
FIFO Generator v13.1

LogiCORE IP Product Guide

Vivado Design Suite

PG057 April 5, 2017

FIFO Generator v13.1 www.xilinx.com 2
PG057 April 5, 2017

Table of Contents
IP Facts

Chapter 1: Overview
Native Interface FIFOs . 5
AXI Interface FIFOs. 6
Feature Summary. 8
Applications . 62
Licensing and Ordering Information . 65

Chapter 2: Product Specification
Performance. 66
Resource Utilization. 77
Port Descriptions . 77

Chapter 3: Designing with the Core
General Design Guidelines . 93
Initializing the FIFO Generator . 95
FIFO Usage and Control . 95
Clocking. 121
Resets . 126
Actual FIFO Depth . 134
Latency . 136
Special Design Considerations . 148

Chapter 4: Design Flow Steps
Customizing and Generating the Native Core . 153
Customizing and Generating the AXI Core . 170
Constraining the Core . 182
Simulation . 182
Synthesis and Implementation . 184

Chapter 5: Detailed Example Design
Implementing the Example Design . 185

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=2

FIFO Generator v13.1 www.xilinx.com 3
PG057 April 5, 2017

Simulating the Example Design. 186

Chapter 6: Test Bench
Test Bench Functionality . 187
Customizing the Demonstration Test Bench . 188
Messages and Warnings . 189

Appendix A: Verification, Compliance, and Interoperability
Simulation . 190

Appendix B: Debugging
Finding Help on Xilinx.com . 191
Debug Tools . 192
Simulation Debug. 193
Hardware Debug . 193
Interface Debug . 193

Appendix C: Migrating and Upgrading
Migrating to the Vivado Design Suite. 195
Upgrading in the Vivado Design Suite . 195

Appendix D: dout Reset Value Timing

Appendix E: FIFO Generator Files

Appendix F: Supplemental Information

Appendix G: Additional Resources and Legal Notices
Xilinx Resources . 215
References . 215
Revision History . 216
Please Read: Important Legal Notices . 218

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=3

FIFO Generator v13.1 www.xilinx.com 4
PG057 April 5, 2017 Product Specification

Introduction
The Xilinx LogiCORE™ IP FIFO Generator core is
a fully verified first-in first-out (FIFO) memory
queue for applications requiring in-order
storage and retrieval. The core provides an
optimized solution for all FIFO configurations
and delivers maximum performance (up to 500
MHz) while utilizing minimum resources.
Delivered through the Vivado® Design Suite,
you can customize the width, depth, status
flags, memory type, and the write/read port
aspect ratios.

The FIFO Generator core supports Native
interface FIFOs, AXI Memory Mapped interface
FIFOs and AXI4-Stream interface FIFOs. Native
interface FIFO cores are optimized for
buffering, data width conversion and clock
domain decoupling applications, providing
ordered storage and retrieval.

AXI Memory Mapped and AXI4-Stream
interface FIFOs are derived from the Native
interface FIFO. Three AXI Memory Mapped
interface styles are available: AXI4, AXI3 and
AXI4-Lite.

For more details on the features of each
interface, see Feature Summary in Chapter 1.

IP Facts

LogiCORE IP Facts Table

Core Specifics
Supported
Device
Family(1)

UltraScale+™ Families,
 UltraScale™ Architecture, Zynq®-7000, 7 Series

Supported
User Interfaces Native, AXI4-Stream, AXI4, AXI3, AXI4-Lite

Resources Performance and Resource Utilization web page

Provided with Core
Design Files Encrypted RTL

Example
Design VHDL

Test Bench VHDL

Constraints
File

XDC

Simulation
Model Verilog Behavioral(2)

Supported
S/W Driver N/A

Tested Design Flows(4)

Design Entry Vivado Design Suite

Simulation(3) For other supported simulators, see the Xilinx
Design Tools: Release Notes Guide.

Synthesis Vivado Synthesis

Support
Provided by Xilinx at the Xilinx Support web page

Notes:
1. For a complete listing of supported devices, see the Vivado IP

catalog.
2. Behavioral model does not model synchronization delay.

See Simulation in Chapter 4 for details.
3. The FIFO Generator core supports the UniSim simulation

model.
4. For the supported versions of the tools, see the Xilinx Design

Tools: Release Notes Guide.

Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;t=vivado+release+notes
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;t=vivado+release+notes
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=fifo-generator.html
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=4

FIFO Generator v13.1 www.xilinx.com 5
PG057 April 5, 2017

Chapter 1

Overview
The FIFO Generator core is a fully verified first-in first-out memory queue for use in any
application requiring ordered storage and retrieval, enabling high-performance and
area-optimized designs. The core provides an optimized solution for all FIFO configurations
and delivers maximum performance (up to 500 MHz) while using minimum resources.

This core supports Native interface FIFOs, AXI Memory Mapped interface FIFOs and
AXI4-Stream interface FIFOs. AXI Memory Mapped and AXI4-Stream interface FIFOs are
derived from the Native interface FIFO. Three AXI Memory Mapped interface styles are
available: AXI4, AXI3 and AXI4-Lite.

This core can be customized using the Vivado IP customizers in the IP catalog as a complete
solution with control logic already implemented, including management of the read and
write pointers and the generation of status flags.

Note: The Memory Mapped interface FIFO and AXI4-Stream interface FIFO are referred as "AXI
FIFO" throughout this document.

Native Interface FIFOs
The Native interface FIFO can be customized to utilize block RAM, distributed RAM or
built-in FIFO resources available in some FPGA families to create high-performance,
area-optimized FPGA designs.

Standard mode and First Word Fall Through are the two operating modes available for
Native interface FIFOs.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=5

FIFO Generator v13.1 www.xilinx.com 6
PG057 April 5, 2017

Chapter 1: Overview

AXI Interface FIFOs
AXI interface FIFOs are derived from the Native interface FIFO, as shown in Figure 1-2. Three
AXI memory mapped interface styles are available: AXI4, AXI3 and AXI4-Lite. In addition to
applications supported by the Native interface FIFO, AXI FIFOs can also be used in AXI
System Bus and Point-to-Point high speed applications.

AXI interface FIFOs do not support built-in FIFO and Shift Register FIFO configurations.

Use the AXI FIFOs in the same applications supported by the Native Interface FIFO when
you need to connect to other AXI functions. AXI FIFOs can be integrated into a system by
using the IP integrator. See the Vivado Design Suite User Guide: Designing IP Subsystems
using IP Integrator (UG994) [Ref 5] for more details.

X-Ref Target - Figure 1-1

Figure 1-1: Native Interface FIFOs Signal Diagram

dout[m:0]

empty

rd_en

Write Clock
Domain

Read Clock
Domain

full

wr_en

din[n:0]

almost_full

Prog_full

almost_empty

prog_empty

valid
underflow

prog_empty_thresh_assert

sbiterr
dbiterr

wr_ack
overflow

wr_data_count[p:0]
prog_full_thresh_assert
prog_full_thresh_negate

prog_full_thresh

injectsbiterr
injectdbiterr

wr_rst rst rd_rst

OPTIONAL

MANDATORY

OPTIONAL SIDEBAND

wr_clk rd_clk

Read AgentWrite Agent

rd_data_count[q:0]

prog_empty_thresh_negate
prog_empty_thresh

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=6

FIFO Generator v13.1 www.xilinx.com 7
PG057 April 5, 2017

Chapter 1: Overview

The AXI interface protocol uses a two-way valid and ready handshake mechanism. The
information source uses the valid signal to show when valid data or control information is
available on the channel. The information destination uses the ready signal to show when
it can accept the data. Figure 1-3 shows an example timing diagram for write and read
operations to the AXI4-Stream FIFO, and Figure 1-4 shows an example timing diagram for
write and read operations to the AXI memory mapped interface FIFO.

X-Ref Target - Figure 1-2

Figure 1-2: AXI FIFO Derivation

X-Ref Target - Figure 1-3

Figure 1-3: AXI4-Stream FIFO Timing Diagram

full

rd_clk

rd_en

wr_en

wr_clk

rst

din[n:0] dout[n:0]

*VALID

*ready

*valid empty

*data

*strobe

*last

*user

*id

*data

*strobe

*last

*user

*id

s_aclk

s_aresetn

m_aclk

AXI4 SLAVE AXI4 MASTER

WRITE CLOCK
DOMAIN

READ CLOCK
DOMAIN

wr_data_count[P:0]

overflow

injectsbiterr

prog_full_thresh

injectdbiterr

rd_data_count[Q:0]

underflow

sbiterr

prog_empty_thresh

prog_full prog_empty

dbiterr

MANDATORY
OPTIONAL SIDEBAND

AXI4 MASTER AXI4 SLAVE

X12629

*ready

*valid

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=7

FIFO Generator v13.1 www.xilinx.com 8
PG057 April 5, 2017

Chapter 1: Overview

In Figure 1-3 and Figure 1-4, the information source generates the valid signal to
indicate when the data is available. The destination generates the ready signal to indicate
that it can accept the data, and transfer occurs only when both the valid and ready
signals are High.

Because AXI FIFOs are derived from Native interface FIFOs, much of the behavior is common
between them. The ready signal is generated based on availability of space in the FIFO and
is held high to allow writes to the FIFO. The ready signal is pulled Low only when there is
no space in the FIFO left to perform additional writes. The valid signal is generated based
on availability of data in the FIFO and is held High to allow reads to be performed from the
FIFO. The valid signal is pulled Low only when there is no data available to be read from
the FIFO. The information signals are mapped to the din and dout bus of Native
interface FIFOs. The width of the AXI FIFO is determined by concatenating all of the
information signals of the AXI interface. The information signals include all AXI
signals except for the valid and ready handshake signals.

AXI FIFOs operate only in First-Word Fall-Through mode. The First-Word Fall-Through
(FWFT) feature provides the ability to look ahead to the next word available from the FIFO
without issuing a read operation. When data is available in the FIFO, the first word falls
through the FIFO and appears automatically on the output data bus.

Feature Summary

Common Features
• Supports Native, AXI4-Stream, AXI4, AXI3 and AXI4-Lite interfaces

• FIFO depths up to 131,072 words

X-Ref Target - Figure 1-4

Figure 1-4: AXI Memory Mapped Interface FIFO Timing Diagram

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=8

FIFO Generator v13.1 www.xilinx.com 9
PG057 April 5, 2017

Chapter 1: Overview

• Independent or common clock domains

• VHDL example design and demonstration test bench demonstrating the IP core design
flow, including how to instantiate and simulate it

• Fully configurable using the Xilinx Vivado IP Catalog customizer

Native FIFO Specific Features
• FIFO data widths from 1 to 1024 bits

• Symmetric or Non-symmetric aspect ratios (read-to-write port ratios ranging from 1:8
to 8:1)

• Synchronous or asynchronous reset option

• Selectable memory type (block RAM, distributed RAM, shift register, or built-in FIFO)

• Option to operate in Standard or First-Word Fall-Through modes (FWFT)

• Full and Empty status flags, and Almost Full and Almost Empty flags for indicating
one-word-left

• Programmable Full and Empty status flags, set by user-defined constant(s) or dedicated
input port(s)

• Configurable handshake signals

• Hamming Error Injection and Correction Checking (ECC) support for block RAM and
Built-in FIFO configurations

• Soft ECC support for block RAM FIFOs (upto 64-bit data widths)

• Embedded register option for block RAM and built-in FIFO configurations

• Dynamic Power Gating and ECC Pipeline Register support for UltraScale™ Architecture
Built-in FIFO Configurations

AXI FIFO Features
• FIFO data widths:

° AXI Stream: 1 to 4096 bits

° AXI4/AXI3: 32, 64....... 1024 (multiples of 2) bits

° AXI4-Lite: 32, 64 bits

• Supports AXI memory mapped and AXI4-Stream interface protocols - AXI4, AXI3,
AXI4-Stream, and AXI4-Lite

• Symmetric aspect ratios

• Asynchronous active-Low reset

• Selectable configuration type (FIFO, Register Slice, or Pass Through Wire)

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=9

FIFO Generator v13.1 www.xilinx.com 10
PG057 April 5, 2017

Chapter 1: Overview

• Selectable memory type (block RAM, or distributed RAM)

• Selectable application type (Data FIFO, Packet FIFO, or Low latency FIFO)

° Packet FIFO feature is available only for common/independent clock AXI4-Stream
FIFO and common clock AXI4/AXI3 FIFOs

• Operates in First-Word Fall-Through mode (FWFT)

• Auto-calculation of FIFO width based on AXI signal selections and data and address
widths

• Hamming Error Injection and Correction Checking (ECC) support for block RAM FIFO
configurations

• Configurable programmable Full/Empty flags as sideband signals

Native FIFO Feature Overview

Clock Implementation and Operation

The FIFO Generator core enables FIFOs to be configured with either independent or
common clock domains for write and read operations. The independent clock configuration
of the FIFO Generator core enables you to implement unique clock domains on the write
and read ports. The FIFO Generator core handles the synchronization between clock
domains, placing no requirements on phase and frequency. When data buffering in a single
clock domain is required, the FIFO Generator core can be used to generate a core optimized
for that single clock.

Built-in FIFO Support

The FIFO Generator core supports the UltraScale, Zynq ®-7000 and 7 series devices built-in
FIFO macros, enabling large FIFOs to be created by cascading the built-in FIFOs in both
width and depth. The core expands the capabilities of the built-in FIFOs by using the FPGA
logic to create optional status flags not implemented in the built-in FIFO macro. For
example, programmable flags such as PROG_FULL and PROG_EMPTY are derived from
ALMOSTFULL and ALMOSTEMPTY. The built-in Error Correction Checking (ECC) feature in
the built-in FIFO macro is also available. See the target device user guide for frequency
requirements.

UltraScale architecture built-in FIFO supports only synchronous reset and comes with the
following features:

• Non-symmetric aspect ratio

• Dynamic power gating

• ECC Pipeline register

Note: See the Vivado Design Suite User Guide: Logic Simulation for the limitation in simulation
libraries for Built-in FIFO macros [Ref 9].

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=10

FIFO Generator v13.1 www.xilinx.com 11
PG057 April 5, 2017

Chapter 1: Overview

The FIFO Generator core offers a Low latency option for UltraScale devices to build a deeper
FIFO where the latency of the FIFO is FIFO18E2/FIFO36E2 primitive latency if the Output
Register option is not selected. The latency increases by one if Output Register is selected.

First-Word Fall-Through (FWFT)

The first-word fall-through (FWFT) feature provides the ability to look-ahead to the next
word available from the FIFO without issuing a read operation. When data is available in the
FIFO, the first word falls through the FIFO and appears automatically on the output bus
(dout). FWFT is useful in applications that require Low-latency access to data and to
applications that require throttling based on the contents of the read data. FWFT support is
included in FIFOs created with block RAM, distributed RAM, or built-in FIFOs.

See Table 1-2 for FWFT availability. The use of this feature impacts the behavior of many
other features, such as:

• Read operations (see First-Word Fall-Through FIFO Read Operation, page 98).

• Programmable empty (see Non-symmetric Aspect Ratio and First-Word Fall-Through,
page 115).

• Data counts (see First-Word Fall-Through Data Count, page 110 and Non-symmetric
Aspect Ratio and First-Word Fall-Through, page 115).

Supported Memory Types

The FIFO Generator core implements FIFOs built from block RAM, distributed RAM, shift
registers, or built-in FIFOs. The core combines memory primitives in an optimal
configuration based on the selected width and depth of the FIFO. Table 1-1 provides
best-use recommendations for specific design requirements.

Non-Symmetric Aspect Ratio Support

The core supports generating FIFOs with write and read ports of different widths, enabling
automatic width conversion of the data width. Non-symmetric aspect ratios ranging from
1:8 to 8:1 are supported for the write and read port widths. This feature is available for the
following FIFO implementations:

Table 1-1: Memory Configuration Benefits

Independent
Clocks

Common
Clock

Small
Buffering

Medium-Large
Buffering

High
Performance

Minimal
Resources

Built-in FIFO     

Block RAM     

Shift Register   

Distributed RAM    

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=11

FIFO Generator v13.1 www.xilinx.com 12
PG057 April 5, 2017

Chapter 1: Overview

• Common or Independent clock Block RAM FIFOs (UltraScale, Zynq-7000, and 7 series
devices)

• Common or Independent clock Built-in FIFOs (UltraScale devices only)

Embedded Registers in Block RAM and FIFO Macros

In FPGA block RAM and FIFO macros, embedded output registers are available to increase
performance and add a pipeline register to the macros. This feature can be leveraged to
add one additional latency to the FIFO core (dout bus and VALID outputs) or implement
the output registers for FWFT FIFOs. The embedded registers can be reset (dout) to a
default or user programmed value for common clock built-in FIFOs. See Embedded
Registers in Block RAM and FIFO Macros, page 116 for more information.

Error Injection and Correction (ECC) Support

The block RAM and FIFO macros are equipped with built-in Error Injection and Correction
Checking. This feature is available for Block RAM and Built-in FIFOs.

Native FIFO Configuration and Implementation
Table 1-2 defines the supported memory and clock configurations.

Common Clock: Block RAM, Distributed RAM, Shift Register

This implementation category allows you to select block RAM, distributed RAM, or shift
register and supports a common clock for write and read data accesses. The feature set
supported for this configuration includes non-symmetric aspect ratios (different write and

Table 1-2: FIFO Configurations

Clock Domain Memory Type Non-symmetric
Aspect Ratios

First-word
Fall-Through

ECC
Support

Embedded
Register
Support

Common Block RAM (2)   

Common Distributed RAM 

Common Shift Register

Common Built-in FIFO (2)   

Independent Block RAM    

Independent Distributed RAM 

Independent Built-in FIFO (2)   (1)

Notes:
1. Embedded register support for independent clock built-in FIFO is available only in Ultrascale family.
2. Xilinx supports Non-symmetric aspect ratio only for UltraScale devices. (The maximum depth is limited to 8192 in

case of Built-In FIFOs)

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=12

FIFO Generator v13.1 www.xilinx.com 13
PG057 April 5, 2017

Chapter 1: Overview

read port widths), status flags (full, almost full, empty, and almost empty), and
programmable empty and full flags generated with user-defined thresholds.

In addition, optional handshaking and error flags are supported (write acknowledge,
overflow, valid, and underflow), and an optional data count provides the number of words
in the FIFO. In addition, for the block RAM and distributed RAM implementations, you have
the option to select a synchronous or asynchronous reset for the core. The block RAM FIFO
configuration also supports ECC.

Common Clock: Built-in FIFO

This implementation option allows you to select the built-in FIFO and supports a common
clock for write and read data accesses. The features supported for this configuration
includes status flags (full and empty) and optional programmable full and empty flags with
user-defined thresholds (for 7 series devices, programmable full/empty are directly
connected to the ALMOSTFULL/ALMOSTEMPTY flags).

In addition, optional handshaking and error flags are available (write acknowledge,
overflow, valid, and underflow). The built-in FIFO configuration also supports the built-in
ECC feature and UltraScale device-specific features such as non-symmetric aspect ratios
(different write and read port widths), Dynamic Power Gating, and ECC Pipeline Register.

Independent Clocks: Block RAM and Distributed RAM

This implementation option allows you to select block RAM or distributed RAM and
supports independent clock domains for write and read data accesses. Operations in the
read domain are synchronous to the read clock and operations in the write domain are
synchronous to the write clock.

The feature set supported for this type of FIFO includes non-symmetric aspect ratios
(different write and read port widths), status flags (full, almost full, empty, and almost
empty), as well as programmable full and empty flags generated with user-defined
thresholds. Optional read data count and write data count indicators provide the number of
words in the FIFO relative to their respective clock domains. In addition, optional
handshaking and error flags are available (write acknowledge, overflow, valid, and
underflow). The block RAM FIFO configuration also supports ECC.

Independent Clocks: Built-in FIFO

This implementation option allows you to select the built-in FIFO. Operations in the read
domain are synchronous to the read clock and operations in the write domain are
synchronous to the write clock.

The feature set supported for this configuration includes status flags (full and empty) and
programmable full and empty flags generated with user-defined thresholds (for 7 series
devices, programmable full/empty are directly connected to the ALMOSTFULL/
ALMOSTEMPTY flags). In addition, optional handshaking and error flags are available (write

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=13

FIFO Generator v13.1 www.xilinx.com 14
PG057 April 5, 2017

Chapter 1: Overview

acknowledge, overflow, valid, and underflow). The built-in FIFO configuration also supports
the built-in ECC feature and UltraScale device-specific features such as non-symmetric
aspect ratios (different write and read port widths), Dynamic Power Gating, and ECC Pipeline
Register.

Native FIFO Generator Feature Summary
FIFO Generator (from v13.1 onwards) is updated for UltraScale/UltraScale+ devices to utilize
and improve the performance of the hardened cascading circuit for Built-in FIFO
configurations. This update has significantly reduced the programmable full/empty
threshold ranges of the Built-in FIFO structure. The valid range can be observed by opening
up the XGUI and selecting the Built-in FIFO configurations. Programmable full calculations
depend on the last primitive and programmable empty on the first primitive.

For example:

Until v13.0, FIFO Generator was using 2 FIFO macros as shown in Figure 1-5 for the
configuration of 4096 deep and 18-bit wide. Thus, the programmable full/empty threshold
ranges were as follows:

Programmable full= (1-4094)

Programmable empty= (2-4094) (both the primitives are 4kx9 primitives)

From v13.1 onwards, FIFO Generator uses 2 FIFO macros as shown in Figure 1-6 for the
configuration of 4096 deep and 18-bit wide. Thus, the new programmable full/empty
threshold ranges are as follows:

Programmable full= (2050-4094) (the last primitive)

Programmable empty=(2-2046) (the first primitive)

X-Ref Target - Figure 1-5

Figure 1-5: Primitives Widthwise

4kx9 4kx9

1

4096

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=14

FIFO Generator v13.1 www.xilinx.com 15
PG057 April 5, 2017

Chapter 1: Overview

Note: Due to the change mentioned above, there may be a change in the latency of write-to-empty
and read-to-full de-assertion.

Table 1-3 summarizes the supported FIFO Generator core features for each clock
configuration and memory type.

X-Ref Target - Figure 1-6

Figure 1-6: Primitives Depth-wise

Table 1-3: FIFO Configurations Summary

FIFO Feature

Independent Clocks Common Clock

Block
RAM

Distributed
RAM

 Built-in
FIFO

Block
RAM

Distributed
RAM, Shift

Register
 Built-in

FIFO

Non-symmetric Aspect
Ratios  (1) (1) (1)

Symmetric Aspect Ratios      

Almost Full    

Almost Empty    

Handshaking      

Data Count    

Programmable Empty/Full
Thresholds   (2)   (2)

First-Word Fall-Through      

Synchronous Reset (3)   (4)

Asynchronous Reset (5) (5) (6) (5) (5) (6)

dout Reset Value     (7)

ECC    

Embedded or Interconnect
Register  (8)  

Embedded and Interconnect
Register  

ECC Pipeline Register (9) (9)

2kx18

2kx18

1

2048

2049

4096

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=15

FIFO Generator v13.1 www.xilinx.com 16
PG057 April 5, 2017

Chapter 1: Overview

Using Block RAM FIFOs Versus Built-in FIFOs
The Built-In FIFO solutions are implemented to take advantage of logic internal to the
Built-in FIFO macro. Several features, for example, almost full, almost empty, and so forth
were not implemented because they are not native to the macro and require additional
logic in the logic to implement.

Benchmarking suggests that the advantages the Built-In FIFO implementations have over
the block RAM FIFOs (for example, logic resources) diminish as external logic is added to
implement features not native to the macro. This is especially true as the depth of the
implemented FIFO increases. It is strongly recommended that users requiring features not
available in the Built-In FIFOs implement their design using block RAM FIFOs.

Native FIFO Interface Signals
The following sections define the FIFO interface signals. Figure 1-7 illustrates these signals
(both standard and optional ports) for a FIFO core that supports independent write and
read clocks.

Dynamic Power Saving (9) (9)

Notes:
1. Xilinx supports Non-symmetric aspect ratio only for UltraScale devices. (The maximum depth is limited to 8192 in

case of Built-In FIFOs).
2. For built-in FIFOs, the range of Programmable Empty/Full threshold is limited to take advantage of the logic

internal to the macro.
3. Available only for UltraScale devices. The synchronous reset (srst) should be synchronous to wr_clk.
4. Available only for UltraScale devices. The synchronous reset (srst) should be synchronous to clk.
5. Asynchronous reset is optional for all FIFOs built using distributed and block RAM.
6. Asynchronous reset is not supported for UltraScale Built-in FIFOs.
7. dout Reset Value is supported only in common clock built-in FIFOs.
8. Embedded register option for independent clocks built-in FIFO is available only in UltraScale family. See

Embedded Registers in Block RAM and FIFO Macros.
9. UltraScale devices only.

Table 1-3: FIFO Configurations Summary (Cont’d)

FIFO Feature

Independent Clocks Common Clock

Block
RAM

Distributed
RAM

 Built-in
FIFO

Block
RAM

Distributed
RAM, Shift

Register
 Built-in

FIFO

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=16

FIFO Generator v13.1 www.xilinx.com 17
PG057 April 5, 2017

Chapter 1: Overview

Interface Signals: FIFOs With Independent Clocks

The rst signal, as defined Table 1-4, causes a reset of the entire core logic (both write and
read clock domains. It is an asynchronous input synchronized internally in the core before
use. The initial hardware reset should be generated by the user.

Table 1-5 defines the write interface signals for FIFOs with independent clocks. The write
interface signals are divided into required and optional signals and all signals are
synchronous to the write clock (wr_clk).

X-Ref Target - Figure 1-7

Figure 1-7: FIFO with Independent Clocks: Interface Signals
Note: Optional ports represented in italics

dout[m:0]

empty

rst

rd_en

rd_clk

prog_full_thresh_assert

prog_full_thresh_negate

wr_rst

prog_full_thresh

Write Clock
Domain

Read Clock
Domain

full

wr_en

din[n:0]

wr_clk

almost_full

prog_full

wr_ack

overflow

almost_empty

prog_empty

valid

underflow

prog_empty_thresh_assert

prog_empty_thresh_negate

rd_rst

PROG_EMPTY_THRESHprog_empty_thresh

Table 1-4: Reset and Sleep Signals for FIFOs with Independent Clocks

Name Direction Description

rst Input Reset: An asynchronous reset signal that initializes all
internal pointers and output registers. Not available for
UltraScale device built-in FIFOs.

sleep Input Dynamic power gating. If sleep is active, the FIFO is in
power saving mode.
Note: Only available for UltraScale device built-in FIFOs.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=17

FIFO Generator v13.1 www.xilinx.com 18
PG057 April 5, 2017

Chapter 1: Overview

Table 1-5: Write Interface Signals for FIFOs with Independent Clocks

Name Direction Description

Required

wr_clk Input Write Clock: All signals on the write domain are
synchronous to this clock.

din[n:0] Input Data Input: The input data bus used when writing the FIFO.

wr_en Input Write Enable: If the FIFO is not full, asserting this signal
causes data (on din) to be written to the FIFO.

full Output Full Flag: When asserted, this signal indicates that the FIFO
is full. Write requests are ignored when the FIFO is full,
initiating a write when the FIFO is full is not destructive to
the contents of the FIFO.

Optional

wr_rst Input Write Reset: Synchronous to write clock. When asserted,
initializes all internal pointers and flags of write clock
domain.

almost_full Output Almost Full: When asserted, this signal indicates that only
one more write can be performed before the FIFO is full.

prog_full(1) Output Programmable Full: This signal is asserted when the number
of words in the FIFO is greater than or equal to the assert
threshold. It is deasserted when the number of words in the
FIFO is less than the negate threshold.

wr_data_count [d:0] Output Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
under-report the number of words in the FIFO, to ensure you
never overflow the FIFO. The exception to this behavior is
when a write operation occurs at the rising edge of wr_clk/
clk, that write operation will only be reflected on
wr_data_count at the next rising clock edge.
If D is less than log2(FIFO depth)-1, the bus is truncated by
removing the least-significant bits.
Note: wr_data_count is also available for UltraScale devices using
a common clock Block RAM-based FIFO when the Asymmetric Port
Width option is enabled.

wr_ack Output Write Acknowledge: This signal indicates that a write
request (wr_en) during the prior clock cycle succeeded.

overflow Output Overflow: This signal indicates that a write request (wr_en)
during the prior clock cycle was rejected, because the FIFO
is full. Overflowing the FIFO is not destructive to the
contents of the FIFO.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=18

FIFO Generator v13.1 www.xilinx.com 19
PG057 April 5, 2017

Chapter 1: Overview

Table 1-6 defines the read interface signals of a FIFO with independent clocks. Read
interface signals are divided into required signals and optional signals, and all signals are
synchronous to the read clock (rd_clk).

prog_full_thresh Input Programmable Full Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of the
programmable full (prog_full) flag. The threshold can be
dynamically set in-circuit during reset.
You can either choose to set the assert and negate threshold
to the same value (using prog_full_thresh), or you can
control these values independently (using
prog_full_thresh_assert and prog_full_thresh_negate).

prog_full_thresh_assert Input Programmable Full Threshold Assert: This signal is used to
set the upper threshold value for the programmable full
flag, which defines when the signal is asserted. The
threshold can be dynamically set in-circuit during reset.
Refer to the Vivado IDE for the valid range of values(1).

prog_full_thresh_negate Input Programmable Full Threshold Negate: This signal is used to
set the lower threshold value for the programmable full flag,
which defines when the signal is de-asserted. The threshold
can be dynamically set in-circuit during reset. Refer to
Vivado IDE for the valid range of values(2).

injectsbiterr Input Injects a single bit error if the ECC feature is used on block
RAMs or built-in FIFO macros.

injectdbiterr Input Injects a double bit error if the ECC feature is used on block
RAMs or built-in FIFO macros.

wr_rst_busy Output When asserted, this signal indicates that the write domain is
in reset state.
Note: Available only for UltraScale device built-in FIFOS.

Notes:
1. For 7 series devices using the Built-in FIFO configuration, this signal is connected to the almostfull signal of the

FIFO18E1/FIFO36E1 primitive.
2. Valid range of values shown in the IDE are the actual values even though they are grayed out for some selections.

Table 1-6: Read Interface Signals for FIFOs with Independent Clocks

Name Directio
n Description

Required

rd_rst Input Read Reset: Synchronous to read clock. When asserted,
initializes all internal pointers, flags and output registers of
read clock domain.

rd_clk Input Read Clock: All signals on the read domain are
synchronous to this clock.

dout[m:0] Output Data Output: The output data bus is driven when reading
the FIFO.

Table 1-5: Write Interface Signals for FIFOs with Independent Clocks (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=19

FIFO Generator v13.1 www.xilinx.com 20
PG057 April 5, 2017

Chapter 1: Overview

rd_en Input Read Enable: If the FIFO is not empty, asserting this signal
causes data to be read from the FIFO (output on dout).

empty Output Empty Flag: When asserted, this signal indicates that the
FIFO is empty. Read requests are ignored when the FIFO is
empty, initiating a read while empty is not destructive to
the FIFO.

Optional

almost_empty Output Almost Empty Flag: When asserted, this signal indicates
that the FIFO is almost empty and one word remains in the
FIFO.

prog_empty(1) Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is de-asserted when the
number of words in the FIFO exceeds the programmable
threshold.

rd_data_count [c:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed
to never over-report the number of words available for
reading, to ensure that you do not underflow the FIFO. The
exception to this behavior is when the read operation
occurs at the rising edge of rd_clk/clk, that read operation
is only reflected on rd_data_count at the next rising clock
edge.
If C is less than log2(FIFO depth)-1, the bus is truncated by
removing the least-significant bits.
Note: rd_data_count is also available for UltraScale devices using
a common clock Block RAM-based FIFO when the Asymmetric
Port Width option is enabled.

valid Output Valid: This signal indicates that valid data is available on
the output bus (dout).

underflow Output Underflow: Indicates that the read request (rd_en) during
the previous clock cycle was rejected because the FIFO is
empty. Underflowing the FIFO is not destructive to the
FIFO.

prog_empty_thresh Input Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable empty (prog_empty)
flag. The threshold can be dynamically set in-circuit during
reset.
You can either choose to set the assert and negate
threshold to the same value (using prog_empty_thresh), or
you can control these values independently (using
prog_empty_thresh_assert and
prog_empty_thresh_negate).

Table 1-6: Read Interface Signals for FIFOs with Independent Clocks (Cont’d)

Name Directio
n Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=20

FIFO Generator v13.1 www.xilinx.com 21
PG057 April 5, 2017

Chapter 1: Overview

prog_empty_thresh_assert Input Programmable Empty Threshold Assert: This signal is used
to set the lower threshold value for the programmable
empty flag, which defines when the signal is asserted. The
threshold can be dynamically set in-circuit during reset.
Refer to the Vivado IDE for the valid range of values(2).

prog_empty_thresh_negate Input Programmable Empty Threshold Negate: This signal is
used to set the upper threshold value for the
programmable empty flag, which defines when the signal
is de-asserted. The threshold can be dynamically set
in-circuit during reset. Refer to the Vivado IDE for the valid
range of values(2).

sbiterr Output Single Bit Error: Indicates that the ECC decoder detected
and fixed a single-bit error on block RAM or built-in FIFO
macro.

dbiterr Output Double Bit Error: Indicates that the ECC decoder detected
a double-bit error on block RAM or built-in FIFO macro
and data in the FIFO core is corrupted.

rd_rst_busy Output When asserted, this signal indicates that the read domain
is in reset state.
Note: Available only for UltraScale device built-in FIFOS.

Notes:
1. For 7 series devices using the Built-in FIFO configuration, this signal is connected to the almostfull signal of the

FIFO18E1/FIFO36E1 primitive.
2. Valid range of values shown in the IDE are the actual values even though they are grayed out for some selections.

Table 1-6: Read Interface Signals for FIFOs with Independent Clocks (Cont’d)

Name Directio
n Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=21

FIFO Generator v13.1 www.xilinx.com 22
PG057 April 5, 2017

Chapter 1: Overview

Interface Signals: FIFOs with Common Clock

Table 1-7 defines the interface signals of a FIFO with a common write and read clock and is
divided into standard and optional interface signals. All signals (except asynchronous reset)
are synchronous to the common clock (clk). Users have the option to select synchronous
or asynchronous reset for the distributed or block RAM FIFO implementation.

Table 1-7: Interface Signals for FIFOs with a Common Clock

Name Directio
n Description

Required

rst Input Reset: An asynchronous reset that initializes all internal
pointers and output registers. Not available for UltraScale
device built-in FIFOs.

srst Input Synchronous Reset: A synchronous reset that initializes all
internal pointers and output registers. The FIFO uses
UltraScale device reset sequence mechanism for UltraScale
devices.

clk Input Clock: All signals on the write and read domains are
synchronous to this clock.

din[n:0] Input Data Input: The input data bus used when writing the FIFO.

wr_en Input Write Enable: If the FIFO is not full, asserting this signal
causes data (on din) to be written to the FIFO.

full Output Full Flag: When asserted, this signal indicates that the FIFO
is full. Write requests are ignored when the FIFO is full,
initiating a write when the FIFO is full is not destructive to
the contents of the FIFO.

dout[m:0] Output Data Output: The output data bus driven when reading the
FIFO.

rd_en Input Read Enable: If the FIFO is not empty, asserting this signal
causes data to be read from the FIFO (output on dout).

empty Output Empty Flag: When asserted, this signal indicates that the
FIFO is empty. Read requests are ignored when the FIFO is
empty, initiating a read while empty is not destructive to
the FIFO.

Optional

data_count [c:0] Output Data Count: This bus indicates the number of words stored
in the FIFO. If C is less than log2(FIFO depth)-1, the bus is
truncated by removing the least-significant bits.

almost_full Output Almost Full: When asserted, this signal indicates that only
one more write can be performed before the FIFO is full.

prog_full(1) Output Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal to the
assert threshold. It is deasserted when the number of
words in the FIFO is less than the negate threshold.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=22

FIFO Generator v13.1 www.xilinx.com 23
PG057 April 5, 2017

Chapter 1: Overview

wr_ack Output Write Acknowledge: This signal indicates that a write
request (wr_en) during the prior clock cycle succeeded.

overflow Output Overflow: This signal indicates that a write request (wr_en)
during the prior clock cycle was rejected, because the FIFO
is full. Overflowing the FIFO is not destructive to the FIFO.

prog_full_thresh Input Programmable Full Threshold: This signal is used to set the
threshold value for the assertion and de-assertion of the
programmable full (PROG_FULL) flag. The threshold can be
dynamically set in-circuit during reset.
You can either choose to set the assert and negate
threshold to the same value (using PROG_FULL_THRESH),
or you can control these values independently (using
PROG_FULL_THRESH_ASSERT and
PROG_FULL_THRESH_NEGATE).

prog_full_thresh_assert Input Programmable Full Threshold Assert: This signal is used to
set the upper threshold value for the programmable full
flag, which defines when the signal is asserted. The
threshold can be dynamically set in-circuit during reset.
Refer to the Vivado IDE for the valid range of values(2).

prog_full_thresh_negate Input Programmable Full Threshold Negate: This signal is used
to set the lower threshold value for the programmable full
flag, which defines when the signal is de-asserted. The
threshold can be dynamically set in-circuit during reset.
Refer to the Vivado IDE for the valid range of values(2).

almost_empty Output Almost Empty Flag: When asserted, this signal indicates
that the FIFO is almost empty and one word remains in the
FIFO.

prog_empty(3) Output Programmable Empty: This signal is asserted after the
number of words in the FIFO is less than or equal to the
programmable threshold. It is de-asserted when the
number of words in the FIFO exceeds the programmable
threshold.

valid Output Valid: This signal indicates that valid data is available on
the output bus (dout).

underflow Output Underflow: Indicates that read request (rd_en) during the
previous clock cycle was rejected because the FIFO is
empty. Underflowing the FIFO is not destructive to the
FIFO.

Table 1-7: Interface Signals for FIFOs with a Common Clock (Cont’d)

Name Directio
n Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=23

FIFO Generator v13.1 www.xilinx.com 24
PG057 April 5, 2017

Chapter 1: Overview

prog_empty_thresh Input Programmable Empty Threshold: This signal is used to set
the threshold value for the assertion and de-assertion of
the programmable empty (prog_empty) flag. The
threshold can be dynamically set in-circuit during reset.
you can either choose to set the assert and negate
threshold to the same value (using
PROG_EMPTY_THRESH), or you can control these values
independently (using prog_empty_thresh_assert and
prog_empty_thresh_negate).

prog_empty_thresh_assert Input Programmable Empty Threshold Assert: This signal is used
to set the lower threshold value for the programmable
empty flag, which defines when the signal is asserted. The
threshold can be dynamically set in-circuit during reset.

prog_empty_thresh_negate Input Programmable Empty Threshold Negate: This signal is
used to set the upper threshold value for the
programmable empty flag, which defines when the signal
is de-asserted. The threshold can be dynamically set
in-circuit during reset.

sbiterr Output Single Bit Error: Indicates that the ECC decoder detected
and fixed a single-bit error.

dbiterr Output Double Bit Error: Indicates that the ECC decoder detected
a double-bit error and data in the FIFO core is corrupted.

injectsbiterr Input Injects a single bit error if the ECC feature is used. For
detailed information, see Chapter 3, “Designing with the
Core.”

injectdbiterr Input Injects a double bit error if the ECC feature is used. For
detailed information, see Chapter 3, “Designing with the
Core.”

sleep Input Dynamic shutdown power saving. If sleep is active, the
FIFO is in power saving mode.
Note: Available only for UltraScale device built-in FIFOs.

wr_rst_busy Output When asserted, this signal indicates that the write domain
is in reset state.
Note: Available only for UltraScale device built-in FIFOs, and
Common Clock Block RAM/Distributed RAM/Shift Register FIFOs
with synchronous reset.

Table 1-7: Interface Signals for FIFOs with a Common Clock (Cont’d)

Name Directio
n Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=24

FIFO Generator v13.1 www.xilinx.com 25
PG057 April 5, 2017

Chapter 1: Overview

AXI FIFO Feature Overview

Easy Integration of Independent FIFOs for Read and Write Channels

For AXI memory mapped interfaces, AXI specifies Write Channels and Read Channels. Write
Channels include a Write Address Channel, Write Data Channel and Write Response
Channel. Read Channels include a Read Address Channel and Read Data Channel. The FIFO
Generator core provides the ability to generate either Write Channels or Read Channels, or
both Write Channels and Read Channels for AXI memory mapped. Three FIFOs are
integrated for Write Channels and two FIFOs are integrated for Read Channels. When both
Write and Read Channels are selected, the FIFO Generator core integrates five independent
FIFOs.

For AXI memory mapped interfaces, the FIFO Generator core provides the ability to
implement independent FIFOs for each channel, as shown in Figure 1-8. For each channel,
the core can be independently configured to generate a block RAM or distributed memory
or built-in based FIFO. The depth of each FIFO can also be independently configured.

rd_rst_busy Output When asserted, this signal indicates that the read domain
is in reset state.
Note: Available only for UltraScale device built-in FIFOs, and
Common Clock Block RAM/Distributed RAM/Shift Register FIFOs
with synchronous reset.

Notes:
1. For 7 series devices using the Built-in FIFO configuration, this signal is connected to the almostfull signal of the

FIFO18E1/FIFO36E1 primitive.
2. Valid range of values shown in the IDE are the actual values even though they are grayed out for some selections.
3. For 7 series devices using the Built-in FIFO configuration, this signal is connected to the almostempty signal of the

FIFO18E1/FIFO36E1 primitive.

Table 1-7: Interface Signals for FIFOs with a Common Clock (Cont’d)

Name Directio
n Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=25

FIFO Generator v13.1 www.xilinx.com 26
PG057 April 5, 2017

Chapter 1: Overview

Clock and Reset Implementation and Operation

For the AXI4-Stream and AXI memory mapped interfaces, all instantiated FIFOs share clock
and asynchronous active-Low reset signals (Figure 1-8). In addition, all instantiated FIFOs
can support either independent clock or common clock operation.

The independent clock configuration of the FIFO Generator core enables you to implement
unique clock domains on the write and read ports. The FIFO Generator core handles the
synchronization between clock domains, placing no requirements on phase and frequency.
When data buffering in a single clock domain is required, the FIFO Generator core can be
used to generate a core optimized for a single clock by selecting the common clock option.

Automatic FIFO Width Calculation

AXI FIFOs support symmetric widths for the FIFO Read and Write ports. The FIFO width for
the AXI FIFO is determined by the selected interface type (AXI4-Stream or AXI memory
mapped) and user-selected signals and signal widths within the given interface. The AXI

X-Ref Target - Figure 1-8

Figure 1-8: AXI Memory Mapped FIFO Block Diagram

Write Clock
Domain

Read Clock
Domain

Write Clock
Domain

Read Clock
Domain

Write Clock
Domain

Write Clock
Domain

Read Clock
Domain

Write Clock
Domain

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

VALID

READY

CHANNEL INFO

Read Clock
Domain

Read Clock
Domain

S_ACLK

S_ARESETN

Write
Address
Channel

Write Data
Channel

Write
Response

Channel

Read
Address
Channel

Read
Response

Channel

Write Channels

Read Channels

Write
Address
Channel

Write Data
Channel

Write
Response
Channel

Read
Address
Channel

Read
Response
Channel

Write Channels

Read Channels

M_ACLK

OptionalMandatory
DS317_09_081210

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=26

FIFO Generator v13.1 www.xilinx.com 27
PG057 April 5, 2017

Chapter 1: Overview

FIFO width is then calculated automatically by the aggregation of all signal widths in a
respective channel.

Supported Configuration, Memory and Application Types

The FIFO Generator core provides selectable configuration options: FIFO, Register Slice and
Pass Through Wire. The core implements FIFOs built from block RAM or distributed RAM
memory types. Depending on the application type selection (Data FIFO, Packet FIFO, or Low
latency FIFO), the core combines memory primitives in an optimal configuration based on
the calculated width and selected depth of the FIFO.

Register slices

Each AXI channel transfers information in only one direction, and there is no requirement
for a fixed relationship between the various channels. This enables the insertion of a
register slice in any channel, at the cost of an additional cycle of latency, but providing
maximum frequency of operation.

The core provides two register slice options: fully registered (two stage pipeline register)
and light weight (one stage pipeline register).

Pass Through Wire

The core offers the pass through wire option for the AXI memory mapped interface making
all input signals pass through to output.

Packet FIFO

The Packet FIFO configuration delays the start of packet (burst) transmission until the end
(LAST beat) of the packet is received. This ensures uninterrupted availability of data once
master-side transfer begins, thus avoiding source-end stalling of the AXI data channel. This
is valuable in applications in which data originates at a master device. Examples of this
include a real-time signal channels that operate at a lower data-rate than the downstream
AXI switch and/or slave destination, such as a high-bandwidth memory.

The Packet FIFO principle applies to both AXI4/AXI3 memory-mapped burst transactions
(both write and read) and AXI4-Stream packet transmissions. This feature is sometimes
referred to as “store-and-forward”, referring to the behavior for memory-mapped writes
and stream transmissions. For memory-mapped reads, transactions are delayed until there
are enough vacancies in the FIFO to guarantee uninterrupted buffering of the entire read
data packet, as predicted by the AR-channel transaction. Read transactions do not actually
rely on the RLAST signal.

The Packet FIFO feature is supported for Common Clock AXI4/AXI3 and Common/
Independent Clock AXI4-Stream configurations. It is not supported for AXI4-Lite
configurations.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=27

FIFO Generator v13.1 www.xilinx.com 28
PG057 April 5, 2017

Chapter 1: Overview

AXI4-Stream Packet FIFO

The FIFO Generator core uses AXI4-Stream Interface for the AXI4-Stream Packet FIFO
feature. The FIFO Generator core indicates a tvalid on the AXI4-Stream Master side when
a complete packet (marked by tlast) is received on the AXI4-Stream Slave side or when
the AXI4-Stream FIFO is FULL. Indicating tvalid on the Master side due to the FIFO
becoming full is an exceptional case, and in such case, the Packet FIFO acts as a normal
FWFT FIFO forwarding the data received on the Slave side to the Master side until it receives
tlast on the Slave side.

