks,
resets, and test bench control semaphores.

QSGMII Product Guide www.xilinx.com 67
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 6: Detailed Example Design

simulation/functional

The functional directory contains functional simulation scripts provided with the core.
Table 6-8: Functional Directory

Name

Description

<project_dir>/<component_name>/simulation/functional

simulate_mti.do

ModelSim macro file that compiles Verilog or
VHDL sources and runs the functional
simulation to completion.

wave_mti.do

ModelSim macro file that opens a wave
window and adds signals of interest to it. It is
called by the simulate_mti.do macro file.

simulate_ncsim.sh

IES script file that compiles the Verilog or
VHDL sources and runs the functional
simulation to completion.

wave_ncsim.sv

IES macro file that opens a wave window and
adds signals of interest to it. It is called by the
simulate_ncsim.sh script file.

simulate_vcs.sh

VCS script file that compiles the Verilog
sources and runs the functional simulation to
completion.

vcs_commands.key

This file is sourced by VCS at the start of
simulation; it configures the simulator.

vcs_session.tcl

VCS macro file that opens a wave window
and adds signals of interest to it. It is called
by the simulate_vcs.sh script file.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

68

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

Example Design

Figure 6-1 illustrates an example design for top-level HDL for the QSGMII using a
device-specific transceiver (Virtex®-7 or Kintex™-7 FPGAs).

component_name_example_design
component_name_block
GMII CHO
10Bs In P Transceiver
GMII Style IF
I0Bs Out |« <
> >
GMII CH1
10Bs In - P
GMI| Style IF
10Bs Out [« «
QSGMII)
Adantation QSGMII Device
GMII CH2 P Core Specific Quad Serial
—Pp»| [0Bsl - Module P Transceiver GMIl
s In
GMIl Style IF 1
I0Bs Out |« [
GMII CH3 < —
—p| 10Bsin | o
GMII Style IF ™
4——] 10BsOut |« S
Clock
Management
Logic

Figure 6-1: Example Design HDL for QSGMII

As illustrated, the example is split between two hierarchical layers. The block level is
designed so that it can be instantiated directly into customer designs and performs the
following functions:

e Instantiates the core from HDL
* Connects the physical-side interface of the core to a device-specific transceiver

¢ Connects the client side GMII of the core to an QSGMII Adaptation Module, which
provides the functionality to operate at speeds of 1 Gb/s, 100 Mb/s and 10 Mb/s

The top level of the example design creates a specific example which can be simulated,
synthesized and implemented. The top level of the example design performs the following
functions:

¢ Instantiates the block level from HDL
® Derives the clock management logic for device-specific transceiver and the core

¢ Implements an external GMII-style interface

The next few pages in this section describe each of the example design blocks (and
associated HDL files) in detail.

QSGMII Product Guide www.xilinx.com 69
PG029 January 18, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

Top-Level Example Design HDL
The top-level example design for the QSGMII core is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/
<component_name>_example_design.vhd

Verilog

<project_dir>/<component_name>/example_design/
<component_name>_example_design.v

The example design HDL top level contains the following:
¢ An instance of the QSGMII block level

¢ Clock management logic for the core and the device-specific transceiver, including
DCM (if required) and Global Clock Buffer instances

¢ External GMII logic, including IOB and Double Data Rate (DDR) register instances,
where required

The example design HDL top level connects the GMII interfaces of the block level to
external IOBs. This allows the functionality of the core to be demonstrated using a
simulation package, as described in this guide.

Block Level HDL
The following files describe the block level for the QSGMII core:

VHDL

<project_dir>/<component_name>/example_design/
<component_name>_block.vhd

Verilog
<project_dir>/<component_name>/example_design/<component_name>_block.v
The block level contains the following;:

e An instance of the QSGMII core
* Aninstance of a transceiver specific to the target device (Virtex-7 or Kintex-7)

¢ An QSGMII adaptation module containing four instances of SGMII adaptation
module. Each instance of SGMII adaptation module contains

* The clock management logic required to enable the instance of SGMII operate at
10 Mb/s, 100 Mb/s, and 1 Gb/s.

¢ GMllI logic for both transmitter and receiver paths.

- In MAC mode the GMII style 8-bit interface is run at 125 MHz for 1 Gb/s
operation; 12.5 MHz for 100 Mb/s operation; 1.25 MHz for 10 Mb/s
operation.

