
LogiCORE IP
Floating-Point
Operator v6.1
Product Guide

PG060 July 25, 2012

Floating-Point Operator v6.1 www.xilinx.com 2
PG060 July 25, 2012

Table of Contents

SECTION I: SUMMARY

IP Facts

Chapter 1: Overview
Unsupported Features. 7
Licensing and Ordering Information . 7

Chapter 2: Product Specification
Standards Compliance . 8
Performance. 10
Resource Utilization. 13
Port Descriptions . 30

Chapter 3: Designing with the Core
General Design Guidelines . 35
Clocking. 38
Resets . 38
Protocol Description . 38

Chapter 4: C Model Reference
Features . 45
Overview . 45
Unpacking and Model Contents . 46
Installation . 47
C Model Interface. 48
Compiling . 63
Linking. 64
Dependent Libraries . 65
Example . 66

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 3
PG060 July 25, 2012

SECTION II: VIVADO DESIGN SUITE

Chapter 5: Customizing and Generating the Core
GUI . 69
Using the Floating-Point Operator IP Core. 75
Parameter Values in the XCI File. 75
Output Generation. 78

Chapter 6: Detailed Example Design
Demonstration Test Bench . 79

Chapter 7: Constraining the Core

SECTION III: ISE DESIGN SUITE

Chapter 8: Customizing and Generating the Core
GUI . 83
Using the Floating-Point Operator IP Core. 89
Parameter Values in the XCO File . 90
Output Generation. 92

Chapter 9: Detailed Example Design
Demonstration Test Bench . 94

Chapter 10: Constraining the Core

SECTION IV: APPENDICES

Appendix A: Migrating
Parameter Changes in the XCO File . 98
Port Changes . 99
Functionality Changes . 100
Special Considerations when Migrating to AXI . 101

Appendix B: Debugging

Appendix C: Additional Resources
Xilinx Resources . 103

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 4
PG060 July 25, 2012

Solution Centers. 103
References . 104
Technical Support . 104
Revision History . 105
Notice of Disclaimer. 105

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 5
PG060 July 25, 2012

SECTION I: SUMMARY

IP Facts

Overview

Product Specification

Designing with the Core

C Model Reference

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 6
PG060 July 25, 2012 Product Specification

Introduction
The Xilinx ® Floating-Point Operator core
provides designers with the means to perform
floating-point arithmetic on an FPGA. The core
can be customized for operation, wordlength,
latency and interface.

Features
• Supported operators

° multiply

° add/subtract

° divide

° square-root

° comparison

° reciprocal

° reciprocal square root

° absolute value

° natural logarithm

° conversion from floating-point to
fixed-point

° conversion from fixed-point to
floating-point

° conversion between floating-point
types

• Compliance with IEEE-754 Standard [Ref 1]
(with only minor documented deviations)

• Parameterized fraction and exponent
wordlengths for most operators

• Use of XtremeDSP™ slice for multiply, single
and double precision add/subtract
operations

• Optimizations for speed and latency

• Fully synchronous design using a single
clock

IP Facts

LogiCORE IP Facts Table

Core Specifics

Supported
Device
Family(1)

Zynq™-7000(2), Virtex®-7, Kintex™-7, Artix™-7,
Virtex-6, Spartan®-6(3)

Supported
User Interfaces AXI4-Stream

Resources See Table 2-16 to Table 2-24.

Provided with Core

Design Files
ISE: Netlist

Vivado: Encrypted RTL

Example
Design Not Provided

Test Bench VHDL

Constraints
File Not Provided

Simulation
Model

Verilog
VHDL

C Model

Supported
S/W Driver N/A

Tested Design Flows(4)

Design Entry
Vivado™ Design Suite(5)

ISE Design Suite: CORE Generator™ tool
ISE Design Suite: System Generator for DSP

Simulation

Mentor Graphics ModelSim
Cadence Incisive Enterprise Simulator (IES)

Synopsys VCS and VCS MX
ISim

Vivado Simulator

Synthesis
Xilinx Synthesis Technology (XST)

Vivado Synthesis

Support
Provided by Xilinx @ www.xilinx.com/support

Notes:
1. For a complete listing of supported devices, see the release

notes for this core.
2. Supported in ISE Design Suite implementations only.
3. Spartan 6 is not supported on all Floating Point Operators.

4. For the supported versions of the tools, see the Xilinx Design
Tools: Release Notes Guide.

5. Supports 7 series devices only.

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/irn.pdf

Floating-Point Operator v6.1 www.xilinx.com 7
PG060 July 25, 2012

Chapter 1

Overview
The Xilinx® Floating-Point Operator core allows a range of floating-point arithmetic
operations to be performed on FPGA. The operation is specif ied when the core is
generated, and each operation variant has a common interface. This interface is shown in
Figure 2-1. When a user selects an operation that requires only one operand, the B input
channel is omitted.

Unsupported Features
See Standards Compliance.

Licensing and Ordering Information
This Xilinx LogiCORE™ IP module is provided at no additional cost with the Xilinx Vivado™
Design Suite and ISE® Design Suite tools under the terms of the Xilinx End User License.
Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx
Intellectual Property page. For information about pricing and availability of other Xilinx
LogiCORE IP modules and tools, contact your local Xilinx sales representative.

http://www.xilinx.com
http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/company/contact/index.htm

Floating-Point Operator v6.1 www.xilinx.com 8
PG060 July 25, 2012 Product Specification

Chapter 2

Product Specification

Standards Compliance

IEEE-754 Support
The Xilinx® Floating-Point Operator core complies with much of the IEEE-754 Standard
[Ref 1]. The deviations generally provide a better trade-off of resources against
functionality. Specif ically, the core deviates in the following ways:

• Non-Standard Wordlengths

• Denormalized Numbers

• Rounding Modes

• Signaling and Quiet NaNs

Non-Standard Wordlengths

The Xilinx Floating-Point Operator core supports a greater range of fraction and exponent
wordlength than defined in the IEEE-754 Standard.

Standard formats commonly implemented by programmable processors:

• Single Format – uses 32 bits, with a 24-bit fraction and 8-bit exponent.

• Double Format – uses 64 bits, with 53-bit fraction and 11-bit exponent.

Less commonly implemented standard formats are:

• Single Extended – wordlength extensions of 43 bits and above

• Double Extended – wordlength extensions of 79 bits and above

The Xilinx core supports formats with fraction and exponent wordlengths outside of these
standard wordlengths.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 9
PG060 July 25, 2012 Product Specification

Standards Compliance

Denormalized Numbers

The exponent limits the size of numbers that can be represented. It is possible to extend the
range for small numbers using the minimum exponent value (0) and allowing the fraction to
become denormalized. That is, the hidden bit becomes zero such that

. Now the value is given by:

These denormalized numbers are extremely small. For example, with single precision the
value is bounded . As such, in most practical calculation they do not contribute to
the end result. Furthermore, as the denormalized value becomes smaller, it is represented
with fewer bits and the relative rounding error introduced by each operation is increased.

The Xilinx Floating-Point Operator core does not support denormalized numbers for most
operators. In FPGAs, the dynamic range can be increased using fewer resources by
increasing the size of the exponent (and a 1-bit increase for single precision increases the
range by). If necessary, the overall wordlength of the format can be maintained by an
associated decrease in the wordlength of the fraction.

To provide robustness, the core treats denormalized operands as zero with a sign taken
from the denormalized number. Results that would have been denormalized are set to an
appropriately signed zero.

The exception to the above rules is the absolute value operator, which propagates
denormalized operands to the output.

The support for denormalized numbers cannot be switched off on some processors.
Therefore, there might be very small differences between values generated by the
Floating-Point Operator core and a program running on a conventional processor when
numbers are very small. If such differences must be avoided, the arithmetic model on the
conventional processor should include a simple check for denormalized numbers. This
check should set the output of an operation to zero when denormalized numbers are
detected to correctly reflect what happens in the FPGA implementation.

Rounding Modes

Only the default rounding mode, Round to Nearest (as defined by the IEEE-754 Standard
[Ref 1]), is currently supported. This mode is often referred to as Round to Nearest Even, as
values are rounded to the nearest representable value, with ties rounded to the nearest
value with a zero least signif icant bit.

b0
b0.b1b2…bp 1– 1<

v 1–()s2
2

we 1–
2– 

 –
0.b1b2…bwf 1–=

v 2 126–<

2256

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 10
PG060 July 25, 2012 Product Specification

Performance

Signaling and Quiet NaNs

The IEEE-754 Standard requires provision of Signaling and Quiet NaNs. However, the Xilinx
Floating-Point Operator core treats all NaNs as Quiet NaNs. When any NaN is supplied as
one of the operands to the core, the result is a Quiet NaN, and an invalid operation
exception is not raised (as would be the case for signaling NaNs). The exceptions to this rule
are floating-point to f ixed-point conversion and the absolute value operator. For detailed
information of the floating-point to f ixed-point conversion, see the behavior of
INVALID_OP. For the absolute value operator, Signaling NaNs are propagated from input to
output.

Accuracy of Results

Compliance to the IEEE-754 Standard requires that elementary arithmetic operations
produce results accurate to half of one Unit in the Last Place (ULP). The Xilinx Floating-Point
Operator satisf ies this requirement for the multiply, add/subtract, divide, square-root and
conversion operators. The reciprocal, reciprocal square-root and natural logarithm
operators produce results which are accurate to one ULP.

Performance

Latency
The latency of all operators can be set between 0 and a maximum value that is dependent
upon the parameters chosen. The maximum latency of the Floating-Point Operator core is
tabulated for a range of width and operation types in Tables 2-1 through 2-14. The latency
values in these tables represent the fully-pipelined latency of the internal Floating-Point
Operator core. They do not include additional latency overhead due to AXI4-Stream
interface logic required when using a Blocking flow control scheme.

The maximum latency of the divide and square root operations is Fraction Width + 4, and
for compare operation it is two cycles. The float-to-float conversion operation is three
cycles when either fraction or exponent width is being reduced; otherwise it is two cycles. It
is two cycles, even when the input and result widths are the same, as the core provides
conditioning in this situation (see Operation Selection for further details).

Table 2-1: Latency of Floating-Point Multiplication Using Logic Only

Fraction Width Maximum Latency (Clock Cycles)

4 to 5 5

6 to 11 6

12 to 23 7

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 11
PG060 July 25, 2012 Product Specification

Performance

24 to 47 (inc. single) 8

48 to 64 (inc. double) 9

Table 2-2: Latency of Floating-Point Multiplication Using DSP48A1

Fraction Width
Maximum Latency (Clock Cycles)

Medium Usage Full Usage Max Usage

4 to 17 6 5

18 to 34 (inc. single) 9(1) 11 10

35 to 51 18 17

52 to 64 (inc. double) 27 26

1. Single precision only.

Table 2-3: Latency of Floating-Point Multiplication Using DSP48E1

Fraction Width
Maximum Latency (Clock Cycles)

Medium Usage Full Usage Max Usage

single 8 8 6

double 15 15 16

4 to 17 6 8

18 to 24 8 9

25 to 34 10 11

35 to 41 12 13

42 to 51 15 16

52 to 58 18 19

59 to 64 22 23

Table 2-4: Latency of Floating-Point Multiplication Using DSP48E1 and Low Latency
Optimization

Fraction Width
Maximum Latency (Clock Cycles)

Max Usage

double 10

Table 2-5: Latency of Floating-Point Addition Using Full Usage and DSP48E1

Width Maximum Latency (Clock Cycles)

single 11

double 14

Table 2-1: Latency of Floating-Point Multiplication Using Logic Only (Cont’d)

Fraction Width Maximum Latency (Clock Cycles)

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 12
PG060 July 25, 2012 Product Specification

Performance

Table 2-6: Latency of Floating-Point Addition Using Logic and Low-Latency Optimization on
Virtex-6 and 7 Series FPGAs

Fraction Width Maximum Latency (Clock Cycles)

single 8

double 8

Table 2-7: Latency of Floating-Point Addition Using Logic and Speed Optimization on 7 Series,
Virtex-6 and Spartan-6 FPGAs

Fraction Width Maximum Latency (Clock Cycles)

4 to 13 8

14 9

15 10

16, 17 11

18 to 61 (single, double) 12

62 to 64 13

Table 2-8: Latency of Fixed-Point to Floating-Point Conversion

Operand Width Maximum Latency (Cycles)

4 to 8 5

9 to 32 6

33 to 64 7

Table 2-9: Latency of Floating-Point to Fixed-Point Conversion

Maximum of (A Fraction Width+1) and Result Width Maximum Latency (Cycles)

5 to 16 5

17 to 64 6

65 7

Table 2-10: Latency of Floating-Point Reciprocal Using DSP48E1

Fraction Width
Maximum Latency (Clock Cycles)

No Usage Full Usage

single 36 29

double 35

Table 2-11: Latency of Floating-Point Reciprocal Using DSP48A1

Fraction Width
Maximum Latency (Clock Cycles)

No Usage Full Usage

single 36 33

double 43

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 13
PG060 July 25, 2012 Product Specification

Resource Utilization

Resource Utilization
The resource requirements and maximum clock rates achievable on Kintex™-7, Artix-7 and
Zynq-7000 FPGAs are summarized as follows for the case of maximum latency and no
aresetn or aclken pins. Unless otherwise stated, Non-Blocking flow control is used for
all configurations. For selected use cases, f igures are provided for the Blocking and
Performance flow control configuration which permits backpressure.

Note: Both LUT and FF resource usage and maximum frequency reduce with latency. Minimizing
latency minimizes resources.

The maximum clock frequency results were obtained by double-registering input and
output ports to reduce dependence on I/O placement. The inner level of registers used a
separate clock signal to measure the path from the input registers to the f irst output
register through the core.

The resource usage results do not include the “characterization” registers and represent the
true logic used by the core. LUT counts include SRL16s or SRL32s.

The map options used were: “map -ol high.“

The par options used were: “par -ol high.”

Clock frequency does not take clock jitter into account and should be derated by an amount
appropriate to the clock source jitter specification.

Table 2-12: Latency of Floating-Point Reciprocal Square Root Using DSP48E1

Fraction Width
Maximum Latency (Clock Cycles)

No Usage Full Usage

single 37 32

double 112

Table 2-13: Latency of Floating-Point Absolute Value

Fraction Width Maximum Latency (Clock Cycles)

single, double, custom 0

Table 2-14: Latency of Floating-Point Natural Logarithm Using DSP48E1

Fraction Width
Maximum Latency (Clock Cycles)

No Usage Medium Usage Full Usage

single 23 22 28

double 37 52 67

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 14
PG060 July 25, 2012 Product Specification

Resource Utilization

The maximum achievable clock frequency and the resource counts might also be affected
by other tool options, additional logic in the FPGA, using a different version of Xilinx tools,
and other factors.

It is possible to improve performance of the Xilinx Floating-Point Operator within a system
context by placing the operator within an area group. Placement of both the logic slices and
XtremeDSP™ slices can be contained in this way. If multiply-add operations are used, then
placing them in the same group can be helpful. Groups can also include any supporting
logic to ensure that it is placed close to the operators.

All results were produced using ISE 14.2 software.

Table 2-15: Speed File Version

FPGA Family Speed File Version

Kintex-7 ADVANCED 1.05a 2012-05-29

Artix-7 ADVANCED 1.04b 2012-05-29

Zynq-7000 ADVANCED 1.01 2012-05-29

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 15
PG060 July 25, 2012 Product Specification

Resource Utilization

Custom Format: 17-Bit Fraction and 24-Bit Total Wordlength
The resource requirements and maximum clock rates achievable with 17-bit fraction and
24-bit total wordlength on Kintex-7 are summarized in Table 2-16.

Table 2-16: Characterization of 17-Bit Fraction and 24-Bit Total Wordlength on Kintex-7 FPGA

Operation

Resources(1)
Maximum
Frequency

(MHz)(2)(3)

Embedded FPGA Logic Kintex-7

Type Number LUT-FF
Pairs LUTs FFs -1 Speed Grade

Multiply DSP48E1 (max usage) 2 175 94 190 445

DSP48E1 (full usage) 1 172 109 181 463

Logic (no usage) 441 348 453 424

Add/Subtract Logic (no usage) 448 317 482 518

Fixed to float Int24 input 213 150 191 424

Float to f ixed Int24 result 209 147 235 >550

Float to float Single to 24-17 format 124 68 139 529

24-17 to single 79 35 108 >550

Compare Programmable 81 56 73 >550

Divide RATE=1 749 491 805 475

RATE=19 233 184 231 386

Square Root RATE=1 444 335 513 >550

RATE=18 166 111 200 541

Absolute Value Any width 0 0 0 0 >550

Multiply
Flow Control: Blocking,
Optimize Goal:
Performance

DSP48E1 (max usage) 2 288 173 325 434

Add/Subtract
Flow Control: Blocking,
Optimize Goal:
Performance

Logic (no usage) 558 401 613 500

Notes:
1. The device used for these f igures is an XC7K70T-1.
2. Area and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx

implementation tools.
3. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be

de-rated by an amount appropriate to the clock source jitter specif ication.
4. The absolute value operator uses neither logic or registers so will not become the critical path in any realistic

circuit.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 16
PG060 July 25, 2012 Product Specification

Resource Utilization

The resource requirements and maximum clock rates achievable with 17-bit fraction and
24-bit total wordlength on Artix-7 are summarized in Table 2-17.

Table 2-17: Characterization of 17-Bit Fraction and 24-Bit Total Wordlength on Artix-7 FPGAs

Operation

Resources(1)
Maximum
Frequency

(MHz)(2)(3)

Embedded FPGA Logic Artix-7

Type Number LUT-FF Pairs LUTs FFs -1 Speed Grade

Multiply DSP48E1 (max
usage)

2 193 80 190 326

DSP48E1 (full
usage)

1 182 102 181 366

Logic (no usage) 455 338 453 265

Add/Subtract Logic (no usage) 469 301 480 326

Fixed to float Int24 input 211 149 191 299

Float to f ixed Int24 result 208 147 233 378

Float to float Single to 24-17 format 131 70 139 338

24-17 to single 83 33 108 456

Compare Programmable 95 48 73 373

Divide RATE=1 745 472 805 347

RATE=19 258 177 231 255

Square Root RATE=1 440 334 513 368

RATE=18 161 110 200 332

Absolute Value Any width 0 0 0 0 464

Multiply
Flow Control: Blocking,
Optimize Goal:
Performance

DSP48E1 (max
usage)

2 302 157 325 322

Add/Subtract
Flow Control: Blocking,
Optimize Goal:
Performance

Logic (no usage) 538 398 611 329

Notes:
1. The device used for these f igures is an XC7A100T-1.
2. Area and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx

implementation tools.
3. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be

de-rated by an amount appropriate to the clock source jitter specif ication.
4. The absolute value operator uses no logic nor registers so will not become the critical path in any realistic circuit.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 17
PG060 July 25, 2012 Product Specification

Resource Utilization

The resource requirements and maximum clock rates achievable with 17-bit fraction and
24-bit total wordlength on Zynq-7000 FPGAs are summarized in Table 2-18.

.

