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Introduction
The Xilinx LogiCORE™ IP FIR Compiler core provides
a common interface for users to generate highly param-
eterizable, area-efficient high-performance FIR filters
utilizing either Multiply-Accumulate (MAC) or Distrib-
uted Arithmetic (DA) architectures. 

Features
• Drop-in module for Kintex™-7, Virtex®-7, Virtex®-6, 

Virtex-5, Virtex-4, Spartan®-6, Spartan-3/XA, 
Spartan-3E/XA, Spartan-3A/AN/3A DSP/XA 
FPGAs

• High-performance finite impulse response (FIR), 
polyphase decimator, polyphase interpolator, 
half-band, half-band decimator, half-band 
interpolator, Hilbert transform, polyphase filter 
bank, and interpolated filter implementations

• Multiply-Accumulate (MAC) and Distributed 
Arithmetic (DA) architectures available

• Support for up to 256 sets of coefficients, with 2 to 
2048 coefficients per set

• Input data up to 49-bit precision

• Filter coefficients up to 49-bit precision

• Support for up to 64 channels generally and up to 
1024 for polyphase filter bank implementations

• Interpolation and decimation factors of up to 64 
generally and up to 1024 for single channel filters

• Support for multiple parallel data paths with 
shared control logic

• DA-based filters support both serial and parallel 
implementation

• MAC implementations use single or multiple 
MAC engines to achieve specified filter 
performance

• Data-flow-style core interface and control

• On-line coefficient reload capability

• User-selectable output rounding available in MAC 
implementations

• Use with Xilinx CORE Generator™ and Xilinx 
System Generator for DSP v13.1
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LogiCORE IP Facts Table

Core Specifics

Supported 
Device Family(1)

1. For a complete listing of supported devices, see the release notes
for this core.

Virtex-7 and Kintex-7,
Virtex-6, Virtex-5, Virtex-4,

Spartan-6, Spartan-3/XA, Spartan-3E/XA,
Spartan-3A/3AN/3A DSP/XA

Supported User 
Interfaces Not Applicable

Provided with Core

Documentation Product Specification

Design Files Netlist

Example Design Not Provided

Test Bench Not Provided

Constraints File Not Applicable

Simulation 
Model

VHDL behavioral model in the xilinxcorelib library
VHDL UniSim structural model

Verilog UniSim structural model

Tested Design Tools

Design Entry 
Tools

CORE Generator tool 13.1
System Generator for DSP 13.1

Simulation

Mentor Graphics ModelSim 6.6d
Cadence Incisive Enterprise Simulator (IES) 10.2

Synopsys VCS and VCS MX 2010.06
ISIM 13.1

Synthesis Tools N/A

Support

Provided by Xilinx, Inc.

http://www.xilinx.com
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
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Overview
A wide range of filter types can be implemented in the Xilinx CORE Generator: single-rate, half-band, Hilbert trans-
form and interpolated filters, in addition to multi-rate filters such as polyphase decimators and interpolators and
half-band decimators and interpolators. Structure in the coefficient set is exploited to produce area-efficient FPGA
implementations. Sufficient arithmetic precision is employed in the internal data path to avoid the possibility of
overflow.

The conventional single-rate FIR version of the core computes the convolution sum defined in Equation 1, where N
is the number of filter coefficients.

Equation 1

Figure 1 illustrates the conventional tapped delay line realization of this inner-product calculation, and although
the illustration is a useful conceptualization of the computation performed by the core, the actual FPGA realization
is quite different. 

Where a MAC realization is selected, one or more time-shared multiply-accumulate (MAC) functional units are
used to service the N sum-of-product calculations in the filter. The core automatically determines the minimum
number of MAC engines required to meet user-specified throughput. Where a Distributed Arithmetic (DA) realiza-
tion [Ref 1] [Ref 2] is selected, no explicit multipliers are employed in the design; only look-up tables (LUTs), shift
registers, and a scaling accumulator are required.

Feature Support Matrix
The FIR Compiler implements three distinct filter architectures: Distributed Arithmetic, Systolic Multiply-Accumu-
late, and Transpose Multiply-Accumulate. Feature support is not uniform across these architectures and is summa-
rized in Table 1 and Table 2. 

X-Ref Target - Figure 1

Figure 1: Conventional Tapped Delay Line FIR Filter Representation

Table  1: Feature Support Matrix

Feature Distributed 
Arithmetic

Systolic Multiply-Accumulate Transpose 
Multiply-Accumulate

Virtex-5/6 
FPGAs

Other 
Families

Virtex-5/6 
FPGAs

Other 
Families

Number of Coefficients 2–1024 2–1024 2–1024 2–1024 2–1024

Coefficient Width(1) 1–32 2–49 2–35 2–49 2–35

Data Width(1,2) 1–32 2–49 2–35 2–49 2–35

Number of Channels 1–8 1–64 1–64

Parallel Data Paths(3) 1-16 1-16 1-16 1-16
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Table 2 shows the classes of filters that are supported for the FIR Compiler core. 

The supported filter configurations are described in separate sections within this document.

Notable Limitations

In conjunction with Table 1 and Table 2, it is important to note some further limitations inherent in the core.

When selecting the Systolic Multiply-Accumulate architecture, the limitations are as follows:

• Symmetry is not exploited in configurations requiring multiple columns of DSP slices.

Maximum Rate Change
Single Channel
Multiple Channels

8
1

1024
512

1024
512

1024
N/A

1024
N/A

Fractional Rate Support

Coefficient Reload
Offline
Online (glitch-free)

Coefficient Sets 1 1–256 1–256 1–256 1–256

Output Rounding

Notes: 
1. Maximum Coefficient Width reduces by one Multiply-Accumulate architectures when the Coefficients are signed. Similarly for 

Maximum Data Width when the Data values are signed.
2. The allowable range for the Data Width field in the GUI may reduce further in Virtex-5/6 devices to ensure that the accumulator 

width does not exceed maximum.
3. Maximum Parallel Data Paths reduces to 8 when Coefficient Width or Data Width is greater than 25-bits for 

Virtex-5/6 FPGAs or 18-bits for other families.

Table  2: Filter Configuration Support Matrix

Filter Configuration Distributed Arithmetic Systolic 
Multiply-Accumulate

Transpose 
Multiply-Accumulate

Conventional Single-rate FIR

Half-band FIR

Hilbert Transform [Ref 3]

Interpolated FIR [Ref 4] 
[Ref 5]

Polyphase Decimator

Polyphase Interpolator

Half-band Decimator

Half-band Interpolator

Polyphase Filter Bank

Table  1: Feature Support Matrix (Cont’d)

Feature Distributed 
Arithmetic

Systolic Multiply-Accumulate Transpose 
Multiply-Accumulate

Virtex-5/6 
FPGAs

Other 
Families

Virtex-5/6 
FPGAs

Other 
Families

http://www.xilinx.com
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• Fractional Rate filters do not currently exploit coefficient symmetry.

When selecting the Transpose Multiply-Accumulate architecture, the limitations are as follows:

• Symmetry is not exploited.

• Multiple channels are not supported.

When selecting the Distributed Arithmetic-based core architecture, the limitations are as follows:

• Symmetry is not exploited for multi-rate filters.

Core Symbol and Port Definitions
Figure 2 displays the schematic symbol for the interface pins to the FIR Compiler module.

Filter input data is supplied on the DIN port (N bits wide), and filter output samples are presented on the DOUT port
(R bits wide). The maximum output width R is the sum of the data bit width N and the bit growth of the filter; see
the Output Width and Bit Growth section for more details. The output width may also be reduced further under
user control by truncation or rounding. The CLK signal is the system clock for the core, where the clock rate may be
greater than or equal to the input signal sample frequency. The ND, RDY, and RFD signals are filter interface/control
signals that permit a simple and efficient data-flow style interface for supplying input samples and reading output
samples from the filter. These core interface signals are detailed in "Interface, Control, and Timing."

For Hilbert transform filter implementations, a pair of In-Phase/Quadrature data outputs is provided. The In-Phase
data output is N bits wide, as it is a delayed version of the input data, while the Quadrature data output is R bits
wide, calculated as described previously. For multiple channel implementations, a pair of indicator signals is pro-
vided to specify the currently active input and output channels. These indicator signals are C bits wide, where C is
the required bit width to represent the maximum channel value. Where multiple coefficient sets are specified in the
.coe file, a filter selection input is available to select the active filter set, and this is F bits wide. F is the required bit

X-Ref Target - Figure 2

Figure 2: FIR Compiler Core Pinout

FILT_SEL [F-1:0]

ND

RFD
RDY

DIN [N-1:0] DOUT [R-1:0]

CHAN_IN [C-1:0]
CHAN_OUT [C-1:0]

CLK
CE
SCLR

COEF_LD
COEF_WE
COEF_DIN [K-1:0]

DOUT_I [N-1:0]
DOUT_Q [R-1:0]

COEF_FILT_SEL [F-1:0]
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width to represent the maximum filter set value. Coefficient reloading can be achieved by driving the coefficient
reload interface, which consists of a load start indicator, a write enable, and a coefficient data bus (K bits wide for
most filter types). Where reloading is required with multiple filter sets, the filter set to be reloaded can be specified
using the COEF_FILT_SEL port, which is again F bits wide. Resetting the core is achieved by driving the SCLR pin;
it does not require the assertion of clock enable (CE). A clock enable pin is available only for the Multiply-Accumu-
late filter architectures.

Table 3 defines the FIR filter port names and port functional descriptions. 
Table  3: Core Signal Pinout

Name Direction Description

SCLR Input SYNCHRONOUS CLEAR
Synchronous reset (active high). Asserting SCLR synchronously with CLK resets 
the filter internal state machines. It does NOT reset the filter data memory contents 
(regressor vector). SCLR has priority over CE. SCLR is an optional pin.

CLK Input CLOCK
Core clock (active rising edge). Always present.

CE Input CLOCK ENABLE
Core clock enable (active high). Available for MAC-based FIR implementations.

DIN [N-1:0] Input DATA IN
N-bit wide filter input sample. Always present. Note that for multi-channel 
implementations, this input is time-shared across all channels. Separate channel 
inputs are not provided.

ND Input NEW DATA (active high)
When this signal is asserted, the data sample presented on the DIN port is 
accepted into the filter core. ND should not be asserted while RFD is low; any 
samples presented when RFD is low are ignored by the core.

FILT_SEL [F-1:0] Input FILTER SELECT
Filter Selection input signal, F-bit wide where F = ceil(log2(filter sets)). Only 
present when using multiple filter sets.

COEF_LD Input COEFFICIENT LOAD
Indicates the beginning of a new coefficient reload cycle.

COEF_WE Input COEFFICIENT RELOAD WRITE ENABLE
WE for loading of coefficients into the filter to allow a host to halt loading until ready 
to transmit on the interface.

COEF_DIN [K-1:0] Input COEFFICIENT RELOAD DATA IN
Input data bus for reloading coefficients. K is the core coefficient width for most 
filter types and coefficient width + 2 for interpolating filters where the symmetric 
coefficient structure is exploited.

COEF_FILT_SEL [F-1:0] Input COEFFICIENT RELOAD FILTER SELECT
Filter Selection input signal for reloading coefficients, F-bit wide where F = 
ceil(log2(filter sets)). Only present when using multiple filter sets and reloadable 
coefficients.

DOUT [R-1:0] Output DATA OUT
R-bit-wide output sample bus. R depends on the filter parameters (data precision, 
coefficient precision, number of taps, and coefficient optimization selection) and is 
always supplied as a full-precision output port to avoid any potential for overflow.

RDY Output READY
Filter output ready flag (active high). indicates that a new filter output sample is 
available on the DOUT port.

RFD Output READY FOR DATA
Indicator to signal that the core is ready to accept a new data sample. Active high.

http://www.xilinx.com
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Parallel Data Paths

Up to 16 parallel data paths are supported when the Multiply-Accumulate filter architectures are selected, as
detailed in Parallel Data Paths, page 50. Table 4 defines how the core pinout must be adapted for multiple data path
operation.

CHAN_IN [C-1:0] Output INPUT CHANNEL SELECT
Standard binary count generated by the core that indicates the current filter input 
channel number.

CHAN_OUT [C-1:0] Output OUTPUT CHANNEL SELECT
Standard binary count generated by the core that indicates the current filter output 
channel number.

DOUT_I [N-1:0] Output DATA OUT IN-PHASE
Hilbert transform only. In-phase (I) data output component. A Hilbert transform 
accepts real valued input data and produces a complex result. This port is the real 
or in-phase component of the result. Since this output port is an access point to 
the center of the filter memory buffer, it carries the same precision as the input 
sample data stream, that is, N bits.

DOUT_Q [R-1:0] Output DATA OUT QUADRATURE
Hilbert transform only. Quadrature (Q) data output component. A Hilbert transform 
accepts real valued input data and produces a complex result. This port is the 
imaginary or quadrature component of the result.

DATA_VALID Output DATA VALID
Indicator signal that can be used in conjunction with or in preference to RDY. The 
signal indicates that a new filter output sample is available on the DOUT port that 
has been generated from a complete data vector. Available for MAC-based FIR 
implementations.

Table  4: Single-to-Multiple Data Path Pinout Conversion

Single Path Multiple Paths

SCLR SCLR

CLK CLK

CE CE

DIN DIN_1 .... DIN_16

ND ND

FILT_SEL FILT_SEL

COEF_LD COEF_WE

COEF_DIN COEF_DIN

COEF_FILT_SEL COEF_FILT_SEL

DOUT DOUT_1 .... DOUT_16

RDY RDY

RFD RFD

CHAN_IN CHAN_IN

CHAN_OUT CHAN_OUT

DOUT_I DOUT_I_1 .... DOUT_I_16

Table  3: Core Signal Pinout (Cont’d)

Name Direction Description

http://www.xilinx.com
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CORE Generator Graphical User Interface
The FIR Compiler GUI contains four pages used to configure the core plus three informational/analysis tabs.

Tool Tips appear when hovering the mouse over each parameter and a brief description appears, as well as feed-
back about how their values or ranges are affected by other parameter selections. For example, the Coefficient Struc-
ture Tool Tip displays the inferred structure when Inferred is selected from the drop-down list. 

Tab 1: IP Symbol

The IP Symbol tab illustrates the core pinout.

Tab 2: Freq. Response 

The Freq. Response tab (Figure 3), the default tab when the CORE Generator is started, displays the filter frequency
response (magnitude only). The content of the tab can be adjusted to fit the entire window or un-docked (as shown)
into a separate window.
 

DOUT_Q DOUT_Q_1 .... DOUT_Q_16

DATA_VALID DATA_VALID

X-Ref Target - Figure 3

Figure 3: Freq. Response Tab

Table  4: Single-to-Multiple Data Path Pinout Conversion (Cont’d)

Single Path Multiple Paths

http://www.xilinx.com
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The frequency response of the currently selected coefficient set is plotted against normalized frequency. Where the
Quantization option is set to Integer Coefficients, there is only a single plot based on the specified coefficient values.
Where the Quantization option has been set to Quantize Only, an ideal plot is displayed based on the provided val-
ues alongside a Quantized plot based on a set of coefficient values quantized according to the specified coefficient
bit width. Where the Quantization option is set to Maximize Dynamic Range, the coefficients are first scaled to take
full advantage of the available dynamic range, then quantized according to the specified coefficient bit width. The
quantized coefficients are summed to determine the resulting gain factor over the provided real coefficient set, and
the resulting scale factor is used to correct the filter response of the quantized coefficients such that the gain is fac-
tored out. The scale factor is reported in the legend text of the frequency response plot and on the Summary page.
See the Coefficient Quantization section for more details.

• Set to Display: This selects which of multiple coefficient sets (if applicable) is displayed in the Frequency 
Response Graph.

• Passband Range: Two fields are available to specify the passband range, the left-most being the minimum 
value and the right-most the maximum value. The values are specified in the same units as on the graph x-axis 
(for example, normalized to pi radians per second). For the specified range the passband maximum, minimum 
and ripple values are calculated and displayed (in dB).

• Stopband Range: Two fields are available to specify the stopband range, the left-most being the minimum 
value and the right-most the maximum value. The values are specified in the same units as on the graph x-axis 
(for example, normalized to pi radians per second). For the specified range the stopband maximum value is 
calculated and displayed (in dB).

The user can specify any range for the passband or stopband, allowing closer analysis of any region of the response.
For example, examination of the transition region can be done to more accurately examine the filter roll-off.

Tab 3: Implementation Details

The Implementation Details tab displays Resource Estimation information, core latency, actual calculated coeffi-
cients, and the coefficient reload order.

The number of DSP slices/Multipliers is displayed in addition to a count of the number of block RAM elements
required to implement the design. Usage of general slice logic is not currently estimated. Resource estimation is cur-
rently available only for MAC-based FIR filters.

For some configurations, the number of coefficients calculated by the core may be greater than specified. In this cir-
cumstance, the user could increase the number coefficients used to specify the filter at little or no cost in resource
usage.

The coefficient reload order is displayed when “Use Reloadable Coefficients” has been selected and “Display
Reload Order” is checked. This information is also contained in the <component_name>_reload_order.txt file pro-
duced during core generation. See the Coefficient Reload Order section for more details.

It should be noted that the results presented in the Resource Estimation are estimates only using equations that
model the expected core implementation structure. The Resource Utilization option within the CORE Generator
should be used after generating the core to get a more accurate report on all resource usage. It is not guaranteed that
the resource estimates provided in the GUI match the results of a mapped core implementation

Filter Specification Screen

The Filter Specification screen is used to define the basic configuration and performance of the filter.

• Component Name: The user-defined filter component instance name.

http://www.xilinx.com
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• Coefficient Source: Specifies which coefficient input method to use, directly in the GUI via the Coefficient 
Vector parameter or from a .coe file specified by the Coefficient File parameter.

• Coefficient Vector: Used to specify the filter coefficients directly in the GUI. The filter coefficients are specified 
in decimal using a comma delimited list as for the “coefdata” field in the Filter Coefficient Data file. As with 
the .coe file, the filter coefficients can be specified using non-integer real numbers which the FIR Compiler 
quantizes appropriately given the user requirements. See the Coefficient Quantization section for more details.

• Coefficients File: Coefficient file name. This is the file of filter coefficients. The file has a .coe extension, and the 
file format is described in theFilter Coefficient Data section. The file can be selected through the dialog box 
activated by the Browse.

• Show Coefficients: Selecting this button displays the filter coefficient data defined in the specified Coefficient 
file in a pop-up window.

• Number of Coefficient Sets: The number of sets of filter coefficients to be implemented. The value specified 
must divide without remainder into the number of coefficients derived from the .coe file or Coefficient Vector.

• Number of Coefficients (per set): The number of filter coefficients per filter set. This value is automatically 
derived from the specified coefficient data and the specified number of coefficient sets.

• Filter Type: Six filter types are supported: Single-rate FIR, Interpolated FIR, Interpolating FIR, Decimating FIR, 
Receiver and Transmitter Polyphase filter bank. 

• Rate Change Type: This field is applicable to Interpolation and Decimation filter types. Used to specify an 
Integer or Fixed Fractional rate change.

• Interpolation Rate Value: This field is applicable to all Interpolation filter types and Decimation filter types for 
Fractional Rate Change implementations. The value provided in this field defines the up-sampling factor, or P 
for Fixed Fractional Rate (P/Q) resampling filter implementations.

• Decimation Rate Value: This field is applicable to the all Decimation and Interpolation filter types for 
Fractional Rate Change implementations. The value provided in this field defines the down-sampling factor, 
or Q for Fixed Fractional Rate (P/Q) resampling filter implementations. 

• Zero Packing Factor: This field is applicable to the interpolated filter only. The zero packing factor specifies the 
number of 0s inserted between the coefficient data supplied by the user in the .coe (filter coefficient file). A 
zero packing factor of k inserts k-1 zeros between the supplied coefficient values.

• Number of Channels: The number of channels processed by the filter.