- In PHY mode the GMII style 8 bit interface is run at 125 MHz for 1 Gb/s
operation; 25 MHz for 100 Mb/s operation; 2.5 MHz for 10 Mb/s operation.
For 100/10 Mb/s operation 4 bits of the MII are mapped to the LSB 4 bits of
the GMII style interface.

QSGMII Product Guide www.xilinx.com 70
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 6: Detailed Example Design

The block-level HDL connects the PHY side interface of the core to a device-specific
transceiver instance and the client side to QSGMII adaptation logic as illustrated in
Figure 6-1. This is the most useful part of the example design and should be instantiated in
all customer designs that use the core.

Transceiver Files for Virtex-7 and Kintex-7 Devices

Transceiver Wrapper

This device-specific transceiver wrapper is instantiated from the block-level HDL file of
the example design and is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/

transceiver.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/

transceiver.v

This file instances output source files from the transceiver wizard (used with QSGMII
attributes).

Virtex-7 and Kintex-7 FPGA GTX Transceiver Wizard Files

For Virtex-7 and Kintex-7 devices, the transceiver wrapper file directly instantiates
device-specific transceiver wrapper files created from the GTX transceiver wizard. These
files tie off (or leave unconnected) unused I/0O for the GTX transceiver, and apply the
QSGMII attributes. The files can be edited /tailored by rerunning the wizard and swapping
these files. The files include the following:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
gtwizard.vhd
<project_dir>/<component_name>/example_design/transceiver/
gtwizard_gt.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
gtwizard.v
<project_dir>/<component_name>/example_design/transceiver/
gtwizard_gt.v

To re-run the transceiver wizard, a CORE Generator tool XCO file for the wizard is
included. This file defines all the required wizard attributes used to generate the preceding
files. See the CORE Generator tool documentation for further information about XCO files.
The XCO file is in the following location:

<project_dir>/<component_name>/example_design/transceiver/
gtwizard.xco

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 71

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

QSGMII Adaptation Module

An QSGMII adaptation module containing four instances of SGMII adaptation module.
Each instance of SGMII adaptation module contains the following:

¢ The clock management logic required to enable the instance of SGMII operate at
10 Mb/s, 100 Mb/s, and 1 Gb/s.

¢ GMII logic for both transmitter and receiver paths.

- In MAC mode the GMII style 8-bit interface is run at 125 MHz for 1 Gb/s
operation; 12.5 MHz for 100 Mb /s operation; 1.25 MHz for 10 Mb/s
operation. The speed of operation is controlled by clock enables. The
reference clock out (sgmii_clk_chx) is always 125 MHz.

- In PHY mode the GMII style 8 bit interface is run at 125 MHz for 1 Gb/s
operation; 25 MHz for 100 Mb/s operation; 2.5 MHz for 10 Mb/s operation.
For 100/10 Mb/s operation LSB 4 bits of the GMII style interface is mapped to
4 bits of the MIL

The QSGMII Adaptation Module is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/sgmii_adapt/
gsgmii_adapt.vhd
sgmii_adapt.vhd
clk_gen.vhd
clk_div.vhd
johnson_cntr.vhd
tx_rate_adapt.vhd
rx_rate_adapt.vhd

Verilog

<project_dir>/<component_name>/example_design/sgmii_adapt/

gsgmii_adapt.v

sgmii_adapt.v

clk_gen.v

clk_div.v

johnson_cntr.v

tx_rate_adapt.v

rx_rate_adapt.v
The GMII of the core always operates at 125 MHz. The core makes no differentiation
between the three speeds of operation; it always effectively operates at 1 Gb/s. However,
at 100 Mb/s, every data byte run through the core should be repeated 10 times to achieve
the required bit rate; at 10 Mb/s, each data byte run through the core should be repeated

100 times to achieve the required bit rate. Dealing with this repetition of bytes is the
function of the SGMII adaptation module and its component blocks.

QSGMII Product Guide www.Xxilinx.com 72
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 6: Detailed Example Design

Demonstration Test Bench

Figure 6-2 illustrates the demonstration test bench for the QSGMII core. The
demonstration test bench is a simple VHDL or Verilog program to exercise the example

design and the core itself.