Table 2-18: Characterization of 17-Bit Fraction and 24-Bit Total Wordlength on Zynq-7000 Devices

Operation

Resources(1)
Maximum
Frequency

(MHz)(2)(3)

Embedded FPGA Logic Zynq-7000

Type Number LUT-FF Pairs LUTs FFs -1 Speed Grade

Multiply DSP48E1 (max
usage)

2 189 80 190 413

DSP48E1 (full usage) 1 191 96 181 463

Logic (no usage) 0 453 338 453 430

Add/Subtract Logic (no usage) 463 300 482 464

Fixed to float Int24 input 213 147 191 447

Float to f ixed Int24 result 214 143 235 464

Float to float Single to 24-17 format 134 67 139 464

24-17 to single 84 34 108 464

Compare Programmable 92 49 73 464

Divide RATE=1 674 482 805 464

RATE=19 259 179 231 390

Square Root RATE=1 462 332 513 464

RATE=18 165 111 200 464

Absolute Value Any width 0 0 0 0 464

Multiply
Flow Control: Blocking,
Optimize Goal:
Performance

DSP48E1 (max
usage)

2 266 175 325 435

Add/Subtract
Flow Control: Blocking,
Optimize Goal:
Performance

Logic (no usage) 545 401 613 462

Notes:
1. The device used for these f igures is an XC7Z045-1.
2. Area and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx

implementation tools.
3. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be

de-rated by an amount appropriate to the clock source jitter specif ication.
4. The absolute value operator uses no logic nor registers so will not become the critical path in any realistic circuit.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 18
PG060 July 25, 2012 Product Specification

Resource Utilization

Single-Precision Format
The resource requirements and maximum clock rates achievable with single-precision
format on Kintex-7 FPGAs is summarized in Table 2-19.

Table 2-19: Characterization of Single-Precision Format on Kintex-7 FPGAs

Operation

Resources(1)
Maximum
Frequency
(MHz)(2)(3)

Embedded FPGA Logic Kintex-7

Type Number LUT-FF
Pairs LUTs FFs -1 Speed

Grade

Multiply DSP48E1 (max usage) 3 162 133 206 463

DSP48E1 (full usage) 2 252 129 261 463

DSP48E1 (medium usage) 1 390 303 432 463

Logic 0 709 657 770 471

Add/Subtract DSP48E1 (speed optimized,
full usage)

2 390 243 441 423

Logic (speed optimized, no usage) 0 629 412 655 486

Logic (low latency) 0 549 504 726 485

Fixed to float Int32 input 271 178 289 544

Float to fixed Int32 result 271 189 297 537

Float to float Single to double 121 35 142 >550

Compare Programmable 107 68 89 >550

Divide RATE=1 1324 847 1442 423

RATE=26 265 222 294 372

Square Root RATE=1 709 540 878 430

RATE=25 209 144 263 411

Reciprocal DSP48E1 (full usage) 8 283 187 323 529

Logic (no usage) 0 1371 1264 1285 343

Reciprocal Square Root DSP48E1 (full usage) 9 500 388 474 533

Logic (no usage) 0 2148 2044 1978 417

Absolute Value N/A 0 0 0 0 >550

Natural Logarithm DSP48E1 (full usage) 13 817 609 932 482

DSP48E1 (medium usage) 4 1028 871 1161 427

Logic 0 1611 1437 1678 441

Multiply
Flow Control: Blocking,
Optimize Goal: Performance

DSP48E1 (max usage) 3 342 218 382 463

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 19
PG060 July 25, 2012 Product Specification

Resource Utilization

Add/Subtract
Flow Control: Blocking,
Optimize Goal: Performance

DSP48E1 (speed optimized,
full usage)

2 515 354 611 423

Notes:
1. The device used for these f igures is an XC7K70T-1.
2. Area and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx

implementation tools.
3. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be de-rated

by an amount appropriate to the clock source jitter specif ication.
4. The absolute value operator uses no logic nor registers so will not become the critical path in any realistic circuit.

Table 2-19: Characterization of Single-Precision Format on Kintex-7 FPGAs (Cont’d)

Operation

Resources(1)
Maximum
Frequency
(MHz)(2)(3)

Embedded FPGA Logic Kintex-7

Type Number LUT-FF
Pairs LUTs FFs -1 Speed

Grade

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 20
PG060 July 25, 2012 Product Specification

Resource Utilization

The resource requirements and maximum clock rates achievable with single-precision
format on Artix-7 FPGAs is summarized in Table 2-20.

Table 2-20: Characterization of Single-Precision Format on Artix-7 FPGAs

Operation

Resources(1)
Maximum
Frequency

(MHz)(2)(3)

Embedded FPGA Logic Artix-7

Type Number LUT-FF
Pairs LUTs FFs -1 Speed Grade

Multiply DSP48E1 (max usage) 3 207 113 206 378

DSP48E1 (full usage) 2 251 137 261 354

DSP48E1 (medium usage) 1 422 294 430 301

Logic 0 754 630 770 319

Add/Subtract DSP48E1 (speed optimized, full
usage)

2 419 217 441 282

Logic (speed optimized, no usage) 0 627 414 651 347

Logic (low latency) 0 668 508 726 323

Fixed to float Int32 input 244 198 288 348

Float to fixed Int32 result 278 181 295 339

Float to float Single to double 124 30 142 417

Compare Programmable 117 60 89 371

Divide RATE=1 1087 847 1444 323

RATE=26 331 220 294 254

Square Root RATE=1 676 555 875 338

RATE=25 200 141 261 331

Reciprocal DSP48E1 (full usage) 8 289 176 321 366

Logic (no usage) 0 1378 1269 1285 280

Reciprocal Square Root DSP48E1 (full usage) 9 498 386 474 334

Logic (no usage) 0 2170 2039 1978 279

Absolute Value N/A 0 0 0 0 464

Natural Logarithm DSP48E1 (full usage) 13 810 601 934 318

DSP48E1 (medium usage) 4 1111 866 1160 272

Logic 0 1650 1473 1657 273

Multiply
Flow Control: Blocking,
Optimize Goal:
Performance

DSP48E1 (max usage) 3 349 212 382 366

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 21
PG060 July 25, 2012 Product Specification

Resource Utilization

Add/Subtract
Flow Control: Blocking,
Optimize Goal:
Performance

DSP48E1 (speed optimized, full
usage)

2 542 327 611 299

Notes:
1. The device used for these f igures is an XC7A100T-1.
2. Area and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx implementation

tools.
3. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be de-rated by

an amount appropriate to the clock source jitter specif ication.
4. The absolute value operator uses no logic nor registers so will not become the critical path in any realistic circuit.

Table 2-20: Characterization of Single-Precision Format on Artix-7 FPGAs (Cont’d)

Operation

Resources(1)
Maximum
Frequency

(MHz)(2)(3)

Embedded FPGA Logic Artix-7

Type Number LUT-FF
Pairs LUTs FFs -1 Speed Grade

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 22
PG060 July 25, 2012 Product Specification

Resource Utilization

The resource requirements and maximum clock rates achievable with single-precision
format on Zynq-7000 FPGAs is summarized in Table 2-21.

Table 2-21: Characterization of Single-Precision Format on Zynq-7000 Devices

Operation

Resources(1)
Maximum
Frequency

(MHz)(2)(3)

Embedded FPGA Logic Zynq-7000

Type Number LUT-FF
Pairs LUTs FFs -1 Speed

Grade

Multiply DSP48E1 (max usage) 3 198 121 206 463

DSP48E1 (full usage) 2 253 133 261 463

DSP48E1 (medium usage) 1 433 292 432 463

Logic 0 754 636 770 463

Add/Subtract DSP48E1 (speed optimized, full usage) 2 412 226 441 432

Logic (speed optimized, no usage) 0 624 413 655 461

Logic (low latency) 0 689 505 726 464

Fixed to float Int32 input 258 194 289 464

Float to fixed Int32 result 281 181 297 464

Float to float Single to double 131 25 142 464

Compare Programmable 108 66 89 464

Divide RATE=1 1123 845 1442 462

RATE=26 326 230 294 399

Square Root RATE=1 713 551 878 423

RATE=25 212 140 263 445

Reciprocal DSP48E1 (full usage) 8 303 176 323 464

Logic (no usage) 0 1394 1262 1285 430

Reciprocal Square Root DSP48E1 (full usage) 9 495 384 474 464

Logic (no usage) 0 2163 2041 1978 431

Absolute Value N/A 0 0 0 0 464

Natural Logarithm DSP48E1 (full usage) 13 841 590 932 462

DSP48E1 (medium usage) 4 1116 881 1158 416

Logic 0 1659 1469 1678 375

Multiply
Flow Control: Blocking,
Optimize Goal:
Performance

DSP48E1 (max usage) 3 357 208 382 462

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 23
PG060 July 25, 2012 Product Specification

Resource Utilization

Add/Subtract
Flow Control: Blocking,
Optimize Goal:
Performance

DSP48E1 (speed optimized,
full usage)

2 542 330 611 426

Notes:
1. The device used for these f igures is an XC7Z045-1.
2. Area and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx implementation

tools.
3. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be de-rated by

an amount appropriate to the clock source jitter specif ication.
4. The absolute value operator uses no logic nor registers so will not become the critical path in any realistic circuit.

Table 2-21: Characterization of Single-Precision Format on Zynq-7000 Devices (Cont’d)

Operation

Resources(1)
Maximum
Frequency

(MHz)(2)(3)

Embedded FPGA Logic Zynq-7000

Type Number LUT-FF
Pairs LUTs FFs -1 Speed

Grade

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 24
PG060 July 25, 2012 Product Specification

Resource Utilization

Double-Precision Format
The resource requirements and maximum clock rates achievable with double-precision
format on Kintex-7 FPGAs are summarized in Table 2-22.

Table 2-22: Characterization of Double-Precision Format on Kintex-7 FPGAs

Operation

Resources(1)
Maximum
Frequency
(MHz)(2)(3)

Embedded FPGA Logic 18k
Block
RAMs

Kintex-7

Type Number LUT-FF
Pairs LUTs FFs -1 Speed

Grade

Multiply DSP48E1 (max usage) 11 452 340 620 0 463

DSP48E1 (full usage) 10 537 336 653 0 454

DSP48E1 (medium usage) 9 607 390 712 0 404

Logic 0 2470 2332 2615 0 329

DSP48E1 (low latency, max usage) 13 518 218 494 0 384

Add/Subtract DSP48E1 (speed optimized, full usage) 3 1065 745 1157 0 444

Logic (speed optimized, no usage) 0 1195 803 1244 0 449

Logic (low latency, no usage) 0 1260 989 1371 0 400

Fixed to float Int64 input 458 437 618 0 405

Float to fixed Int64 result 475 394 577 0 435

Float to float Double to single 213 87 202 0 499

Compare Programmable 171 141 153 0 482

Divide RATE=1 3849 3524 6166 0 344

RATE=55 612 440 550 0 266

Square Root RATE=1 2239 2067 3423 0 317

RATE=54 382 322 512 0 314

Reciprocal DSP48E1 (full usage) 14 522 381 650 0 411

Reciprocal Square
Root

DSP48E1 (full usage) 75 2336 1844 2781 1 392

Absolute Value N/A 0 0 0 0 0 >550

Natural Logarithm DSP48E1 (full usage) 61 2737 2011 3484 0 417

DSP48E1 (medium usage) 23 3564 3085 3803 0 332

Logic 0 5667 5476 5649 0 302

Multiply
Flow Control:
Blocking,
Optimize Goal:
Performance

DSP48E1 (max usage) 11 781 484 984 0 409

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 25
PG060 July 25, 2012 Product Specification

Resource Utilization

Add/Subtract
Flow Control:
Blocking,
Optimize Goal:
Performance

DSP48E1 (speed optimized, full usage) 3 1335 910 1485 0 450

Notes:
1. The device used for these f igures is an XC7K70-1.
2. Area and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx

implementation tools.
3. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be de-rated by

an amount appropriate to the clock source jitter specif ication.
4. The absolute value operator uses no logic nor registers so will not become the critical path in any realistic circuit.

Table 2-22: Characterization of Double-Precision Format on Kintex-7 FPGAs (Cont’d)

Operation

Resources(1)
Maximum
Frequency
(MHz)(2)(3)

Embedded FPGA Logic 18k
Block
RAMs

Kintex-7

Type Number LUT-FF
Pairs LUTs FFs -1 Speed

Grade

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 26
PG060 July 25, 2012 Product Specification

Resource Utilization

The resource requirements and maximum clock rates achievable with double-precision
format on Artix-7 FPGAs are summarized in Table 2-23.

Table 2-23: Characterization of Double-Precision Format on Artix-7 FPGAs

Operation

Resources(1)
Maximum
Frequency
(MHz)(2)(3)

Embedded FPGA Logic 18k
Block
RAMs

Artix-7

Type Number LUT-FF
Pairs LUTs FFs -1 Speed

Grade

Multiply DSP48E1 (max usage) 11 502 303 620 0 374

DSP48E1 (full usage) 10 552 313 653 0 314

DSP48E1 (medium usage) 9 568 424 693 0 284

Logic 0 2538 2329 2615 0 191

DSP48E1 (low latency, max usage) 13 500 234 494 0 287

Add/Subtract DSP48E1 (speed optimized, full usage) 3 1059 761 1157 0 335

Logic (speed optimized, no usage) 0 1228 804 1224 0 299

Logic (low latency, no usage) 0 1235 982 1373 0 255

Fixed to float Int64 input 594 419 618 0 251

Float to fixed Int64 result 541 370 577 0 258

Float to float Double to single 195 105 202 0 322

Compare Programmable 200 114 153 0 319

Divide RATE=1 3731 3443 6166 0 220

RATE=55 623 421 550 0 200

Square Root RATE=1 2447 2028 3414 0 245

RATE=54 422 289 511 0 241

Reciprocal DSP48E1 (full usage) 14 539 368 650 0 284

Reciprocal Square
Root

DSP48E1 (full usage) 75 2337 1869 2759 1 241

Absolute Value N/A 0 0 0 0 0 464

Natural Logarithm DSP48E1 (full usage) 61 2748 2001 3465 0 264

DSP48E1 (medium usage) 23 3564 3165 3810 0 203

Logic 0 5956 5484 5656 0 200

Multiply
Flow Control:
Blocking,
Optimize Goal:
Performance

DSP48E1 (max usage) 11 750 512 984 0 331

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 27
PG060 July 25, 2012 Product Specification

Resource Utilization

Add/Subtract
Flow Control:
Blocking,
Optimize Goal:
Performance

DSP48E1 (speed optimized, full usage) 3 1294 953 1485 0 302

Notes:
1. The device used for these f igures is an XC7A100T-1.
2. Area and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx implementation

tools.
3. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be de-rated by

an amount appropriate to the clock source jitter specif ication.
4. The absolute value operator uses no logic nor registers so will not become the critical path in any realistic circuit.

Table 2-23: Characterization of Double-Precision Format on Artix-7 FPGAs (Cont’d)

Operation

Resources(1)
Maximum
Frequency
(MHz)(2)(3)

Embedded FPGA Logic 18k
Block
RAMs

Artix-7

Type Number LUT-FF
Pairs LUTs FFs -1 Speed

Grade

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 28
PG060 July 25, 2012 Product Specification

Resource Utilization

The resource requirements and maximum clock rates achievable with double-precision
format on Zynq-7000 FPGAs are summarized in Table 2-24.

Table 2-24: Characterization of Double-Precision Format on Zynq-7000 Devices

Operation

Resources(1)
Maximum
Frequency
(MHz)(2)(3)

Embedded FPGA Logic 18k
Block
RAMs

Zynq-7000

Type Number LUT-FF
Pairs LUTs FFs -1 Speed

Grade

Multiply DSP48E1 (max usage) 11 498 308 620 0 463

DSP48E1 (full usage) 10 570 301 653 0 430

DSP48E1 (medium usage) 9 623 373 703 0 382

Logic 0 2573 2320 2615 0 334

DSP48E1 (low latency, max usage) 13 486 253 494 0 382

Add/Subtract DSP48E1 (speed optimized, full usage) 3 1114 717 1157 0 435

Logic (speed optimized, no usage) 0 1184 814 1244 0 376

Logic (low latency, no usage) 0 1301 942 1371 0 365

Fixed to float Int64 input 596 431 618 0 398

Float to fixed Int64 result 540 375 577 0 446

Float to float Double to single 202 95 202 0 464

Compare Programmable 197 119 153 0 463

Divide C_RATE=1 4467 3437 6166 0 360

C_RATE=55 606 444 550 0 303

Square Root C_RATE=1 2338 1997 3423 0 335

C_RATE=54 418 297 512 0 330

Reciprocal DSP48E1 (full usage) 14 544 378 650 0 438

Reciprocal Square
Root

DSP48E1 (full usage) 75 2318 1869 2784 1 402

Absolute Value N/A 0 0 0 0 0 464

Natural Logarithm DSP48E1 (full usage) 61 2690 2061 3484 0 376

DSP48E1 (medium usage) 23 3610 3129 3803 0 335

Logic 0 5885 5533 5649 0 319

Multiply
Flow Control:
Blocking, Optimize
Goal: Performance

DSP48E1 (max usage) 11 783 479 984 0 402

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 29
PG060 July 25, 2012 Product Specification

Resource Utilization

Add/Subtract
Flow Control:
Blocking, Optimize
Goal: Performance

DSP48E1 (speed optimized, full usage) 3 1341 906 1485 0 360

Notes:
1. The device used for these f igures is an XC7Z045-1.
2. Area and maximum clock frequencies are provided as a guide and might vary with new releases of the Xilinx implementation

tools.
3. Maximum clock frequencies are shown in MHz. Clock frequency does not take jitter into account and should be de-rated by

an amount appropriate to the clock source jitter specif ication.
4. The absolute value operator uses no logic nor registers so will not become the critical path in any realistic circuit.

Table 2-24: Characterization of Double-Precision Format on Zynq-7000 Devices (Cont’d)

Operation

Resources(1)
Maximum
Frequency
(MHz)(2)(3)

Embedded FPGA Logic 18k
Block
RAMs

Zynq-7000

Type Number LUT-FF
Pairs LUTs FFs -1 Speed

Grade

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 30
PG060 July 25, 2012 Product Specification

Port Descriptions

Port Descriptions

The ports employed by the core are shown in Figure 2-1. They are described in more detail
in Table 2-25. All control signals are active-High with the exception of aresetn.

X-Ref Target - Figure 2-1

Figure 2-1: Core Schematic Symbol

Table 2-25: Core Signal Pinout

Name Direction Optional Description

aclk Input yes Rising-edge clock

aclken Input yes Active-High clock enable (optional)

aresetn Input yes Active-Low synchronous clear (optional, always takes
priority over aclken). This signal must be asserted for a
minimum of 2 clock cycles.

s_axis_a_tvalid Input no TVALID for channel A

s_axis_a_tready Output yes TREADY for channel A

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 31
PG060 July 25, 2012 Product Specification

Port Descriptions

All AXI4-Stream port names are lower case, but for ease of visualization, upper case is used
in this document when referring to port name suff ixes, such as TDATA or TLAST.

A Channel (s_axis_a_tdata)

Operand A input.