• Hardware Oversampling Specification format: Selects which format is used to specify the hardware 
oversampling rate, the number of clock cycles available to the core to process an input sample and generate an 
output. This value directly affects the level of parallelism in the core implementation and resources used. 
When “Frequency Specification” is selected, the user specifies the Input Sampling Frequency and Clock 
Frequency. The ratio between these values along with other core parameters determine the hardware 
oversampling rate. When “Sample Period” is selected, the user specifies the integer number of clock cycles 
between input samples.

¨ Input Sampling Frequency: This field can be an integer or real value; it specifies the sample frequency for 
one channel. The upper limit is set based on the clock frequency and filter parameters such as 
Interpolation Rate and number of channels.

¨ Clock Frequency: This field can be an integer or real value. The limits are set based on the sample 
frequency, interpolation rate, and number of channels. Note that this field influences architecture choices 
only; the specified clock rate may not be achievable by the final implementation.

¨ Input/Output Sample Period: Integer number of clock cycles between input samples. When the multiple 
channels have been specified, this value should be the integer number of clock cycles between the time 
division multiplexed input sample data stream. When a fixed fractional decimation filter has been 
specified, this parameter specifies the integer number of clock cycles between output samples. Specifying 
the output sample period enables a more efficient use of the available clock cycles.

http://www.xilinx.com
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Implementation Options Screen

The Implementation Options screen is used to define which filter architecture and coefficient structure to use and to
configure the various data path and coefficient options

• Filter Architecture: Three filter architectures are supported: Systolic Multiply Accumulate, Transpose Multiply 
Accumulate, and Distributed Arithmetic.

• Use Reloadable Coefficients: When the “Reloadable” option is selected, a coefficient reload interface is 
provided on the core.

• Coefficient Structure: Five coefficient structures are supported: Non-symmetric, Symmetric, Negative 
Symmetric, Half-band, and Hilbert transform. The structure can also be inferred from the coefficient file 
directly (default setting), or specified directly. Note the inference algorithm only analyses the first 2048 
coefficients. Only valid structure options, based on analysis of the provided coefficient file, are available for the 
user to specify directly.

• Coefficient Type: The coefficient data can be specified as either signed or unsigned. When the signed option is 
selected, conventional two’s complement representation is assumed.

• Quantization: Specifies the quantization method to be used. Available options are Integer Coefficients, 
Quantize Only, or Maximize Dynamic Range. 

¨ The Integer Coefficients option is only available when the filter coefficients have been specified using only 
integer values. 

¨ The Quantize Only option simply rounds the provided values to the nearest quantum using a simple 
rounding towards zero algorithm. 

¨ The Maximize Dynamic Range option scales all coefficients such that the maximum coefficient is equal to 
the maximum representable number in the specified bit width, thus maximizing the dynamic range of the 
filter (note that with the current implementation, overflow is not possible, as the accumulator width is 
automatically set to accommodate maximum bit growth within the filter). See the Coefficient Quantization 
section for more information.

• Coefficient Width: The bit precision of the filter coefficients. This field can be used with the filter response 
graph to explore the possibilities for more efficient implementation by limiting coefficient bit width to the 
minimum required to meet the user's target specification for the filter. 

• Best Precision Fraction Length: When selected, the coefficient fractional width is automatically set to 
maximize the precision of the specified filter coefficients. See the Best Precision Fractional Length section for 
further information.

• Coefficient Fractional Bits: Specifies the number of coefficient bits that are used to represent the fractional 
portion of the provided filter coefficients. The maximum value it supports is the Coefficient Width value 
minus the required integer bit width. The integer bit width value is static and is automatically determined by 
calculating the integer bit width required to represent the maximum value contained in the provided 
coefficient sets. When the coefficient width is less than the required integer bit width, this field reports zero. 
When the required integer bit width is zero, this parameter may take a value greater than the Coefficient 
Width. See the Coefficient Quantization section for more information. 

• Number of Paths: Specifies the number of parallel data paths the filter is to process.

• Input Data Type: The filter input data can be specified as either signed or unsigned. The signed option 
employs conventional two’s complement arithmetic.

• Input Data Width: The precision (in bits) of the filter input data samples.

• Input Data Fractional Bits: The number of Input Data Width bits used to represent the fractional portion of the 
filter input data samples. This field is for information only. It is used in conjunction with Coefficient Fractional 
Bits to calculate the filter Output Fractional Bits value.

• Output Rounding Mode: Specifies the type of rounding to be applied to the output of the filter.

http://www.xilinx.com
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• Output Width: When using Full Precision, this field is disabled and indicates the output precision (in bits) of 
the filter output data samples, including bit growth. When using any other Rounding Mode, this field allows 
the user to specify the desired output sample width.

• Output Fractional Bits: This field reports the number Output Width bits used to represent the fractional 
portion of the filter output samples.

• Allow Rounding Approximation: When using either of the two Symmetric rounding modes, a spare cycle is 
normally required to allow determination of the sign of the final accumulated result; however it is possible to 
approximate symmetric rounding without this spare cycle by checking the sign of the penultimate 
accumulation value. This checkbox allows the user to specify whether or not such approximation is permitted.

• Registered Output: The filter output bus can be registered or unregistered. When the registered output option 
is selected, the filter output bus DOUT is maintained at the core output between successive assertions of RDY. In 
the unregistered mode, the output sample is valid only when RDY is active. At other times, the port changes on 
successive clock cycles.

Detailed Implementation Options Screen

The Detailed Implementation Options screen is used to configure various control and implementation options.

Be aware that using the available control pins can require a moderate increase in resources and can lead to a reduc-
tion in maximum achievable clock frequencies; these options should only be used if required. To halt operation of
the core, use either CE (which freezes all core operations) or hold ND low (which allows samples currently being pro-
cessed to be completed) and pause the input data stream until resumption of normal core operation is desired

• Optimization Goal: Specifies if the core is required to operate at maximum possible speed (Speed option) or 
minimum area (Area option). The Area option is the recommended default and normally achieves the best 
speed and area for the design; however in certain configurations, the Speed setting may be required to 
improve performance at the expense of overall resource usage (this setting normally adds pipeline registers in 
critical paths).

• SCLR: Specifies if the core is to have a reset pin. This pin can be used with any other pin combination.

• Use Deterministic SCLR Behavior: Specifies that the core has deterministic behavior after SCLR has been 
asserted. See Resetting the Core for more information. This option is only available for Multiply-Accumulate 
architectures.

• DATA_VALID: Specifies that the core is to have a DATA_VALID pin. See Handshake Control Signals for more 
information. This pin is only available when SCLR has been selected and for Multiply-Accumulate 
architectures.

• CE: Specifies if the core is to have a clock enable pin. This pin can be used with any other pin combination, 
although it can be used to replace ND as a means to halt core operation, which can lead to significant reductions 
in resource usage for parallel symmetric filter implementation structures.

• ND: Specifies if the core is to have a New Data pin. This pin can be used with any other pin combination. If the 
ND pin is not present, samples are assumed to be present on the input data bus at specific cycle times according 
to the designated sample rate, and the input is sampled at those times. This is indicated by the core by RFD 
pulsing high during those cycles.

• Generate CHAN_IN Value in Advance: Specifies that the filter generates the CHAN_IN value a number of 
input samples in advance. See Input/Output Channel Decoding for more information. This option is only 
available when multiple channels have been selected and for Multiply-Accumulate architectures.

• Number of Samples: Specifies the number of inputs sample in advance that the CHAN_IN value is generated. 
This field is only available when Generate CHAN_IN Value in Advance has been selected.

• Memory Options: The memory type for MAC implementations can either be user-selected or chosen 
automatically to suit the best implementation options. Note that choosing Distributed may result in shift 
register implementation where appropriate to the filter structure. Forcing the RAM selection to be either 
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“Block” or “Distributed” should be used with caution, as inappropriate use can lead to inefficient resource 
usage. The default “Automatic” mode is recommended for most users.

¨ Data Buffer Type: Specifies the type of RAM to be used to store data within a MAC element. Users can 
select either “Block” or “Distributed RAM” options, or select “Automatic” to allow the core to choose the 
memory type appropriately.

¨ Coefficient Buffer Type: Specifies the type of RAM to be used to store coefficients within a MAC element. 
Users can select either “Block” or “Distributed RAM” options, or select “Automatic” to allow the core to 
choose the memory type appropriately.

¨ Input Buffer Type: Specifies the type of RAM to be used to implement the data input buffer, where 
present. Users can select either “Block” or “Distributed RAM” options, or select “Automatic” to allow the 
core to choose the memory type appropriately.

¨ Output Buffer Type: Specifies the type of RAM to be used to implement the data output buffer, where 
present. Users can select either “Block” or “Distributed RAM” options, or select “Automatic” to allow the 
core to choose the memory type appropriately.

¨ Preference for Other Storage: Specifies the type of RAM to be used to implement general storage in the 
data path. Users can select either “Block” or “Distributed RAM” options, or select “Automatic” to allow 
the core to choose the memory type appropriately. Since this covers several different types of storage, it is 
recommended that users specify this type of memory directly only if they really need to steer the core 
away from using a particular memory resource (for example, if they are short of block RAMs in their 
overall design).

• Multi-column Support: For device families with XtremeDSP™ Slices, implementations of large high speed 
filters might require chaining of DSP slice elements across multiple columns. Where applicable (the feature is 
only enabled for multi-column devices), the user can select the method of folding of the filter structure across 
the multiple columns, which can be “Automatic” (based on the selected device for the project) or “Custom” 
(user specifies the length of each column). The Multiple Column Filter implementation section describes the 
multi-column implementation in more detail.

• Device Column Lengths: Information only. Displays the column length pattern in a comma delimited list for 
the selected project device.

• Column Configuration: Specifies the individual column lengths in a comma delimited list. When 
“Automatic” has been selected, the column lengths are determined by the GUI starting with the first column in 
the device column pattern. When “Custom” is selected, the user can specify the desired column pattern. The 
number of columns may not exceed that available in the selected device, and the individual column lengths 
must sum to the number of DSP slices utilized by current filter configuration. When the selected device has 
various column lengths, it maybe desirable to skip a particular column; this can be done by specifying a zero 
column length, for example 10,0,22. Note that the specified column configuration does not guarantee that 
the downstream tools are going to place the columns in the desired sequence.

• Inter-column Pipe Length: Pipeline stages are required to connect between the columns, with the level of 
pipelining required being dependent upon the required system clock rate, the chosen device, and other 
system-level parameters. Choice of this parameter is always left for the user to specify. 

Summary Screen

The Summary screen provides a summary of core options selected. 

Summary: The final page provides summary information about the core parameters selected, which includes infor-
mation on the actual number of calculated coefficients, including padding; the inferred or specified coefficient
structure; the additional gain incurred as data passes through the filter due to maximizing the coefficient dynamic
range during quantization; the specified output width along with the full precision width for comparison; the cal-
culated cycle-latency value; and the latency delta from the previous major revision of the core.
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Using the FIR Compiler IP Core
The CORE Generator GUI performs error-checking on all input parameters. Resource estimation, implementation
details, and filter analysis are also available.

Several files are produced when a core is generated, and customized instantiation templates for Verilog and VHDL
design flows are provided in the .veo and .vho files, respectively. For detailed instructions, see the CORE Generator
software documentation.

Simulation Models

The core has a number of options for simulation models:

• VHDL behavioral model in the xilinxcorelib library

• VHDL UniSim-based structural simulation model

• Verilog UniSim-based structural simulation model

The models required may be selected in the CORE Generator project options. 

Xilinx recommends that simulations utilizing UniSim-based structural models are run using a resolution of 1 ps.
Some Xilinx library components require a 1 ps resolution to work properly in either functional or timing simulation.
The UniSim-based structural simulation models may produce incorrect results if simulated with a resolution other
than 1 ps. See the “Register Transfer Level (RTL) Simulation Using Xilinx Libraries” section in Chapter 6 of the Syn-
thesis and Simulation Design Guide for more information. This document is part of the ISE® Software Manuals set
available at www.xilinx.com/support/software_manuals.htm. 

XCO Parameters

Table 5 defines valid entries for the XCO parameters. Parameters are not case sensitive. Default values are displayed
in bold. Xilinx strongly suggests that XCO parameters are not manually edited in the XCO file; instead, use the
CORE Generator GUI to configure the core and perform range and parameter value checking. The XCO parameters
are helpful in defining the interface to other Xilinx tools.

Table  5: XCO Parameters

XCO Parameter Valid Values

component_name ASCII text using characters: a..z, 0..9 and "_" ; starting with a letter

CoefficientSource Vector, COE_File

CoefficientVector ASCII text using characters: 0..9, "." and ","

Coefficient_File Valid file path

Coefficient_Sets 1 - 256

Filter_Type Single_Rate, Interpolation, Decimation, Interpolated, Polyphase_Filter_Bank_Receiver, 
Polyphase_Filter_Bank_Transmitter

Rate_Change_Type Integer, Fixed_Fractional

Interpolation_Rate 1 - 1024

Decimation_Rate 1 - 1024

Zero_Pack_Factor 1 - 1024

Number_Channels 1 - 64

RateSpecification Frequency_Specification, Sample_Period

http://www.xilinx.com
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SamplePeriod 1 - 10000000

Sample_Frequency 0.000001 - 600.0

Clock_Frequency 0.000001 - 600.0

Filter_Architecture Systolic_Multiply_Accumulate, Transpose_Multiply_Accumulate, Distributed_Arithmetic

Coefficient_Reload false, true

Coefficient_Structure Inferred, Non_Symmetric, Symmetric, Negative_Symmetric, Half_Band, Hilbert

Coefficient_Sign Signed, Unsigned

Quantization Integer_Coefficients, Quantize_Only, Maximize_Dynamic_Range

Coefficient_Width 1 - 49; Default is 16

BestPrecision true, false

Coefficient_Fractional_Bits 0 - 49

Data_Sign Signed, Unsigned

Data_Width 1 - 49; Default is 16

Data_Fractional_Bits 0 - 49

Number_Paths 1 - 16; Default is 1

Output_Rounding_Mode Full_Precision, Truncate_LSBs, Non_Symmetric_Rounding_Down, 
Non_Symmetric_Rounding_Up, Symmetric_Rounding_to_Zero, 
Symmetric_Rounding_to_Infinity, Convergent_Rounding_to_Even, 
Convergent_Rounding_to_Odd

Output_Width 1 - 89

Allow_Rounding_Approximation false, true

Registered_Output true, false

Optimization_Goal Area, Speed

Has_SCLR false, true

Has_CE false, true

Has_ND false, true

Has_Data_Valid false, true

SCLR_Deterministic false, true

UseChan_in_adv false, true

Chan_in_adv 0 - 63; Default is 0

Data_Buffer_Type Automatic, Block, Distributed, Not_Applicable

Coefficient_Buffer_Type Automatic, Block, Distributed, Not_Applicable

Input_Buffer_Type Automatic, Block, Distributed, Not_Applicable

Output_Buffer_Type Automatic, Block, Distributed, Not_Applicable

Preference_For_Other_Storage Automatic, Block, Distributed, Not_Applicable

Multi_Column_Support Disabled, Automatic, Custom

Inter_Column_Pipe_Length 1 - 16; Default is 4

ColumnConfig ASCII text using characters: 0..9 and ","

Table  5: XCO Parameters (Cont’d)

XCO Parameter Valid Values
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Migrating to FIR Compiler v5.0 from Earlier Versions

Updating from FIR Compiler v4.0 and v3.2

The CORE Generator core update feature may be used to update an existing FIR Compiler XCO file to version 5.0
of the FIR Compiler core. The core may then be regenerated to create a new netlist. See the CORE Generator docu-
mentation for more information on this feature.

Port Changes

There are no differences in port naming conventions, polarities, priorities or widths between versions.

Updating from Versions prior to FIR Compiler v3.2

It is not currently possible to automatically update versions of the FIR Compiler core prior to v3.2. Xilinx
recommends that customers use the FIR Compiler v5.0 GUI to customize a new core.

System Generator for DSP Graphical User Interface
This section describes each tab of the System Generator GUI and details the parameters that differ from the CORE
Generator GUI. See CORE Generator Graphical User Interface for detailed information about all other parameters. 

Tab 1: Filter Specification

The Filter Specification tab is used to define the basic filter configuration as on the Filter Specification Screen of the
CORE Generator GUI.

• Coefficients: This field is used to specify the coefficient vector as a single MATLAB® software row vector. The 
number of taps is inferred from the length of the MATLAB row vector. It is possible to enter these coefficients 
using the MATLAB FDATool block. Multiple coefficient sets must be concatenated into a single vector as 
described in the Multiple Coefficient Sets section.

• Hardware Oversampling Specification format: Selects which method is to be used to specify the hardware 
oversampling rate. This value directly affects the level of parallelism of the core implementation and resources 
used. When “Maximum Possible” is selected, the core uses the maximum oversampling given the sample 
period of the signal connected to DIN port. When “Hardware Oversampling Rate” is selected, the user can 
specify the oversampling rate. When “Sample Period” is selected, the core clock is connected to the system 
clock and the value specified for the Sample period parameter sets the input sample rate that the core 
supports. The Sample period parameter also determines the hardware oversampling rate of the core. When 
“Sample Period” is selected, the core is forced to use the ND control port. See the Interface, Control, and Timing 
section for more details on the core control ports.

¨ Sample Period: Specifies the input sample period supported by the core.

¨ Hardware Oversampling Rate: Specifies the hardware oversampling rate to be applied to the core.

See Filter Specification Screen for information about the other parameters on this tab.

Tab 2: Implementation

The Implementation tab is used to define implementation options; see the Implementation Options Screen of the
CORE Generator GUI for details of all the core parameters on this tab.

• FPGA Area Estimation: See the System Generator documentation for detailed information about this section. 

See the Implementation Options Screen for information about the other parameters on this tab.
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Tab 3: Detailed Implementation

See Detailed Implementation Options Screen for the corresponding CORE Generator GUI screen.

• rst: Specifies if the core is to have a reset pin (the equivalent of selecting the SCLR option in the CORE 
Generator GUI). 

• nd: Specifies if the core is to have a New Data port (the equivalent of selecting the ND Port option in the CORE 
Generator GUI). This control pin is only available when “Sample Period” has been selected for the Hardware 
Oversampling Specification format. 

• en: Specifies if the core is to have a clock enable pin (the equivalent of selecting the CE option in the CORE 
Generator GUI).

See Detailed Implementation Options Screen for information about the other parameters on this tab. 

Core Use through System Generator
The FIR Compiler core is available through Xilinx System Generator for DSP, a design tool that enables the use of
The MathWorks model-based design environment Simulink® for FPGA design. The FIR Compiler core is one of the
DSP building blocks provided in the Xilinx blockset for Simulink. The core can be found in the Xilinx Blockset in the
DSP section. The block is called “FIR Compiler v5.0.” See the System Generator User Manual for more information.

Core Features

Filter Architectures

Multiply-Accumulate

Figure 4 illustrates a simplified view of a MAC-based FIR utilizing a single MAC engine. 

The single implementation is extensible to multi-MAC implementations for use in achieving higher performance
filter specifications (larger numbers of coefficients, higher sample rates, more channels, etc.).

X-Ref Target - Figure 4

Figure 4: Single MAC Engine Block Diagram
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The number of multipliers required to implement a filter is determined by calculating the number of multiplies
required to perform the computation (taking into account symmetrical and half-band coefficient structures and
sample rate changes) and then dividing by the number of clocks available to process each input sample. The avail-
able clock cycles value is always rounded down and the number of multipliers rounded up to the nearest integer. If
there is a non-zero remainder, some of the MAC engines calculate fewer coefficients than others, and the coefficients
are padded with zeros to accommodate the excess cycles. 

Note that the output samples reflect the padding of the coefficient vector; for this reason, the response to an applied
impulse contains a certain number of zero outputs before the first coefficient of the specified impulse response
appears at the output. The core automatically generates an implementation that meets the user-defined perfor-
mance requirements based on the system clock rate, the sample rate, the number of taps and channels, and the rate
change. The core inserts one or more multipliers to meet the overall throughput requirements. 

Two MAC architectures are available in the FIR Compiler: one that implements a Systolic filter structure and the
other a Transpose filter structure.

Systolic Multiply-Accumulate

Figure 5 illustrates the Systolic Multiply-Accumulate architecture implementing a pipelined Direct-Form filter.