AXI4/AXI3 Packet FIFO

The FIFO Generator core uses the AXI memory mapped interface for the AXI4/AXI3 Packet
FIFO feature (for both write and read channels).

• Packet FIFO on Write Channels: The FIFO Generator core indicates an awvalid on the
AXI AW channel Master side when a complete packet (marked by wlast) is received on
the AXI W channel Slave side. The Write Channel Packet FIFO is coupled to the Write
Address Channel so that AW transfers are not posted to the AXI Write Address Channel
until all of the data needed for the requested transfer is received on the AXI W channel
Slave side. The minimum depth of the W channel is set to 512 and enables the Write
Channel Packet FIFO to hold two packets of its maximum length.

• Packet FIFO on Read Channels: The FIFO Generator core indicates an rvalid on the
AXI R channel Slave side when a complete packet (marked by rlast) is received on the
AXI R channel Master side. The Read Channel Packet FIFO is coupled to the Read
Address Channel so that AR transfers are not posted to the AXI Read Address Channel if
there is not enough space left in the Packet FIFO for the associated data. The minimum
depth of the R channel is set to 512, and enables the Read Channel Packet FIFO to hold
two packets of its maximum length.

Low Latency FIFO

The core offers the Low Latency FIFO option for the memory mapped and AXI4-Stream
interfaces in common clock mode of operation. In this mode, the latency is 1.

Error Injection and Correction (ECC) Support

The block RAM macros are equipped with built-in Error Injection and Correction Checking.
This feature is available for both the common and independent clock block RAM FIFOs.

For more details on Error Injection and Correction, see Built-in Error Correction Checking in
Chapter 3.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=28

FIFO Generator v13.1 www.xilinx.com 29
PG057 April 5, 2017

Chapter 1: Overview

AXI Slave Interface for Performing Writes

AXI FIFOs provide an AXI Slave interface for performing Writes. In Figure 1-4, the AXI
Master provides INFORMATION and VALID signals; the AXI FIFO accepts the INFORMATION
by asserting the READY signal. The READY signal is de-asserted only when the FIFO is full.

AXI Master Interface for Performing Reads

The AXI FIFO provides an AXI Master interface for performing Reads. In Figure 1-4, the AXI
FIFO provides INFORMATION and VALID signals; upon detecting a READY signal asserted
from the AXI Slave interface, the AXI FIFO will place the next INFORMATION on the bus. The
VALID signal is de-asserted only when the FIFO is empty.

AXI FIFO Feature Summary
Table 1-8 summarizes the supported FIFO Generator core features for each clock
configuration and memory type.

AXI FIFO Interface Signals
The following sections define the AXI FIFO interface signals.

The value of s_axis_tready, s_axi_awready, s_axi_wready, m_axi_bready,
s_axi_arready and m_axi_rready is 1 when s_aresetn is 0. To avoid unexpected
behavior, do not perform any transactions while s_aresetn is 0.

Table 1-8: AXI FIFO Configuration Summary

FIFO Options
Common Clock Independent Clock

Block RAM/
Built-in Distributed Memory Block RAM/Built-in Distributed

Memory

Full(1)    

Programmable
Full(2)

   

Empty(3)    

Programmable
Empty(2)

   

Data Counts(4)    

ECC  

Notes:
1. Mapped to s_axis_tready/s_axi_awready/s_axi_wready/m_axi_bready/s_axi_arready/m_axi_rready depending on the

Handshake Flag Options in the IDE.
2. Provided as sideband signal depending on the IDE option.
3. Mapped to m_axis_tvalid/m_axi_awvalid/m_axi_wvalid/s_axi_bvalid/m_axi_arvalid/s_axi_rvalid depending on the

Handshake Flag Options in the IDE.
4. Built-in FIFO does not support data counts feature.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=29

FIFO Generator v13.1 www.xilinx.com 30
PG057 April 5, 2017

Chapter 1: Overview

Global Signals

Table 1-9 defines the global interface signals for AXI FIFO.

The s_aresetn signal causes a reset of the entire core logic. It is an active-Low,
asynchronous input synchronized internally in the core before use. The initial hardware
reset should be generated by the user.

AXI4-Stream FIFO Interface Signals

Table 1-10 defines the AXI4-Stream FIFO interface signals.

Table 1-9: AXI FIFO - Global Interface Signals

Name Direction Description

Global Clock and Reset Signals Mapped to FIFO Clock and Reset Inputs

m_aclk Input Global Master Interface Clock: All signals on Master
Interface of AXI FIFO are synchronous to m_aclk

s_aclk Input Global Slave Interface Clock: All signals are sampled on
the rising edge of this clock.

s_aresetn Input Global reset: This signal is active-Low.

Clock Enable Signals Gated with FIFO's wr_en and rd_en Inputs

s_aclk_en Input Slave Clock Enable signal gated with wr_en signal of FIFO

m_aclk_en Input Slave Clock Enable signal gated with rd_en signal of FIFO

Table 1-10: AXI4-Stream FIFO Interface Signals

Name Direction Description

AXI4-Stream Interface: Handshake Signals for FIFO Write Interface

s_axis_tvalid Input TVALID: Indicates that the master is driving a valid transfer.
A transfer takes place when both TVALID and TREADY are
asserted.

s_axis_tready Output TREADY: Indicates that the slave can accept a transfer in
the current cycle.

AXI4-Stream Interface: Information Signals Mapped to FIFO Data Input (din) Bus

s_axis_tdata[m-1:0] Input TDATA: The primary payload that is used to provide the
data that is passing across the interface. The width of the
data payload is an integer number of bytes.

s_axis_tstrb[m/8-1:0] Input TSTRB: The byte qualifier that indicates whether the
content of the associated byte of TDATA is processed as a
data byte or a position byte. For a 64-bit DATA, bit 0
corresponds to the least significant byte on DATA, and bit
7 corresponds to the most significant byte. For example:
• STROBE[0] = 1b, DATA[7:0] is valid
• STROBE[7] = 0b, DATA[63:56] is not valid

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=30

FIFO Generator v13.1 www.xilinx.com 31
PG057 April 5, 2017

Chapter 1: Overview

s_axis_tkeep[m/8-1:0] Input TKEEP: The byte qualifier that indicates whether the
content of the associated byte of TDATA is processed as
part of the data stream. Associated bytes that have the
TKEEP byte qualifier deasserted are null bytes and can be
removed from the data stream. For a 64-bit DATA, bit 0
corresponds to the least significant byte on DATA, and bit
7 corresponds to the most significant byte. For example:
• KEEP[0] = 1b, DATA[7:0] is a NULL byte
• KEEP [7] = 0b, DATA[63:56] is not a NULL byte

s_axis_tlast Input TLAST: Indicates the boundary of a packet.

s_axis_tid[m:0] Input TID: The data stream identifier that indicates different
streams of data.

s_axis_tdest[m:0] Input TDEST: Provides routing information for the data stream.

s_axis_tuser[m:0] Input TUSER: The user-defined sideband information that can be
transmitted alongside the data stream.

AXI4-Stream Interface: Handshake Signals for FIFO Read Interface

m_axis_tvalid Output TVALID: Indicates that the master is driving a valid transfer.
A transfer takes place when both tvalid and tready are
asserted.

m_axis_tready Input TREADY: Indicates that the slave can accept a transfer in
the current cycle.

AXI4-Stream Interface: Information Signals Derived from FIFO Data Output (dout) Bus

m_axis_tdata[m-1:0] Output TDATA: The primary payload that is used to provide the
data that is passing across the interface. The width of the
data payload is an integer number of bytes.

m_axis_tstrb[m/8-1:0] Output TSTRB: The byte qualifier that indicates whether the
content of the associated byte of TDATA is processed as a
data byte or a position byte. For a 64-bit DATA, bit 0
corresponds to the least significant byte on DATA, and bit
7 corresponds to the most significant byte. For example:
• STROBE[0] = 1b, DATA[7:0] is valid
• STROBE[7] = 0b, DATA[63:56] is not valid

m_axis_tkeep[m/8-1:0] Output TKEEP: The byte qualifier that indicates whether the
content of the associated byte of TDATA is processed as
part of the data stream. Associated bytes that have the
TKEEP byte qualifier deasserted are null bytes and can be
removed from the data stream. For a 64-bit DATA, bit 0
corresponds to the least significant byte on DATA, and bit
7 corresponds to the most significant byte. For example:
• KEEP[0] = 1b, DATA[7:0] is a NULL byte
• KEEP [7] = 0b, DATA[63:56] is not a NULL byte

m_axis_tlast Output TLAST: Indicates the boundary of a packet.

m_axis_tid[m:0] Output TID: The data stream identifier that indicates different
streams of data.

Table 1-10: AXI4-Stream FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=31

FIFO Generator v13.1 www.xilinx.com 32
PG057 April 5, 2017

Chapter 1: Overview

m_axis_tdest[m:0] Output TDEST. Provides routing information for the data stream.

m_axis_tuser[m:0] Output TUSER: The user-defined sideband information that can be
transmitted alongside the data stream.

AXI4-Stream FIFO: Optional Sideband Signals

axis_prog_full_thresh[d:0] Input Programmable Full Threshold: This signal is used to input
the threshold value for the assertion and de-assertion of
the programmable full (PROG_FULL) flag. The threshold
can be dynamically set in-circuit during reset.
D = log2(FIFO depth)-1

axis_prog_empty_thresh[d:0] Input Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable empty (prog_empty)
flag. The threshold can be dynamically set in-circuit during
reset.
D = log2(FIFO depth)-1

axis_injectsbiterr Input Inject Single-Bit Error: Injects a single-bit error if the ECC
feature is used.

axis_injectdbiterr Input Inject Double-Bit Error: Injects a double-bit error if the ECC
feature is used.

axis_sbiterr Output Single-Bit Error: Indicates that the ECC decoder detected
and fixed a single-bit error.

axis_dbiterr Output Double-Bit Error: Indicates that the ECC decoder detected
a double-bit error and data in the FIFO core is corrupted.

axis_overflow Output Overflow: Indicates that a write request during the prior
clock cycle was rejected, because the FIFO is full.
Overflowing the FIFO is not destructive to the FIFO.
Note: This signal may have a constant value of 0 because
the core does not allow additional writes when the FIFO is
full.

axis_wr_data_count[d:0] Output Write Data Count: This bus indicates the number of words
written into the FIFO. The count is guaranteed to never
underreport the number of words in the FIFO, to ensure
you never overflow the FIFO. The exception to this
behavior is when a write operation occurs at the rising
edge of write clock; that write operation will only be
reflected on wr_data_count at the next rising clock edge.
D = log2(FIFO depth)+1

axis_underflow Output Underflow: Indicates that read request during the previous
clock cycle was rejected because the FIFO is empty.
Underflowing the FIFO is not destructive to the FIFO.
Note: This signal may have a constant value of 0 because
the core does not allow additional reads when the FIFO is
empty.

Table 1-10: AXI4-Stream FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=32

FIFO Generator v13.1 www.xilinx.com 33
PG057 April 5, 2017

Chapter 1: Overview

AXI4/AXI3 FIFO Interface Signals

Write Channels

Table 1-11 defines the AXI4/AXI3 FIFO interface signals for Write Address Channel.

axis_rd_data_count[d:0] Output Read Data Count: This bus indicates the number of words
available for reading in the FIFO. The count is guaranteed
to never over-report the number of words available for
reading, to ensure that you do not underflow the FIFO. The
exception to this behavior is when the read operation
occurs at the rising edge of read clock; that read operation
is only reflected on rd_data_count at the next rising clock
edge.
D = log2(FIFO depth)+1

axis_data_count[d:0] Output Data Count: This bus indicates the number of words stored
in the FIFO.
D = log2(FIFO depth)+1

axis_prog_full Output Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal to the
programmable threshold. It is deasserted when the
number of words in the FIFO is less than the
programmable threshold.

axis_prog_empty Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the
number of words in the FIFO exceeds the programmable
threshold.

Table 1-11: AXI4/AXI3 Write Address Channel FIFO Interface Signals

Name Direction Description

AXI4/AXI3 Interface Write Address Channel: Information Signals Mapped to FIFO Data Input (din)
Bus

s_axi_awid[m:0] Input Write Address ID: Identification tag for the write
address group of signals.

s_axi_awaddr[m:0] Input Write Address: The write address bus gives the
address of the first transfer in a write burst
transaction. The associated control signals are used
to determine the addresses of the remaining
transfers in the burst.

s_axi_awlen[7:0](1) Input Burst Length: The burst length gives the exact
number of transfers in a burst. This information
determines the number of data transfers associated
with the address.

Table 1-10: AXI4-Stream FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=33

FIFO Generator v13.1 www.xilinx.com 34
PG057 April 5, 2017

Chapter 1: Overview

s_axi_awsize[2:0] Input Burst Size: Indicates the size of each transfer in the
burst. Byte lane strobes indicate exactly which byte
lanes to update.

s_axi_awburst[1:0] Input Burst Type: The burst type, coupled with the size
information, details how the address for each transfer
within the burst is calculated.

s_axi_awlock[1:0](2) Input Lock Type: This signal provides additional
information about the atomic characteristics of the
transfer.

s_axi_awcache[3:0] Input Cache Type: Indicates the bufferable, cacheable,
write-through, write-back, and allocate attributes of
the transaction.

s_axi_awprot[2:0] Input Protection Type: Indicates the normal, privileged, or
secure protection level of the transaction and
whether the transaction is a data access or an
instruction access.

s_axi_awqos[3:0] Input Quality of Service (QoS): Sent on the write address
channel for each write transaction.

s_axi_awregion[3:0](3) Input Region Identifier: Sent on the write address channel
for each write transaction.

s_axi_awuser[m:0] Input Write Address Channel User

AXI4/AXI3 Interface Write Address Channel: Handshake Signals for FIFO Write Interface

s_axi_awvalid Input Write Address Valid: Indicates that valid write address
and control information are available:
• 1 = Address and control information available.
• 0 = Address and control information not available.
The address and control information remain stable
until the address acknowledge signal, awready, goes
High.

s_axi_awready Output Write Address Ready: Indicates that the slave is ready
to accept an address and associated control signals:
• 1 = Slave ready.
• 0 = Slave not ready.

AXI4/AXI3 Interface Write Address Channel: Information Signals Derived from
FIFO Data Output (dout) Bus

m_axi_awid[m:0] Output Write Address ID: This signal is the identification tag
for the write address group of signals.

m_axi_awaddr[m:0] Output Write Address: The write address bus gives the
address of the first transfer in a write burst
transaction. The associated control signals are used
to determine the addresses of the remaining
transfers in the burst.

Table 1-11: AXI4/AXI3 Write Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=34

FIFO Generator v13.1 www.xilinx.com 35
PG057 April 5, 2017

Chapter 1: Overview

m_axi_awlen[7:0](1) Output Burst Length: The burst length gives the exact
number of transfers in a burst. This information
determines the number of data transfers associated
with the address.

m_axi_awsize[2:0] Output Burst Size: This signal indicates the size of each
transfer in the burst. Byte lane strobes indicate
exactly which byte lanes to update.

m_axi_awburst[1:0] Output Burst Type: The burst type, coupled with the size
information, details how the address for each transfer
within the burst is calculated.

m_axi_awlock[1:0](2) Output Lock Type: This signal provides additional
information about the atomic characteristics of the
transfer.

m_axi_awcache[3:0] Output Cache Type: This signal indicates the bufferable,
cacheable, write-through, write-back, and allocate
attributes of the transaction.

m_axi_awprot[2:0] Output Protection Type: This signal indicates the normal,
privileged, or secure protection level of the
transaction and whether the transaction is a data
access or an instruction access.

m_axi_awqos[3:0] Output Quality of Service (QoS): Sent on the write address
channel for each write transaction.

m_axi_awregion[3:0](3) Output Region Identifier: Sent on the write address channel
for each write transaction.

m_axi_awuser[m:0] Output Write Address Channel User

AXI4/AXI3 Interface Write Address Channel: Handshake Signals for FIFO Read Interface

m_axi_awvalid Output Write Address Valid: Indicates that valid write address
and control information are available:
• 1 = address and control information available
• 0 = address and control information not available.
The address and control information remain stable
until the address acknowledge signal, AWREADY,
goes high.

m_axi_awready Input Write Address Ready: Indicates that the slave is ready
to accept an address and associated control signals:
• 1 = Slave ready.
• 0 = Slave not ready.

AXI4/AXI3 Write Address Channel FIFO: Optional Sideband Signals

axi_aw_prog_full_thresh[d:0] Input Programmable Full Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable full (prog_full)
flag. The threshold can be dynamically set in-circuit
during reset.
D = log2(FIFO depth)-1

Table 1-11: AXI4/AXI3 Write Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=35

FIFO Generator v13.1 www.xilinx.com 36
PG057 April 5, 2017

Chapter 1: Overview

axi_aw_prog_empty_thresh[d:0] Input Programmable Empty Threshold: This signal is used
to input the threshold value for the assertion and
de-assertion of the programmable empty
(prog_empty) flag. The threshold can be dynamically
set in-circuit during reset.
D = log2(FIFO depth)-1

axi_aw_injectsbiterr Input Inject Single-Bit Error: Injects a single bit error if the
ECC feature is used.

axi_aw_injectdbiterr Input Inject Double-Bit Error: Injects a double bit error if
the ECC feature is used.

axi_aw_sbiterr Output Single Bit Error: Indicates that the ECC decoder
detected and fixed a single-bit error.

axi_aw_dbiterr Output Double Bit Error: Indicates that the ECC decoder
detected a double-bit error and data in the FIFO core
is corrupted.

axi_aw_overflow Output Overflow: This signal indicates that a write request
during the prior clock cycle was rejected, because the
FIFO is full. Overflowing the FIFO is not destructive to
the FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional writes
when the FIFO is full.

axi_aw_wr_data_count[d:0] Output Write Data Count: This bus indicates the number of
words written into the FIFO. The count is guaranteed
to never underreport the number of words in the
FIFO, to ensure you never overflow the FIFO. The
exception to this behavior is when a write operation
occurs at the rising edge of write clock, that write
operation will only be reflected on wr_data_count at
the next rising clock edge.
D = log2(FIFO depth)+1

axi_aw_underflow Output Underflow: Indicates that the read request during the
previous clock cycle was rejected because the FIFO is
empty. Underflowing the FIFO is not destructive to
the FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional reads
when the FIFO is empty.

axi_aw_rd_data_count[d:0] Output Read Data Count: This bus indicates the number of
words available for reading in the FIFO. The count is
guaranteed to never over-report the number of
words available for reading, to ensure that you do not
underflow the FIFO. The exception to this behavior is
when the read operation occurs at the rising edge of
read clock, that read operation is only reflected on
rd_data_count at the next rising clock edge.
D = log2(FIFO depth)+1

Table 1-11: AXI4/AXI3 Write Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=36

FIFO Generator v13.1 www.xilinx.com 37
PG057 April 5, 2017

Chapter 1: Overview

Table 1-12 defines the AXI4/AXI3 FIFO interface signals for Write Data Channel.

axi_aw_data_count[d:0] Output Data Count: This bus indicates the number of words
stored in the FIFO.
D = log2(FIFO depth)+1

axi_aw_prog_full Output Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal
to the programmable threshold. It is deasserted
when the number of words in the FIFO is less than the
programmable threshold.

axi_aw_prog_empty Output Programmable Empty: This signal is asserted when
the number of words in the FIFO is less than or equal
to the programmable threshold. It is deasserted
when the number of words in the FIFO exceeds the
programmable threshold.

Notes:
1. *_awlen port width is 8 for AXI4 and 4 for AXI3.
2. *_awlock port width is 1 for AXI4 and 2 for AXI3.
3. Port not available for AXI3.

Table 1-12: AXI4/AXI3 Write Data Channel FIFO Interface Signals

Name Direction Description

AXI4/AXI3 Interface Write Data Channel: Information Signals mapped to FIFO Data Input (din) Bus

s_axi_wid[m:0](1) Input Write ID Tag: This signal is the ID tag of the write data
transfer. The WID value must match the AWID value of
the write transaction.

s_axi_wdata[m-1:0] Input Write Data: The write data bus can be 8, 16, 32, 64, 128,
256 or 512 bits wide.

s_axi_wstrb[m/8-1:0] Input Write Strobes: Indicates which byte lanes to update in
memory. There is one write strobe for each eight bits
of the write data bus. Therefore, WSTRB[n] corresponds
to WDATA[(8 × n) + 7:(8 × n)]. For a 64-bit DATA, bit 0
corresponds to the least significant byte on DATA, and
bit 7 corresponds to the most significant byte. For
example:
• STROBE[0] = 1b, DATA[7:0] is valid
• STROBE[7] = 0b, DATA[63:56] is not valid

s_axi_wlast Input Write Last: Indicates the last transfer in a write burst.

s_axi_wuser[m:0] Input Write Data Channel User

AXI4/AXI3 Interface Write Data Channel: Handshake Signals for FIFO Write Interface

s_axi_wvalid Input Write Valid: Indicates that valid write data and strobes
are available:
• 1 = Write data and strobes available.
• 0 = Write data and strobes not available.

Table 1-11: AXI4/AXI3 Write Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=37

FIFO Generator v13.1 www.xilinx.com 38
PG057 April 5, 2017

Chapter 1: Overview

s_axi_wready Output Write Ready: Indicates that the slave can accept the
write data:
• 1 = Slave ready.
• 0 = Slave not ready.

AXI4/AXI3 Interface Write Data Channel: Information Signals Derived from FIFO Data Output
(dout) Bus

m_axi_wid[m:0](1) Output Write ID Tag: This signal is the ID tag of the write data
transfer. The WID value must match the AWID value of
the write transaction.

m_axi_wdata[m-1:0] Output Write Data: The write data bus can be 8, 16, 32, 64, 128,
256 or 512 bits wide.

m_axi_wstrb[m/8-1:0] Output Write Strobes: Indicates which byte lanes to update in
memory. There is one write strobe for each eight bits
of the write data bus. Therefore, WSTRB[n] corresponds
to WDATA[(8 × n) + 7:(8 × n)]. For a 64-bit DATA, bit 0
corresponds to the least significant byte on DATA, and
bit 7 corresponds to the most significant byte. For
example:
• STROBE[0] = 1b, DATA[7:0] is valid
• STROBE[7] = 0b, DATA[63:56] is not valid

m_axi_wlast Output Write Last: Indicates the last transfer in a write burst.

m_axi_wuser[m:0] Output Write Data Channel User

AXI4/AXI3 Interface Write Data Channel: Handshake Signals for FIFO Read Interface

m_axi_wvalid Output Write valid: Indicates that valid write data and strobes
are available:
• 1 = Write data and strobes available .
• 0 = Write data and strobes not available.

m_axi_wready Input Write ready: Indicates that the slave can accept the
write data:
• 1 = Slave ready.
• 0 = Slave not ready.

AXI4/AXI3 Write Data Channel FIFO: Optional Sideband Signals

axi_w_prog_full_thresh[d:0] Input Programmable Full Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable full (prog_full) flag.
The threshold can be dynamically set in-circuit during
reset.
D = log2(FIFO depth)-1

axi_w_prog_empty_thresh[d:0] Input Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable empty
(prog_empty) flag. The threshold can be dynamically
set in-circuit during reset.
D = log2(FIFO depth)-1

Table 1-12: AXI4/AXI3 Write Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=38

FIFO Generator v13.1 www.xilinx.com 39
PG057 April 5, 2017

Chapter 1: Overview

axi_w_injectsbiterr Input Inject Single-Bit Error: Injects a single bit error if the
ECC feature is used.

axi_w_injectdbiterr Input Inject Double-Bit Error: Injects a double bit error if the
ECC feature is used.

axi_w_sbiterr Output Single-Bit Error: Indicates that the ECC decoder
detected and fixed a single-bit error.

axi_w_dbiterr Output Double-Bit Error: Indicates that the ECC decoder
detected a double-bit error and data in the FIFO core
is corrupted.

axi_w_overflow Output Overflow: This signal indicates that a write request
during the prior clock cycle was rejected, because the
FIFO is full. Overflowing the FIFO is not destructive to
the FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional writes
when the FIFO is full.

axi_w_wr_data_count[d:0] Output Write Data Count: This bus indicates the number of
words written into the FIFO. The count is guaranteed to
never underreport the number of words in the FIFO, to
ensure you never overflow the FIFO. The exception to
this behavior is when a write operation occurs at the
rising edge of write clock, that write operation will only
be reflected on wr_data_count at the next rising clock
edge.
D = log2(FIFO depth)+1

axi_w_underflow Output Underflow: Indicates that read request during the
previous clock cycle was rejected because the FIFO is
empty. Underflowing the FIFO is not destructive to the
FIFO

axi_w_rd_data_count[d:0] Output Read Data Count: This bus indicates the number of
words available for reading in the FIFO. The count is
guaranteed to never over-report the number of words
available for reading, to ensure that you do not
underflow the FIFO. The exception to this behavior is
when the read operation occurs at the rising edge of
read clock, that read operation is only reflected on
rd_data_count at the next rising clock edge.
D = log2(FIFO depth)+1

axi_w_data_count[d:0] Output Data Count: This bus indicates the number of words
stored in the FIFO.
D = log2(FIFO depth)+1

axi_w_prog_full Output Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal to
the programmable threshold. It is deasserted when the
number of words in the FIFO is less than the
programmable threshold.

Table 1-12: AXI4/AXI3 Write Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=39

FIFO Generator v13.1 www.xilinx.com 40
PG057 April 5, 2017

Chapter 1: Overview

Table 1-13 defines the AXI4/AXI3 FIFO interface signals for Write Response Channel.

axi_w_prog_empty Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the
number of words in the FIFO exceeds the
programmable threshold.

Notes:
1. Port not available for AXI4.

Table 1-13: AXI4/AXI3 Write Response Channel FIFO Interface Signals

Name Direction Description

AXI4/AXI3 Interface Write Response Channel: Information Signals Mapped to
FIFO Data Output (dout) Bus

s_axi_bid[m:0] Output Response ID: The identification tag of the write
response. The BID value must match the AWID value of
the write transaction to which the slave is responding.

s_axi_bresp[1:0] Output Write Response: Indicates the status of the write
transaction. The allowable responses are OKAY,
EXOKAY, SLVERR, and DECERR.

s_axi_buser[m:0] Output Write Response Channel User

AXI4/AXI3 Interface Write Response Channel: Handshake Signals for FIFO Read Interface

s_axi_bvalid Output Write Response Valid: Indicates that a valid write
response is available:
• 1 = Write response available.
• 0 = Write response not available.

s_axi_bready Input Response Ready: Indicates that the master can accept
the response information.
• 1 = Master ready.
• 0 = Master not ready.

AXI4/AXI3 Interface Write Response Channel: Information Signals Derived from FIFO Data Input
(din) Bus

m_axi_bid[m:0] Input Response ID: The identification tag of the write
response. The BID value must match the AWID value of
the write transaction to which the slave is responding.

m_axi_bresp[1:0] Input Write Response: Indicates the status of the write
transaction. The allowable responses are OKAY,
EXOKAY, SLVERR, and DECERR.

m_axi_buser[m:0] Input Write Response Channel User

Table 1-12: AXI4/AXI3 Write Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=40

FIFO Generator v13.1 www.xilinx.com 41
PG057 April 5, 2017

Chapter 1: Overview

AXI4/AXI3 Interface Write Response Channel: Handshake Signals for FIFO Write Interface

m_axi_bvalid Input Write Response Valid: Indicates that a valid write
response is available:
• 1 = Write response available.
• 0 = Write response not available.

m_axi_bready Output Response Ready: Indicates that the master can accept
the response information.
• 1 = Master ready.
• 0 = Master not ready.

AXI4/AXI3 Write Response Channel FIFO: Optional Sideband Signals

axi_b_prog_full_thresh[d:0] Input Programmable Full Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable full (prog_full) flag.
The threshold can be dynamically set in-circuit during
reset.
D = log2(FIFO depth)-1

axi_b_prog_empty_thresh[d:0] Input Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable empty (prog_empty)
flag. The threshold can be dynamically set in-circuit
during reset.
D = log2(FIFO depth)-1

axi_b_injectsbiterr Input Inject Single-Bit Error: Injects a single bit error if the
ECC feature is used.

axi_b_injectdbiterr Input Inject Double-Bit Error: Injects a double bit error if the
ECC feature is used.

axi_b_sbiterr Output Single Bit Error: Indicates that the ECC decoder
detected and fixed a single-bit error.

axi_b_dbiterr Output Double Bit Error: Indicates that the ECC decoder
detected a double-bit error and data in the FIFO core is
corrupted.

axi_b_overflow Output Overflow: This signal indicates that a write request
during the prior clock cycle was rejected, because the
FIFO is full. Overflowing the FIFO is not destructive to
the FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional writes when
the FIFO is full.

Table 1-13: AXI4/AXI3 Write Response Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=41

FIFO Generator v13.1 www.xilinx.com 42
PG057 April 5, 2017

Chapter 1: Overview

axi_b_wr_data_count[d:0] Output Write Data Count: This bus indicates the number of
words written into the FIFO. The count is guaranteed to
never underreport the number of words in the FIFO, to
ensure you never overflow the FIFO. The exception to
this behavior is when a write operation occurs at the
rising edge of write clock, that write operation will only
be reflected on wr_data_count at the next rising clock
edge.
D = log2(FIFO depth)+1

axi_b_underflow Output Underflow: Indicates that read request during the
previous clock cycle was rejected because the FIFO is
empty. Underflowing the FIFO is not destructive to the
FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional reads when
the FIFO is empty.

axi_b_rd_data_count[d:0] Output Read Data Count: This bus indicates the number of
words available for reading in the FIFO. The count is
guaranteed to never over-report the number of words
available for reading, to ensure that you do not
underflow the FIFO. The exception to this behavior is
when the read operation occurs at the rising edge of
read clock, that read operation is only reflected on
rd_data_count at the next rising clock edge.
D = log2(FIFO depth)+1

axi_b_data_count[d:0] Output Data Count: This bus indicates the number of words
stored in the FIFO.
D = log2(FIFO depth)+1

axi_b_prog_full Output Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal to
the programmable threshold. It is deasserted when the
number of words in the FIFO is less than the
programmable threshold.

axi_b_prog_empty Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the
number of words in the FIFO exceeds the
programmable threshold.

Table 1-13: AXI4/AXI3 Write Response Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=42

FIFO Generator v13.1 www.xilinx.com 43
PG057 April 5, 2017

Chapter 1: Overview

Read Channels

Table 1-14 defines the AXI4/AXI3 FIFO interface signals for Read Address Channel.

Table 1-14: AXI4/AXI3 Read Address Channel FIFO Interface Signals

Name Direction Description

AXI4/AXI3 Interface Read Address Channel: Information Signals Mapped to FIFO Data Input (din)
Bus

s_axi_arid[m:0] Input Read Address ID: This signal is the identification tag
for the read address group of signals.

s_axi_araddr[m:0] Input Read Address: The read address bus gives the initial
address of a read burst transaction.
Only the start address of the burst is provided and the
control signals that are issued alongside the address
detail how the address is calculated for the remaining
transfers in the burst.

s_axi_arlen[7:0](1) Input Burst Length: The burst length gives the exact number
of transfers in a burst. This information determines the
number of data transfers associated with the address.

s_axi_arsize[2:0] Input Burst Size: This signal indicates the size of each
transfer in the burst.

s_axi_arburst[1:0] Input Burst Type: The burst type, coupled with the size
information, details how the address for each transfer
within the burst is calculated.

s_axi_arlock[1:0](2) Input Lock Type: This signal provides additional information
about the atomic characteristics of the transfer.

s_axi_arcache[3:0] Input Cache Type: This signal provides additional
information about the cacheable characteristics of the
transfer.

s_axi_arprot[2:0] Input Protection Type: This signal provides protection unit
information for the transaction.

s_axi_arqos[3:0] Input Quality of Service (QoS): Sent on the read address
channel for each read transaction.

s_axi_arregion[3:0](3) Input Region Identifier: Sent on the read address channel
for each read transaction.

s_axi_aruser[m:0] Input Read Address Channel User

AXI4/AXI3 Interface Read Address Channel: Handshake Signals for FIFO Write Interface

s_axi_arvalid Input Read Address Valid: When high, indicates that the read
address and control information is valid and will
remain stable until the address acknowledge signal,
arready, is high.
• 1 = Address and control information valid.
• 0 = Address and control information not valid.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=43

FIFO Generator v13.1 www.xilinx.com 44
PG057 April 5, 2017

Chapter 1: Overview

s_axi_arready Output Read Address Ready: Indicates that the slave is ready
to accept an address and associated control signals:
• 1 = Slave ready.
• 0 = Slave not ready.

AXI4/AXI3 Interface Read Address Channel: Information Signals Derived
from FIFO Data Output (dout) Bus

m_axi_arid[m:0] Output Read Address ID. This signal is the identification tag
for the read address group of signals.

m_axi_araddr[m:0] Output Read Address: The read address bus gives the initial
address of a read burst transaction.
Only the start address of the burst is provided and the
control signals that are issued alongside the address
detail how the address is calculated for the remaining
transfers in the burst.

m_axi_arlen[7:0](1) Output Burst Length: The burst length gives the exact number
of transfers in a burst. This information determines the
number of data transfers associated with the address.

m_axi_arsize[2:0] Output Burst Size: This signal indicates the size of each
transfer in the burst.

m_axi_arburst[1:0] Output Burst Type: The burst type, coupled with the size
information, details how the address for each transfer
within the burst is calculated.

m_axi_arlock[1:0](2) Output Lock Type: This signal provides additional information
about the atomic characteristics of the transfer.

m_axi_arcache[3:0] Output Cache Type: This signal provides additional
information about the cacheable characteristics of the
transfer.

m_axi_arprot[2:0] Output Protection Type: This signal provides protection unit
information for the transaction.

m_axi_arqos[3:0] Output Quality of Service (QoS) signaling, sent on the read
address channel for each read transaction.

m_axi_arregion[3:0](3) Output Region Identifier: Sent on the read address channel
for each read transaction.

m_axi_aruser[m:0] Output Read Address Channel User

AXI4/AXI3 Interface Read Address Channel: Handshake Signals for FIFO Read Interface

m_axi_arvalid Output Read Address Valid: Indicates, when HIGH, that the
read address and control information is valid and will
remain stable until the address acknowledge signal,
arready, is high.
• 1 = Address and control information valid.
• 0 = Address and control information not valid.

Table 1-14: AXI4/AXI3 Read Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=44

FIFO Generator v13.1 www.xilinx.com 45
PG057 April 5, 2017

Chapter 1: Overview

m_axi_arready Input Read Address Ready: Indicates that the slave is ready
to accept an address and associated control signals:
• 1 = Slave ready.
• 0 = Slave not ready.

AXI4/AXI3 Read Address Channel FIFO: Optional Sideband Signals

axi_ar_prog_full_thresh[d:0] Input Programmable Full Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable full (prog_full) flag.
The threshold can be dynamically set in-circuit during
reset.
D = log2(FIFO depth)-1

axi_ar_prog_empty_thresh[d:0] Input Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable empty
(prog_empty) flag. The threshold can be dynamically
set in-circuit during reset.
D = log2(FIFO depth)-1

axi_ar_injectsbiterr Input Inject Single-Bit Error: Injects a single bit error if the
ECC feature is used.

axi_ar_injectdbiterr Input Inject Double-Bit Error: Injects a double bit error if the
ECC feature is used.

axi_ar_sbiterr Output Single Bit Error: Indicates that the ECC decoder
detected and fixed a single-bit error.

axi_ar_dbiterr Output Double Bit Error: Indicates that the ECC decoder
detected a double-bit error and data in the FIFO core
is corrupted.

axi_ar_overflow Output Overflow: This signal indicates that a write request
during the prior clock cycle was rejected, because the
FIFO is full. Overflowing the FIFO is not destructive to
the FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional writes
when the FIFO is full.

axi_ar_wr_data_count[d:0] Output Write Data Count: This bus indicates the number of
words written into the FIFO. The count is guaranteed
to never underreport the number of words in the FIFO,
to ensure you never overflow the FIFO. The exception
to this behavior is when a write operation occurs at
the rising edge of write clock, that write operation will
only be reflected on wr_data_count at the next rising
clock edge.
D = log2(FIFO depth)+1

Table 1-14: AXI4/AXI3 Read Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=45

FIFO Generator v13.1 www.xilinx.com 46
PG057 April 5, 2017

Chapter 1: Overview

Table 1-15 defines the AXI4/AXI3 FIFO interface signals for Read Data Channel.

axi_ar_underflow Output Underflow: Indicates that read request during the
previous clock cycle was rejected because the FIFO is
empty. Underflowing the FIFO is not destructive to the
FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional reads
when the FIFO is empty.

axi_ar_rd_data_count[d:0] Output Read Data Count: This bus indicates the number of
words available for reading in the FIFO. The count is
guaranteed to never over-report the number of words
available for reading, to ensure that you do not
underflow the FIFO. The exception to this behavior is
when the read operation occurs at the rising edge of
read clock, that read operation is only reflected on
rd_data_count at the next rising clock edge.
D = log2(FIFO depth)+1

axi_ar_data_count[d:0] Output Data Count: This bus indicates the number of words
stored in the FIFO.
D = log2(FIFO depth)+1

axi_ar_prog_full Output Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal
to the programmable threshold. It is deasserted when
the number of words in the FIFO is less than the
programmable threshold.

axi_ar_prog_empty Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to
the programmable threshold. It is deasserted when
the number of words in the FIFO exceeds the
programmable threshold.

Notes:
1. *_arlen port width is 8 for AXI4 and 4 for AXI3.
2. *_arlock port width is 1 for AXI4 and 2 for AXI3.
3. Port not available for AXI3.

Table 1-15: AXI4/AXI3 Read Data Channel FIFO Interface Signals

Name Direction Description

AXI4/AXI3 Interface Read Data Channel: Information Signals Mapped to FIFO Data Output (dout)
Bus

s_axi_rid[m:0] Output Read ID Tag: ID tag of the read data group of signals.
The RID value is generated by the slave and must match
the ARID value of the read transaction to which it is
responding.

s_axi_rdata[m-1:0] Output Read Data: Can be 8, 16, 32, 64, 128, 256 or 512 bits
wide.

Table 1-14: AXI4/AXI3 Read Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=46

FIFO Generator v13.1 www.xilinx.com 47
PG057 April 5, 2017

Chapter 1: Overview

s_axi_rresp[1:0] Output Read Response: Indicates the status of the read transfer.
The allowable responses are OKAY, EXOKAY, SLVERR,
and DECERR.

s_axi_rlast Output Read Last: Indicates the last transfer in a read burst.

s_axi_ruser[m:0] Output Read Data Channel User

AXI4/AXI3 Interface Read Data Channel: Handshake Signals for FIFO Read Interface

s_axi_rvalid Output Read Valid: Indicates that the required read data is
available and the read transfer can complete:
• 1 = Read data available.
• 0 = Read data not available.

s_axi_rready Input Read Ready: Indicates that the master can accept the
read data and response information:
• 1= Master ready.
• 0 = Master not ready.

AXI4/AXI3 Interface Read Data Channel: Information Signals Derived from FIFO Data Input (din)
Bus

m_axi_rid[m:0] Input Read ID Tag: ID tag of the read data group of signals.
The RID value is generated by the slave and must match
the ARID value of the read transaction to which it is
responding.

m_axi_rdata[m-1:0] Input Read Data: Can be 8, 16, 32, 64, 128, 256 or 512 bits
wide.

m_axi_ rresp[1:0] Input Read Response: Indicates the status of the read transfer.
The allowable responses are OKAY, EXOKAY, SLVERR,
and DECERR.

m_axi_rlast Input Read Last: Indicates the last transfer in a read burst.

m_axi_ruser[m:0] Input Read Data Channel User

AXI4/AXI3 Interface Read Data Channel: Handshake Signals for FIFO Write Interface

m_axi_rvalid Input Read Valid: Indicates that the required read data is
available and the read transfer can complete:
• 1 = Read data available.
• 0 = Read data not available.

m_axi_rready Output Read Ready: Indicates that the master can accept the
read data and response information:
• 1= Master ready.
• 0 = Master not ready.

Table 1-15: AXI4/AXI3 Read Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=47

FIFO Generator v13.1 www.xilinx.com 48
PG057 April 5, 2017

Chapter 1: Overview

AXI4/AXI3 Read Data Channel FIFO: Optional Sideband Signals

axi_r_prog_full_thresh[d:0] Input Programmable Full Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable full (PROG_FULL)
flag. The threshold can be dynamically set in-circuit
during reset.
D = log2(FIFO depth)-1

axi_r_prog_empty_thresh[d:0] Input Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable empty (prog_empty)
flag. The threshold can be dynamically set in-circuit
during reset.
D = log2(FIFO depth)-1

axi_r_injectsbiterr Input Injects a single bit error if the ECC feature is used.

axi_r_injectdbiterr Input Injects a double bit error if the ECC feature is used.

axi_r_sbiterr Output Single Bit Error: Indicates that the ECC decoder detected
and fixed a single-bit error.

axi_r_dbiterr Output Double Bit Error: Indicates that the ECC decoder
detected a double-bit error and data in the FIFO core is
corrupted.

axi_r_overflow Output Overflow: This signal indicates that a write request
during the prior clock cycle was rejected, because the
FIFO is full. Overflowing the FIFO is not destructive to
the FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional writes when
the FIFO is full.

axi_r_wr_data_count[d:0] Output Write Data Count: This bus indicates the number of
words written into the FIFO. The count is guaranteed to
never underreport the number of words in the FIFO, to
ensure you never overflow the FIFO. The exception to
this behavior is when a write operation occurs at the
rising edge of write clock, that write operation will only
be reflected on wr_data_count at the next rising clock
edge.
D = log2(FIFO depth)+1

axi_r_underflow Output Underflow: Indicates that read request during the
previous clock cycle was rejected because the FIFO is
empty. Underflowing the FIFO is not destructive to the
FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional reads when
the FIFO is empty.

Table 1-15: AXI4/AXI3 Read Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=48

FIFO Generator v13.1 www.xilinx.com 49
PG057 April 5, 2017

Chapter 1: Overview

AXI4-Lite FIFO Interface Signals

Write Channels

Table 1-16 defines the AXI4-Lite FIFO interface signals for Write Address Channel.

axi_r_rd_data_count[d:0] Output Read Data Count: This bus indicates the number of
words available for reading in the FIFO. The count is
guaranteed to never over-report the number of words
available for reading, to ensure that you do not
underflow the FIFO. The exception to this behavior is
when the read operation occurs at the rising edge of
read clock, that read operation is only reflected on
rd_data_count at the next rising clock edge.
D = log2(FIFO depth)+1

axi_r_data_count[d:0] Output Data Count: This bus indicates the number of words
stored in the FIFO.
D = log2(FIFO depth)+1

axi_r_prog_full Output Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal to
the programmable threshold. It is deasserted when the
number of words in the FIFO is less than the
programmable threshold.

axi_r_prog_empty Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the
number of words in the FIFO exceeds the programmable
threshold.

Table 1-16: AXI4-Lite Write Address Channel FIFO Interface Signals

Name Direction Description

AXI4-Lite Interface Write Address Channel: Information Signals Mapped to FIFO Data Input (din)
Bus

s_axi_awaddr[m:0] Input Write Address: Gives the address of the first transfer
in a write burst transaction. The associated control
signals are used to determine the addresses of the
remaining transfers in the burst.

s_axi_awprot[3:0] Input Protection Type: Indicates the normal, privileged, or
secure protection level of the transaction and whether
the transaction is a data access or an instruction
access.

AXI4-Lite Interface Write Address Channel: Handshake Signals for FIFO Write Interface

Table 1-15: AXI4/AXI3 Read Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=49

FIFO Generator v13.1 www.xilinx.com 50
PG057 April 5, 2017

Chapter 1: Overview

s_axi_awvalid Input Write Address Valid: Indicates that valid write address
and control information are available:
• 1 = Address and control information available.
• 0 = Address and control information not available.
The address and control information remain stable
until the address acknowledge signal, AWREADY, goes
high.

s_axi_awready Output Write Address Ready: Indicates that the slave is ready
to accept an address and associated control signals:
• 1 = Slave ready.
• 0 = Slave not ready.

AXI4-Lite Interface Write Address Channel: Information Signals Derived from FIFO Data Output
(dout) Bus

m_axi_awaddr[m:0] Output Write Address: Gives the address of the first transfer
in a write burst transaction. The associated control
signals are used to determine the addresses of the
remaining transfers in the burst.

m_axi_awprot[3:0] Output Protection Type: This signal indicates the normal,
privileged, or secure protection level of the
transaction and whether the transaction is a data
access or an instruction access.

AXI4-Lite Interface Write Address Channel: Handshake Signals for FIFO Read Interface

m_axi_awvalid Output Write Address Valid: Indicates that valid write address
and control information are available:
• 1 = Address and control information available.
• 0 = Address and control information not available.
The address and control information remain stable
until the address acknowledge signal, AWREADY, goes
high.

m_axi_awready Input Write Address Ready: Indicates that the slave is ready
to accept an address and associated control signals:
• 1 = Slave ready.
• 0 = Slave not ready.