B Channel (s_axis_b_tdata)

Operand B input.

aclk

All signals are synchronous to the aclk input.

s_axis_a_tdata Input no TDATA for channel A. See TDATA Packing for internal
structure

s_axis_a_tuser Input yes TUSER for channel A

s_axis_a_tlast Input yes TLAST for channel A

s_axis_b_tvalid Input no TVALID for channel B

s_axis_b_tready Output yes TREADY for channel B

s_axis_b_tdata Input no TDATA for channel B. See TDATA Packing for internal
structure

s_axis_b_tuser Input yes TUSER for channel B

s_axis_b_tlast Input yes TLAST for channel B

s_axis_operation_tvalid Input no TVALID for channel OPERATION

s_axis_operation_tready Output yes TREADY for channel OPERATION

s_axis_operation_tdata Input no TDATA for channel OPERATION. See TDATA Packing for
internal structure

s_axis_operation_tuser Input yes TUSER for channel OPERATION

s_axis_operation_tlast Input yes TLAST for channel OPERATION

m_axis_result_tvalid Output no TVALID for channel RESULT

m_axis_result_tready Input yes TREADY for channel RESULT

m_axis_result_tdata Output no TDATA for channel RESULT. See TDATA Subfield for
internal structure

m_axis_result_tuser Output yes TUSER for channel RESULT

m_axis_result_tlast Output yes TLAST for channel RESULT

Table 2-25: Core Signal Pinout (Cont’d)

Name Direction Optional Description

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 32
PG060 July 25, 2012 Product Specification

Port Descriptions

aclken

When aclken is deasserted, the clock is disabled, and the state of the core and its outputs
are maintained. Note that aresetn takes priority over aclken.

aresetn

When aresetn is asserted, the core control circuits are synchronously set to their initial
state. Any incomplete results are discarded, and m_axis_result_tvalid is not
generated for them. While aresetn is asserted m_axis_result_tvalid is
synchronously deasserted. The core is ready for new input one cycle after aresetn is
deasserted, at which point slave channel tvalids are asserted. aresetn takes priority
over aclken. If aresetn is required to be gated by aclken, then this can be done
externally to the core.

aresetn must be driven low for a minimum of two clock cycles to reset the core.

Operation Channel (s_axis_operation_tdata)

The operation channel is present when add and subtract operations are selected together,
or when a programmable comparator is selected. The operations are binary encoded as
specified in Table 2-26.

Result Channel (m_axis_result_tdata)

If the operation is compare, then the valid bits within the result depend upon the compare
operation selected. If the compare operation is one of those listed in Table 2-26, then only
the least signif icant bit of the result indicates whether the comparison is TRUE or FALSE. If
the operation is condition code, then the result of the comparison is provided by 4-bits
using the encoding summarized in Table 2-27.

Table 2-26: Encoding of s_axis_operation_tdata

FP Operation s_axis_operation_tdata(5 : 0)
Add 000000

Subtract 000001

Compare
(Programmable)

Unordered(1) 000100
Less Than 001100

Equal 010100

Less Than or Equal 011100
Greater Than 100100

Not Equal 101100

Greater Than or Equal 110100
1. An unordered comparison returns TRUE when either (or both) of the operands are NaN, indicating that the

operands’ magnitudes cannot be put in size order.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 33
PG060 July 25, 2012 Product Specification

Port Descriptions

The following flag signals provide exception information. Additional detail on their
behavior can be found in the IEEE-754 Standard. The exception flags are not presented as
discrete signals in Floating-Point Operator v6.1, but instead are provided in the RESULT
channel m_axis_result_tuser subfield. For more details, see Output Result Channel.

UNDERFLOW

Underflow is signaled when the operation generates a non-zero result which is too small to
be represented with the chosen precision. The result is set to zero. Underflow is detected
after rounding.

Note: A number that becomes denormalized before rounding is set to zero and underflow signaled.

OVERFLOW

Overflow is signaled when the operation generates a result that is too large to be
represented with the chosen precision. The output is set to a correctly signed .

INVALID_OP

Invalid general-computational or signaling-computational operations are signaled when
the operation performed is invalid. According to the IEEE-754 Standard [Ref 1], the
following are invalid operations:

1. Any operation on a signaling NaN. (This is not relevant to the core as all NaNs are
treated as Quiet NaNs).

2. Addition or subtraction of infinite values where the sign of the result cannot be
determined. For example, magnitude subtraction of infinities such as (+) +(-).

3. Multiplication where .

4. Division where 0/0 or ∞/∞.

Table 2-27: Condition Code Summary

Compare Operation
m_axis_result_tdata(3 : 0)

Result
3 2 1 0

Programmable 0 A OP B = FALSE

1 A OP B = TRUE

Condition Code Unordered > < EQ Meaning

0 0 0 1 A = B

0 0 1 0 A < B

0 1 0 0 A > B

1 0 0 0 A, B or both are NaN.

∞

∞ ∞

0 ∞×

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 34
PG060 July 25, 2012 Product Specification

Port Descriptions

5. Square root if the operand is less than zero. A special case is sqrt(-0), which is defined
to be -0 by the IEEE-754 Standard.

6. When the input of a conversion precludes a faithful representation that cannot
otherwise be signaled (for example NaN or infinity).

7. Natural Logarithm if the input is less than 0. A special case is log(-0) which is defined to
be - .

When an invalid operation occurs, the associated result is a Quiet NaN. In the case of
floating-point to f ixed-point conversion, NaN and infinity raise an invalid operation
exception. If the operand is out of range, or an infinity, then an overflow exception is raised.
By analyzing the two exception signals it is possible to determine which of the three types
of operand was converted. (See Table 2-28.)

When the operand is a NaN the result is set to the most negative representable number.
When the operand is inf inity or an out-of-range floating-point number, the result is
saturated to the most positive or most negative number, depending upon the sign of the
operand.

Note: Floating-point to f ixed-point conversion does not treat a NaN as a Quiet NaN, because NaN
is not representable within the resulting f ixed-point format, and so can only be indicated through an
invalid operation exception.

The absolute value operator does not signal an invalid operation when a Signaling NaN is
input, as it is not a general computational or a signaling computational operation.

DIVIDE_BY_ZERO

DIVIDE_BY_ZERO is asserted when a divide operation is performed where the divisor is zero
and the dividend is a f inite non-zero number. The result in this circumstance is a correctly
signed infinity.

DIVIDE_BY_ZERO is asserted when a logarithm operation is performed where the operand is
zero. The result in this circumstance is negative infinity.

Table 2-28: Invalid Operation Summary

Operand Invalid Operation Overflow Result

+ Out of Range 0 1 011...11

- Out of Range 0 1 100...00

+ Infinity 1 1 011...11

- Infinity 1 1 100...00

NaN 1 0 100...00

∞

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 35
PG060 July 25, 2012

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to make designing with the
core easier.

General Design Guidelines
The floating-point and fixed-point representations employed by the core are described in
Floating-Point Number Representation and Fixed-Point Number Representation.

Floating-Point Number Representation
The core employs a floating-point representation that is a generalization of the IEEE-754
Standard [Ref 1] to allow for non-standard sizes. When standard sizes are chosen, the
format and special values employed are identical to those described by the IEEE-754
Standard.

Two parameters have been adopted for the purposes of generalizing the format employed
by the Floating-Point Operator core. These specify the total format width and the width of
the fractional part. For standard single precision types, the format width is 32 bits and
fraction width 24 bits. In the following description, these widths are abbreviated to and

, respectively.

A floating-point number is represented using a sign, exponent, and fraction (which are
denoted as ’s,’ ’E,’ and , respectively).

The value of a floating-point number is given by:

The binary bits, , have weighting , where the most signif icant bit is a constant 1. As
such, the combination is bounded such that and the number is said
to be normalized. To provide increased dynamic range, this quantity is scaled by a positive
or negative power of 2 (denoted here as E). The sign bit provides a value that is negative
when , and positive when .

The binary representation of a floating-point number contains three fields as shown in
Figure 3-1.

w
wf

b0.b1b2…bwf 1–

v 1–()s2Eb0.b1b2…bwf 1–=

bi 2 i– b0
1 b0.b1b2…bp 1– 2<≤

s 1= s 0=

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 36
PG060 July 25, 2012

General Design Guidelines

As is a constant, only the fractional part is retained, that is, . This requires
only bits. Of the remaining bits, one bit is used to represent the sign, and
bits represent the exponent.

The exponent f ield, , employs a biased unsigned integer representation, whose value is
given by:

The index, i, of each bit within the exponent field is shown in Figure 3-1.

The signed value of the exponent, , is obtained by removing the bias, that is,.

In reality, is not the wordlength of the fraction, but the fraction with the hidden bit, ,
included. This terminology has been adopted to provide commonality with that used to
describe f ixed-point parameters (as employed by Xilinx System Generator™ for DSP).

Special Values

Several values for , and have been reserved for representing special numbers, such
as Not a Number (NaN), Infinity (), Zero (0), and denormalized numbers (see
Denormalized Numbers for an explanation of the latter). These special values are
summarized in Table 3-1.

X-Ref Target - Figure 3-1

Figure 3-1: Bit Fields within the Floating-Point Representation

Table 3-1: Special Values

Symbol for
Special Value s Field e Field f Field

NaN don’t care -1 (that is,)

Any non-zero field.
For results that are NaN the most
signif icant bit of fraction is set (that
is,)

sign of -1 (that is,)
Zero (that is,)

fes

3 wf -11 2we-1 0

0wf -2wf -1w -1

w

wf -1
Bit position

Bit significance (i)

DS335_02_050609

b0 f b1…bwf 1–=

wf 1– we w wf–=

e

e ei2
i

i 0=

we 1–

=

E

E e 2
we 1–

1–()–=

wf b0

s e f
∞

2
we 1–

e 11...11=

f 10...00=

∞± ∞ 2
we 1–

e 11...11=
f 00...00=

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 37
PG060 July 25, 2012

General Design Guidelines

In Table 3-1 the sign bit is undefined when a result is a NaN. The core generates NaNs with
the sign bit set to 0 (that is, positive). Also, infinity and zero are signed. Where possible, the
sign is handled in the same way as finite non-zero numbers. For example, ,

 and . A meaningless operation such as raises an invalid
operation exception and produces a NaN as a result.

Fixed-Point Number Representation
For the purposes of f ixed-point to floating-point conversion, a f ixed-point representation is
adopted that is consistent with the signed integer type used by Xilinx System Generator for
DSP. Fixed-point values are represented using a two’s complement number that is weighted
by a f ixed power of 2. The binary representation of a fixed-point number contains three
f ields as shown in Figure 3-2 (although it is still a weighted two’s complement number).

In Figure 3-2, the bit position has been labeled with an index i. Based upon this, the value
of a f ixed-point number is given by:

For example, a 32-bit signed integer representation is obtained when a total width of 32
and a fraction width of 0 are specif ied. Round to Nearest is employed within the conversion
operations.

To provide for the sign bit, the width of the integer f ield must be at least 1, requiring that
the fractional width be no larger than w-1.

sign of 0 Zero (that is,)

denormalized sign of
number 0 Any non-zero field

X-Ref Target - Figure 3-2

Figure 3-2: Bit Fields within the Fixed-Point Representation

Table 3-1: Special Values

Symbol for
Special Value s Field e Field f Field

0± 0 f 00...00=

0– 0–()+ 0–=

0– 0+ 0= ∞– ∞–()+ ∞–= ∞– ∞+

fractionintegers

0wf -1wf w -1

w

wf -1
Bit position (i)

DS335_03_050609

v 1–()s2
w 1– wf–

bw 2– …bwf
.bwf 1– …b1b0+=

1–()
bw 1– 2

w 1– wf–
2

i wf–
bi

0

w 2–

+=

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 38
PG060 July 25, 2012

Clocking

Clocking
The Floating Point Operator core uses a single clock, called aclk . All input and output
interfaces and internal state are subject to this single clock.

Resets
The Floating Point Operator core uses a single, optional, reset input called aresetn. This
signal is active-Low and must be asserted for a minimum of two clock cycles to ensure
correct operation. aresetn is a global synchronous reset which resets all control states in
the core; all data in transit through the core is lost when aresetn is asserted.

Protocol Description

AXI4-Stream Considerations
The conversion to AXI4-Stream interfaces brings standardization and enhances
interoperability of Xilinx IP LogiCORE™ solutions. Other than general control signals such as
aclk , aclken and aresetn, all inputs and outputs to and from the Floating-Point
Operator core are conveyed using AXI4-Stream channels. A channel consists of TVALID and
TDATA always, plus several optional ports and fields. In the Floating-Point Operator, the
optional ports supported are TREADY, TLAST and TUSER. Together, TVALID and TREADY
perform a handshake to transfer a message, where the payload is TDATA, TUSER and TLAST.
The Floating-Point Operator operates on the operands contained in the TDATA fields and
outputs the result in the TDATA field of the output channel. The Floating-Point Operator
does not use TUSER and TLAST inputs as such, but the core provides the facility to convey
these fields with the same latency as for TDATA. This facility is expected to ease use of the
Floating-Point Operator in a system. For example, the Floating-Point Operator might be
operating on streaming packetized data. In this example, the core could be configured to
pass the TLAST of the packetized data channel, thus saving the system designer the effort
of constructing a bypass path for this information. For further details on AXI4-Stream
interfaces see [Ref 6] and [Ref 7].

Basic Handshake

Figure 3-3 shows the transfer of data in an AXI4-Stream channel. TVALID is driven by the
source (master) side of the channel and TREADY is driven by the receiver (slave). TVALID
indicates that the value in the payload f ields (TDATA, TUSER and TLAST) is valid. TREADY
indicates that the slave is ready to receive data. When both TVALID and TREADY are TRUE in

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 39
PG060 July 25, 2012

Protocol Description

a cycle, a transfer occurs. The master and slave set TVALID and TREADY respectively for the
next transfer appropriately.

Non-Blocking Mode

The term Non-Blocking means that lack of data on one input channel does not block the
execution of an operation if data is received on another input channel. The full flow control
of AXI4-Stream is not always required. Blocking or Non-Blocking behavior is selected using
the Flow Control parameter or GUI field. The core supports a Non-Blocking mode in which
the AXI4-Stream channels do not have TREADY, that is, they do not support back pressure.
The choice of Blocking or Non-Blocking applies to the whole core, not each channel
individually. Channels still have the non-optional TVALID signal, which is analogous to the
New Data (ND) signal on many cores prior to the adoption of AXI4-Stream interfaces.
Without the facility to block dataflow, the internal implementation is much simplif ied, so
fewer resources are required for this mode. This mode is recommended for users wishing to
move to this version from a pre-AXI4-Stream core version with minimal change.

When all of the present input channels receive an active TVALID, an operation is validated
and the output TVALID (suitably delayed by the latency of the core) is asserted to qualify
the result. Operations occur on every enabled clock cycle and data is presented on the
output channel payload f ields regardless of TVALID. This is to allow a minimal migration
from previous core versions. Figure 3-4 shows the Non-Blocking behavior for a case of an
adder with latency of one cycle.

Warning: For performance, aresetn is registered internally, which delays its action by a
clock cycle. The effect of this is that any transaction input in the cycle following the
de-assertion of aresetn is reset by the action of aresetn, resulting in an output data
value of zero. m_axis_result_tvalid is also inactive for this cycle.

X-Ref Target - Figure 3-3

Figure 3-3: Data Transfer in an AXI4-Stream Channel

ACLK

TVALID

TREADY

TDATA

TLAST

TUSER

D1 D2 D3 D4

L1 L2 L3 L4

U1 U2 U3 U4

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 40
PG060 July 25, 2012

Protocol Description

Blocking Mode

The term Blocking means that operation execution does not occur until fresh data is
available on all input channels. The full flow control of AXI4-Stream aids system design
because the flow of data is self-regulating. Data loss is prevented by the presence of back
pressure (TREADY), so that data is only propagated when the downstream datapath is ready
to process the data.

The Floating-Point Operator has one, two or three input channels and one output channel.
When all input channels have validated data available, an operation occurs and the result
becomes available on the output. If the output is prevented from off-loading data because
TREADY is low then data accumulates in the output buffer internal to the core. When this
output buffer is nearly full the core stops further operations. This prevents the input buffers
from off-loading data for new operations so the input buffers f ill as new data is input. When
the input buffers f ill, their respective TREADYs are deasserted to prevent further input. This
is the normal action of back pressure.

The inputs are tied in the sense that each must receive validated data before an operation
is prompted. Therefore, there is an additional blocking mechanism, where at least one input
channel does not receive validated data while others do. In this case, the validated data is
stored in the input buffer of the channel.

After a few cycles of this scenario, the buffer of the channel receiving data f ills and TREADY
for that channel is deasserted until the starved channel receives some data. Figure 3-5
shows both blocking behavior and back pressure for the case of an adder. The first data on
channel A is paired with the f irst data on channel B, the second with the second and so on.
This demonstrates the ‘blocking’ concept. The diagram further shows how data output is
delayed not only by latency, but also by the handshake signal m_axis_result_tready.
This is ‘back pressure’. Sustained back pressure on the output along with data availability on
the inputs eventually leads to a saturation of the core’s buffers, leading the core to signal
that it can no longer accept further input by deasserting the input channel TREADY signals.
The minimum latency in this example is 2 cycles, but it should be noted that in Blocking
operation latency is not a useful concept. Instead, as the diagram shows, the important idea

X-Ref Target - Figure 3-4

Figure 3-4: Non-Blocking Mode

aclk

s_axis_a_tvalid

s_axis_a_tdata

s_axis_b_tvalid

s_axis_b_tdata

m_axis_result_tvalid

m_axis_result_tdata

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4 B5 B6 B7 B8

A1+B1 A2+B2 A3+B3 A4+B4 A5+B5 A6+B6 A7+B7 A8+B

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 41
PG060 July 25, 2012

Protocol Description

is that each channel acts as a queue, ensuring that the first, second, third data samples on
each channel are paired with the corresponding samples on the other channels for each
operation.

Also note that the core buffers have a greater capacity than implied by the diagram.

TDATA Packing

Fields within an AXI4-Stream interface are not given arbitrary names. Normally, information
pertinent to the application is carried in the TDATA field. To ease interoperability with
byte-oriented protocols, each subfield within TDATA which could be used independently is
f irst extended, if necessary, to f it a bit f ield which is a multiple of 8 bits. For example, say the
Floating-Point Operator is configured to have an A operand with a custom precision of 11
bits (5 exponent and 6 mantissa bits). The operand would occupy bits (10 : 0). Bits (15 : 11)
would be ignored. The bits added by byte orientation are ignored by the core and do not
result in additional resource use.

A and B Input Channels

TDATA Structure for A and B Channels

Input channels A and B carry data for use in calculations in their TDATA fields. See
Figure 3-6.

X-Ref Target - Figure 3-5

Figure 3-5: Blocking Mode

X-Ref Target - Figure 3-6

Figure 3-6: TDATA Structure for A and B Channels

aclk

s_axis_a_tvalid

s_axis_a_tready

s_axis_a_tdata

s_axis_b_tvalid

s_axis_b_tready

s_axis_b_tdata

m_axis_result_tvalid

m_axis_result_tready

m_axis_result_tdata

A1 A2 A3 A4 A5 A6 A7

B1 B2 B3 B4 B5 B6 B7 B8

A1+B1 A2+B2 A3+B3 A4+B4 A5+B5 A6+B6 A7

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 42
PG060 July 25, 2012

Protocol Description

Figure 3-7 illustrates how the previous example of a custom precision input with 11 bits
maps to the TDATA channel.

TDATA Structure for OPERATION Channel

The OPERATION channel exists only when add and subtract operations are selected
together, of when a programmable comparator is selected. The binary encoded operation
code, as specif ied in Table 2-26, are 6 bits in length. However, due to the byte-oriented
nature of TDATA, this means that TDATA has a width of 8 bits.