Figure 6 illustrates a multi-MAC implementation for this architecture. 

The architecture is directly supported by the XtremeDSP Slice and results in area-efficient and high performance fil-
ter implementations. The structure also extends to exploit coefficient symmetry offering further resource savings.

X-Ref Target - Figure 5

Figure 5: Pipelined Direct-Form

X-Ref Target - Figure 6

Figure 6: Systolic Multi-MAC Implementation
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Transpose Multiply-Accumulate

Figure 7 illustrates the Transpose Multiply-Accumulate architecture implementing a Transposed Direct-Form filter.

Figure 8 illustrates a multi-MAC implementation for this architecture. 

This architecture is also directly supported by the XtremeDSP Slice. This structure offers a low latency implementa-
tion, and for some configurations can also offer extra resource savings over the Systolic structure. It does not require
an accumulator and can use fewer data memory resources, although it does not exploit coefficient symmetry.

X-Ref Target - Figure 7

Figure 7: Transposed Direct-Form

X-Ref Target - Figure 8

Figure 8: Transpose Multi-MAC Implementation

Z-1+

Xa(2)

Z-1

Xa(n-1)

Z-1+

Xa(1)

Z-1+

Xa(0)

x(n)

y(n)Z-1+

Xa(2)

Z-1

Xa(n-1)

Z-1+

Xa(1)

Z-1+

Xa(0)

x(n)

y(n)

a(M-1)
a(2M-1)
a(3M-1)
a(N-1)

X

+

a(1)
a(M+1)

a(2M+1)
a(3M+1)

X

Z-1

a(0)
a(M)
a(2M)
a(3M)

x(n)

y(n)
+ Z-1 +

X

Z-1

0M-1 M-2

Z-MZ-M Z-MZ-M

a(M-1)
a(2M-1)
a(3M-1)
a(N-1)

a(M-1)
a(2M-1)
a(3M-1)
a(N-1)

X

+

a(1)
a(M+1)

a(2M+1)
a(3M+1)

a(1)
a(M+1)

a(2M+1)
a(3M+1)

X

Z-1

a(0)
a(M)
a(2M)
a(3M)

a(0)
a(M)
a(2M)
a(3M)

x(n)

y(n)
+ Z-1 +

X

Z-1

0M-1 M-2

Z-MZ-M Z-MZ-MZ-MZ-M Z-MZ-M

http://www.xilinx.com


DS534 March 1, 2011 www.xilinx.com 19
Product Specification

IP LogiCORE FIR Compiler v5.0

Distributed Arithmetic

Figure 9 displays a simplified view of a DA FIR.

In their most obvious and direct form, DA-based computations are bit-serial in nature – serial distributed arithmetic
(SDA) FIR. Extensions to the basic algorithm remove this potential throughput limitation [Ref 2]. The advantage of
a distributed arithmetic approach is its efficiency of mechanization. The basic operations required are a sequence of
table look-ups, additions, subtractions, and shifts of the input data sequence. All of these functions efficiently map
to FPGAs. Input samples are presented to the input parallel-to-serial shift register (PSC) at the input signal sample
rate. As the new sample is serialized, the bit-wide output is presented to a bit-serial shift register or time-skew buf-
fer (TSB). The TSB stores the input sample history in a bit-serial format and is used in forming the required
inner-product computation. The TSB is itself constructed using a cascade of shorter bit-serial shift registers. The
nodes in the cascade connection of TSBs are used as address inputs to a look-up table. This LUT stores all possible
partial products [Ref 2] over the filter coefficient space.

Several observations provide valuable insight into the operation of a DA FIR filter. In a conventional multiply-accu-
mulate (MAC)-based FIR realization, the sample throughput is coupled to the filter length. With a DA architecture,
the system sample rate is related to the bit precision of the input data samples. Each bit of an input sample must be
indexed and processed in turn before a new output sample is available. For B-bit precision input samples, B clock
cycles are required to form a new output sample for a non-symmetrical filter, and B+1 clock cycles are needed for a
symmetrical filter. The rate at which data bits are indexed occurs at the bit-clock rate. The bit-clock frequency is
greater than the filter sample rate (fs) and is equal to Bfs for a non-symmetrical filter and (B+1)fs for a symmetrical
filter. In a conventional instruction-set (processor) approach to the problem, the required number of multiply-accu-
mulate operations is implemented using a time-shared or scheduled MAC unit. The filter sample throughput is
inversely proportional to the number of filter taps. As the filter length is increased, the system sample rate is pro-
portionately decreased. This is not the case with DA-based architectures. The filter sample rate is decoupled from
the filter length. The trade-off introduced here is one of silicon area (FPGA logic resources) for time. As the filter
length is increased in a DA FIR filter, more logic resources are consumed, but throughput is maintained.

Figure 10 provides a comparison between a DA FIR architecture and a conventional scheduled MAC-based
approach. The clock rate is assumed to be 120 MHz for both filter architectures. Several values of input sample pre-
cision for the DA FIR are presented. The dependency of the DA filter throughput on the sample precision is appar-
ent from the plots. For 8-bit precision input samples, the DA FIR maintains a higher throughput for filter lengths
greater than 8 taps. When the sample precision is increased to 16 bits, the crossover point is 16 tap. 

X-Ref Target - Figure 9

Figure 9: Serial Distributed Arithmetic FIR Filter
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Figure 11 provides a similar comparison for a dual-MAC architecture. 

Increasing the Speed of Multiplication-Parallel Distributed Arithmetic

In their most obvious and direct form, DA-based computations are bit-serial in nature; each bit of the samples must
be indexed in turn before a new output sample becomes available (SDA FIR). When the input samples are repre-
sented with B bits of precision, B clock cycles are required to complete an inner-product calculation (for a non-sym-
metrical impulse response). Additional speed can be obtained in several ways. One approach is to partition the
input words into M subwords and process these subwords in parallel. This method requires M-times as many mem-
ory look-up tables and so comes at a cost of increased storage requirements. Maximum speed is achieved by factor-
ing the input variables into single-bit subwords. The resulting structure is a fully parallel DA (PDA) FIR filter. With
this factoring, a new output sample is computed on each clock cycle. PDA FIR filters provide exceptionally high
performance. The Xilinx filter core provides support for parallel DA FIR implementations. Filters can be designed
that process several or all the bits of the input data during a single clock period. For example, consider a non-sym-
metrical filter with 12-bit precision input samples. Using a serial DA filter, new output samples are available every
12 clock periods. If the data samples are processed 2 bits at a time (2-BAAT), a new output sample is ready every

X-Ref Target - Figure 10

Figure 10: Throughput (Sample Rate) Comparison of Single-MAC-based FIR and DA FIR as a Function of 
Filter Length. B is the DA FIR Input Sample Precision. Clock Rate is 120 MHz.

X-Ref Target - Figure 11

Figure 11: Throughput (Sample Rate) Comparison of Dual-MAC-based FIR and DA FIR as a Function of 
Filter Length. B is the DA FIR Input Sample Precision. Clock Rate is 120 MHz.
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12/2=6 clock cycles. With 3-, 4-, 6-, and 12-BAAT implementations, a new result is available every 4, 3, 2, and 1 clock
cycles, respectively. 

Another way to view the problem is in terms of the number of clock cycles L needed to produce a filter output sam-
ple. And indeed, this is how the degree of computation parallelism is presented to the user on the filter design GUI.
So, for example, consider a filter core with a master system clock (and this is not necessarily the filter sample rate)
equal to 150 MHz. Also assume that the input sample precision is 12 bits and that the impulse response is not sym-
metrical. For this set of parameters, the valid values of L (and these are presented on the core GUI) are 12, 6, 4, 3, 2,
and 1. The corresponding filter sample rate (or throughput) for each value of L is 150/12=12.5, 150/6=25,
150/4=37.5, 150/3=50, 150/2=75, and 150/1=150 MHz, respectively. If the filter employs a symmetrical impulse
response, the valid values of L are different – and this is associated with the hardware architecture that is employed
to exploit the coefficient symmetry to produce the most compact (in terms of FPGA logic resources) realization. So
for a filter with 12-bit precision input samples and a symmetrical impulse response, the valid values of L are 13, 7,
5, 4, 3, 2, and 1. Again, using a filter core master clock frequency of 150 MHz, the sample rate for each value of L is
11.539, 21.429, 30, 37.5, 50, 75, and 150 MHz, respectively.

The higher the degree of filter parallelism (fewer number of clock cycles per output sample or smaller L), the greater
the FPGA logic resources required to implement the design. Specifying the number of clock cycles per output sample
is an extremely powerful mechanism that allows the designer to trade off silicon area in return for filter throughput.

DA Filter Throughput

The signal sample rate for a DA type filter is a function of the core bit clock frequency, fclk Hz, the input data sample
precision B, the number of channels, the number of clock cycles (L) per output sample, and the coefficient symme-
try. For a single-channel non-symmetrical FIR filter using L=B clock cycles per output sample, the filter sample fre-
quency, or sample throughput, is fclk/B Hz. If the filter is symmetrical, the sample rate is fclk/(B+1) Hz. If the
number of clock cycles per output sample is changed to L=1, the sample throughput is fclk Hz. For L=2, the
throughput is fclk/2 Hz.

As a specific example, consider a filter with a core clock frequency equal to 100 MHz, 10-bit input samples, L=10 and
a non-symmetrical coefficient set. The filter sample rate is 100/10=10 MHz. Observe that this figure is independent
of the number of filter taps. If a symmetrical realization had been generated, the sample throughput would be
100/11=9.0909 MHz. For L=1, the sample rate would be 100 MHz (non-symmetrical FIR). If the input sample preci-
sion is changed to 8 bits, with L=8, the filter sample rate for a non-symmetrical filter would be 100/8=12.5 MHz. 

Filter Structures and Optimizations

Filter Symmetry

The impulse response for many filters possesses significant symmetry. This symmetry can generally be exploited to
minimize arithmetic requirements and produce area-efficient filter realizations. Figure 12 shows the impulse
response for a 9-tap symmetric FIR filter. 
X-Ref Target - Figure 12

Figure 12: Symmetric FIR – Odd Number of Terms
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Instead of implementing this filter using the architecture shown in Figure 1, the more efficient signal flow-graph in
Figure 13 can be used. In general, the former approach requires N multiplications and (N-1) additions. In contrast,
the architecture in Figure 13 requires only [N/2] multiplications and approximately N additions. This significant
reduction in the computation workload can be exploited to generate efficient filter hardware implementations.

Coefficient symmetry for an even number of terms can be exploited as shown in Figure 14. 

Figure 15 shows the impulse response for a negative, or odd, symmetric filter. 

X-Ref Target - Figure 13

Figure 13: Exploiting Coefficient Symmetry – Odd Number of Filter Taps

X-Ref Target - Figure 14

Figure 14: Exploiting Coefficient Symmetry – Even Number of Filter Taps

X-Ref Target - Figure 15

Figure 15: Negative Symmetric Impulse Response
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This symmetry is easily exploited in a manner similar to that shown in Figure 13 and Figure 14. In this case, the
middle layer of adders are replaced by subtracters, as illustrated in Figure 16. 

Filter coefficient symmetry is inferred by the core GUI from the coefficient definition file. Note that this inferred
value can be overridden by the user. When the structure is inferred, the inferred setting is displayed in the Sum-
mary page and in the ToolTip for the Coefficient Structure field.

Coefficient Padding

When implementing a filter with symmetric coefficients using the Multiply-Accumulate architecture, users must be
aware that the core reorganizes the filter coefficients if required to exploit symmetry, and this may alter the filter
response. This is only necessary if the core is configured such that all processing cycles are not utilized. For exam-
ple, when the core has four cycles to process each sample for a 30-tap symmetric response filter, the core pads the
coefficient storage out as illustrated in Figure 17.

The appended zeroes after the non-zero coefficients do not affect the filter response, but the prepended zero coeffi-
cients do alter the phase response of the filter implementation when compared to the ideal coefficients. There are
two ways to avoid this issue: First, and simplest, the user can force the Coefficient Structure to be Non-Symmetric.
This avoids the issue of prepending zero coefficients to the coefficient vector, and only appended zeroes are used to
pad out the filter response to the required number of cycles. Second, and more efficient, the user can increase the
number of taps implemented by the filter at little or no cost in resource usage. In the previous example, the filter
could process 32 taps in the same time, with the same hardware resources, and with the same cycle latency as the
30-tap implementation, and the phase response of the 32-tap filter would be unaltered.

X-Ref Target - Figure 16

Figure 16: FIR Architecture Exploiting Negative Symmetry

X-Ref Target - Figure 17

Figure 17: Filter Padding to Facilitate Symmetric Structure Exploitation
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The core GUI displays the actual number of coefficients calculated on the Implementation Details tab. Users can use
this information to determine if they can increase the number of coefficients used by their filter definition.

Single-rate FIR Filter

The basic FIR filter core is a single-rate (input sample rate = output sample rate) finite impulse response filter. This
is the simplest of filter types and is the default at the start of parametrization in the CORE Generator software.

Half-band FIR Filter

Figure 18 illustrates the general frequency response for a half-band filter. 

The magnitude frequency response is symmetrical about quarter sample frequency π/2 radians. The sample rate is
normalized to 2π radians/sec. The passband and stopband frequencies are positioned such that 

The passband and stopband ripple, and  respectively, are equal . These properties are reflected in the
filter impulse response. It can be shown [Ref 5] that approximately half of the filter coefficients are zero for an odd
number of taps, as illustrated in Figure 19 for an 11-tap half-band filter. 

X-Ref Target - Figure 18

Figure 18: Half-band Filter Magnitude Frequency Response

X-Ref Target - Figure 19

Figure 19: Half-band Filter Impulse Response
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The interleaved zero values in the coefficient data can be exploited to realize an efficient realization, as shown in
Figure 20. 

The half-band filter selection in the compiler is intended for this purpose. This filter is available in the Coefficient
Structure field of the user interface. The user must supply the complete list of filter coefficients, including the 0 value
samples, when using the half-band filter. The filter coefficient file format is discussed in greater detail in the Filter
Coefficient Data section.

Hilbert Transform

Hilbert transformers [Ref 5] are used in a variety of ways in digital communication systems. An ideal Hilbert trans-
form provides a phase shift of 90 degrees for positive frequencies and -90 degrees for negative frequencies. It can be
shown [Ref 5] that the impulse response corresponding to this frequency domain characteristic is odd-symmetric
and has interleaved zeros as shown in Figure 20. Both the alternating zero-valued coefficients and the negative sym-
metry can be utilized to produce an efficient hardware realization. 

A Hilbert transformer accepts a real-valued signal and produces a complex (I,Q) output signal. The quadrature (Q)
component of the output signal is produced by a FIR filter with an impulse response like that shown in Figure 21.
The in-phase (I) component is the input signal delayed by an appropriate amount to compensate for the phase delay
of the FIR process employed for generating the Q output. This is easily and efficiently achieved by accessing the
center tap of the sample history delay of the Q channel FIR filter as shown in Figure 22. In this figure, x(n) is the
real-valued input signal, and yI(n) and yQ(n) are the in-phase and quadrature outputs, respectively.

X-Ref Target - Figure 20

Figure 20: Half-band Filter Impulse Response

X-Ref Target - Figure 21

Figure 21: Hilbert Transformer Impulse Response

X-Ref Target - Figure 22

Figure 22: Hilbert Transformer FIR Filter Realization
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Figure 23 shows the architecture for a Hilbert transformer that exploits both the zero-valued and the negative sym-
metry characteristics of the impulse response.

Interpolated FIR Filter

An interpolated FIR (IFIR) filter [Ref 4] has a similar architecture to a conventional FIR filter, but with the unit delay
operator replaced by k-1 units of delay. k is referred to as the zero-packing factor. Figure 24 illustrates a N-tap IFIR
filter. This architecture is functionally equivalent to inserting k-1 zeros between the coefficients of a prototype filter
coefficient set. 

Interpolated filters are useful for realizing efficient implementations of both narrow-band and wide-band filters. A
filter system based on an IFIR approach requires not only the IFIR but also an image rejection filter. References
[Ref 4] and [Ref 6] provide the details of how these systems are realized, and how to design the IFIR and the image
rejection filters.

The IFIR filter implementation takes advantage of the k-1 zeros in the impulse response to realize an area-efficient
FPGA implementation. The FPGA area required by an IFIR filter is not a strong function of the zero-packing factor. 

The interpolated FIR should not be confused with an interpolation filter. Interpolated filters are single-rate systems
employed to produce efficient realizations of narrow-band filters and, with some minor enhancements, wide-band
filters can be accommodated. There is no inherent rate change when using an interpolated filter – the input rate is
the same as the output rate.

X-Ref Target - Figure 23

Figure 23: Hilbert Transformer Exploiting Zero-valued Filter Coefficients and Negative Symmetry

X-Ref Target - Figure 24

Figure 24: Interpolated FIR (IFIR). The Zero-packing Factor is k.
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Polyphase Decimator

Figure 25 illustrates the polyphase decimation filter option which implements the computationally efficient M-to-1
polyphase decimating filter. 

A set of N prototype filter coefficients  is mapped to the M polyphase sub-filters
according to Equation 2.

The polyphase segments are accessed by delivering the input samples x(n) to their inputs via an input commutator
which starts at the segment index and decrements to index 0. After the commutator has executed one
cycle and delivered M input samples to the filter, a single output is taken as the summation of the outputs from the
polyphase segments. The output sample rate is  where  is the sample rate of the input data stream

.

Observe that each of the polyphase segments is operating at the low output sample rate  (compared to the high
input sample rate ), and a total of  operations is performed per output point. 

Polyphase Interpolator

Figure 26 illustrates the polyphase interpolation filter option which implements the computationally efficient 1-to-P
interpolation filter. 

A set of N prototype filter coefficients  is mapped to the  polyphase sub-filters
according to Equation 2, as in the decimation case.

Each new input sample  engages all of the polyphase segments in parallel. For each input sample delivered to
the filter, output samples, one from each segment, are delivered to the filter output port, as indicated by the com-
mutator in Figure 26.

X-Ref Target - Figure 25

Figure 25: M-to-1 Polyphase Decimating Filter

X-Ref Target - Figure 26

Figure 26: 1-to-P Polyphase Interpolator
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The output sample rate is  where  is the sample rate of the input data stream
. Observe each of the polyphase segments operating at the low input sample rate  (com-

pared to the high output sample rate ) and a total of  operations performed per output point.

Polyphase Interpolator Exploiting Symmetric Pairs

The symmetric pairs technique [Ref 8] is used to exploit coefficient symmetry when implementing an Interpolation
filter in the Systolic Multiply-Accumulator architecture. When P polyphase sub-filters are generated from symmet-
ric filter coefficients, not all the sub-filters contain a set of coefficients that are themselves symmetric. The symmetric
pairs technique observes that by adding and subtracting two corresponding non-symmetric phases produces two
new phases containing symmetric coefficients. 

The following example demonstrates this technique for a 15-tap interpolate by 3 filter. The filter coefficients: 

a , b , c , d , e , f, g , h , g , f , e , d , c , b , a

Produce the following sub-filters:

h0 = a , d , g , f , c

h1 = b , e , h , e , b

h2 = c , f , g , d , a

Sub-filters h0 and h2 are not symmetric. Applying the symmetric pairs technique produces the following sub-filters:

h0 = a+c , d+f , g+d , f+d , c+a

h1 = b , e , h , e , b

h2 = c-a , f-d , g-h , d-g , a-c

Now both h0 and h2 are symmetric with h2 being negative symmetric. The filter can now be implemented utilizing
symmetry, giving the associated resource savings. The output from sub-filters h0 and h2 must be added and sub-
tracted and then scaled by a factor of 0.5 to produce the original filter output. Figure 27 illustrates the resulting
structure. 

Note: When interpolating by 2 with an odd number of symmetric coefficients, this technique is not required as the resulting 
polyphase sub-filters are symmetric.