AXI4-Lite Write Address Channel FIFO: Optional Sideband Signals

axi_aw_prog_full_thresh[d:0] Input Programmable Full Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable full (prog_full) flag.
The threshold can be dynamically set in-circuit during
reset.
D = log2(FIFO depth)-1

Table 1-16: AXI4-Lite Write Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=50

FIFO Generator v13.1 www.xilinx.com 51
PG057 April 5, 2017

Chapter 1: Overview

axi_aw_prog_empty_thresh[d:0] Input Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable empty
(prog_empty) flag. The threshold can be dynamically
set in-circuit during reset.
D = log2(FIFO depth)-1

axi_aw_injectsbiterr Input Inject Single-Bit Error: Injects a single bit error if the
ECC feature is used.

axi_aw_injectdbiterr Input Inject Double-Bit Error: Injects a double bit error if the
ECC feature is used.

axi_aw_sbiterr Output Single Bit Error: Indicates that the ECC decoder
detected and fixed a single-bit error.

axi_aw_dbiterr Output Double Bit Error: Indicates that the ECC decoder
detected a double-bit error and data in the FIFO core
is corrupted.

axi_aw_overflow Output Overflow: This signal indicates that a write request
during the prior clock cycle was rejected, because the
FIFO is full. Overflowing the FIFO is not destructive to
the FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional writes
when the FIFO is full.

axi_aw_wr_data_count[d:0] Output Write Data Count: This bus indicates the number of
words written into the FIFO. The count is guaranteed
to never underreport the number of words in the FIFO,
to ensure you never overflow the FIFO. The exception
to this behavior is when a write operation occurs at
the rising edge of write clock, that write operation will
only be reflected on wr_data_count at the next rising
clock edge.
D = log2(FIFO depth)+1

axi_aw_underflow Output Underflow: Indicates that read request during the
previous clock cycle was rejected because the FIFO is
empty. Underflowing the FIFO is not destructive to the
FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional reads
when the FIFO is empty.

axi_aw_rd_data_count[d:0] Output Read Data Count: This bus indicates the number of
words available for reading in the FIFO. The count is
guaranteed to never over-report the number of words
available for reading, to ensure that you do not
underflow the FIFO. The exception to this behavior is
when the read operation occurs at the rising edge of
read clock, that read operation is only reflected on
rd_data_count at the next rising clock edge.
D = log2(FIFO depth)+1

Table 1-16: AXI4-Lite Write Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=51

FIFO Generator v13.1 www.xilinx.com 52
PG057 April 5, 2017

Chapter 1: Overview

Table 1-17 defines the AXI4-Lite FIFO interface signals for Write Data Channel.

axi_aw_data_count[d:0] Output Data Count: This bus indicates the number of words
stored in the FIFO.
D = log2(FIFO depth)+1

axi_aw_prog_full Output Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal
to the programmable threshold. It is deasserted when
the number of words in the FIFO is less than the
programmable threshold.

axi_aw_prog_empty Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to
the programmable threshold. It is deasserted when
the number of words in the FIFO exceeds the
programmable threshold.

Table 1-17: AXI4-Lite Write Data Channel FIFO Interface Signals

Name Direction Description

AXI4-Lite Interface Write Data Channel: Information Signals Mapped to FIFO Data Input (din) Bus

s_axi_wdata[m-1:0] Input Write Data: Can be 8, 16, 32, 64, 128, 256 or 512 bits
wide.

s_axi_wstrb[m/8-1:0] Input Write Strobes: Indicates which byte lanes to update in
memory. There is one write strobe for each eight bits
of the write data bus. Therefore, WSTRB[n]
corresponds to WDATA[(8 × n) + 7:(8 × n)]. For a 64-bit
DATA, bit 0 corresponds to the least significant byte on
DATA, and bit 7 corresponds to the most significant
byte. For example:
• STROBE[0] = 1b, DATA[7:0] is valid
• STROBE[7] = 0b, DATA[63:56] is not valid

AXI4-Lite Interface Write Data Channel: Handshake Signals for FIFO Write Interface

s_axi_wvalid Input Write Valid: Indicates that valid write data and strobes
are available:
• 1 = Write data and strobes available.
• 0 = Write data and strobes not available.

s_axi_wready Output Write Ready: Indicates that the slave can accept the
write data:
• 1 = Slave ready.
• 0 = Slave not ready.

AXI4-Lite Interface Write Data Channel: Information Signals Derived from FIFO Data Output
(dout) Bus

m_axi_wdata[m-1:0] Output Write Data: Can be 8, 16, 32, 64, 128, 256 or 512 bits
wide.

Table 1-16: AXI4-Lite Write Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=52

FIFO Generator v13.1 www.xilinx.com 53
PG057 April 5, 2017

Chapter 1: Overview

m_axi_wstrb[m/8-1:0] Output Write Strobes: Indicates which byte lanes to update in
memory. There is one write strobe for each eight bits
of the write data bus. Therefore, WSTRB[n]
corresponds to WDATA[(8 × n) + 7:(8 × n)]. For a 64-bit
DATA, bit 0 corresponds to the least significant byte on
DATA, and bit 7 corresponds to the most significant
byte. For example:
• STROBE[0] = 1b, DATA[7:0] is valid
• STROBE[7] = 0b, DATA[63:56] is not valid

AXI4-Lite Interface Write Data Channel: Handshake Signals for FIFO Read Interface

m_axi_wvalid Output Write Valid: Indicates that valid write data and strobes
are available:
• 1 = Write data and strobes available.
• 0 = Write data and strobes not available.

m_axi_wready Input Write Ready: Indicates that the slave can accept the
write data:
• 1 = Slave ready.
• 0 = Slave not ready.

AXI4-Lite Write Data Channel FIFO: Optional Sideband Signals

axi_w_prog_full_thresh[d:0] Input Programmable Full Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable full (PROG_FULL)
flag. The threshold can be dynamically set in-circuit
during reset.
D = log2(FIFO depth)-1

axi_w_prog_empty_thresh[d:0] Input Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable empty
(prog_empty) flag. The threshold can be dynamically
set in-circuit during reset.
D = log2(FIFO depth)-1

axi_w_injectsbiterr Input Injects a single bit error if the ECC feature is used.

axi_w_injectdbiterr Input Injects a double bit error if the ECC feature is used.

axi_w_sbiterr Output Single Bit Error: Indicates that the ECC decoder
detected and fixed a single-bit error.

axi_w_dbiterr Output Double Bit Error: Indicates that the ECC decoder
detected a double-bit error and data in the FIFO core
is corrupted.

axi_w_overflow Output Overflow: This signal indicates that a write request
during the prior clock cycle was rejected, because the
FIFO is full. Overflowing the FIFO is not destructive to
the FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional writes
when the FIFO is full.

Table 1-17: AXI4-Lite Write Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=53

FIFO Generator v13.1 www.xilinx.com 54
PG057 April 5, 2017

Chapter 1: Overview

axi_w_wr_data_count[d:0] Output Write Data Count: This bus indicates the number of
words written into the FIFO. The count is guaranteed to
never underreport the number of words in the FIFO, to
ensure you never overflow the FIFO. The exception to
this behavior is when a write operation occurs at the
rising edge of write clock, that write operation will only
be reflected on wr_data_count at the next rising clock
edge.
D = log2(FIFO depth)+1

axi_w_underflow Output Underflow: Indicates that read request during the
previous clock cycle was rejected because the FIFO is
empty. Underflowing the FIFO is not destructive to the
FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional reads when
the FIFO is empty.

axi_w_rd_data_count[d:0] Output Read Data Count: This bus indicates the number of
words available for reading in the FIFO. The count is
guaranteed to never over-report the number of words
available for reading, to ensure that you do not
underflow the FIFO. The exception to this behavior is
when the read operation occurs at the rising edge of
read clock, that read operation is only reflected on
rd_data_count at the next rising clock edge.
D = log2(FIFO depth)+1

axi_w_data_count[d:0] Output Data Count: This bus indicates the number of words
stored in the FIFO.
D = log2(FIFO depth)+1

axi_w_prog_full Output Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal
to the programmable threshold. It is deasserted when
the number of words in the FIFO is less than the
programmable threshold.

axi_w_prog_empty Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the
number of words in the FIFO exceeds the
programmable threshold.

Table 1-17: AXI4-Lite Write Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=54

FIFO Generator v13.1 www.xilinx.com 55
PG057 April 5, 2017

Chapter 1: Overview

Table 1-18 defines the AXI4-Lite FIFO interface signals for Write Response Channel.

Table 1-18: AXI4-Lite Write Response Channel FIFO Interface Signals

Name Direction Description

AXI4-Lite Interface Write Response Channel: Information Signals Mapped to FIFO Data Output
(dout) Bus

s_axi_bresp[1:0] Output Write Response: Indicates the status of the write
transaction. The allowable responses are OKAY,
EXOKAY, SLVERR, and DECERR.

AXI4-Lite Interface Write Response Channel: Handshake Signals for FIFO Read Interface

s_axi_bvalid Output Write Response Valid: Indicates that a valid write
response is available:
• 1 = Write response available.
• 0 = Write response not available.

s_axi_bready Input Response Ready: Indicates that the master can accept
the response information.
• 1 = Master ready.
• 0 = Master not ready.

AXI4-Lite Interface Write Response Channel: Information Signals Derived from FIFO Data Input
(din) Bus

m_axi_bresp[1:0] Input Write response: Indicates the status of the write
transaction. The allowable responses are OKAY,
EXOKAY, SLVERR, and DECERR.

AXI4-Lite Interface Write Response Channel: Handshake Signals for FIFO Write Interface

m_axi_bvalid Input Write response valid: Indicates that a valid write
response is available:
• 1 = Write response available.
• 0 = Write response not available.

m_axi_bready Output Response ready: Indicates that the master can accept
the response information.
• 1 = Master ready.
• 0 = Master not ready.

AXI4-Lite Write Response Channel FIFO: Optional Sideband Signals

axi_b_prog_full_thresh[d:0] Input Programmable Full Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable full (prog_full) flag.
The threshold can be dynamically set in-circuit during
reset.
D = log2(FIFO depth)-1

axi_b_prog_empty_thresh[d:0] Input Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable empty (prog_empty)
flag. The threshold can be dynamically set in-circuit
during reset.
D is than log2(FIFO depth)-1

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=55

FIFO Generator v13.1 www.xilinx.com 56
PG057 April 5, 2017

Chapter 1: Overview

axi_b_injectsbiterr Input Injects a single bit error if the ECC feature is used.

axi_b_injectdbiterr Input Injects a double bit error if the ECC feature is used.

axi_b_sbiterr Output Single Bit Error: Indicates that the ECC decoder
detected and fixed a single-bit error.

axi_b_dbiterr Output Double Bit Error: Indicates that the ECC decoder
detected a double-bit error and data in the FIFO core is
corrupted.

axi_b_overflow Output Overflow: This signal indicates that a write request
during the prior clock cycle was rejected, because the
FIFO is full. Overflowing the FIFO is not destructive to
the FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional writes when
the FIFO is full.

axi_b_wr_data_count[d:0] Output Write Data Count: This bus indicates the number of
words written into the FIFO. The count is guaranteed to
never underreport the number of words in the FIFO, to
ensure you never overflow the FIFO. The exception to
this behavior is when a write operation occurs at the
rising edge of write clock, that write operation will only
be reflected on wr_data_count at the next rising clock
edge.
D = log2(FIFO depth)+1

axi_b_underflow Output Underflow: Indicates that read request during the
previous clock cycle was rejected because the FIFO is
empty. Underflowing the FIFO is not destructive to the
FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional reads when
the FIFO is empty.

axi_b_rd_data_count[d:0] Output Read Data Count: This bus indicates the number of
words available for reading in the FIFO. The count is
guaranteed to never over-report the number of words
available for reading, to ensure that you do not
underflow the FIFO. The exception to this behavior is
when the read operation occurs at the rising edge of
read clock, that read operation is only reflected on
rd_data_count at the next rising clock edge.
D = log2(FIFO depth)+1

axi_b_data_count[d:0] Output Data Count: This bus indicates the number of words
stored in the FIFO.
D = log2(FIFO depth)+1

Table 1-18: AXI4-Lite Write Response Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=56

FIFO Generator v13.1 www.xilinx.com 57
PG057 April 5, 2017

Chapter 1: Overview

Read Channels

Table 1-19 defines the AXI4-Lite FIFO interface signals for Read Address Channel.

axi_b_prog_full Output Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal to
the programmable threshold. It is deasserted when the
number of words in the FIFO is less than the
programmable threshold.

axi_b_prog_empty Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the
number of words in the FIFO exceeds the
programmable threshold.

Table 1-19: AXI4-Lite Read Address Channel FIFO Interface Signals

Name Direction Description

 AXI4-Lite Interface Read Address Channel: Information Signals Mapped to FIFO Data Input (din)
Bus

s_axi_araddr[m:0] Input Read Address: The read address bus gives the initial
address of a read burst transaction. Only the start
address of the burst is provided and the control signals
that are issued alongside the address detail how the
address is calculated for the remaining transfers in the
burst.

s_axi_arprot[3:0] Input Protection Type: This signal provides protection unit
information for the transaction.

AXI4-Lite Interface Read Address Channel: Handshake Signals for FIFO Write Interface

s_axi_arvalid Input Read Address Valid: When high, indicates that the read
address and control information is valid and will
remain stable until the address acknowledge signal,
arready, is High.
• 1 = Address and control information valid.
• 0 = Address and control information not valid.

s_axi_arready Output Read Address Ready: Indicates that the slave is ready
to accept an address and associated control signals:
• 1 = Slave ready.
• 0 = Slave not ready.

AXI4-Lite Interface Read Address Channel: Information Signals Derived from FIFO Data Output
(dout) Bus

m_axi_araddr[m:0] Output Read Address: The read address bus gives the initial
address of a read burst transaction. Only the start
address of the burst is provided and the control signals
that are issued alongside the address detail how the
address is calculated for the remaining transfers in the
burst.

Table 1-18: AXI4-Lite Write Response Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=57

FIFO Generator v13.1 www.xilinx.com 58
PG057 April 5, 2017

Chapter 1: Overview

m_axi_arprot[3:0] Output Protection Type: This signal provides protection unit
information for the transaction.

AXI4-Lite Interface Read Address Channel: Handshake Signals for FIFO Read Interface

m_axi_arvalid Output Read Address Valid: WHen high, indicates that the read
address and control information is valid and will
remain stable until the address acknowledge signal,
arready, is high.
• 1 = Address and control information valid.
• 0 = Address and control information not valid.

m_axi_arready Input Read Address Ready: Indicates that the slave is ready
to accept an address and associated control signals:
• 1 = Slave ready.
• 0 = Slave not ready.

AXI4-Lite Read Address Channel FIFO: Optional Sideband Signals

axi_ar_prog_full_thresh[d:0] Input Programmable Full Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable full (prog_full) flag.
The threshold can be dynamically set in-circuit during
reset.
D = log2(FIFO depth)-1

axi_ar_prog_empty_thresh[d:0] Input Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable empty
(prog_empty) flag. The threshold can be dynamically
set in-circuit during reset.
D = log2(FIFO depth)-1

axi_ar_injectsbiterr Input Inject Single-Bit Error: Injects a single-bit error if the
ECC feature is used.

axi_ar_injectdbiterr Input Inject Double-Bit Error: Injects a double-bit error if the
ECC feature is used.

axi_ar_sbiterr Output Single Bit Error: Indicates that the ECC decoder
detected and fixed a single-bit error.

axi_ar_dbiterr Output Double Bit Error: Indicates that the ECC decoder
detected a double-bit error and data in the FIFO core
is corrupted.

axi_ar_overflow Output Overflow: This signal indicates that a write request
during the prior clock cycle was rejected, because the
FIFO is full. Overflowing the FIFO is not destructive to
the FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional writes
when the FIFO is full.

Table 1-19: AXI4-Lite Read Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=58

FIFO Generator v13.1 www.xilinx.com 59
PG057 April 5, 2017

Chapter 1: Overview

Table 1-20 defines the AXI4-Lite FIFO interface signals for Write Data Channel.

axi_ar_wr_data_count[d:0] Output Write Data Count: This bus indicates the number of
words written into the FIFO. The count is guaranteed
to never underreport the number of words in the FIFO,
to ensure you never overflow the FIFO. The exception
to this behavior is when a write operation occurs at the
rising edge of write clock, that write operation will only
be reflected on wr_data_count at the next rising clock
edge.
D = log2(FIFO depth)+1

axi_ar_underflow Output Underflow: Indicates that read request during the
previous clock cycle was rejected because the FIFO is
empty. Underflowing the FIFO is not destructive to the
FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional reads when
the FIFO is empty.

axi_ar_rd_data_count[d:0] Output Read Data Count: This bus indicates the number of
words available for reading in the FIFO. The count is
guaranteed to never over-report the number of words
available for reading, to ensure that you do not
underflow the FIFO. The exception to this behavior is
when the read operation occurs at the rising edge of
read clock, that read operation is only reflected on
rd_data_count at the next rising clock edge.
D = log2(FIFO depth)+1

axi_ar_data_count[d:0] Output Data Count: This bus indicates the number of words
stored in the FIFO.
D = log2(FIFO depth)+1

axi_ar_prog_full Output Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal
to the programmable threshold. It is deasserted when
the number of words in the FIFO is less than the
programmable threshold.

axi_ar_prog_empty Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the
number of words in the FIFO exceeds the
programmable threshold.

Table 1-20: AXI4-Lite Read Data Channel FIFO Interface Signals

Name Direction Description

AXI4-Lite Interface Read Data Channel: Information Signals Mapped to FIFO Data Output (dout)
Bus

s_axi_rdata[m-1:0] Output Read Data: The read data bus can be 8, 16, 32, 64, 128,
256 or 512 bits wide.

Table 1-19: AXI4-Lite Read Address Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=59

FIFO Generator v13.1 www.xilinx.com 60
PG057 April 5, 2017

Chapter 1: Overview

s_axi_rresp[1:0] Output Read Response: Indicates the status of the read transfer.
The allowable responses are OKAY, EXOKAY, SLVERR, and
DECERR.

AXI4-Lite Interface Read Data Channel: Handshake Signals for FIFO Read Interface

s_axi_rvalid Output Read Valid: Indicates that the required read data is
available and the read transfer can complete:
• 1 = Read data available.
• 0 = Read data not available.

s_axi_rready Input Read Ready: indicates that the master can accept the
read data and response information:
• 1= Master ready.
• 0 = Master not ready.

AXI4-Lite Interface Read Data Channel: Information Signals Derived from FIFO Data Input (din)
Bus

m_axi_rdata[m-1:0] Input Read Data: The read data bus can be 8, 16, 32, 64, 128,
256 or 512 bits wide.

m_axi_ rresp[1:0] Input Read Response: Indicates the status of the read transfer.
The allowable responses are OKAY, EXOKAY, SLVERR, and
DECERR.

AXI4-Lite Interface Read Data Channel: Handshake Signals for FIFO Write Interface

m_axi_rvalid Input Read Valid: Indicates that the required read data is
available and the read transfer can complete:
• 1 = Read data available.
• 0 = Read data not available.

m_axi_rready Output Read ready: Indicates that the master can accept the
read data and response information:
• 1= Master ready.
• 0 = Master not ready.

AXI4-Lite Read Data Channel FIFO: Optional Sideband Signals

axi_r_prog_full_thresh[d:0] Input Programmable Full Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable full (prog_full) flag.
The threshold can be dynamically set in-circuit during
reset.
D = log2(FIFO depth)-1

axi_r_prog_empty_thresh[d:0] Input Programmable Empty Threshold: This signal is used to
input the threshold value for the assertion and
de-assertion of the programmable empty (prog_empty)
flag. The threshold can be dynamically set in-circuit
during reset.
D = log2(FIFO depth)-1

axi_r_injectsbiterr Input Inject Single-Bit Error: Injects a single bit error if the ECC
feature is used.

Table 1-20: AXI4-Lite Read Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=60

FIFO Generator v13.1 www.xilinx.com 61
PG057 April 5, 2017

Chapter 1: Overview

axi_r_injectdbiterr Input Inject DOuble-Bit Error. Injects a double bit error if the
ECC feature is used.

axi_r_sbiterr Output Single-Bit Error: Indicates that the ECC decoder
detected and fixed a single-bit error.

axi_r_dbiterr Output Double-Bit Error: Indicates that the ECC decoder
detected a double-bit error and data in the FIFO core is
corrupted.

axi_r_overflow Output Overflow: This signal indicates that a write request
during the prior clock cycle was rejected, because the
FIFO is full. Overflowing the FIFO is not destructive to
the FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional writes when
the FIFO is full.

axi_r_wr_data_count[d:0] Output Write Data Count: This bus indicates the number of
words written into the FIFO. The count is guaranteed to
never underreport the number of words in the FIFO, to
ensure you never overflow the FIFO. The exception to
this behavior is when a write operation occurs at the
rising edge of write clock, that write operation will only
be reflected on wr_data_count at the next rising clock
edge.
D = log2(FIFO depth)+1

axi_r_underflow Output Underflow: Indicates that read request during the
previous clock cycle was rejected because the FIFO is
empty. Underflowing the FIFO is not destructive to the
FIFO.
Note: This signal may have a constant value of 0
because the core does not allow additional reads when
the FIFO is empty.

axi_r_rd_data_count[d:0] Output Read Data Count: This bus indicates the number of
words available for reading in the FIFO. The count is
guaranteed to never over-report the number of words
available for reading, to ensure that you do not
underflow the FIFO. The exception to this behavior is
when the read operation occurs at the rising edge of
read clock, that read operation is only reflected on
rd_data_count at the next rising clock edge.
D = log2(FIFO depth)+1

axi_r_data_count[d:0] Output Data Count: This bus indicates the number of words
stored in the FIFO.
D = log2(FIFO depth)+1

Table 1-20: AXI4-Lite Read Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=61

FIFO Generator v13.1 www.xilinx.com 62
PG057 April 5, 2017

Chapter 1: Overview

Applications

Native FIFO Applications
In digital designs, FIFOs are ubiquitous constructs required for data manipulation tasks such
as clock domain crossing, Low-latency memory buffering, and bus width conversion.
Figure 1-9 highlights just one of many configurations that the FIFO Generator core
supports. In this example, the design has two independent clock domains and the width of
the write data bus is four times wider than the read data bus. Using the FIFO Generator core,
you are able to rapidly generate solutions such as this one, that is customized for their
specific requirements and provides a solution fully optimized for Xilinx devices.

axi_r_prog_full Output Programmable Full: This signal is asserted when the
number of words in the FIFO is greater than or equal to
the programmable threshold. It is deasserted when the
number of words in the FIFO is less than the
programmable threshold.

axi_r_prog_empty Output Programmable Empty: This signal is asserted when the
number of words in the FIFO is less than or equal to the
programmable threshold. It is deasserted when the
number of words in the FIFO exceeds the programmable
threshold.

X-Ref Target - Figure 1-9

Figure 1-9: FIFO Generator core Application Example

Table 1-20: AXI4-Lite Read Data Channel FIFO Interface Signals (Cont’d)

Name Direction Description

DATA OUT
32 Bits

DATA IN
128 Bits

Clock 1

Domain

Logic

Clock 2

Domain

Logic

CLK 1 CLK 2

FIFO Core

Configuration:

Independent Clocks

Aspect Ratio = 4:1

CLK 1 CLK 2

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=62

FIFO Generator v13.1 www.xilinx.com 63
PG057 April 5, 2017

Chapter 1: Overview

AXI FIFO Applications

AXI4-Stream FIFOs

AXI4-Stream FIFOs are best for non-address-based, point-to-point applications. Use them
to interface to other IP cores using this interface (for example, AXI4 versions of DSP
functions such as FFT, DDS, and FIR Compiler).

Figure 1-10 illustrates the use of AXI4-Stream FIFOs to create a Data Mover block. In this
application, the Data Mover is used to interface PCI Express, Ethernet MAC and USB
modules which have a LocalLink to an AXI System Bus. The AXI Interconnect and Data Mover
blocks shown in Figure 1-10 are which are available in the Vivado IP catalog.

AXI4-Stream FIFOs support most of the features that the Native interface FIFOs support in
first word fall through mode. Use AXI4-Stream FIFOs to replace Native interface FIFOs to
make interfacing to the latest versions of other AXI LogiCORE IP functions easier.

X-Ref Target - Figure 1-10

Figure 1-10: AXI4-Stream Application Diagram

AXI4-Stream
FIFO

AXI4-Stream
FIFO

Data MoverData Mover

For example, PCIe/GMAC/USB
Modules

For example, Audio/Video/DSP
Modules

Processor

Switch Switch Switch

Switch Switch Switch

AXI4-Lite (Peripherals)

AXI Interconnect

Memory ControllerFlash Controller

Real Time

AXI

AXI4-Lite

AXI4-Stream

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=63

FIFO Generator v13.1 www.xilinx.com 64
PG057 April 5, 2017

Chapter 1: Overview

AXI4/AXI3 Memory Mapped FIFOs

The full version of the AXI4/AXI3 interface is referred to as AXI4/AXI3. It may also be
referred to as AXI Memory Mapped. Use AXI4/AXI3 FIFOs in memory mapped system bus
designs such as bridging applications requiring a memory mapped interface to connect to
other AXI4/AXI3 blocks.

Figure 1-11 shows an example application for AXI4/AXI3 FIFOs where they are used in AXI4/
AXI3-to-AXI4/AXI3 bridging applications enabling different AXI4/AXI3 clock domains
running at 200, 100, 66, and 156 MHz to communicate with each other. The AXI4/
AXI3-to-AXI4-Lite bridging is another pertinent application for AXI4/AXI3 FIFO (for
example, for performing protocol conversion). The AXI4/AXI3 FIFOs can also used inside an
IP core to buffer data or transactions (for example, a DRAM Controller). The AXI
Interconnect block shown in Figure 1-11 is an IP core available in the Vivado IP catalog.

AXI4-Lite FIFOs

The AXI4-Lite interface is a simpler AXI interface that supports applications that only need
to perform simple Control/Status Register accesses, or peripherals access.

X-Ref Target - Figure 1-11

Figure 1-11: AXI4/AXI3 Application Diagram

Switch Switch Switch

Switch Switch Switch

AXI4/AXI3
Async FIFO

AXI4/AXI3
Sync FIFO

AXI4-Lite
Async FIFO

AXI4/AXI3 156-MHz DRAM Controller AXI4-Lite 66-MHz

Bridge Bridge Bridge

AXI4/AXI3 Async FIFO

AXI4/AXI3 (Processor)

AXI4/AXI3 200-MHzAXI4/AXI3 200-MHz

AXI4/AXI3

AXI4-Lite

AXI Interconnect
(200MHz)

DS317_07_081210

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=64

FIFO Generator v13.1 www.xilinx.com 65
PG057 April 5, 2017

Chapter 1: Overview

Figure 1-12 shows an AXI4-Lite FIFO being used in an AXI4/AXI3 to AXI4-Lite bridging
application to perform protocol conversion. The AXI4-Lite Interconnect in Figure 1-12 is
also available as an IP core in the Vivado IP catalog.

Licensing and Ordering Information
This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx Vivado
Design Suite tools under the terms of the Xilinx End User License. Information about this
and other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page.
For information about pricing and availability of other Xilinx LogiCORE IP modules and
tools, contact your local Xilinx sales representative.

For more information, please visit the FIFO Generator core page.

X-Ref Target - Figure 1-12

Figure 1-12: AXI4-Lite Application Diagram

Peripherals
INTC

Switch

AXI4/AXI3

AXI4-Lite Interconnect

AXI4-Lite
Async FIFO

Bridge

Peripherals
Timers

Peripherals
GPIO

Register
Access
-USB

Register
Access
-GMAC

Register
Access
-PCIe

AXI4/AXI3

AXI4-Lite
DS317_08_081210

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/about/contact.html
https://www.xilinx.com/products/intellectual-property/fifo_generator.html
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=65

FIFO Generator v13.1 www.xilinx.com 66
PG057 April 5, 2017

Chapter 2

Product Specification
This chapter includes details on performance and latency.

Performance
Performance and resource utilization for a FIFO varies depending on the configuration and
features selected during core customization. The following tables show resource utilization
data and maximum performance values for a variety of sample FIFO configurations.

Native FIFO Performance
Performance for a Native interface FIFO varies depending on the configuration and features
selected during core customization. Table 2-1 through Table 2-2 show maximum
performance values for a variety of sample FIFO configurations.

The benchmarks were performed while adding two levels of registers on all inputs (except
clock) and outputs having only the period constraints in the XDC. To achieve the
performance shown in the following tables, ensure that all inputs to the FIFO are registered
and that the outputs are not passed through many logic levels.

TIP: The Shift Register FIFO is more suitable in terms of resource and performance compared to the
Distributed Memory FIFO, where the depth of the FIFO is around 16 or 32.

Table 2-1 identifies the results for a FIFO configured without optional features. Benchmarks
were performed using the following devices:

Note: These benchmarks were obtained using Vivado Design Suite.

• Artix®-7 (XC7A200T- FFG1156-1)

• Virtex®-7 (XC7V2000T-FLG1925-1)

• Kintex®-7 (XC7K480T-FFG1156-1)

• Virtex® UltraScale™ (XCVU125-FLVA2104-1-I-ES2)

• Kintex® UltraScale™ (XCKU115-FLVD1924-1-C-ES2)

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=66

FIFO Generator v13.1 www.xilinx.com 67
PG057 April 5, 2017

Chapter 2: Product Specification

Table 2-1: Benchmarks: FIFO Configured without Optional Features for 7 Series Family

FIFO Type Depth x Width FPGA
Family

Performance
(MHz)

Common Clock FIFO
(Block RAM)

512 x 16

Artix-7 270

Kintex-7 325

Virtex-7 325

4096 x 16

Artix-7 265

Kintex-7 350

Virtex-7 355

Common Clock FIFO
(Distributed RAM)

512 x 16

Artix-7 250

Kintex-7 345

Virtex-7 350

64 x 16

Artix-7 325

Kintex-7 420

Virtex-7 440

Independent Clock FIFO
(Block RAM)

512 x 16

Artix-7 265

Kintex-7 335

Virtex-7 335

4096 x 16

Artix-7 275

Kintex-7 340

Virtex-7 350

Independent Clock FIFO
(Distributed RAM)

512 x 16

Artix-7 275

Kintex-7 355

Virtex-7 370

64 x 16

Artix-7 365

Kintex-7 445

Virtex-7 475

Shifting Register FIFO

512 x 16

Artix-7 195

Kintex-7 250

Virtex-7 240

64 x 16

Artix-7 300

Kintex-7 420

Virtex-7 410

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=67

FIFO Generator v13.1 www.xilinx.com 68
PG057 April 5, 2017

Chapter 2: Product Specification

Table 2-3 and Table 2-4 provides the results for FIFOs configured with multiple
programmable thresholds. Benchmarks were performed using the following devices:

Note: These benchmarks were obtained using Vivado Design Suite.

• Artix-7 (XC7A200T- FFG1156-1)

• Virtex-7 (XC7V2000T-FLG1925-1)

• Kintex-7 (XC7K480T-FFG1156-1)

• Virtex® UltraScale™ (XCVU125-FLVA2104-1-I-ES2)

• Kintex® UltraScale™ (XCKU115-FLVD1924-1-C-ES2)

Table 2-2: Benchmarks: FIFO Configured without Optional Features for UltraScale Family

FIFO Type Depth x Width FPGA
Family

Performance
(Fmax)

Common Clock Block RAM

512 x 16
Virtex UltraScale 498

Kintex UltraScale 506

4096 x 16
Virtex UltraScale 521

Kintex UltraScale 513

Common Clock Distributed
RAM

512 x 16
Virtex UltraScale 513

Kintex UltraScale 510

64x16

Virtex
UltraScale

583

Kintex UltraScale 581

Independent Clock Block
RAM

512x16
Virtex UltraScale 521

Kintex UltraScale 506

4096x12
Virtex UltraScale 521

Kintex UltraScale 506

Independent Clock
Distributed RAM

512x16
Virtex UltraScale 552

Kintex UltraScale 544

64x16
Virtex UltraScale 631

Kintex UltraScale 629

Shift Register FIFO

512x16
Virtex UltraScale 338

Kintex UltraScale 333

64x16
Virtex UltraScale 583

Kintex UltraScale 581

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=68

FIFO Generator v13.1 www.xilinx.com 69
PG057 April 5, 2017

Chapter 2: Product Specification

Table 2-3: Benchmarks: FIFO Configured with Multiple Programmable Thresholds for 7 Series

FIFO Type Depth x
Width

FPGA
Family

Performance
(MHz)

Common Clock FIFO
(Block RAM)

512 x 16

Artix-7 245

Kintex-7 325

Virtex-7 325

4096 x 16

Artix-7 265

Kintex-7 340

Virtex-7 375

Common Clock FIFO
(Distributed RAM)

512 x 16

Artix-7 250

Kintex-7 355

Virtex-7 350

64 x 16

Artix-7 290

Kintex-7 400

Virtex-7 335

Independent Clock FIFO
(Block RAM)

512 x 16

Artix-7 265

Kintex-7 325

Virtex-7 330

4096 x 16

Artix-7 285

Kintex-7 350

Virtex-7 320

Independent Clock FIFO
(Distributed RAM)

512 x 16

Artix-7 255

Kintex-7 355

Virtex-7 365

64 x 16

Artix-7 345

Kintex-7 450

Virtex-7 470

Shifting Register FIFO

512 x 16

Artix-7 190

Kintex-7 245

Virtex-7 225

64 x 16

Artix-7 295

Kintex-7 400

Virtex-7 400

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=69

FIFO Generator v13.1 www.xilinx.com 70
PG057 April 5, 2017

Chapter 2: Product Specification

Table 2-5 and Table 2-6 provides the results for FIFOs configured to use the built-in FIFO.
The benchmarks were performed using the following devices:

Note: These benchmarks were obtained using Vivado Design Suite.

• Artix-7 (XC7A200T- FFG1156-1)

• Virtex-7 (XC7V2000T-FLG1925-1)

• Kintex-7 (XC7K480T-FFG1156-1)

• Virtex® UltraScale™ (XCVU125-FLVA2104-1-I-ES2)

• Kintex® UltraScale™ (XCKU115-FLVD1924-1-C-ES2)

Table 2-4: Benchmarks: FIFO Configured with Multiple Programmable Thresholds for UltraScale
Family

FIFO Type Depth x
Width

FPGA
Family

Performance
(Fmax)

Common Clock Block
RAM

512 x 16

Virtex UltraScale 506

Kintex
UltraScale

506

4096 x 16
Virtex UltraScale 521

Kintex UltraScale 513

Common Clock
Distributed RAM

512 x 16
Virtex UltraScale 498

Kintex UltraScale 513

64 x 16
Virtex UltraScale 615

Kintex UltraScale 611

Independent Clock Block
RAM

512 x 16
Virtex UltraScale 521

Kintex UltraScale 498

4096 x 16
Virtex UltraScale 521

Kintex UltraScale 521

Independent Clock
Distributed RAM

512 x 16
Virtex UltraScale 490

Kintex UltraScale 552

64 x 16
Virtex UltraScale 631

Kintex UltraScale 631

Shifting Register FIFO

512 x 16

Virtex UltraScale 310

Kintex
UltraScale

307

64 x 16
Virtex UltraScale 607

Kintex UltraScale 601

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=70

FIFO Generator v13.1 www.xilinx.com 71
PG057 April 5, 2017

Chapter 2: Product Specification

Table 2-5: Benchmarks: FIFO Configured with FIFO36E1 Resources for 7 Series Family

FIFO Type Depth x
Width

FPGA
Family Read Mode Performance

(MHz)

Common Clock FIFO36E1
(Basic)

512 x 72

Artix-7
Standard 265

FWFT 255

Kintex-7
Standard 320

FWFT 310

Virtex-7
Standard 215

FWFT 290

16k x 8

Artix-7
Standard 225

FWFT 220

Kintex-7
Standard 265

FWFT 270

Virtex-7
Standard 205

FWFT 235

Common Clock FIFO36E1
(With Handshaking)

512 x 72

Artix-7
Standard 260

FWFT 250

Kintex-7
Standard 320

FWFT 300

Virtex-7
Standard 210

FWFT 300

16k x 8

Artix-7
Standard 220

FWFT 225

Kintex-7
Standard 250

FWFT 270

Virtex-7
Standard 250

FWFT 215

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=71

FIFO Generator v13.1 www.xilinx.com 72
PG057 April 5, 2017

Chapter 2: Product Specification

Independent Clock
FIFO36E1
(Basic)

512 x 72

Artix-7
Standard 300

FWFT 305

Kintex-7
Standard 385

FWFT 385

Virtex-7
Standard 315

FWFT 315

16k x 8

Artix-7
Standard 255

FWFT 245

Kintex-7
Standard 335

FWFT 345

Virtex-7
Standard 250

FWFT 320

Independent Clock
FIFO36E1
(With Handshaking)

512 x 72

Artix-7
Standard 280

FWFT 345

Kintex-7
Standard 410

FWFT 410

Virtex-7
Standard 330

FWFT 400

16k x 8

Artix-7
Standard 255

FWFT 265

Kintex-7
Standard 315

FWFT 315

Virtex-7
Standard 220

FWFT 210

Table 2-5: Benchmarks: FIFO Configured with FIFO36E1 Resources for 7 Series Family (Cont’d)

FIFO Type Depth x
Width

FPGA
Family Read Mode Performance

(MHz)

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=72

FIFO Generator v13.1 www.xilinx.com 73
PG057 April 5, 2017

Chapter 2: Product Specification

Table 2-6: Benchmarks: FIFO Configured with FIFO36E1 Resources for UltraScale Family

FIFO Type Depth x
Width

FPGA
Family Read Mode Performance

(Fmax)

Common Clock
Built-in FIFO

512x72

Virtex UltraScale
Standard 521

FWFT 521

Kintex UltraScale
Standard 521

FWFT 521

16kx8

Virtex UltraScale
Standard 521

FWFT 521

Kintex UltraScale
Standard 521

FWFT 521

Common Clock
Built-in FIFO
(with Handshaking)

512x72

Virtex UltraScale
Standard 521

FWFT 521

Kintex UltraScale
Standard 521

FWFT 521

16kx8

Virtex UltraScale
Standard 521

FWFT 521

Kintex UltraScale
Standard 521

FWFT 521

Independent Clock
Built-in FIFO

512x72

Virtex UltraScale
Standard 521

FWFT 521

Kintex UltraScale
Standard 521

FWFT 521

16kx8

Virtex UltraScale
Standard 521

FWFT 521

Kintex UltraScale
Standard 521

FWFT 521

Independent Clock
Built-in FIFO(with
handshaking)

512x72

Virtex UltraScale
Standard 521

FWFT 521

Kintex UltraScale
Standard 521

FWFT 521

16kx8

Virtex UltraScale
Standard 521

FWFT 521

Kintex UltraScale
Standard 521

FWFT 521

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=73

FIFO Generator v13.1 www.xilinx.com 74
PG057 April 5, 2017

Chapter 2: Product Specification

AXI Memory Mapped FIFO Performance
Table 2-7 provides the default configuration settings for the benchmarks data. Table 2-8
shows benchmark information for AXI4/AXI3 and AXI4-Lite configurations. The benchmarks
were obtained using the following devices:

Note: These benchmarks were obtained using Vivado Design Suite.

• Artix-7 (XC7A200T- FFG1156-1)

• Virtex-7 (XC7V2000T-FLG1925-1)

• Kintex-7 (XC7K480T-FFG1156-1)

• Virtex® UltraScale™ (XCVU125-FLVA2104-1-I-ES2)

• Kintex® UltraScale™ (XCKU115-FLVD1924-1-C-ES2)

Table 2-7: AXI4/AXI3 and AXI4-Lite Default Configuration Settings

AXI Type FIFO Type Channel Type ID, Address and
Data Width

FIFO
Depth x Width

AXI4/AXI3 for 7
series Family

Distributed RAM Write Address

ID = 4
Address = 32

Data = 64a

16 x 66

Block RAM Write Data 1024 x 77

Distributed RAM Write Response 16 x 6

Distributed RAM Read Address 16 x 66

Block RAM Read Data 1024 x 71

AXI4-Lite for 7
series Family

Distributed RAM Write Address

ID = 4
Address = 32

Data = 32

16 x 35

Block RAM Write Data 1024 x 36

Distributed RAM Write Response 16 x 2

Distributed RAM Read Address 16 x 35

Block RAM Read Data 1024 x 34

AXI4/AXI3 for
UltraScale

Family

Distributed RAM Write Address

ID=0
Address=32

Data=64

16x61

Built-in Write Data 512x73

Distributed RAM Write Response 16x2

Distributed RAM Read Address 16x61

Built-in Read Data 512x67

AXI4-Lite for
UltraScale

Family

Distributed RAM Write Address

Address=32
Data=64

16x35

Built-in Write Data 512x72

Distributed RAM Write Response 16x2

Distributed RAM Read Address 16x35

Built-in Read Data 512x66

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=74

FIFO Generator v13.1 www.xilinx.com 75
PG057 April 5, 2017

Chapter 2: Product Specification

Table 2-8: AXI4/AXI3 and AXI4-Lite Performance

FIFO
Type Clock Type FPGA

Family
Performance

(MHz)

AXI4/AXI3 for 7
series

Common Clock

Artix-7 260

Kintex-7 315

Virtex-7 179

Independent Clock

Artix-7 231

Kintex-7 335

Virtex-7 194

AXI4-Lite for 7 series

Common Clock

Artix-7 245

Kintex-7 350

Virtex-7 214

Independent Clock

Artix-7 240

Kintex-7 350

Virtex-7 190

AXI4/AXI3 for

UltraScale

Common Clock
Virtex UltraScale 521

Kintex UltraScale 521

Independent Clock
Virtex UltraScale 365

Kintex UltraScale 341

AXI4-Lite for
UltraScale

Common Clock
Virtex UltraScale 521

Kintex UltraScale 521

Independent Clock
Virtex UltraScale 521

Kintex UltraScale 521

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=75

FIFO Generator v13.1 www.xilinx.com 76
PG057 April 5, 2017

Chapter 2: Product Specification

Table 2-9 and Table 2-10 provides the benchmarking results for AXI4-Stream FIFO
configurations. The benchmarks were obtained using the following devices:

Note: These benchmarks were obtained using the Vivado Design Suite.

• Artix-7 (XC7A200T- FFG1156-1)

• Virtex-7 (XC7V2000T-FLG1925-1)

• Kintex-7 (XC7K480T-FFG1156-1)

• Virtex® UltraScale™ (XCVU125-FLVA2104-1-I-ES2)

• Kintex® UltraScale™ (XCKU115-FLVD1924-1-C-ES2)

Table 2-9: AXI4-Stream Performance for 7 series Family

FIFO Type FPGA
Family

Depth x
Width

Performance
(MHz)

Common Clock FIFO
(Block RAM)

512 x 16

Artix-7 254

Kintex-7 355

Virtex-7 329

4096 x 16

Artix-7 260

Kintex-7 325

Virtex-7 325

Common Clock FIFO
(Distributed RAM)

512 x 16

Artix-7 259

Kintex-7 378

Virtex-7 349

64 x16

Artix-7 308

Kintex-7 445

Virtex-7 466

Independent Clock FIFO
(Block RAM)

512 x 16

Artix-7 266

Kintex-7 355

Virtex-7 325

4096 x 16

Artix-7 282

Kintex-7 355

Virtex-7 350

Independent Clock FIFO
(Distributed RAM)

512 x 16

Artix-7 110

Kintex-7 375

Virtex-7 395

64 x 16

Artix-7 340

Kintex-7 485

Virtex-7 495

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=76

FIFO Generator v13.1 www.xilinx.com 77
PG057 April 5, 2017

Chapter 2: Product Specification

Latency
The latency of output signals of FIFO varies for different configurations. See Latency in
Chapter 3 for more details.

Resource Utilization
For details about Resource Utilization, visit Performance and Resources Utilization web
page

Port Descriptions

Native FIFO Port Summary
Table 2-11 describes all the FIFO Generator ports.

Table 2-10: AXI4-Stream Performance for UltraScale Family

FIFO Type Depth x Family FPGA Family Performance (Fmax)

Common Clock FIFO
(Block RAM) 512x16

Virtex UltraScale 470
Kintex UltraScale 458

4096x16
Virtex UltraScale 458
Kintex UltraScale 435

Common Clock FIFO
(Distributed RAM)

512x16
Virtex UltraScale 498
Kintex UltraScale 472

64x16
Virtex UltraScale 631
Kintex UltraScale 610

Independent Clock FIFO
(Block RAM)

512x16
Virtex UltraScale 521
Kintex UltraScale 513

4096x16
Virtex UltraScale 521
Kintex UltraScale 482

Independent Clock FIFO
(Distributed RAM)

512x16
Virtex UltraScale 521
Kintex UltraScale 490

64x16
Virtex UltraScale 631
Kintex UltraScale 607

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=fifo-generator.html
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=77

FIFO Generator v13.1 www.xilinx.com 78
PG057 April 5, 2017

Chapter 2: Product Specification

Table 2-11: FIFO Generator Ports

Port Name Input or
Output

Optional
Port

Port Available

Independent
Clocks

Common
Clock

rst (Not available for UltraScale architecture
built-in FIFOs)

I Yes Yes Yes

srst I Yes No Yes

clk I No No Yes

data_count[c:0] O Yes No Yes

Write Interface Signals

wr_clk I No Yes No

din[n:0] I No Yes Yes

wr_en I No Yes Yes

full O No Yes Yes

almost_full O Yes Yes Yes

prog_full O Yes Yes Yes

wr_data_count[d:0] O Yes Yes Yes

wr_ack O Yes Yes Yes

overflow O Yes Yes Yes

prog_full_thresh I Yes Yes Yes

prog_full_thresh_assert I Yes Yes Yes

prog_full_thresh_negate I Yes Yes Yes

wr_rst I Yes Yes No

injectsbiterr I Yes Yes Yes

injectdbiterr I Yes Yes Yes

Read Interface Signals

rd_clk I No Yes No

dout[m:0] O No Yes Yes

rd_en I No Yes Yes

empty O No Yes Yes

almost_empty O Yes Yes Yes

prog_empty O Yes Yes Yes

rd_data_count[c:0](1) O Yes Yes Yes

valid O Yes Yes Yes

underflow O Yes Yes Yes

prog_empty_thresh I Yes Yes Yes

prog_empty_thresh_assert I Yes Yes Yes

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=78

FIFO Generator v13.1 www.xilinx.com 79
PG057 April 5, 2017

Chapter 2: Product Specification

AXI FIFO Port Summary

AXI Global Interface Ports

AXI4-Stream FIFO Interface Ports

prog_empty_thresh_negate I Yes Yes Yes

sbiterr O Yes Yes Yes

dbiterr O Yes Yes Yes

rd_rst I Yes Yes No

sleep(2)

wr_rst_busy(3)

rd_rst_busyb

Notes:
1. wr_data_count/rd_data_count is also available for UltraScale devices using a common clock Block RAM-based FIFO

when the Asymmetric Port Width option is enabled.
2. Available only for UltraScale architecture built-in FIFOs.
3. Available for UltraScale architecture built-in FIFOs and UltraScale architecture non-built-in FIFOs with synchronous

reset.