TLAST and TUSER Handling

TLAST in AXI4-Stream is used to denote the last transfer of a block of data. TUSER is for
ancillary information which qualif ies or augments the primary data in TDATA. The
Floating-Point Operator core operates on a per-sample basis where each operation is
independent of any before or after. Because of this, there is no need for TLAST on a
Floating-Point Operator core, nor is there any need for TUSER. The TLAST and TUSER signals
are supported on each channel purely as an optional aid to system design for the scenario
in which the data stream being passed through the Floating-Point Operator core does
indeed have some packetization or ancillary f ield, but which is not relevant to the core
operation. The facility to pass TLAST and/or TUSER removes the burden of matching latency
to the TDATA path, which can be variable, through the Floating-Point Operator core.

X-Ref Target - Figure 3-7

Figure 3-7: Custom Precision Input (11 bits) Mapped to TDATA Channel

X-Ref Target - Figure 3-8

Figure 3-8: TDATA Structure for OPERATION Channels

X-Ref Target - Figure 3-9

Figure 3-9: TUSER Structure for A, B and OPERATION Channels

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 43
PG060 July 25, 2012

Protocol Description

TLAST Options

TLAST for each input channel is optional. Each, when present, can be passed through the
Floating-Point Operator core, or, when more than one channel has TLAST enabled, can pass
a logical AND or logical OR of the TLASTs input. When no TLASTs are present on any input
channel, the output channel does not have TLAST either.

TUSER Options

TUSER for each input channel is optional. Each has user-selectable width. These fields are
concatenated, without any byte-orientation or padding, to form the output channel TUSER
field. The TUSER field from channel A forms the least signif icant portion of the
concatenation, then TUSER from channel B, then TUSER from channel OPERATION.

For example, if channels A and OPERATION both have TUSER subfields with widths of 5 and
8 bits respectively, and no exception flag signals (underflow, etc.) are selected, the output
TUSER is a suitably delayed concatenation of A and OPERATION TUSER f ields, 13 bits wide,
with A in the least significant 5 bit positions (4 down to 0).

Output Result Channel

TDATA Subfield

The internal structure of the RESULT channel TDATA subfield depends on the operation
performed by the core.

For numerical operations (add, multiply, etc.) TDATA contains the numerical result of the
operation and is a single floating-point or f ixed-point number. The result width is
sign-extended to a byte boundary if necessary. This is shown in Figure 3-10.

For Comparator operations, the result is either a 4 bit f ield (Condition Code) or a single bit
indicating TRUE or FALSE. In both cases, the result is zero-padded to a byte boundary, as
shown in Figure 3-11.

TUSER Subfield

The TUSER subfield is present if any of the input channels have an (optional) TUSER
subfield, or if any of the exception flags (underflow, overflow, invalid operation, divide by
zero) have been selected. The formatting of the TUSER fields is shown in Figure 3-12.

If any field of TUSER is not present, f ields in more signif icant bit positions move down to f ill
the space. For example, if the overflow exception flag is selected, but the underflow
exception flag is not, the overflow exception flag result moves to the least-signif icant bit
position in the TUSER subfield.

No byte alignment is performed on TUSER f ields. All f ields present are immediately
adjacent to one another with no padding between them or at the most signif icant bit.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 44
PG060 July 25, 2012

Protocol Description

X-Ref Target - Figure 3-10

Figure 3-10: TDATA Structure for Numerical Result Channel
X-Ref Target - Figure 3-11

Figure 3-11: TDATA Structure for Comparator Result Channel
X-Ref Target - Figure 3-12

Figure 3-12: TUSER Structure for Result Channel

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 45
PG060 July 25, 2012

Chapter 4

C Model Reference
The Xilinx ® LogiCORE ™ IP Floating-Point Operator core bit accurate C model is a
self-contained, linkable, shared library that models the functionality of this core with finite
precision arithmetic. This model provides a bit accurate representation of the various
modes of the Floating-Point Operator v6.1 core, and it is suitable for inclusion in a larger
framework for system-level simulation or core-specif ic verif ication.

The C model is an optional output of the Vivado™ Design Suite (see the Vivado
documentation to set up the C model output).

The C model is an output of the CORE Generator™ software, listed under Output Product
Selection. Ensure that "C Simulation Model" is selected and then generate the core. The C
model is generated in <component_name>/cmodel/ as a zip file for each supported
platform.

Features
• Bit accurate with Floating-Point Operator core

• Available for 32-bit and 64-bit Linux platforms

• Available for 32-bit and 64-bit Windows platforms

• Supports all features of the Floating-Point Operator core

• Designed for integration into a larger system model

• Example C code showing how to use the C model functions

Overview
This product guide provides information about the Xilinx LogiCORE IP Floating-Point
Operator v6.1 bit accurate C model for 32-bit and 64-bit Linux, and 32-bit and 64-bit
Windows platforms.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 46
PG060 July 25, 2012

Unpacking and Model Contents

The model consists of a set of C functions that reside in a shared library. Example C code is
provided to demonstrate how these functions form the interface to the C model. Full details
of this interface are given in C Model Interface.

The model is bit accurate but not cycle-accurate; it performs exactly the same operations as
the core. However, it does not model the core's latency or its interface signals.

Unpacking and Model Contents
There are separate ZIP f iles containing all the f iles necessary for use with a specif ic
computing platform. Each ZIP f ile contains:

• The C model shared library

• Multiple Precision Integers and Rationals (MPIR) [Ref 4] and Multiple Precision
Floating-point Reliable (MPFR) [Ref 3] shared libraries, header files and source code

• The C model header f ile

• The example code showing customers how to call the C model

• Documentation

Note: The C model uses MPIR and MPFR libraries, which are provided in the ZIP f iles. MPIR is an
interface-compatible version of the GNU Multiple Precision (GMP) [Ref 2] library, with greater
support for Windows platforms. MPIR has been compiled using its GMP compatibility option, so the
MPIR library and header f ile use GMP file names. MPFR uses GMP, but here has been configured to
use MPIR instead.

Table 4-1: Example C Model ZIP File Contents - Linux

File Description

floating_point_v6_1_bitacc_cmodel.h Header f ile which defines the C model API

libIp_floating_point_v6_1_bitacc_cmodel.so Model shared object library

libgmp.so.7 MPIR library, used by the C model

libmpfr.so.4 MPFR library, used by the C model

gmp.h MPIR header file, used by the C model

mpfr.h MPFR header file, used by the C model

run_bitacc_cmodel.c Example program for calling the C model

allfns.c Detailed example C code showing how to call every
C model function

README.txt Release notes

pg060-floating-point.pdf This product guide

mpir-2.2.1.tar.bz2 MPIR source code

mpfr-3.0.1.tar.bz2 MPFR source code

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 47
PG060 July 25, 2012

Installation

Installation

Linux
• Unpack the contents of the ZIP f ile.

• Ensure that the directory where the
libIp_floating_point_v6_1_bitacc_cmodel.so, libgmp.so.7 and
libmpfr.so.4 f iles reside is included in the path of the environment variable
LD_LIBRARY_PATH.

Table 4-2: Example C Model ZIP File Contents - Windows

File Description

floating_point_v6_1_bitacc_cmodel.h Header f ile which defines the C model API

libIp_floating_point_v6_1_bitacc_cmodel.dll Model dynamically linked library

libIp_floating_point_v6_1_bitacc_cmodel.lib Model .lib f ile for compiling

libgmp.dll MPIR library, used by the C model

libgmp.lib MPIR .lib f ile for compiling

libmpfr.dll MPFR library, used by the C model

libmpfr.lib MPFR .lib file for compiling

gmp.h MPIR header file, used by the C model

mpfr.h MPFR header file, used by the C model

run_bitacc_cmodel.c Example program for calling the C model

allfns.c Detailed example C code showing how to call every
C model function

README.txt Release notes

pg060-floating-point.pdf This product guide

mpir-2.2.1.tar.bz2 MPIR source code

mpfr-3.0.1.tar.bz2 MPFR source code

mpfr.build.vc9.zip Microsoft Visual Studio 2008 project f iles for
compiling MPFR on Windows

mpfr.build.vc10.zip Microsoft Visual Studio 2010 project f iles for
compiling MPFR on Windows

mpfr_nt_stdint.h Header f ile to enable some MPFR functions when
compiling MPFR on Windows

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 48
PG060 July 25, 2012

C Model Interface

Windows
• Unpack the contents of the ZIP f ile.

• Ensure that the directory where the
libIp_floating_point_v6_1_bitacc_cmodel.dll, libgmp.dll and
libmpfr.dll f iles reside is

a. included in the path of the environment variable PATH or

b. the directory in which the executable that calls the C model is run.

C Model Interface
The Floating-Point Operator C model has a C function based Application Programming
Interface (API), which is very similar to the APIs of other floating-point arithmetic libraries
MPIR (Multiple Precision Integers and Rationals) and MPFR (GNU Multiple Precision
Floating-point Reliable library). The C model uses these libraries internally and provides
functions to convert between their data types.

Note: MPIR [Ref 4] and MPFR [Ref 3] are free, open source software libraries, distributed under the
GNU Lesser General Public License. The source code and a compiled version of each library is
provided with the C model. MPIR is a compatible alternative to GMP (GNU Multiple Precision
Arithmetic) [Ref 2] that provides greater support for Windows platforms. MPIR and GMP can be
used interchangeably.

Two example C f iles, run_bitacc_cmodel.c and allfns.c, are included, that
demonstrate how to call the C model. See these f iles for examples of using the interface
described in the following sections.

The Application Programming Interface (API) of the C model is defined in the header f ile
floating_point_v6_1_bitacc_cmodel.h. The interface consists of data structures
and functions as described in the following sections.

Data Types
The C types defined for the Floating-Point Operator C model are shown in Table 4-3.

Table 4-3: Floating-Point Operator C Model Data Types

Name Type Description

xip_fpo_prec_t long Precision of mantissa or exponent (bits)

xip_fpo_sign_t int Sign bit of a floating-point number

xip_fpo_exp_t long Exponent of a floating-point number

xip_fpo_t struct[1] Custom precision floating-point number (internally defined as a
one-element array of a structure)

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 49
PG060 July 25, 2012

C Model Interface

xip_fpo_prec_t is used for initializing variables of type xip_fpo_t and
xip_fpo_fix_t.

xip_fpo_prec_t and xip_fpo_exp_t are of type long for compatibility with MPFR, not
because they need a greater numerical range than provided by int.

The Floating-Point Operator C model functions use xip_fpo_t and xip_fpo_fix_t for
input and output variables. Users should use these types for all custom precision
floating-point and f ixed-point variables. Defining this type as a one-element array of the
underlying struct means that when a user declares a variable of this type, the memory for
the struct members is automatically allocated, and the user can pass the variable as-is to
functions with no need to add a * to pass a pointer, and it is automatically passed by
reference. This is the same method as used by MPIR [Ref 4] and MPFR [Ref 3].

xip_fpo_t is an IEEE-754 compatible floating-point type, except that signaling NaNs and
denormalized numbers are not supported. If a signaling NaN is stored in an xip_fpo_t
variable, the value becomes a quiet NaN. Similarly, denormalized numbers are converted to
zero (with an underflow exception, if appropriate).

xip_fpo_exc_t is the return value type of most functions.

The C model API also provides versions of its operation functions for single and double
precision, using standard C data types float and double respectively. This provides an
easy use model for applications that do not require custom precision.

xip_fpo_fix_t struct[1] Custom precision fixed-point number (internally defined as a
one-element array of a structure)

xip_fpo_ptr struct *
Pointer to underlying custom precision floating-point struct. Equivalent
to xip_fpo_t but easier to use in certain situations (for example,
terminator in xip_fpo_inits2 function).

xip_fpo_fix_ptr struct *
Pointer to underlying custom precision f ixed-point struct. Equivalent to
xip_fpo_fix_t but easier to use in certain situations (for example,
terminator in xip_fpo_fix_inits2 function).

xip_fpo_exc_t int

Bitwise flags which when set indicate exceptions that occurred during an
operation:
bit 0: underflow
bit 1: overflow
bit 2: invalid operation
bit 3: divide by zero
bit 4: operation not supported by Floating-Point Operator v6.1 core (for
example, add with different precision operands)

Table 4-3: Floating-Point Operator C Model Data Types (Cont’d)

Name Type Description

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 50
PG060 July 25, 2012

C Model Interface

Functions
There are several C model functions accessible to the user.

Information Functions

The Floating-Point Operator C model information functions are shown in Table 4-4.

Initialization Functions

The Floating-Point Operator C model initialization functions are shown in Table 4-5. Most
functions have variants to handle floating-point and fixed-point variables.

Table 4-4: Floating-Point Operator C Model Information Functions

Name Return Arguments Description

xip_fpo_get_version const char * void Return the Floating-Point Operator C model version, as
a null-terminated string. For v6.1 this is "6.1".

Table 4-5: Floating-Point Operator C Model Initialization Functions

Name Return Arguments Description

xip_fpo_init2 void xip_fpo_t x,
xip_fpo_prec_t exp,
xip_fpo_prec_t mant

Initialize floating-point variable x,
set its exponent precision to exp, its
mantissa precision to mant, and its
value to NaN.

xip_fpo_fix_init2 void xip_fpo_fix_t x,
xip_fpo_prec_t i,
xip_fpo_prec_t frac

Initialize f ixed-point variable x, set
its integer precision to i, its fraction
precision to frac, and its value to
zero.

xip_fpo_inits2 void xip_fpo_prec_t exp,
xip_fpo_prec_t mant,
xip_fpo_t x,
...

Initialize all xip_fpo_t variables
pointed to by the argument list, set
their exponent precision to exp, their
mantissa precision to mant, and their
value to NaN. The last item in the list
must be a null pointer of type
xip_fpo_t (or equivalently
xip_fpo_ptr).

xip_fpo_fix_inits2 void xip_fpo_prec_t i,
xip_fpo_prec_t frac,
xip_fpo_fix_t x,
...

Initialize all xip_fpo_fix_t
variables pointed to by the argument
list, set their integer precision to i,
their fraction precision to frac, and
their value to zero. The last item in
the list must be a null pointer of type
xip_fpo_fix_t (or equivalently
xip_fpo_fix_ptr).

xip_fpo_clear void xip_fpo_t x Free the memory used by x.

xip_fpo_fix_clear void xip_fpo_fix_t x Free the memory used by x.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 51
PG060 July 25, 2012

C Model Interface

A floating-point number has a minimum exponent required to support normalization:

If the exponent width specif ied for xip_fpo_init2 or xip_fpo_set_prec for
initializing or resetting a floating-point variable is too small, it is internally increased to the
minimum permitted width.

A variable should be initialized only once, or be cleared using xip_fpo_clear between
initializations. To change the precision of a variable that has already been initialized, use
xip_fpo_set_prec.

xip_fpo_clears void xip_fpo_t x,... Free the memory used by all
xip_fpo_t variables pointed to by
the argument list. The last item in the
list must be a null pointer of type
xip_fpo_t (or equivalently
xip_fpo_ptr).

xip_fpo_fix_clears void xip_fpo_fix_t x,... Free the memory used by all
xip_fpo_fix_t variables pointed
to by the argument list. The last item
in the list must be a null pointer of
type xip_fpo_fix_t (or
equivalently xip_fpo_fix_ptr).

xip_fpo_set_prec void xip_fpo_t x,
xip_fpo_prec_t exp,
xip_fpo_prec_t mant

Reset x to an exponent precision of
exp, a mantissa precision of mant,
and set its value to NaN. The
previous value of x is lost.

xip_fpo_fix_set_prec void xip_fpo_fix_t x,
xip_fpo_prec_t i,
xip_fpo_prec_t frac

Reset x to an integer precision of i, a
fraction precision of frac, and set its
value to zero. The previous value of x
is lost.

xip_fpo_get_prec_mant xip_fpo_prec_t xip_fpo_t x Return the mantissa precision (in
bits) of x.

xip_fpo_get_prec_exp xip_fpo_prec_t xip_fpo_t x Return the exponent precision (in
bits) of x.

xip_fpo_fix_get_prec_frac xip_fpo_prec_t xip_fpo_fix_t x Return the fraction precision (in bits)
of x.

xip_fpo_fix_get_prec_int xip_fpo_prec_t xip_fpo_fix_t x Return the integer precision (in bits)
of x.

Table 4-5: Floating-Point Operator C Model Initialization Functions (Cont’d)

Name Return Arguments Description

minimum exponent width ceil 2 fraction width 3+()log() 1+=

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 52
PG060 July 25, 2012

C Model Interface

An example of initializing and clearing floating-point variables is shown:

xip_fpo_t x, y, z;
xip_fpo_init2 (x, 11, 53); // double precision
xip_fpo_inits2 (7, 17, y, z, (xip_fpo_ptr) 0); // custom precision
// perform operations
xip_fpo_set_prec (8, 24, y); // change to single precision
// more operations
xip_fpo_clears (x, y, z, (xip_fpo_ptr) 0);

Assignment Functions

The Floating-Point Operator C model assignment functions are shown in Table 4-6. Most
functions have variants to handle both floating-point and f ixed-point variables. Functions
are provided for assigning Floating-Point Operator C model variables from MPIR and MPFR
variables for ease of use alongside these existing libraries.