Coefficient Padding

As with the general symmetric filter case, if the combination of rate and number of filter taps results in a sub-filter
which is not fully populated with coefficients, the reorganization of the filter coefficients results in a change in the
phase response of the filter. The impulse response is shifted by a number of output samples as a result. In the 14 tap,
interpolate by 4 case, padding a zero coefficient to the front of the coefficient response would be required to align
the phases such that symmetry can be exploited, resulting in a smaller implementation, but this results in a different
phase response for the filter. The methods to avoid this change in response, if such a change cannot be accommo-

X-Ref Target - Figure 27

Figure 27: Symmetric Pairs
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dated in the user’s application system, are also similar to the general symmetry case – the user can either force
non-symmetric structure implementation or make use of the extra coefficients which can be supported in the struc-
ture. Figure 28 illustrates several example cases in and is extensible to larger filters.

Half-band Decimator

The half-band decimator is a polyphase filter with an embedded 2-to-1 down-sampling of the input signal.
Figure 29 illustrates the structure. 

The filter is very similar to the polyphase decimator described in Polyphase Decimator with the decimation factor
set to M=2. However, there is a subtle difference in the implementation that makes the half-band decimator a more
area-efficient 2-to-1 down-sampling filter when the frequency response reflects a true half-band characteristic.

The frequency and time response of a half-band filter are shown in Figure 18 and Figure 19, respectively. Observe
the alternating zero-valued coefficients in the impulse response. Figure 29 details a 7-tap half-band polyphase filter
when the coefficients are allocated to the two polyphase segments and  shown in Figure 29. Figure 30
(a) is the filter impulse response; note that . Figure 30 (b) provides a detailed illustration of the poly-

X-Ref Target - Figure 28

Figure 28: Filter Padding to Facilitate Symmetric Pairing

X-Ref Target - Figure 29

Figure 29: Half-band Decimation Filter
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phase sub-filters and shows how the filter coefficients are allocated to the two polyphase arms. In the bottom arm,
the only non-zero coefficient, is the center value of the impulse response  Figure 30 (c) shows the opti-

mized architecture when the redundant multipliers and adders are removed. The final structure has a reduced com-
putation workload in contrast to a more general 2:1 down-sampling filter. The number of multiply-accumulate
(MAC) operations required to compute an output sample has been lowered by a factor of approximately two. In this
figure, note that the high density of zero-valued filter coefficients is exploited in the FPGA realization to produce a
minimal area implementation.

Half-band Interpolator

Just as the half-band decimator is an optimized version of the more general polyphase decimation filter, the
half-band interpolator is a special case of a polyphase interpolator. Figure 31 displays the half-band interpolator. 

The coefficient set for a true half-band interpolator is identical to that of a half-band decimator with the same spec-
ifications. The large number of zero entries in the impulse response is exploited in exactly the same manner as with

X-Ref Target - Figure 30

Figure 30: 7-Tap Half-band Decimation Filter

X-Ref Target - Figure 31

Figure 31: Half-band Interpolation Filter
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the half-band decimator to produce hardware-optimized half-band interpolators. The process is presented in
Figure 32. Figure 32(a) is the impulse response, Figure 32(b) shows the polyphase partition, and Figure 32(c) is the
optimized architecture that has taken full advantage of the 0 entries in the coefficient data. Note that the high den-
sity of zero-valued filter coefficients is exploited in the FPGA realization to produce a minimal area implementa-
tion.

Small Non-zero Even Terms in a Half-band Filter Impulse Response

Certain filter design software can result in small non-zero values for the odd terms in the half-band filter impulse
response. In this situation, it can be useful to force these values to 0 and re-evaluate the frequency response to assess
if it is still acceptable for the intended application. If the odd terms are not identically zero, the hardware optimiza-
tions described previously are not possible. If the small non-zero value terms cannot be ignored, the general poly-
phase decimator or interpolator described in Polyphase Decimator and "Polyphase Interpolator," using a rate
change of two, is more appropriate.

X-Ref Target - Figure 32

Figure 32: 7-Tap Half-band Interpolation Filter
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Fixed Fractional Rate Resampling Filters

FIR filters that implement resampling of a data stream at a fixed fractional rate P/Q, where P and Q are integers up
to 64, are available for the Systolic Multiply-Accumulate architecture. In Figure 33, the operation of an interpolation
filter with interpolation rate P=5 is contrasted conceptually with the operation of a fixed fractional rate filter with
rate P/Q=5/3.

The normal (integer rate) interpolator passes the input sample to all P phases and then produces an output from
each of the phase arms of the polyphase filter structure. In the fractional rate version, the output is taken from a
phase arm which varies according to a stepping sequence with step size Q.

Figure 34 illustrates a similar conceptual method for implementing fractional rate decimators. The integer decima-
tion rate for the left-hand diagram is Q=5, while the fractional-rate illustrated on the right is P/Q=3/5. 

The integer rate decimator passes the input samples in sequence to each of the Q phase arms in turn, with the data
being shifted through the filter, and the output is generated from the summation of the outputs from each phase
arm of the polyphase filter. For the fractional rate implementation, the filter passes the input samples to phases in a
stepping sequence based on a step size of P, with zero samples being placed into the skipped phases. The summa-
tion across the various phase arms remains the same, but is based on fewer actual calculations. The implementation
details differ somewhat from these conceptual illustrations, but the resulting behavior of the filter is the same. Sym-
metry is not currently exploited when using the fractional rate structures.

X-Ref Target - Figure 33

Figure 33: Interpolation Filters for Integer and Fractional Rates

X-Ref Target - Figure 34

Figure 34: Decimation Filters for Integer and Fractional Rates
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Polyphase Filter Bank for Channelizer implementations

The polyphase channelizer is an efficient architecture to implement a multi-channel digital receiver (or transmitter)
for a set of frequency division multiplexed (FDM) channels that exists in a single sampled data stream [Ref 7]. If we
consider the receiver operation, Figure 35 illustrates the input spectrum of a FDM signal containing M channels. 

Figure 36 illustrates a conventional channelizer consisting of an independent mixer, baseband filter, and down sam-
pler per channel.

X-Ref Target - Figure 35

Figure 35: Input Spectrum

X-Ref Target - Figure 36

Figure 36: Conventional Channelizer
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Figure 37 illustrates the polyphase filter bank channelizer. Reference [Ref 7] reviews the conversion process from
the conventional channelizer to the polyphase filter bank implementation. 

The polyphase filter bank implementation offers significant resource savings due to the computational efficiency of
the FFT algorithm and the polyphase partitioning of the original low pass prototype filter, h(n). The FIR Compiler
implementation of the polyphase filter bank is directly compatible with the Xilinx LogiCORE IP Fast Fourier
Transform. 

The FIR Compiler output has been formatted so it can be connected directly to the Xilinx FFT core for use in a
receiver. For use in a transmitter, the FIR Compiler accepts input data in a block-based format as generated by the
Xilinx FFT core. Further information about the core input and output format and timing can be found in the Poly-
phase Filter Bank section of "MAC-based FIR Filter Timing."

Figure 38 shows the pin connections that should be made between the FIR Compiler and the Xilinx FFT core. 

X-Ref Target - Figure 37

Figure 37: Polyphase Filter Bank Channelizer

X-Ref Target - Figure 38

Figure 38: Pin Connections between FIR Compiler and Xilinx FFT Core
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Filter Coefficient Data

The filter coefficients are supplied to the FIR Compiler using a coefficient file with a .coe extension. This is an ASCII
text file with a single-line header that defines the radix of the number representation used for the coefficient data,
followed by the coefficient values themselves. This is shown in Figure 39 for an N-tap filter.

The filter coefficients can be supplied as integers in either base-10, base-16, or base-2 representation. This corre-
sponds to coefficient_radix=10, coefficient_radix=16, and coefficient_radix=2 respectively. Alternatively, the coefficients
can be entered as real numbers (specified to a minimum of one decimal place) in base-10 only. Note that if the user
enters signed negative symmetric hexadecimal coefficients, each value should be sign-extended to the boundary of
the most significant nibble or hex character. This ensures that coefficient structure inference can be performed cor-
rectly (this includes Hilbert transform filter types, which are also negative symmetric).

The coefficient values can also be placed on a single line as shown in Figure 40.

Single-rate FIR

The coefficient file for the single-rate FIR filter is straightforward and consists of a one-line header followed by the
filter coefficient data. For example, the filter coefficient file for an 8-tap filter using a base-10 representation for the
coefficient values is shown in Figure 41:

Irrespective of the filter possessing positive or negative symmetry, the coefficient file should contain the complete
set of coefficient values. The filter coefficient file for the non-symmetric impulse response shown in Figure 42 is pre-
sented in Figure 43. 

X-Ref Target - Figure 39

Figure 39: Filter Coefficient File Format

X-Ref Target - Figure 40

Figure 40: Filter Coefficient File Format – Coefficient Data on a Single Line

X-Ref Target - Figure 41

Figure 41: Filter Coefficient File – 8-Tap Filter, Base-10 Coefficient Values

X-Ref Target - Figure 42

Figure 42: Non-symmetric Impulse Response

radix=coefficient_radix;
coefdata=
a(0),
a(1),
a(2),
….
a(N-1);

radix=coefficient_radix;
coefdata=a(0),a(1),a(2),...,a(N-1);

radix=10;

coefdata=20,-256,200,255,255,200,-256,20;

255

200

-180

80

220

180
100

-48

40
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The coefficient file for the negative-symmetric filter characterized by the impulse response in Figure 44 is shown in
Figure 45. 

Half-band Filter

As previously described, every second filter coefficient for a half-band filter with an odd number of terms is zero.
When specifying the filter coefficient data for this filter class, the zero value entries must be included in the coeffi-
cient file. For example, the filter coefficient file that specifies the filter impulse response in Figure 46 is shown in
Figure 47. 

The filter coefficient set is parsed by the FIR Compiler. If either the alternating zero entries are absent or the coeffi-
cient set is not even-symmetric, this condition is flagged as an error and the filter is not generated. A dialog box is
presented to indicate the nature of the problem under these circumstances.

X-Ref Target - Figure 43

Figure 43: Coefficient File for the Non-symmetric Impulse Response

X-Ref Target - Figure 44

Figure 44: Symmetric Impulse Response

X-Ref Target - Figure 45

Figure 45: Coefficient File for the Symmetric Impulse Response

X-Ref Target - Figure 46

Figure 46: 11-Tap Half-band Filter Impulse Response

X-Ref Target - Figure 47

Figure 47: Coefficient File for the Half-band Filter Impulse Response

radix=10;
coefdata=255,200,-180,80,220,180,100,-48,40;

200

-200

-100

10080

-40

30

-80

40

-30

radix=10;
coefdata=30,-40,80,-100,-200,200,100,-80,40,-30;

2047

1283 1283

0

-375

0
220

0

-375

220
0

radix=10;
coefdata=220,0,-375,0,1283,2047,1283,0,-375,0,220;

http://www.xilinx.com


DS534 March 1, 2011 www.xilinx.com 37
Product Specification

IP LogiCORE FIR Compiler v5.0

Technically, the zero-valued entries for a half-band filter can occur at the filter impulse response extremities as
shown in Figure 48. However, observe that these values do not contribute to the result.

This condition is detected when the filter is specified. If the number of taps is such that the zero-valued coefficients
form the first and last entry of the impulse response, the filter length is reported as an invalid value. The number of
taps N for a half-band filter must obey N=3 + 4n, where n=0,1,2,3,…. For example, a half-band filter can have 11,
15, 19, and 23 taps, but not 9, 13, 17, or 21 taps.

Hilbert Transform

The impulse response for a 10-term approximation to a Hilbert transformer is shown in Figure 49. The odd-symme-
try and zero-valued coefficients are both exploited to generate an efficient FPGA realization. The coefficient data file
for the Hilbert transform must contain the zero-valued entries. For example, the .coe file corresponding to Figure 49
is shown in Figure 50.

In practice, some optimization methods used for designing a Hilbert transform can lead to the presence of small
even-numbered coefficients. If the Hilbert Transform filter class is used in the FIR Compiler, these terms must be
forced to zero by the user. 

Just like the half-band filter, the zero-valued entries for a Hilbert transformer can occur at the filter impulse
response extremities. However, these values do not contribute to the result.

This condition is detected when the filter is specified. If the number of taps is such that the zero-valued coefficients
form the first and last entry of the impulse response, the filter length is reported as an invalid value. The number of

X-Ref Target - Figure 48

Figure 48: 9-Tap Half-band Filter Impulse Response

X-Ref Target - Figure 49

Figure 49: Hilbert Transform Impulse Response

X-Ref Target - Figure 50

Figure 50: Coefficient File for the Hilbert Transformer Impulse Response

a3

2047

1283 1283

0

-375

0 0

-375

0

4096

1365

0

-1365

0 0
819

0

-819

-4096

0

radix=10;
coefdata=-819,0,-1365,0,-4096,0,4096,0,1365,0,819;

http://www.xilinx.com


DS534 March 1, 2011 www.xilinx.com 38
Product Specification

IP LogiCORE FIR Compiler v5.0

taps N for a Hilbert transformer must obey N=3 + 4n, where n=0,1,2,3,…. For example, a Hilbert transform filter
can have 11, 15, 19, and 23 taps, but not 9, 13, 17, or 21 taps.

Interpolated Filter

A previous section explained that an IFIR filter is similar to a conventional FIR, but with the unit delay operator
replaced by k-1 units of delay. k is referred to as the zero-packing factor. One way to realize this substitution is by the
insertion of k-1 zeros between the coefficient values of a prototype filter. When specifying an IFIR architecture, the
full set of prototype coefficients is supplied in the coefficient file, without the zeros implied by the zero-packing fac-
tor. The zero-packing factor is defined through the filter user interface. For example, consider the filter coefficient
data in the .coe file shown in Figure 51.

If a zero-packing factor of k=2 is specified, the equivalent filter impulse response is shown in Figure 52.

If the zero-packing factor is changed to k=3, the impulse response is as shown in Figure 53.

These examples use a symmetrical prototype impulse response; this is not a restriction of the filter core. The proto-
type filter coefficient set can be symmetrical, non-symmetrical, or negative-symmetric.

Multiple Coefficient Sets

For multiple coefficient filters, a single .coe file is used to specify the coefficient sets. Each coefficient set should be
appended to the previous set of coefficients. 

For example, if a 2-coefficient set, 10-tap symmetric filter was being designed and coefficient set #0 was: coef data
= -1, -2, -3, 4, 5, 5, 4, -3, -2, -1;

X-Ref Target - Figure 51

Figure 51: Prototype Coefficient Data for IFIR Example

X-Ref Target - Figure 52

Figure 52: Equivalent IFIR Impulse Response for the Coefficient Data Shown in Figure 51 
with a Zero-packing Factor k=2

X-Ref Target - Figure 53

Figure 53: Equivalent IFIR Impulse Response for the Coefficient Data Shown in Figure 51 
with a Zero-packing Factor k=3

radix=10;
coefdata=-200,1200,2047,1200,-200;

2047

-200

12001200

0 00 0

-200

2047

0 00 0

-200

1200 1200

-200

00 0 0
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and coefficient set #1 was: 

coefdata = -9, -10, -11, 12, 13, 13, 12, -11, -10, -9;

then the .coe file for the entire filter would be:

radix = 10;

coefdata = -1, -2, -3, 4, 5, 5, 4, -3, -2, -1, -9, -10, -11, 12, 13, 13, 12, -11, -10, -9;

All coefficients sets in a multiple set implementation must exhibit the same symmetry. For example, if even one set
of a multi-set has non-symmetric coefficient structure, then all sets are implemented using that structure. All coef-
ficient sets must also be of the same vector length. If one coefficient set has fewer coefficients, it must be zero pad-
ded – either appended with zeros when non-symmetric or prepended and appended with an equal number of zeros
when symmetric. See the Coefficient Padding section for further information.

Coefficient Specification Using Non-integer Real Numbers

As indicated previously, the user can specify the coefficient values as non-integer real numbers, with the radix set
to 10. For example:

radix = 10;

coefdata = 0.08659436542927, 0.00579513928555, -0.06734424313287, -0.04031582111240;

The coefficients are then quantized by the core to produce the binary coefficient values used in the filter, based on
the user’s specified coefficient bit width. This allows the user to supply floating-point values derived from a chosen
filter design tool and explore the costs and benefits between performance and resource usage by altering the coeffi-
cient bit width and observing the alteration in the quantified frequency response in comparison to the ideal
response. The basic quantization function is selected by setting the Quantization field to Quantize_Only. See the
Coefficient Quantization section for further details.

The integer values used in the filter implementation can be determined by examining the main core MIF file
(<component_name>.mif) which is generated in the CORE Generator project directory. The MIF file is always in
binary format. 

Multiple Channel Filters

The FIR Compiler core provides support for processing multiple input sample streams using the same implemen-
tation. Each input stream is filtered using the same filter configuration (rate change, sample rate, etc.) using the cur-
rently selected filter coefficient set.

In many applications, the same filter must be applied to several data streams. A common example is the simple dig-
ital down converter shown in Figure 54. Here a complex base-band signal is applied to a
matched filter M(z). The in-phase and quadrature components are processed by the same filter.

X-Ref Target - Figure 54

Figure 54: Digital Down Converter
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DDS = Direct Digital Synthesizer
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One candidate solution to this problem is to employ two separate filters; however, this can waste logic resources. A
more efficient design can be realized using a filter architecture that shares logic resources between multiple time
division multiplexed (TDM) sample streams. Most filter classes supported by the filter core provide in-built sup-
port for multi-channel processing and can accommodate up to 64 TDM data streams. As more channels are pro-
cessed by a the core, the sample throughput is commensurately reduced. For example, if the sample rate for a
single-channel filter is fs, a two-channel version of the same filter processes two sample streams, each with a sample
rate of fs/2. A three-channel version of the filter processes three data streams and supports a sample rate of fs/3 for
each of the streams.

A multi-channel filter implementation is very efficient in resource utilization. A filter with two or more channels
can be realized using a similar amount of logic resources to a single-channel version of the same filter, with propor-
tionate increase in data memory requirements. The trade off that needs to be addressed when using multi-channel
filters is one of sample rate versus logic requirements. As the number of channels is increased, the logic area
remains approximately constant, but the sample rate for an individual input stream decreases. The number of chan-
nels supported by a filter core is specified in the filter customization GUI.

Note the following limitations on multi-channel support:

• Systolic MAC implementations support up to 64 channels.

• DA implementations of single-rate filters support up to 8 channels only.

• DA implementations of multi-rate filters (polyphase decimator, polyphase interpolator, half-band decimator, 
and half-band interpolator) provide support for single-channel operation only.

• Transpose MAC implementations provide support for single-channel operation only.

Coefficient Reload

Coefficient Reload for DA FIR Implementations

The DA FIR implementation provides a facility for loading new coefficient data, although it is limited in that the fil-
ter operation must be halted (the filter ceases to process input samples) while the new coefficient values are loaded
and some internal data structures are subsequently initialized. The coefficient reload time is a function of the filter
length and type.

Figure 55 shows a high-level view of the reloadable DA FIR architecture. Observe that the DA LUT build engine, in
addition to resources to store the new coefficient vector (coefficient buffer), is integrated with the FIR filter engine.

X-Ref Target - Figure 55

Figure 55: High-level View of DA FIR with Reloadable Coefficients
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The signals that support the reload operation are COEF_DIN, COEF_LD, and COEF_WE. The COEF_DIN port is used
to supply the new vector of coefficients to the core. COEF_LD is asserted to initiate a load operation, and COEF_WE
is a write enable signal for the internal coefficient buffer.

When a coefficient load operation is initiated, the new vector of coefficients is first written to an internal buffer – the
coefficient buffer. After the load operation has completed, the DA LUT build engine is automatically started. The
build engine uses the values in the coefficient buffer to re-initialize the DA LUT.

COEF_LD is asserted to start the procedure. The new vector of coefficients is then written to the internal memory
buffer synchronously with the core master clock CLK. COEF_WE can be used to control the flow of coefficient data
from the external coefficient source, for example a microprocessor, to the core. COEF_WE performs a clock-enable
function for the load process.

Asserting COEF_LD forces RFD to the inactive state (low), indicating that the core cannot accept any new input sam-
ples. Note that during the reload operation, the filter inner-product engine is suspended. Once the new coefficients
have been loaded and the DA LUT build engine has constructed the new partial-product look-up tables, RFD is
asserted, indicating the core is ready to accept new input samples and resume normal operation. The filter sample
history buffer (regressor vector) is cleared when a new coefficient vector is loaded.