Clock and
Reset

DUT

Send
Frame tb I|

QsGMII
Adapt

Device
Specific
Transceiver

—>| Serdes H

8B/10B
decoder

K28.1 Monitor
Swapper Tb

4—| Serdes H

8B/10B
encoder

MDIO Config tb II

¢ " < Send D
Arbiter Frame tb

Control

e ———————————— — e —

Figure 6-2: Demonstration Test Bench for QSGMII

The top-level test bench entity instantiates the example design for the core, which is the

Device Under Test (DUT). Other modules needed to provide stimulus, clocks, resets and
test bench semaphores are also instantiated in the top-level test bench. The following files
describe the top-level of the demonstration test bench.

VHDL

<project_dir>/<component_name>/simulation/demo_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/demo_tb.v

Send frame test bench generates the stimulus to excite the transceiver on the DUT receive
side and data input on the DUT QSGMII adapt side. Four instances of the send frame test
bench are instantiated, with each instance representing one channel.

VHDL

<project_dir>/<component_name>/simulation/send_frame_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/send_frame_tb.v

The Arbiter module selects one byte from each instance of the send frame test bench and
passes it on to the 8B/10B encoder module.

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com

73

http://www.xilinx.com

& XILINX.

Chapter 6: Detailed Example Design

VHDL

<project_dir>/<component_name>/simulation/arbiter_tb.vhd

Verilog
<project_dir>/<component_name>/simulation/arbiter_tb.v

The 8B/10B encoder test bench module converts 8-bit data from arbiter to 10 bits as
specified by IEEE 802.3-2008 standard clause 36.

VHDL

<project_dir>/<component_name>/simulation/encode_8bl0b_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/encode_8bl0b_tb.v

The 8B/10B decoder test bench module converts 10-bit data from SERDES on the
transceiver transmit interface to 10 bits as specified by IEEE 802.3-2008 standard clause 36.

VHDL

<project_dir>/<component_name>/simulation/decode_8bl0b_tb.vhd

Verilog
<project_dir>/<component_name>/simulation/decode_8bl0b_tb.v

The SERDES module serializes the 10-bit data from the 8B/10B encoder and maps it to the
receive interface of the DUT transceiver. This module de-serializes the serial bitstream
from the transmit interface of the DUT transceiver and maps it to the 8B/10B decoder.

VHDL

<project_dir>/<component_name>/simulation/serdes_tb.vhd

Verilog
<project_dir>/<component_name>/simulation/serdes_tb.v

The K28.1 swapper module swaps K28.1 characters received on port 0 with K28.5 as
specified in the QSGMII specification.

VHDL

<project_dir>/<component_name>/simulation/k28pl_swapper_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/k28pl_swapper_tb.v

The Monitor test bench module monitors the output from the DUT and verifies the data
with preloaded data structures present in the module.

VHDL

<project_dir>/<component_name>/simulation/monitor_tb.vhd

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 74

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

Verilog
<project_dir>/<component_name>/simulation/monitor_tb.v

The programing of per channel configuration registers in the DUT is performed through
MDIO configuration test bench. There are four instances of this module with each instance
representing one channel.

VHDL

<project_dir>/<component_name>/simulation/mdio_cfg_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/mdio_cfg_ tb.v

Test Bench Functionality

The demonstration test bench performs the following tasks:

¢ Input clock signals are generated.
* Aresetis applied to the example design.

¢ Each channel of the QSGMII core is configured through the MDIO interface by
injecting an MDIO frame into the example design. This disables Auto-Negotiation
and takes the core out of Isolate state.

e The speed of the interface is programmed as follows
¢ MAC mode
- Channel0-1Gb/s
- Channel 1-100Mb/s
- Channel 2 -10Mb/s
- Channel3-1Gb/s
e PHY mode with GMII; all channels at 1 Gb/s
¢ PHY mode with MII
- Channel0-10Mb/s
- Channel 1- 100 Mb/s
- Channel 2-10Mb/s
- Channel 3-100Mb/s
¢ The following frames are injected into the transmitter by the send frame block.
¢ the first is a minimum length frame
e thesecond is a type frame
* the third is an errored frame

¢ the fourth is a padded frame

QSGMII Product Guide www.xilinx.com 75
PG029 January 18, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

* The serial data received at the device-specific transceiver transmitter interface is
converted to 10-bit parallel data, then 8B/10B decoded. The resultant byte is aligned
to the corresponding channel based on the K28.1 character set and also the K28.1
character set is replaced with K28.5. The resulting frames are checked by in the
monitor test bench against the stimulus frames injected into the transmitter to ensure
data integrity.

e The same four frames are generated by the frame generator module in the receive side
of the transceiver. The data from all four instances are aggregated into 32 bits, are 8B/
10B encoded, converted to serial data, and injected into the device-specific transceiver
receiver interface at 5 Gb/s.