Table 2-12: AXI FIFO - Global Interface Ports

Port Name Input or
Output Optional Port

Port Available

Independent Clocks Common Clock

Global Clock and Reset Signals Mapped to FIFO Clock and Reset Inputs

m_aclk Input Yes Yes No

s_aclk Input No Yes Yes

s_aresetn Input No Yes Yes

Table 2-13: AXI4-Stream FIFO Interface Ports

Port Name Input or
Output

Optional
Port

Port Available

Independent Clocks Common Clock

AXI4-Stream Interface: Handshake Signals for FIFO Read Interface

m_axis_tvalid Output No Yes Yes

m_axis_tready Input No Yes Yes

Table 2-11: FIFO Generator Ports (Cont’d)

Port Name Input or
Output

Optional
Port

Port Available

Independent
Clocks

Common
Clock

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=79

FIFO Generator v13.1 www.xilinx.com 80
PG057 April 5, 2017

Chapter 2: Product Specification

AXI4-Stream Interface: Information Signals Derived from FIFO Data Output (dout) Bus

m_axis_tdata[m-1:0] Output No Yes Yes

m_axis_tstrb[m/8-1:0] Output Yes Yes Yes

m_axis_tkeep[m/8-1:0] Output Yes Yes Yes

m_axis_tlast Output Yes Yes Yes

m_axis_tid[m:0] Output Yes Yes Yes

m_axis_tdest[m:0] Output Yes Yes Yes

m_axis_tuser[m:0] Output Yes Yes Yes

AXI4-Stream Interface: Handshake Signals for FIFO Write Interface

s_axis_tvalid Input No Yes Yes

s_axis_tready Output No Yes Yes

AXI4-Stream Interface: Information Signals Mapped to FIFO Data Input (din) Bus

s_axis_tdata[m-1:0] Input No Yes Yes

s_axis_tstrb[m/8-1:0] Input Yes Yes Yes

s_axis_tkeep[m/8-1:0] Input Yes Yes Yes

s_axis_tlast Input Yes Yes Yes

s_axis_tid[m:0] Input Yes Yes Yes

s_axis_tdest[m:0] Input Yes Yes Yes

s_axis_tuser[m:0] Input Yes Yes Yes

AXI4-Stream FIFO: Optional Sideband Signals

axis_prog_full_thresh[m:0] Input Yes Yes Yes

axis_prog_empty_thresh[m:0] Input Yes Yes Yes

axis_injectsbiterr Input Yes Yes Yes

axis_injectdbiterr Input Yes Yes Yes

axis_sbiterr Output Yes Yes Yes

axis_dbiterr Output Yes Yes Yes

axis_overflow Output Yes Yes Yes

axis_wr_data_count[m:0] Output Yes Yes No

axis_underflow Output Yes Yes Yes

axis_rd_data_count[m:0] Output Yes Yes No

axis_data_count[m:0] Output Yes No Yes

axis_prog_full Output Yes Yes Yes

axis_prog_empty Output Yes Yes Yes

Table 2-13: AXI4-Stream FIFO Interface Ports (Cont’d)

Port Name Input or
Output

Optional
Port

Port Available

Independent Clocks Common Clock

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=80

FIFO Generator v13.1 www.xilinx.com 81
PG057 April 5, 2017

Chapter 2: Product Specification

AXI4/AXI3 FIFO Interface Ports

Write Channels

Table 2-14: AXI4/AXI3 Write Address Channel FIFO Interface Ports

Port Name Input or
Output

Optional
Port

Port Available

Independent Clocks Common Clock

AXI4/AXI3 Interface Write Address Channel:
Information Signals Mapped to FIFO Data Input (din) bus

s_axi_awid[m:0] Input Yes Yes Yes

s_axi_awaddr[m:0] Input No Yes Yes

s_axi_awlen[7:0] Input No Yes Yes

s_axi_awsize[2:0] Input No Yes Yes

s_axi_awburst[1:0] Input No Yes Yes

s_axi_awlock[2:0] Input No Yes Yes

s_axi_awcache[4:0] Input No Yes Yes

s_axi_awprot[3:0] Input No Yes Yes

s_axi_awqos[3:0] Input No Yes Yes

s_axi_awregion[3:0] Input No Yes Yes

s_axi_awuser[m:0] Input Yes Yes Yes

AXI4/AXI3 Interface Write Address Channel: Handshake Signals for FIFO Write Interface

s_axi_awvalid Input No Yes Yes

s_axi_awready Output No Yes Yes

AXI4/AXI3 Interface Write Address Channel:
Information Signals Derived from FIFO Data Output (dout) Bus

m_axi_awid[m:0] Output Yes Yes Yes

m_axi_awaddr[m:0] Output No Yes Yes

m_axi_awlen[7:0] Output No Yes Yes

m_axi_awsize[2:0] Output No Yes Yes

m_axi_awburst[1:0] Output No Yes Yes

m_axi_awlock[2:0] Output No Yes Yes

m_axi_awcache[4:0] Output No Yes Yes

m_axi_awprot[3:0] Output No Yes Yes

m_axi_awqos[3:0] Output No Yes Yes

m_axi_awregion[3:0] Output No Yes Yes

m_axi_awuser[m:0] Output Yes Yes Yes

AXI4/AXI3 Interface Write Address Channel: Handshake Signals for FIFO Read Interface

m_axi_awvalid Output No Yes Yes

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=81

FIFO Generator v13.1 www.xilinx.com 82
PG057 April 5, 2017

Chapter 2: Product Specification

m_axi_awready Input No Yes Yes

AXI4/AXI3 Write Address Channel FIFO: Optional Sideband Signals

axi_aw_prog_full_thresh[m:0] Input Yes Yes Yes

axi_aw_prog_empty_thresh[m:0] Input Yes Yes Yes

axi_aw_injectsbiterr Input Yes Yes Yes

axi_aw_injectdbiterr Input Yes Yes Yes

axi_aw_sbiterr Output Yes Yes Yes

axi_aw_dbiterr Output Yes Yes Yes

axi_aw_overflow Output Yes Yes Yes

axi_aw_wr_data_count[m:0] Output Yes Yes No

axi_aw_underflow Output Yes Yes Yes

axi_aw_rd_data_count[m:0] Output Yes Yes No

axi_aw_data_count[m:0] Output Yes No Yes

axi_aw_prog_full Output Yes Yes Yes

axi_aw_prog_empty Output Yes Yes Yes

Table 2-15: AXI4/AXI3 Write Data Channel FIFO Interface Ports

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks

Common
Clock

AXI4/AXI3 Interface Write Data Channel: Information Signals Mapped to
FIFO Data Input (din) Bus

s_axi_wid[m:0] Input Yes Yes Yes

s_axi_wdata[m-1:0] Input No Yes Yes

s_axi_wstrb[m/8-1:0] Input No Yes Yes

s_axi_wlast Input No Yes Yes

s_axi_wuser[m:0] Input Yes Yes Yes

AXI4/AXI3 Interface Write Data Channel: Handshake Signals for FIFO Write Interface

s_axi_wvalid Input No Yes Yes

s_axi_wready Output No Yes Yes

AXI4/AXI3 Interface Write Data Channel:
Information Signals Derived from FIFO Data Output (dout) Bus

m_axi_wid[m:0] Output Yes Yes Yes

m_axi_wdata[m-1:0] Output No Yes Yes

m_axi_wstrb[m/8-1:0] Output No Yes Yes

Table 2-14: AXI4/AXI3 Write Address Channel FIFO Interface Ports (Cont’d)

Port Name Input or
Output

Optional
Port

Port Available

Independent Clocks Common Clock

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=82

FIFO Generator v13.1 www.xilinx.com 83
PG057 April 5, 2017

Chapter 2: Product Specification

m_axi_wlast Output No Yes Yes

m_axi_wuser[m:0] Output Yes Yes Yes

AXI4/AXI3 Interface Write Data Channel: Handshake Signals for FIFO Read Interface

m_axi_wvalid Output No Yes Yes

m_axi_wready Input No Yes Yes

AXI4/AXI3 Write Data Channel FIFO: Optional Sideband Signals

axi_w_prog_full_thresh[m:0] Input Yes Yes Yes

axi_w_prog_empty_thresh[m:0] Input Yes Yes Yes

axi_w_injectsbiterr Input Yes Yes Yes

axi_w_injectdbiterr Input Yes Yes Yes

axi_w_sbiterr Output Yes Yes Yes

axi_w_dbiterr Output Yes Yes Yes

axi_w_overflow Output Yes Yes Yes

axi_w_wr_data_count[m:0] Output Yes Yes No

axi_w_underflow Output Yes Yes Yes

axi_w_rd_data_count[m:0] Output Yes Yes No

axi_w_data_count[m:0] Output Yes No Yes

axi_w_prog_full Output Yes Yes Yes

axi_w_prog_empty Output Yes Yes Yes

Table 2-16: AXI4/AXI3 Write Response Channel FIFO Interface Ports

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks Common Clock

AXI4/AXI3 Interface Write Response Channel:
Information Signals Derived from FIFO Data Output (dout) Bus

s_axi_bid[m:0] Output Yes Yes Yes

s_axi_bresp[1:0] Output No Yes Yes

s_axi_buser[m:0] Output Yes Yes Yes

AXI4/AXI3 Interface Write Response Channel: Handshake Signals for FIFO Read Interface

s_axi_bvalid Output No Yes Yes

s_axi_bready Input No Yes Yes

Table 2-15: AXI4/AXI3 Write Data Channel FIFO Interface Ports (Cont’d)

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks

Common
Clock

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=83

FIFO Generator v13.1 www.xilinx.com 84
PG057 April 5, 2017

Chapter 2: Product Specification

Read Channels

AXI4/AXI3 Interface Write Response Channel:
Information Signals Mapped to FIFO Data Input (din) Bus

m_axi_bid[m:0] Input Yes Yes Yes

m_axi_bresp[1:0] Input No Yes Yes

m_axi_buser[m:0] Input Yes Yes Yes

AXI4/AXI3 Interface Write Response Channel: Handshake Signals for FIFO Write Interface

m_axi_bvalid Input No Yes Yes

m_axi_bready Output No Yes Yes

AXI4/AXI3 Write Response Channel FIFO: Optional Sideband Signals

axi_b_prog_full_thresh[m:0] Input Yes Yes Yes

axi_b_prog_empty_thresh[m:0] Input Yes Yes Yes

axi_b_injectsbiterr Input Yes Yes Yes

axi_b_injectdbiterr Input Yes Yes Yes

axi_b_sbiterr Output Yes Yes Yes

axi_b_dbiterr Output Yes Yes Yes

axi_b_overflow Output Yes Yes Yes

axi_b_wr_data_count[m:0] Output Yes Yes No

axi_b_underflow Output Yes Yes Yes

axi_b_rd_data_count[m:0] Output Yes Yes No

axi_b_data_count[m:0] Output Yes No Yes

axi_b_prog_full Output Yes Yes Yes

axi_b_prog_empty Output Yes Yes Yes

Table 2-17: AXI4/AXI3 Read Address Channel FIFO Interface Ports

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks

Common
Clock

AXI4/AXI3 Interface Read Address Channel:
Information Signals Mapped to FIFO Data Input (din) Bus

s_axi_arid[m:0] Input Yes Yes Yes

s_axi_araddr[m:0] Input No Yes Yes

s_axi_arlen[7:0] Input No Yes Yes

s_axi_arsize[2:0] Input No Yes Yes

Table 2-16: AXI4/AXI3 Write Response Channel FIFO Interface Ports (Cont’d)

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks Common Clock

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=84

FIFO Generator v13.1 www.xilinx.com 85
PG057 April 5, 2017

Chapter 2: Product Specification

s_axi_arburst[1:0] Input No Yes Yes

s_axi_arlock[2:0] Input No Yes Yes

s_axi_arcache[4:0] Input No Yes Yes

s_axi_arprot[3:0] Input No Yes Yes

s_axi_arqos[3:0] Input No Yes Yes

s_axi_arregion[3:0] Input No Yes Yes

s_axi_aruser[m:0] Input Yes Yes Yes

AXI4/AXI3 Interface Read Address Channel: Handshake Signals for FIFO Write Interface

s_axi_arvalid Input No Yes Yes

s_axi_arready Output No Yes Yes

AXI4/AXI3 Interface, Read Address Channel:
Information Signals Derived from FIFO Data Output (dout) Bus

m_axi_arid[m:0] Output Yes Yes Yes

m_axi_araddr[m:0] Output No Yes Yes

m_axi_arlen[7:0] Output No Yes Yes

m_axi_arsize[2:0] Output No Yes Yes

m_axi_arburst[1:0] Output No Yes Yes

m_axi_arlock[2:0] Output No Yes Yes

m_axi_arcache[4:0] Output No Yes Yes

m_axi_arprot[3:0] Output No Yes Yes

m_axi_arqos[3:0] Output No Yes Yes

m_axi_arregion[3:0] Output No Yes Yes

m_axi_aruser[m:0] Output Yes Yes Yes

AXI4/AXI3 Interface Read Address Channel: Handshake Signals for FIFO Read Interface

m_axi_arvalid Output No Yes Yes

m_axi_arready Input No Yes Yes

AXI4/AXI3 Read Address Channel FIFO: Optional Sideband Signals

axi_ar_prog_full_thresh[m:0] Input Yes Yes Yes

axi_ar_prog_empty_thresh[m:0] Input Yes Yes Yes

axi_ar_injectsbiterr Input Yes Yes Yes

axi_ar_injectdbiterr Input Yes Yes Yes

axi_ar_sbiterr Output Yes Yes Yes

axi_ar_dbiterr Output Yes Yes Yes

Table 2-17: AXI4/AXI3 Read Address Channel FIFO Interface Ports (Cont’d)

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks

Common
Clock

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=85

FIFO Generator v13.1 www.xilinx.com 86
PG057 April 5, 2017

Chapter 2: Product Specification

axi_ar_overflow Output Yes Yes Yes

axi_ar_wr_data_count[m:0] Output Yes Yes No

axi_ar_underflow Output Yes Yes Yes

axi_ar_rd_data_count[m:0] Output Yes Yes No

axi_ar_data_count[m:0] Output Yes No Yes

axi_ar_prog_full Output Yes Yes Yes

axi_ar_prog_empty Output Yes Yes Yes

Table 2-18: AXI4/AXI3 Read Data Channel FIFO Interface Ports

Port Name Input or
Output Optional Port

Port Available

Common Clock Independent
Clocks

AXI4/AXI3 Interface Read Data Channel:
Information Signals Derived from FIFO Data Output (dout) Bus

s_axi_rid[m:0] Output Yes Yes Yes

s_axi_rdata[m-1:0] Output No Yes Yes

s_axi_rresp[1:0] Output No Yes Yes

s_axi_rlast Output No Yes Yes

s_axi_ruser[m:0] Output Yes Yes Yes

AXI4/AXI3 Interface Read Data Channel: Handshake Signals for FIFO Read Interface

s_axi_rvalid Output No Yes Yes

s_axi_rready Input No Yes Yes

AXI4/AXI3 Interface Read Data Channel: Information Signals Mapped to FIFO Data Input (din) Bus

m_axi_rid[m:0] Input Yes Yes Yes

m_axi_rdata[m-1:0] Input No Yes Yes

m_axi_ rresp[1:0] Input No Yes Yes

m_axi_rlast Input No Yes Yes

m_axi_ruser[m:0] Input Yes Yes Yes

AXI4/AXI3 Interface, Read Data Channel: Handshake Signals for FIFO Read Interface

m_axi_rvalid Input No Yes Yes

m_axi_rready Output No Yes Yes

AXI4/AXI3 Read Data Channel FIFO: Optional Sideband Signals

axi_r_prog_full_thresh[m:0] Input Yes Yes Yes

Table 2-17: AXI4/AXI3 Read Address Channel FIFO Interface Ports (Cont’d)

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks

Common
Clock

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=86

FIFO Generator v13.1 www.xilinx.com 87
PG057 April 5, 2017

Chapter 2: Product Specification

AXI4-Lite FIFO Interface Ports

Write Channels

axi_r_prog_empty_thresh[m:0] Input Yes Yes Yes

axi_r_injectsbiterr Input Yes Yes Yes

axi_r_injectdbiterr Input Yes Yes Yes

axi_r_sbiterr Output Yes Yes Yes

axi_r_dbiterr Output Yes Yes Yes

axi_r_overflow Output Yes Yes Yes

axi_r_wr_data_count[m:0] Output Yes Yes No

axi_r_underflow Output Yes Yes Yes

axi_r_rd_data_count[m:0] Output Yes Yes No

axi_r_data_count[m:0] Output Yes No Yes

axi_r_prog_full Output Yes Yes Yes

axi_r_prog_empty Output Yes Yes Yes

Table 2-19: AXI4-Lite Write Address Channel FIFO Interface Ports

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks

Common
Clock

AXI4-Lite Interface Write Address Channel:
Information Signals Mapped to FIFO Data Input (din) Bus

s_axi_awaddr[m:0] Input No Yes Yes

s_axi_awprot[3:0] Input No Yes Yes

AXI4-Lite Interface Write Address Channel: Handshake Signals for FIFO Write Interface

s_axi_awvalid Input No Yes Yes

s_axi_awready Output No Yes Yes

AXI4-Lite Interface Write Address Channel:
Information Signals Derived from FIFO Data Output (dout) Bus

m_axi_awaddr[m:0] Output No Yes Yes

m_axi_awprot[3:0] Output No Yes Yes

AXI4-Lite Interface Write Address Channel: Handshake Signals for FIFO Read Interface

m_axi_awvalid Output No Yes Yes

m_axi_awready Input No Yes Yes

Table 2-18: AXI4/AXI3 Read Data Channel FIFO Interface Ports

Port Name Input or
Output Optional Port

Port Available

Common Clock Independent
Clocks

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=87

FIFO Generator v13.1 www.xilinx.com 88
PG057 April 5, 2017

Chapter 2: Product Specification

AXI4-Lite Write Address Channel FIFO: Optional Sideband Signals

axi_aw_prog_full_thresh[m:0] Input Yes Yes Yes

axi_aw_prog_empty_thresh[m:0] Input Yes Yes Yes

axi_aw_injectsbiterr Input Yes Yes Yes

axi_aw_injectdbiterr Input Yes Yes Yes

axi_aw_sbiterr Output Yes Yes Yes

axi_aw_dbiterr Output Yes Yes Yes

axi_aw_overflow Output Yes Yes Yes

axi_aw_wr_data_count[m:0] Output Yes Yes No

axi_aw_underflow Output Yes Yes Yes

axi_aw_rd_data_count[m:0] Output Yes Yes No

axi_aw_data_count[m:0] Output Yes No Yes

axi_aw_prog_full Output Yes Yes Yes

axi_aw_prog_empty Output Yes Yes Yes

Table 2-20: AXI4-Lite Write Data Channel FIFO Interface Ports

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks

Common
Clock

AXI4-Lite Interface Write Data Channel:
Information Signals Mapped to FIFO Data Input (din) Bus

s_axi_wdata[m-1:0] Input No Yes Yes

s_axi_wstrb[m/8-1:0] Input No Yes Yes

AXI4-Lite Interface Write Data Channel: Handshake Signals for FIFO Write Interface

s_axi_wvalid Input No Yes Yes

s_axi_wready Output No Yes Yes

AXI4-Lite Interface Write Data Channel:
Information Signals Derived from FIFO Data Output (dout) Bus

m_axi_wdata[m-1:0] Output No Yes Yes

m_axi_wstrb[m/8-1:0] Output No Yes Yes

AXI4-Lite Interface Write Data Channel: Handshake Signals for FIFO Read Interface

m_axi_wvalid Output No Yes Yes

m_axi_wready Input No Yes Yes

AXI4-Lite Write Data Channel FIFO: Optional Sideband Signals

Table 2-19: AXI4-Lite Write Address Channel FIFO Interface Ports (Cont’d)

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks

Common
Clock

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=88

FIFO Generator v13.1 www.xilinx.com 89
PG057 April 5, 2017

Chapter 2: Product Specification

axi_w_prog_full_thresh[m:0] Input Yes Yes Yes

axi_w_prog_empty_thresh[m:0] Input Yes Yes Yes

axi_w_injectsbiterr Input Yes Yes Yes

axi_w_injectdbiterr Input Yes Yes Yes

axi_w_sbiterr Output Yes Yes Yes

axi_w_dbiterr Output Yes Yes Yes

axi_w_overflow Output Yes Yes Yes

axi_w_wr_data_count[m:0] Output Yes Yes No

axi_w_underflow Output Yes Yes Yes

axi_w_rd_data_count[m:0] Output Yes Yes No

axi_w_data_count[m:0] Output Yes No Yes

axi_w_prog_full Output Yes Yes Yes

axi_w_prog_empty Output Yes Yes Yes

Table 2-21: AXI4-Lite Write Response Channel FIFO Interface Ports

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks Common Clock

AXI4-Lite Interface Write Response Channel:
Information Signals Derived from FIFO Data Output (dout) Bus

s_axi_bresp[1:0] Output No Yes Yes

AXI4-Lite Interface Write Response Channel: Handshake Signals for FIFO Read Interface

s_axi_bvalid Output No Yes Yes

s_axi_bready Input No Yes Yes

AXI4-Lite Interface Write Response Channel:
Information Signals Mapped to FIFO Data Input (din) Bus

m_axi_bresp[1:0] Input No Yes Yes

AXI4-Lite Interface Write Response Channel: Handshake Signals for FIFO Write Interface

m_axi_bvalid Input No Yes Yes

m_axi_bready Output No Yes Yes

AXI4-Lite Write Response Channel FIFO: Optional Sideband Signals

axi_b_prog_full_thresh[m:0] Input Yes Yes Yes

axi_b_prog_empty_thresh[m:0] Input Yes Yes Yes

axi_b_injectsbiterr Input Yes Yes Yes

Table 2-20: AXI4-Lite Write Data Channel FIFO Interface Ports (Cont’d)

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks

Common
Clock

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=89

FIFO Generator v13.1 www.xilinx.com 90
PG057 April 5, 2017

Chapter 2: Product Specification

Read Channels

axi_b_injectdbiterr Input Yes Yes Yes

axi_b_sbiterr Output Yes Yes Yes

axi_b_dbiterr Output Yes Yes Yes

axi_b_overflow Output Yes Yes Yes

axi_b_wr_data_count[m:0] Output Yes Yes No

axi_b_underflow Output Yes Yes Yes

axi_b_rd_data_count[m:0] Output Yes Yes No

axi_b_data_count[m:0] Output Yes No Yes

axi_b_prog_full Output Yes Yes Yes

axi_b_prog_empty Output Yes Yes Yes

Table 2-22: AXI4-Lite Read Address Channel FIFO Interface Ports

Port Name Input or
Output

Optional
Port

Port Available

Independent
Clocks

Common
Clock

AXI4-Lite Interface Read Address Channel:
Information Signals Mapped to FIFO Data Input (din) Bus

s_axi_araddr[m:0] Input No Yes Yes

s_axi_arprot[3:0] Input No Yes Yes

AXI4-Lite Interface Read Address Channel: Handshake Signals for FIFO Write Interface

s_axi_arvalid Input No Yes Yes

s_axi_arready Output No Yes Yes

AXI4-Lite Interface Read Address Channel:
Information Signals Derived from FIFO Data Output (dout) Bus

m_axi_araddr[m:0] Output No Yes Yes

m_axi_arprot[3:0] Output No Yes Yes

AXI4-Lite Interface Read Address Channel: Handshake Signals for FIFO Read Interface

m_axi_arvalid Output No Yes Yes

m_axi_arready Input No Yes Yes

AXI4-Lite Read Address Channel FIFO: Optional Sideband Signals

axi_ar_prog_full_thresh[m:0] Input Yes Yes Yes

axi_ar_prog_empty_thresh[m:0] Input Yes Yes Yes

Table 2-21: AXI4-Lite Write Response Channel FIFO Interface Ports (Cont’d)

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks Common Clock

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=90

FIFO Generator v13.1 www.xilinx.com 91
PG057 April 5, 2017

Chapter 2: Product Specification

axi_ar_injectsbiterr Input Yes Yes Yes

axi_ar_injectdbiterr Input Yes Yes Yes

axi_ar_sbiterr Output Yes Yes Yes

axi_ar_dbiterr Output Yes Yes Yes

axi_ar_overflow Output Yes Yes Yes

axi_ar_wr_data_count[m:0] Output Yes Yes No

axi_ar_underflow Output Yes Yes Yes

axi_ar_rd_data_count[m:0] Output Yes Yes No

axi_ar_data_count[m:0] Output Yes No Yes

axi_ar_prog_full Output Yes Yes Yes

axi_ar_prog_empty Output Yes Yes Yes

Table 2-23: AXI4-Lite Read Data Channel FIFO Interface Ports

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks

Common
Clock

AXI4-Lite Interface Read Data Channel:
Information Signals Derived from FIFO Data Output (dout) Bus

s_axi_rdata[m-1:0] Output No Yes Yes

s_axi_rresp[1:0] Output No Yes Yes

AXI4-Lite Interface Read Data Channel: Handshake Signals for FIFO Read Interface

s_axi_rvalid Output No Yes Yes

s_axi_rready Input No Yes Yes

AXI4-Lite Interface Read Data Channel:
Information Signals Mapped to FIFO Data Input (din) Bus

m_axi_rdata[m-1:0] Input No Yes Yes

m_axi_ rresp[1:0] Input No Yes Yes

AXI4-Lite Interface Read Data Channel: Handshake Signals for FIFO Write Interface

m_axi_rvalid Input No Yes Yes

m_axi_rready Output No Yes Yes

AXI4-Lite Read Data Channel FIFO: Optional Sideband Signals

axi_r_prog_full_thresh[m:0] Input Yes Yes Yes

axi_r_prog_empty_thresh[m:0] Input Yes Yes Yes

axi_r_injectsbiterr Input Yes Yes Yes

Table 2-22: AXI4-Lite Read Address Channel FIFO Interface Ports (Cont’d)

Port Name Input or
Output

Optional
Port

Port Available

Independent
Clocks

Common
Clock

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=91

FIFO Generator v13.1 www.xilinx.com 92
PG057 April 5, 2017

Chapter 2: Product Specification

axi_r_injectdbiterr Input Yes Yes Yes

axi_r_sbiterr Output Yes Yes Yes

axi_r_dbiterr Output Yes Yes Yes

axi_r_overflow Output Yes Yes Yes

axi_r_wr_data_count[m:0] Output Yes Yes No

axi_r_underflow Output Yes Yes Yes

axi_r_rd_data_count[m:0] Output Yes Yes No

axi_r_data_count[m:0] Output Yes No Yes

axi_r_prog_full Output Yes Yes Yes

axi_r_prog_empty Output Yes Yes Yes

Table 2-23: AXI4-Lite Read Data Channel FIFO Interface Ports (Cont’d)

Port Name Input or
Output Optional Port

Port Available

Independent
Clocks

Common
Clock

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=92

FIFO Generator v13.1 www.xilinx.com 93
PG057 April 5, 2017

Chapter 3

Designing with the Core
This chapter describes the steps required to turn a FIFO Generator core into a fully
functioning design integrated with the user application logic.

IMPORTANT: Depending on the configuration of the FIFO core, only a subset of the implementation
details provided are applicable. For successful use of a FIFO core, the design guidelines discussed in this
chapter must be observed.

General Design Guidelines

Know the Degree of Difficulty
A fully-compliant and feature-rich FIFO design is challenging to implement in any
technology. For this reason, it is important to understand that the degree of difficulty can
be significantly influenced by:

• Maximum system clock frequency.

• Targeted device architecture.

• Specific user application.

Ensure that design techniques are used to facilitate implementation, including pipelining
and use of constraints (timing constraints, and placement and/or area constraints).

Understand Signal Pipelining and Synchronization
To understand the nature of FIFO designs, it is important to understand how pipelining is
used to maximize performance and implement synchronization logic for clock-domain
crossing. Data written into the write interface may take multiple clock cycles before it can be
accessed on the read interface.

Synchronization Considerations

FIFOs with independent write and read clocks require that interface signals be used only in
their respective clock domains. The independent clocks FIFO handles all synchronization

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=93

FIFO Generator v13.1 www.xilinx.com 94
PG057 April 5, 2017

Chapter 3: Designing with the Core

requirements, enabling you to cross between two clock domains that have no relationship
in frequency or phase.

IMPORTANT: FIFO Full and Empty flags must be used to guarantee proper behavior.

Figure 3-1 shows the signals with respect to their clock domains. All signals are
synchronous to a specific clock, with the exception of rst, which performs an
asynchronous reset of the entire FIFO.

For write operations, the write enable signal (wr_en) and data input (din) are synchronous
to wr_clk. For read operations, the read enable (rd_en) and data output (dout) are
synchronous to rd_clk. All status outputs are synchronous to their respective clock
domains and can only be used in that clock domain. The performance of the FIFO can be
measured by independently constraining the clock period for the wr_clk and rd_clk
input signals.

The interface signals are evaluated on their rising clock edge (wr_clk and rd_clk). They
can be made falling-edge active (relative to the clock source) by inserting an inverter
between the clock source and the FIFO clock inputs. This inverter is absorbed into the
internal FIFO control logic and does not cause a decrease in performance or increase in
logic utilization.

X-Ref Target - Figure 3-1

Figure 3-1: FIFO with Independent Clocks: Write and Read Clock Domains

Note: Optional ports represented in italics

dout[m:0]

empty

rst

rd_en

rd_clk

prog_full_thresh_assert

prog_full_thresh_negate

wr_rst

prog_full_thresh

Write Clock
Domain

Read Clock
Domain

full

wr_en

din[n:0]

wr_clk

almost_full

prog_full

wr_ack

overflow

almost_empty

prog_empty

valid

underflow

prog_empty_thresh_assert

prog_empty_thresh_negate

rd_rst

PROG_EMPTY_THRESHprog_empty_thresh

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=94

FIFO Generator v13.1 www.xilinx.com 95
PG057 April 5, 2017

Chapter 3: Designing with the Core

Initializing the FIFO Generator
When designing with the built-in FIFO or common clock shift register FIFO, the FIFO must
be reset after the FPGA is configured and before operation begins. An asynchronous reset
pin (rst) is provided for shift register FIFOs and 7 series built-in FIFOs. This reset is an
asynchronous reset that clears the internal counters and output registers. For UltraScale
architecture built-in FIFO implementation, the reset pin (srst) is synchronous to clk/
wr_clk that clears the internal counters and output registers. UltraScale architecture
built-in FIFO provides wr_rst_busy and rd_rst_busy output signals to indicate if the
FIFO is ready for write or read operations.

For FIFOs implemented with block RAM or distributed RAM, a reset is not required, and the
input pin is optional. For common clock configurations, you have the option of
asynchronous or synchronous reset. For independent clock configurations, you have the
option of asynchronous reset (rst) or synchronous reset (wr_rst/rd_rst) with respect to
respective clock domains.

When asynchronous reset is implemented (Enable Reset Synchronization option is
selected), it is synchronized to the clock domain in which it is used to ensure that the FIFO
initializes to a known state. This synchronization logic allows for proper reset timing of the
core logic, avoiding glitches and metastable behavior. The reset pulse and synchronization
delay requirements are dependent on the FIFO implementation types.

When wr_rst/rd_rst is implemented (Enable Reset Synchronization option is not
selected), the wr_rst/rd_rst is considered to be synchronous to the respective clock
domain. The write clock domain remains in reset state as long as wr_rst is asserted, and
the read clock domain remains in reset state as long as rd_rst is asserted. See Resets,
page 126.

FIFO Usage and Control

Write Operation
This section describes the behavior of a FIFO write operation and the associated status
flags. When write enable is asserted and the FIFO is not full, data is added to the FIFO from
the input bus (din) and write acknowledge (wr_ack) is asserted. If the FIFO is continuously
written to without being read, it fills with data. Write operations are only successful when
the FIFO is not full. When the FIFO is full and a write is initiated, the request is ignored, the
overflow flag is asserted and there is no change in the state of the FIFO (overflowing the
FIFO is non-destructive).

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=95

FIFO Generator v13.1 www.xilinx.com 96
PG057 April 5, 2017

Chapter 3: Designing with the Core

almost_full and full Flags

Note: The built-in FIFO does not support the almost_full flag.

The almost full flag (almost_full) indicates that only one more write can be performed
before full is asserted. This flag is active-High and synchronous to the write clock
(wr_clk).

The full flag (full) indicates that the FIFO is full and no more writes can be performed until
data is read out. This flag is active-High and synchronous to the write clock (wr_clk). If a
write is initiated when full is asserted, the write request is ignored and overflow is
asserted.

Example Operation

Figure 3-2 shows a typical write operation. When you assert wr_en, it causes a write
operation to occur on the next rising edge of the wr_clk. Because the FIFO is not full,
wr_ack is asserted, acknowledging a successful write operation. When only one additional
word can be written into the FIFO, the FIFO asserts the almost_full flag. When
almost_full is asserted, one additional write causes the fifo to assert full. When a write
occurs after full is asserted, wr_ack is deasserted and overflow is asserted, indicating
an overflow condition. Once you perform one or more read operations, the FIFO deasserts
full, and data can successfully be written to the FIFO, as is indicated by the assertion of
wr_ack and deassertion of overflow.

Read Operation
This section describes the behavior of a FIFO read operation and the associated status flags.
When read enable is asserted and the FIFO is not empty, data is read from the FIFO on the
output bus (dout), and the valid flag (VALID) is asserted. If the FIFO is continuously read
without being written, the FIFO empties. Read operations are successful when the FIFO is
not empty. When the FIFO is empty and a read is requested, the read operation is ignored,
the underflow flag is asserted and there is no change in the state of the FIFO (underflowing
the FIFO is non-destructive).

X-Ref Target - Figure 3-2

Figure 3-2: Write Operation for a FIFO with Independent Clocks

wr_clk

wr_en

full

almost_full

wr_ack

overflow

din D1 D2 D3 D4 D5 D12 D13

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=96

FIFO Generator v13.1 www.xilinx.com 97
PG057 April 5, 2017

Chapter 3: Designing with the Core

almost_empty and empty Flags

Note: The built-in FIFO does not support the almost_empty flag.

The almost empty flag (almost_empty) indicates that the FIFO will be empty after one
more read operation. This flag is active-High and synchronous to rd_clk. This flag is
asserted when the FIFO has one remaining word that can be read.

The empty flag (empty) indicates that the FIFO is empty and no more reads can be
performed until data is written into the FIFO. This flag is active-High and synchronous to the
read clock (rd_clk). If a read is initiated when empty is asserted, the request is ignored
and underflow is asserted.

Common Clock Note

When write and read operations occur simultaneously while empty is asserted, the write
operation is accepted and the read operation is ignored. On the next clock cycle, empty is
deasserted and underflow is asserted.

Modes of Read Operation

The FIFO Generator core supports two modes of read options, standard read operation and
first-word fall-through (FWFT) read operation. The standard read operation provides the
user data on the cycle after it was requested. The FWFT read operation provides the user
data on the same cycle in which it is requested.

Table 3-1 details the supported implementations for FWFT.

Standard FIFO Read Operation

For a standard FIFO read operation, after read enable is asserted and if the FIFO is not
empty, the next data stored in the FIFO is driven on the output bus (dout) and the valid flag
(VALID) is asserted.

Figure 3-3 shows a standard read access. When you write at least one word into the FIFO,
empty is deasserted — indicating that the data is available to be read. When you assert

Table 3-1: Implementation-Specific Support for First-Word Fall-Through

FIFO Implementation FWFT Support

Independent Clocks

Block RAM 

Distributed RAM 

Built-in 

Common Clock

Block RAM 

Distributed RAM 

Shift Register

Built-in 

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=97

FIFO Generator v13.1 www.xilinx.com 98
PG057 April 5, 2017

Chapter 3: Designing with the Core

rd_en, a read operation occurs on the next rising edge of rd_clk. The FIFO outputs the
next available word on dout and asserts VALID, indicating a successful read operation.
When the last data word is read from the FIFO, the FIFO asserts empty. If you continue to
assert rd_en while empty is asserted, the read request is ignored, VALID is deasserted,
and underflow is asserted. When you perform a write operation, the FIFO deasserts
empty, allowing you to resume valid read operations, as indicated by the assertion of
VALID and deassertion of underflow.

First-Word Fall-Through FIFO Read Operation

The first-word fall-through (FWFT) feature provides the ability to look-ahead to the next
word available from the FIFO without issuing a read operation. When data is available in the
FIFO, the first word falls through the FIFO and appears automatically on the output bus
(dout). Once the first word appears on dout, empty is deasserted indicating one or more
readable words in the FIFO, and VALID is asserted, indicating a valid word is present on
dout.

Figure 3-4 shows a FWFT read access. Initially, the FIFO is not empty, the next available data
word is placed on the output bus (dout), and VALID is asserted. When you assert rd_en,
the next rising clock edge of rd_clk places the next data word onto dout. After the last
data word has been placed on dout, an additional read request causes the data on dout to
become invalid, as indicated by the deassertion of VALID and the assertion of empty. Any
further attempts to read from the FIFO results in an underflow condition.

Unlike the standard read mode, the first-word-fall-through empty flag is asserted after the
last data is read from the FIFO. When empty is asserted, VALID is deasserted. In the
standard read mode, when empty is asserted, VALID is asserted for 1 clock cycle. The
FWFT feature also increases the effective read depth of the FIFO by two read words.

The FWFT feature adds two clock cycle latency to the deassertion of empty, when the first
data is written into a empty FIFO.

Note: For every write operation, an equal number of read operations is required to empty the FIFO.
This is true for both the first-word-fall-through and standard FIFO.

X-Ref Target - Figure 3-3

Figure 3-3: Standard Read Operation for a FIFO with Independent Clocks

rd_clk

dout

valid

underflow

rd_en

empty

D0 D1 D2 D3

almost_empty

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=98

FIFO Generator v13.1 www.xilinx.com 99
PG057 April 5, 2017

Chapter 3: Designing with the Core

Common Clock FIFO, Simultaneous Read and Write Operation

Figure 3-5 shows a typical write and read operation. A write is issued to the FIFO, resulting
in the deassertion of the empty flag. A simultaneous write and read is then issued, resulting
in no change in the status flags. Once two or more words are present in the FIFO, the
almost_empty flag is deasserted. Write requests are then issued to the FIFO, resulting in
the assertion of almost_full when the FIFO can only accept one more write (without a
read). A simultaneous write and read is then issued, resulting in no change in the status
flags. Finally one additional write without a read results in the FIFO asserting full,
indicating no further data can be written until a read request is issued.

X-Ref Target - Figure 3-4

Figure 3-4: FWFT Read Operation for a FIFO with Independent Clocks

X-Ref Target - Figure 3-5

Figure 3-5: Write and Read Operation for a FIFO with Common Clocks

rd_clk

dout

valid

underflow

rd_en

empty

D0 D1 D2 D3

almost_empty

clk

wr_en

D0 D1

empty

rd_en

dout

almost_empty

almost_full

full

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=99

FIFO Generator v13.1 www.xilinx.com 100
PG057 April 5, 2017

Chapter 3: Designing with the Core

Handshaking Flags
Handshaking flags (VALID, underflow, wr_ack and overflow) are supported to provide
additional information regarding the status of the write and read operations. The
handshaking flags are optional, and can be configured as active-High or active-Low
through the Vivado IDE. These flags (configured as active-High) are illustrated in Figure 3-6.

Write Acknowledge

The write acknowledge flag (wr_ack) is asserted at the completion of each successful write
operation and indicates that the data on the din port has been stored in the FIFO. This flag
is synchronous to the write clock (wr_clk).

Valid

The operation of the valid flag (VALID) is dependent on the read mode of the FIFO. This flag
is synchronous to the read clock (rd_clk).

Standard FIFO Read Operation

For standard read operation, the VALID flag is asserted at the rising edge of rd_clk for
each successful read operation, and indicates that the data on the dout bus is valid. When
a read request is unsuccessful (when the FIFO is empty), VALID is not asserted.

FWFT FIFO Read Operation

For FWFT read operation, the VALID flag indicates the data on the output bus (dout) is
valid for the current cycle. A read request does not have to happen for data to be present
and valid, as the first-word fall-through logic automatically places the next data to be read
on the dout bus. VALID is asserted if there is one or more words in the FIFO. VALID is
deasserted when there are no more words in the FIFO.

Example Operation

Figure 3-6 illustrates the behavior of the FIFO flags. On the write interface, full is not
asserted and writes to the FIFO are successful (as indicated by the assertion of wr_ack).
When a write occurs after full is asserted, wr_ack is deasserted and overflow is
asserted, indicating an overflow condition. On the read interface, once the FIFO is not
empty, the FIFO accepts read requests. In standard FIFO operation, VALID is asserted and
dout is updated on the clock cycle following the read request. In FWFT operation, VALID is
asserted and dout is updated prior to a read request being issued. When a read request is
issued while empty is asserted, VALID is deasserted and underflow is asserted, indicating
an underflow condition.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=100

FIFO Generator v13.1 www.xilinx.com 101
PG057 April 5, 2017

Chapter 3: Designing with the Core

Underflow

The underflow flag (underflow) is used to indicate that a read operation is unsuccessful.
This occurs when a read is initiated and the FIFO is empty. This flag is synchronous with the
read clock (rd_clk). Underflowing the FIFO does not change the state of the FIFO (it is
non-destructive).

X-Ref Target - Figure 3-6

Figure 3-6: Handshaking Signals for a FIFO with Independent Clocks

D1 D3D2

Write Interface

wr_en

din

wr_ack

wr_clk

full

overflow

D1 D3D2

FWFT Read Interface

rd_clk

rd_en

empty

underflow

valid

dout

D1 D3D2

Standard Read Interface

valid

rd_clk

rd_en

empty

underflow

dout

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=101

FIFO Generator v13.1 www.xilinx.com 102
PG057 April 5, 2017

Chapter 3: Designing with the Core

Overflow

The overflow flag (overflow) is used to indicate that a write operation is unsuccessful. This
flag is asserted when a write is initiated to the FIFO while full is asserted. The overflow
flag is synchronous to the write clock (wr_clk). Overflowing the FIFO does not change the
state of the FIFO (it is non-destructive).

Example Operation

Figure 3-7 illustrates the Handshaking flags. On the write interface, full is deasserted and
therefore writes to the FIFO are successful (indicated by the assertion of wr_ack). When a
write occurs after full is asserted, wr_ack is deasserted and overflow is asserted,
indicating an overflow condition. On the read interface, once the FIFO is not empty, the
FIFO accepts read requests. Following a read request, VALID is asserted and dout is
updated. When a read request is issued while empty is asserted, VALID is deasserted and
underflow is asserted, indicating an underflow condition.

Programmable Flags
The FIFO supports programmable flags to indicate that the FIFO has reached a user-defined
fill level.

X-Ref Target - Figure 3-7

Figure 3-7: Handshaking Signals for a FIFO with Common Clocks

D1

wr_en

din

wr_ack

valid

clk

clk

rd_en

full

empty

overflow

underflow

D1dout D3

D3D2

D2

Write Interface

Read Interface

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=102

FIFO Generator v13.1 www.xilinx.com 103
PG057 April 5, 2017

Chapter 3: Designing with the Core

• Programmable full (prog_full) indicates that the FIFO has reached a user-defined full
threshold.

• Programmable empty (prog_empty) indicates that the FIFO has reached a
user-defined empty threshold.

For these thresholds, you can set a constant value or choose to have dedicated input ports,
enabling the thresholds to change dynamically in circuit. Hysteresis is also optionally
supported, by providing unique assert and negate values for each flag. Detailed
information about these options are provided below. For information about the latency
behavior of the programmable flags, see Latency, page 136.

Programmable Full

The FIFO Generator core supports four ways to define the programmable full threshold.

• Single threshold constant

• Single threshold with dedicated input port

• Assert and negate threshold constants (provides hysteresis)

• Assert and negate thresholds with dedicated input ports (provides hysteresis)

Note: The built-in FIFOs only support single-threshold constant programmable full.

These options are available in the FIFO Generator Vivado IDE and accessed within the
programmable flags window (Status Flags Tab, page 159).

The programmable full flag (prog_full) is asserted when the number of entries in the
FIFO is greater than or equal to the user-defined assert threshold. When the programmable
full flag is asserted, the FIFO can continue to be written to until the full flag (full) is
asserted. If the number of words in the FIFO is less than the negate threshold, the flag is
deasserted.

Note: If a write operation occurs on a rising clock edge that causes the number of words to meet or
exceed the programmable full threshold, then the programmable full flag will assert on the next
rising clock edge. The deassertion of the programmable full flag has a longer delay, and depends on
the relationship between the write and read clocks.

Programmable Full: Single Threshold

This option enables you to set a single threshold value for the assertion and deassertion of
prog_full. When the number of entries in the FIFO is greater than or equal to the
threshold value, prog_full is asserted. The deassertion behavior differs between built-in
and non built-in FIFOs (block RAM, distributed RAM, and so forth).

For built-in FIFOs, the number of entries in the FIFO has to be less than the threshold value
-1 before prog_full is deasserted. For non built-in FIFOs, if the number of words in the
FIFO is less than the negate threshold, the flag is deasserted.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=103

FIFO Generator v13.1 www.xilinx.com 104
PG057 April 5, 2017

Chapter 3: Designing with the Core

Two options are available to implement this threshold:

• Single threshold constant. You can specify the threshold value through the FIFO
Generator Vivado IDE. Once the core is generated, this value can only be changed by
re-generating the core. This option consumes fewer resources than the single threshold
with dedicated input port.

• Single threshold with dedicated input port (non-built-in FIFOs only). You can specify
the threshold value through an input port (prog_full_thresh) on the core. This
input can be changed while the FIFO is in reset, providing you the flexibility to change
the programmable full threshold in-circuit without re-generating the core.

Note: See the Vivado IDE screen for valid ranges for each threshold.