Asserting COEF_LD also forces RDY to the inactive state (low). COEF_LD can be reasserted again at any point during
an update procedure (even once the DA LUT build engine is running) to start a new coefficient configuration.

The number of clock cycles required to load a coefficient vector is a function of several variables, including the filter
length and filter type. Table 6 presents the reload time (in clock cycles) for each filter class for the DA filter architec-
ture.

An example timing diagram for DA-based filter reload operation is shown in Figure 56.

X-Ref Target - Figure 56

Figure 56: Coefficient Reload Timing
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Table  6: Coefficient Reload Times as a Function of Filter Type for DA Architectures

Filter Type Latency L(1)

Single-Rate FIR (2,3)

Half-band

Hilbert Transform

Interpolated

Interpolation
Decimation4

Decimating Half-band
Interpolating Half-band

Notes: 
1. Latency equations calculate number of cycles between the last coefficient written into block memory and RFD being asserted.
2.  is the symbol for rounding down to the nearest integer (for example, )
3.  is the effective number of taps:

a. for Non-symmetric and Negative Symmetric filters, 

b. for Symmetric filters : 

c.  is the Sample Rate Change (  and  are temporary variables). 
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Coefficient Reload for MAC-based FIR Implementations

When a coefficient load operation is initiated for a MAC-based FIR implementation, the new vector of coefficients
is written directly into the coefficient memory. The coefficient memory is split into two pages and the new vector is
written into the inactive page. The active page is swapped after the last coefficient is written into the core. 

The core operation is not disrupted during coefficient reload and the data buffer is not cleared following a reload.
Sample processing proceeds without interruption. The timing for coefficient reload interface signals is illustrated in
Figure 57. 

The number of clock cycles required to reload a coefficient vector is simply equal to the length of the reloaded coef-
ficient vector plus one cycle. The host driving the reload port can load the coefficients over a period of as many sam-
ples as required by its application, subject to a minimum requirement equal to the length of the reloaded coefficient
vector plus one cycle. The additional cycle is required for the active page to be swapped. To minimize the reload
time, it is only necessary to load the first half of the coefficient vector for symmetric coefficient sets, and only
non-zero coefficients for half-band or Hilbert coefficient sets.

The timing diagram indicates reloading of multiple filter sets. The COEF_FILTER_SEL port value is sampled when
the COEF_LD signal is pulsed to indicate the start of a reload operation, and that is the filter which is reloaded. The
switch to the reload coefficients occurs for each filter set individually. In Figure 57, filter A is reloaded with five new
coefficient values. The data samples continue to be processed with the current filter set until the reload is completed
(samples Ai, Bi, and Ci leading to outputs Ao, Bo, and Co), after which data samples are processed using the new
coefficient set (presuming, of course, that the selected filter set has not changed during that time). After filter set A
has been reloaded, the user initiates a reload of filter set B. After loading three of the five coefficients, COEF_LD is
pulsed once more; this aborts the current reload procedure and signals the start of a new reload procedure, again to
filter set B. Note that the level on COEF_WE is irrelevant during the COEF_LD pulse, as it is ignored along with any
data on the COEF_DATA port for that clock cycle. The new reload procedure can proceed to completion as indicated
previously.

Coefficient Reload Order

To minimize the resources required to implement the coefficient reload feature, it is necessary for users to re-order
the coefficients that are to be reloaded to correctly pass each coefficient to its correct storage location in the filter
structure. When “Reloadable Coefficients” has been selected, CORE Generator delivers an informational text file to
the project area named <component_name>_reload_order.txt, which lists the indices of the coefficients, “Index x,”
in the order they should be reloaded into the filter via the reload port “Reload index x.” 

X-Ref Target - Figure 57

Figure 57: Coefficient Reload Timing for Multiply-Accumulate Filters
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Care must be take to correctly interpret the reload order, as it is based on the actual number of coefficients calculated
by the filter. The Coefficient Padding section of Filter Symmetry discusses how the FIR Compiler sometimes imple-
ments a filter with more coefficients than specified. The actual coefficients calculated is displayed on the Implemen-
tation Details tab. When the filter is configured to utilize coefficient symmetry, the user must pad the filter response
at the beginning and the end with (actual - specified)/2 zeros before applying the reload order. Figure 17 demon-
strate a padded filter response. When the filter is non-symmetric, the coefficient set must be padded with (actual -
specified) zeros at the end of the filter response before applying the reload order.

In the case of a polyphase interpolating filter utilizing coefficient symmetry, where the Symmetric Pairs technique
has been used, the coefficients must be preprocessed before loaded into the filter. The combination of the non-sym-
metric sub-filters are defined as the sum or difference of two coefficient indices. When the filter configuration
requires multiple DSP slices to implement a single Multiply-Accumulate unit, the definition is extended to include
bit ranges of the source coefficients.

Figure 58 contains two examples of the _reload_order.txt file, both for a non-symmetric 16-tap single rate filter
where the clock rate is four times the input sample rate. Systolic Multiply-Accumulate architecture has been
selected for the left-hand example and Transpose Multiply-Accumulate for the right-hand example. 

Figure 59 contains an example for a symmetric 15-tap interpolate by 3 filter where the clock rate is six times the
input sample rate and a coefficient width of 16 bits.

X-Ref Target - Figure 58

Figure 58: Reload Order Text File Format Examples 1 and 2

X-Ref Target - Figure 59

Figure 59: Reload Order Text File Format Example 3

Reload index 0 = Index 12
Reload index 1 = Index 13
Reload index 2 = Index 14
Reload index 3 = Index 15
Reload index 4 = Index 8
Reload index 5 = Index 9
Reload index 6 = Index 10
Reload index 7 = Index 11
Reload index 8 = Index 4
Reload index 9 = Index 5
Reload index 10 = Index 6
Reload index 11 = Index 7
Reload index 12 = Index 0
Reload index 13 = Index 1
Reload index 14 = Index 2
Reload index 15 = Index 3

Reload index 0 = Index 0
Reload index 1 = Index 4
Reload index 2 = Index 8
Reload index 3 = Index 12
Reload index 4 = Index 1
Reload index 5 = Index 5
Reload index 6 = Index 9
Reload index 7 = Index 13
Reload index 8 = Index 2
Reload index 9 = Index 6
Reload index 10 = Index 10
Reload index 11 = Index 14
Reload index 12 = Index 3
Reload index 13 = Index 7
Reload index 14 = Index 11
Reload index 15 = Index 15

Reload index 0 = Index 7
Reload index 1 = Index 10
Reload index 2 = Index 6 - Index 8
Reload index 3 = Index 9- Index 11
Reload index 4 = Index 6 + Index 8
Reload index 5 = Index 9 + Index 11
Reload index 6 = Index 1
Reload index 7 = Index 4
Reload index 8 = Index 0 - Index 2
Reload index 9 = Index 3 - Index 5
Reload index 10 = Index 0 + Index 2
Reload index 11 = Index 3 + Index 5
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Figure 60 contains an example with the same filter configuration as in Figure 59, but with a coefficient width of 30
bits (the width of the reload port is extended when the Symmetric Pairs technique is used, so in this example, the
reload port is 33 bits wide).

Contact Xilinx Technical Support if you need any assistance or guidance in implementing the reload coefficient
ordering for your specific filter implementation.
X-Ref Target - Figure 60

Figure 60: Reload Order Text File Format Example 4

Reload index 0 (17 downto 0) = “00” & Index 7 (15 downto 0)
Reload index 0 (32 downto 18) = Index 7 (29) & Index 7 (29 downto 16)
Reload index 1 (17 downto 0) = “00” & Index 10 (15 downto 0)
Reload index 1 (32 downto 18) = Index 10 (29) & Index 10 (29 downto 16)
Reload index 2 (17 downto 0) = “00” & Index 6 (15 downto 0) - 
                “00” & Index 8 (15 downto 0)
Reload index 2 (32 downto 18) = Index 6 (29) & Index 6 (29 downto 16) - 
                Index 8 (29) & Index 8 (29 downto 16)
Reload index 3 (17 downto 0) = “00” & Index 9 (15 downto 0) - 
                “00” & Index 11 (15 downto 0)
Reload index 3 (32 downto 18) = Index 9 (29) & Index 9 (29 downto 16) - 
                Index 11 (29) & Index 11 (29 downto 16)
Reload index 4 (17 downto 0) = “00” & Index 6 (15 downto 0) + 
                “00” & Index 8 (15 downto 0)
Reload index 4 (32 downto 18) = Index 6 (29) & Index 6 (29 downto 16) + 
                Index 8 (29) & Index 8 (29 downto 16)
Reload index 5 (17 downto 0) = “00” & Index 9 (15 downto 0) + 
                “00” & Index 11 (15 downto 0)
Reload index 5 (32 downto 18) = Index 9 (29) & Index 9 (29 downto 16) + 
                Index 11 (29) & Index 11 (29 downto 16)
Reload index 6 (17 downto 0) = “00” & Index 1 (15 downto 0)
Reload index 6 (32 downto 18) = Index 1 (29) & Index 1 (29 downto 16)
Reload index 7 (17 downto 0) = “00” & Index 4 (15 downto 0)
Reload index 7 (32 downto 18) = Index 4 (29) & Index 4 (29 downto 16)
Reload index 8 (17 downto 0) = “00” & Index 0 (15 downto 0) - 
                “00” & Index 2 (15 downto 0)
Reload index 8 (32 downto 18) = Index 0 (29) & Index 0 (29 downto 16) - 
                Index 2 (29) & Index 2 (29 downto 16)
Reload index 9 (17 downto 0) = “00” & Index 3 (15 downto 0) - 
                “00” & Index 5 (15 downto 0)
Reload index 9 (32 downto 18) = Index 3 (29) & Index 3 (29 downto 16) - 
                Index 5 (29) & Index 5 (29 downto 16)
Reload index 10 (17 downto 0) = “00” & Index 0 (15 downto 0) + 
                “00” & Index 2 (15 downto 0)
Reload index 10 (32 downto 18) = Index 0 (29) & Index 0 (29 downto 16) + 
                 Index 2 (29) & Index 2 (29 downto 16)
Reload index 11 (17 downto 0) = “00” & Index 3 (15 downto 0) + 
                “00” & Index 5 (15 downto 0)
Reload index 11 (32 downto 18) = Index 3 (29) & Index 3 (29 downto 16) + 
                 Index 5 (29) & Index 5 (29 downto 16)
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Coefficient Quantization

The FIR Compiler offers three coefficient quantization options: Integer Coefficient, Quantize Only, and Maximize
Dynamic Range. When the coefficients are specified using Radix 2 (binary) and 16 (hexadecimal), only the “Integer
Coefficients” option is available, as the coefficients are considered to have already been quantized. When the coef-
ficients are specified using integer numbers, all of the quantization options are available. When the coefficients are
specified using non-integer decimal numbers (containing fractional information), only the “Quantize Only” and
“Maximize Dynamic Range” options are available.

Integer Coefficients

The “Integer Coefficients” quantization option analyzes the coefficients and determines the minimum number of
bits required to represent the coefficients. The coefficient width must be equal to or greater than this value. When
more bits are specified than required, the coefficients are sign extended. If the user wishes to truncate the coeffi-
cients, the “Quantize Only” option must be used.

Quantize Only

Primarily for use when the filter coefficients have been specified using non-integer real numbers, this option quan-
tizes the coefficients to the specified coefficient bit width. The coefficient values are rounded to the nearest quantum
using a simple round towards zero algorithm. The coefficient word is split into integer and fractional bits. The inte-
ger width is determined by analyzing the filter coefficients to find the maximum integer value. The remaining bits
are allocated to represent the fractional portion of the coefficient values. When the specified coefficient bit width is
less than the required integer bit width, coefficients are appropriately rounded. The default value for the Coefficient
Fractional Bits parameter is set to maximize the precision of the coefficients, but it can be reduced by the user. In this
circumstance, more bits are allocated to the integer portion of the word, and the coefficient values are sign extended
appropriately. When all the specified coefficients are between 1 and -1, only a single integer bit is required (to con-
vey sign information), with the remainder of the coefficient word being used for fractional bits. When the coefficient
range reduces further, the fractional bit width can be specified to a value greater than or equal to the coefficient
width. See the Best Precision Fractional Length section for further explanation.

The frequency response of the quantized filter coefficients are compared to the ideal response on the Frequency
Response Tab. This enables the user to explore the trade-off between filter performance and resources by varying
the coefficient width parameter.

Maximize Dynamic Range

The user can also choose to scale the coefficients to utilize the full dynamic range provided by the coefficient bit
width by selecting the Maximize Dynamic Range option. If selected, this results in the filter coefficients being scaled
up by a common factor such that the largest coefficient (usually the center tap) is equal to the maximum represent-
able value using the chosen bit width, then quantized. The overall scale factor is calculated as the ratio of the sum
of the scaled and quantized coefficients to the sum of the original (ideal) coefficients. This value is calculated by the
FIR Compiler and is presented (in dB) as part of the legend text on the filter response graph, or on the Summary
page in the CORE Generator GUI. 

The filter response plot for the quantized coefficients is scaled down by the scale factor for easy comparison against
the ideal coefficients.

Scaling the coefficients introduces a gain which should be taken into account in the user’s design.
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Example 1

For this example the coefficients are signed with a coefficient width of 10 bits and a coefficient fractional width of 5
bits (using the System Generator Fix format notation Fix10_5). The specified coefficients range between -12.34 and
+13.88.

Considering the coefficient bit width as integer only 10 bits give a maximum positive value of 511 and a maximum
negative value of -512. The fractional bit width is 5 bits; this gives a maximum representable positive number of
511/(2^5)=15.96875 and a maximum representation negative number of -512/(2^5)=-16. All coefficients are scaled
by the factor 15.96875/13.88=1.1504863 (=+1.2176dB) prior to quantization. The overall scaling factor is calculated
as defined previously and displayed in the core GUI.

Example 2

For this example the coefficients are signed with a coefficient width of 18 bits and a coefficient fractional width of 19
bits, or Fix18_19. The specified coefficients range between -0.000256022 and +0.182865845.

An integer coefficient width of 18 bits gives a maximum positive value of 131071 and a maximum negative number
of -131072. Considering the fractional bits, this gives a maximum representable positive number of
131071/(2^19)=0.249998092 and a maximum representable negative number of 131072/(2^19)=0.25. The scaling
factor is determined by dividing the maximum value that can be represented (for the specified number of coeffi-
cient bits) by the maximum coefficient value. In this case 0.249998092/0.182865845=1.367112009 (=+2.716081962dB). 

Note: While an appreciable improvement in performance can be achieved by making use of the full dynamic range
of the coefficient bit width, this is not always the case, and the user must be satisfied that any changes are acceptable
via the frequency response plot. The user must also account appropriately for any additional gain introduced by
coefficient scaling elsewhere in the application system. In many systems, signal scaling may be arbitrary and no
gain compensation is required; where scaling is necessary, it is often desirable to amalgamate gains inherent in a sig-
nal processing chain and compensate or adjust for these gains either at the front end (for example, in an Automatic
Gain Control circuit) or the back end (for example, in a Constellation Decoder unit) of the chain. If the user wishes
not to introduce any additional scaling into the design, “Quantize Only” should be chosen.

Best Precision Fractional Length

When the “Best Precision Fractional Length” option is selected, the coefficient fractional width is set to maximize
the precision of the specified filter coefficients. As discussed in the Quantize Only section, the FIR Compiler ana-
lyzes the filter coefficients to determine how many bits are required to represent the integer portion of the coeffi-
cient values. All the remaining coefficient bits are then allocated to represent the fractional portion of the
coefficients. When all the specified coefficients are between 1 and -1, only a single integer bit is required. The
reminder of the coefficient word is then used for fractional bits. When the coefficient range reduces further, the frac-
tional bit width is specified to a value greater than or equal to the coefficient width; otherwise the coefficient values
contain redundant information that does not need to be explicitly stored. The available coefficient bits can then be
better used to increase the precision of the coefficient values. This section goes on to illustrate this concept further.
The System Generator Fix Format notation is used, Fixword length_fractional length. The word length is specified
by the Coefficient Width parameter, and the fractional length is specified by the Coefficient Fractional Bits
parameter.
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In Figure 61 the coefficient values are represented using 18 bits. The binary point is positioned such that 17 bits are
used to represent the fractional portion of the number. An analysis of the coefficients reveals that no value has a
magnitude greater than 0.25; therefore, the upper two MSBs are a sign extension and contain redundant informa-
tion.

X-Ref Target - Figure 61

Figure 61: Coefficient Quantization Fix18_17
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In Figure 62, 16 bits are used to represent the same coefficient values to the same precision. The redundant informa-
tion has been removed, reducing the resources required to store the filter coefficients. The binary point position has
not moved. 17 bits are still effectively used to represent the fractional portion of the number, but one of them does
not need to be explicitly stored, as it is a sign extension of the stored MSB.

X-Ref Target - Figure 62

Figure 62: Coefficient Quantization Fix16_17
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In Figure 63 18 bits are specified for the coefficient width. The two additional bits can be used to increase the preci-
sion. The binary point position has still not moved, but now, 19 bits are effectively used to represent the fractional
portion of the number, which results in an increase of the filter precision.

Parallel Data Paths

The FIR Compiler provides support for processing multiple parallel data paths with the same filter coefficients.
This feature differs from a multiple-channel implementation when it is necessary to time division multiplex (TDM)
the individual channels onto a single data stream. When processing parallel data paths, the FIR Compiler allocates
an input and output port (DIN_1 to DIN_16 and DOUT_1 to DOUT_16) to each individual data path. In this config-
uration, the FIR Compiler can share control logic and coefficient memory resources between the parallel data paths.
This offers significant resource savings over using one FIR Compiler instance per parallel data path.

Output Width and Bit Growth

The full precision output width can be defined as the input data width plus the bit growth due the application of the
filter coefficients. Bit growth from the original sample width occurs as a result of the many multiplications and
additions that form the basic function of the filter. Therefore, the accumulator result width is significantly larger
than the original input sample width. Limiting the accumulator width is desirable to save resources, both in the fil-
ter output path (such as output buffer memory, if present) and in any subsequent blocks in the signal processing
chain. The worst case bit growth can be obtained by adding the coefficient width to the base 2 logarithm of the num-
ber of non-zero multiplications required (rounded up); however, this does not take into account the actual coeffi-
cient values. Taking the base 2 logarithm of the sum of the absolute value of all filter coefficients reveals the true
maximum bit growth for a fixed coefficient filter, and this can be used to limit the required accumulator width. The

X-Ref Target - Figure 63

Figure 63: Coefficient Quantization Fix18_19
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following equation demonstrates this calculation, where B is the calculated bit growth, N is the number for filter
coefficients, and an is nth filter coefficient.

For MAC implementations the FIR Compiler automatically calculates the bit growth based on the actual coefficient
values. For reloadable filters, or any DA-based filter, the worst case bit growth is used.

The Coefficient (and Data) fractional width does not affect the output width calculation. The core determines the
output width without considering fractional bits. The core determines the full precision output as previously
described and then determines the output fractional width by summing the data and coefficient fractional bit width

Output Rounding

As mentioned in "Output Width and Bit Growth," it is desirable to limit the output sample width of the filter to min-
imize resource utilization in downstream blocks in a signal processing chain. For MAC implementations the FIR
Compiler includes features to limit the output sample width and round the result to the nearest representable num-
ber within that bit width. Several rounding modes are provided to allow the user to select the preferred trade-off
between resource utilization, rounding precision, and rounding bias:

• Full Precision

• Truncation (removal of LSBs)

• Non-symmetric rounding (towards positive or negative) 

• Symmetric rounding (towards zero or infinity)

• Convergent rounding (towards odd or even)

In the following descriptions, the variable x is the fractional number to be rounded, with n representing the output
width (that is, the integer bits of the accumulator result) and m representing the truncated LSBs (that is, the differ-
ence between the accumulator width and the output width). In Figure 64 through Figure 66, the direction of inflex-
ion on the red midpoint markers indicates the direction of rounding.