Table 4-6: Floating-Point Operator C Model Assignment Functions

Name Return Arguments Description

xip_fpo_set xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set the value of rop to op.(1)

xip_fpo_fix_set xip_fpo_exc_t xip_fpo_fix_t rop,
xip_fpo_fix_t op

xip_fpo_set_ui xip_fpo_exc_t xip_fpo_t rop,
unsigned long op

xip_fpo_fix_set_ui xip_fpo_exc_t xip_fpo_fix_t rop,
unsigned long op

xip_fpo_set_si xip_fpo_exc_t xip_fpo_t rop,
signed long op

xip_fpo_fix_set_si xip_fpo_exc_t xip_fpo_fix_t rop,
signed long op

xip_fpo_set_uj xip_fpo_exc_t xip_fpo_t rop,
uintmax_t op

xip_fpo_fix_set_uj xip_fpo_exc_t xip_fpo_fix_t rop,
uintmax_t op

xip_fpo_set_sj xip_fpo_exc_t xip_fpo_t rop,
intmax_t op

xip_fpo_fix_set_sj xip_fpo_exc_t xip_fpo_fix_t rop,
intmax_t op

xip_fpo_set_flt xip_fpo_exc_t xip_fpo_t rop,
float op

xip_fpo_fix_set_flt xip_fpo_exc_t xip_fpo_fix_t rop,
float op

xip_fpo_set_d xip_fpo_exc_t xip_fpo_t rop,
double op

xip_fpo_fix_set_d xip_fpo_exc_t xip_fpo_fix_t rop,
double op

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 53
PG060 July 25, 2012

C Model Interface

xip_fpo_set_z xip_fpo_exc_t xip_fpo_t rop,
mpz_t op

Set the value of rop to the value of GMP/MPIR
integer op.(1)

xip_fpo_fix_set_z xip_fpo_exc_t xip_fpo_fix_t rop,
mpz_t op

xip_fpo_set_q xip_fpo_exc_t xip_fpo_t rop,
mpq_t op

Set the value of rop to the value of GMP/MPIR
rational number op.(1)

xip_fpo_fix_set_q xip_fpo_exc_t xip_fpo_fix_t rop,
mpq_t op

xip_fpo_set_f xip_fpo_exc_t xip_fpo_t rop,
mpf_t op

Set the value of rop to the value of GMP/MPIR
floating-point number op.(1)

xip_fpo_fix_set_f xip_fpo_exc_t xip_fpo_fix_t rop,
mpf_t op

xip_fpo_set_fr xip_fpo_exc_t xip_fpo_t rop,
mpfr_t op

Set the value of rop to the value of MPFR
floating-point number op.(1)

xip_fpo_fix_set_fr xip_fpo_exc_t xip_fpo_fix_t rop,
mpfr_t op

xip_fpo_set_ui_2exp xip_fpo_exc_t xip_fpo_t rop,
unsigned long op,
xip_fpo_exp_t e

Set the value of rop to op multiplied by two to
the power of e.(1)

xip_fpo_set_si_2exp xip_fpo_exc_t xip_fpo_t rop,
signed long op,
xip_fpo_exp_t e

xip_fpo_set_uj_2exp xip_fpo_exc_t xip_fpo_t rop,
uintmax_t op,
intmax_t e

xip_fpo_set_sj_2exp xip_fpo_exc_t xip_fpo_t rop,
intmax_t op,
intmax_te

xip_fpo_set_str xip_fpo_exc_t xip_fpo_t rop,
const char *s,
int base

Set the value of rop to the string in s which is
in the base base. See xip_fpo_set_str and
xip_fpo_fix_set_str for details.(1)

xip_fpo_fix_set_str xip_fpo_exc_t xip_fpo_fix_t rop,
const char *s,
int base

xip_fpo_set_nan void xip_fpo_t x Set the value of x to NaN.

xip_fpo_set_inf void xip_fpo_t x,
int sign

Set the value of x to plus infinity if sign is
non-negative, minus infinity otherwise.

xip_fpo_set_zero void xip_fpo_t x,
int sign

Set the value of x to plus zero if sign is
non-negative, minus zero otherwise.

Notes:
1. Any exceptions that occur are signaled in the return value.

When assigning to a f ixed-point variable, if overflow occurs, the result is saturated and the return value is the
largest representable f ixed-point number of the correct sign. Converting a NaN returns the most negative
representable f ixed-point number and the invalid operation exception is signaled in the return value.

Table 4-6: Floating-Point Operator C Model Assignment Functions (Cont’d)

Name Return Arguments Description

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 54
PG060 July 25, 2012

C Model Interface

xip_fpo_set_str and xip_fpo_fix_set_str

The functions xip_fpo_set_str and xip_fpo_fix_set_str take a string argument
(actually const char *) and an integer base. They have the same usage as the MPFR function
mpfr_set_str.

The base is a value between 2 and 62 or zero. The string is a representation of numeric data
to be read and stored in the floating-point variable. The whole string must represent a valid
floating-point number.

The form of numeric data is a non-empty sequence of significand digits with an optional
decimal point, and an optional exponent consisting of an exponent prefix followed by an
optional sign and a non-empty sequence of decimal digits. A significand digit is either a
decimal digit or a Latin letter (62 possible characters), with A = 10, B = 11, ..., Z = 35; case
is ignored in bases less or equal to 36, in bases larger than 36, a = 36, b = 37, ..., z = 61. The
value of a signif icand digit must be strictly less than the base. The decimal point can be
either the one defined by the current locale or the period (the f irst one is accepted for
consistency with the C standard and the practice, the second one is accepted to allow the
programmer to provide numbers from strings in a way that does not depend on the current
locale). The exponent prefix can be e or E for bases up to 10, or @ in any base; it indicates
a multiplication by a power of the base. In bases 2 and 16, the exponent prefix can also be
p or P, in which case the exponent, called binary exponent, indicates a multiplication by a
power of 2 instead of the base (there is a difference only for base 16); in base 16 for example
1p2 represents 4 whereas 1@2 represents 256.

If the argument base is 0, then the base is automatically detected as follows. If the
signif icand starts with 0b or 0B, base 2 is assumed. If the signif icand starts with 0x or 0X,
base 16 is assumed. Otherwise base 10 is assumed.

Note: The exponent (if present) must contain at least a digit. Otherwise, the possible exponent
prefix and sign are not part of the number (which ends with the signif icand). Similarly, if 0b, 0B, 0x
or 0X is not followed by a binary/hexadecimal digit, then the subject sequence stops at the character
0, thus 0 is read.

Special data (for infinities and NaN) can be @inf@ or @nan@(n-char-sequence-opt),
and if base <= 16, it can also be infinity, inf, nan or nan(n-char-sequence-opt),
all case insensitive. A n-char-sequence-opt is a possibly empty string containing only
digits, Latin letters and the underscore (0, 1, 2, ..., 9, a, b, ..., z, A, B, ..., Z, _).

Note: There is an optional sign for all data, even NaN. For example, -@nAn@(This_Is_Not_17) is
a valid representation for NaN in base 17.

If the whole string cannot be parsed into a floating-point or f ixed-point number, then an
invalid operation exception is signaled. In this case, rop might have changed. Overflow or
underflow can occur if the string is parsed to a floating-point or f ixed-point number that is
too large or too small to represent in the floating-point or f ixed-point variable's precision.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 55
PG060 July 25, 2012

C Model Interface

Conversion functions

The Floating-Point Operator C model conversion functions are shown in Table 4-7. Most
functions have variants to handle both floating-point and f ixed-point variables.

Functions that convert to a standard C data type return the converted result as that data
type. Any exceptions that occur are ignored. Functions that convert to GMP or MPFR data
types place the result in the f irst argument and return exception flags, as with most
Floating-Point Operator C model functions.

Table 4-7: Floating-Point Operator C Model Conversion Functions

Name Return Arguments Description

xip_fpo_get_ui unsigned long xip_fpo_t op Convert op to an unsigned long int after
rounding.xip_fpo_fix_get_ui unsigned long xip_fpo_fix_t op

xip_fpo_get_si signed long xip_fpo_t op Convert op to a signed long int after
rounding.xip_fpo_fix_get_si signed long xip_fpo_fix_t op

xip_fpo_get_uj uintmax_t xip_fpo_t op Convert op to an unsigned maximum
size integer after rounding.xip_fpo_fix_get_uj uintmax_t xip_fpo_fix_t op

xip_fpo_get_sj intmax_t xip_fpo_t op Convert op to a signed maximum size
integer after rounding.xip_fpo_fix_get_sj intmax_t xip_fpo_fix_t op

xip_fpo_get_flt float xip_fpo_t op Convert op to a float.

xip_fpo_fix_get_flt float xip_fpo_fix_t op

xip_fpo_get_d double xip_fpo_t op Convert op to a double.

xip_fpo_fix_get_d double xip_fpo_fix_t op

xip_fpo_get_d_2exp double long *exp,
xip_fpo_t op

Convert the mantissa of op to a double
such that 0.5<=abs(mantissa)<1, and
set the value pointed to by exp to the
exponent of op. If op is zero, zero is
returned and exp is zero. If op is NaN or
infinity, NaN or infinity respectively is
returned and exp is undefined.

xip_fpo_get_z xip_fpo_exc_t mpz_t rop,
xip_fpo_t op

Convert op to a GMP/MPIR integer after
rounding and store in rop.
If op is NaN or infinity, rop is set to 0 and
an invalid operation exception is
returned.

xip_fpo_fix_get_z xip_fpo_exc_t mpz_t rop,
xip_fpo_fix_t op

xip_fpo_get_f xip_fpo_exc_t mpf_t rop,
xip_fpo_t op

Convert op to a GMP/MPIR
floating-point number and store it in
rop.
If op is NaN or infinity, rop is set to 0 and
an invalid operation exception is
returned.

xip_fpo_fix_get_f xip_fpo_exc_t mpf_t rop,
xip_fpo_fix_t op

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 56
PG060 July 25, 2012

C Model Interface

xip_fpo_get_str

The function xip_fpo_get_str has the same usage as the MPFR function
mpfr_get_str. n_digits is either zero or the number of significant digits output in the
string; in the latter case, n_digits must be greater or equal to 2. The base can vary from 2 to
62. If the input number is an ordinary number, the exponent is written through the pointer
exp (for input 0, the exponent is set to 0).

The generated string is in the base specified by base. Each string character is either a
decimal digit or a Latin letter (62 possible characters). For base in the range 2 to 36, decimal
digits and lower case letters are used, with a = 10, b = 11, … z = 35. For base in the range
37 to 62, digits, upper case, and lower case letters are used, with A = 10, B = 11, ..., Z = 35,
a = 36, b = 37, ..., z = 61.

The generated string is a fraction, with an implicit radix point immediately to the left of the
f irst digit. For example, the number -3.1416 would be returned as "-31416" in the string and
1 written at exp. The value is rounded to provide n_digits of output, using round to nearest
even: if op is exactly in the middle of two consecutive possible outputs, the one with an even
signif icand is chosen, where both significands are considered with the exponent of op. For

xip_fpo_get_fr xip_fpo_exc_t mpfr_t rop,
xip_fpo_t op

Convert op to an MPFR floating-point
number and store it in rop.

xip_fpo_fix_get_fr xip_fpo_exc_t mpfr_t rop,
xip_fpo_fix_t op

xip_fpo_get_str char * char * str,
xip_fpo_exp_t * exp,
int base,
int n_digits,
xip_fpo_t op

Convert op to a string of digits in base
base, returning the exponent separately
in the variable pointed to by exp. See
xip_fpo_get_str for details.

xip_fpo_fix_get_str char * char * str,
int base,
xip_fpo_fix_t op

Convert op to a string of digits in base
base.
See for details.

xip_fpo_free_str void char * str Free a string allocated by
xip_fpo_get_str or
xip_fpo_fix_get_str.

xip_fpo_fix_free_str void char * str A synonym for xip_fpo_free_str.

xip_fpo_sizeinbase int xip_fpo_t op,
int base

Return the size of op measured in
number of digits in the given base. base
can vary from 2 to 62. The sign of op is
ignored.
Returns -1 if an error occurs.
Use to determine the space required
when converting op to a string using
xip_fpo_get_str or
xip_fpo_fix_get_str.

xip_fpo_fix_sizeinbase int xip_fpo_fix_t op,
int base

Table 4-7: Floating-Point Operator C Model Conversion Functions (Cont’d)

Name Return Arguments Description

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 57
PG060 July 25, 2012

C Model Interface

an odd base, this might not correspond to an even last digit: for example with 2 digits in
base 7, (14) and a half is rounded to (15) which is 12 in decimal, (16) and a half is rounded
to (20) which is 14 in decimal, and (26) and a half is rounded to (26) which is 20 in decimal.

If n_digits is zero, the number of digits of the significand is chosen large enough so that
re-reading the printed value with the same precision recovers the original value of op. More
precisely, in most cases, the chosen precision of str is the minimal precision m depending
only on p = PREC(op) and b that satisfies the above property, that is,
m = 1 + ceil(p*log(2)/log(b)), with p replaced by p-1 if b is a power of 2.

If str is a null pointer, space for the significand is allocated using the GMP/MPIR current
allocation function which is malloc() by default, and a pointer to the string is returned. To
free the memory used by the returned string, you must use xip_fpo_free_str.

If str is not a null pointer, it should point to a block of storage large enough for the
signif icand, that is, at least max(n_digits + 2, 7) if n_digits > 0, or xip_fpo_sizeinbase (op,
base) + 2 otherwise. The extra two bytes are for a possible minus sign, and for the
terminating null character, and the value 7 accounts for -@Inf@ plus the terminating null
character.

A pointer to the string is returned, unless there is an error, in which case a null pointer is
returned.

xip_fpo_fix_get_str

The function xip_fpo_fix_get_str has the same usage as the GMP/MPIR function
mpz_get_str. The base can vary from 2 to 62.

The generated string is in the base specified by base. Each string character is either a
decimal digit or a Latin letter (62 possible characters). For base in the range 2 to 36, decimal
digits and lower case letters are used, with a = 10, b = 11, … z = 35. For base in the range
37 to 62, digits, upper case, and lower case letters are used, with A = 10, B = 11, ..., Z = 35,
a = 36, b = 37, ..., z = 61.

The generated string is either an integer value with no radix point, or a fraction with an
explicit radix point. All signif icant digits are returned, but no leading or trailing zeros are
returned. No rounding is carried out.

If str is a null pointer, space for the significand is allocated using the current allocation
function, and a pointer to the string is returned. To free the memory used by the returned
string, you must use xip_fpo_fix_free_str.

If str is not a null pointer, it should point to a block of storage large enough for the result,
that being xip_fpo_fix_sizeinbase (op, base) + 2. The extra two bytes are for a
possible minus sign, and the terminating null character.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 58
PG060 July 25, 2012

C Model Interface

Operation Functions

The Floating-Point Operator C model functions that model operations of the core are
shown in Table 4-8. In addition to functions using xip_fpo_t and xip_fpo_fix_t type
arguments to provide custom precision, alternative versions of functions using standard C
data types float and double are also provided, to make it easy for customers who do not
need custom precision. For f ixed to float and float to fixed functions, float and double to
and from int are provided. For float to float functions, all combinations of float and
double are provided: where these data types are the same, the function provides a means
to condition numbers (convert signaling NaNs to quiet NaNs, convert denormalized
numbers to zero).

Table 4-8: Floating-Point Operator C Model Operation Functions

Name Return Arguments Description

xip_fpo_add xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op1,
xip_fpo_t op2

Set rop = op1 + op2. rop, op1 and op2 must
have identical precisions, otherwise an
operation not supported exception is
returned.

xip_fpo_add_flt xip_fpo_exc_t float * rop,
float op1,
float op2

Set rop = op1 + op2. Single precision
version.

xip_fpo_add_d xip_fpo_exc_t double * rop,
double op1,
double op2

Set rop = op1 + op2. Double precision
version.

xip_fpo_sub xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op1,
xip_fpo_t op2

Set rop = op1 - op2. rop, op1 and op2 must
have identical precisions, otherwise an
operation not supported exception is
returned.

xip_fpo_sub_flt xip_fpo_exc_t float * rop,
float op1,
float op2

Set rop = op1 - op2. Single precision
version.

xip_fpo_sub_d xip_fpo_exc_t double * rop,
double op1,
double op2

Set rop = op1 - op2. Double precision
version.

xip_fpo_mul xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op1,
xip_fpo_t op2

Set rop = op1 × op2. rop, op1 and op2 must
have identical precisions, otherwise an
operation not supported exception is
returned.

xip_fpo_mul_flt xip_fpo_exc_t float * rop,
float op1,
float op2

Set rop = op1 × op2. Single precision
version.

xip_fpo_mul_d xip_fpo_exc_t double * rop,
double op1,
double op2

Set rop = op1 × op2. Double precision
version.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 59
PG060 July 25, 2012

C Model Interface

xip_fpo_div xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op1,
xip_fpo_t op2

Set rop = op1/op2. rop, op1 and op2 must
have identical precisions, otherwise an
operation not supported exception is
returned.

xip_fpo_div_flt xip_fpo_exc_t float * rop,
float op1,
float op2

Set rop = op1 / op2. Single precision
version.

xip_fpo_div_d xip_fpo_exc_t double * rop,
double op1,
double op2

Set rop = op1/op2. Double precision
version.

xip_fpo_rec(1) xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set rop = 1/op. rop and op must have
identical precisions, otherwise an
operation not supported exception is
returned.

xip_fpo_rec_flt xip_fpo_exc_t float * rop,
float op

Set rop = 1/op. Single precision version.

xip_fpo_rec_d xip_fpo_exc_t double * rop,
double op

Set rop = 1/op. Double precision version.

xip_fpo_sqrt xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set rop = square root of op. rop and op
must have identical precisions, otherwise
an operation not supported exception is
returned.

xip_fpo_sqrt_flt xip_fpo_exc_t float * rop,
float op

Set rop = square root of op. Single
precision version.

xip_fpo_sqrt_d xip_fpo_exc_t double * rop,
double op

Set rop = square root of op. Double
precision version.

xip_fpo_recsqrt(1) xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set rop = 1/(square root of op). rop and op
must have identical precisions, otherwise
an operation not supported exception is
returned.

xip_fpo_recsqrt_flt xip_fpo_exc_t float * rop,
float op

Set rop = 1/(square root of op). Single
precision version.

xip_fpo_recsqrt_d xip_fpo_exc_t double * rop,
double op

Set rop = 1/(square root of op). Double
precision version.

xip_fpo_abs xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set rop = |op|. rop and op must have
identical precisions, otherwise an
operation not supported exception is
returned.

xip_fpo_abs_flt xip_fpo_exc_t float * rop,
float op

Set rop = |op|. Single precision version.

xip_fpo_abs_d xip_fpo_exc_t double * rop,
double op

Set rop = |op|. Double precision version.

Table 4-8: Floating-Point Operator C Model Operation Functions (Cont’d)

Name Return Arguments Description

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 60
PG060 July 25, 2012

C Model Interface

xip_fpo_log(1) xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set rop = natural logarithm of op. rop and
op must have identical precisions,
otherwise an operation not supported
exception is returned.

xip_fpo_log_flt xip_fpo_exc_t float * rop,
float op

Set rop = natural logarithm of op. Single
precision version.

xip_fpo_log_d xip_fpo_exc_t double * rop,
double op

Set rop = natural logarithm of op. Double
precision version.

xip_fpo_unordered xip_fpo_exc_t int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 or op2 is a NaN, 0
otherwise. op1 and op2 must have
identical precisions, otherwise an
operation not supported exception is
returned.

xip_fpo_unordered_flt xip_fpo_exc_t int * res,
float op1,
float op2

Set res = 1 if op1 or op2 is a NaN, 0
otherwise. Single precision version.

xip_fpo_unordered_d xip_fpo_exc_t int * res,
double op1,
double op2

Set res = 1 if op1 or op2 is a NaN, 0
otherwise. Double precision version.

xip_fpo_equal xip_fpo_exc_t int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 = op2, 0 otherwise. op1
and op2 must have identical precisions,
otherwise an operation not supported
exception is returned.

xip_fpo_equal_flt xip_fpo_exc_t int * res,
float op1,
float op2

Set res = 1 if op1 = op2, 0 otherwise. Single
precision version.

xip_fpo_equal_d xip_fpo_exc_t int * res,
double op1,
double op2

Set res = 1 if op1 = op2, 0 otherwise.
Double precision version.

xip_fpo_less xip_fpo_exc_t int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 < op2, 0 otherwise. op1
and op2 must have identical precisions,
otherwise an operation not supported
exception is returned.

xip_fpo_less_flt xip_fpo_exc_t int * res,
float op1,
float op2

Set res = 1 if op1 < op2, 0 otherwise. Single
precision version.

xip_fpo_less_d xip_fpo_exc_t int * res,
double op1,
double op2

Set res = 1 if op1 < op2, 0 otherwise.
Double precision version.

xip_fpo_lessequal xip_fpo_exc_t int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 <= op2, 0 otherwise. op1
and op2 must have identical precisions,
otherwise an operation not supported
exception is returned.

xip_fpo_lessequal_flt xip_fpo_exc_t int * res,
float op1,
float op2

Set res = 1 if op1 <= op2, 0 otherwise.
Single precision version.