Figure 3-8 shows the programmable full flag with a single threshold for a non-built-in FIFO.
You can write the FIFO until there are seven words in the FIFO. Because the programmable
full threshold is set to seven, the FIFO asserts prog_full once seven words are written into
the FIFO.

TIP: Both write data count (wr_data_count) and prog_full have one clock cycle of delay. When the FIFO
has six or fewer words in the FIFO, prog_full is deasserted.

Programmable Full: Assert and Negate Thresholds

This option enables you to set separate values for the assertion and deassertion of
prog_full. When the number of entries in the FIFO is greater than or equal to the assert
value, prog_full is asserted. When the number of entries in the FIFO is less than the
negate value, prog_full is deasserted.

IMPORTANT: This feature is not available for built-in FIFOs.

Two options are available to implement these thresholds:

• Assert and negate threshold constants: You can specify the threshold values through
the FIFO Generator Vivado IDE. Once the core is generated, these values can only be
changed by re-generating the core. This option consumes fewer resources than the
assert and negate thresholds with dedicated input ports.

X-Ref Target - Figure 3-8

Figure 3-8: Programmable Full Single Threshold: Threshold Set to 7

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=104

FIFO Generator v13.1 www.xilinx.com 105
PG057 April 5, 2017

Chapter 3: Designing with the Core

• Assert and negate thresholds with dedicated input ports: You can specify the threshold
values through input ports on the core. These input ports can be changed while the
FIFO is in reset, providing you the flexibility to change the values of the programmable
full assert (prog_full_thresh_assert) and negate
(prog_full_thresh_negate) thresholds in-circuit without re-generating the core.

Note: The full assert value must be larger than the full negate value. Refer to the Vivado IDE for valid
ranges for each threshold.

Figure 3-9 shows the programmable full flag with assert and negate thresholds. You can
write to the FIFO until there are 10 words in the FIFO. Because the assert threshold is set to
10, the FIFO then asserts prog_full. The negate threshold is set to seven, and the FIFO
deasserts prog_full once six words or fewer are in the FIFO. Both write data count
(wr_data_count) and prog_full have one clock cycle of delay.

Programmable Full Threshold Range Restrictions

The programmable full threshold ranges depend on several features that dictate the way
the FIFO is implemented, and include the following features.

• FIFO Implementation Type (built-in FIFO or non built-in FIFO, Common or Independent
Clock FIFOs, and so forth)

• Symmetric or Non-symmetric Port Aspect Ratio

• Read Mode (Standard or First-Word-Fall-Through)

• Read and Write Clock Frequencies (built-in FIFOs only)

The Vivado IDE automatically parameterizes the threshold ranges based on these features,
allowing you to choose only within the valid ranges. Note that for the Common or
Independent Clock Built-in FIFO implementation type, you can only choose a threshold
range within 1 primitive deep of the FIFO depth, due to the core implementation. If a wider
threshold range is required, use the Common or Independent Clock Block RAM
implementation type.

Note: Refer to the Vivado IDE for valid ranges for each threshold. To avoid unexpected behavior, it
is not recommended to give out-of-range threshold values.

X-Ref Target - Figure 3-9

Figure 3-9: Programmable Full with Assert and Negate Thresholds:
Assert Set to 10 and Negate Set to 7

9 98

wr_clk

wr_data_count

wr_ack

prog_full

wr_en

7810 6

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=105

FIFO Generator v13.1 www.xilinx.com 106
PG057 April 5, 2017

Chapter 3: Designing with the Core

Programmable Empty

The FIFO Generator core supports four ways to define the programmable empty thresholds:

• Single threshold constant

• Single threshold with dedicated input port

• Assert and negate threshold constants (provides hysteresis)

• Assert and negate thresholds with dedicated input ports (provides hysteresis)

Note: The built-in FIFOs only support single-threshold constant programmable full.

These options are available in the Vivado IDE and accessed within the programmable flags
window (Status Flags Tab, page 159).

The programmable empty flag (prog_empty) is asserted when the number of entries in the
FIFO is less than or equal to the user-defined assert threshold. If the number of words in the
FIFO is greater than the negate threshold, the flag is deasserted.

Note: If a read operation occurs on a rising clock edge that causes the number of words in the FIFO
to be equal to or less than the programmable empty threshold, then the programmable empty flag
will assert on the next rising clock edge. The deassertion of the programmable empty flag has a
longer delay, and depends on the read and write clocks.

Programmable Empty: Single Threshold

This option enables you to set a single threshold value for the assertion and deassertion of
prog_empty. When the number of entries in the FIFO is less than or equal to the threshold
value, prog_empty is asserted. The deassertion behavior differs between built-in and non
built-in FIFOs (block RAM, distributed RAM, and so forth).

For built-in FIFOs, the number of entries in the FIFO must be greater than the threshold
value + 1 before prog_empty is deasserted. For non built-in FIFOs, if the number of entries
in the FIFO is greater than threshold value, prog_empty is deasserted.

Two options are available to implement this threshold:

• Single threshold constant: You can specify the threshold value through the Vivado
IDE. Once the core is generated, this value can only be changed by re-generating the
core. This option consumes fewer resources than the single threshold with dedicated
input port.

• Single threshold with dedicated input port: You can specify the threshold value
through an input port (prog_empty_thresh) on the core. This input can be changed
while the FIFO is in reset, providing the flexibility to change the programmable empty
threshold in-circuit without re-generating the core.

Note: See the Vivado IDE for valid ranges for each threshold.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=106

FIFO Generator v13.1 www.xilinx.com 107
PG057 April 5, 2017

Chapter 3: Designing with the Core

Figure 3-10 shows the programmable empty flag with a single threshold for a non-built-in
FIFO. You can write to the FIFO until there are five words in the FIFO. Because the
programmable empty threshold is set to four, prog_empty is asserted until more than four
words are present in the FIFO. Once five words (or more) are present in the FIFO,
prog_empty is deasserted. Both read data count (rd_data_count) and prog_empty
have one clock cycle of delay.

Programmable Empty: Assert and Negate Thresholds

This option lets you set separate values for the assertion and deassertion of prog_empty.
When the number of entries in the FIFO is less than or equal to the assert value,
prog_empty is asserted. When the number of entries in the FIFO is greater than the negate
value, prog_empty is deasserted. This feature is not available for built-in FIFOs.

Two options are available to implement these thresholds.

• Assert and negate threshold constants. The threshold values are specified through
the Vivado IDE. Once the core is generated, these values can only be changed by
re-generating the core. This option consumes fewer resources than the assert and
negate thresholds with dedicated input ports.

• Assert and negate thresholds with dedicated input ports. The threshold values are
specified through input ports on the core. These input ports can be changed while the
FIFO is in reset, providing you the flexibility to change the values of the programmable
empty assert (prog_empty_thresh_assert) and negate
(prog_empty_thresh_negate) thresholds in-circuit without regenerating the core.

Note: The empty assert value must be less than the empty negate value. Refer to the Vivado IDE for
valid ranges for each threshold.

Figure 3-11 shows the programmable empty flag with assert and negate thresholds. You
can write to the FIFO until there are eleven words in the FIFO; because the programmable
empty deassert value is set to ten, prog_empty is deasserted when more than ten words
are in the FIFO. Once the FIFO contains less than or equal to the programmable empty
negate value (set to seven), prog_empty is asserted. Both read data count
(rd_data_count) and prog_empty have one clock cycle of delay.

X-Ref Target - Figure 3-10

Figure 3-10: Programmable Empty with Single Threshold: Threshold Set to 4

rd_clk

rd_data_count

valid

rd_en

44 5 36 5

prog_empty

7

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=107

FIFO Generator v13.1 www.xilinx.com 108
PG057 April 5, 2017

Chapter 3: Designing with the Core

Programmable Empty Threshold Range Restrictions

The programmable empty threshold ranges depend on several features that dictate the way
the FIFO is implemented, described as follows:

• FIFO Implementation Type (Built-in FIFO or non Built-in FIFO, Common or Independent
Clock FIFOs, and so forth)

• Symmetric or Non-symmetric Port Aspect Ratio

• Read Mode (Standard or First-Word-Fall-Through)

• Read and Write Clock Frequencies (Built-in FIFOs only)

The Vivado IDE automatically parameterizes the threshold ranges based on these features,
allowing you to choose only within the valid ranges.

IMPORTANT: For Common or Independent Clock Built-in FIFO implementation type, you can only
choose a threshold range within 1 primitive deep of the FIFO depth due to the core implementation. If
a wider threshold range is needed, use the Common or Independent Clock Block RAM implementation
type.

Note: Refer to the Vivado IDE for valid ranges for each threshold. To avoid unexpected behavior, do
not use out-of-range threshold values.

Data Counts
data_count tracks the number of words in the FIFO. You can specify the width of the data
count bus with a maximum width of log2 (FIFO depth). If the width specified is smaller than
the maximum allowable width, the bus is truncated by removing the lower bits. These
signals are optional outputs of the FIFO Generator core, and are enabled through the
Vivado IDE. Table 3-2 identifies data count support for each FIFO implementation. For
information about the latency behavior of data count flags, see Latency, page 136.

X-Ref Target - Figure 3-11

Figure 3-11: Programmable Empty with Assert and Negate Thresholds:
Assert Set to 7 and Negate Set to 10

rd_clk

rd_data_count

prog_empty

rd_en

8 9 1010 711 9 8

valid

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=108

FIFO Generator v13.1 www.xilinx.com 109
PG057 April 5, 2017

Chapter 3: Designing with the Core

Data Count (Common Clock FIFO Only)

Data Count output (data_count) accurately reports the number of words available in a
Common Clock FIFO. You can specify the width of the data count bus with a maximum width
of log2(depth). If the width specified is smaller than the maximum allowable width, the bus
is truncated with the lower bits removed.

For example, you can specify to use two bits out of a maximum allowable three bits
(provided a FIFO depth of eight). These two bits indicate the number of words in the FIFO
with a quarter resolution, providing the status of the contents of the FIFO for read and write
operations.

Note: If a read or write operation occurs on a rising edge of clk, the data count port is updated at
the same rising edge of clk.

Read Data Count

Read data count (rd_data_count) pessimistically reports the number of words available
for reading. The count is guaranteed to never over-report the number of words available in
the FIFO (although it may temporarily under-report the number of words available) to
ensure that the user design never underflows the FIFO. You can specify the width of the read
data count bus with a maximum width of log2 (read depth). If the width specified is smaller
than the maximum allowable width, the bus is truncated with the lower bits removed.

For example, you can specify to use two bits out of a maximum allowable three bits
(provided a FIFO depth of eight). These two bits indicate the number of words in the FIFO,
with a quarter resolution. This provides a status of the contents of the FIFO for the read
clock domain.

Note: If a read operation occurs on a rising clock edge of rd_clk/clk, that read is reflected on the
rd_data_count signal following the next rising clock edge. A write operation on the wr_clk/clk
clock domain may take a number of clock cycles before being reflected in the rd_data_count.

Table 3-2: Implementation-specific Support for Data Counts

FIFO Implementation Data Count Support

Independent Clocks

Block RAM

Distributed RAM 

Built-in

Common Clock

Block RAM 

Distributed RAM 

Shift Register 

Built-in

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=109

FIFO Generator v13.1 www.xilinx.com 110
PG057 April 5, 2017

Chapter 3: Designing with the Core

Write Data Count

Write data count (wr_data_count) pessimistically reports the number of words written
into the FIFO. The count is guaranteed to never under-report the number of words in the
FIFO (although it may temporarily over-report the number of words present) to ensure that
you never overflow the FIFO. You can specify the width of the write data count bus with a
maximum width of log2 (write depth). If the width specified is smaller than the maximum
allowable width, the bus is truncated with the lower bits removed.

For example, you can only use two bits out of a maximum allowable three bits (provided a
FIFO depth of eight). These two bits indicate the number of words in the FIFO, with a quarter
resolution. This provides a status of the contents of the FIFO for the write clock domain.

Note: If a write operation occurs on a rising clock edge of wr_clk/clk, that write will be reflected
on the wr_data_count signal following the next rising clock edge. A read operation, which occurs
on the rd_clk/clk clock domain, may take a number of clock cycles before being reflected in the
wr_data_count.

First-Word Fall-Through Data Count

By providing the capability to read the next data word before requesting it, first-word
fall-through (FWFT) implementations increase the depth of the FIFO by 2 read words. Using
this configuration, the FIFO Generator core enables you to generate data count in two ways:

• Approximate Data Count

• More Accurate Data Count (Use Extra Logic)

Approximate Data Count

Approximate Data Count behavior is the default option in the Vivado IDE for independent
clock block RAM and distributed RAM FIFOs. This feature is not available for common clock
FIFOs. The width of the wr_data_count and rd_data_count is identical to the non
first-word-fall-through configurations (log2 (write depth) and log2 (read depth),
respectively) but the data counts reported is an approximation because the actual full depth
of the FIFO is not supported.

Using this option, you can use specific bits in wr_data_count and rd_data_count to
approximately indicate the status of the FIFO, for example, half full, quarter full, and so
forth.

For example, for a FIFO with a depth of 16, symmetric read and write port widths, and the
first-word-fall-through option selected, the actual FIFO depth increases from 15 to 17.
When using approximate data count, the width of wr_data_count and rd_data_count
is 4 bits, with a maximum of 15. For this option, you can use the assertion of the MSB bit of
the data count to indicate that the FIFO is approximately half full.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=110

FIFO Generator v13.1 www.xilinx.com 111
PG057 April 5, 2017

Chapter 3: Designing with the Core

More Accurate Data Count (Use Extra Logic)

This feature is enabled when Use Extra Logic for More Accurate Data Counts is selected in
the Vivado IDE. In this configuration, the width of wr_data_count, rd_data_count, and
data_count is log2(write depth)+1, log2(read depth)+1, and log2(depth)+1, respectively
to accommodate the increase in depth in the first-word-fall-through case and to ensure
accurate data count is provided.

IMPORTANT: When using this option, you cannot use any one bit of wr_data_count,
rd_data_count, and data_count to indicate the status of the FIFO, for example, approximately
half full, quarter full, and so forth.

For example, for an independent FIFO with a depth of 16, symmetric read and write port
widths, and the first-word-fall-through option selected, the actual FIFO depth increases
from 15 to 17. When using accurate data count, the width of the wr_data_count and
rd_data_count is 5 bits, with a maximum of 31. For this option, you must use the
assertion of both the MSB and MSB-1 bit of the data count to indicate that the FIFO is at
least half full.

Data Count Behavior

For FWFT implementations using More Accurate Data Counts (Use Extra Logic),
data_count is guaranteed to be accurate when words are present in the FIFO, with the
exception of when its near empty or almost empty or when initial writes occur on an empty
FIFO. In these scenarios, data_count may be incorrect on up to two words.

Table 3-3 defines the value of data_count when FIFO is empty.

From the point-of-view of the write interface, data_count is always accurate, reporting
the first word immediately once its written to the FIFO. However, from the point-of-view of
the read interface, the data_count output may over-report by up to two words until
almost_empty and empty have both deasserted. This is due to the latency of empty
deassertion in the first-word-fall-through FIFO (see Table 3-18). This latency allows
data_count to reflect written words which may not yet be available for reading.

From the point-of-view of the read interface, the data count starts to transition from
over-reporting to accurate-reporting at the deassertion to empty. This transition completes
after almost_empty deasserts. Before almost_empty deasserts, the data_count signal
may exhibit the following behaviors:

• From the read-interface perspective, data_count may over-report up to two words.

Write Data Count Behavior

Even for FWFT implementations using More Accurate Data Counts (Use Extra Logic),
wr_data_count will still pessimistically report the number of words written into the FIFO.
However, the addition of this feature will cause wr_data_count to further over-report up

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=111

FIFO Generator v13.1 www.xilinx.com 112
PG057 April 5, 2017

Chapter 3: Designing with the Core

to two read words (and 1 to 16 write words, depending on read and write port aspect ratio)
when the FIFO is at or near empty or almost empty.

Table 3-3 defines the value of wr_data_count when the FIFO is empty.

The wr_data_count starts to transition out of over-reporting two extra read words at the
deassertion of empty. This transition completes several clock cycles after almost_empty
deasserts. Note that prior to the transition period, wr_data_count will always over-report
by at least two read words. During the transition period, the wr_data_count signal may
exhibit the following strange behaviors:

• wr_data_count may decrement although no read operation has occurred.

• wr_data_count may not increment as expected due to a write operation.

Note: During reset, wr_data_count and data_count value is set to 0.

IMPORTANT: Use Extra Logic is always true for asymmetric Common Clock BRAM FIFOs when
rd_data_count or wr_data_count is enabled.

The rd_data_count value at empty (when no write is performed) is 0 with or without Use
Extra Logic for all write depth to read depth ratios.

Example Operation

Figure 3-12 shows write and read data counts. When wr_en is asserted and full is
deasserted, wr_data_count increments. Similarly, when rd_en is asserted and empty is
deasserted, rd_data_count decrements.

Note: In the first part of Figure 3-12, a successful write operation occurs on the third rising clock
edge, and is not reflected on wr_data_count until the next full clock cycle is complete. Similarly,
rd_data_count transitions one full clock cycle after a successful read operation.

Table 3-3: Empty FIFO wr_data_count/data_count Value

Write Depth to
Read Depth Ratio

Approximate
wr_data_count

More Accurate
wr_data_count

More Accurate
data_count

1:1 0 2 2(1)

1:2 0 1(1) N/A

1:4 0 0 N/A

1:8 0 0 N/A

2:1 0 4 N/A

4:1 0 8 N/A

8:1 0 16 N/A

Notes:
1. This is an expected value. However, it may over-report up to two words near empty or until both empty &

almost_empty deasserts.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=112

FIFO Generator v13.1 www.xilinx.com 113
PG057 April 5, 2017

Chapter 3: Designing with the Core

Non-symmetric Aspect Ratios
Table 3-4 identifies support for non-symmetric aspect ratios.

Non-symmetric aspect ratios allow the input and output depths of the FIFO to be different.
The following write-to-read aspect ratios are supported: 1:8, 1:4, 1:2, 1:1, 2:1, 4:1, 8:1. This
feature is enabled by selecting unique write and read widths when customizing the FIFO
using the Vivado IP Catalog. By default, the write and read widths are set to the same value
(providing a 1:1 aspect ratio); but any ratio between 1:8 to 8:1 is supported, and the output
depth of the FIFO is automatically calculated from the input depth and the write and read
widths.

For non-symmetric aspect ratios, the full and empty flags are active only when one
complete word can be written or read. The FIFO does not allow partial words to be
accessed. For example, assuming a full FIFO, if the write width is 8 bits and read width is 2
bits, you would have to complete four valid read operations before full deasserts and a write
operation accepted. Write data count shows the number of FIFO words according to the

X-Ref Target - Figure 3-12

Figure 3-12: Write and Read Data Counts for FIFO with Independent Clocks

Table 3-4: Implementation-specific Support for Non-symmetric Aspect Ratios

FIFO Implementation Non-symmetric Aspect
Ratios Support

Independent Clocks
Block RAM 

Distributed RAM

Built-in (UltraScale Only) 

Common Clock
Block RAM 

Distributed RAM

Shift Register

Built-in (UltraScale Only) 

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=113

FIFO Generator v13.1 www.xilinx.com 114
PG057 April 5, 2017

Chapter 3: Designing with the Core

write port ratio, and read data count shows the number of FIFO words according to the read
port ratio.

Note: For non-symmetric aspect ratios where the write width is smaller than the read width (1:8, 1:4,
1:2), the most significant bits are read first (refer to Figure 3-13 and Figure 3-14).

Figure 3-13 is an example of a FIFO with a 1:4 aspect ratio (write width = 2, read width = 8).
In this figure, four consecutive write operations are performed before a read operation can
be performed. The first write operation is 01, followed by 00, 11, and finally 10. The memory
is filling up from the left to the right (MSB to LSB). When a read operation is performed, the
received data is 01_00_11_10.

Figure 3-14 shows din, dout and the handshaking signals for a FIFO with a 1:4 aspect ratio.
After four words are written into the FIFO, empty is deasserted. Then after a single read
operation, empty is asserted again.

Figure 3-15 shows a FIFO with an aspect ratio of 4:1 (write width of 8, read width of 2). In
this example, a single write operation is performed, after which four read operations are
executed. The write operation is 11_00_01_11. When a read operation is performed, the

X-Ref Target - Figure 3-13

Figure 3-13: 1:4 Aspect Ratio: Data Ordering

X-Ref Target - Figure 3-14

Figure 3-14: 1:4 Aspect Ratio: Status Flag Behavior

Read
Operation

110001

0001

01

MSB LSB

01 00 11 1001

00

11

10

Time

Write
Operation

10110001

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=114

FIFO Generator v13.1 www.xilinx.com 115
PG057 April 5, 2017

Chapter 3: Designing with the Core

data is received left to right (MSB to LSB). As shown, the first read results in data of 11,
followed by 00, 01, and then 11.

Figure 3-16 shows din, dout, and the handshaking signals for a FIFO with an aspect ratio
of 4:1. After a single write, the FIFO deasserts empty. Because no other writes occur, the
FIFO reasserts empty after four reads.

Non-symmetric Aspect Ratio and First-Word Fall-Through

A FWFT FIFO has 2 extra read words available on the read port when compared to a
standard FIFO. For write-to-read aspect ratios that are larger or equal to 1 (1:1, 2:1, 4:1, and
8:1), the FWFT implementation also increases the number of words that can be written into
the FIFO by depth_ratio*2 (depth_ratio = write depth / read depth). For write-to-read
aspect ratios smaller than 1 (1:2, 1:4 and 1:8), the addition of 2 extra read words only
amounts to a fraction of 1 write word. The creation of these partial words causes the

X-Ref Target - Figure 3-15

Figure 3-15: 4:1 Aspect Ratio: Data Ordering

X-Ref Target - Figure 3-16

Figure 3-16: 4:1 Aspect Ratio: Status Flag Behavior

Read
Operation

00 01 11

01 11

11

MSB LSB

Write
Operation

11 00 01 11 11

00

01

11

Time

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=115

FIFO Generator v13.1 www.xilinx.com 116
PG057 April 5, 2017

Chapter 3: Designing with the Core

behavior of the prog_empty and wr_data_count signals of the FIFO to differ in behavior
than as previously described.

Programmable Empty

In general, prog_empty is guaranteed to assert when the number of readable words in the
FIFO is less than or equal to the programmable empty assert threshold. However, when the
write-to-read aspect ratios are smaller than 1 (depending on the read and write clock
frequency) it is possible for prog_empty to violate this rule, but only while empty is
asserted. To avoid this condition, set the programmable empty assert threshold to
3*depth_ratio*frequency_ratio (depth_ratio = write depth/read depth and
frequency_ratio = write clock frequency / read clock frequency). If the programmable
empty assert threshold is set lower than this value, assume that prog_empty may or can be
asserted when empty is asserted.

Write Data Count

In general, wr_data_count pessimistically reports the number of words written into the
FIFO and is guaranteed to never under-report the number of words in the FIFO, to ensure
that you never overflow the FIFO. However, when the write-to-read aspect ratios are smaller
than 1, if the read and write operations result in partial write words existing in the FIFO, it
is possible to under-report the number of words in the FIFO. This behavior is most crucial
when the FIFO is 1 or 2 words away from full, because in this state the wr_data_count is
under-reporting and cannot be used to gauge if the FIFO is full. In this configuration, you
should use the full flag to gate any write operation to the FIFO.

Embedded Registers in Block RAM and FIFO Macros
The block RAM macros and built-in FIFO macros have built-in embedded registers that can
be used to pipeline data and improve macro timing. Depending on the configuration, this
feature can be leveraged to add one additional latency to the FIFO core (dout bus and valid
outputs) or implement the output registers for FWFT FIFOs. For Block RAM configuration,
you can add an extra output register instead of embedded register from the general
interconnect to improve the timing. In built-in FIFO, you have embedded register option.In
block RAM FIFO, you have the choice to select either the primitive embedded register or an
output register from the general interconnect.

Standard FIFOs

When using the embedded registers to add an output pipeline register to the standard
FIFOs, only the dout and VALID output ports are delayed by one clock cycle during a read
operation. These additional pipeline registers are always enabled, as illustrated in
Figure 3-17.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=116

FIFO Generator v13.1 www.xilinx.com 117
PG057 April 5, 2017

Chapter 3: Designing with the Core

Block RAM Based FWFT FIFOs

When using the embedded output registers to implement the FWFT FIFOs, the behavior of
the core is identical to the implementation without the embedded registers.

Built-in Based FWFT FIFOs (Common Clock Only)

When using the embedded output registers with a common clock built-in based FIFO with
FWFT, the embedded registers add an output pipeline register to the FWFT FIFO. The dout
and VALID output ports are delayed by 1 clock cycle during a read operation in 7 Series.
These pipeline registers are always enabled, as shown in Figure 3-18. For this configuration,
the embedded output register feature is only available for FIFOs that use only one FIFO
macro in depth.

X-Ref Target - Figure 3-17

Figure 3-17: Standard Read Operation for a Block RAM or built-in FIFO
with Use Embedded Registers Enabled

X-Ref Target - Figure 3-18

Figure 3-18: FWFT Read Operation for a Synchronous Built-in
FIFO with User Embedded Registers Enabled in 7 Series

rd_clk

D0 D3

rd_en

dout

empty

almost_empty

underflow

D1 D2

valid

rd_clk

rd_en

D1 D2 D3 D4 D5dout

empty

valid

underflow

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=117

FIFO Generator v13.1 www.xilinx.com 118
PG057 April 5, 2017

Chapter 3: Designing with the Core

When using the embedded output registers with a common clock built-in FIFO, the dout
reset value feature is supported, as illustrated in Figure 3-19.

For UltraScale designs, the read behavior with and without embedded register enabled is
same. The dout value is obtained at the same clock edge of read operation due to primitive
nature.Figure 3-20 illustrates the dout generation in UltraScale devices with FWFT feature
enabled.

Embedded Registers and Interconnect Registers in Block RAM
and FIFO Macros
FIFO Generator provides an option to use both embedded and interconnect register for
Block RAM based FIFOs (common/independent) to improve timing. The chosen interface
type decides the latency added at the output (dout). For standard BRAM FIFOs, a latency of
two cycles is added to the output when both registers are chosen as shown in Figure 3-21.

The first word fall through maintains a similar behavior with embedded/interconnect
register. The empty gives a latency of one more cycle as compared to selecting only one

X-Ref Target - Figure 3-19

Figure 3-19: dout Reset Value Common Clock Built-in FIFO Embedded Register for 7 Series

X-Ref Target - Figure 3-20

Figure 3-20: FWFT Read Operation for a Synchronous Built-in FIFO with User Embedded
Registers Enabled in UltraScale devices

X-Ref Target - Figure 3-21

Figure 3-21: Standard FIFO Behavior with Embedded and Interconnect Registers

clk

dout Previous value DOUT reset value

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=118

FIFO Generator v13.1 www.xilinx.com 119
PG057 April 5, 2017

Chapter 3: Designing with the Core

register, before rd_en signal is initiated. The next output is latched when rd_en initiates
without any additional latency for BRAM as shown in Figure 3-22.

Built-in Error Correction Checking
Built-in ECC is supported for FIFOs configured with independent or common clock block
RAM and built-in FIFOs. When ECC is enabled, the block RAM and built-in FIFO primitive
used to create the FIFO is configured in the full ECC mode (both encoder and decoder
enabled), providing two additional outputs to the FIFO Generator core: sbiterr and
dbiterr. These outputs indicate three possible read results: no error, single error
corrected, and double error detected. In the full ECC mode, the read operation does not
correct the single error in the memory array, it only presents corrected data on dout.

Note: In Block RAM based FIFO configurations with widths lesser than 64, you can select a soft ECC
option where the general interconnect is used to build the ECC logic. The functionality remains
unchanged between the HARD and Soft ECC.

Figure 3-23 shows how the sbiterr and dbiterr outputs are generated in the FIFO
Generator core. The output signals are created by combining all the sbiterr and dbiterr
signals from the FIFO or block RAM primitives using an OR gate. Because the FIFO
primitives may be cascaded in depth, when sbiterr or dbiterr is asserted, the error may
have occurred in any of the built-in FIFO macros chained in depth or block RAM macros. For
this reason, these flags are not correlated to the data currently being read from the FIFO
Generator core or to a read operation. For this reason, when the dbiterr is flagged,
assume that the data in the entire FIFO has been corrupted and the user logic needs to take
the appropriate action. As an example, when dbiterr is flagged, an appropriate action for
the user logic is to halt all FIFO operation, reset the FIFO, and restart the data transfer.

The sbiterr and dbiterr outputs are not registered and are generated combinatorially.
If the configured FIFO uses two independent read and write clocks, the sbiterr and
dbiterr outputs may be generated from either the write or read clock domain. The signals
generated in the write clock domain are synchronized before being combined with the
sbiterr and dbiterr signals generated in the read clock domain.

X-Ref Target - Figure 3-22

Figure 3-22: First Word Fall Through with Embedded and Interconnect Registers

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=119

FIFO Generator v13.1 www.xilinx.com 120
PG057 April 5, 2017

Chapter 3: Designing with the Core

TIP: Due to the differing read and write clock frequencies and the OR gate used to combine the signals,
the number of read clock cycles that the sbiterr and dbiterr flags assert is not an accurate
indicator of the number of errors found in the built-in FIFOs.

Built-in Error Injection
Built-in Error Injection is supported for FIFOs configured with independent or common
clock block RAM and built-in FIFOs. When ECC and Error Injection are enabled, the block
RAM and built-in FIFO primitive used to create the FIFO is configured in the full ECC error
injection mode, providing two additional inputs to the FIFO Generator core:
injectsbiterr and injectdbiterr. These inputs indicate three possible results: no
error injection, single bit error injection, or double bit error injection.

The ECC is calculated on a 64-bit wide data of ECC primitives. If the data width chosen is not
an integral multiple of 64 (for example, there are spare bits in any ECC primitive), then a
double bit error (dbiterr) may indicate that one or more errors have occurred in the spare
bits. In this case, the accuracy of the dbiterr signal cannot be guaranteed. For example, if
the data width is set to 16, then 48 bits of the ECC primitive are left empty. If two of the
spare bits are corrupted, the dbiterr signal would be asserted even though the actual
user data is not corrupt.

X-Ref Target - Figure 3-23

Figure 3-23: sbiterr and dbiterr Outputs in the FIFO Generator Core

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=120

FIFO Generator v13.1 www.xilinx.com 121
PG057 April 5, 2017

Chapter 3: Designing with the Core

When injectsbiterr is asserted on a write operation, a single bit error is injected and
sbiterr is asserted upon read operation of a specific write. When injectdbiterr is
asserted on a write operation, a double bit error is injected and dbiterr is asserted upon
read operation of a specific write. When both injectsbiterr and injectdbiterr are
asserted on a write operation, a double bit error is injected and dbiterr is asserted upon
read operation of a specific write. Figure 3-24 shows how the sbiterr and dbiterr
outputs are generated in the FIFO Generator core.

Note: Reset is not supported by the FIFO/BRAM macros when using the ECC option. Therefore,
outputs of the FIFO core (dout, dbiterr and sbiterr) will not be affected by reset, and they hold
their previous values. See Resets, page 126 for more details.

Clocking
Each FIFO configuration has a set of allowable features, as defined in Table 1-3, page 15.

Independent Clocks: Block RAM and Distributed RAM
Figure 3-25 illustrates the functional implementation of a FIFO configured with
independent clocks. This implementation uses block RAM or distributed RAM for memory,
counters for write and read pointers, conversions between binary and Gray code for
synchronization across clock domains, and logic for calculating the status flags.

X-Ref Target - Figure 3-24

Figure 3-24: Error Injection and Correction

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=121

FIFO Generator v13.1 www.xilinx.com 122
PG057 April 5, 2017

Chapter 3: Designing with the Core

This FIFO is designed to support an independent read clock (rd_clk) and write clock
(wr_clk); in other words, there is no required relationship between rd_clk and wr_clk
with regard to frequency or phase. Table 3-5 summarizes the FIFO interface signals, which
are only valid in their respective clock domains.

X-Ref Target - Figure 3-25

Figure 3-25: Functional Implementation of a FIFO with Independent Clock Domains

Table 3-5: Interface Signals and Corresponding Clock Domains

wr_clk rd_clk

din dout

wr_en rd_en

full empty

almost_full almost_empty

prog_full prog_empty

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=122

FIFO Generator v13.1 www.xilinx.com 123
PG057 April 5, 2017

Chapter 3: Designing with the Core

For FIFO cores using independent clocks, the timing relationship between the write and
read operations and the status flags is affected by the relationship of the two clocks. For
example, the timing between writing to an empty FIFO and the deassertion of empty is
determined by the phase and frequency relationship between the write and read clocks. For
additional information refer to the Synchronization Considerations, page 93.

Independent Clocks: Built-in FIFO
Figure 3-26 illustrates the functional implementation of FIFO configured with independent
clocks using the built-in FIFO primitive. This design implementation consists of cascaded
built-in FIFO primitives and handshaking logic. The number of built-in primitives depends
on the FIFO width and depth requested.

This FIFO is designed to support an independent read clock (rd_clk) and write clock
(wr_clk); in other words, there is no required relationship between rd_clk and wr_clk
with regard to frequency or phase. Table 3-6 summarizes the FIFO interface signals, which
are only valid in their respective clock domains.

wr_ack valid

overflow underflow

wr_data_count rd_data_count

wr_rst rd_rst

injectsbiterr sbiterr

injectdbiterr dbiterr

X-Ref Target - Figure 3-26

Figure 3-26: Functional Implementation of Built-in FIFO

Table 3-5: Interface Signals and Corresponding Clock Domains (Cont’d)

wr_clk rd_clk

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=123

FIFO Generator v13.1 www.xilinx.com 124
PG057 April 5, 2017

Chapter 3: Designing with the Core

For FIFO cores using independent clocks, the timing relationship between the write and
read operations and the status flags is affected by the relationship of the two clocks. For
example, the timing between writing to an empty FIFO and the deassertion of empty is
determined by the phase and frequency relationship between the write and read clocks. For
additional information, see Synchronization Considerations, page 93.

For built-in FIFO configurations, the built-in ECC feature in the FIFO macro is provided. For
more information, see “Built-in Error Correction Checking,” page 119.

Note: When the ECC option is selected, the number of Built-in FIFO primitives in depth and all the
output latency will be different. For more information on latency, see Latency, page 136.

For example, if user depth is 4096, user width is 9 and ECC is not selected, then the number of Built-in
FIFO primitives in depth is 1. However, if ECC is selected for the same configuration, then the number
of Built-in FIFO primitives in depth is 4092/512 = 8.

Common Clock: Built-in FIFO
The FIFO Generator core supports FIFO cores using the built-in FIFO primitive with a
common clock. This provides you the ability to use the built-in FIFO, while requiring only a
single clock interface. The behavior of the common clock configuration with built-in FIFO is
identical to the independent clock configuration with built-in FIFO, except all operations are
in relation to the common clock (clk). See Independent Clocks: Built-in FIFO, page 123, for
more information.

Common Clock FIFO: Block RAM and Distributed RAM
Figure 3-27 illustrates the functional implementation of a FIFO configured with a common
clock using block RAM or distributed RAM for memory. All signals are synchronous to a
single clock input (clk). This design implements counters for write and read pointers and
logic for calculating the status flags. An optional synchronous (srst) or asynchronous
(rst) reset signal is also available.

Table 3-6: Interface Signals and Corresponding Clock Domains

wr_clk rd_clk

din dout

wr_en rd_en

full empty

prog_full prog_empty

wr_ack valid

overflow underflow

injectsbiterr sbiterr

injectdbiterr dbiterr

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=124

FIFO Generator v13.1 www.xilinx.com 125
PG057 April 5, 2017

Chapter 3: Designing with the Core

Common Clock FIFO: Shift Registers
Figure 3-28 illustrates the functional implementation of a FIFO configured with a common
clock using shift registers for memory. All operations are synchronous to the same clock
input (clk). This design implements a single up/down counter for both the write and read
pointers and logic for calculating the status flags.

X-Ref Target - Figure 3-27

Figure 3-27: Functional Implementation of a Common Clock FIFO using
Block RAM or Distributed RAM

X-Ref Target - Figure 3-28

Figure 3-28: Functional Implementation of a Common Clock FIFO using Shift Registers

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=125

FIFO Generator v13.1 www.xilinx.com 126
PG057 April 5, 2017

Chapter 3: Designing with the Core

Resets
The FIFO Generator core provides a reset input that resets all counters, output registers, and
memories when asserted. For block RAM or distributed RAM implementations, resetting the
FIFO is not required, and the reset pin can be disabled in the FIFO. There are two reset
options: asynchronous and synchronous.

Asynchronous Reset (Enable Reset Synchronization Option is Selected)

The asynchronous reset (rst) input asynchronously resets all counters, output registers,
and memories when asserted. When reset is implemented, it is synchronized internally to
the core with each respective clock domain for setting the internal logic of the FIFO to a
known state. This synchronization logic allows for proper timing of the reset logic within the
core to avoid glitches and metastable behavior.

IMPORTANT: The clock(s) must be available when the reset is applied. If for any reason, the clock(s) is/
are lost at the time of reset, you must apply the reset again when the clock(s) is/are available.

Note: If the asynchronous reset is one slowest clock wide and the assertion happens very close to
the rising edge of slowest clock, then the reset detection may not happen properly causing
unexpected behavior. To avoid such situations, it is always recommended to have the asynchronous
reset asserted for at least 3 slowest clock cycles.

Common/Independent Clock: Block RAM, Distributed RAM, and Shift RAM FIFOs

Ensure that there is a minimum gap of 6 clocks (slower clock in case of independent clock)
between 2 consecutive resets when you use Asynchronous reset. In BRAM cases with
asynchronous reset, an additional safety circuit option is provided to ensure that the
assertion and deassertion of BRAM input signals happen synchronously. When you use a
safety circuit option, you need to wait for wr_rst_busy signal to transition from 1 to 0
before either applying next reset or initiating any write operations. A DRC warning, if any,
on the BRAM can be considered as a false positive warning for asynchronous reset with
safety circuit. If you select FIFO Generator’s safety circuit option, you need to ensure that
the reset (rst) signal is asserted High (logic 1) for at least 3 write/read clock cycles
(whichever is slower). For AXI interface, wr_rst_busy is asserted inside the core and the
transactions are based on *_axi_**valid/*_axi_**ready protocol.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=126

FIFO Generator v13.1 www.xilinx.com 127
PG057 April 5, 2017

Chapter 3: Designing with the Core

Table 3-7 defines the values of the output ports during power-up and reset state for block
RAM, distributed RAM, and shift RAM FIFOs. Note that the underflow signal is dependent
on rd_en. If rd_en is asserted and the FIFO is empty, underflow is asserted. The overflow
signal is dependent on wr_en. If wr_en is asserted and the FIFO is full, overflow is asserted.

There are two asynchronous reset behaviors available for these FIFO configurations: Full
flags reset to 1 and full flags reset to 0. The reset requirements and the behavior of the FIFO
is different depending on the full flags reset value chosen.

X-Ref Target - Figure 3-29

Figure 3-29: FIFO Asynchronous Reset Socket Timing

All FIFO outputs, other than full/almost_full/prog_full/empty/
almost_empty/prog_empty, are invalid during this window

rst

wr_clk

rd_clk

Asynchronous Reset

wr_en must be low

rd_en must be low

D Invalid D D

D Invalid D DD D

wr_en

full

rd_en

empty

dout
(Standard)

dout
(FWFT)

Reset Assertion to wr_rst_busy deassertion

wr_rst_busy

For AXI Interface, the *_axi_**ready takes care of the reset Assertion to wr_rst_busy deassertion window
*_axi_**valid: * --> s_axi_/m_axi_; ** --> tvalid/awvalid/wvalid/bvalid/arvalid/rvalid
*_axi_**ready: * -->s_axi_/m_axi_; ** --> tready/awready/wready/bready/arready/rready

Subsequent reset must not be applied

Must be high for 3 slowest
clock edges

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=127

FIFO Generator v13.1 www.xilinx.com 128
PG057 April 5, 2017

Chapter 3: Designing with the Core

IMPORTANT: The reset is edge-sensitive and not level-sensitive. The synchronization logic looks for the
rising edge of rst and creates an internal reset for the core. Note that the assertion of asynchronous
reset immediately causes the core to go into a predetermine reset state - this is not dependent on any
clock toggling. The reset synchronization logic is used to ensure that the logic in the different clock
domains comes OUT of the reset mode at the same time - this is by synchronizing the deassertion of
asynchronous reset to the appropriate clock domain. By doing this glitches and metastability can be
avoided. This synchronization takes three clock cycles (write or read) after the asynchronous reset is
detected on the rising edge read and write clock respectively. To avoid unexpected behavior, it is
recommended to follow the reset pulse requirement and it is not recommended to drive/toggle wr_en/
rd_en when rst is asserted/High.

Full Flags Reset Value of 1

In this configuration, the FIFO requires a minimum asynchronous reset pulse of 1 write/read
clock cycle (whichever is slower). After reset is detected on the rising clock edge of write
clock, 3 write clock periods are required to complete proper reset synchronization. During
this time, the full, almost_full, and prog_full flags are asserted. After reset is
deasserted, these flags deassert after five clock periods (wr_clk/clk) and the FIFO can
then accept write operations.

The full and almost_full flags are asserted to ensure that no write operations occur
when the FIFO core is in the reset state. After the FIFO exits the reset state and is ready for
writing, the full and almost_full flags deassert; this occurs approximately five clock
cycles after the deassertion of asynchronous reset.

Note: The embedded register option must be selected for enabling safety circuit.

Table 3-7: Asynchronous Reset Values for Block, Distributed, and Shift RAM FIFOs

Signal Full Flags Reset Value of
1

Full Flags Reset
Value of 0

Power-up
Values

dout dout Reset Value or 0 dout Reset Value or 0 Same as reset values

full 1(1) 0 0

almost full 1(1) 0 0

empty 1 1 1

almost empty 1 1 1

valid 0 (active-High) or
1 (active-Low)

0 (active-High) or
1 (active-Low)

0 (active-High) or
1 (active-Low)

wr_ack 0 (active-High) or
1 (active-Low)

0 (active-High) or
1 (active-Low)

0 (active-High) or
1 (active-Low)

prog_full 1(1) 0 0

prog_empty 1 1 1

rd_data_count 0 0 0

wr_data_count 0 0 0

Notes:
1. When reset is asserted, the full flags are asserted to prevent writes to the FIFO during reset.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=128

FIFO Generator v13.1 www.xilinx.com 129
PG057 April 5, 2017

Chapter 3: Designing with the Core

See Figure 3-30 and Figure 3-31 for example behaviors. Note that the power-up values for
this configuration are different from the reset state value.

Figure 3-30 shows an example timing diagram for when the reset pulse is one clock cycle.

Figure 3-31 shows an example timing diagram for when the reset pulse is longer than one
clock cycle.

X-Ref Target - Figure 3-30

Figure 3-30: Block RAM, Distributed RAM, Shift RAM with Full
Flags Reset Value of 1 for the Reset Pulse of One Clock

X-Ref Target - Figure 3-31

Figure 3-31: Block RAM, Distributed RAM, Shift RAM with Full
Flags Reset Value of 1 for the Reset Pulse of More Than One Clock

almost_full

wr_clk

full

prog_full

In Reset State Out of Reset State

rst

Write domain in reset state Write domain out of reset state

wr_en

wr_ack

valid

rd_clk

Read domain in reset state Read domain out of reset state

rd_en

almost_full

wr_clk

full

prog_full

No Write Zone

rst

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=129

FIFO Generator v13.1 www.xilinx.com 130
PG057 April 5, 2017

Chapter 3: Designing with the Core

Full Flags Reset Value of 0

In this configuration, the FIFO requires a minimum asynchronous reset pulse of one write/
read clock cycle (whichever is slower) to complete the proper reset synchronization. At
reset, full, almost_full and prog_full flags are deasserted. After the FIFO exits the
reset synchronization state, the FIFO is ready for writing; this occurs approximately five
clock cycles after the assertion of asynchronous reset. See Figure 3-32 for example
behavior.

Common/Independent Clock: 7 Series Built-in FIFOs

Table 3-8 defines the values of the output ports during power-up and reset state for Built-in
FIFOs. The dout reset value is supported only for common clock built-in FIFOs with the
embedded register option selected. The built-in FIFOs require an asynchronous reset pulse
of at least five read and write clock cycles. To be consistent across all built-in FIFO
configurations, it is recommended to give an asynchronous reset pulse of at least 5 read
and write clock cycles for built-in FIFOs. However, the FIFO Generator core has a built-in
mechanism ensuring the reset pulse is high for five read and write clock cycles for all
Built-in FIFOs.

During reset, the rd_en and wr_en ports are required to be deasserted (no read or write
operation can be performed). Assertion of reset causes the full and prog_full flags to

X-Ref Target - Figure 3-32

Figure 3-32: Block RAM, Distributed RAM, Shift RAM with Full
Flags Reset Value of 0

almost_full

wr_clk

full

prog_full

In Reset State Out of Reset State

rst

Write domain in reset state Write domain out of reset state

wr_en

wr_ack

valid

rd_clk

Read domain in reset state Read domain out of reset state

rd_en

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=130

FIFO Generator v13.1 www.xilinx.com 131
PG057 April 5, 2017

Chapter 3: Designing with the Core

deassert and empty and prog_empty flags to assert. After asynchronous reset is released,
the core exits the reset state and is ready for writing. See Figure 3-33 for example behavior.

Note that the underflow signal is dependent on rd_en. If rd_en is asserted and the FIFO
is empty, underflow is asserted. The overflow signal is dependent on wr_en. If wr_en is
asserted and the FIFO is full, overflow is asserted.

Synchronous Reset

The synchronous reset input (srst or wr_rst/rd_rst synchronous to wr_clk/rd_clk
domain) is only available for the block RAM, distributed RAM, shift RAM, or built-in FIFO
implementation of the common/independent clock FIFOs.

Common Clock Block, Distributed, or Shift RAM FIFOs

The synchronous reset (srst) synchronously resets all counters, output registers and
memories when asserted. Because the reset pin is synchronous to the input clock and there
is only one clock domain in the FIFO, no additional synchronization logic is necessary.