Full Precision

In Full Precision mode, no output sample bit width reduction is performed (n=accumulator width, m=0). This is the
default option and is also the only option for DA-based filters.

Truncation

In Truncation mode, the m LSBs are removed from the accumulator result to reduce it to the specified output width;
the effect is the same as the MATLAB function floor(x). This has the advantage that it can be implemented simply
with zero resource cost, but has the disadvantage of being biased towards the negative by 0.5.

Non-symmetric Rounding to Positive

In this rounding mode, a binary value corresponding to 0.5 is added to the accumulator result and the m LSBs are
removed; this is equivalent to the MATLAB function floor(x+0.5). The addition can usually be done in most filter
configurations with little or no resource cost in hardware using the DSP slice features. It has the disadvantage of
being biased towards the positive by 2-(m+1).
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Non-symmetric Rounding to Negative

In a modification of the preceding technique, a binary value corresponding to 0.499... is added to the accumulator
result and the m LSBs are removed; this is equivalent to the MATLAB function ceil(x-0.5). The resource usage
advantage is the same, but the bias in this case is towards the negative by 2-(m+1). 

Symmetric Rounding to Highest Magnitude

The bias incurred during non-symmetric rounding occurs because rounding decisions at the midpoints always go
in the same direction. In symmetric rounding, the decision on which direction to round is based on the sign of the
number. For rounding towards highest magnitude, a binary value corresponding to 0.499 is added to the accumu-
lator result, and the inverse of the accumulator sign bit is added as a carry-in before removal of the m LSBs. As is
generally the case, there are as many positive as negative numbers; the result should not be biased in either direc-
tion. This rounding mode is commonly used in general applications, mainly due to the fact that it is equivalent to
the MATLAB function round(x).

Symmetric Rounding to Zero

The implementation difference for this mode from round to highest magnitude is that the sign bit is used directly as
the carry-in (see Figure 65). There is no direct MATLAB software equivalent of this operation. One minor advantage
of rounding towards zero is that it does not cause overflow situations.

Approximation of Symmetric Rounding

One important point to note about symmetric rounding mode is that to achieve the correct result, the sign of the
accumulator must be known before the addition of the rounding constant to generate the correct carry-in. This
requires an additional processing cycle to be available. When the additional cycle is not available and the user
wishes to maintain full accuracy, a separate rounding unit must be used (FIR Compiler calculates whether or not
this is required automatically).

An alternative technique is available to users who wish to employ symmetric rounding but do not have a spare
cycle available, if some inaccuracies are acceptable. The rounding constant can be added on the initial loading of the
accumulator, and the sign bit can be checked on the penultimate accumulation cycle and added on the final accu-
mulation. This normally achieves the same result, but there is a small risk that the accumulated result changes sign
between the penultimate and final accumulation cycles, which causes the midpoint decision to go in the wrong
direction occasionally. 

It is important to note that while some implementations of this approximation technique rearrange the calculation
order of coefficients and data such that the smallest coefficient is used last, the FIR Compiler does not perform any
rearrangement of coefficients and data. This is significant for symmetric filters, as the centre coefficient is the final

X-Ref Target - Figure 64

Figure 64: Non-symmetric Rounding (a) to Positive (b) to Negative

X-Ref Target - Figure 65

Figure 65: Symmetric Rounding (a) to Highest Magnitude (b) to Zero

0 1 2-1-2 0 1 2-1-2 0 1 2-1-2 0 1 2-1-2

(a) (b)

0 1 2-1-2 0 1 2-1-2 0 1 2-1-2 0 1 2-1-2
(a) (b)
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coefficient calculated. For non-symmetric filters, the final coefficient is often very small and would be unlikely to
affect the sign of the final result. It is also important to note that the risk of the sign changing between the penulti-
mate and final accumulation cycles increases as the level of parallelism employed in the core increases. This is due
to the contribution added to the accumulation on each cycle increasing as the number of cycles per output
decreases. Therefore, it is important that users consider carefully the coefficient structure and level of parallelism
they intend to use before deciding on whether to employ approximation of symmetric rounding.

Convergent Rounding

Convergent rounding chooses the rounding direction for midpoints as either toward odd or even numbers, rather
than toward positive or negative (Figure 66). This can be advantageous, as the balance of rounding direction deci-
sions for midpoints is based on the probability of occurrence of odd or even numbers, which are generally equal in
most scenarios, even when the mean of the input signal moves away from zero. The function is achieved by adding
a rounding constant, as in other modes, but then checking for a particular pattern on the LSBs to detect a midpoint
and forcing the LSB to be either zero (for round to even) or one (for round to odd) when a midpoint occurs.

Resource Implications of Rounding

The implications with regard to resource utilization of selecting a particular rounding mode should be considered
by users. Generally, the FIR Compiler IP core attempts to integrate rounding functions with existing functions,
which usually means the accumulator portion of the circuit. However, this is not always possible. In certain combi-
nations of rounding mode, filter type and device family, an additional DSP slice must be used to implement the
rounding function. The most important factor to consider is the inherent hardware support for each mode in each
of the device families, but filter type and configuration also play a role. Convergent rounding requires pattern
detection support, and, therefore, this mode is only available in Virtex-5 and Virtex-6 devices.

Table 7 indicates the combinations of filter type and rounding type for which no extra DSP slice is likely to be
required. Where all three DSP slice enabled device families are likely to support that combination of rounding mode
and filter type without an additional DSP slice, a tick mark is entered; where none of the three is likely to support
the combination without the additional DSP slice, a check mark is entered; where there is a list of families provided,
the list refers to those families that support the combination without an extra DSP slice. The device families are
abbreviated to: V4 for Virtex-4; V5 for Virtex-5; and S3D for Spartan-3A DSP. Support for symmetric rounding
assumes that either there is a spare cycle available, or approximation is allowed. If this is not the case, an additional
DSP slice is always required for symmetric rounding modes, regardless of filter type or family.

It is important to note that the table is indicative only, and certain combinations for which hardware support is indi-
cated will actually require the extra DSP, and vice versa. Notable exceptions to the table include parallel multi-chan-
nel decimation with symmetric rounding (approximated), which requires an additional DSP slice.

X-Ref Target - Figure 66

Figure 66: Convergent Rounding (a) to Even (b) to Odd

Table  7: Indicative Table of Hardware Support for Rounding Modes for Particular Filter Types

Filter Type Non- 
symmetric

Symmetric 
(Infinity)

Symmetric 
(Zero) Convergent

Single Rate, Interpolated, Hilbert V4,V5,V6 V5,V6 V5,V6

Half-band V4,V5,V6 V5,V6 V5,V6

0 1 2-1-2 0 1 2-1-2 0 1 2-1-2 0 1 2-1-2
(a) (b)
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Multiple Column Filter implementation

The FIR Compiler can build filter implementations that span multiple DSP slice columns. The multi-column imple-
mentation is only required when the filter parameters, specifically the number of filter coefficients and the hard-
ware oversampling rate (Sample Frequency to Clock Frequency ratio), result in an implementation that requires
more DSP slices than are available in a single column of the select device. Figure 67 illustrates the structures imple-
mented.

This feature is only available when the Multiply-Accumulate filter architectures are selected on device families with
more than one DSP slice column. Currently this feature is not supported for symmetric coefficient structures. To
ensure this feature is available, set the Coefficient Structure parameter to “Non Symmetric.” See the Multiple Chan-

Interpolating without Symmetry V4,V5,V6 V5,V6 V5,V6

Interpolate by 2, Odd Symmetry V4,V5,V6 V5,V6 V5,V6

Interpolating with Symmetry (others)

Interpolating Half-band V4,V5,V6 V5,V6

Decimating, Single-channel V4,V5,V6 V5,V6 V5,V6

Decimating, Multi-channel V4,V5,V6 V5,V6 V5,V6

Decimating Half-band V4,V5,V6 V5,V6 V5,V6

Fractional Interpolation V4,V5,V6 V5,V6 V5,V6

Fractional Decimation, Single-channel V4,V5,V6 V5,V6 V5,V6

Fractional Decimation, Multi-channel V4,V5,V6 V5,V6 V5,V6

X-Ref Target - Figure 67

Figure 67: Multi-column Implementations: Standard Implementation, Left; DSP Slice Data Cascade Port 
Implementation, Right

Table  7: Indicative Table of Hardware Support for Rounding Modes for Particular Filter Types (Cont’d) 

Filter Type Non- 
symmetric

Symmetric 
(Infinity)

Symmetric 
(Zero) Convergent

http://www.xilinx.com


DS534 March 1, 2011 www.xilinx.com 55
Product Specification

IP LogiCORE FIR Compiler v5.0

nels and Symmetric Filters section of Resource Considerations for further details on how to implement large sym-
metric filters.

The DSP column lengths are displayed on the Details Implementation Options page of the CORE Generator GUI.
The implemented column lengths can be determined automatically, Multi-column Support: Automatic, or specified
by the user, Multi-column Support Automatic. The length of each implemented DSP column can be specified using
the Column Configuration parameter. See the Detailed Implementation Options Screen section for more details.

Resource Considerations
The number of DSP slices utilized by the FIR Compiler is primarily determined by the number of coefficients, mod-
ified by any rate change, and the hardware oversampling rate per channel (defined by the Sample Period or the
Sample frequency to Clock frequency ratio divided by the number of channels). Users should also be aware that
Data and Coefficient Bit Width and Output Rounding Selection can also affect the DSP slice usage and are discussed
in the following sections.

Tab 3: Implementation Details of the CORE Generator GUI displays the core DSP slice usage given all the core
parameters.

Data and Coefficient Bit Width

When the FIR Compiler is configured to implement the Multiply-Accumulate filter architectures, the DSP slice
resource usage is influenced by the data and coefficient width specified. When the data and coefficient widths are
specified to be greater than the input width of the DSP slice for the given device family, the core uses multiple DSP
slice columns to implement the filter. Table 8 provides a guide to the number of DSP columns that are required for
various combinations of data and coefficient widths.

Table  8: DSP Slice Column Usage for Given Data and Coefficient Widths

Family
Data Width Coefficient Width Number of 

DSP Slice 
ColumnsUnsigned Signed Unsigned Signed

Spartan 3ADSP, Spartan-6, and Virtex-4 <=17 <=18 <=17 <=18 1

>17 >18 <=17 <=18 2

<=17 <=18 >17 >18 2

>17 >18 >17 >18 4

Virtex-5 and Virtex-6(1)

1. Note: The data/coefficient widths at which Virtex-5/6 implementation transition to multi-column implementations may lower given the number of filter
coefficients to ensure the accumulator width does not exceed 48 bits, thereby avoiding overflow.

<=24 <=25 <=17 <=18 1

<=17 <=18 <=24 <=25 1

>24 >25 <=17 <=18 2

<=17 <=18 >24 >25 2

>17 >18 <=24 <=25 2

<=24 <=25 >17 >18 2

>24 >25 >17 >18 4

>17 >18 >24 >25 4
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Output Rounding Selection

The selected output rounding mode may cause additional DSP slice resources to be used. See the Output Rounding
section for more details.

Multiple Channels and Symmetric Filters

When a filter is configured to use multiple channels, the number of clock cycles available to process the filter is
reduced compared to implementing the same filter for a single channel. For example, a single-channel filter with a
sample frequency of 1 MHz and a clock frequency of 4 MHz gives four clock cycles per input sample to generate an
output. If the same sample and clock frequency is retained but two channels are processed, the core input is
time-division multiplexed between the two channels, reducing the clock cycles per input sample to two. This results
in a proportional increase in the number of DSP slices utilized. 

A problem can arise when the FIR Compiler has detected that the specified filter coefficients have a symmetric coef-
ficient structure (see the Filter Symmetry section for more details on utilizing coefficient symmetry), but the imple-
mentation still requires more DSP slices than are available in a single DSP slice column of the selected device. As
symmetry is not supported by the multi-column implementation, it is not possible to generate this filter configura-
tion. To enable this feature, the coefficient structure would have to be set to “Non Symmetric,” but the DSP slice
resources required will be doubled. When the filter has been configured to support multiple channels, an alterna-
tive implementation is possible. Splitting the channels to be implemented across multiple parallel data paths results
in each data path having more cycles available to process the filter coefficients, reducing the number of DSP slices
required in a single column. It may then be possible to implement the filter configuration. 

For example, a filter with 96 symmetric coefficients implementing four channels with a sample frequency of 1 MHz
and a clock frequency of 4 MHz requires 48 DSP slices. If the selected device only has 32 DSP slices per column, this
filter configuration cannot be generated. If the coefficient structure is set to “Non Symmetric,” the implementation
requires 96 DSP slices, but they can be split over three DSP slice columns. If the configuration is changed to imple-
ment two parallel data paths with two time-division multiplexed channels per path, the core uses 25 DSP slices per
parallel data path (24 multiply-adds plus an accumulator), giving a total of 50 DSP slices. As the DSP slice column
requirement is reduced from 48 to 25, the filter configuration can be generated.

Multiple Channel vs. Parallel Data Paths

The Multiple Channel Filters and Parallel Data Paths features both offer the facility to process multiple input sam-
ple streams but using different interfaces. A multi-channel interface requires the multiple input streams to be time
division multiplexed (TDM) into a single core input, whereas the Parallel Data Paths interface provides an individ-
ual core input for each input stream. The choice of interface can influence the resources used by the core. In general,
the multi-channel implementation uses less DSP slice resources, but under some circumstances this is not the case.
The following example demonstrates such a situation. It may also be desirable to consider the Parallel Data Paths
implementation when implementing filter where a large number of DSP slices is required. This is discussed in the
Multiple Channels and Symmetric Filters section.

Example 1

Consider an 8-tap single rate filter that is to process four 12.5 MHz input streams with a clock frequency of 100
MHz.

Multi-channel implementation:

100 MHz/12.5 MHz=8 clock cycles per input sample. Shared between the four input streams, 8/4=2, gives a hard-
ware oversampling rate of 2. The 8 filter coefficients must be processed in 2 clock cycles. This gives 8/2=4 DSP
slices, where the filter processes the first 4 coefficients on the first clock cycle and the remaining 4 coefficients on the
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second clock cycle. The two partial products must be summed together, so an additional accumulator DSP slice is
required. This gives a total of 5 DSP slices.

Parallel Data Paths:

100 MHz/12.5 MHz=8 clock cycles per input sample. Each input stream can use the full 8 clock cycles to process the
8 filter coefficients. This gives 8/8=1 multiply-accumulate DSP slice. The core provides four input streams, each
using 1 DSP slice. This gives a total of 4 DSP slices.

This demonstrates that the Parallel Data Path implementation offers a more efficient implementation.

If the input sample frequency was increased to 25 MHz per channel, this would not be the case, illustrated as fol-
lows.

Multi-channel implementation:

8 taps/(100 MHz/25 MHz/4)=8 DSP slices, no accumulator required.

Parallel Data Paths:

8 taps/(100 MHz/25 MHz)=2 DSP slices, plus 1 accumulator DSP slice gives 3 DSP slices per path. A total of 12 DSP
slices are required.

Interface, Control, and Timing
All of the filter classes employ a data-flow style interface for supplying input samples to the core and for reading the
filter output port. ND (New Data), RFD (Ready For Data), and RDY (Ready) are used to coordinate I/O operations. In
addition, for multi-channel filters, CHAN_IN and CHAN_OUT indicate the active input and output stream respec-
tively; and for multiple coefficient sets, the current set to be used is specified using FILT_SEL. Generally, these flow
control signals are compulsory; however, for MAC-based FIR filter implementations, ND is optional and a Clock
Enable (CE) pin is provided to allow core processing operations to be halted.

Handshake Control Signals

ND is an active high input signal which, when asserted, indicates to the core that there is a valid input sample on the
DIN port. ND is internally qualified with the active high output status signal RFD. When both RFD and ND are
asserted, the DIN port is sampled on the rising clock edge. The active high output signal RDY indicates that a valid
filter output is available on the DOUT port. For Multiply-Accumulate architectures, ND is optional, in which case the
filter always takes data from the input port on the first cycle that RFD is asserted, or continuously for parallel filter
structures. For parallel symmetric filters, use of CE without ND can lead to an appreciably more efficient implemen-
tation.

The handshake signals provide a simple and efficient interface to control the flow of sample data and results. Sim-
ilar to a clock enable signal, the ND signal is used to enable the input of samples into the filter. The difference
between ND and a clock enable is that the ND signal starts the processing operation that continues to completion. By
not asserting the ND signal further, processing is halted, whereas a clock enable provides an immediate start and
stop of the processing operation. A clock enable pin is provided for Multiply-Accumulate architectures, and its use
is compatible with the ND function; it can be used with or without ND being present. 

RFD provides a status signal for upstream data flow control, and when asserted indicates that the core can accept
more input samples. The RDY signal is often used as a clock enable for the next stage of processing or as the ND sig-
nal when filters are cascaded.
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The optional output signal DATA_VALID can be used in conjunction with or in place of RDY. As with RDY, it is active
high and indicates a valid filter output is available on the DOUT port, but it is only asserted when the output sample
on DOUT has been generated from a complete data vector. Following a reset, the core data memories are not cleared,
which can result in a corrupt data vector. The data vector is not complete until the core has received the same num-
ber of input data samples as the filter has coefficients, or in the case of interpolating filters, the number coefficients
per polyphase sub-filter. The use of DATA_VALID results in additional core resources – a small amount of control
logic and a counter used to determine when the data vector is complete.

Resetting the Core

SCLR (Synchronous Clear) is an active high input port which, when asserted, forces the internal control logic to the
initialized condition. No internal data is cleared from the filter memories during the reset process. Following a reset
operation, the filter output remains dependent on the prior input samples until the filter data memory is completely
flushed. When CE is selected, SCLR has priority.

The “Use Deterministic SCLR Behavior” option available for Multiply-Accumulate architectures (following a reset)
forces the filter output to zero until the data memories are flushed. When the core is generated with a behavioral
simulation file (rather than a structural simulation file), the reset behavior may not be identical to the generated
netlist until the data vector is complete. The data vector is complete when the core has received the same number of
input data samples as the filter has coefficients, or in the case of interpolating filters, the number of coefficients per
polyphase sub-filter. The use of this feature results in additional core resources – a small amount of control logic (a
counter used to determine when the data vector is complete), and the core output is always registered. The optional
output signal DATA_VALID offers an alternative by adding additional qualification to the filter output indicating
when the data vector is complete.

Input/Output Channel Decoding

When configured for a multiple-channel operation, two channel indicator status output ports are provided:
CHAN_IN and CHAN_OUT. The CHAN_IN port identifies the input channel number; CHAN_OUT provides the map-
ping between the current sample on the filter output port DOUT and the sample stream number. These signals are
often used as select controls for multiplexing input streams or de-multiplexing the time division multiplexed result
bus. The CHAN_OUT signal is valid when RDY is asserted and changes after the falling edge of RDY.

The channel value presented on the CHAN_IN output port can be generated a number of input samples in advance
when the “Generate CHAN_IN Value in Advance” option has been selected. The number of samples can then be
specified in the GUI. This enables the CHAN_IN value to drive a registered process to select the input data sample
for a given channel. For example, the CHAN_IN value could be used to drive the select input of a registered multi-
plexer or as the address for a memory block. This feature is only available for Multiply-Accumulate architectures

Coefficient Set Selection

When configured for multiple-coefficient operation, an additional input port FILTER_SEL is provided. The
FILTER_SEL port identifies which set of coefficients are used to process the current set of data. This port is latched
along with the input data DIN is sampled. The value on this port is used to address the portion of the coefficient buf-
fer containing the desired coefficients.

Cycle Latency

The cycle latency of the filter is a function of the number of taps, filter type, number of channels, and coefficient
symmetry. Cycle latency specifies the number of clock cycles from RFD being deasserted (indicating an input sam-
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ple has been accepted from the DIN port) to the assertion of RDY, indicating a valid output has been generated by the
filter. 

When the input data rate of the filter is equal to the core clock rate, the RFD signal is not deasserted as the core
accepts input data every clock cycle. Similarly for single rate filters, RDY remains asserted. In this circumstance,
cycle latency specifies the number of clock cycles from a given input sample to the first output value it has contrib-
uted to.