Table 4-8: Floating-Point Operator C Model Operation Functions (Cont’d)

Name Return Arguments Description

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 61
PG060 July 25, 2012

C Model Interface

xip_fpo_lessequal_d xip_fpo_exc_t int * res,
double op1,
double op2

Set res = 1 if op1 <= op2, 0 otherwise.
Double precision version.

xip_fpo_greater xip_fpo_exc_t int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 > op2, 0 otherwise. op1
and op2 must have identical precisions,
otherwise an operation not supported
exception is returned.

xip_fpo_greater_flt xip_fpo_exc_t int * res,
float op1,
float op2

Set res = 1 if op1 > op2, 0 otherwise. Single
precision version.

xip_fpo_greater_d xip_fpo_exc_t int * res,
double op1,
double op2

Set res = 1 if op1 > op2, 0 otherwise.
Double precision version.

xip_fpo_greaterequal xip_fpo_exc_t int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 >= op2, 0 otherwise. op1
and op2 must have identical precisions,
otherwise an operation not supported
exception is returned.

xip_fpo_greaterequal_flt xip_fpo_exc_t int * res,
float op1,
float op2

Set res = 1 if op1 >= op2, 0 otherwise.
Single precision version.

xip_fpo_greaterequal_d xip_fpo_exc_t int * res,
double op1,
double op2

Set res = 1 if op1 >= op2, 0 otherwise.
Double precision version.

xip_fpo_notequal xip_fpo_exc_t int * res,
xip_fpo_t op1,
xip_fpo_t op2

Set res = 1 if op1 <> op2 or either op1 or
op2 are NaN, 0 otherwise. op1 and op2
must have identical precisions, otherwise
an operation not supported exception is
returned.

xip_fpo_notequal_flt xip_fpo_exc_t int * res,
float op1,
float op2

Set res = 1 if op1 <> op2 or either op1 or
op2 are NaN, 0 otherwise. Single precision
version.

xip_fpo_notequal_d xip_fpo_exc_t int * res,
double op1,
double op2

Set res = 1 if op1 <> op2 or either op1 or
op2 are NaN, 0 otherwise. Double
precision version.

xip_fpo_condcode xip_fpo_exc_t int * res,
xip_fpo_t op1,
xip_fpo_t op2

Compare op1 and op2, and set the least
signif icant 4 bits of res to the resulting
condition code. See Table 4-9 for the
condition code encoding. op1 and op2
must have identical precisions, otherwise
an operation not supported exception is
returned.

xip_fpo_condcode_flt xip_fpo_exc_t int * res,
float op1,
float op2

Compare op1 and op2, and set the least
signif icant 4 bits of res to the resulting
condition code. See Table 4-9 for the
condition code encoding. Single precision
version.

Table 4-8: Floating-Point Operator C Model Operation Functions (Cont’d)

Name Return Arguments Description

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 62
PG060 July 25, 2012

C Model Interface

For all functions, the result is guaranteed to match exactly the numerical output of the
Floating-Point Operator v6.1 core, and the returned exceptions are guaranteed to match
exactly the signaled exceptions of the Floating-Point Operator v6.1 core, for identical
inputs.

When the operand and result variables do not meet constraints of the Floating-Point
Operator v6.1 core, an operation not supported exception is returned. In this case, no other
exception bits are set in the return value, and the result variable is not modif ied.

xip_fpo_condcode_d xip_fpo_exc_t int * res,
double op1,
double op2

Compare op1 and op2, and set the least
signif icant 4 bits of res to the resulting
condition code. See Table 4-9 for the
condition code encoding. Double
precision version.

xip_fpo_flttofix xip_fpo_exc_t xip_fpo_fix_t rop,
xip_fpo_t op

Set rop = op, rounding as required. rop and
op must have compatible precisions (see
xip_fpo_flttofix and xip_fpo_fixtoflt),
otherwise an operation not supported
exception is returned.

xip_fpo_flttofix_int_flt xip_fpo_exc_t int * rop,
float op

Set rop = op, rounding as required. Single
precision to integer version.

xip_fpo_flttofix_int_d xip_fpo_exc_t int * rop,
double op

Set rop = op, rounding as required. Double
precision to integer version.

xip_fpo_fixtoflt xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_fix_t op

Set rop = op, rounding as required. rop and
op must have compatible precisions (see
xip_fpo_flttofix and xip_fpo_fixtoflt),
otherwise an operation not supported
exception is returned.

xip_fpo_fixtoflt_flt_int xip_fpo_exc_t float * rop,
int op

Set rop = op, rounding as required. Integer
to single precision version.

xip_fpo_fixtoflt_d_int xip_fpo_exc_t double * rop,
int op

Set rop = op, rounding as required. Integer
to double precision version.

xip_fpo_flttoflt xip_fpo_exc_t xip_fpo_t rop,
xip_fpo_t op

Set rop = op, rounding as required. rop and
op can have different precisions.

xip_fpo_flttoflt_flt_flt xip_fpo_exc_t float * rop,
float op

Set rop = op, rounding as required. Single
to single precision version (for
conditioning numbers).

xip_fpo_flttoflt_flt_d xip_fpo_exc_t float * rop,
double op

Set rop = op, rounding as required. Double
to single precision version.

xip_fpo_flttoflt_d_flt xip_fpo_exc_t double * rop,
float op

Set rop = op, rounding as required. Single
to double precision version.

xip_fpo_flttoflt_d_d xip_fpo_exc_t double * rop,
double op

Set rop = op, rounding as required. Double
to double precision version (for
conditioning numbers).

1. Only supported for xip_fpo_t operands with IEEE-754 single precision (exponent=8, mantissa=24) or double
precision (exponent=11, mantissa=53).

Table 4-8: Floating-Point Operator C Model Operation Functions (Cont’d)

Name Return Arguments Description

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 63
PG060 July 25, 2012

Compiling

xip_fpo_condcode functions set the 4 least signif icant bits of their integer result to a
condition code, which has the encoding shown in Table 4-9. Encodings not shown are
reserved and are not returned by the functions.

For all comparison functions, the sign of zero is ignored, such that -0 = +0.

xip_fpo_flttofix and xip_fpo_fixtoflt

xip_fpo_flttofix and xip_fpo_fixtoflt functions have restrictions on the
precisions of the fixed-point and floating-point operand and result. The exponent width of
the floating-point variable must be at least:

minimum floating-point exponent width = ceil(log2(fixed-point total width + 3)) + 1

If the operand and result variable do not meet this condition, an operation not supported
exception is returned and the result variable is not modif ied.

Compiling
Compilation of user code requires access to the
floating_point_v6_1_bitacc_cmodel.h header file and the header f iles of the MPIR
[Ref 4] and MPFR [Ref 3] dependent libraries, gmp.h and mpfr.h. The header f iles should
be copied to a location where they are available to the compiler. Depending on the location
chosen, the include search path of the compiler might need to be modif ied.

The floating_point_v6_1_bitacc_cmodel.h header f ile must be included f irst,
because it defines some symbols that are used in the MPIR and MPFR header f iles. The
floating_point_v6_1_bitacc_cmodel.h header file includes the MPIR and MPFR
header f iles, so these do not need to be explicitly included in source code that uses the C
model. When compiling on Windows, the symbol NT must be defined, either by a compiler
option, or in user source code before the floating_point_v6_1_bitacc_cmodel.h
header f ile is included.

Table 4-9: Condition Code Encoding

Integer result

Condition code bit

Meaning3 2 1 0

Unordered Greater than Less than Equal

1 0 0 0 1 op1 = op2

2 0 0 1 0 op1 < op2

4 0 1 0 0 op1 > op2

8 1 0 0 0 op1, op2 or both are NaN

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 64
PG060 July 25, 2012

Linking

Linking
To use the C model the user executable must be linked against the correct libraries for the
target platform.

Note: The C model uses MPIR and MPFR libraries. Pre-compiled MPIR and MPFR libraries are
provided with the C model. It is also possible to use GMP or MPIR, and MPFR libraries from other
sources, for example, compiled from source code. For details, see Dependent Libraries.

Linux
The executable must be linked against the following shared object libraries:

• libgmp.so.7

• libmpfr.so.4

• libIp_floating_point_v6_1_bitacc_cmodel.so

Using GCC, linking is typically achieved by adding the following command line options:

-L. -lgmp -lmpfr -lIp_floating_point_v6_1_bitacc_cmodel

This assumes the shared object libraries are in the current directory. If this is not the case,
the -L. option should be changed to specify the library search path to use.

Using GCC, the provided example program run_bitacc_cmodel.c can be compiled and
linked using the following command:

gcc run_bitacc_cmodel.c -o run_bitacc_cmodel -I. -L. -lgmp -lmpfr
-lIp_floating_point_v6_1_bitacc_cmodel

Windows
The executable must be linked against the following dynamic link libraries:

• libgmp.dll

• libmpfr.dll

• libIp_floating_point_v6_1_bitacc_cmodel.dll

Depending on the compiler, the import libraries might also be required:

• libgmp.lib

• libmpfr.lib

• libIp_floating_point_v6_1_bitacc_cmodel.lib

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 65
PG060 July 25, 2012

Dependent Libraries

Using Microsoft Visual Studio, linking is typically achieved by adding the import libraries to
the Additional Dependencies entry under the Linker section of Project Properties.

Dependent Libraries
The C model uses MPIR and MPFR libraries. Pre-compiled MPIR and MPFR libraries are
provided with the C model, using the following versions of the libraries:

• MPIR 2.2.1

• MPFR 3.0.1

As MPIR is a compatible alternative to GMP, the GMP library can be used in place of MPIR.
It is possible to use GMP or MPIR and MPFR libraries from other sources, for example,
compiled from source code.

GMP and MPIR in particular, and MPFR to a lesser extent, contain many low level
optimizations for specif ic processors. The libraries provided are compiled for a generic
processor on each platform, using no optimized processor-specific code. These libraries
work on any processor, but run more slowly than libraries compiled to use optimized
processor-specific code. For the fastest performance, compile libraries from source on the
machine on which you run the executables.

Source code and compilation scripts are provided for the versions of MPIR and MPFR that
were used to compile the provided libraries. Source code and compilation scripts for any
version of the libraries can be obtained from the GMP [Ref 2], MPIR [Ref 4] and MPFR [Ref 3]
web sites. Microsoft Visual Studio project f iles for compiling MPFR on Windows can be
obtained from Brian Gladman’s website [Ref 5].

Note: If compiling MPIR using its configure script (for example, on Linux platforms), use the
--enable-gmpcompat option when running the configure script. This generates a libgmp.so
library and a gmp.h header f ile that provide full compatibility with the GMP library. This
compatibility is required by the MPFR compilation scripts.

Note: Some Windows compilers, for example Microsoft Visual Studio versions prior to 2010, do not
have full support for the C99 standard of the C programming language. The MPFR library contains
functions that use the C99 types intmax_t and uintmax_t (for example, functions with _sj and
_uj suff ixes). When MPFR is compiled, it checks if these types are present, and excludes these
functions if not. The C model requires these functions in MPFR. Therefore, when compiling MPFR
using a Windows compiler without C99 support, include the provided mpfr_nt_stdint.h header
f ile, which defines the types intmax_t and uintmax_t. Using Microsoft Visual Studio, this header
f ile can be included without modifying source code by adding it to the Force Includes entry under
the Advanced sub-section of the C/C++ section of Project Properties.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 66
PG060 July 25, 2012

Example

Example
The run_bitacc_cmodel.c f ile contains example code to show basic operation of the C
model. Part of this example code is shown here. The comments assist in understanding the
code.

This code calculates e, the base of natural logarithms, in the given precision. The Taylor
Series expansion for the exponential function ex is:

To calculate e, set x = 1:

This code calculates terms iteratively until the accuracy of e no longer improves.

#include <stdio.h>
#include "floating_point_v6_1_bitacc_cmodel.h"
int main()
{
xip_fpo_exp_t exp_prec, mant_prec;
 // The algorithm will work for any legal combination
 // of values for exp_prec and mant_prec
 exp_prec = 16;
 mant_prec = 64;
 printf("Using Taylor Series expansion to calculate e, the base of natural
logarithms, in %d-bit mantissa precision\n", mant_prec);

int i, done;
 xip_fpo_t n, fact, one, term, e, e_old;
 xip_fpo_exc_t ex;
 xip_fpo_exp_t exp;
 char * result = 0;
 double e_d;

xip_fpo_inits2 (exp_prec, mant_prec, n, fact, one, term, e,
 e_old, (xip_fpo_ptr) 0);
 xip_fpo_set_ui (one, 1);

// 0th term
 i = 0;
 xip_fpo_set_ui (fact, 1);
 xip_fpo_set_ui (e, 1);

// Main iteration loop
 do {

// Set up this iteration
 i++;

ex 1 x
1!

x2

2!

x3

3!
----- … xn

n!
----- …+ + + + + +=

ex 1 1
1!

1
2!

1
3!
----- … 1

n!
----- …+ + + + + +=

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 67
PG060 July 25, 2012

Example

 xip_fpo_set_ui (n, i);
 xip_fpo_set (e_old, e);

// Calculate the next term: 1/n!
 ex = xip_fpo_mul (fact, fact, n); // n!
 ex |= xip_fpo_div (term, one, fact); // 1/n!
 // Note: an alternative to the preceding line is:
 // ex |= xip_fpo_rec (term, fact);
 // but this is only possible if using single or double
 // (exp_prec, mant_prec = 8, 24 or 11, 53 respectively)
 // because xip_fpo_rec only supports single and double

// Calculate the estimate of e
 ex |= xip_fpo_add (e, e, term);

// Are we done?
 ex |= xip_fpo_equal (&done, e, e_old);

// Check for exceptions (none should occur)
 if (ex) {
 printf ("Iteration %d: exception occurred: %d\n", i, ex);
 return 1;
 }

// Print result so far
 result = xip_fpo_get_str (result, &exp, 10, 0, e);
 printf ("After %2d iteration(s), e is 0.%s * 10 ^ %d\n",
 i, result, exp);

} while (!done);

// Convert result to C's double precision type
 e_d = xip_fpo_get_d (e);
 printf ("As a C double, e is %.20f\n", e_d);

// Free up memory
 xip_fpo_clears (n, fact, one, term, e, e_old, xip_fpo_ptr) 0);
 xip_fpo_free_str (result);
return 0;
}

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 68
PG060 July 25, 2012

SECTION II: VIVADO DESIGN SUITE

Customizing and Generating the Core

Detailed Example Design

Constraining the Core

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 69
PG060 July 25, 2012

Chapter 5

Customizing and Generating the Core
This chapter includes information on using Xilinx tools to customize and generate the core
in the Vivado™ Design Suite.

GUI
The Floating-Point Operator core GUI provides several screens with f ields to set the
parameter values for the particular instantiation required. This section provides a
description of each GUI field.

The GUI allows configuration of the following:

• Core operation

• Wordlength

• Implementation optimizations, such as use of XtremeDSP™ slices

• Optional pins

Main Configuration Screen

The main configuration screen allows the following parameters to be specified:

• Component Name

• Operation Selection

Component Name

The component name is used as the base name of the output f iles generated for the core.
Names must start with a letter and be composed using the following characters: a to z, 0 to
9, and “_”.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 70
PG060 July 25, 2012

GUI

Operation Selection

The floating-point operation can be one of the following:

• Add/Subtract

• Multiply

• Divide

• Square-root

• Compare

• Reciprocal

• Reciprocal square root

• Absolute value

• Natural logarithm

• Fixed-to-float

• Float-to-fixed

• Float-to-float

When Add/Subtract is selected, it is possible for the core to perform both operations, or just
add or subtract. When both are selected, the operation performed on a particular set of
operands is controlled by the s_axis_operation channel (with encoding defined in
Table 2-26).

When Add/Subtract or Multiply is selected, the level of XtremeDSP slice usage can be
specified according to FPGA family as described in the AXI4-Stream Channel Options
section.

When Compare is selected, the compare operation can be programmable or f ixed. If
programmable, then the compare operation performed should be supplied through the
s_axis_operation channel (with encoding defined in Table 2-26). If a f ixed operation is
required, then the operation type should be selected.

When Float-to-float conversion is selected, and exponent and fraction widths of the input
and result are the same, the core provides a means to condition numbers, that is, convert
denormalized numbers to zero, and signaling NaNs to quiet NaNs.

Second and Third Configuration Screens

Depending on the configuration you select from the f irst screen, the second and third
configuration screens let you specify the precision of the operand and result.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 71
PG060 July 25, 2012

GUI

Precision of the Operand and Results

This parameter defines the number of bits used to represent quantities. The type of the
operands and results depend on the operation requested. For f ixed-point conversion
operations, either the operand or result is f ixed-point. For all other operations, the output
is specif ied as a floating-point type.

Note: For the condition-code compare operation, m_axis_result_tdata(3:0) indicates the
result of the comparison operation. For other compare operations m_axis_result_tdata(0:0)
provides the result.

Table 5-1 defines the general limits of the format widths.

There are also some further limits for specific cases which are enforced by the GUI:

• The exponent width (that is., Total Width-Fraction Width) should be chosen to support
normalization of the fractional part. This can be calculated using:

Minimum Exponent Width = ceil [log2(Fraction Width+3)] + 1

For example, a 24-bit fractional part requires an exponent of at least 6 bits (for example,
{ceil [log2 (27)]+1}).

• For conversion operations, the exponent width of the floating-point input or output is
also constrained by the Total Width of the f ixed-point input or output to be a minimum
of:

Minimum Exponent Width = ceil [log2(Total Width+3)] + 1

For example, a 32-bit integer requires a minimum exponent of 7 bits.

A summary of the width limits imposed by exponent width is provided in Table 5-2.

Table 5-1: General Limits of Width and Fraction Width

Format Type
Fraction Width Exponent/Integer Width Width

Min Max Min Max Min Max

Floating-Point 4 64 4 16 4 64

Fixed-Point 0 63 1 64 4 64

Table 5-2: Summary of Exponent Width Limits

Floating-Point Fraction Width or Fixed-Point Total Width Minimum Exponent Width

4 to 5 4

6 to 13 5

14 to 29 6

30 to 61 7

61 to 64 8

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 72
PG060 July 25, 2012

GUI

Penultimate Configuration Screen

The penultimate configuration screen lets you specify the following:

• Architecture Optimizations

• Family Optimizations

Architecture Optimizations

For double precision multiplication and addition/subtraction operations, it is possible to
specify a latency optimized architecture, or speed optimized architecture. The latency
optimized architecture offers reduced latency at the expense of increased resources.

Family Optimizations

• Multiplier Usage allows the level of XtremeDSP slice multiplier use to be specif ied.

Multiplier Usage

The level and type of multiplier usage depends upon the operation. Table 5-3 summarizes
these options for multiplication.

Table 5-4 summarizes these options for addition/subtraction.

Table 5-3: Impact of Multiplier Usage on the Implementation of the Multiplier

Multiplier Usage

No usage Logic

Medium usage DSP48E1+logic in multiplier body

Full usage DSP48E1 used in multiplier body

Max usage DSP48E1 multiplier body and rounder

Table 5-4: Impact of Precision, and Multiplier Usage on the Implementation of the Adder/
Subtractor

Multiplier Usage
(only valid values listed) Other Single Double

No usage Logic Logic Logic

Full usage Not supported 2 DSP48E1 3 DSP48E1

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 73
PG060 July 25, 2012

GUI

Final Configuration Screen

The final configuration screen lets you specify:

• Flow Control Options

• Latency and Rate Configuration

• Control Signals

• Optional Output Fields

• AXI4-Stream Channel Options

Flow Control Options

These parameters allow the AXI4-Stream interface to be optimized to suit the surrounding
system.