Table 3-8: Asynchronous Reset Values for Built-in FIFO

Signal Built-in FIFO Reset Values Power-up
Values

dout Last read value Content of memory at location 0

full 0 0

empty 1 1

valid 0 (active-High) or
1 (active-Low)

0 (active-High) or
1 (active-Low)

prog_full 0 0

prog_empty 1 1

X-Ref Target - Figure 3-33

Figure 3-33: Built-in FIFO, Asynchronous Reset Behavior

clk

rst

empty

full

prog_full

prog_empty

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=131

FIFO Generator v13.1 www.xilinx.com 132
PG057 April 5, 2017

Chapter 3: Designing with the Core

Figure 3-36 illustrates the flags following the release of srst.

Independent Clock Block and Distributed RAM FIFOs (Enable Reset Synchronization Option not
Selected)

The synchronous reset (wr_rst/rd_rst) synchronously resets all counters, output
registers of respective clock domain when asserted. Because the reset pin is synchronous to
the respective clock domain, no additional synchronization logic is necessary.

Assert synchronous resets (wr_rst/rd_rst) together, at least for one clock cycle as
shown in Figure 3-37. The time at which the resets are asserted/de-asserted may differ, and
during this period the FIFO outputs become invalid. To avoid unexpected behavior, do not
perform write or read operations from the assertion of the first reset to the de-assertion of
the last reset.

Note: For FIFOs built with First-Word-Fall-Through and ECC configurations, the sbiterr and
dbiterr may be high until a valid read is performed after the de-assertion of both wr_rst and
rd_rst.

Figure 3-37 and Figure 3-38 detail the resets.

X-Ref Target - Figure 3-34X-Ref Target - Figure 3-35X-Ref Target - Figure 3-36

Figure 3-36: Synchronous Reset: FIFO with a Common Clock

X-Ref Target - Figure 3-37

Figure 3-37: Synchronous Reset: FIFO with Independent Clock -
wr_rst then rd_rst

clk

srst

full

almost_full

prog_full

In Reset state Out of Reset state

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=132

FIFO Generator v13.1 www.xilinx.com 133
PG057 April 5, 2017

Chapter 3: Designing with the Core

Table 3-9 defines the values of the output ports during power-up and the reset state. If you
do not specify a dout reset value, it defaults to 0. The FIFO requires a reset pulse of only 1
clock cycle. The FIFOs are available for transaction on the clock cycle after the reset is
released. The power-up values for the synchronous reset are the same as the reset state.

Note that the underflow signal is dependent on rd_en. If rd_en is asserted and the FIFO
is empty, underflow is asserted. The overflow signal is dependent on wr_en. If wr_en is
asserted and the FIFO is full, overflow is asserted.

Common/Independent Clock: UltraScale Built-in FIFOs

UltraScale architecture-based built-in FIFO supports only the synchronous reset (srst). The
reset must always be synchronous to write clock (clk/wr_clk). The built-in FIFOs require
a synchronous reset pulse of at least one write clock cycle. The built-in FIFO provides
wr_rst_busy and rd_rst_busy output signals

X-Ref Target - Figure 3-38

Figure 3-38: Synchronous Reset: FIFO with Independent Clock -
rd_rst then wr_rst

Table 3-9: Synchronous Reset and Power-up Values

Signal Block Memory and Distributed Memory Values of
Output Ports During Reset and Power-up

dout dout Reset Value or 0

full 0

almost full 0

empty 1

almost empty 1

valid 0 (active-High) or 1 (active-Low)

wr_ack 0 (active-High) or 1 (active-Low)

prog_full 0

prog_empty 0

rd_data_count 0

wr_data_count 0

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=133

FIFO Generator v13.1 www.xilinx.com 134
PG057 April 5, 2017

Chapter 3: Designing with the Core

If srst is asserted, the wr_rst_busy output asserts immediately after the rising edge of
wr_clk and remains asserted until the reset operation is complete. Following the assertion
of wr_rst_busy, the internal reset is synchronized to the rd_clk domain. Upon arrival in
the rd_clk domain, the rd_rst_busy is asserted, and is held asserted until the resetting
of all rd_clk domain signals is complete. At this time, rd_rst_busy is deasserted. In
common-clock mode, this logic is simplified because the clock domain crossing is not
required.

During the reset state, the rd_en and wr_en ports are required to be deasserted (no read
or write operation can be performed). Assertion of reset causes the full and prog_full
flags to deassert, and the empty and prog_empty flags are asserted. After wr_rst_busy
and rd_rst_busy are released, the core exits the reset state and is ready for writing.

For more information, see the UltraScale Architecture Memory Resources: Advance
Specification User Guide (UG573) [Ref 4].

IMPORTANT: The underflow and overflow signals are directly connected to the FIFO18E2/FIFO36E2
primitive. If rd_en is asserted and the FIFO is empty, underflow is asserted. If wr_en is asserted and
the FIFO is full, overflow is asserted.

Actual FIFO Depth
Of critical importance is the understanding that the effective or actual depth of a FIFO is not
necessarily consistent with the depth selected in the GUI, because the actual depth of the
FIFO depends on its implementation and the features that influence its implementation. In
the Vivado IDE, the actual depth of the FIFO is reported: the following section provides
formulas or calculations used to report this information.

Block RAM, Distributed RAM and Shift RAM FIFOs
The actual FIFO depths for the block RAM, distributed RAM, and shift RAM FIFOs are
influenced by the following features that change its implementation:

• Common or Independent Clock

• Standard or FWFT Read Mode

• Symmetric or Non-symmetric Port Aspect Ratio

Depending on how a FIFO is configured, the calculation for the actual FIFO depth varies.

• Common Clock FIFO in Standard Read Mode

actual_write_depth = gui_write_depth

actual_read_depth = gui_read_depth

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=134

FIFO Generator v13.1 www.xilinx.com 135
PG057 April 5, 2017

Chapter 3: Designing with the Core

• Common Clock FIFO in FWFT Read Mode

actual_write_depth = gui_write_depth +2

actual_read_depth = gui_read_depth +2

• Independent Clock FIFO in Standard Read Mode

actual_write_depth = gui_write_depth - 1

actual_read_depth = gui_read_depth - 1

• Independent Clock FIFO in FWFT Read Mode

actual_write_depth = (gui_write_depth - 1) +
(2*round_down(gui_write_depth/gui_read_depth))

actual_read_depth = gui_read_depth + 1

Notes

1. Gui_write_depth = actual write (input) depth selected in the GUI

2. Gui_read_depth = actual read (output) depth selected in the GUI

3. Non-symmetric port aspect ratio feature (gui_write_depth not equal to gui_read_depth)
is only supported in block RAM based FIFOs.

4. When you select Embedded and Interconnect Registers, the actual write depth and
actual read depth increases by one as compared to selecting embedded/interconnect
register in FWFT mode.

Built-In FIFOs
The actual FIFO depths of built-in FIFOs are influenced by the following features, which
change its implementation:

• Common or Independent Clock

• Standard or FWFT Read Mode

• Built-In FIFO primitive used in implementation (minimum depth is 512)

Depending on how a FIFO is configured, the calculation for the actual FIFO depth varies.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=135

FIFO Generator v13.1 www.xilinx.com 136
PG057 April 5, 2017

Chapter 3: Designing with the Core

Latency
This section defines the latency in which different output signals of the FIFO are updated in
response to read or write operations.

Note: Latency is defined as the number of clock edges after a read or write operation occur before
the signal is updated. Example: if latency is 0, that means that the signal is updated at the clock edge
in which the operation occurred, as shown in Figure 3-39 in which wr_ack is getting updated in
which wr_en is high.

Table 3-10: Built-in FIFO Primitives

Common_Clock Independent_Clock

STD FWFT STD FWFT

7 Series ((primitive_depth+1)
*N)-1

(primitive_depth+
1)*N

((primitive_depth+1)
*N)-1

(primitive_depth
+1)*N

UltraScale/
UltraScale+

With
Low
Latency
& with
low
latency
output
register

With
embedded
register

(primitive_depth+1)*
N

primitive_depth*N

Without
embedded
register

(primitive_depth+1)*
N

primitive_depth*N (primitive_depth+1)
*N

primitive_depth*
N

With
Low
Latency
&
without
low
latency
output
register

With
embedded
register

primitive_depth*N primitive_depth*N

Without
embedded
register

primitive_depth*N primitive_depth*N primitive_depth*N primitive_depth*
N

Without
Low
Latency

With
embedded
register

((primitive_depth+1)
*N)-1

primitive_depth*N ((primitive_depth+2)
*N)-2

((primitive_dept
h+1)*N)-1

Without
embedded
register

(primitive_depth*N)-
1

primitive_depth*N ((primitive_depth+2)
*N)-2

((primitive_dept
h+1)*N)-1

Notes:
1. primitive_depth = depth of the primitive used to implement the FIFO. This is displayed in the Summary tab of FIFO GUI. For

detailed information on the primitive_depth for various width and depth configurations, see 7 Series FPGAs Memory
Resources User Guide (UG473)[Ref 3] and UltraScale Architecture Memory Resources (UG573)[Ref 4]

2. N = number of primitive cascaded in depth or roundup (gui_write_depth/primitive_depth).

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=136

FIFO Generator v13.1 www.xilinx.com 137
PG057 April 5, 2017

Chapter 3: Designing with the Core

Non-Built-in FIFOs: Common Clock and Standard Read Mode
Implementations
Table 3-11 defines the write port flags update latency due to a write operation for
non-Built-in FIFOs such as block RAM, distributed RAM, and shift RAM FIFOs.

Table 3-12 defines the read port flags update latency due to a read operation.

Table 3-13 defines the write port flags update latency due to a read operation.

X-Ref Target - Figure 3-39

Figure 3-39: Latency 0 Timing

Table 3-11: Write Port Flags Update Latency Due to Write Operation

Signals Latency (clk)

full 0

almost_full 0

prog_full 1

wr_ack 0

overflow 0

Table 3-12: Read Port Flags Update Latency Due to Read Operation

Signals Latency (clk)

empty 0

almost_empty 0

prog_empty 1

valid 0

underflow 0

data_count 0

Table 3-13: Write Port Flags Update Latency Due to Read Operation

Signals Latency (clk)

full 0

almost_full 0

prog_full 1

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=137

FIFO Generator v13.1 www.xilinx.com 138
PG057 April 5, 2017

Chapter 3: Designing with the Core

Table 3-14 defines the read port flags update latency due to a write operation.

Non-Built-in FIFOs: Common Clock and FWFT Read Mode
Implementations
Table 3-15 defines the write port flags update latency due to a write operation for
non-Built-in FIFOs such as block RAM, distributed RAM, and shift RAM FIFOs.

Table 3-16 defines the read port flags update latency due to a read operation.

wr_ack(1) N/A

overflow(1) N/A

Notes:
1. Write handshaking signals are only impacted by a write operation.

Table 3-14: Read Port Flags Update Latency Due to Write Operation

Signals Latency (clk)

empty 0

almost_empty 0

prog_empty 0

valid(1) N/A

underflow(1) N/A

data_count 0

Notes:
1. Read handshaking signals are only impacted by a read operation.

Table 3-15: Write Port Flags Update Latency due to Write Operation

Signals Latency (clk)

full 0

almost_full 0

prog_full 1

wr_ack 0

overflow 0

Table 3-16: Read Port Flags Update Latency due to Read Operation

Signals Latency (clk)

empty 0

almost_empty 0

Table 3-13: Write Port Flags Update Latency Due to Read Operation (Cont’d)

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=138

FIFO Generator v13.1 www.xilinx.com 139
PG057 April 5, 2017

Chapter 3: Designing with the Core

Table 3-17 defines the write port flags update latency due to a read operation.

Table 3-18 defines the read port flags update latency due to a write operation.

Non-Built-in FIFOs: Independent Clock and Standard Read
Mode Implementations
Table 3-19 defines the write port flags update latency due to a write operation.

prog_empty 1

valid 0

underflow 0

data_count 0

Table 3-17: Write Port Flags Update Latency Due to Read Operation

Signals Latency (clk)

full 0

almost_full 0

prog_full 1

wr_ack(1) N/A

overflow(1) N/A

Notes:
1. Write handshaking signals are only impacted by a write operation.

Table 3-16: Read Port Flags Update Latency due to Read Operation

Table 3-18: Read Port Flags Update Latency Due to Write Operation

Signals
No Register Embedded/

Interconnect Register
Embedded/

Interconnect Registers

Latency (clk) Latency (clk) Latency (clk)

empty 2 2 3

almost_empty 1 1 2

prog_empty 1 1 2

valid(1) N/A N/A N/A

underflow(1) N/A N/A N/A

data_count 0 0 0

Notes:
1. Read handshaking signals are only impacted by a read operation.

Table 3-19: Write Port Flags Update Latency Due to a Write Operation

Signals Latency (wr_clk)

full 0

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=139

FIFO Generator v13.1 www.xilinx.com 140
PG057 April 5, 2017

Chapter 3: Designing with the Core

Table 3-20 defines the read port flags update latency due to a read operation.

Table 3-21 defines the write port flags update latency due to a read operation. N is the
number of synchronization stages. In this example, N is 2.

almost_full 0

prog_full 1

wr_ack 0

overflow 0

wr_data_count 1

Table 3-20: Read Port Flags Update Latency Due to a Read Operation

Signals Latency (rd_clk)

empty 0

almost_empty 0

prog_empty 1

valid 0

underflow 0

rd_data_count 1

Table 3-21: Write Port Flags Update Latency Due to a Read Operation

Signals Latency

full 1 rd_clk + (N + 2) wr_clk (+1 wr_clk)(1)

almost_full 1 rd_clk + (N + 2) wr_clk (+1 wr_clk)(1)

prog_full 1 rd_clk + (N + 3) wr_clk (+1 wr_clk)(1)

wr_ack(2) N/A

overflow(2) N/A

wr_data_count 1 rd_clk + (N + 2) wr_clk (+1 wr_clk)(1)

Notes:
1. The crossing clock domain logic in independent clock FIFOs introduces a 1 wr_clk uncertainty to the latency

calculation.
2. Write handshaking signals are only impacted by a write operation.

Table 3-19: Write Port Flags Update Latency Due to a Write Operation

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=140

FIFO Generator v13.1 www.xilinx.com 141
PG057 April 5, 2017

Chapter 3: Designing with the Core

Table 3-22 defines the read port flags update latency due to a write operation. N is the
number of synchronization stages. In this example, N is 2.

Non-Built-in FIFOs: Independent Clock and FWFT Read Mode
Implementations
Table 3-23 defines the write port flags update latency due to a write operation.

Table 3-24 defines the read port flags update latency due to a read operation.

Table 3-22: Non-Built-in FIFOs, Independent Clock and Standard Read Mode Implementations:
Read Port Flags Update Latency Due to a Write Operation

Signals Latency

empty 1 wr_clk + (N + 2) rd_clk (+1 rd_clk)(1)

almost_empty 1 wr_clk + (N + 2) rd_clk (+1 rd_clk)(1)

prog_empty 1 wr_clk + (N + 3) rd_clk (+1 rd_clk)(1)

valid(2) N/A

underflow(2) N/A

rd_data_count 1 wr_clk + (N + 2) rd_clk (+1 rd_clk)(1)

Notes:
1. The crossing clock domain logic in independent clock FIFOs introduces a 1 rd_clk uncertainty to the latency

calculation.
2. Read handshaking signals are only impacted by a read operation.

Table 3-23: Write Port Flags Update Latency Due to a Write Operation

Signals Latency (wr_clk)

full 0

almost_full 0

prog_full 1

wr_ack 0

overflow 0

wr_data_count 1

Table 3-24: Read Port Flags Update Latency Due to a Read Operation

Signals Latency (rd_clk)

empty 0

almost_empty 0

prog_empty 1

valid 0

underflow 0

rd_data_count 1

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=141

FIFO Generator v13.1 www.xilinx.com 142
PG057 April 5, 2017

Chapter 3: Designing with the Core

Table 3-25 defines the write port flags update latency due to a read operation. N is the
number of synchronization stages. In this example, N is 2.

Figure 3-25 defines the read port flags update latency due to a write operation. N is the
number of synchronization stages. In this example, N is 2.

Table 3-25: Write Port Flags Update Latency Due to a Read Operation

Signals Latency

full 1 rd_clk + (N + 2) wr_clk (+1 wr_clk)(1)

almost_full 1 rd_clk + (N + 2) wr_clk (+1 wr_clk)(1)

prog_full 1 rd_clk + (N + 3) wr_clk (+1 wr_clk)(1)

wr_ack(2) N/A

overflow(2) N/A

wr_data_count 1 rd_clk + (N + 2) wr_clk (+1 wr_clk)(1)

Notes:
1. The crossing clock domain logic in independent clock FIFOs introduces a 1 wr_clk uncertainty to the latency

calculation.
2. Write handshaking signals are only impacted by a write operation.

Table 3-26: Independent Clock FWFT

Signals No Register Embedded/Interconnect
Register

Embedded and
Interconnect Registers

Latency(clk) Latency(clk) Latency(clk)

empty 1 wr_clk + (N + 4) rd_clk
(+1 rd_clk)(1)

1 wr_clk + (N + 4) rd_clk
(+1 rd_clk)(1)

1 wr_clk + (N + 5) rd_clk
(+1 rd_clk)(1)

almost_empty 1 wr_clk + (N + 4) rd_clk
(+1 rd_clk)(1)

1 wr_clk + (N + 4) rd_clk
(+1 rd_clk)(1)

1 wr_clk + (N + 5) rd_clk
(+1 rd_clk)(1)

prog_empty 1 wr_clk + (N + 3) rd_clk
(+1 rd_clk)(1)

1 wr_clk + (N + 3) rd_clk
(+1 rd_clk)(1)

1 wr_clk + (N + 4) rd_clk
(+1 rd_clk)(1)

valid(2) N/A N/A N/A

underflow(2) N/A N/A N/A

rd_data_count 1 wr_clk + (N + 2) rd_clk
(+1 rd_clk)(1)
+ [N rd_clk (+1 rd_clk)](3)

1 wr_clk + (N + 2) rd_clk
(+1 rd_clk)(1)
+ [N rd_clk (+1 rd_clk)](3)

1 wr_clk + (N + 2) rd_clk
(+1 rd_clk)(1)
+ [N rd_clk (+1 rd_clk)](3)

Notes:
1. The crossing clock domain logic in independent clock FIFOs introduces a 1 rd_clk uncertainty to the latency

calculation.
2. Read handshaking signals are only impacted by a read operation.
3. This latency is the worst-case latency. The addition of the [2 rd_clk (+1 rd_clk)] latency depends on the status of

the empty and almost_empty flags.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=142

FIFO Generator v13.1 www.xilinx.com 143
PG057 April 5, 2017

Chapter 3: Designing with the Core

Built-in FIFOs: Common Clock and Standard Read Mode
Implementations
Note: N is the number of primitives cascaded in depth. This can be calculated by dividing the GUI
depth by the primitive depth. For ECC, the primitive depth is 512. The term “Built-in FIFOs” refers to
the hard FIFO macros of FPGAs.

For more details for the write and read port flags update latency for a single primitive, see
7 Series FPGAs Memory Resources User Guide (UG473) [Ref 3].

Table 3-27 defines the write port flags update latency due to a write operation.

Table 3-28 defines the read port flags update latency due to a read operation.

Table 3-29 defines the write port flags update latency due to a read operation.

Table 3-30 defines the read port flags update latency due to a write operation.

Table 3-27: Common Clock Built-in FIFOs with Standard Read Mode Implementations: Write
Port Flags Update Latency Due to Write Operation

Signals Latency (clk)

full 0

prog_full 1

wr_ack 0

overflow 0

Table 3-28: Common Clock Built-in FIFOs with Standard Read Mode Implementations: Read
Port Flags Update Latency Due to Read Operation

Signals Latency (clk)

empty 0

prog_empty 1

valid 0

underflow 0

Table 3-29: Common Clock Built-in FIFOs with Standard Read Mode Implementations: Write
Port Flags Update Latency Due to Read Operation

Signals Latency (clk)

full (N-1)(2)

prog_full N(2)

wr_ack(1) N/A

overflow(1) N/A

Notes:
1. Write handshaking signals are only impacted by a write operation.
2. Use N=1 for UltraScale devices with number of primitives in depth <=16

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=143

FIFO Generator v13.1 www.xilinx.com 144
PG057 April 5, 2017

Chapter 3: Designing with the Core

Built-in FIFOs: Common Clock and FWFT Read Mode
Implementations
Note: N is the number of primitives cascaded in depth. This can be calculated by dividing the GUI
depth by the primitive depth. For ECC, the primitive depth is 512. The term “Built-in FIFOs” refers to
the hard FIFO macros of FPGAs.

For more details for the write and read port flags update latency for a single primitive, see
7 Series FPGAs Memory Resources User Guide (UG473) [Ref 3].

Table 3-31 defines the write port flags update latency due to a write operation.

Table 3-32 defines the read port flags update latency due to a read operation.

Table 3-33 defines the write port flags update latency due to a read operation.

Table 3-30: Read Port Flags Update Latency Due to Write Operation

Signals Latency (clk)

empty (N(2)-1)*2

prog_empty (N(2)-1)*2+1

valid(1) N/A

underflow(1) N/A

Notes:
1. Read handshaking signals are only impacted by a read operation.
2. Use N=1 for UltraScale devices with number of primitives in depth <=16

Table 3-31: Write Port Flags Update Latency Due to Write Operation

Signals Latency (clk)

full 0

prog_full 1

wr_ack 0

overflow 0

Table 3-32: Read Port Flags Update Latency Due to a Read Operation

Signals Latency (clk)

empty 0

prog_empty 1

valid 0

underflow 0

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=144

FIFO Generator v13.1 www.xilinx.com 145
PG057 April 5, 2017

Chapter 3: Designing with the Core

Table 3-34 defines the read port flags update latency due to a write operation.

Built-in FIFOs: Independent Clocks and Standard Read Mode
Implementations
Note: N is the number of primitives cascaded in depth. This can be calculated by dividing the GUI
depth by the primitive. For ECC, the primitive depth is 512. Faster_Clk is the clock domain, either
rd_clk or wr_clk, that has a larger frequency. The term “Built-in FIFOs” refers to the hard FIFO
macros of FPGAs.

For more details for the write and read port flags update latency for a single primitive, see
7 Series FPGAs Memory Resources User Guide (UG473) [Ref 3].

Table 3-35 defines the write port flags update latency due to a write operation.

Table 3-33: Write Port Flags Update Latency Due to a Read Operation

Signals Latency (clk)

full (N-1)(2)

prog_full(1) N(2)

wr_ack(1) N/A

overflow N/A

Notes:
1. Write handshaking signals are only impacted by a write operation.
2. Use N=1 for UltraScale devices with number of primitives in depth <=16

Table 3-34: Read Port Flags Update Latency Due to a Write Operation

Signals Latency (clk)

empty ((N(2)-1)*2+1)

prog_empty ((N(2)-1)*2+1)

valid(1) N/A

underflow(1) N/A

Notes:
1. Read handshaking signals are only impacted by a read operation.
2. Use N=1 for UltraScale devices with number of primitives in depth <=16

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=145

FIFO Generator v13.1 www.xilinx.com 146
PG057 April 5, 2017

Chapter 3: Designing with the Core

Table 3-36 defines the read port flags update latency due to a read operation.

Table 3-37 defines the write port flags update latency due to a read operation.

Table 3-38 defines the read port flags update latency due to a write operation.

Table 3-35: Independent Clock Built-in FIFOs with Standard Read Mode Implementations:
Write Port Flags Update Latency Due to a Write Operation

Signals Latency (wr_clk)

full 0

prog_full 1

wr_ack 0

overflow 0

Table 3-36: Independent Clock Built-in FIFOs with Standard Read Mode Implementations: Read
Port Flags Update Latency Due to a Read Operation

Signals Latency (rd_clk)

empty 0

prog_empty 1

valid 0

underflow 0

Table 3-37: Independent Clock Built-in FIFOs with Standard Read Mode Implementations:
Write Port Flags Update Latency Due to a Read Operation

Signals Latency

full(1) L1(2)rd_clk + (N(4)-1)*L2(2) faster_clk + L3(2)wr_clk

prog_full(1) L4(2) rd_clk + (N(4)-1)*(L2(2)-1) faster_clk + L5(2)wr_clk

wr_ack(3) N/A

overflow(3) N/A

Notes:
1. Depending on the offset between read and write clock edges, the Empty and Full flags can deassert one cycle later.
2. L1 = 1, L2 = 4, L3 = 3, L4 = 1 and L5 = 4
3. Write handshaking signals are only impacted by a Write operation.
4. Use N=1 for UltraScale devices with number of primitives in depth <=16

Table 3-38: Independent Clock Built-in FIFOs with Standard Read Mode Implementations: Read
Port Flags Update Latency Due to a Write Operation

Signals Latency

empty(1) L1(2) wr_clk + (N(4)-1)*L2(2) faster_clk + L3(2)rd_clk

prog_empty(1) L4(2)wr_clk + (N(4)-1)*(L5(2)-1) faster_clk + L6(2)rd_clk

valid(3) N/A

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=146

FIFO Generator v13.1 www.xilinx.com 147
PG057 April 5, 2017

Chapter 3: Designing with the Core

Built-in FIFOs: Independent Clocks and FWFT Read Mode
Implementations
Note: N is the number of primitives cascaded in depth, which can be calculated by dividing the GUI
depth by the primitive depth. For ECC, the primitive depth is 512. Faster_Clk is the clock domain,
either rd_clk or wr_clk, that has a larger frequency. The term “Built-in FIFOs” refers to the hard
FIFO macros of FPGAs.

For more details for the write and read port flags update latency for a single primitive, see
7 Series FPGAs Memory Resources User Guide (UG473) [Ref 3].

Table 3-39 defines the write port flags update latency due to a write operation.

Table 3-40 defines the read port flags update latency due to a read operation.

Table 3-41 defines the write port flags update latency due to a read operation.

underflow(3) N/A

Notes:
1. Depending on the offset between read and write clock edges, the Empty and Full flags can deassert one cycle later.
2. L1 = 1, L2 = 4, L3 = 4, L4 = 1, L5 = 5 and L6 = 4.
3. Read handshaking signals are only impacted by a read operation.
4. Use N=1 for UltraScale devices with number of primitives in depth <=16

Table 3-39: Independent Clock Built-in FIFOs with FWFT Read Mode Implementations: Write
Port Flags Update Latency Due to a Write Operations

Signals Latency (wr_clk)

full 0

prog_full 1

wr_ack 0

overflow 0

Table 3-40: Independent Clock Built-in FIFOs with FWFT Read Mode Implementations: Read
Port Flags Update Latency Due to a Read Operation

Signals Latency (rd_clk)

empty 0

prog_empty 1

valid 0

underflow 0

Table 3-38: Independent Clock Built-in FIFOs with Standard Read Mode Implementations: Read
Port Flags Update Latency Due to a Write Operation

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=147

FIFO Generator v13.1 www.xilinx.com 148
PG057 April 5, 2017

Chapter 3: Designing with the Core

Table 3-42 defines the read port flags update latency due to a write operation.

Special Design Considerations

Resetting the FIFO
The FIFO Generator core must be reset after the FPGA is configured and before operation
begins. Two reset pins are available, asynchronous (rst) and synchronous (srst), and both
clear the internal counters and output registers.

• For asynchronous reset, internal to the core, rst is synchronized to the clock domain in
which it is used, to ensure that the FIFO initializes to a known state. This
synchronization logic allows for proper reset timing of the core logic, avoiding glitches
and metastable behavior. To avoid unexpected behavior, it is not recommended to
drive/toggle wr_en/rd_en when rst is asserted/high.

Table 3-41: Independent Clock Built-in FIFOs with FWFT Read Mode Implementations: Write
Port Flags Update Latency Due to a Read Operation

Signals Latency

full(1) L1(2) rd_clk + (N(4)-1)*L2(2) faster_clk + L3(2) wr_clk

prog_full(1) L4(2) rd_clk + (N(4)-1)*(L2(2)-1) faster_clk + L5(2)wr_clk

wr_ack(3) N/A

overflow(3) N/A

Notes:
1. Depending on the offset between read and write clock edges, the Empty and Full flags can deassert one cycle later.
2. L1 = 1, L2 = 4, L3 = 3, L4 = 1 and L5 = 4.
3. Write handshaking signals are only impacted by a Write operation.
4. Use N=1 for UltraScale devices with number of primitives in depth <=16

Table 3-42: Independent Clock Built-in FIFOs with FWFT Read Mode Implementations: Read
Port Flags Update Latency Due to a Write Operation

Signals Latency

empty(1) L1(2) wr_clk + (N(4)-1)*L2(2) faster_clk + L3(2)rd_clk

prog_empty(1) L4(2) wr_clk + (N(4)-1)*(L5(2)-1) faster_clk + L6(2)rd_clk

valid(3) N/A

underflow(3) N/A

Notes:
1. Depending on the offset between read and write clock edges, the Empty and Full flags can deassert one cycle later.
2. L1 = 1, L2 = 5, L3 = 4, L4 = 1, L5 = 5 and L6 = 4.
3. Read handshaking signals are only impacted by a read operation.
4. Use N=1 for UltraScale devices with number of primitives in depth <=16

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=148

FIFO Generator v13.1 www.xilinx.com 149
PG057 April 5, 2017

Chapter 3: Designing with the Core

• For 7 series common clock block and distributed RAM synchronous reset, because the
reset pin is synchronous to the input clock and there is only one clock domain in the
FIFO, no additional synchronization logic is needed.

• For independent clock block and distributed RAM synchronous reset, because the reset
pin (wr_rst/rd_rst) is synchronous to the respective clock domain, no additional
synchronization logic is needed. However, it is recommended to follow these rules to
avoid unexpected behavior:

° If wr_rst is applied, then rd_rst must also be applied and vice versa.

° No write or read operations should be performed until both clock domains are
reset.

• For UltraScale common clock block RAM, distributed RAM and Shift Register FIFO with
synchronous reset, the FIFO Generator core uses the UltraScale architecture built-in
FIFO's reset mechanism. For more information on reset mechanism, see the UltraScale
Architecture Memory Resources: Advance Specification User Guide (UG573) [Ref 4].

• For UltraScale built-in FIFO implementations, the reset (srst) is synchronous to clk/
wr_clk. If srst is asserted, the wr_rst_busy output asserts immediately after the
rising edge of wr_clk, and remains asserted until the reset operation is complete.
Following the assertion of wr_rst_busy, the internal reset is synchronized to the
rd_clk domain. Upon arrival in the rd_clk domain, the rd_rst_busy is asserted
and is held asserted until the resetting of all rd_clk domain signals is complete. At
this time, rd_rst_busy is deasserted. In common-clock mode, this logic is simplified
because the clock domain crossing is not required. For more information on reset
mechanism, see the UltraScale Architecture Memory Resources: Advance Specification
User Guide (UG573) [Ref 4].

The generated FIFO core will be initialized after reset to a known state. For details about
reset values and behavior, see Resets of this guide.

Continuous Clocks
The FIFO Generator core is designed to work only with free-running write and read clocks.
Xilinx does not recommend controlling the core by manipulating rd_clk and wr_clk. If
this functionality is required to gate FIFO operation, we recommend using the write enable
(wr_en) and read enable (rd_en) signals.

Pessimistic Full and Empty
When independent clock domains are selected, the full flag (full, almost_full) and
empty flag (empty, almost_empty) are pessimistic flags. full and almost_full are
synchronous to the write clock (wr_clk) domain, while empty and almost_empty are
synchronous to the read clock (rd_clk) domain.

The full flags are considered pessimistic flags because they assume that no read operations
have taken place in the read clock domain. almost_full is guaranteed to be asserted on

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=149

FIFO Generator v13.1 www.xilinx.com 150
PG057 April 5, 2017

Chapter 3: Designing with the Core

the rising edge of wr_clk when there is only one available location in the FIFO, and full
is guaranteed to be asserted on the rising edge of wr_clk when the FIFO is full. There may
be a number of clock cycles between a read operation and the deassertion of full. The
precise number of clock cycles for full to deassert is not predictable due to the crossing
of clock domains and synchronization logic. For more information see Simultaneous
Assertion of Full and Empty Flag.

The empty flags are considered pessimistic flags because they assume that no write
operations have taken place in the write clock domain. almost_empty is guaranteed to be
asserted on the rising edge of rd_clk when there is only one more word in the FIFO, and
empty is guaranteed to be asserted on the rising edge of rd_clk when the FIFO is empty.
There may be a number of clock cycles between a write operation and the deassertion of
empty. The precise number of clock cycles for empty to deassert is not predictable due to
the crossing of clock domains and synchronization logic. For more information see
Simultaneous Assertion of Full and Empty Flag

Programmable Full and Empty
The programmable full (prog_full) and programmable empty (prog_empty) flags
provide the user flexibility in specifying when the programmable flags assert and deassert.
These flags can be set either by constant value(s) or by input port(s). These signals differ
from the full and empty flags because they assert one (or more) clock cycle after the assert
threshold has been reached. These signals are deasserted some time after the negate
threshold has been passed. In this way, prog_empty and prog_full are also considered
pessimistic flags. See Programmable Flags of this guide for more information about the
latency and behavior of the programmable flags.

Simultaneous Assertion of Full and Empty Flag
For independent clock FIFO, there are delays in the assertion/deassertion of the full and
empty flags due to cross clock domain logic. These delays may cause unexpected FIFO
behavior like full and empty asserting at the same time. To avoid this, the following A and
B equations must be true.

A) Time it takes to update full flag due to read operation < time it takes to empty a full FIFO

B) Time it takes to update empty flag due to write operation < time it takes to fill an empty
FIFO

For example, assume the following configurations:

• Independent clock (non built-in), standard FIFO

• write clock frequency = 3MHz, wr_clk_period = 333 ns

• read clock frequency = 148 MHz, rd_clk_period = 6.75 ns

• write depth = read depth = 20

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=150

FIFO Generator v13.1 www.xilinx.com 151
PG057 April 5, 2017

Chapter 3: Designing with the Core

• actual_wr_depth = actual_rd_depth = 19 (as mentioned in Actual FIFO Depth)

• N = number of synchronization stages. In this example, N = 2

Apply equation A:

Time it takes to update full flag due to read operation < time it takes to empty a full FIFO
= 1*rd_clk_period + (3 + N)*wr_clk_period < actual_rd_depth*rd_clk_period

1*6.75 + 5*333 < 19*6.75

1671.75 ns < 128.5 ns --> Equation VIOLATED!

Note: Left side equation is the latency of full flag updating due to read operation as mentioned in
Table 3-21, page 140.

Conclusion: Violation of this equation proves that for this design, when a full FIFO is read
from continuously, the empty flag asserts before the full flag deasserts due to the read
operations that occurred.

Apply Equation B:

Time it takes to update empty flag due to write operation < time it takes to fill an empty
FIFO

1*wr_clk_period + (3 + N)*rd_clk_period < actual_wr_depth*wr_clk_period

1*333 + 5*6.75 < 19*333

366.75 ns < 6327 ns --> Equation MET!

Note: Left side equation is the latency of empty flag updating due to write operation as mentioned
in Table 3-22, page 141.

Conclusion: Because this equation is met for this design, an empty FIFO that is written into
continuously has its empty flag deassert before the full flag is asserted.

Write Data Count and Read Data Count
When independent clock domains or common clock non-symmetric Block RAM FIFO
(UltraScale architecture only) is selected, write data count (wr_data_count) and read data
count (rd_data_count) signals are provided as an indication of the number of words in
the FIFO relative to the write or read clock domains, respectively.

Consider the following when using the wr_data_count or rd_data_count ports.

• The wr_data_count and rd_data_count outputs are not an instantaneous
representation of the number of words in the FIFO, but can instantaneously provide an
approximation of the number of words in the FIFO.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=151

FIFO Generator v13.1 www.xilinx.com 152
PG057 April 5, 2017

Chapter 3: Designing with the Core

• wr_data_count and rd_data_count may skip values from clock cycle to clock cycle.

• Using non-symmetric aspect ratios, or running clocks which vary dramatically in
frequency, will increase the disparity between the data count outputs and the actual
number of words in the FIFO.

Note: The wr_data_count and rd_data_count outputs will always be correct after some period
of time where rd_en=0 and wr_en=0 (generally, just a few clock cycles after read and write activity
stops).

See Data Counts of this guide for details about the latency and behavior of the data count
flags.

Setup and Hold Time Violations
When generating a FIFO with independent clock domains (whether a DCM is used to derive
the write/read clocks or not), the core internally synchronizes the write and read clock
domains. For this reason, setup and hold time violations are expected on certain registers
within the core. In simulation, warning messages may be issued indicating these violations.
If these warning messages are from the FIFO Generator core, they can be safely ignored. The
core is designed to properly handle these conditions, regardless of the phase or frequency
relationship between the write and read clocks.

The FIFO Generator core provides an IP-level constraint that applies a MAXDELAY constraint
to avoid setup and hold violations on the cross-clock domain logic. In addition to the
IP-level constraint, the FIFO Generator also provides an example design constraint that
applies a FALSE_PATH on the reset path.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=152

FIFO Generator v13.1 www.xilinx.com 153
PG057 April 5, 2017

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 5]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7]

• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 8]

• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 9]

Customizing and Generating the Native Core
You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.

2. Double-click the selected IP or select the Customize IP command from the toolbar or
right-click menu .

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7] and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 8].

Note: Figures in this chapter are illustrations of the Vivado Integrated Design Environment (IDE).
This layout might vary from the current version.

The Native FIFO Interface IDE includes the following configuration tabs:

• Basic Tab

• Native Ports Tab

• Status Flags Tab

• Data Counts Tab

• Summary Tab

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=153

FIFO Generator v13.1 www.xilinx.com 154
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Basic Tab
The Basic tab defines the component name and provides the interface options and
configuration options for the core.

• Component Name: Base name of the output files generated for this core. The name
must begin with a letter and be composed of the following characters: a to z, 0 to 9,
and "_".

• Interface Type

° Native: Implements a Native FIFO.

° AXI Memory Mapped: Implements an AXI4, AXI3 and AXI4-Lite FIFOs in
First-Word-Fall-Through mode.

° AXI Stream: Implements an AXI4-Stream FIFO in First-Word-Fall-Through mode.

• FIFO Implementation

° Common Clock (clk), Block RAM: See Common Clock FIFO: Block RAM and
Distributed RAM in Chapter 3 for details. This implementation optionally supports
first-word-fall-through (selectable in the Status Flags tab, Figure 4-3).

X-Ref Target - Figure 4-1

Figure 4-1: Basic Tab

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=154

FIFO Generator v13.1 www.xilinx.com 155
PG057 April 5, 2017

Chapter 4: Design Flow Steps

° Common Clock (clk), Distributed RAM: For details, see Common Clock FIFO: Block
RAM and Distributed RAM in Chapter 3. This implementation optionally supports
first-word-fall-through (selectable in the Status Flags tab, Figure 4-3).

° Common Clock (clk), Shift Register: For details, see Common Clock FIFO: Shift
Registers in Chapter 3.

° Common Clock (clk), Built-in FIFO: For details, see Common Clock: Built-in FIFO in
Chapter 3. This implementation optionally supports first-word fall-through
(selectable in the Status Flags tab, Figure 4-3).

° Independent Clocks (rd_clk, wr_clk), Block RAM: For details, see Independent Clocks:
Block RAM and Distributed RAM in Chapter 3. This implementation optionally
supports asymmetric read/write ports and first-word fall-through (selectable in the
Status Flags tab, Figure 4-3).

° Independent Clocks (rd_clk, wr_clk), Distributed RAM: For more information, see
Independent Clocks: Block RAM and Distributed RAM in Chapter 3. This
implementation optionally supports first-word fall-through (selectable in the Status
Flags tab, Figure 4-3).

° Independent Clocks (rd_clk, wr_clk), Built-in FIFO: For more information, see
Independent Clocks: Built-in FIFO in Chapter 3. This implementation optionally
supports first-word fall-through (selectable in the Status Flags tab, Figure 4-3).

• Synchronization stages: Defines the number of synchronizers stages across the cross
clock domain logic. Table 4-1 shows the examples of synchronization stages with the
frequency of operation.

Table 4-1: Examples of Synchronization Stages

Architecture Frequency
(MHz) Speed grade Number of

synchronization stages

Virtex-7/Kintex-7

200

3

3
250 3

300 3
400 4

artix-7/zynq 7000
200

3
2

250 2

300 3

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=155

FIFO Generator v13.1 www.xilinx.com 156
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Native Ports Tab
This tab provides performance options (Read Mode), data port parameters, ECC and
initialization options for the core.

• Read Mode: Available only when block RAM or distributed RAM FIFOs are selected.

° Standard FIFO: Implements a FIFO with standard latencies and without using output
registers.

° First-Word Fall-Through FIFO: Implements a FIFO with registered outputs. For more
information about FWFT functionality, see First-Word Fall-Through FIFO Read
Operation in Chapter 3.

• Data Port Parameters

° Asymmetric Port Width: Available only for UltraScale devices for Block RAM/Built-in
FIFOs.

° Write Width: The valid range of write data width is 1 to 1024.

X-Ref Target - Figure 4-2

Figure 4-2: Native Ports Tab

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=156

FIFO Generator v13.1 www.xilinx.com 157
PG057 April 5, 2017

Chapter 4: Design Flow Steps

° Write Depth: The valid range of write depth is 16 to 131072. Only depths with
powers of 2 are allowed.

° Read Width: Available only if configuration with block RAM or built-in FIFO is
selected. Valid range must comply with asymmetric port rules. See Non-symmetric
Aspect Ratios in Chapter 3.

° Read Depth: Automatically calculated based on write width, write depth, and read
width.

° Low Latency: Available only for UltraScale device built-in FIFO configurations where
the number of primitives in depth is more than one.

° Output Register: Available only when Low Latency option is selected.

• ECC, Output Register and Power Saving Options

° ECC: When the Error Correction Checking (ECC) feature is enabled with Hard ECC,
the block RAM or built-in FIFO is set to the full ECC mode, where both the encoder
and decoder are enabled.

° Single Bit Error Injection: Available for both the common and independent clock
block RAM or built-in FIFOs with ECC option enabled. Soft ECC option with ECC
logic using the general interconnect is available in Block RAM based FIFO builds.
Generates an input port to inject a single bit error on write and an output port that
indicates a single bit error occurred.

° Double-Bit Error Injection: Available for both the common and independent clock
block RAM or built-in FIFOs, with ECC option enabled. Generates an input port to
inject a double-bit error on write and an output port that indicates a double-bit
error occurred.

° ECC Pipeline Reg: The built-in FIFO macro has an optional pipeline register on the
ECC decoder and encoder path. When the ECC pipeline register is selected, it
improves the FIFO macro timing and adds one clock additional latency on the
DOUT. The ECC pipeline register holds the previously read data in the pipeline when
a reset is applied to the FIFO. For more information on ECC Pipeline Register, see
UltraScale Architecture Memory Resources: Advance Specification User Guide (UG573)
[Ref 4].

° Dynamic Power Saving: The dynamic power saving capability (controlled by the
sleep pin) keeps the built-in FIFO macro in sleep mode while preserving the data
content. Any FIFO access prior to the wake-up time requirement is not guaranteed
and might cause memory content corruption. While sleep is active (High), the
wr_en and rd_en pins must be held Low. The data content of the memory is
preserved during this mode. For more information on Dynamic Power Gating, see
UltraScale Architecture Memory Resources: Advance Specification User Guide (UG573)
[Ref 4].

° Output Registers: The block RAM macros have built-in embedded or interconnect
registers that can be used to pipeline data and improve macro timing. This option
enables users to add one pipeline stage to the output of the FIFO and take

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=157

FIFO Generator v13.1 www.xilinx.com 158
PG057 April 5, 2017

Chapter 4: Design Flow Steps

advantage of the available embedded registers. For built-in FIFOs, this feature is
only supported for synchronous FIFO configurations that have only 1 FIFO macro in
depth. See Embedded Registers in Block RAM and FIFO Macros in Chapter 3.

FIFO Generator also gives the option to choose both embedded and interconnect
registers to have a smooth latency in meeting the timing.

• Initialization

° Reset Pin: For FIFOs implemented with block RAM or distributed RAM, a reset pin is
not required, and the input pin is optional.

° Enable Reset Synchronization: Optional selection available only for independent
clock block RAM or distributed RAM FIFOs. When unchecked, wr_rst/rd_rst is
available. See Resets in Chapter 3 for details.

° Enable safety Circuit: Optional selection available only for BRAM based FIFOs with
asynchronous reset. When you select Enable Safety Circuit option, the additional
logic is enabled to ensure that the synchronous flops drive the control signals into
the BRAM primitives. See Answer Record(AR#42571)[Ref 11] for more information.

° Reset Type:

- Asynchronous Reset: Optional selection for a common-clock FIFO implemented
using distributed or block RAM.

- Synchronous Reset: Optional selection for a common-clock FIFO implemented
using distributed or block RAM.

° Full Flags Reset Value: For block RAM, distributed RAM, and shift register
configurations, you can choose the reset value of the full flags (prog_full,
almost_full, and full) during reset.

° Dout Reset Value: Indicates the hexadecimal value asserted on the output of the
FIFO when the reset is asserted. Available for all implementations using block RAM,
distributed RAM, shift register or common clock 7 series devices’ built-in with
embedded register option. Only available if a reset pin option is selected. If
selected, the dout output of the FIFO will reset to the defined dout Reset Value
when the reset is asserted. If not selected, the dout output of the FIFO will not be
effected by the assertion of reset, and dout will hold its previous value with a
limitation for UltraScale architecture-based devices using Built-In FIFOs.

IMPORTANT: For UltraScale Built-in FIFOs, the dout output of the FIFO resets to the defined Dout
Reset Value when the reset is asserted irrespective of the Use Dout Reset selection.

See Appendix D, dout Reset Value Timing for timing diagrams for different
configurations.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=158

FIFO Generator v13.1 www.xilinx.com 159
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Status Flags Tab
This tab allows you to select the optional status flags, set the handshaking options and
programmable flag options.