For multiple channel decimation or interpolation configurations, the core contains some sample buffering. The buf-
fer introduces a sample latency relating to the size of the buffer implemented. The cycle latency specifies the num-
ber of clock cycles from RFD being deasserted for the final input sample to the assertion of RDY.

The cycle latency is displayed on Tab 3: Implementation Details of the CORE Generator GUI for a given filter con-
figuration.

The cycle latency is indicated on the timing diagrams contained in the MAC-based FIR Filter Timing section as a
black arrow connecting corresponding RFD and RDY pulses.

Nomenclature

In the timing diagrams supplied in this section, the notations  and  are used to denote the filter input and
output samples, respectively. In some diagrams, for space reasons, the variable name (  or ) has been omitted and
the diagram is annotated only with the index value 

MAC-based FIR Filter Timing

Single Rate, Multi-channel and Multiple Filter Sets

Figure 68 illustrates the timing for a single-rate, single-channel, N-tap MAC-based filter. ND is asserted while valid
input is available on the DIN port. At the rising edge of the clock, the data is sampled and processing begins. RFD is
deasserted to reflect that the MAC-based FIR core is processing the data and unable to accept further input samples
for the period of the input data rate. After a number of clock cycles equal to the "Cycle Latency," RDY is asserted and
the valid filter output is presented on the DOUT port. In this example, the DOUT value is held in the optional output
register. In this configuration, core operation can be halted by holding ND low for the required idle note. However,
the core continues to process any input data sampled so far and to produce outputs based on those input samples.

X-Ref Target - Figure 68

Figure 68: Timing Diagram for a Single-channel Filter Using ND, with Registered Output
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Figure 69 illustrates the timing for the same filter without the ND port. When RFD is asserted, the input data is sam-
pled at the rising edge of the clock and processing begins. RFD is deasserted as normal to indicate that the core can-
not accept further input samples for period of the input data rate. When processing has completed, RFD is asserted
once more for a single cycle and the next input data is processed. Note that in this configuration, it is required that
the system or circuit that is driving the input data continues to feed data to the filter at the specified input rate; oth-
erwise invalid data is sampled. Similarly, data samples should be held until the RFD signal is asserted; otherwise
that sample is missed. After a number of clock cycles equal to the "Cycle Latency," RDY is asserted and the valid fil-
ter output is presented on the DOUT port. In this example, the DOUT value is held in the optional output register. If
halting of core operation is required in this configuration, a clock enable pin is required on the core to halt all core
operation. This is fundamentally different than halting the filter using ND – the clock enable halts all core operation
and no outputs are produced during the period for which CE is deasserted. Core outputs continue only after CE is
asserted once more.

Figure 70 illustrates the timing for a multi-channel filter. The core accepts inputs for each channel sequentially
(Time Domain Multiplexed or TDM format). Outputs are also presented as TDM format. A channel indicator is pro-
vided to track the currently active input and output channel.

X-Ref Target - Figure 69

Figure 69: Timing Diagram for a Single-channel Filter without ND Port, with Registered Output

X-Ref Target - Figure 70

Figure 70: Timing Diagram for a 3-channel Filter with ND Port and Registered Output
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Figure 71 illustrates the timing for a multi-channel filter which also has multiple filter sets. The filter interface oper-
ation is as described previously for multi-channel mode, but in this case there is a switch to an alternative filter set
during the third data input cycle shown in the diagram. The filter set switch-over can occur on any data input cycle,
and the filter immediately moves to that set of coefficients for processing that data sample (and all subsequent data
samples while the filter select port value remains the same) through the filter. 

Multi-rate Filters

Multi-rate filters involve an increase or decrease in rate from input to output. Figure 72 shows a multi-channel
(three channels) decimation filter with a rate decrease of two. Input data is taken in TDM format with two input
samples for each channel being required before an output can be produced. Output data is also presented in TDM
format at the lower rate. 

Figure 73 shows a multi-channel (three channels) interpolation filter with a rate increase of two. Note that input
data is taken in TDM format. Output data is then presented in TDM format at the higher rate.

X-Ref Target - Figure 71

Figure 71: Timing Diagram for a Multi-channel Filter with Multiple Filter Sets

X-Ref Target - Figure 72

Figure 72: Timing Diagram for a Multi-channel Decimation Filter

X-Ref Target - Figure 73

Figure 73: Timing Diagram for a Multi-channel Interpolation Filter
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Figure 74 shows a multi-channel (two channels) fixed fractional interpolation filter with a rate increase of 5/3. The
input sample period is four clock cycles per input, or eight clock cycles per channel.

Figure 75 shows a multi-channel (two channels) fixed fractional decimation filter with a rate decrease of 3/5. The
input sample period is three clock cycles per input, or six clock cycles per channel. This gives an output sample
period of five clock cycles per output, or ten per channel output.

Figure 76 shows the timing diagram for the same filter configuration as the previous example, but the output sam-
ple period has been reduced to three clock cycles per output. This corresponds to an input sample period of 1.8
clock cycles. The input samples must therefore be provided in a non-periodic manner. The RFD output pin indicates
then that the core is able to accept input data, which is at a rate to maintain the full output sample rate.

X-Ref Target - Figure 74

Figure 74: Timing Diagram for a Multi-channel Fixed Fractional Interpolation Filter

X-Ref Target - Figure 75

Figure 75: Timing Diagram 1 for a Multi-channel Fixed Fraction Decimation Filter

X-Ref Target - Figure 76

Figure 76: Timing Diagram 2 for a Multi-channel Fixed Fraction Decimation Filter
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DATA_VALID and SCLR Deterministic Control Signals

Figure 77 shows a 5-tap multi-channel single-rate filter with the optional DATA_VALID port and “Use Deterministic
SCLR Behavior” selected.

X-Ref Target - Figure 77

Figure 77: DATA_VALID and Use Deterministic SCLR Behavior
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Polyphase Filter Bank

Figure 78 shows the timing diagrams for both an 8-channel transmitter (left) and receiver (right) Polyphase Filter
Bank 

The transmitter timing diagram illustrates a case where the individual channels have an input sample period of 16,
and the time division multiplexed (TDM) input stream has a sample period of 2. For this configuration, the Input
Sample Period parameter should be set to 2. Or, in terms of frequency, each channel Input Sampling Frequency is
1/16 of the clock rate. For example, if the Clock Frequency is 100 MHz, the Input Sampling Frequency would be
6.25 MHz.
X-Ref Target - Figure 78

Figure 78: Transmitter (Left) and Receiver (Right) Polyphase Filter Bank
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Distributed Arithmetic Filter Timing

Single-channel and Multi-channel DA FIR Filters

Figure 79 illustrates the timing for a single-channel filter, with L clock cycles per output sample and a registered out-
put port. The ND input signal is used for loading a new input sample into the filter. It is effectively used internally
as a clock enable, and the actual sample load operation occurs on the rising of the clock (CLK). When the core is
ready to accept a new input sample, the RFD signal is asserted. When a new output sample is available, RDY is
asserted for a single clock period. When the registered output option is selected, the output sample remains valid
between successive assertions of RDY.

Figure 80 shows the timing for a single-channel filter with an unregistered output port. The input timing is the same
as for the registered output example, but now the filter result is valid for only a single clock period and is framed by
RDY. 

X-Ref Target - Figure 79

Figure 79: Single-channel FIR Filter Timing,
L-Clock Cycles per Output Sample, Registered Output

X-Ref Target - Figure 80

Figure 80: Single-channel FIR Filter Timing, 
L-Clock Cycles per Output Sample, Unregistered Output
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In the two previous examples, the host system supplied input samples at the highest frequency possible (every L
clock tick). This does not have to be the case. Data samples can be supplied at a lower rate without disturbing the
operation of the filter, as shown in Figure 81.

In this example, despite the filter being designed to specify L clock cycles per output sample, new data (input sam-
ples) is supplied to the filter every L+2 clock periods. Observe that RFD is still asserted on the Lth clock cycle of a
data sample epoch, but the host system supplies a new input sample only two clock cycles later. RFD remains active
until the new input sample has been accepted by the filter core. This occurs synchronously with the positive going
edge of the clock and with ND acting as an active high clock enable.

As a specific example of the filter interface timing, consider a non-symmetric single-channel FIR filter with 10-bit
precision input samples and a full serial realization (L=10). The timing diagram is shown in Figure 82. Ten clock
cycles are needed to process each new input sample.

X-Ref Target - Figure 81

Figure 81: L-Clock Cycles per Output Sample, Registered Output

X-Ref Target - Figure 82

Figure 82: Full Serial Implementation, 10-bit Input Samples, Registered Output
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A symmetrical filter with B-bit precision input samples requires, in general, B+1 clock periods for a full serial (SDA)
implementation. Figure 83 shows the timing for a single-channel symmetrical FIR employing 10-bit input samples.
In this case, eleven clock cycles (L=11) are required to process each new piece of data.

Figure 82 and Figure 83 illustrate the timing for full serial or SDA filter implementations with symmetrical and
non-symmetrical coefficient data. The FIR Compiler supports various types of parallel filter realizations. The
greater the degree of filter parallelism employed, the higher the filter sample rate. Filter parallelism is specified in
terms of the number of clock cycles (L) required to compute an output sample. This value is automatically gener-
ated from the Input Sampling Frequency and Clock Frequency specified in the core GUI.

Figure 84, Figure 85, and Figure 86 illustrate the timing diagrams for a filter with B=10 bit precision input samples,
registered output, with L=2, 4, and, 6, respectively. 

X-Ref Target - Figure 83

Figure 83: Full Serial Implementation, 10-Bit Input Samples, 
Symmetrical Impulse Response, Registered Output

X-Ref Target - Figure 84

Figure 84: PDA FIR with B=10-Bit Input Samples, L=2 Clock Cycles per Output Sample

X-Ref Target - Figure 85

Figure 85: PDA FIR with B=10-Bit Input Samples, L=4 Clock Cycles per Output Sample
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Figure 87 illustrates the filter timing for a fully parallel DA (PDA) FIR filter. Observe that after the initial start-up
latency, a new output sample is available on every clock edge. The number of clock cycles in the start-up latency
period is a function of the filter parameters. 

Figure 87 shows ND valid on every clock edge, so a new input sample is delivered to the filter on each clock edge. Of
course, ND can be removed for an arbitrary number of clock cycles to temporarily suspend the filter operation. No
internal state information is lost when this is done, and the filter resumes normal operation when ND is reapplied
(placed in the active again).

Figure 88 and Figure 89 demonstrate the timing for a multi-channel filter. Multi-channel filters provide two addi-
tional output ports, SEL_I and SEL_O, that indicate the active input and output channel respectively. Figure 88
illustrates a filter with an unregistered output. With a fully parallel implementation, a new output sample is avail-
able on each clock edge (after the start-up latency), independent of the filter length or the bit precision of the input
data samples.

X-Ref Target - Figure 86

Figure 86: PDA FIR with B=10-Bit Input Samples, L=6 Clock Cycles per Output Sample

X-Ref Target - Figure 87

Figure 87: Fully Parallel Implementation, Single-channel Filter 

X-Ref Target - Figure 88

Figure 88: Multi-channel FIR Filter Timing (Direct Output)
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Figure 89 shows the Multi-channel FIR filter timing for registered output samples.

Figure 90 demonstrates the timing for a polyphase decimator with and eight clock cycles per output
point (Clock Cycles/Output Sample=8). As previously stated, all of the multi-rate filter structures – the number of
clock cycles per output point specification (Clock Cycles/Output Sample) – see the individual filter segments that
comprise the filter, and are not directly associated with the filter output port DOUT. 

The filter is always able to accept input samples, as indicated by RFD=1. New output samples become available after
M (in this case four) input samples have been delivered to the filter. New output samples are produced in response
to each new block of four input values. Delivering the final value in each M-tuple begins a new inner product cal-
culation. The resulting output sample becomes available a number of clock cycles (k) after the final sample in the
M-tuple is delivered. The exact value of k is a function of the filter parameterization. It is tightly coupled to the input
sample bit precision, the value specified for the Clock Cycles/Output Sample parameter, and to the number of internal
pipeline stages and the data buffering depth in the filter. It is always recommended to use the output control signal
RDY to coordinate all processes that are data sinks for the filter output port DOUT.

Figure 90 illustrates the timing for a 4-to-1 polyphase decimator with similar parameters to the filter considered in
Figure 88, but in this case the number of Clock Cycles/Output Sample is L=4. Observe that even though the input sam-
ple precision (B=8) is the same as in the filter demonstrated in Figure 88, samples can be presented to filter every
four clock cycles, in contrast to every eight clock periods in the previous example. The filter supports double the
input sample rate and, therefore, twice the bandwidth, of the filter with L=8. 

X-Ref Target - Figure 89

Figure 89: Multi-channel FIR Filter Timing (Registered Output)

X-Ref Target - Figure 90

Figure 90: 8-bit Precision Input Samples, Down-sampling Factor M=4, L=8
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Polyphase Decimator DA FIR Filter Timing: Burst Input Mode

Internal buffering in the polyphase decimator allows the user to burst samples into the DIN port. This is illustrated
in Figure 91 for a down-sampling factor M=4, 12-bit input samples, and L=12. This figure shows the timing for the
filter starting from rest; that is, no data has been previously applied to the input port. Notice in this case that a total
of eight samples can be written to the filter before the device removes RFD. 

After the filter has moved out of this start-up state, input samples must obey the timing diagram shown in
Figure 92. Only four samples can be supplied in each data burst.

As with the Clock Cycles/Output Sample parameter for the single-rate filters, this parameter can be used with all the
multi-rate filters to trade off performance with silicon area. Figure 93 shows the polyphase decimator timing with
12-bit precision input samples, down-sampling factor M=4, L=12, and burst input data operation. This diagram
shows timing after the filter has moved out of the start-up timing.

X-Ref Target - Figure 91

Figure 91: 8-bit Precision Input Samples, Down-sampling Factor M=4, L=4

X-Ref Target - Figure 92

Figure 92: Polyphase Decimator Timing, Filter out of Start-up State

X-Ref Target - Figure 93

Figure 93: Polyphase Decimator Timing, 12-Bit Precision Samples
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Polyphase Interpolator DA FIR Filter Timing

Figure 94 shows the timing for a polyphase interpolator that supports a sample rate change of P=4, 8-bit precision
input samples (B=8) and eight clock cycles-per-output point. Again, as with the polyphase decimator, the number
of clock cycles specified per output point is associated with the individual sub-filters in the polyphase structure. In
this example, each sub-filter produces a new output sample every eight clock cycles. The four polyphase segments
are actually operating concurrently so, in fact, internal to the filter, four new output samples are available every
eight clock cycles. When the new block of output samples is available, the samples are sequenced to the filter output
port DOUT using an internal multiplexor. The multiplexer select signal is referenced to the filter master clock signal
CLK. As shown in Figure 94, the vector of P output samples is validated by the core output control signal RDY.

Figure 95 shows the timing for an interpolator with similar parameters to the previous example, but in this case a
value of L=4 has been used. This means that each polyphase segment produces a new output sample every four
clock cycles. In addition, all four outputs become available (internally) in parallel. Observe that after the initial
startup latency, a new interpolant is available at the filter output port DOUT on each successive rising edge of the
clock. 

X-Ref Target - Figure 94

Figure 94: Polyphase Interpolator Timing, 8-Bit Precision Input Samples, Up-sampling Factor P=4, L=8

X-Ref Target - Figure 95

Figure 95: Polyphase Interpolator Timing, 8-Bit Precision Input Samples, Up-sampling Factor P=4, L=4
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Performance and Resource Utilization
This section provides indicative resource utilization figures, for example, filters in various families and using both
MAC- and DA-based architectures. To be concise, codes are used in these tables to indicate particular configuration
options; these are detailed in the following sections.

The maximum clock frequency results were obtained by double-registering input and output ports (using IOB
flip-flops) to reduce dependence on I/O placement. The inner level of registers used a separate clock signal to mea-
sure the path from the input registers to the first output register through the core.

The resource usage results do not include the preceding “characterization” registers and represent the true logic
used by the core. LUT counts include SRL16s or SRL32s (according to device family).

The map options used were: "map -ol high"

The par options used were: "par -ol high"

Clock frequency does not take clock jitter into account and should be derated by an amount appropriate to the clock
source jitter specification.

The maximum achievable clock frequency and the resource counts may also be affected by other tool options, addi-
tional logic in the FPGA device, using a different version of Xilinx tools, and other factors.

Control Structure Options

ND indicates flow control based on the use of the New Data input pin to validate input samples.

CE indicates control based on Clock Enable only, with no ND input pin to validate input data samples.

The Interface, Control, and Timing section contains full details of the various control signals.

Rounding Style Options

The rounding option codes shown in Table 9 are used in the resource utilization tables. Note that these options are
only applicable to MAC-based filter implementation on device families with XtremeDSP Slices. Only a limited
number of rounding examples are provided. See Table 7 in the Resource Implications of Rounding section for a
breakdown of the filter types and families that require an additional DSP slice for rounding.

Table  9: Rounding Style Options in Resource Utilization Tables

Table Entry Rounding Style

None Full Precision; no reduction in output sample width

a Truncation to input data sample width + 2

b Non-symmetric Rounding Down, reducing to input data sample width + 2

c Non-symmetric Rounding Up, reducing to input data sample width + 2

d Symmetric Rounding to Zero, reducing to input data sample width + 2

e Approximated Symmetric Rounding to Zero, reducing to input data sample width + 2

f Symmetric Rounding to Infinity, reducing to input data sample width + 2

g Approximated Symmetric Rounding to Infinity, reducing to input data sample width + 2

h Convergent Rounding to Even, reducing to input data sample width + 2

j Convergent Rounding to Odd, reducing to input data sample width + 2
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Resource Utilization for MAC-based FIR Filters (Virtex-6 FPGA)

Table 10 provides characterization data for Virtex-6 FPGAs using a XC6VLX75T-1FF784. Generally the overall filter
performance is within 10% of the DSP slice clock rating for the given device speed grade (for example, 472 MHz in
-1), and often reaches this clock rate (although the Speed setting may be required to achieve this in some cases).
Some fully parallel cases can be slower due to routing congestion. Note that block RAM counts quoted are for 18k
blocks, which are often amalgamated into pairs for mapping to 36k locations where possible; therefore customers
should bear this in mind if comparing these values with map results for their particular configuration.