• Flow Control

° Blocking: When the core is configured to a Blocking interface, it waits for valid data
to be available on all input channels before performing a calculation. Back pressure
from downstream modules is possible.

° NonBlocking: When the core is configured to use a NonBlocking interface, a
calculation is performed on each cycle where all input channel TVALIDs are
asserted. Back pressure from downstream modules is not possible.

• Optimize Goal

° Resources: This option reduces the logic resources required by the AXI4-Stream
interface, at the expense of maximum achievable clock frequency.

° Performance: This option allows maximum performance, at the cost of additional
logic required to buffer data in the event of back pressure from downstream
modules.

• RESULT channel has TREADY

° Unchecking this option removes TREADY signals from the RESULT channel,
disabling the ability for downstream modules to signal back pressure to the
Floating-Point Operator core and upstream modules.

Latency and Rate Configuration

This parameter describes the number of cycles between an operand input and result output.
The latency of all operators can be set between 0 and a maximum value that is dependent
upon the parameters chosen. The maximum latency of the Floating-Point Operator core is
tabulated for a range of width and operation types in Tables 2-1 through 2-14.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 74
PG060 July 25, 2012

GUI

Cycles per Operation

The 'Cycles per Operation' GUI parameter describes the minimum number of cycles that
must elapse between inputs. This rate can be specif ied. A value of 1 allows operands to be
applied on every clock cycle, and results in a fully-parallel circuit. A value greater than 1
enables hardware reuse. The resources consumed by the core reduces as the number of
cycles per operation is increased. A value of 2 approximately halves the resources used. A
fully sequential implementation is obtained when the value is equal to Fraction Width+1 for
the square-root operation, and Fraction Width+2 for the divide operation.

Control Signals

Pins for the following global signals are optional:

• ACLKEN: Active-High clock enable.

• ARESETn: Active-Low synchronous reset. Must be driven low for a minimum of two
clock cycles to reset the core.

Optional Output Fields

The following exception signals are optional and are added to m_axis_result_tuser
when selected:

• UNDERFLOW, OVERFLOW, INVALID_OPERATION and DIVIDE_BY_ZERO.

• See TLAST and TUSER Handling for information on the internal packing of the
exception signals in m_axis_result_tuser.

AXI4-Stream Channel Options

The following sections allow configuration of additional AXI4-Stream channel features:

• A Channel Options

° Enables TLAST and TUSER input fields for the A operand channel, and allows
definition of the TUSER f ield width.

• B Channel Options

° Enables TLAST and TUSER input fields for the B operand channel (when present),
and allows definition of the TUSER field width.

• OPERATION Channel Options

° Enables TLAST and TUSER input fields for the OPERATION channel (when present),
and allows definition of the TUSER field width.

• Output TLAST Behavior

° When at least one TLAST input is present on the core, this option defines how the
m_axis_result_tlast signal should be generated. Options are available to pass
any of the input TLAST signals without modif ication, or to logically OR or AND all
input TLASTs.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 75
PG060 July 25, 2012

Using the Floating-Point Operator IP Core

Using the Floating-Point Operator IP Core
The Vivado Customize IP dialog box performs error-checking on all input parameters.
Resource estimation and optimum latency information are also available.

Several f iles are produced when a core is generated, and customized instantiation
templates for Verilog and VHDL design flows are provided in the .veo and .vho f iles,
respectively. For detailed instructions, see the Vivado Design Suite documentation.

Core Use through System Generator for DSP
The Floating-Point Operator core is available through Xilinx System Generator, a DSP design
tool that enables the use of The Mathworks model-based design environment Simulink®
for FPGA design. The Floating-Point Operator is used within DSP math building blocks
provided in the Xilinx blockset for Simulink. The blocks that provide floating-point
operations using the Floating-Point Operator core are:

• AddSub

• Mult

• CMult (Constant Multiplier)

• Divide

• Reciprocal

• SquareRoot

• Reciprocal SquareRoot

• Absolute

• Logarithm

• Relational (provides compare operations)

• Convert (provides f ixed to float, float to f ixed, float to float)

See the System Generator for DSP User Guide for more information.

Parameter Values in the XCI File
Table 5-5 defines valid entries for the XCI parameters. Parameters are case sensitive. Default
values are displayed in bold. Xilinx strongly recommends that XCI parameters not be
manually edited in the XCI f ile; instead, use Vivado software GUI to configure the core and
perform range and parameter value checking.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.2;t=vivado+userguides
www.xilinx.com/support/documentation/dt_sysgendsp_sysgen13-3_userguides.htm

Floating-Point Operator v6.1 www.xilinx.com 76
PG060 July 25, 2012

Parameter Values in the XCI File

Table 5-5: XCI Parameters

XCI Parameter XCI Values

Component_Name Name must begin with a letter and be composed of the following
characters: a to z, A to Z, 0 to 9 and "_".

Operation_Type Add_Subtract,
Multiply,
Divide,
Square_Root,
Compare,
Reciprocal
Rec_Square_Root
Absolute,
Logarithm,
Fixed_to_float,
Float_to_fixed,
Float_to_float

Add_Sub_Value Both, Add, Subtract

C_Compare_Operation Programmable,
Unordered,
Less_Than,
Equal,
Less_Than_Or_Equal,
Greater_Than,
Not_Equal,
Greater_Than_Or_Equal,
Condition_Code

A_Precision_Type Single, Double, Int32, Custom

C_A_Exponent_Width Integer with range summarized in Table 5-1 and Table 5-2.
Required when A_Precision_Type is Custom.

C_A_Fraction_Width Integer with range summarized in Table 5-1 and Table 5-2.
Required when A_Precision_Type is Custom.

Result_Precision_Type Single, Double, Int32, Custom.

C_Result_Exponent_Width Integer with range summarized in Table 5-1 and Table 5-2.
Required when Result_Precision_Type is Custom.

C_Result_Fraction_Width Integer with range summarized in Table 5-1 and Table 5-2.
Required when Result_Precision_Type is Custom.

C_Optimization Speed_Optimized,
Low_Latency

C_Mult_Usage No_Usage,
Medium_Usage,
Full_Usage,
Max_Usage

Maximum_Latency False, True

C_Latency Integer with range 0 to the maximum latency of core as
summarized by Tables 2-1 through 2-14 (default is maximum
latency). Required when Maximum_Latency is False.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 77
PG060 July 25, 2012

Parameter Values in the XCI File

C_Rate Integer with range 1 to maximum rate as described in Cycles per
Operation (default is 1).

Has_ARESETn False, True

Has_ACLKEN False, True

C_Has_UNDERFLOW False, True

C_Has_OVERFLOW False, True

C_Has_INVALID_OP False, True

C_Has_DIVIDE_BY_ZERO False, True

Flow_Control Blocking, NonBlocking

Axi_Optimize_Goal Resources, Performance

Has_RESULT_TREADY True, False

Has_A_TLAST False, True

Has_A_TUSER False, True

A_TUSER_Width Integer with range 1 to 256. Default is 1.

Has_B_TLAST False, True

Has_B_TUSER False, True

B_TUSER_Width Integer with range 1 to 256. Default is 1.

Has_OPERATION_TLAST False, True

Has_OPERATION_TUSER False, True

OPERATION_TUSER_Width Integer with range 1 to 256. Default is 1.

RESULT_TLAST_Behv Null, Pass_A_TLAST, Pass_B_TLAST, Pass_OPERATION_TLAST,
OR_All_TLASTs, AND_all_TLASTs

Table 5-5: XCI Parameters (Cont’d)

XCI Parameter XCI Values

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 78
PG060 July 25, 2012

Output Generation

Output Generation
The output of generation consists of some or all of the following:

Table 5-6: Output Files

Name Description

<component_name>.xci Input file containing the parameters used to
customize the core.

<component_name>.veo Template f iles containing code that can be used as
a model for instantiation of the customized core.

<component_name>.vho
<component_name>.vhd

VHDL model of the core.

<component_name>.v Structural Verilog model of the core.

/doc/pg060-floating-point.pdf
/doc/floating_point_v6_1_vinfo.html

Core documents

<component_name>_readme.txt Readme file for the core.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 79
PG060 July 25, 2012

Chapter 6

Detailed Example Design

Demonstration Test Bench
When the core is generated using the Vivado™ Design Suite, a demonstration test bench is
created. This is a simple VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL file: demo_tb/
tb_<component_name>.vhd in the Vivado output directory. The source code is
comprehensively commented. See the Vivado documentation for more information on
delivery of the demonstration test bench

Using the Demonstration Test Bench
The demonstration test bench instantiates the generated Floating-Point Operator core.

Compile the netlist and the demonstration test bench into the work library (see your
simulator documentation for more information on how to do this). Then simulate the
demonstration test bench. View the test bench's signals in your simulator's waveform
viewer to see the operations of the test bench.

The Demonstration Test Bench in Detail
The demonstration test bench performs the following tasks:

• Instantiates the core

• Generates an input data frame consisting of one or the sum of two complex sinusoids

• Generates a clock signal

• Drives the core's input signals to demonstrate core features

• Checks that the core's output signals obey AXI4-Stream protocol rules (data values are
not checked to keep the test bench simple)

• Provides signals showing the separate fields of AXI4-Stream TDATA and TUSER signals

The demonstration test bench drives the core input signals to demonstrate the features and
modes of operation of the core. The operations performed by the demonstration test bench

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 80
PG060 July 25, 2012

Demonstration Test Bench

are appropriate for the configuration of the generated core, and are a subset of the
following operations:

1. An initial phase where the core is initialized and no operations are performed

2. Perform a single operation, and wait for the result

3. Perform 100 consecutive operations with incrementing data

4. Perform operations while demonstrating the AXI4-Stream control signals’ use and
effects.

5. If ACLKEN is present: Demonstrate the effect of toggling aclken.

6. If ARESETn is present: Demonstrate the effect of asserting aresetn.

7. Demonstrate the handling of special floating-point values (NaN, zero, infinity).

Customizing the Demonstration Test Bench
The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.

For instructions on implementing and simulating your core, see the Vivado Design Suite
documentation.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.2;t=vivado+userguides

Floating-Point Operator v6.1 www.xilinx.com 81
PG060 July 25, 2012

Chapter 7

Constraining the Core
There are no constraints associated with this core.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 82
PG060 July 25, 2012

SECTION III: ISE DESIGN SUITE

Customizing and Generating the Core

Detailed Example Design

Constraining the Core

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 83
PG060 July 25, 2012

Chapter 8

Customizing and Generating the Core
This chapter includes information on using Xilinx tools to customize and generate the core
in the ISE® Design Suite.

GUI
The Floating-Point Operator core GUI provides several screens with f ields to set the
parameter values for the particular instantiation required. This section provides a
description of each GUI field.

The GUI allows configuration of the following:

• Core operation

• Wordlength

• Implementation optimizations, such as use of XtremeDSP™ slices

• Optional pins

Main Configuration Screen

The main configuration screen allows the following parameters to be specified:

• Component Name

• Operation Selection

Component Name

The component name is used as the base name of the output f iles generated for the core.
Names must start with a letter and be composed using the following characters: a to z, 0 to
9, and “_”.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 84
PG060 July 25, 2012

GUI

Operation Selection

The floating-point operation can be one of the following:

• Add/Subtract

• Multiply

• Divide

• Square-root

• Compare

• Reciprocal

• Reciprocal square root

• Absolute value

• Natural logarithm

• Fixed-to-float

• Float-to-fixed

• Float-to-float

When Add/Subtract is selected, it is possible for the core to perform both operations, or just
add or subtract. When both are selected, the operation performed on a particular set of
operands is controlled by the s_axis_operation channel (with encoding defined in
Table 2-26).

When Add/Subtract or Multiply is selected, the level of XtremeDSP slice usage can be
specified according to FPGA family as described in the AXI4-Stream Channel Options
section.

When Compare is selected, the compare operation can be programmable or f ixed. If
programmable, then the compare operation performed should be supplied through the
s_axis_operation channel (with encoding defined in Table 2-26). If a f ixed operation is
required, then the operation type should be selected.

When Float-to-float conversion is selected, and exponent and fraction widths of the input
and result are the same, the core provides a means to condition numbers, that is, convert
denormalized numbers to zero, and signaling NaNs to quiet NaNs.

The Natural logarithm operator is not supported for Spartan-6 devices.

Second and Third Configuration Screens

Depending on the configuration you select from the f irst screen, the second and third
configuration screens let you specify the precision of the operand and result.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 85
PG060 July 25, 2012

GUI

Precision of the Operand and Results

This parameter defines the number of bits used to represent quantities. The type of the
operands and results depend on the operation requested. For f ixed-point conversion
operations, either the operand or result is f ixed-point. For all other operations, the output
is specif ied as a floating-point type.

Note: For the condition-code compare operation, m_axis_result_tdata(3:0) indicates the
result of the comparison operation. For other compare operations m_axis_result_tdata(0:0)
provides the result.

Table 8-1 defines the general limits of the format widths.

There are also some further limits for specific cases which are enforced by the GUI:

• The exponent width (that is., Total Width-Fraction Width) should be chosen to support
normalization of the fractional part. This can be calculated using:

Minimum Exponent Width = ceil [log2(Fraction Width+3)] + 1

For example, a 24-bit fractional part requires an exponent of at least 6 bits (for example,
{ceil [log2 (27)]+1}).

• For conversion operations, the exponent width of the floating-point input or output is
also constrained by the Total Width of the f ixed-point input or output to be a minimum
of:

Minimum Exponent Width = ceil [log2(Total Width+3)] + 1

For example, a 32-bit integer requires a minimum exponent of 7 bits.

A summary of the width limits imposed by exponent width is provided in Table 8-2.

Table 8-1: General Limits of Width and Fraction Width

Format Type
Fraction Width Exponent/Integer Width Width

Min Max Min Max Min Max

Floating-Point 4 64 4 16 4 64

Fixed-Point 0 63 1 64 4 64

Table 8-2: Summary of Exponent Width Limits

Floating-Point Fraction Width or Fixed-Point Total Width Minimum Exponent Width

4 to 5 4

6 to 13 5

14 to 29 6

30 to 61 7

61 to 64 8

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 86
PG060 July 25, 2012

GUI

Penultimate Configuration Screen

The penultimate configuration screen lets you specify the following:

• Architecture Optimizations

• Family Optimizations

Architecture Optimizations

On Virtex®-6 and 7 series FPGAs, for double precision multiplication and addition/
subtraction operations, it is possible to specify a latency optimized architecture, or speed
optimized architecture. The latency optimized architecture offers reduced latency at the
expense of increased resources.

Family Optimizations

• Multiplier Usage allows the level of XtremeDSP slice multiplier use to be specif ied.

Multiplier Usage

The level and type of multiplier usage depend upon the operation and FPGA family.
Table 8-3 summarizes these options for multiplication.

Table 8-4 summarizes these options for addition/subtraction.

Table 8-3: Impact of Family and Multiplier Usage on the Implementation of the Multiplier

Multiplier Usage Spartan-6 FPGA Family Virtex-6 and 7 Series FPGA Families

No usage Logic Logic

Medium usage DSP48A1+logic(1) in multiplier body DSP48E1+logic(1) in multiplier body

Full usage DSP48A1 used in multiplier body DSP48E1 used in multiplier body

Max usage DSP48A1 multiplier body and rounder DSP48E1 multiplier body and rounder
1. Logic-assisted multiplier variant is available only for single and double precision formats in Virtex-6 and 7 Series

FPGAs and single precision in Spartan-6 FPGAs.

Table 8-4: Impact of Family, Precision, and Multiplier Usage on the Implementation of the
Adder/Subtractor

Multiplier Usage
(only valid values listed)

Spartan-6 FPGA Family Virtex-6 and 7 Series FPGA Families

Any Other Single Double

No usage Logic Logic Logic Logic

Full usage Not supported Not supported 2 DSP48E1 3 DSP48E1

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 87
PG060 July 25, 2012

GUI

Final Configuration Screen

The final configuration screen lets you specify:

• Flow Control Options

• Latency and Rate Configuration

• Control Signals

• Optional Output Fields

• AXI4-Stream Channel Options

Flow Control Options

These parameters allow the AXI4-Stream interface to be optimized to suit the surrounding
system.

• Flow Control

° Blocking: When the core is configured to a Blocking interface, it waits for valid data
to be available on all input channels before performing a calculation. Back pressure
from downstream modules is possible.

° NonBlocking: When the core is configured to use a NonBlocking interface, a
calculation is performed on each cycle where all input channel TVALIDs are
asserted. Back pressure from downstream modules is not possible.

• Optimize Goal

° Resources: This option reduces the logic resources required by the AXI4-Stream
interface, at the expense of maximum achievable clock frequency.

° Performance: This option allows maximum performance, at the cost of additional
logic required to buffer data in the event of back pressure from downstream
modules.

• RESULT channel has TREADY

° Unchecking this option removes TREADY signals from the RESULT channel,
disabling the ability for downstream modules to signal back pressure to the
Floating-Point Operator core and upstream modules.

Latency and Rate Configuration

This parameter describes the number of cycles between an operand input and result output.
The latency of all operators can be set between 0 and a maximum value that is dependent
upon the parameters chosen. The maximum latency of the Floating-Point Operator core is
tabulated for a range of width and operation types in Tables 2-1 through 2-14.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 88
PG060 July 25, 2012

GUI

Cycles per Operation

The 'Cycles per Operation' GUI parameter describes the minimum number of cycles that
must elapse between inputs. This rate can be specif ied. A value of 1 allows operands to be
applied on every clock cycle, and results in a fully-parallel circuit. A value greater than 1
enables hardware reuse. The resources consumed by the core reduces as the number of
cycles per operation is increased. A value of 2 approximately halves the resources used. A
fully sequential implementation is obtained when the value is equal to Fraction Width+1 for
the square-root operation, and Fraction Width+2 for the divide operation.

Control Signals

Pins for the following global signals are optional:

• ACLKEN: Active-High clock enable.

• ARESETn: Active-Low synchronous reset. Must be driven low for a minimum of two
clock cycles to reset the core.

Optional Output Fields

The following exception signals are optional and are added to m_axis_result_tuser
when selected:

• UNDERFLOW, OVERFLOW, INVALID_OPERATION and DIVIDE_BY_ZERO.

• See TLAST and TUSER Handling for information on the internal packing of the
exception signals in m_axis_result_tuser.

AXI4-Stream Channel Options

The following sections allow configuration of additional AXI4-Stream channel features:

• A Channel Options

° Enables TLAST and TUSER input fields for the A operand channel, and allows
definition of the TUSER f ield width.

• B Channel Options

° Enables TLAST and TUSER input fields for the B operand channel (when present),
and allows definition of the TUSER field width.

• OPERATION Channel Options

° Enables TLAST and TUSER input fields for the OPERATION channel (when present),
and allows definition of the TUSER field width.