¢ Data frames received at the receiver GMII interface are checked by the Monitor
against the stimulus frames injected into the device-specific transceiver receiver to
ensure data integrity.

Customizing the Test Bench

Changing Frame Data

You can change the contents of the four frames used by the demonstration test bench by
changing the data and valid fields for each frame defined in the send frame module. New
frames can be added by defining a new frame of data. Modified frames are automatically
updated in both the stimulus and monitor functions.

Changing Frame Error Status

Errors can be inserted into any of the predefined frames in any position by setting the error
field to ‘1" in any column of that frame. Injected errors are automatically updated in both
the stimulus and monitor functions.

Changing the Core Configuration

The configuration of the QSGMII core used in the demonstration test bench can be altered.

Caution! Certain configurations of the core cause the test bench to fail, or to cause processes
to run indefinitely. For example, the demonstration test bench will not Auto-Negotiate with the
design example. Determine the configurations that can safely be used with the test bench.

The core can be reconfigured by editing the injected MDIO frame in the demonstration test
bench top level.

Changing the Operational Speed

The speed of both the example design and test bench can be set to the desired operational
speed by editing the following settings, recompiling the test bench, and then running the
simulation again. The changes also need to be implemented in the example design.

1 Gb/s Operation

set speed_is_10_100_chx to logic 0

100 Mb/s Operation

set speed_is_10_100_chx to logic 1

set speed_is_100_chx to logic 1

QSGMII Product Guide www.xilinx.com 76
PG029 January 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 6: Detailed Example Design

10 Mb/s Operation

set speed_is_10_100_chx to logic 1
set speed_is_100_chx to logic 0

Implementation

The implementation script is either a shell script or batch file that processes the example
design through the Xilinx tool flow. It is located at:

Linux
<project_dir>/<component_name>/implement/implement.sh
Windows
<project_dir>/<component_name>/implement/implement.bat
The implement script performs the following steps:

1. The HDL example design files are synthesized using XST.

2. NGDBuild is run to consolidate the core netlist and the example design netlist into the
NGD file containing the entire design.

The design is mapped to the target technology.
The design is placed-and-routed on the target device.
Static timing analysis is performed on the routed design using trce.

A bitstream is generated.

N o kW

Netgen runs on the routed design to generate a VHDL or Verilog netlist (as
appropriate for the Design Entry project setting) and timing information in the form of
SDF files.

The Xilinx tool flow generates several output and report files. These are saved in the
following directory, which is created by the implement script:

<project_dir>/<component_name>/implement/results

Functional Simulation

The test script is a ModelSim, IES or VCS macro that automates the simulation of the test
bench and is in the following location:

<project_dir>/<component_name>/simulation/functional /
The test script performs the following tasks:
e Compiles the structural UNISIM simulation model
e Compiles HDL example design source code
e Compiles the demonstration test bench
e Starts a simulation of the test bench
* Opens a Wave window and adds signals of interest (wave_mti.do/wave_ncsim.sv)

* Runs the simulation to completion

QSGMII Product Guide
PG029 January 18, 2012

www.Xxilinx.com 77

http://www.xilinx.com

& XILINX.

Chapter 7

Using the Client Side GMII/MII

Datapath

This chapter provides general guidelines for using the client-side instances of GMII/MII
interfaces of the QSGMII core. In most applications, the client-side GMII is expected to be
used as an internal interface connecting to either:

Proprietary customer logic

This chapter describes the GMII-styled interface that is present on the netlist of the
core.

The chapter then also focuses on additional adaptation logic (which is provided by the
example design delivered with the core). This logic enhances the internal GMII-styled
interface to support 10 Mb/s and 100 Mb /s Ethernet speeds in addition to the nom