Table  10: MAC-based FIR Resource Utilization in Virtex-6 FPGAs
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Single Rate 1 366 1 366 18 18 ND A 1 1 127 450

Single Rate 1 4 4 1 18 18 ND A 4 0 129 452

Single Rate 1 20 1 5 18 18 ND A 5 0 194 472

Single Rate 1 20 3 5 18 18 ND A 5 0 206 472

Single Rate 1 27 1 1 18 18 ND A 27 0 86 472

Single Rate 1 21 2 1 17 18 ND A 11 0 432 472

Decimation 6 34 1 3 16 16 ND A 1 0 176 472

Decimation 2 69 1 18 16 16 ND A 1 0 202 472

Single Rate 1 19 6 1 16 16 ND A 10 0 368 472

Single Rate 1 32 1 32 16 16 ND A 1 0 202 472

Single Rate 1 32 1 4 16 16 ND A 9 0 236 472

Single Rate 1 32 1 1 16 16 ND A 32 0 78 472

Single Rate 1 32 1 32 16 16 ND A 1 0 137 472

Single Rate 1 32 1 4 16 16 ND A 5 0 265 472

Single Rate 1 32 1 1 16 16 ND A 16 0 501 472

Single Rate 1 32 3 4 16 16 ND A 9 0 256 472

Single Rate 1 32 3 1 16 16 ND A 29 0 584 472

Single Rate 1 32 3 4 16 16 ND A 5 0 318 472

Single Rate 1 32 3 1 16 16 ND A 13 0 656 472

Single Rate 1 31 3 4 16 16 ND A 3 0 234 472

Interpolation 5 32 1 20 16 16 ND A 3 0 140 472

Interpolation 5 32 3 20 16 16 ND A 3 0 205 472

Interpolation 5 61 3 5 16 16 ND A 8 0 414 472
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Interpolation 5 61 3 20 16 16 ND A 3 0 337 472

Interpolation 2 31 1 8 16 16 ND A 2 0 230 472

Interpolation 5/3 64 3 10 16 16 ND A 4 0 240 472

Decimation 5 32 1 4 16 16 ND A 3 0 143 472

Decimation 5 32 3 4 16 16 ND A 3 0 292 472

Decimation 5 64 3 1 16 16 ND A 7 0 566 472

Decimation 5 64 3 4 16 16 ND A 3 0 416 450

Decimation 5 64 3 13 16 16 ND A 1 1 254 450

Decimation 2 31 1 3 16 16 ND A 5 0 344 472

Decimation 3/5 64 3 10 16 16 ND A 4 0 270 472

Interpolation 16 288 16 16 18 18 CE A 18 0 1210 450

Interpolation 8 144 8 32 18 18 CE A 13 5 549 450

Interpolation 36/25 144 2 6 18 18 ND A 1 1 172 450

Interpolation 2 11 2 6 17 18 ND A 1 0 201 472

Interpolation 2 15 2 12 16 18 ND A 1 0 203 472

Interpolation 2 251 2 24 16 18 ND A 7 0 540 472

Single Rate 1 32 f 1 33 16 16 ND A 1 0 92 472

Single Rate 1 32 f 1 32 16 16 ND A 2 0 90 472

Single Rate 1 32 e 1 32 16 16 ND A 1 0 90 472

Single Rate 1 32 h 1 4 16 16 ND A 9 0 215 429

Single Rate4 1 32 1 4 16 16 ND A 8 0 101 472

Interpolation4 5 32 1 20 16 16 ND A 2 0 128 466

Decimation4 5 32 1 4 16 16 ND A 2 0 121 452

Receiver Filter 
Bank5

1 256 16 64 16 16 ND A 2 3 354 445

Notes: 
1. Clock rates determined using a -1 speed grade.
2. Clocks per sample per channel uses the input sample rate as the basis for all filter types.
3. Clock frequency does not take clock jitter into account and should be derated by an amount appropriate to the clock source jitter 

specification.
4. Implemented using Transpose Multiply-Accumulate architecture.
5. Implements two parallel data paths (I and Q).

Table  10: MAC-based FIR Resource Utilization in Virtex-6 FPGAs (Cont’d)
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Resource Utilization for MAC-based FIR Filters (Virtex-5 FPGA)

Table 11 provides characterization data for Virtex-5 FPGAs using a XC5VSX35T-1FF665. Generally the overall filter
performance is within 10% of the DSP slice clock rating for the given device speed grade (for example, 450 MHz in
-1), and often reaches this clock rate (although the Speed setting may be required to achieve this in some cases).
Some fully parallel cases can be slower due to routing congestion. Note that block RAM counts quoted are for 18k
blocks, which are often amalgamated into pairs for mapping to 36k locations where possible; therefore customers
should bear this in mind if comparing these values with map results for their particular configuration.

Table  11: MAC-based FIR Resource Utilization in Virtex-5 FPGAs

 Filter Type
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Single Rate 1 366 1 366 18 18 ND A 1 1 130 450

Single Rate 1 4 4 1 18 18 ND A 4 0 146 450

Single Rate 1 20 1 5 18 18 ND A 5 0 207 450

Single Rate 1 20 3 5 18 18 ND A 5 0 220 450

Single Rate 1 27 1 1 18 18 ND A 27 0 118 450

Single Rate 1 21 2 1 17 18 ND A 11 0 669 450

Decimation 6 34 1 3 16 16 ND A 1 0 195 450

Decimation 2 69 1 18 16 16 ND A 1 0 292 450

Single Rate 1 19 6 1 16 16 ND A 10 0 515 450

Single Rate 1 32 1 32 16 16 ND A 1 0 116 450

Single Rate 1 32 1 4 16 16 ND A 9 0 773 450

Single Rate 1 32 1 1 16 16 ND A 32 0 112 450

Single Rate 1 32 1 32 16 16 ND A 1 0 168 450

Single Rate 1 32 1 4 16 16 ND A 5 0 897 450

Single Rate 1 32 1 1 16 16 ND A 16 0 775 450

Single Rate 1 32 3 4 16 16 ND A 9 0 288 450

Single Rate 1 32 3 1 16 16 ND A 29 0 616 450

Single Rate 1 32 3 4 16 16 ND A 5 0 411 450

Single Rate 1 32 3 1 16 16 ND A 16 0 914 450

Single Rate 1 31 3 4 16 16 ND A 3 0 287 450

Interpolation 5 32 1 20 16 16 ND A 3 0 276 450

Interpolation 5 32 3 20 16 16 ND A 3 0 224 450

Interpolation 5 61 3 5 16 16 ND A 8 0 573 443
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Interpolation 5 61 3 20 16 16 ND A 3 0 402 447

Interpolation 2 31 1 8 16 16 ND A 2 0 267 442

Interpolation 5/3 64 3 10 16 16 ND A 4 0 262 449

Decimation 5 32 1 4 16 16 ND A 3 0 150 450

Decimation 5 32 3 4 16 16 ND A 3 0 339 447

Decimation 5 64 3 1 16 16 ND A 7 0 794 446

Decimation 5 64 3 4 16 16 ND A 3 0 501 442

Decimation 5 64 3 13 16 16 ND A 1 1 794 446

Decimation 2 31 1 3 16 16 ND A 5 0 412 427

Decimation 3/5 64 3 10 16 16 ND A 4 0 307 449

Interpolation 16 288 16 16 18 18 CE A 18 0 1576 450

Interpolation 8 144 8 32 18 18 CE A 6 5 533 424

Interpolation 36/25 144 2 6 18 18 ND A 1 1 183 450

Interpolation 2 11 2 6 17 18 ND A 1 0 241 432

Interpolation 2 15 2 12 16 18 ND A 1 0 243 442

Interpolation 2 251 2 24 16 18 ND A 7 0 746 434

Single Rate 1 32 f 1 33 16 16 ND A 1 0 102 450

Single Rate 1 32 f 1 32 16 16 ND A 2 0 95 450

Single Rate 1 32 e 1 32 16 16 ND A 1 0 98 450

Single Rate 1 32 h 1 4 16 16 ND A 9 0 753 410

Single Rate4 1 32 1 4 16 16 ND A 8 0 120 450

Interpolation4 5 32 1 20 16 16 ND A 2 0 152 450

Decimation4 5 32 1 4 16 16 ND A 2 0 135 450

Receiver Filter 
Bank5

1 256 16 64 16 16 ND A 2 3 383 423

Notes: 
1. Clock rates determined using a -1 speed grade.
2. Clocks per sample per channel uses the input sample rate as the basis for all filter types.
3. Clock frequency does not take clock jitter into account and should be derated by an amount appropriate to the clock source jitter 

specification.
4. Implemented using Transpose Multiply-Accumulate architecture.
5. Implements two parallel data paths (I and Q).

Table  11: MAC-based FIR Resource Utilization in Virtex-5 FPGAs (Cont’d)
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Resource Utilization for MAC-based FIR Filters (Spartan-6)

Table 12 provides characterization data for Spartan-6 FPGAs using a XC6SLX150-2FGG484. Generally the overall
filter performance is within 10% of the DSP slice clock rating for the given device speed grade (for example,
250 MHz in -2), and often reaches this clock rate (although the Speed setting may be required to achieve this in some
cases). Some fully parallel cases can be slower due to routing congestion.

Table  12: MAC-based FIR Resource Utilization in Spartan-6 FPGAs

 Filter Type
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Single Rate 1 366 1 366 18 18 ND A 1 1 118 244

Single Rate 1 4 4 1 18 18 ND A 4 0 101 251

Single Rate 1 20 1 5 18 18 ND A 5 0 152 251

Single Rate 1 20 3 5 18 18 ND A 5 0 200 251

Single Rate 1 27 1 1 18 18 ND A 27 0 86 236

Single Rate 1 21 2 1 17 18 ND A 11 0 320 251

Decimation 6 34 1 3 16 16 ND A 1 0 167 251

Decimation 2 69 1 18 16 16 ND A 1 0 180 251

Single Rate 1 19 6 1 16 16 ND A 10 0 276 251

Single Rate 1 32 1 32 16 16 ND A 1 0 91 251

Single Rate 1 32 1 4 16 16 ND A 9 0 156 251

Single Rate 1 32 1 1 16 16 ND A 32 0 70 172

Single Rate 1 32 1 32 16 16 ND A 1 0 104 251

Single Rate 1 32 1 4 16 16 ND A 5 0 183 251

Single Rate 1 32 1 1 16 16 ND A 16 0 307 251

Single Rate 1 32 3 4 16 16 ND A 9 0 171 251

Single Rate 1 32 3 1 16 16 ND A 29 0 320 212

Single Rate 1 32 3 4 16 16 ND A 5 0 207 251

Single Rate 1 32 3 1 16 16 ND A 13 0 491 251

Single Rate 1 31 3 4 16 16 ND A 3 0 197 251

Interpolation 5 32 1 20 16 16 ND A 3 0 103 251

Interpolation 5 32 3 20 16 16 ND A 3 0 175 251

Interpolation 5 61 3 5 16 16 ND A 8 0 358 251

Interpolation 5 61 3 20 16 16 ND A 3 0 277 236

Interpolation 2 31 1 8 16 16 ND A 3 0 199 251

Interpolation 5/3 64 3 10 16 16 ND A 4 0 229 244

Decimation 5 32 1 4 16 16 ND A 3 0 130 251
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Decimation 5 32 3 4 16 16 ND A 3 0 274 251

Decimation 5 64 3 1 16 16 ND A 8 0 505 251

Decimation 5 64 3 4 16 16 ND A 3 0 398 244

Decimation 5 64 3 13 16 16 ND A 1 1 247 251

Decimation 2 31 1 3 16 16 ND A 5 0 241 244

Decimation 3/5 64 3 10 16 16 ND A 4 0 257 251

Interpolation 16 288 8 24 16 16 CE A 18 0 1679 172

Interpolation 4 16 2 4 16 16 CE A 4 0 541 203

Decimation 6 31 2 1 16 16 CE A 4 0 244 251

Interpolation 8 144 8 24 16 16 CE A 7 0 644 219

Single Rate 1 32 f 1 33 16 16 ND A 2 0 83 251

Single Rate 1 32 f 1 32 16 16 ND A 2 0 81 251

Single Rate 1 32 g 1 32 16 16 ND A 2 0 81 251

Single Rate 1 32 b 1 4 16 16 ND A 9 0 375 251

Single Rate4 1 32 1 4 16 16 ND A 8 0 97 251

Interpolation4 5 32 1 20 16 16 ND A 2 0 125 251

Decimation4 5 32 1 4 16 16 ND A 2 0 114 244

Receiver Filter 
Bank5

1 256 16 64 16 16 ND A 2 3 287 244

Notes: 
1. Clock rates determined using a -2 speed grade.
2. Clocks per sample per channel uses the input sample rate as the basis for all filter types.
3. Clock frequency does not take clock jitter into account and should be derated by an amount appropriate to the clock source jitter 

specification.
4. Implemented using Transpose Multiply-Accumulate architecture.
5. Implements two parallel data paths (I and Q).

Table  12: MAC-based FIR Resource Utilization in Spartan-6 FPGAs (Cont’d)
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Resource Utilization for MAC-based FIR Filters (Spartan-3A DSP)

Table 13 provides characterization data for Spartan-3A DSP FPGAs using a XC3SD1800A-4FG676. Generally the
overall filter performance is within 10% of the DSP slice clock rating for the given device speed grade (for example,
250 MHz in -4), and often reaches this clock rate (although the Speed setting may be required to achieve this in some
cases). Some fully parallel cases can be slower due to routing congestion.

Table  13: MAC-based FIR Resource Utilization in Spartan-3A DSP FPGAs

 Filter Type
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Single Rate 1 366 1 366 18 18 ND A 1 1 95 250

Single Rate 1 4 4 1 18 18 ND A 4 0 77 250

Single Rate 1 20 1 5 18 18 ND A 5 0 122 250

Single Rate 1 20 3 5 18 18 ND A 5 0 158 250

Single Rate 1 27 1 1 18 18 ND A 27 0 179 250

Single Rate 1 21 2 1 17 18 ND A 11 0 307 250

Decimation 6 34 1 3 16 16 ND A 1 2 124 250

Decimation 2 69 1 18 16 16 ND A 1 0 118 246

Single Rate 1 19 6 1 16 16 ND A 10 0 323 250

Single Rate 1 32 1 32 16 16 ND A 1 0 79 250

Single Rate 1 32 1 4 16 16 ND A 9 0 141 250

Single Rate 1 32 1 1 16 16 ND A 32 0 170 250

Single Rate 1 32 1 32 16 16 ND A 1 0 92 250

Single Rate 1 32 1 4 16 16 ND A 5 0 169 250

Single Rate 1 32 1 1 16 16 ND A 16 0 302 250

Single Rate 1 32 3 4 16 16 ND A 9 0 157 250

Single Rate 1 32 3 1 16 16 ND A 29 0 428 250

Single Rate 1 32 3 4 16 16 ND A 5 0 185 250

Single Rate 1 32 3 1 16 16 ND A 16 0 489 250

Single Rate 1 31 3 4 16 16 ND A 3 0 175 250

Interpolation 5 32 1 20 16 16 ND A 3 0 94 250

Interpolation 5 32 3 20 16 16 ND A 3 0 144 250

Interpolation 5 61 3 5 16 16 ND A 8 2 286 250

Interpolation 5 61 3 20 16 16 ND A 3 2 215 250

Interpolation 2 31 1 8 16 16 ND A 3 0 175 250

Interpolation 5/3 64 3 10 16 16 ND A 4 0 183 250

Decimation 5 32 1 4 16 16 ND A 3 0 108 250
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Decimation 5 32 3 4 16 16 ND A 3 2 210 250

Decimation 5 64 3 1 16 16 ND A 8 0 514 248

Decimation 5 64 3 4 16 16 ND A 3 2 260 250

Decimation 5 64 3 13 16 16 ND A 1 2 220 250

Decimation 2 31 1 3 16 16 ND A 5 0 217 250

Decimation 3/5 64 3 10 16 16 ND A 4 4 175 230

Interpolation 16 288 8 24 16 16 CE A 18 18 809 237

Interpolation 4 16 2 4 16 16 CE A 4 0 308 250

Decimation 6 31 2 1 16 16 CE A 4 0 199 250

Interpolation 8 144 8 24 16 16 CE A 7 6 439 238

Single Rate 1 32 f 1 33 16 16 ND A 2 0 69 250

Single Rate 1 32 f 1 32 16 16 ND A 2 0 69 250

Single Rate 1 32 g 1 32 16 16 ND A 2 0 69 250

Single Rate 1 32 b 1 4 16 16 ND A 9 0 131 250

Single Rate4 1 32 1 4 16 16 ND A 8 0 75 250

Interpolation4 5 32 1 20 16 16 ND A 2 1 88 249

Decimation4 5 32 1 4 16 16 ND A 2 1 72 250

Receiver Filter 
Bank5

1 256 16 64 16 16 ND A 2 5 218 240

Notes: 
1. Clock rates determined using a -4 speed grade.
2. Clocks per sample per channel uses the input sample rate as the basis for all filter types.
3. Clock frequency does not take clock jitter into account and should be derated by an amount appropriate to the clock source jitter 

specification.
4. Implemented using Transpose Multiply-Accumulate architecture.
5. Implements two parallel data paths (I and Q).

Table  13: MAC-based FIR Resource Utilization in Spartan-3A DSP FPGAs (Cont’d)
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Resource Utilization for DA-based FIR Filters

The logic utilization for a filter is a function of the filter length, coefficient precision, coefficient symmetry, and input
data precision. Table 14 and Table 15 provide logic resource requirements for a number of serial (SDA) filter config-
urations, while Table 16 shows resources required by parallel (PDA) filters with several different levels of parallel-
ism. A Virtex-5 XC5VSX35t-1FF665 has been used while generating all the results.

Table 14 shows the LUT-FF pairs utilization for several FIR Filter configurations: 10-bit Filter Coefficients, Sin-
gle-channel, Signed Input; Signed Coefficients, and Unregistered Output.

Table 15 shows the LUT-FF pairs utilization for several half-band filter configurations, including 14-bit Filter Coef-
ficients, Single-channel, Signed Input, Signed Coefficients, and Unregistered Output.

Table  14: DA-based Resource Utilization for SDA FIR Filter Configurations

Filter Length Symmetry
Input Sample Precision

4-bit 8-bit 16-bit 32-bit

4
Symmetric 24 28 38 57

Non-symmetric 24 28 37 55

8
Symmetric 25 29 39 57

Non-symmetric 38 42 52 70

32
Symmetric 67 71 81 100

Non-symmetric 122 127 136 155

80
Symmetric 167 171 182 199

Non-symmetric 306 310 321 341

128
Symmetric 236 240 251 268

Non-symmetric 459 464 475 493

256 Symmetric 461 465 474 494

Table  15: DA-based Resource Utilization for Half-band SDA Filter Configurations

Filter Length Symmetry
Input Sample Precision

8-bit 16-bit 32-bit

7 Symmetric 33 43 61

31 Symmetric 119 138 188

79 Symmetric 373 391 490
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Table 16 shows the LUT-FF pairs utilization for several PDA FIR filter configurations, including 12-bit Filter Coeffi-
cients and Input Data, 60-Taps, Filter Coefficient Optimization Of, Single-channel, Signed Input, Signed Coeffi-
cients, Unregistered Output, and Non-symmetrical Impulse Response. Filter master clock frequency is 150 MHz.
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Support 
Xilinx provides technical support at www.xilinx.com/support for this LogiCORE product when used as described
in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented
in devices that are not defined in the documentation, if customized beyond that allowed in the product
documentation, or if changes are made to any section of the design labeled DO NOT MODIFY. 

Refer to the IP Release Notes Guide (XTP025) for further information on this core. On the first page there is a link to
“All DSP IP.” The relevant core can then be selected from the displayed list.

For each core, there is a master Answer Record that contains the Release Notes and Known Issues list for the core
being used. The following information is listed for each version of the core:

• New Features

• Bug Fixes

• Known Issues

Table  16: DA-based Resource Utilization for Several PDA FIR Filter Configurations

Number of Clock Cycles 
per Output Sample LUT-FF pairs Filter Sample Rate1 (MHz)

1 3382 150

2 1685 75

3 1102 50

4 844 37.5

6 558 25

12 261 12.5

Notes: 
1. The filter sample rate is not at all dependent on the number of filter taps.
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Ordering Information
This LogiCORE IP module is included at no additional cost with the Xilinx ISE Design Suite software and is 
provided under the terms of the Xilinx End User License Agreement. Use the CORE Generator software included 
with the ISE Design Suite to generate the core. For more information, please visit the core page.

Information about additional Xilinx LogiCORE modules is available at the Xilinx IP Center. For pricing and 
availability of other Xilinx LogiCORE modules and software, please contact your local Xilinx sales representative.

Revision History
The following table shows the revision history for this document. 

Notice of Disclaimer
Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express
or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any
claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the
Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY
WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED
THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS
IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be
copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means
including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of
Xilinx.

Date Version Revision

01/18/06 1.0 Initial release.

09/28/06 2.0 Updated for v2.0 core, including Virtex-5 family support and additional features.

02/15/07 3.0 Updated for v3.0 core.

04/02/07 3.1 Added support for Spartan-3A DSP devices.

08/08/07 3.2 Added Spartan-3A DSP resource tables, Bit Growth, and Rounding Mode sections.

10/10/07 3.3 Added full feature support for Virtex and Spartan families with Embedded Multipliers.

06/27/08 4.0 Updated for v4.0 core.

06/24/09 5.0 Updated for v5.0 core including support for Virtex-6 and Spartan-6.

04/19/10 5.0.1 Updated for v5.0 core. 12.1 support and Simulator Support section added.
Corrections to Interpolated FIR, Polyphase Decimator and Polyphase Interpolator sections.

03/01/11 5.1 Support added for Virtex-7 and Kintex-7. ISE Design Suite 13.1
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