• Built-in FIFO Options

° Read/Write Clock Faster: The Read Clock Faster and Write Clock Faster are used to
determine the optimal implementation of the domain-crossing logic in the core.
This option is only available for built-in FIFOs with independent clocks.

IMPORTANT: It is critical that Read Clock Faster and Write Clock Faster information is accurate. If this
information is inaccurate, it can result in a sub-optimal solution with incorrect core behavior.

• Optional Flags: See Latency in Chapter 3 for the latency of the Almost Full/Empty flags
due to write/read operation.

° Almost Full Flag: Available in all FIFO implementations except those using built-in
FIFOs. Generates an output port that indicates the FIFO is almost full (only one more
word can be written).

X-Ref Target - Figure 4-3

Figure 4-3: Status Flags Tab

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=159

FIFO Generator v13.1 www.xilinx.com 160
PG057 April 5, 2017

Chapter 4: Design Flow Steps

° Almost Empty Flag: Available in all FIFO implementations except in those using
built-in FIFOs. Generates an output port that indicates the FIFO is almost empty
(only one more word can be read).

• Handshaking Options: See Latency in Chapter 3 for the latency of the handshaking
flags due to write/read operation.

° Write Port Handshaking

- Write Acknowledge: Generates write acknowledge flag which reports the success
of a write operation. This signal can be configured to be active-High or Low
(default active-High).

- Overflow (Write Error): Generates overflow flag which indicates when the
previous write operation was not successful. This signal can be configured to be
active-High or Low (default active-High).

° Read Port Handshaking

- Valid (Read Acknowledge): Generates valid flag that indicates when the data on
the output bus is valid. This signal can be configured to be active-High or Low
(default active-High).

Note: Active-Low option is available only for 7 series devices.

- Underflow (Read Error): Generates underflow flag to indicate that the previous
read request was not successful. This signal can be configured to be active-High
or Low (default active-High).

Note: Active-Low option is available only for 7 series devices.

• Programmable Flags: See Latency in Chapter 3 for the latency of the programmable
flags due to write/read operation.

° Programmable Full Type: Select a programmable full threshold type from the
drop-down menu. The valid range for each threshold is displayed and varies
depending on the options selected elsewhere in the IDE.

° Full Threshold Assert Value: Available when Programmable Full with Single or
Multiple Threshold Constants is selected. Enter a user-defined value. The valid
range for this threshold is provided in the IDE. When using a single threshold
constant, only the assert threshold value is used.

° Full Threshold Negate Value: Available when Programmable Full with Multiple
Threshold Constants is selected. Enter a user-defined value. The valid range for this
threshold is provided in the IDE.

° Programmable Empty Type: Select a programmable empty threshold type from the
drop-down menu. The valid range for each threshold is displayed, and will vary
depending on options selected elsewhere in the IDE.

° Empty Threshold Assert Value: Available when Programmable Empty with Single or
Multiple Threshold Constants is selected. Enter a user-defined value. The valid

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=160

FIFO Generator v13.1 www.xilinx.com 161
PG057 April 5, 2017

Chapter 4: Design Flow Steps

range for this threshold is provided in the IDE. When using a single threshold
constant, only the assert value is used.

° Empty Threshold Negate Value: Available when Programmable Empty with Multiple
Threshold Constants is selected. Enter a user-defined value. The valid range for this
threshold is provided in the IDE.

TIP: For 7 series devices with Built-in FIFO configurations, prog_full and prog_empty signals are
connected to almostfull and almostempty of the FIFO18E1/FIFO36E1 primitive.

Data Counts Tab
Use this tab to set data count options.

Note: Valid range of values shown in the IDE is the actual values even though they are grayed out for
some selection.

• Data Count Options: See Latency in Chapter 3 for the latency of the data counts due
to write/read operation.

° More Accurate Data Counts: Only available for independent clocks FIFO with block
RAM or distributed RAM, and when using first-word fall-through. This option uses

X-Ref Target - Figure 4-4

Figure 4-4: Data Count Tab

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=161

FIFO Generator v13.1 www.xilinx.com 162
PG057 April 5, 2017

Chapter 4: Design Flow Steps

additional external logic to generate a more accurate data count. This feature is
always enabled for common clock FIFOs with block RAM or distributed RAM and
when using first-word-fall-through. See First-Word Fall-Through Data Count in
Chapter 3 for details.

° Data Count (Synchronized With Clk): Available when a common clock FIFO with
block RAM, distributed RAM, or shift registers is selected.

- Data Count Width: Available when Data Count is selected. Valid range is from 1
to log2 (input depth).

° Write Data Count (Synchronized with Write Clk): Available when an independent
clocks FIFO with block RAM or distributed RAM is selected.

- Write Data Count Width: Available when Write Data Count is selected. Valid
range is from 1 to log2 (input depth).

° Read Data Count (Synchronized with Read Clk): Available when an independent
clocks FIFO with block RAM or distributed RAM is selected.

- Read Data Count Width: Available when Read Data Count is selected. Valid range
is from 1 to log2 (output depth).

Summary Tab
This tab displays a summary of the selected FIFO options, including the FIFO type, FIFO
dimensions, and the status of any additional features selected. In the Additional Features
section, most features display either Not Selected (if unused), or Selected (if used).

Note: Write depth and read depth provide the actual FIFO depths for the selected configuration.
These depths may differ slightly from the depth selected on screen three of the FIFO IDE.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=162

FIFO Generator v13.1 www.xilinx.com 163
PG057 April 5, 2017

Chapter 4: Design Flow Steps

User Parameters
Table 4-2 shows the relationship between the Vivado IDE and the User Parameters (which
can be viewed in the Tcl console).

X-Ref Target - Figure 4-5

Figure 4-5: Summary Tab

Table 4-2: Vivado IDE Parameter to User Parameter Relationship

Vivado IDE Parameter User Parameter Default Value

Interface Type
Native
AXI Memory Mapped
AXI Stream

interface_type
native
axi_memory_mapped
axi_stream

native

FIFO Implementation
Common Clock Block RAM
Common Clock Distributed RAM
Common Clock Shift Register
Common Clock Builtin FIFO
Independent Clock Block RAM
Independent Clock Distributed RAM
Independent Clock Builtin FIFO

fifo_implementation
common_clock_block_ram
common_clock_distributed_ram
common_clock_shift_register
common_clock_builtin
independent_clock_block_ram
independent_clock_distributed_ram
independent_clock_builtin

common_clock_block_ram (7
series devices)
common_clock_builtin
(UltraScale devices)

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=163

FIFO Generator v13.1 www.xilinx.com 164
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Synchronization Option
2 to 8

synchronization_stages
2 to 8

2

Read Mode
Standard FIFO
First Word Fall Through

performance_options
standard_fifo
first_word_fall_through

standard_fifo

Asymmetric Port Width
true, false

asymmetric_port_width
true, false

false

Write Width
1 to 1024

input_data_width
1 to 1024

18

Write Depth
16 to 131072

input_depth
16 to 131072

1024

Read Width
1 to 1024

output_data_width
1 to 1024

18

Read Depth
16 to 131072

output_depth
16 to 131072

1024

Low Latency
true, false

enable_low_latency
true, false

false

Output Register
true, false

use_dout_register
true, false

false

Enable ECC
true, false

enable_ecc
true, false

false

Enable ECC Type
Hard ECC
Soft ECC

Enable ECC Type
Hard ECC
Soft ECC

Hard ECC

Single Bit Error Injection
true, false

inject_sbit_error
true, false

false

Double Bit Error Injection
true, false

inject_dbit_error
true, false

false

ECC Pipeline Register
true, false

ecc_pipeline_reg
true, false

false

Output Registers
true, false

use_embedded_registers
true, false

false

Output Register Type
Embedded Register
Fabric Register
Embedded and Fabric Register

Output_Regsiter_Type
Embedded_Reg
Fabric_Reg
Both

Embedded Register

Dynamic Power Gating
true, false

dynamic_power_saving
true, false

false

Reset Pin
true, false

reset_pin
true, false

true

Table 4-2: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter User Parameter Default Value

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=164

FIFO Generator v13.1 www.xilinx.com 165
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Enable Reset Synchronization
true, false

enable_reset_synchronization
true, false

true

Enable Safety Circuit
true, false

enable_safety_circuit
true,false

false

Reset Type
Asynchronous Reset
Synchronous Reset

reset_type
asynchronous_reset
synchronous_reset

Asynchronous Reset

Full Flags Reset Value
0, 1

full_flags_reset_value
0, 1

0

Dout Reset Value
true, false

use_dout_reset
true, false

true

dout_reset_value 0

Almost Full Flag
true, false

almost_full_flag
true, false

false

Almost Empty Flag
true, false

almost_empty_flag
true, false

false

Read Clock Frequency
1 to 1000

read_clock_frequency
1 to 1000

1

Write Clock Frequency
1 to 1000

write_clock_frequency
1 to 1000

1

Write Acknowledge
true, false

write_acknowledge_flag
true, false

Active High

Write Acknowledge Sensitivity(1)

Active High
Active Low

write_acknowledge_sense
active_high
active_low

Active High

Overflow Flag
true, false

overflow_flag
true, false

false

Overflow Flag Sensitivity(1)

Active High
Active Low

overflow_sense
active_high
active_low

Active High

Valid Flag
true, false

valid_flag
true, false

false

Valid Flag Sensitivity(1)

Active High
Active Low

valid_sense
active_high
active_low

Active High

Underflow Flag
true, false

underflow_flag
true, false

false

Underflow Flag Sensitivity(1)

Active High
Active Low

underflow_sense
active_high
active_low

Active High

Table 4-2: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter User Parameter Default Value

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=165

FIFO Generator v13.1 www.xilinx.com 166
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Programmable Full Type
No Programmable Full Threshold
Single Programmable Full Threshold
Constant
Multiple programmable Full
Threshold Constants
Single Programmable Full Threshold
Input Port
Multiple Programmable Full
Threshold Input Ports

programmable_full_type
No_Programmable_Full_Threshold
Single_Programmable_Full_
Threshold_Constant
Multiple_programmable_Full_
Threshold_Constants
Single_Programmable_Full_
Threshold_Input_Port
Multiple_Programmable_Full_
Threshold_Input_Ports

No_Programmable_Full_Thre
shold

Full Threshold Assert Value
4 to 1022 (7 series devices)
5 to 1023 (UltraScale devices)

full_threshold_assert_value 1022 (7 series devices)
1023(UltraScale devices)

Full Threshold Negate Value
3 to 1021 (7 series devices)
1 to 1022 (UltraScale devices)

full_threshold_negate_value 1021 (7 series devices)
1022 (UltraScale devices)

Programmable Empty Type
No Programmable Empty Threshold
Single Programmable Empty
Threshold Constant
Multiple programmable Empty
Threshold Constants
Single Programmable Empty
Threshold Input Port
Multiple Programmable Empty
Threshold Input Ports

programmable_empty_type
No_programmable_empty_
threshold
Single_Programmable_empty_
Threshold_Constant
Multiple_programmable_empty_
Threshold_Constants
Single_Programmable_empty_
Threshold_Input_Port
Multiple_Programmable_empty_
Threshold_Input_Ports

No_Programmable_Empty_
Threshold

Empty Threshold Assert Value
2 to 1020 (7 series devices)
2 to 1022 (UltraScale devices)

empty_threshold_assert_value 2

Empty Threshold Negate Value
3 to 1021 (7 series devices)
3 to 1023 (UltraScale devices)

empty_threshold_negate_value 3

More Accurate Data Counts
true, false

use_extra_logic
true, false

false

Data Count
true, false

data_count
true, false

false

Data Count Width
1 - log2(Write Depth)+1

Data_count_width
1 - log2(Write Depth)+1

10

Write Data Count
true, false

wr_data_count
true, false

false

Write Data Count Width
1 - log2(Write Depth)+1

wr_data_count_width
1 - log2(Write Depth)+1

10

Table 4-2: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter User Parameter Default Value

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=166

FIFO Generator v13.1 www.xilinx.com 167
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Read Data Count
true, false

rd_data_count
true, false

false

Read Data Count Width
1 - log2(Read Depth)+1

rd_data_count_width
1 - log2(Read Depth)+1

10

Disable timing violations on cross clock
domain register

true, false

Disable_timing_violations
true, false

false

PROTOCOL
AXI4
AXI3
AXI4 Lite

axi_type
AXI4
AXI3
AXI4_Lite

AXI4

Read Write Mode
Read Write
Read Only
Write Only

read_write_mode
read_write
read_only
write_only

Read Write

Clock Type AXI
Common Clock
Independent Clock

clock_type_axi
common_clock
independent_clock

Common Clock

Synchronization Stages across Cross
Clock Domain Logic

2 to 8

synchronization_stages_(2)

2 to 8
2

ID Width
0 to 32

Id_width
0 to 32

0

Address Width
1 to 64

address_width
1 to 64

32

Data Width
32 to 1024 (power of 2)

data_width
32 to 1024

64

AWUSER Width
1 to 256

awuser_width
1 to 256

1

WUSER Width
1 to 256

wuser_width
1 to 256

1

BUSER Width
1 to 256

buser_width
1 to 256

1

ARUSER Width
1 to 256

aruser_width
1 to 256

1

RUSER Width
1 to 256

ruser_width
1 to 256

1

Configuration Options
FIFO

Register Slice
Pass Through Wire

_type(2)

FIFO
Register Slice
Pass Through Wire

FIFO

Table 4-2: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter User Parameter Default Value

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=167

FIFO Generator v13.1 www.xilinx.com 168
PG057 April 5, 2017

Chapter 4: Design Flow Steps

FIFO Implementation Type
Common Clock Block RAM
Common Clock Distributed RAM

Fifo_implementation_(2)

Common Clock Block RAM
Common Clock Distributed RAM

Common Clock Distributed
RAM

FIFO Application type
Data FIFO
Packet FIFO
Low Latency Data FIFO

Fifo_application_type_(2)

Data FIFO
Packet FIFO
Low Latency Data FIFO

Data FIFO

FIFO Depth
16 to 4194304
(multiples of 2 from 16 to 2^22)

input_depth_(2) Write Address Channel: 16
Write Data Channel: 512
Write Response Channel: 16
Read Address Channel: 16
Read Data Channel: 512
If AXI Type = AXI Stream, AXI
Stream: 512

Enable ECC
true, false

enable_ecc_(2)

true, false
false

Single Bit Error Injection
true, false

inject_sbit_error_(2)

true, false
false

Double Bit Error Injection
true, false

inject_sbit_error_(2)

true, false
false

Provide FIFO Occupancy Data Counts
true, false

enable_data_Counts_(2)

true, false
false

Programmable Full Type
No Programmable Full Threshold
Single Programmable Full Threshold
Constant
Multiple programmable Full
Threshold Constants
Single Programmable Full Threshold
Input Port
Multiple Programmable Full
Threshold Input Ports

programmable_full_type_(2)

No Programmable Full Threshold
Single Programmable Full
Threshold Constant
Multiple programmable Full
Threshold Constants
Single Programmable Full
Threshold Input Port
Multiple Programmable Full
Threshold Input Ports

No Programmable Full
Threshold

Full Threshold Assert Value
4 to 1022 (7 series devices)
5 to 1023 (UltraScale devices)

full_threshold_assert_value_(2) 1022 (7 series devices)
1023 (UltraScale devices)

Table 4-2: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter User Parameter Default Value

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=168

FIFO Generator v13.1 www.xilinx.com 169
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Programmable Empty Type
No Programmable Empty Threshold
Single Programmable Empty
Threshold Constant
Multiple programmable Empty
Threshold Constants
Single Programmable Empty
Threshold Input Port
Multiple Programmable Empty
Threshold Input Ports

programmable_empty_type_(2)

No Programmable Empty Threshold
Single Programmable Empty
Threshold Constant
Multiple programmable Empty
Threshold Constants
Single Programmable Empty
Threshold Input Port
Multiple Programmable Empty
Threshold Input Ports

No Programmable Empty
Threshold

Empty Threshold Assert Value
2 to 1020 (7 series devices)
2 to 1022 (UltraScale devices)

empty_threshold_assert_value_(2) 2

Underflow Flag
true, false

underflow_flag_axi
true, false

false

Underflow Flag
Active High
Active Low

underflow_sense_axi
Active High
Active Low

Active High

HAS ACLKEN
true, false

has_acklen
true, false

false

Clock Enable Type
Slave Interface Clock Enable
Master Interface Clock Enable

clock_enable_type
slave_interface_clock_enable
master_interface_clock_enable

Slave Interface Clock Enable

TDATA NUM BYTES
0 to 512

Note: Range includes the values raised to
the power of 2.

tdata_num_bytes
0 to 512

Note: Range includes the values raised to
the power of 2.

1

TID WIDTH
0 to 32

tid_width
0 to 32

0

TDEST WIDTH
0 to 32

tdest_width
0 to 32

0

TUSER WIDTH
0 to 4096

tuser_width
0 to 4096

4

HAS TSTRB
true, false

has_tstrb
true, false

false

HAS TKEEP
 true, false

has_tkeep
true, false

false

TREADY
true, false

enable_tready
true, false

true

TLAST
true, false

enable_tlast
true, false

false

Table 4-2: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter User Parameter Default Value

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=169

FIFO Generator v13.1 www.xilinx.com 170
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Note: Independent clock distributed RAM based Constraints are updated to reduce the time taken
during the implementation stage. This may trigger a false positive CDC-1 warning and can be
ignored.

Note: When you use FIFO Generator IP in Memory Mapped Interface, the Vivado tool triggers
CDC-11 as the reset synchronization inside the IP is repeated multiple times. You can safely ignore
this CDC-11 as the FIFO Generator itself ensures that both the domains are out of reset before it
de-asserts wr_rst_busy signal.

Output Generation
For details about files created when generating the core, see the Vivado Design Suite User
Guide: Designing with IP (UG896) [Ref 7].

Customizing and Generating the AXI Core
You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.

2. Double-click the selected IP or select the Customize IP command from the toolbar or
right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 7] and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 8].

Note: Figures in this chapter are illustrations of the Vivado Integrated Design Environment (IDE).
This layout might vary from the current version.

For AXI memory mapped, the FIFO Generator core includes the following configuration
tabs:

Register Slice
Fully Registered
Light Weight

register_slice_mode_(2)

fully_registered
light_weight

Fully Registered

Disable timing violations on cross clock
domain register

true, false

Disable_timing_violations_axi
true, false

false

Notes:
1. Not available for UltraScale devices.
2. This user parameter is suffixed with axis, wach, wdch, wrch, rach and rdch. For example, enable_ecc_axis, enable_ecc_wach,

enable_ecc_wdch, enable_ecc_wrch, enable_ecc_rach and enable_ecc_rdch.
3. This user parameter is prefixed with axis, wach, wdch, wrch, rach and rdch. For example, axis_type, wach_type, wdch_type,

wrch_type, rach_type and rdch_type.

Table 4-2: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter User Parameter Default Value

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=170

FIFO Generator v13.1 www.xilinx.com 171
PG057 April 5, 2017

Chapter 4: Design Flow Steps

• Interface Selection

• Width Calculation

• FIFO Configuration

• Common Page for FIFO Configuration

For AXI4/AXI3 and AXI4-Lite interfaces, FIFO Generator core provides a separate page to
configure each FIFO channel. For more details, see Easy Integration of Independent
FIFOs for Read and Write Channels in Chapter 1.

• Summary

The configuration settings specified on the AXI4 Ports tab of the IDE is applied to all
selected Channels of the AXI4/AXI3 or AXI4-Lite interfaces

More details on these customization IDE tabs are provided in the following sections.

Basic Tab

Figure 4-6 shows the Basic tab that includes AXI interface selection options.

X-Ref Target - Figure 4-6

Figure 4-6: Basic Tab

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=171

FIFO Generator v13.1 www.xilinx.com 172
PG057 April 5, 2017

Chapter 4: Design Flow Steps

• AXI Interface Options: Four AXI interface styles are available: AXI4-Stream, AXI4, AXI3
and AXI4-Lite.

• Clocking Options: FIFOs may be configured with either independent or common clock
domains for Write and Read operations.

The Independent Clock configuration enables the user to implement unique clock
domains on the Write and Read ports. The FIFO Generator core handles the
synchronization between clock domains, placing no requirements on phase and
frequency. When data buffering in a single clock domain is required, the FIFO Generator
core can be used to generate a core optimized for a single clock by selecting the
Common Clocks option.

For more details on Common Clock FIFO, see Common Clock FIFO: Block RAM and
Distributed RAM in Chapter 3.

For more details on Independent Clock FIFO, see Independent Clocks: Block RAM and
Distributed RAM in Chapter 3.

Performing Writes with Slave Clock Enable

Note: This option is available only for AXI Stream Interface.

The Slave Interface Clock Enable allows the AXI Master to operate at fractional rates of AXI
Slave Interface (or Write side) of FIFO. The above timing diagram shows the AXI Master
operating at half the frequency of the FIFO AXI Slave interface. The Clock Enable in this case
is Single Clock Wide, Synchronous and occurs once in every two clock cycles of the AXI
Slave clock.

Performing Reads with Master Clock Enable

Note: This option is available only for AXI Stream Interface.

The Master Interface Clock Enable allows AXI Slave to operate at fractional rates of AXI
Master Interface (or Read side) of the FIFO. The above timing diagram shows the AXI Slave
operating at half the frequency of the FIFO AXI Master Interface. The Clock Enable in this
case is Single Clock Wide, Synchronous and occurs once in every two clock cycles of the
FIFO AXI Slave clock.

Ports Tabs

The AXI FIFO Width is determined by aggregating all of the channel information signals in
a channel. The channel information signals for AXI4-Stream, AXI4, AXI3 and AXI4-Lite
interfaces are listed in Table 4-3 and Table 4-4. IDE tabs are available for configuring:

• AXI4-Stream Ports Tab

• AXI4/AXI3 Ports Tab

• AXI4-Lite Ports Tab

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=172

FIFO Generator v13.1 www.xilinx.com 173
PG057 April 5, 2017

Chapter 4: Design Flow Steps

AXI4-Stream Ports Tab

The AXI4-Stream FIFO allows you to configure the widths for TDATA, TUSER, TID and TDEST
signals. For TKEEP and TSTRB signals the width is determined by the configured TDATA
width and is internally calculated by using the equation (TDATA Width)/8.

For all the selected signals, the AXI4-Stream FIFO width is determined by summing up the
widths of all the selected signals.

X-Ref Target - Figure 4-7

Figure 4-7: AXI4-Stream Ports Tab

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=173

FIFO Generator v13.1 www.xilinx.com 174
PG057 April 5, 2017

Chapter 4: Design Flow Steps

AXI4/AXI3 Ports Tab

The AXI4/AXI3 FIFO widths can be configured for ID, ADDR, DATA and USER signals. ID
Width is applied to all channels in the AXI3 interface. When both write and read channels
are selected, the same ADDR and DATA widths are applied to both the write channels and
read channels. The user and ID signals are the only optional signals for the AXI4/AXI3 FIFO
and can be independently configured for each channel.

For all the selected signals, the AXI4/AXI3 FIFO width for the respective channel is
determined by summing up the widths of signals in the particular channel, as shown in
Table 4-3.

X-Ref Target - Figure 4-8

Figure 4-8: AXI4/AXI3 Ports Tab

Table 4-3: AXI4/AXI3 Signals used in AXI FIFO Width Calculation

Write Address
Channel

Read Address
Channel

Write Data
Channel

Read Data
Channel

Write Resp
Channel

AWID[m:0] ARID[m:0] WID[m:0] RID[m:0] BID[m:0]

AWADDR[m:0] ARADDR[m:0] WDATA[m-1:0] RDATA[m-1:0] BRESP[1:0]

AWLEN[7:0] ARLEN[7:0] WLAST RLAST BUSER[m:0]

AWSIZE[2:0] ARSIZE[2:0] WSTRB[m/8-1:0] RRESP[1:0]

AWBURST[1:0] ARBURST[1:0] WUSER[m:0] RUSER[m:0]

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=174

FIFO Generator v13.1 www.xilinx.com 175
PG057 April 5, 2017

Chapter 4: Design Flow Steps

AXI4-Lite Ports Tab

The AXI4-Lite FIFO allows you to configure the widths for ADDR and DATA signals. When
both write and read channels are selected, the same ADDR and DATA widths are applied to
both the write channels and read channels.

AXI4-Lite FIFO width for the respective channel is determined by summing up the widths of
all the signals in the particular channel, as shown in Table 4-4.

AWLOCK[2:0] ARLOCK[2:0]

AWCACHE[4:0] ARCACHE[4:0]

AWPROT[3:0] ARPROT[3:0]

AWREGION[3:0] ARREGION[3:0]

AWQOS[3:0] ARQOS[3:0]

AWUSER[m:0] ARUSER[m:0]

X-Ref Target - Figure 4-9

Figure 4-9: AXI4-Lite Ports Tab

Table 4-3: AXI4/AXI3 Signals used in AXI FIFO Width Calculation (Cont’d)

Write Address
Channel

Read Address
Channel

Write Data
Channel

Read Data
Channel

Write Resp
Channel

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=175

FIFO Generator v13.1 www.xilinx.com 176
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Default Settings

Table 4-5 and Table 4-6 show the default settings for each Memory Mapped and AXI4
Stream interface type.

Table 4-4: AXI4-Lite Width Calculation

Write Address
Channel

Read Address
Channel

Write Data
Channel

Read Data
Channel

Write Resp
Channel

AWADDR[m:0] ARADDR[m:0] WDATA[m-1:0] RDATA[m:0] BRESP[1:0]

AWPROT[3:0] ARPROT[3:0] WSTRB[m/8-1:0] RRESP[1:0]

Table 4-5: AXI FIFO Default Settings for 7 Series Devices

Interface Type Channels Memory Type FIFO Depth

AXI4 Stream NA Block Memory 1024

AXI4/AXI3 Write Address, Read Address, Write
Response

Distributed Memory 16

AXI4/AXI3 Write Data, Read Data Block Memory 1024

AXI4-Lite Write Address, Read Address, Write
Response

Distributed Memory 16

AXI4-Lite Write Data, Read Data Distributed Memory 16

Table 4-6: AXI FIFO Default Settings for UltraScale Architecture

Interface Type Channels Memory Type FIFO Depth

AXI4 Stream NA Built-In 1024

AXI4/AXI3 Write Address, Read Address, Write
Response

Distributed Memory 16

AXI4/AXI3 Write Data, Read Data Built-In 1024

AXI4-Lite Write Address, Read Address, Write
Response

Distributed Memory 16

AXI4-Lite Write Data, Read Data Distributed Memory 16

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=176

FIFO Generator v13.1 www.xilinx.com 177
PG057 April 5, 2017

Chapter 4: Design Flow Steps

AW/W/B/AR/R/AXI4-Stream Configuration Tab

The functionality of AXI FIFO is the same as the Native FIFO functionality in the first-word
fall-through mode. The feature set supported includes ECC (block RAM), Programmable
Ready Generation (full, almost full, programmable full), and Programmable Valid Generation
(empty, almost empty, programmable empty).

For more details on first-word fall-through mode, see First-Word Fall-Through FIFO Read
Operation in Chapter 3.

• Configuration Options: FIFO, Register Slice or Pass Through Wire.

• FIFO Options:

° FIFO Implementation Type: The FIFO Generator core implements FIFOs built from
block RAM or distributed RAM. The core combines memory primitives in an optimal
configuration based on the calculated width and selected depth of the FIFO.

° FIFO Application Type: Data FIFO, PAcket FIFO or Low Latency Data FIFO.

° FIFO Width: AXI FIFOs support symmetric Write and Read widths. The width of the
AXI FIFO is determined based on the selected Interface Type (AXI4-Stream, AXI4,
AXI3 or AXI4-Lite), and the selected signals and configured signal widths within the

X-Ref Target - Figure 4-10

Figure 4-10: AXI FIFO Configuration Tab

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=177

FIFO Generator v13.1 www.xilinx.com 178
PG057 April 5, 2017

Chapter 4: Design Flow Steps

given interface. The calculation of the FIFO Write Width is defined in Ports Tabs,
page 172.

° FIFO Depth: AXI FIFOs allow ranging from 16 to 131072. Only depths with powers of
2 are allowed.

• ECC Options: The block RAM and FIFO macros are equipped with built-in or general
interconnect, error injection and correction checking. This feature is available for both
common and independent clock block RAM FIFOs.

For more details on Error Injection and Correction, see Built-in Error Correction Checking
in Chapter 3.

• Data Threshold Parameters:

° Programmable Full Type: Select a programmable full threshold type from the
drop-down menu. The valid range for each threshold is displayed and varies
depending on the options selected elsewhere in the IDE.

- Full Threshold Assert Value: Available when Programmable Full with Single
Threshold Constants is selected. Enter a user-defined value. The valid range for
this threshold is provided in the IDE.

° Programmable Empty Type: Select a programmable empty threshold type from the
drop-down menu. The valid range for each threshold is displayed, and will vary
depending on options selected elsewhere in the IDE.

- Empty Threshold Assert Value: Available when Programmable Empty with Single
Threshold Constants is selected. Enter a user-defined value. The valid range for
this threshold is provided in the IDE.

° Provide FIFO Occupancy Data Counts: The data count option tells you the number
of words in the FIFO, and there is also are optional Interrupt flags (Overflow and
Underflow) for the block RAM and distributed RAM implementations.

Occupancy Data Counts

data_count tracks the number of words in the FIFO. The width of the data count bus will be
always be set to log2(FIFO depth)+1. In common clock mode, the AXI FIFO provides a single
“Data Count” output. In independent clock mode, it provides Read Data Count and Write
Data Count outputs.

For more details on Occupancy Data Counts, see First-Word Fall-Through Data Count in
Chapter 3 and More Accurate Data Count (Use Extra Logic) in Chapter 3.

Examples for Data Threshold Parameters

• Programmable Full Threshold can be used to restrict FIFO Occupancy to less than 16

• Programmable Empty Threshold can be used to drain a Partial AXI transfer based on
empty threshold

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=178

FIFO Generator v13.1 www.xilinx.com 179
PG057 April 5, 2017

Chapter 4: Design Flow Steps

• Data Counts can be used to determine number of Transactions in the FIFO

Status Flags Tab

• Interrupt Flag Options:

° Underflow Flag: Used to indicate that a Read operation is unsuccessful. This occurs
when a Read is initiated and the FIFO is empty. This flag is synchronous with the
Read clock (rd_clk). Underflowing the FIFO does not change the state of the FIFO
(it is non-destructive).

° Overflow Flag: Used to indicate that a Write operation is unsuccessful. This flag is
asserted when a Write is initiated to the FIFO while full is asserted. The overflow
flag is synchronous to the Write clock (wr_clk). Overflowing the FIFO does not
change the state of the FIFO (it is non-destructive).

For more details on Overflow and Underflow Flags, see Underflow in Chapter 3 and
Overflow in Chapter 3.

Summary Tab

The Summary tab displays a summary of the AXI FIFO options that have been selected by
the user, including the Interface Type, FIFO type, FIFO dimensions, and the selection status

X-Ref Target - Figure 4-11

Figure 4-11: Status Flags Tab

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=179

FIFO Generator v13.1 www.xilinx.com 180
PG057 April 5, 2017

Chapter 4: Design Flow Steps

of any additional features selected. In the Additional Features section, most features display
either Not Selected (if unused), or Selected (if used).

Note: FIFO depth provides the actual FIFO depths for the selected configuration. These depths may
differ slightly from the depth selected on screen 4 of the AXI FIFO IDE.

Summary Tab (AXI4-Stream)

X-Ref Target - Figure 4-12

Figure 4-12: AXI4-Stream Summary Tab

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=180

FIFO Generator v13.1 www.xilinx.com 181
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Summary Tab (AXI Memory Mapped)

User Parameters
For details about the relationship between the GUI fields in the Vivado IDE and the User
Parameters, see Table 4-2.

Output Generation
For details about files created when generating the core, see the Vivado Design Suite User
Guide: Designing with IP (UG896) [Ref 7].

X-Ref Target - Figure 4-13

Figure 4-13: AXI Memory Mapped Summary Tab

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=181

FIFO Generator v13.1 www.xilinx.com 182
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Constraining the Core
This chapter contains details about any constraints for the FIFO Generator core when
implemented with the Vivado Design Suite.

Required Constraints
The FIFO Generator core provides a sample clock, max delay and false path constraints for
synchronous and asynchronous FIFOs. These sample constraints can be added to the user's
design constraint file as needed.

Device, Package, and Speed Grade Selections
See IP Facts for details about supported devices.

Clock Frequencies
There are no clock frequency constraints.

Clock Management
There are no additional clock management constraints for this core.

Clock Placement
There are no additional clock placement constraints for this core.

Simulation
This section contains information about simulating IP in the Vivado® Design Suite.For
details, see Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 9].

The FIFO Generator core supports Verilog simulation model.

IMPORTANT: For cores targeting 7 series or Zynq-7000 devices, UNIFAST libraries are not supported.
Xilinx IP is tested and qualified with UNISIM libraries only.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=182

FIFO Generator v13.1 www.xilinx.com 183
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Behavioral Model

IMPORTANT: The behavioral model provided does not model synchronization delay, and is designed to
reproduce the behavior and functionality of the FIFO Generator core. The model maintains the
assertion/deassertion of the output signals to match the FIFO Generator core for the write/read
operation (outside reset window). There may be one clock cycle (clk/wr_clk/rd_clk) difference
between behavioral model and the core, if the asynchronous reset assertion/deassertion happens
exactly at the rising edge of the clock (clk/wr_clk/rd_clk). It is highly recommended to maintain
proper setup/hold window of all input signals in order to match with structural simulation as all input
signals (except clk, wr_clk, rd_clk) are delayed by 100ps inside the model.

The behavioral model is functionally correct, and will represent the behavior of the
configured FIFO. The write-to-read latency and the behavior of the status flags will
accurately match the actual implementation of the FIFO design.

The following considerations apply to the behavioral model:

• Write operations always occur relative to the write clock (wr_clk) or common clock
(clk) domain, as do the corresponding handshaking signals.

• Read operations always occur relative to the read clock (rd_clk) or common clock
(clk) domain, as do the corresponding handshaking signals.

• The delay through the FIFO (write-to-read latency) will match the VHDL model, Verilog
model, and core.

• The deassertion of the status flags (full, almost full, programmable full, empty, almost
empty, programmable empty) will match the VHDL model, Verilog model, and core.

Note: If independent clocks or common clocks with built-in FIFO is selected, encrypted RTL file is
used for simulation. For detailed information on file delivery structure, see Appendix E.

Structural (Post Synthesis/Implementation) Models

The structural models are designed to provide a more accurate model of FIFO behavior at
the cost of simulation time. These models will provide a closer approximation of cycle
accuracy across clock domains for asynchronous FIFOs. No asynchronous FIFO model can
be 100% cycle accurate as physical relationships between the clock domains, including
temperature, process, and frequency relationships, affect the domain crossing
indeterminately.

Note: Simulation performance may be impacted when simulating the structural models compared
to the behavioral models

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=183

FIFO Generator v13.1 www.xilinx.com 184
PG057 April 5, 2017

Chapter 4: Design Flow Steps

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 7].

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=184

FIFO Generator v13.1 www.xilinx.com 185
PG057 April 5, 2017

Chapter 5

Detailed Example Design
Figure 5-1 shows the configuration of the example design.

The example design contains the following:

• An instance of the FIFO Generator core. During simulation, the FIFO Generator core is
instantiated as a black box and replaced during implementation with the structural
netlist model generated by the Vivado IP Catalog IP customizer for timing simulation or
a behavioral model for the functional simulation.

• Global clock buffers for top-level port clock signals.

Implementing the Example Design
After generating a core, right click on the generated core and click Open IP Example
Design. In the opened example project, click Run Synthesis and Run Implementation
options to implement the example design.

X-Ref Target - Figure 5-1

Figure 5-1: Example Design Configuration

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=185

FIFO Generator v13.1 www.xilinx.com 186
PG057 April 5, 2017

Chapter 5: Detailed Example Design

Simulating the Example Design
The FIFO Generator core provides a quick way to simulate and observe the behavior of the
core by using the provided example design. There are five different simulation types:

• Behavioral

• Post-Synthesis Functional

• Post-Synthesis Timing

• Post-Implementation Functional

• Post-Implementation Timing

The simulation models (behavioral models) provided are either in VHDL or Verilog,
depending on the CORE project settings in the Vivado tools.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=186

FIFO Generator v13.1 www.xilinx.com 187
PG057 April 5, 2017

Chapter 6

Test Bench
This chapter contains information about the test bench provided in the Vivado® Design
Suite.

Figure 6-1 shows a block diagram of the demonstration test bench.

Test Bench Functionality
The demonstration test bench is a straightforward VHDL file that can be used to exercise
the example design and the core itself. The test bench consists of the following:

• Clock Generators

• Data generator module

• Data verifier module

• Module to control data generator and verifier

X-Ref Target - Figure 6-1

Figure 6-1: Demonstration Test Bench

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=187

FIFO Generator v13.1 www.xilinx.com 188
PG057 April 5, 2017

Chapter 6: Test Bench

Core with Native Interface
The demonstration test bench in a core with a Native interface performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• Pseudo random data is generated and given as input to FIFO data input port.

• Data on dout port of the FIFO generator core is cross checked using another pseudo
random generator with same seed as data input generator.

• Core is exercised for two full and empty conditions.

• Full/almost_full and empty/almost_empty flags are checked.

Core with AXI Interface
The demonstration test bench in a core with an AXI interface performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• Pseudo random data is generated and given as input to FIFO AXI Interface input
signals. Each channel is independently checked for Valid-Ready handshake protocol.

• AXI output signals on read side are combined and cross checked with the pseudo
random generator data.

• For AXI memory mapped interface five instances of data generator, data verifier and
protocol controller are used.

• For AXI4/AXI3 Full Packet FIFO write address and read address channels valid/ready
signals are not checked.

Customizing the Demonstration Test Bench
This section describes the variety of demonstration test bench customization options that
can be used for individual system requirements.

Changing the Data/Stimulus
The random data/stimulus can be altered by changing the seed passed to FIFO generator
test bench wrapper module in test bench top file (fg_tb_top.vhd).

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=188

FIFO Generator v13.1 www.xilinx.com 189
PG057 April 5, 2017

Chapter 6: Test Bench

Changing the Test Bench Run Time
The test bench iteration count (number of full/empty conditions before finish) can be
altered by changing the value passed to TB_STOP_CNT parameter. A '0' to this parameter
runs the test bench until the test bench timeout value set in test bench top file
(fg_tb_top.vhd).

It is also possible to decide whether to stop the simulation on error or on reaching the
count set by TB_STOP_CNT by using FREEZEON_ERROR parameter value (1(TRUE), 0(FALSE))
of test bench wrapper file (fg_tb_synth.vhd).

Messages and Warnings
When the functional or timing simulation has completed successfully, the test bench
displays the following message, and it is safe to ignore this message.

Failure: Test Completed Successfully

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=189

FIFO Generator v13.1 www.xilinx.com 190
PG057 April 5, 2017

Appendix A

Verification, Compliance, and
Interoperability

Xilinx has verified the FIFO Generator core in a proprietary test environment, using an
internally developed bus functional model. Tens of thousands of test vectors were
generated and verified, including both valid and invalid write and read data accesses.

Simulation
The FIFO Generator core has been tested with Xilinx Vivado Design Suite, Xilinx ISIM/XSIM,
Cadence Incisive Enterprise Simulator (IES), Synopsys VCS and VCS MX and Mentor Graphics
Questa SIM simulator.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=190

FIFO Generator v13.1 www.xilinx.com 191
PG057 April 5, 2017

Appendix B

Debugging
This appendix provides information for using the resources available on the Xilinx Support
website, debug tools, and other step-by-step processes for debugging designs that use the
FIFO Generator core.

Finding Help on Xilinx.com
To help in the design and debug process when using the FIFO Generator, the Xilinx Support
web page contains key resources such as product documentation, release notes, answer
records, information about known issues, and links for obtaining further product support.

Documentation
This product guide is the main document associated with the FIFO Generator core. This
guide, along with documentation related to all products that aid in the design process, can
be found on the Xilinx Support web page or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more
information about this tool and the features available, open the online help after
installation.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core are listed below, and can be located by using the Search
Support box on the main Xilinx support web page. To maximize your search results, use
proper keywords such as:

• Product name

• Tool message(s)

• Summary of the issue encountered

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/download.html
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=191

FIFO Generator v13.1 www.xilinx.com 192
PG057 April 5, 2017

Appendix B: Debugging

A filter search is available after results are returned to further target the results.

Master Answer Record for the FIFO Generator

AR: 54663

Technical Support
Xilinx provides technical support in the Xilinx Support web page for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.

• Customize the solution beyond that allowed in the product documentation.

• Change any section of the design labeled DO NOT MODIFY.

Xilinx provides premier technical support for customers encountering issues that require
additional assistance. To contact Xilinx Technical Support, navigate to the Xilinx Support
web page.

Debug Tools
There are many tools available to address FIFO Generator core design issues. It is important
to know which tools are useful for debugging various situations.

Vivado Design Suite Debug Feature
The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly
into your design. The debug feature also allows you to set trigger conditions to capture
application and integrated block port signals in hardware. Captured signals can then be
analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a
design running in Xilinx devices.

The Vivado logic analyzer is used to interact with the logic debug LogiCORE IP cores,
including:

• ILA 2.0 (and later versions)

• VIO 2.0 (and later versions)

See Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 10].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/answers/54663.htm
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=192

FIFO Generator v13.1 www.xilinx.com 193
PG057 April 5, 2017

Appendix B: Debugging

Simulation Debug
For details about simulating a design in the Vivado Design Suite, see the Vivado Logic
Simulation User Guide (UG900) [Ref 9].

Hardware Debug
Hardware issues can range from system start to problems seen after hours of testing. This
section provides debug steps for common issues.

General Checks
Ensure that all the timing constraints for the core were properly incorporated from the FIFO
Generator and that all constraints were met during implementation.

• Does it work in post-place and route timing simulation? If problems are seen in
hardware but not in timing simulation, this could indicate a PCB issue. Ensure that all
clock sources are active and clean.

• If using MMCMs in the design, ensure that all MMCMs have obtained lock by
monitoring the locked port.

• Ensure wr_en and rd_en are not toggling during reset

• If Built-in FIFO is used, ensure reset guideline is followed. See Common/Independent
Clock: 7 Series Built-in FIFOs in Chapter 3.

• If independent clock FIFO is used, ensure wr_en is coming from the write clock domain
and rd_en is coming from the read clock domain.

• If Enable Reset Synchronization options are not selected, ensure wr_rst and rd_rst
are synchronized using wr_clk and rd_clk before passing to FIFO Generator core.

• If your outputs go to 0, check your licensing.

Interface Debug

Native Interface
If the data is not being written, check the following conditions:

• If full is High, the core cannot write the data

• Check if the core is in reset state.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=193

FIFO Generator v13.1 www.xilinx.com 194
PG057 April 5, 2017

Appendix B: Debugging

• Check if wr_en is synchronous to write domain clock.

If the data is not being read, check the following conditions:

• If empty is High, the core cannot read the data

• Check if the core is in reset state.

• Check if rd_en is synchronous to read domain clock.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=194

FIFO Generator v13.1 www.xilinx.com 195
PG057 April 5, 2017

Appendix C

Migrating and Upgrading
This appendix contains information about migrating a design from ISE® to the Vivado®
Design Suite, and for upgrading to a more recent version of the IP core. For customers
upgrading in the Vivado Design Suite, important details (where applicable) about any port
changes and other impact to user logic are included.

Migrating to the Vivado Design Suite
For information about migrating to the Vivado Design Suite, see the ISE to Vivado Design
Suite Migration Guide (UG911) [Ref 6].

Upgrading in the Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

IMPORTANT: When upgrading from a 7 series design to a design using UltraScale architecture, the
behavior of the core during reset and after reset will not match for about 20 slowest clocks. There are
UltraScale architecture specific user parameters (ex: Asymmetric Port Width, Low Latency, Output
Register, etc). When upgrading 7 series design with asymmetric port width to UltraScale, the upgrade
does not work and user intervention is required.

Parameter Changes
There were no parameter changes in this version of the core,

Port Changes
There were no port changes in this version of the core

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=195

FIFO Generator v13.1 www.xilinx.com 196
PG057 April 5, 2017

Appendix D

dout Reset Value Timing
Figure D-1 shows the dout reset value for common clock block RAM, distributed RAM and
Shift Register based FIFOs for synchronous reset (srst), and common clock block RAM
FIFO for asynchronous reset (rst).

Figure D-2 shows the dout reset value for common clock distributed RAM and Shift
Register based FIFOs for asynchronous reset (rst).

Figure D-3 shows the dout reset value for the 7 series device common clock built-in FIFOs
with embedded register for asynchronous reset (rst).

X-Ref Target - Figure D-1

Figure D-1: dout Reset Value for Synchronous Reset (srst) and for Asynchronous Reset (rst) for
Common Clock Block RAM Based FIFO

X-Ref Target - Figure D-2

Figure D-2: dout Reset Value for Asynchronous Reset (rst) for Common Clock Distributed/Shift
RAM Based FIFO

X-Ref Target - Figure D-3

Figure D-3: dout Reset Value for Common Clock Built-in FIFO

clk

rst/srst

dout Previous value DOUT reset value

clk

rst

dout Previous value DOUT reset value

clk

dout Previous value DOUT reset value

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=196

FIFO Generator v13.1 www.xilinx.com 197
PG057 April 5, 2017

Appendix D: dout Reset Value Timing

Figure D-4 shows the dout reset value for UltraScale device common clock built-in FIFOs
with embedded register for asynchronous reset (rst).

Figure D-5 shows the dout reset value for independent clock block RAM based FIFOs
(rd_rst).