• Output TLAST Behavior

° When at least one TLAST input is present on the core, this option defines how the
m_axis_result_tlast signal should be generated. Options are available to pass
any of the input TLAST signals without modif ication, or to logically OR or AND all
input TLASTs.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 89
PG060 July 25, 2012

Using the Floating-Point Operator IP Core

Using the Floating-Point Operator IP Core
The CORE Generator™ GUI performs error-checking on all input parameters. Resource
estimation and optimum latency information are also available.

Several f iles are produced when a core is generated, and customized instantiation
templates for Verilog and VHDL design flows are provided in the .veo and .vho f iles,
respectively. For detailed instructions, see the CORE Generator software documentation.

Simulation Models
The core has two options for simulation models:

• VHDL RTL-based simulation model in XilinxCoreLib

• Verilog UNISIM-based structural simulation model

The models required can be selected in the CORE Generator project options.

Xilinx recommends that simulations utilizing UNISIM-based structural models be run using
a resolution of 1 ps. Some Xilinx library components require a 1 ps resolution to work
properly in either functional or timing simulation. The UNISIM-based structural simulation
models can produce incorrect results if simulated with a resolution other than 1 ps. See the
“Register Transfer Level (RTL) Simulation Using Xilinx Libraries” section in Chapter 6 of the
Synthesis and Simulation Design Guide [Ref 8].

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 90
PG060 July 25, 2012

Parameter Values in the XCO File

Core Use through System Generator for DSP
The Floating-Point Operator core is available through Xilinx System Generator, a DSP design
tool that enables the use of The Mathworks model-based design environment Simulink®
for FPGA design. The Floating-Point Operator is used within DSP math building blocks
provided in the Xilinx blockset for Simulink. The blocks that provide floating-point
operations using the Floating-Point Operator core are:

• AddSub

• Mult

• CMult (Constant Multiplier)

• Divide

• Reciprocal

• SquareRoot

• Reciprocal SquareRoot

• Absolute

• Logarithm

• Relational (provides compare operations)

• Convert (provides f ixed to float, float to f ixed, float to float)

See the System Generator for DSP User Guide for more information.

Parameter Values in the XCO File
Table 8-5 defines valid entries for the XCO parameters. Parameters are not case sensitive.
Default values are displayed in bold. Xilinx strongly recommends that XCO parameters not
be manually edited in the XCO file; instead, use CORE Generator software GUI to configure
the core and perform range and parameter value checking.

http://www.xilinx.com
www.xilinx.com/support/documentation/dt_sysgendsp_sysgen13-3_userguides.htm

Floating-Point Operator v6.1 www.xilinx.com 91
PG060 July 25, 2012

Parameter Values in the XCO File

Table 8-5: XCO Parameters

XCO Parameter XCO Values

Component_Name Name must begin with a letter and be composed of the following
characters: a to z, A to Z, 0 to 9 and "_".

Operation_Type Add_Subtract,
Multiply,
Divide,
Square_Root,
Compare,
Reciprocal
Rec_Square_Root
Absolute,
Logarithm,
Fixed_to_float,
Float_to_fixed,
Float_to_float

Add_Sub_Value Both, Add, Subtract

C_Compare_Operation Programmable,
Unordered,
Less_Than,
Equal,
Less_Than_Or_Equal,
Greater_Than,
Not_Equal,
Greater_Than_Or_Equal,
Condition_Code

A_Precision_Type Single, Double, Int32, Custom

C_A_Exponent_Width Integer with range summarized in Table 8-1 and Table 8-2.
Required when A_Precision_Type is Custom.

C_A_Fraction_Width Integer with range summarized in Table 8-1 and Table 8-2.
Required when A_Precision_Type is Custom.

Result_Precision_Type Single, Double, Int32, Custom.

C_Result_Exponent_Width Integer with range summarized in Table 8-1 and Table 8-2.
Required when Result_Precision_Type is Custom.

C_Result_Fraction_Width Integer with range summarized in Table 8-1 and Table 8-2.
Required when Result_Precision_Type is Custom.

C_Optimization Speed_Optimized,
Low_Latency

C_Mult_Usage No_Usage,
Medium_Usage,
Full_Usage,
Max_Usage

Maximum_Latency False, True

C_Latency Integer with range 0 to the maximum latency of core as
summarized by Tables 2-1 through 2-14 (default is maximum
latency). Required when Maximum_Latency is False.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 92
PG060 July 25, 2012

Output Generation

Output Generation

C_Rate Integer with range 1 to maximum rate as described in Cycles per
Operation (default is 1).

Has_ARESETn False, True

Has_ACLKEN False, True

C_Has_UNDERFLOW False, True

C_Has_OVERFLOW False, True

C_Has_INVALID_OP False, True

C_Has_DIVIDE_BY_ZERO False, True

Flow_Control Blocking, NonBlocking

Axi_Optimize_Goal Resources, Performance

Has_RESULT_TREADY True, False

Has_A_TLAST False, True

Has_A_TUSER False, True

A_TUSER_Width Integer with range 1 to 256. Default is 1.

Has_B_TLAST False, True

Has_B_TUSER False, True

B_TUSER_Width Integer with range 1 to 256. Default is 1.

Has_OPERATION_TLAST False, True

Has_OPERATION_TUSER False, True

OPERATION_TUSER_Width Integer with range 1 to 256. Default is 1.

RESULT_TLAST_Behv Null, Pass_A_TLAST, Pass_B_TLAST, Pass_OPERATION_TLAST,
OR_All_TLASTs, AND_all_TLASTs

Table 8-6: Output Files

Name Description

<component_name>.xco CORE Generator input f ile containing the
parameters used to generate a core.

<component_name>.ngc Binary Xilinx implementation netlist f iles containing
the information required to implement the module
in a Xilinx (R) FPGA.

<component_name>.vho
<component_name>.veo

Template f iles containing code that can be used as a
model for instantiating.

<component_name>.vhd VHDL behavioral model

Table 8-5: XCO Parameters (Cont’d)

XCO Parameter XCO Values

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 93
PG060 July 25, 2012

Output Generation

<component_name>.v Structural simulation model

/doc/pg060-floating-point.pdf
/doc/floating_point_v6_1_vinfo.html

Core documents

<component_name>.asy Graphical symbol information file. Used by the ISE
tools and some third party tools to create a symbol
representing the core.

<component_name>_xmdf.tcl ISE® Project Navigator interface file. ISE uses this
f ile to determine how the f iles output by CORE
Generator for the core can be integrated into your
ISE project.

<component_name>.gise
<component_name>.xise

ISE Project Navigator support f iles. These are
generated f iles and should not be edited directly.

<component_name>_readme.txt Readme file for the IP.
<component_name>_flist.txt Text f ile listing all of the output files produced when

a customized core was generated in the CORE
Generator.

Table 8-6: Output Files (Cont’d)

Name Description

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 94
PG060 July 25, 2012

Chapter 9

Detailed Example Design
There is no example design for this core.

Demonstration Test Bench
When the core is generated using CORE Generator™ in the ISE® Design Suite, a
demonstration test bench is created. This is a simple VHDL test bench that exercises the
core.

The demonstration test bench source code is one VHDL file: demo_tb/
tb_<component_name>.vhd in the CORE Generator output directory. The source code is
comprehensively commented.

Using the Demonstration Test Bench
The demonstration test bench instantiates the generated Floating-Point Operator core. If
the CORE Generator project options were set to generate a structural model, a VHDL or
Verilog netlist named <component_name>.vhd or <component_name>.v was
generated. If this f ile is not present, generate it using the netgen program, for example:

netgen -sim -ofmt vhdl <component_name>.ngc <component_name>.vhd

Compile the netlist and the demonstration test bench into the work library (see your
simulator documentation for more information on how to do this). Then simulate the
demonstration test bench. View the test bench's signals in your simulator's waveform
viewer to see the operations of the test bench.

The Demonstration Test Bench in Detail
The demonstration test bench performs the following tasks:

• Instantiates the core

• Generates an input data frame consisting of one or the sum of two complex sinusoids

• Generates a clock signal

• Drives the core's input signals to demonstrate core features

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 95
PG060 July 25, 2012

Demonstration Test Bench

• Checks that the core's output signals obey AXI4-Stream protocol rules (data values are
not checked to keep the test bench simple)

• Provides signals showing the separate fields of AXI4-Stream TDATA and TUSER signals

The demonstration test bench drives the core input signals to demonstrate the features and
modes of operation of the core. The operations performed by the demonstration test bench
are appropriate for the configuration of the generated core, and are a subset of the
following operations:

1. An initial phase where the core is initialized and no operations are performed

2. Perform a single operation, and wait for the result

3. Perform 100 consecutive operations with incrementing data

4. Perform operations while demonstrating the AXI4-Stream control signals’ use and
effects.

5. If ACLKEN is present: Demonstrate the effect of toggling aclken.

6. If ARESETn is present: Demonstrate the effect of asserting aresetn.

7. Demonstrate the handling of special floating-point values (NaN, zero, infinity).

Customizing the Demonstration Test Bench
The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 96
PG060 July 25, 2012

Chapter 10

Constraining the Core
There are no constraints associated with this core.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 97
PG060 July 25, 2012

SECTION IV: APPENDICES

Migrating

Debugging

Additional Resources

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 98
PG060 July 25, 2012

Appendix A

Migrating
In the ISE® Design Suite, the CORE Generator™ core upgrade functionality can be used to
update an existing XCO file from versions 4.0, 5.0 and 6.0 to Floating-Point Operator, v6.1,
but it should be noted that for v4.0 and v5.0 the upgrade mechanism alone does not create
a core compatible with v6.1. See Instructions for Minimum Change Migration.
Floating-Point Operator v6.1 has parameters additional to v4.0 and v5.0 for AXI4-Stream
support. Floating Point Operator v6.1 is backwards compatible with v6.0 both in terms of
parameters and ports. Figure A-1 shows the changes to XCO parameters from versions 4.0
and 5.0 to version 6.1. For clarity, XCO parameters with no changes are not shown.

See also UG911, Vivado Design Suite Migration Methodology Guide for information on
migrating to the Vivado™ Design Suite.

Parameter Changes in the XCO File
Table A-1: XCO Parameter Changes from v4.0 and v5.0 to v6.1

Version 4.0 and 5.0 Version 6.1 Notes

C_Has_CE Has_ACLKEN Renamed only

C_Has_SCLR Has_ARESETn Renamed only. While the sense of the aresetn
signal has changed (now active-Low), this XCO
parameter determined whether or not the pin exists
and has not changed.

C_Latency C_Latency Depending on the AXI4-Stream Flow Control
options selected (Blocking/NonBlocking), a
minimum latency greater than previous core
versions might be imposed.

Flow_Control New as of version 6.0

Axi_Optimize_Goal New as of version 6.0

Has_RESULT_TREADY New as of version 6.0

Has_A_TLAST New as of version 6.0

Has_A_TUSER New as of version 6.0

A_TUSER_Width New as of version 6.0

Has_B_TLAST New as of version 6.0

Has_B_TUSER New as of version 6.0

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.2;t=vivado+userguides

Floating-Point Operator v6.1 www.xilinx.com 99
PG060 July 25, 2012

Port Changes

For more information on this upgrade feature, see the CORE Generator software
documentation.

Port Changes
Table A-2 details the changes to port naming, additional or deprecated ports and polarity
changes from v4.0 and v5.0 to v6.1.

B_TUSER_Width New as of version 6.0

Has_OPERATION_TLAST New as of version 6.0

Has_OPERATION_TUSER New as of version 6.0

OPERATION_TUSER_Width New as of version 6.0

RESULT_TLAST_Behv New as of version 6.0

Table A-2: Port Changes from v4.0 and v5.0 to v6.1

Versions 4.0 and
5.0 Version 6.1 Notes

CLK aclk Rename only

CE aclken Rename only

SCLR aresetn Rename and change of sense (now active-Low).
Must now be asserted for at least two clock cycles
to effect a reset.

A(N-1:0) s_axis_a_tdata (byte (N)-1:0) byte (N) is to round N up to the next multiple of 8

B(N-1:0) s_axis_b_tdata (byte (N)-1:0) byte (N) is to round N up to the next multiple of 8

OPERATION(5 : 0) s_axis_operation_tdata (7 : 0)

RESULT(R-1:0) m_axis_result_tdata (byte (R)-
1:0)

byte (R) is to round R up to the next multiple of 8.

OPERATION_ND Deprecated Nearest equivalents are s_axis_<operand>_tvalid

OPERATION_RFD Deprecated Nearest equivalents are s_axis_<operand>_tready

RDY Deprecated Nearest equivalent is m_axis_result_tvalid

UNDERFLOW Deprecated Exception signals are now subfields of
m_axis_result_tuser. See Figure 3-12 for data
structure.OVERFLOW Deprecated

INVALID_OP Deprecated

DIVIDE_BY_ZERO Deprecated

Table A-1: XCO Parameter Changes from v4.0 and v5.0 to v6.1 (Cont’d)

Version 4.0 and 5.0 Version 6.1 Notes

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 100
PG060 July 25, 2012

Functionality Changes

Functionality Changes

Latency Changes
There is no change in latency from Floating Point Operator v6.0 to v6.1. The latency of
Floating-Point Operator v6.1 is different compared to v4.0 and v5.0 in general. The update
process cannot account for this and guarantee equivalent performance.

Importantly, when in Blocking Mode, the latency of the core is variable, so only the
minimum possible latency can be determined.

When in Non-Blocking Mode, the latency of the core for equivalent performance is the
same as that for the equivalent configuration of v4.0 and v5.0.

s_axis_a_tvalid TVALID (AXI4-Stream channel handshake signal)
for each channels_axis_b_tvalid

s_axis_operation_tvalid

m_axis_result_tvalid

s_axis_a_tready TREADY (AXI4-Stream channel handshake signal)
for each channel.s_axis_b_tready

s_axis_operation_tready

m_axis_result_tready

s_axis_a_tlast TLAST (AXI4-Stream packet signal indicating the
last transfer of a data structure) for each channel.
The Floating-Point Operator does not use TLAST,
but provides the facility to pass TLAST with the
same latency as TDATA.

s_axis_b_tlast

s_axis_operation_tlast

m_axis_result_tlast

s_axis_a_tuser(E-1:0) TUSER (AXI4-Stream ancillary f ield for
application-specific information) for each channel.
The Floating-Point Operator does not use TUSER,
but provides the facility to pass TUSER with the
same latency as TDATA.

s_axis_b_tuser(F-1:0)

s_axis_operation_tuser (G-1:0
)

m_axis_result_tuser (H-1:0)

Table A-2: Port Changes from v4.0 and v5.0 to v6.1 (Cont’d)

Versions 4.0 and
5.0 Version 6.1 Notes

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 101
PG060 July 25, 2012

Special Considerations when Migrating to AXI

Special Considerations when Migrating to AXI

Instructions for Minimum Change Migration
To configure the Floating-Point Operator v6.1 to most closely mimic the behavior of
previous versions the translation is as follows:

Parameters

Set Flow Control to NonBlocking and uncheck all AXI4-Stream channel options (TUSER and
TLAST).

Ports

Rename and map signals as detailed in Port Changes. Tie all TVALID signals on input
channels (A, B, OPERATION) to 1.

Remember to account for aresetn being active-Low, and the requirement to assert
aresetn for at least two clock cycles to reset the core.

Performance

The fully-pipelined latency of the v6.1 core with a Non-Blocking interface configuration is
the same as the v4.0 and v5.0 cores.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 102
PG060 July 25, 2012

Appendix B

Debugging
See Solution Centers in Appendix C for information helpful to the debugging progress.

http://www.xilinx.com

Floating-Point Operator v6.1 www.xilinx.com 103
PG060 July 25, 2012

Appendix C

Additional Resources

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support
http://www.xilinx.com
http://www.xilinx.com/support/solcenters.htm

Floating-Point Operator v6.1 www.xilinx.com 104
PG060 July 25, 2012

References

References
1. ANSI/IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard

754-2008. IEEE-754.

2. The GNU Multiple Precision Arithmetic (GMP) Library gmplib.org

3. The GNU Multiple Precision Floating-Point Reliable (MPFR) Library www.mpfr.org

4. The GNU Multiple Precision Integers and Rationals (MPIR) library www.mpir.org

5. Multiple Precision Arithmetic on Windows, Brian Gladman:
http://gladman.plushost.co.uk/oldsite/computing/gmp4win.php

6. Xilinx AXI Reference Guide (UG761)

7. AMBA 4 AXI4-Stream Protocol Version 1.0 Specif ication

8. Synthesis and Simulation Design Guide (UG626)

9. Vivado documentation website

Technical Support
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

• New Features

• Resolved Issues

• Known Issues

http://gladman.plushost.co.uk/oldsite/computing/gmp4win.php
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
www.xilinx.com/support/documentation/axi_ip_documentation.htm
http://www.xilinx.com
http://gmplib.org/
www.mpfr.org
www.mpir.org
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/support/documentation/dt_ise.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.2;t=vivado+userguides

Floating-Point Operator v6.1 www.xilinx.com 105
PG060 July 25, 2012

Revision History

Revision History
The following table shows the revision history for this document.

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties
which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in
a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring
fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/
warranty.htm#critapps.
© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. ARM is a registered trademark of ARM in the EU
and other countries. The AMBA trademark is a registered trademark of ARM Limited. MATLAB and Simulink are registered
trademarks of The MathWorks, Inc. All other trademarks are the property of their respective owners.

Date Version Revision

07/25/12 1.0 Initial Xilinx release. This Product Guide is derived from DS816
and UG812.

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

	LogiCORE IP Floating-Point Operator v6.1
	Table of Contents
	Section I: Summary
	IP Facts
	Overview
	Unsupported Features
	Licensing and Ordering Information

	Product Specification
	Standards Compliance
	IEEE-754 Support

	Performance
	Latency

	Resource Utilization
	Custom Format: 17-Bit Fraction and 24-Bit Total Wordlength
	Single-Precision Format
	Double-Precision Format

	Port Descriptions

	Designing with the Core
	General Design Guidelines
	Floating-Point Number Representation
	Fixed-Point Number Representation

	Clocking
	Resets
	Protocol Description
	AXI4-Stream Considerations

	C Model Reference
	Features
	Overview
	Unpacking and Model Contents
	Installation
	Linux
	Windows

	C Model Interface
	Data Types
	Functions

	Compiling
	Linking
	Linux
	Windows

	Dependent Libraries
	Example

	Section II: Vivado Design Suite
	Customizing and Generating the Core
	GUI
	Using the Floating-Point Operator IP Core
	Core Use through System Generator for DSP

	Parameter Values in the XCI File
	Output Generation

	Detailed Example Design
	Demonstration Test Bench
	Using the Demonstration Test Bench
	The Demonstration Test Bench in Detail
	Customizing the Demonstration Test Bench

	Constraining the Core

	Section III: ISE Design Suite
	Customizing and Generating the Core
	GUI
	Using the Floating-Point Operator IP Core
	Simulation Models
	Core Use through System Generator for DSP

	Parameter Values in the XCO File
	Output Generation

	Detailed Example Design
	Demonstration Test Bench
	Using the Demonstration Test Bench
	The Demonstration Test Bench in Detail
	Customizing the Demonstration Test Bench

	Constraining the Core

	Section IV: Appendices
	Migrating
	Parameter Changes in the XCO File
	Port Changes
	Functionality Changes
	Latency Changes

	Special Considerations when Migrating to AXI
	Instructions for Minimum Change Migration

	Debugging
	Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Technical Support
	Revision History
	Notice of Disclaimer