Figure D-6 shows the dout reset value for independent clock distributed RAM based FIFOs
(rd_rst)

X-Ref Target - Figure D-4

Figure D-4: dout reset value for UltraScale device common clock built-in FIFO

X-Ref Target - Figure D-5

Figure D-5: dout Reset Value for Independent Clock Block RAM Based FIFO

X-Ref Target - Figure D-6

Figure D-6: dout Reset Value for Independent Clock Distributed
RAM Based FIFO

wr_clk

wr_rst

dout Previous value DOUT reset value

rd_rst

rd_clk

wr_clk

wr_rst

dout Previous value DOUT reset value

rd_rst

rd_clk

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=197

FIFO Generator v13.1 www.xilinx.com 198
PG057 April 5, 2017

Appendix E

FIFO Generator Files
FIFO Generator delivers many files while generating the core. Some are used for synthesis
and some are used for behavioral simulation.

Target Language = VHDL/Verilog

Project Area:

<project_name>/<project_name>.srcs/sources_1/ip/<component_name>/
fifo_generator_<core_version>/hdl

1. fifo_generator_<core_version>.vhd

° FIFO Generator’s top level RTL file used for synthesis

2. fifo_generator_<core_version>_vhsyn_rfs.vhd

° The encrypted RTL file used in fifo_generator_<core_version>.vhd

3. fifo_generator_<core_version>_rfs.v

° Top file is used for behavioral simulation only. This file provides the choice of using
behavioral model or encrypted RTL. The behavioral model is delivered at
“<project_name>/<project_name>.srcs/sources_1/ip/<component_name>/
fifo_generator_<core_version>/simulation” directory.

4. fifo_generator_<core_version>_rfs.vhd

° This file is used for behavioral simulation only. This file includes the encrypted RTL
for Built-In FIFO configuration

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=198

FIFO Generator v13.1 www.xilinx.com 199
PG057 April 5, 2017

Appendix F

Supplemental Information
The following sections provide additional information about working with the FIFO
Generator core.

Auto-Upgrade Feature
The FIFO Generator core has an auto-upgrade feature for updating older versions of the
FIFO Generator core to the latest version. The auto-upgrade feature can be seen by right
clicking any pre-existing FIFO Generator core in your project in the Project IP tab of the
Vivado IP Catalog.

Native FIFO SIM Parameters
Table F-1 defines the Native FIFO SIM parameters used to specify the configuration of the
core. These parameters are only used while instantiating the core in HDL manually or while
calling the core dynamically. This parameter list does not apply to a core generated using
the IP Catalog IDE.

Table F-1: Native FIFO SIM Parameters

SIM Parameter Type Description

1 C_COMMON_CLOCK Integer
• 0: Independent Clock
• 1: Common Clock

2 C_DATA_COUNT_WIDTH Integer Width of data_count bus (1 – 18)

3 C_DIN_WIDTH Integer
Width of din bus (1 – 1024)
Width must be > 1 for ECC with Double bit
error injection

4 C_DOUT_RST_VAL String
Reset value of dout
Hexadecimal value, 0 – F’s equal to
C_DOUT_WIDTH

5 C_DOUT_WIDTH Integer
Width of dout bus (1 – 1024)
Width must be > 1 for ECC with Double bit
error injection

6 C_ENABLE_RST_SYNC Integer

• 0: Do not synchronize the reset (wr_rst/
rd_rst is directly used, available only for
independent clock)

• 1: Synchronize the reset

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=199

FIFO Generator v13.1 www.xilinx.com 200
PG057 April 5, 2017

Appendix F: Supplemental Information

7 C_ERROR_INJECTION_TYPE Integer

• 0: No error injection
• 1: Single bit error injection
• 2: Double bit error injection
• 3: Single and double bit error injection

8 C_FAMILY String Device family (for example, Virtex-7 or
Kintex-7)

9 C_FULL_FLAGS_RST_VAL Integer Full flags rst val (0 or 1)

10 C_HAS_ALMOST_EMPTY Integer
• 0: Core does not have almost_empty flag
• 1: Core has almost_empty flag

11 C_HAS_ALMOST_FULL Integer
• 0: Core does not have ALMOST_FULL flag
• 1: Core has ALMOST_ FULL flag

12 C_HAS_DATA_COUNT Integer
• 0: Core does not have data_count bus
• 1: Core has data_count bus

13 C_HAS_OVERFLOW Integer
• 0: Core does not have OVERFLOW flag
• 1: Core has OVERFLOW flag

14 C_HAS_RD_DATA_COUNT Integer
• 0: Core does not have rd_data_count bus
• 1: Core has rd_data_count bus

15 C_HAS_RST Integer
• 0: Core does not have asynchronous reset

(rst)
• 1: Core has asynchronous reset (rst)

16 C_HAS_SRST Integer
• 0: Core does not have synchronous reset

(srst)
• 1: Core has synchronous reset (srst)

17 C_HAS_UNDERFLOW Integer
• 0: Core does not have underflow flag
• 1: Core has underflow flag

18 C_HAS_VALID Integer
• 0: Core does not have valid flag
• 1: Core has valid flag

19 C_HAS_WR_ACK Integer
• 0: Core does not have wr_ack flag
• 1: Core has wr_ack flag

20 C_HAS_WR_DATA_COUNT Integer
• 0: Core does not have wr_data_count bus
• 1: Core has wr_data_count bus

21 C_IMPLEMENTATION_TYPE Integer

• 0: Common-Clock Block RAM/Distributed
RAM FIFO

• 1: Common-Clock Shift RAM FIFO
• 2: Independent Clocks Block RAM/

Distributed RAM FIFO
• 6: 7 Series and Ultrascale/Ultrascale+

Built-in FIFO
• 8: UltraScale Low Latency Built-in FIFO

without Output Register
• 9: UltraScale Low Latency Built-in FIFO with

Output Register

Table F-1: Native FIFO SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=200

FIFO Generator v13.1 www.xilinx.com 201
PG057 April 5, 2017

Appendix F: Supplemental Information

22 C_MEMORY_TYPE Integer

• 1: Block RAM
• 2: Distributed RAM
• 3: Shift RAM
• 4: Built-in FIFO

23 C_MSGON_VAL Integer

• 0: Disables timing violation on cross clock
domain registers

• 1: Enables timing violation on cross clock
domain registers

24 C_OVERFLOW_LOW(1) Integer
• 0: OVERFLOW active-High
• 1: OVERFLOW active-Low

25 C_PRELOAD_LATENCY Integer

• 0: First-Word Fall-Through with or without
Embedded Register

• 1: Standard FIFO without Embedded
Register

• 2: Standard FIFO with Embedded Register

26 C_PRELOAD_REGS Integer

• 0: Standard FIFO without Embedded
Register

• 1: Standard FIFO with Embedded Register or
First-Word Fall-Through with or without
Embedded Register

27 C_PRIM_FIFO_TYPE String
Primitive used to build a FIFO
(Ex. 512x36)

28 C_PROG_EMPTY_THRESH_ASSERT_VAL Integer prog_empty assert threshold(2)

29 C_PROG_EMPTY_THRESH_NEGATE_VAL Integer prog_empty negate threshold(2)

30 C_PROG_EMPTY_TYPE Integer

• 0: No programmable empty
• 1: Single programmable empty thresh

constant
• 2: Multiple programmable empty thresh

constants
• 3: Single programmable empty thresh input
• 4: Multiple programmable empty thresh

inputs

31 C_PROG_FULL_THRESH_ASSERT_VAL Integer PROG_FULL assert threshold(2)

32 C_PROG_FULL_THRESH_NEGATE_VAL Integer PROG_FULL negate threshold(2)

33 C_PROG_FULL_TYPE Integer

• 0: No programmable full
• 1: Single programmable full thresh constant
• 2: Multiple programmable full thresh

constants
• 3: Single programmable full thresh input
• 4: Multiple programmable full thresh inputs

34 C_RD_DATA_COUNT_WIDTH Integer Width of rd_data_count bus (1 - 18)

35 C_RD_DEPTH Integer Depth of read interface (16 – 131072)

Table F-1: Native FIFO SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=201

FIFO Generator v13.1 www.xilinx.com 202
PG057 April 5, 2017

Appendix F: Supplemental Information

36 C_RD_FREQ Integer Read clock frequency (1 MHz - 1000 MHz)

37 C_RD_PNTR_WIDTH Integer log2(C_RD_DEPTH)

38 C_UNDERFLOW_LOW(1) Integer
• 0: underflow active-High
• 1: underflow active-Low

39 C_USE_DOUT_RST Integer
• 0: Does not reset dout on rst
• 1: Resets dout on rst

40 C_USE_ECC Integer
• 0: Does not use ECC feature
• 1: Uses Hard ECC
• 2: Uses Soft ECC

41 C_USE_EMBEDDED_REG Integer

• 0: Does not use BRAM/Built-in embedded
output register

• 1: Uses BRAM/Built-in embedded output
register

• 2: Uses Interconnect output register
• 3: Uses BRAM Embedded and Interconnect

output registers

42 C_USE_FWFT_DATA_COUNT Integer

• 0: Does not use extra logic for FWFT data
count

• 1: Uses extra logic for FWFT data count
• 2: Use general interconnect output register

in BRAM FIFO

43 C_VALID_LOW(1) Integer
• 0: valid active-High
• 1: valid active-Low

44 C_WR_ACK_LOW(1) Integer
• 0: wr_ack active-High
• 1: wr_ack active-Low

45 C_WR_DATA_COUNT_WIDTH Integer Width of wr_data_count bus (1 – 18)

46 C_WR_DEPTH Integer Depth of write interface (16 – 131072)

47 C_WR_FREQ Integer Write clock frequency (1 MHz - 1000 MHz)

48 C_WR_PNTR_WIDTH Integer log2(C_WR_DEPTH)

49 C_USE_PIPELINE_REG(3) Integer
• 0: Does not use ECC pipeline register
• 1: Uses ECC pipeline register

50 C_POWER_SAVING_MODE(3) Integer
• 0: Does not use dynamic power gating

feature
• 1: Uses dynamic power gating feature

51 C_EN_SAFETY_CKT Integer
• 0: Does not use the additional safety circuit
• 1: Use additional safety circuit in

asynchronous reset BRAM based FIFOs

Notes:
1. Not available for UltraScale™ architecture-based devices.
2. See the Vivado IDE for the allowable range of values.
3. Available only for UltraScale architecture-based devices with built-in FIFO configurations.

Table F-1: Native FIFO SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=202

FIFO Generator v13.1 www.xilinx.com 203
PG057 April 5, 2017

Appendix F: Supplemental Information

AXI FIFO SIM Parameters
Table F-2 defines the AXI SIM parameters used to specify the configuration of the core.
These parameters are only used while instantiating the core in HDL manually or while calling
the core dynamically. This parameter list does not apply to a core generated using the
Vivado IP Catalog.

Table F-2: AXI SIM Parameters

SIM Parameter Type Description

1 C_INTERFACE_TYPE Integer • 0: Native FIFO
• 1: AXI4-Stream
• 2: AXI Memory Mapped

2 C_AXI_TYPE Integer • 1: AXI4
• 2: AXI4-Lite
• 3: AXI3

3 C_HAS_AXI_WR_CHANNEL Integer • 0: Core does not have Write Channel(1)

• 1: Core has Write Channel(1)

4 C_HAS_AXI_RD_CHANNEL Integer • 0: Core does not have Read Channel(2)

• 1: Core has Read Channel(2)

5 C_HAS_SLAVE_CE(3) Integer • 0: Core does not have Slave Interface Clock
Enable

• 1: Core has Slave Interface Clock Enable

6 C_HAS_MASTER_CE(3) Integer • 0: Core does not have Master Interface
Clock Enable

• 1: Core has Master Interface Clock Enable

7 C_ADD_NGC_CONSTRAINT(3) Integer • 0: Core does not add NGC constraint
• 1: Core adds NGC constraint

8 C_USE_COMMON_UNDERFLOW(3) Integer • 0: Core does not have common underflow
flag

• 1: Core has common underflow flag

9 C_USE_COMMON_OVERFLOW(3) Integer • 0: Core does not have common OVERFLOW
flag

• 1: Core has common OVERFLOW flag

10 C_USE_DEFAULT_SETTINGS(3) Integer • 0: Core does not use default settings
• 1: Core uses default settings

11 C_AXI_ID_WIDTH Integer ID Width (Range is 1 to 32)

12 C_AXI_ADDR_WIDTH Integer Address Width (Range is 1 to 64)

13 C_AXI_DATA_WIDTH Integer Data Width (32, 64, 128, 256, 512 or 1024)

14 C_AXI_LEN_WIDTH Integer AWLEN/ARLEN Width:
• 8: Width is for AXI4
• 4: Width is for AXI3

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=203

FIFO Generator v13.1 www.xilinx.com 204
PG057 April 5, 2017

Appendix F: Supplemental Information

15 C_AXI_LOCK_WIDTH Integer AWLOCK/ARLOCK Width:
• 1: Width is for AXI4
• 2: Width is for AXI3

16 C_HAS_AXI_ID Integer • 0: Core does not have AWID/WID/BID/ARID/
RID ports

• 1: Core has AWID/WID/BID/ARID/RID ports

17 C_HAS_AXI_AWUSER Integer • 0: Core does not have AWUSER
• 1: Core has AWUSER

18 C_HAS_AXI_WUSER Integer • 0: Core does not have WUSER
• 1: Core has WUSER

19 C_HAS_AXI_BUSER Integer • 0: Core does not have BUSER
• 1: Core has BUSER

20 C_HAS_AXI_ARUSER Integer • 0: Core does not have ARUSER
• 1: Core has ARUSER

21 C_HAS_AXI_RUSER Integer • 0: Core does not have RUSER
• 1: Core has RUSER

22 C_AXI_AWUSER_WIDTH Integer AWUSER Width

23 C_AXI_WUSER_WIDTH Integer WUSER Width

24 C_AXI_BUSER_WIDTH Integer BUSER Width

25 C_AXI_ARUSER_WIDTH Integer ARUSER Width

26 C_AXI_RUSER_WIDTH Integer RUSER Width

27 C_HAS_AXIS_TDATA Integer • 0: AXI4 Stream does not have TDATA
• 1: AXI4 Stream has TDATA

28 C_HAS_AXIS_TID Integer • 0: AXI4 Stream does not have TID
• 1: AXI4 Stream has TID

29 C_HAS_AXIS_TDEST Integer • 0: AXI4 Stream does not have TDEST
• 1: AXI4 Stream has TDEST

30 C_HAS_AXIS_TUSER Integer • 0: AXI4 Stream does not have TUSER
• 1: AXI4 Stream has TUSER

31 C_HAS_AXIS_TREADY Integer • 0: AXI4 Stream does not have TREADY
• 1: AXI4 Stream has TREADY

32 C_HAS_AXIS_TLAST Integer • 0: AXI4 Stream does not have TLAST
• 1: AXI4 Stream has TLAST

33 C_HAS_AXIS_TSTRB Integer • 0: AXI4 Stream does not have TSTRB
• 1: AXI4 Stream has TSTRB

34 C_HAS_AXIS_TKEEP Integer • 0: AXI4 Stream does not have TKEEP
• 1: AXI4 Stream has TKEEP

35 C_AXIS_TDATA_WIDTH Integer AXI4 Stream TDATA Width

36 C_AXIS_TID_WIDTH Integer AXI4 Stream TID Width

Table F-2: AXI SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=204

FIFO Generator v13.1 www.xilinx.com 205
PG057 April 5, 2017

Appendix F: Supplemental Information

37 C_AXIS_TDEST_WIDTH Integer AXI4 Stream TDEST Width

38 C_AXIS_TUSER_WIDTH Integer AXI4 Stream TUSER Width

39 C_AXIS_TSTRB_WIDTH Integer AXI4 Stream TSTRB Width

40 C_AXIS_TKEEP_WIDTH Integer AXI4 Stream TKEEP Width

41 C_WACH_TYPE Integer Write Address Channel type
• 0: FIFO
• 1: Register Slice
• 2: Pass Through Logic

42 C_WDCH_TYPE Integer Write Data Channel type
• 0: FIFO
• 1: Register Slice
• 2: Pass Through Logic

43 C_WRCH_TYPE Integer Write Response Channel type
• 0: FIFO
• 1: Register Slice
• 2: Pass Through Logic

44 C_RACH_TYPE Integer Read Address Channel type
• 0: FIFO
• 1: Register Slice
• 2: Pass Through Logic

45 C_RDCH_TYPE Integer Read Data Channel type
• 0: FIFO
• 1: Register Slice
• 2: Pass Through Logic

46 C_AXIS_TYPE Integer AXI4 Stream type
• 0: FIFO
• 1: Register Slice
• 2: Pass Through Logic

47 C_REG_SLICE_MODE_WACH Integer Write Address Channel configuration type
• 0: Fully Registered
• 1: Light Weight

48 C_REG_SLICE_MODE_WDCH Integer Write Data Channel configuration type
• 0: Fully Registered
• 1: Light Weight

49 C_REG_SLICE_MODE_WRCH Integer Write Response Channel configuration type
• 0: Fully Registered
• 1: Light Weight

50 C_REG_SLICE_MODE_RACH Integer Read Address Channel configuration type
• 0: Fully Registered
• 1: Light Weight

Table F-2: AXI SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=205

FIFO Generator v13.1 www.xilinx.com 206
PG057 April 5, 2017

Appendix F: Supplemental Information

51 C_REG_SLICE_MODE_RDCH Integer Read Data Channel configuration type
• 0: Fully Registered
• 1: Light Weight

52 C_REG_SLICE_MODE_AXIS Integer AXI4 Stream configuration type
• 0: Fully Registered
• 1: Light Weight

53 C_IMPLEMENTATION_TYPE_WACH Integer Write Address Channel Implementation type
• 1: Common Clock Block RAM FIFO
• 2: Common Clock Distributed RAM FIFO
• 5: Common Clock Built-in FIFO
• 11: Independent Clock Block RAM FIFO
• 12: Independent Clock Distributed RAM

FIFO
• 13: Independent Clock Built-in FIFO

54 C_IMPLEMENTATION_TYPE_WDCH Integer Write Data Channel Implementation type
• 1: Common Clock Block RAM FIFO
• 2: Common Clock Distributed RAM FIFO
• 5: Common Clock Built-in FIFO
• 11: Independent Clock Block RAM FIFO
• 12: Independent Clock Distributed RAM

FIFO
• 13: Independent Clock Built-in FIFO

55 C_IMPLEMENTATION_TYPE_WRCH Integer Write Response Channel Implementation type
• 1: Common Clock Block RAM FIFO
• 2: Common Clock Distributed RAM FIFO
• 5: Common Clock Built-in FIFO
• 11: Independent Clock Block RAM FIFO
• 12: Independent Clock Distributed RAM

FIFO
• 13: Independent Clock Built-in FIFO

56 C_IMPLEMENTATION_TYPE_RACH Integer Read Address Channel Implementation type
• 1: Common Clock Block RAM FIFO
• 2: Common Clock Distributed RAM FIFO
• 5: Common Clock Built-in FIFO
• 11: Independent Clock Block RAM FIFO
• 12: Independent Clock Distributed RAM

FIFO
• 13: Independent Clock Built-in FIFO

Table F-2: AXI SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=206

FIFO Generator v13.1 www.xilinx.com 207
PG057 April 5, 2017

Appendix F: Supplemental Information

57 C_IMPLEMENTATION_TYPE_RDCH Integer Read Data Channel Implementation type
• 1: Common Clock Block RAM FIFO
• 2: Common Clock Distributed RAM FIFO
• 5: Common Clock Built-in FIFO
• 11: Independent Clock Block RAM FIFO
• 12: Independent Clock Distributed RAM

FIFO
• 13: Independent Clock Built-in FIFO

58 C_IMPLEMENTATION_TYPE_AXIS Integer AXI4 Stream Implementation type
• 1: Common Clock Block RAM FIFO
• 2: Common Clock Distributed RAM FIFO
• 5: Common Clock Built-in FIFO
• 11: Independent Clock Block RAM FIFO
• 12: Independent Clock Distributed RAM

FIFO
• 13: Independent Clock Built-in FIFO

59 C_APPLICATION_TYPE_WACH Integer Write Address Channel Application type
• 0: Data FIFO
• 1: Packet FIFO(3)

• 2: Low Latency Data FIFO

60 C_APPLICATION_TYPE_WDCH Integer Write Data Channel Application type
• 0: Data FIFO
• 1: Packet FIFO(3)

• 2: Low Latency Data FIFO

61 C_APPLICATION_TYPE_WRCH Integer Write Response Channel Application type
• 0: Data FIFO
• 1: Packet FIFO(3)

• 2: Low Latency Data FIFO

62 C_APPLICATION_TYPE_RACH Integer Read Address Channel Application type
• 0: Data FIFO
• 1: Packet FIFO(3)

• 2: Low Latency Data FIFO

63 C_APPLICATION_TYPE_RDCH Integer Read Data Channel Application type
• 0: Data FIFO
• 1: Packet FIFO(3)

• 2: Low Latency Data FIFO

64 C_APPLICATION_TYPE_AXIS Integer AXI4 Stream Application type
• 0: Data FIFO
• 1: Packet FIFO(3)

• 2: Low Latency Data FIFO

Table F-2: AXI SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=207

FIFO Generator v13.1 www.xilinx.com 208
PG057 April 5, 2017

Appendix F: Supplemental Information

65 C_USE_ECC_WACH Integer • 0: ECC option not used for Write Address
Channel

• 1: ECC option used for Write Address
Channel

66 C_USE_ECC_WDCH Integer • 0: ECC option not used for Write Data
Channel

• 1: ECC option used for Write Data Channel

67 C_USE_ECC_WRCH Integer • 0: ECC option not used for Write Response
Channel

• 1: ECC option used for Write Response
Channel

68 C_USE_ECC_RACH Integer • 0: ECC option not used for Read Address
Channel

• 1: ECC option used for Read Address
Channel

69 C_USE_ECC_RDCH Integer • 0: ECC option not used for Read Data
Channel

• 1: ECC option used for Read Data Channel

70 C_USE_ECC_AXIS Integer • 0: ECC option not used for AXI4 Stream
• 1: ECC option used for AXI4 Stream

71 C_ERROR_INJECTION_TYPE_WACH Integer ECC Error Injection type for Write Address
Channel
• 0: No Error Injection
• 1: Single Bit Error Injection
• 2: Double Bit Error Injection
• 3: Single Bit and Double Bit Error Injection

72 C_ERROR_INJECTION_TYPE_WDCH Integer ECC Error Injection type for Write Data
Channel
• 0: No Error Injection
• 1: Single Bit Error Injection
• 2: Double Bit Error Injection
• 3: Single Bit and Double Bit Error Injection

73 C_ERROR_INJECTION_TYPE_WRCH Integer ECC Error Injection type for Write Response
Channel
• 0: No Error Injection
• 1: Single Bit Error Injection
• 2: Double Bit Error Injection
• 3: Single Bit and Double Bit Error Injection

74 C_ERROR_INJECTION_TYPE_RACH Integer ECC Error Injection type for Read Address
Channel
• 0: No Error Injection
• 1: Single Bit Error Injection
• 2: Double Bit Error Injection
• 3: Single Bit and Double Bit Error Injection

Table F-2: AXI SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=208

FIFO Generator v13.1 www.xilinx.com 209
PG057 April 5, 2017

Appendix F: Supplemental Information

75 C_ERROR_INJECTION_TYPE_RDCH Integer ECC Error Injection type for Read Data Channel
• 0: No Error Injection
• 1: Single Bit Error Injection
• 2: Double Bit Error Injection
• 3: Single Bit and Double Bit Error Injection

76 C_ERROR_INJECTION_TYPE_AXIS Integer ECC Error Injection type for AXI4 Stream
• 0: No Error Injection
• 1: Single Bit Error Injection
• 2: Double Bit Error Injection
• 3: Single Bit and Double Bit Error Injection

77 C_DIN_WIDTH_WACH Integer din Width of Write Address Channel bus (1 -
1024). Width is the accumulation of all signal’s
width of this channel (except AWREADY and
AWVALID).

78 C_DIN_WIDTH_WDCH Integer din Width of Write Data Channel bus (1 -
1024). Width is the accumulation of all signal’s
width of this channel (except AWREADY and
AWVALID).

79 C_DIN_WIDTH_WRCH Integer din Width of Write Response Channel bus (1 -
1024). Width is the accumulation of all signal’s
width of this channel (except AWREADY and
AWVALID).

80 C_DIN_WIDTH_RACH Integer din Width of Read Address Channel bus (1 -
1024). Width is the accumulation of all signal’s
width of this channel (except AWREADY and
AWVALID).

81 C_DIN_WIDTH_RDCH Integer din Width of Read Data Channel bus (1 - 1024).
Width is the accumulation of all signal’s width
of this channel (except AWREADY and
AWVALID).

82 C_DIN_WIDTH_AXIS Integer din Width of AXI4 Stream bus (1 - 1024)
Width is the accumulation of all signal’s width
of this channel (except AWREADY and
AWVALID).

83 C_WR_DEPTH_WACH Integer FIFO Depth of Write Address Channel

84 C_WR_DEPTH_WDCH Integer FIFO Depth of Write Data Channel

85 C_WR_DEPTH_WRCH Integer FIFO Depth of Write Response Channel

86 C_WR_DEPTH_RACH Integer FIFO Depth of Read Address Channel

87 C_WR_DEPTH_RDCH Integer FIFO Depth of Read Data Channel

88 C_WR_DEPTH_AXIS Integer FIFO Depth of AXI4 Stream

89 C_WR_PNTR_WIDTH_WACH Integer Log2(C_WR_DEPTH_WACH)

90 C_WR_PNTR_WIDTH_WDCH Integer Log2(C_WR_DEPTH_WDCH)

91 C_WR_PNTR_WIDTH_WRCH Integer Log2(C_WR_DEPTH_WRCH)

Table F-2: AXI SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=209

FIFO Generator v13.1 www.xilinx.com 210
PG057 April 5, 2017

Appendix F: Supplemental Information

92 C_WR_PNTR_WIDTH_RACH Integer Log2(C_WR_DEPTH_RACH)

93 C_WR_PNTR_WIDTH_RDCH Integer Log2(C_WR_DEPTH_RDCH)

94 C_WR_PNTR_WIDTH_AXIS Integer Log2(C_WR_DEPTH_AXIS)

95 C_HAS_DATA_COUNTS_WACH Integer Write Address Channel
• 0: FIFO does not have Data Counts
• 1: FIFO has Data Count if

C_COMMON_CLOCK = 1
Write/Read Data Count if
C_COMMON_CLOCK = 0

96 C_HAS_DATA_COUNTS_WDCH Integer Write Data Channel
• 0: FIFO does not have Data Counts
• 1: FIFO has Data Count if

C_COMMON_CLOCK = 1
Write/Read Data Count if
C_COMMON_CLOCK = 0

97 C_HAS_DATA_COUNTS_WRCH Integer Write Response Channel
• 0: FIFO does not have Data Counts
• 1: FIFO has Data Count if

C_COMMON_CLOCK = 1
Write/Read Data Count if
C_COMMON_CLOCK = 0

98 C_HAS_DATA_COUNTS_RACH Integer Read Address Channel
• 0: FIFO does not have Data Counts
• 1: FIFO has Data Count if

C_COMMON_CLOCK = 1,
Write/Read Data Count if
C_COMMON_CLOCK = 0

99 C_HAS_DATA_COUNTS_RDCH Integer Read Data Channel
• 0: FIFO does not have Data Counts
• 1: FIFO has Data Count if

C_COMMON_CLOCK = 1,
Write/Read Data Count if
C_COMMON_CLOCK = 0

100 C_HAS_DATA_COUNTS_AXIS Integer AXI4 Stream
• 0: FIFO does not have Data Counts
• 1: FIFO has Data Count if

C_COMMON_CLOCK = 1,
Write/Read Data Count if
C_COMMON_CLOCK = 0

Table F-2: AXI SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=210

FIFO Generator v13.1 www.xilinx.com 211
PG057 April 5, 2017

Appendix F: Supplemental Information

101 C_HAS_PROG_FLAGS_WACH Integer Write Address Channel
• 0: FIFO does not have the option to map

Almost Full/Empty or Programmable Full/
Empty to READY/valid

• 1: FIFO has the option to map Almost Full/
Empty or Programmable Full/Empty to
READY/valid

102 C_HAS_PROG_FLAGS_WDCH Integer Write Data Channel
• 0: FIFO does not have the option to map

Almost Full/Empty or Programmable Full/
Empty to READY/valid

• 1: FIFO has the option to map Almost Full/
Empty or Programmable Full/Empty to
READY/valid

103 C_HAS_PROG_FLAGS_WRCH Integer Write Response Channel
• 0: FIFO does not have the option to map

Almost Full/Empty or Programmable Full/
Empty to READY/valid

• 1: FIFO has the option to map Almost Full/
Empty or Programmable Full/Empty to
READY/valid

104 C_HAS_PROG_FLAGS_RACH Integer Read Address Channel
• 0: FIFO does not have the option to map

Almost Full/Empty or Programmable Full/
Empty to READY/valid

• 1: FIFO has the option to map Almost Full/
Empty or Programmable Full/Empty to
READY/valid

105 C_HAS_PROG_FLAGS_RDCH Integer Read Data Channel
• 0: FIFO does not have the option to map

Almost Full/Empty or Programmable Full/
Empty to READY/valid

• 1: FIFO has the option to map Almost Full/
Empty or Programmable Full/Empty to
READY/valid

106 C_HAS_PROG_FLAGS_AXIS Integer AXI4 Stream
• 0: FIFO does not have the option to map

Almost Full/Empty or Programmable Full/
Empty to READY/valid

• 1: FIFO has the option to map Almost Full/
Empty or Programmable Full/Empty to
READY/valid

107 C_PROG_FULL_TYPE_WACH Integer Write Address Channel
• 1 or 3: PROG_FULL is mapped to READY
• 5: FULL is mapped to READY
• 6: ALMOST_FULL is mapped to READY

Table F-2: AXI SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=211

FIFO Generator v13.1 www.xilinx.com 212
PG057 April 5, 2017

Appendix F: Supplemental Information

108 C_PROG_FULL_TYPE_WDCH Integer Write Data Channel
• 1 or 3: PROG_FULL is mapped to READY
• 5: FULL is mapped to READY
• 6: ALMOST_FULL is mapped to READY

109 C_PROG_FULL_TYPE_WRCH Integer Write Response Channel
• 1 or 3: PROG_FULL is mapped to READY
• 5: FULL is mapped to READY
• 6: ALMOST_FULL is mapped to READY

110 C_PROG_FULL_TYPE_RACH Integer Read Address Channel
• 1 or 3: PROG_FULL is mapped to READY
• 5: FULL is mapped to READY
• 6: ALMOST_FULL is mapped to READY

111 C_PROG_FULL_TYPE_RDCH Integer Read Data Channel
• 1 or 3: PROG_FULL is mapped to READY
• 5: FULL is mapped to READY
• 6: ALMOST_FULL is mapped to READY

112 C_PROG_FULL_TYPE_AXIS Integer AXI4 Stream
• 1 or 3: PROG_FULL is mapped to READY
• 5: FULL is mapped to READY
• 6: ALMOST_FULL is mapped to READY

113 C_PROG_FULL_THRESH_ASSERT_VAL_
WACH

Integer PROG_FULL assert threshold(4) for Write
Address Channel

114 C_PROG_FULL_THRESH_ASSERT_VAL_
WDCH

Integer PROG_FULL assert threshold(4) for Write Data
Channel

115 C_PROG_FULL_THRESH_ASSERT_VAL_
WRCH

Integer PROG_FULL assert threshold(4) for Write
Response Channel

116 C_PROG_FULL_THRESH_ASSERT_VAL_
RACH

Integer PROG_FULL assert threshold(4) for Read
Address Channel

117 C_PROG_FULL_THRESH_ASSERT_VAL_
RDCH

Integer PROG_FULL assert threshold(4) for Read Data
Channel

118 C_PROG_FULL_THRESH_ASSERT_VAL_
AXIS

Integer PROG_FULL assert threshold(4) for AXI4 Stream

Table F-2: AXI SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=212

FIFO Generator v13.1 www.xilinx.com 213
PG057 April 5, 2017

Appendix F: Supplemental Information

119 C_PROG_EMPTY_TYPE_WACH Integer Write Address Channel
• 1 or 3: prog_empty is mapped to valid
• 5: empty is mapped to valid
• 6: almost_empty is mapped to valid

120 C_PROG_EMPTY_TYPE_WDCH Integer Write Data Channel
• 1 or 3: prog_empty is mapped to valid
• 5: empty is mapped to valid
• 6: almost_empty is mapped to valid

121 C_PROG_EMPTY_TYPE_WRCH Integer Write Response Channel
• 1 or 3: prog_empty is mapped to valid
• 5: empty is mapped to valid
• 6: almost_empty is mapped to valid

122 C_PROG_EMPTY_TYPE_RACH Integer Read Address Channel
• 1 or 3: prog_empty is mapped to valid
• 5: empty is mapped to valid
• 6: almost_empty is mapped to valid

123 C_PROG_EMPTY_TYPE_RDCH Integer Read Data Channel
• 1 or 3: prog_empty is mapped to valid
• 5: empty is mapped to valid
• 6: almost_empty is mapped to valid

124 C_PROG_EMPTY_TYPE_AXIS Integer AXI4 Stream
• 1 or 3: prog_empty is mapped to valid
• 5: empty is mapped to valid
• 6: almost_empty is mapped to valid

125 C_PROG_EMPTY_THRESH_ASSERT_VAL_
WACH

Integer prog_empty assert threshold for Write
Address Channel(4).

126 C_PROG_EMPTY_THRESH_ASSERT_VAL_
WDCH

Integer prog_empty assert threshold for Write Data
Channel.(4)

127 C_PROG_EMPTY_THRESH_ASSERT_VAL_
WRCH

Integer prog_empty assert threshold for Write
Response Channel.(4)

128 C_PROG_EMPTY_THRESH_ASSERT_VAL_
RACH

Integer prog_empty assert threshold for Read Address
Channel.(4)

129 C_PROG_EMPTY_THRESH_ASSERT_VAL_
RDCH

Integer prog_empty assert threshold for Read Data
Channel.(4)

130 C_PROG_EMPTY_THRESH_ASSERT_VAL_
AXIS

Integer prog_empty assert threshold for AXI4
Stream.(4)

131 C_PRIM_FIFO_TYPE_WACH String Primitive used to build a FIFO (for example,
512x36)

132 C_PRIM_FIFO_TYPE_WDCH String Primitive used to build a FIFO (for example,
512x36)

133 C_PRIM_FIFO_TYPE_WRCH String Primitive used to build a FIFO (for example,
512x36)

Table F-2: AXI SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=213

FIFO Generator v13.1 www.xilinx.com 214
PG057 April 5, 2017

Appendix F: Supplemental Information

134 C_PRIM_FIFO_TYPE_RACH String Primitive used to build a FIFO (for example,
512x36)

135 C_PRIM_FIFO_TYPE_RDCH String Primitive used to build a FIFO (for example,
512x36)

136 C_PRIM_FIFO_TYPE_AXIS String Primitive used to build a FIFO (for example,
512x36)

Notes:
1. Includes Write Address Channel, Write Data Channel and Write Response Channel.
2. Includes Read Address Channel, Read Data Channel.
3. This feature is supported for 7 series device common clock AXI4/AXI3 and AXI4-Stream FIFOs only.
4. See the Vivado IDE for the allowable range of values.

Table F-2: AXI SIM Parameters (Cont’d)

SIM Parameter Type Description

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=214

FIFO Generator v13.1 www.xilinx.com 215
PG057 April 5, 2017

Appendix G

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

References
These documents provide supplemental material useful with this product guide:

1. AMBA® AXI4-Stream Protocol Specification

2. AXI4 AMBA® AXI Protocol Version: 2.0 Specification

3. 7 Series FPGA Memory Resources (UG473)

4. UltraScale Architecture Memory Resources: Advance Specification User Guide (UG573)

5. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

6. ISE to Vivado Design Suite Migration Methodology Guide (UG911)

7. Vivado Design Suite User Guide: Designing with IP (UG896)

8. Vivado Design Suite User Guide: Getting Started (UG910)

9. Vivado Design Suite User Guide: Logic Simulation (UG900)

10. Vivado Design Suite User Guide: Programming and Debugging (UG908)

11. Answer Record 42571 (AR#42571)

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/support/answers/42571.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=215

FIFO Generator v13.1 www.xilinx.com 216
PG057 April 5, 2017

Appendix G: Additional Resources and Legal Notices

Revision History
The following table shows the revision history for this document.

Date Version Revision

04/05/2017 13.1 • Updated the Actual FIFO Depth calculation section for Built-in FIFOs.
• Updated the timing diagrams for independent clocks synchronous reset

(wr_rst and rd_rst).

10/05/2016 13.1 • Added wr_rst_busy signal assertion for AXI interface.
• Updated required constraints in Constraining the Core in Chapter 4.

06/08/2016 13.1 • Added more details on the corruption issue described in AR#42571.
• updated a note regarding wr_en/rd_en assertion in Resets section of

Chapter 3, Designing with the Core

04/06/2016 13.1 • Updated for core v13.1. Updated the FIFO generator IP figures to reflect
the latest core version.

• Added an option for BRAM to select both embedded and interconnect
registers.

11/18/2015 13.0 • Added support for UltraScale+ architecture-based devices.
• Updated Table 3-21, Table 3-22, Table 3-25, and Table 3-26in Chapter 3,

Designing with the Core.

09/30/2015 13.0 • Updated for core v13.0. Updated the FIFO generator IP figures to reflect
the latest core version.

• Updated the UltraScale support for Built in FIFOs and Block RAM.

06/24/2015 12.0 • Updated the figures to correctly depict the signal and port names.

04/01/2015 12.0 • Updated the UltraScale support for Non-symmetric aspect ratio.

10/01/2014 12.0 • Added a Low latency option for UltraScale devices with Built-In FIFOs.
• Added Asymmetric Port Width for UltraScale devices with Common Clock

BRAM FIFO.
• Added Asynchronous AXI4-Stream Packet FIFO.
• Added GUI Option and User Parameter mapping table.

04/02/2014 12.0 Added new ports and parameters for UltraScale architecture. Added ECC
Pipeline Register and Dynamic Power Gating support.

12/18/2013 11.0 Added support for UltraScale™ architecture. Added new FIFO primitive
parameters.

10/02/2013 11.0 • Document revision number advanced to 11.0 to align with core version
number.

• All ports/signal names were changed to all lower case.
• AXI4-Stream FIFO's depth requirement for packet FIFO was removed.

03/20/2013 4.0 • Updated for core v10.0.
• Removed support for ISE Design Suite.
• Added Embedded register support for AXI4-Stream packet FIFO.
• Updated the parameters and settings in Chapter 4, Customizing and

Generating the Native Core.

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=216

FIFO Generator v13.1 www.xilinx.com 217
PG057 April 5, 2017

Appendix G: Additional Resources and Legal Notices

12/18/2012 3.0 Updated for core v9.3, Vivado Design Suite v2012.3, and ISE Design Suite
v14.3. Added Appendix B, Debugging.

10/16/2012 2.0 Updated for core v9.3, Vivado Design Suite v2012.3, and ISE Design Suite
v14.3. Clock Enable ports added for AXI4-Stream interface.

07/25/2012 1.0 Initial release of this document as a product guide. This document replaces
DS317, FIFO Generator Data Sheet, UG175, FIFO Generator User Guide, and
XAPP992, FIFO Generator Migration Guide.

Date Version Revision

Send Feedback

https://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=217

FIFO Generator v13.1 www.xilinx.com 218
PG057 April 5, 2017

Appendix G: Additional Resources and Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2012-2017 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.

Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=Product_Guide&docId=PG057&Title=FIFO%20Generator%20v13.1&releaseVersion=13.1&docPage=218

	FIFO Generator v13.1
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Native Interface FIFOs
	AXI Interface FIFOs
	Feature Summary
	Common Features
	Native FIFO Specific Features
	AXI FIFO Features
	Native FIFO Feature Overview
	Clock Implementation and Operation
	Built-in FIFO Support
	First-Word Fall-Through (FWFT)
	Supported Memory Types
	Non-Symmetric Aspect Ratio Support
	Embedded Registers in Block RAM and FIFO Macros
	Error Injection and Correction (ECC) Support

	Native FIFO Configuration and Implementation
	Common Clock: Block RAM, Distributed RAM, Shift Register
	Common Clock: Built-in FIFO
	Independent Clocks: Block RAM and Distributed RAM
	Independent Clocks: Built-in FIFO

	Native FIFO Generator Feature Summary
	Using Block RAM FIFOs Versus Built-in FIFOs
	Native FIFO Interface Signals
	Interface Signals: FIFOs With Independent Clocks
	Interface Signals: FIFOs with Common Clock

	AXI FIFO Feature Overview
	Easy Integration of Independent FIFOs for Read and Write Channels
	Clock and Reset Implementation and Operation
	Automatic FIFO Width Calculation
	Supported Configuration, Memory and Application Types
	Register slices
	Pass Through Wire
	Packet FIFO
	Low Latency FIFO
	Error Injection and Correction (ECC) Support
	AXI Slave Interface for Performing Writes
	AXI Master Interface for Performing Reads

	AXI FIFO Feature Summary
	AXI FIFO Interface Signals
	Global Signals
	AXI4-Stream FIFO Interface Signals
	AXI4/AXI3 FIFO Interface Signals
	AXI4-Lite FIFO Interface Signals

	Applications
	Native FIFO Applications
	AXI FIFO Applications
	AXI4-Stream FIFOs
	AXI4/AXI3 Memory Mapped FIFOs
	AXI4-Lite FIFOs

	Licensing and Ordering Information

	Ch. 2: Product Specification
	Performance
	Native FIFO Performance
	AXI Memory Mapped FIFO Performance
	Latency

	Resource Utilization
	Port Descriptions
	Native FIFO Port Summary
	AXI FIFO Port Summary
	AXI Global Interface Ports
	AXI4-Stream FIFO Interface Ports
	AXI4/AXI3 FIFO Interface Ports
	AXI4-Lite FIFO Interface Ports

	Ch. 3: Designing with the Core
	General Design Guidelines
	Know the Degree of Difficulty
	Understand Signal Pipelining and Synchronization
	Synchronization Considerations

	Initializing the FIFO Generator
	FIFO Usage and Control
	Write Operation
	almost_full and full Flags
	Example Operation

	Read Operation
	almost_empty and empty Flags
	Modes of Read Operation

	Handshaking Flags
	Write Acknowledge
	Valid
	Example Operation
	Underflow
	Overflow
	Example Operation

	Programmable Flags
	Programmable Full
	Programmable Empty

	Data Counts
	Data Count (Common Clock FIFO Only)
	Read Data Count
	Write Data Count
	First-Word Fall-Through Data Count
	Example Operation

	Non-symmetric Aspect Ratios
	Non-symmetric Aspect Ratio and First-Word Fall-Through

	Embedded Registers in Block RAM and FIFO Macros
	Standard FIFOs
	Block RAM Based FWFT FIFOs
	Built-in Based FWFT FIFOs (Common Clock Only)

	Embedded Registers and Interconnect Registers in Block RAM and FIFO Macros
	Built-in Error Correction Checking
	Built-in Error Injection

	Clocking
	Independent Clocks: Block RAM and Distributed RAM
	Independent Clocks: Built-in FIFO
	Common Clock: Built-in FIFO
	Common Clock FIFO: Block RAM and Distributed RAM
	Common Clock FIFO: Shift Registers

	Resets
	Asynchronous Reset (Enable Reset Synchronization Option is Selected)
	Synchronous Reset

	Actual FIFO Depth
	Block RAM, Distributed RAM and Shift RAM FIFOs
	Built-In FIFOs

	Latency
	Non-Built-in FIFOs: Common Clock and Standard Read Mode Implementations
	Non-Built-in FIFOs: Common Clock and FWFT Read Mode Implementations
	Non-Built-in FIFOs: Independent Clock and Standard Read Mode Implementations
	Non-Built-in FIFOs: Independent Clock and FWFT Read Mode Implementations
	Built-in FIFOs: Common Clock and Standard Read Mode Implementations
	Built-in FIFOs: Common Clock and FWFT Read Mode Implementations
	Built-in FIFOs: Independent Clocks and Standard Read Mode Implementations
	Built-in FIFOs: Independent Clocks and FWFT Read Mode Implementations

	Special Design Considerations
	Resetting the FIFO
	Continuous Clocks
	Pessimistic Full and Empty
	Programmable Full and Empty
	Simultaneous Assertion of Full and Empty Flag
	Write Data Count and Read Data Count
	Setup and Hold Time Violations

	Ch. 4: Design Flow Steps
	Customizing and Generating the Native Core
	Basic Tab
	Native Ports Tab
	Status Flags Tab
	Data Counts Tab
	Summary Tab
	User Parameters
	Output Generation

	Customizing and Generating the AXI Core
	Basic Tab
	Ports Tabs
	Default Settings
	AW/W/B/AR/R/AXI4-Stream Configuration Tab
	Status Flags Tab
	Summary Tab
	User Parameters
	Output Generation

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement

	Simulation
	Behavioral Model
	Structural (Post Synthesis/Implementation) Models

	Synthesis and Implementation

	Ch. 5: Detailed Example Design
	Implementing the Example Design
	Simulating the Example Design

	Ch. 6: Test Bench
	Test Bench Functionality
	Core with Native Interface
	Core with AXI Interface

	Customizing the Demonstration Test Bench
	Changing the Data/Stimulus
	Changing the Test Bench Run Time

	Messages and Warnings

	Appx. A: Verification, Compliance, and Interoperability
	Simulation

	Appx. B: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Technical Support

	Debug Tools
	Vivado Design Suite Debug Feature

	Simulation Debug
	Hardware Debug
	General Checks

	Interface Debug
	Native Interface

	Appx. C: Migrating and Upgrading
	Migrating to the Vivado Design Suite
	Upgrading in the Vivado Design Suite
	Parameter Changes
	Port Changes

	Appx. D: dout Reset Value Timing
	Appx. E: FIFO Generator Files
	Project Area:

	Appx. F: Supplemental Information
	Auto-Upgrade Feature
	Native FIFO SIM Parameters
	AXI FIFO SIM Parameters

	Appx. G: Additional Resources and Legal Notices
	Xilinx Resources
	References
	Revision History
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

