
DS808 July 25, 2012 www.xilinx.com 1
Product Specification

© Copyright 2010, 2011. Xilinx, Inc. XILINX, the Xilinx logo, Kintex, Virtex, Spartan, ISE and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. ARM is a registered trademark of ARM in the EU and other countries. The AMBA trademark is a registered trademark of ARM
Limited. MATLAB is a registered trademark of The MathWorks, Inc. All other trademarks are the property of their respective owners.

Introduction
The Xilinx LogiCORE™ IP Fast Fourier Transform
(FFT) implements the Cooley-Tukey FFT algorithm, a
computationally efficient method for calculating the
Discrete Fourier Transform (DFT).

Features
• Drop-in module for Virtex®-7 and Kintex™-7,

Virtex®-6 and Spartan®-6 FPGAs

• AXI4-Stream compliant interfaces.

• Forward and inverse complex FFT, run-time
configurable

• Transform sizes N = 2m, m = 3 – 16

• Data sample precision bx = 8 – 34

• Phase factor precision bw = 8 – 34

• Arithmetic types:

• Unscaled (full-precision) fixed-point

• Scaled fixed-point

• Block floating-point

• Fixed-point or floating-point interface

• Rounding or truncation after the butterfly

• Block RAM or Distributed RAM for data and
phase-factor storage

• Optional run-time configurable transform point
size

• Run-time configurable scaling schedule for scaled
fixed-point cores

• Bit/digit reversed or natural output order

• Optional cyclic prefix insertion for digital
communications systems

• Four architectures offer a trade-off between core
size and transform time

• Bit-accurate C model and MEX function for system
modeling available for download

• For use with Xilinx CORE Generator™ software
and Xilinx System Generator for DSP 13.1

LogiCORE IP
Fast Fourier Transform v8.0

DS808 July 25, 2012 Product Specification

LogiCORE IP Facts

Core Specifics

Supported
Device
Family(1)

1. For the complete list of supported devices, see the
release notes for this core.

Kintex-7, Virtex-7
Virtex-6, Spartan-6

Supported
User Interfaces

AXI4-Stream

Configuration See Tables 25 to 28

Provided with Core

Documentation Product Specification

Design Files Netlist

Example
Design Not Provided

Test Bench VHDL

Constraints
File N/A

Simulation
Model

VHDL
Verilog

C Model

Tested Design Tools

Design Entry
Tools

CORE Generator 13.1
System Generator for DSP 13.1

Simulation

Mentor Graphics ModelSim 6.6d
Cadence Incisive Enterprise Simulator (IES) 10.2

Synopsys VCS and VCS MX 2010.06
ISIM 13.1

Synthesis
Tools N/A

Support

Provided by Xilinx, Inc.

http://www.xilinx.com
www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf

DS808 July 25, 2012 www.xilinx.com 2
Product Specification

Fast Fourier Transform v8.0

Functional Description

Overview

The FFT core computes an N-point forward DFT or inverse DFT (IDFT) where N can be 2m, m = 3–16.

For fixed-point inputs, the input data is a vector of N complex values represented as dual bx-bit two’s-complement
numbers, that is, bx bits for each of the real and imaginary components of the data sample, where bx is in the range
8 to 34 bits inclusive. Similarly, the phase factors bw can be 8 to 34 bits wide.

For single-precision floating-point inputs, the input data is a vector of N complex values represented as dual 32-bit
floating-point numbers with the phase factors represented as 24- or 25-bit fixed-point numbers.

All memory is on-chip using either block RAM or distributed RAM. The N element output vector is represented
using by bits for each of the real and imaginary components of the output data. Input data is presented in natural
order and the output data can be in either natural or bit/digit reversed order. The complex nature of data input and
output is intrinsic to the FFT algorithm, not the implementation.

Three arithmetic options are available for computing the FFT:

• Full-precision unscaled arithmetic

• Scaled fixed-point, where you provide the scaling schedule

• Block floating-point (run-time adjusted scaling)

The point size N, the choice of forward or inverse transform, the scaling schedule and the cyclic prefix length are
run-time configurable. Transform type (forward or inverse), scaling schedule and cyclic prefix length can be
changed on a frame-by-frame basis. Changing the point size resets the core.

Four architecture options are available: Pipelined Streaming I/O, Radix-4 Burst I/O, Radix-2 Burst I/O, and Radix-
2 Lite Burst I/O. For detailed information about each architecture, see Architecture Options, page 14.

Theory of Operation

The FFT is a computationally efficient algorithm for computing a Discrete Fourier Transform (DFT) of sample sizes
that are a positive integer power of 2. The DFT of a sequence is defined as

Equation 1

where N is the transform size and . The inverse DFT (IDFT) is given by

Equation 2

(), 0, , 1X k k N= − (), 0, , 1x n n N= −

1
2 /

0
() () 0, , 1

N
jnk N

n

X k x n e k Nπ
−

−

=

= = − 

1j = −

1
2 /

0

1() () 0, , 1
N

jnk N

k

x n X k e n N
N

π
−

=

= = − 

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 3
Product Specification

Fast Fourier Transform v8.0

Algorithm

The FFT core uses the Radix-4 and Radix-2 decompositions for computing the DFT. For Burst I/O architectures, the
decimation-in-time (DIT) method is used, while the decimation-in-frequency (DIF) method is used for the Pipelined
Streaming I/O architecture. When using Radix-4 decomposition, the N-point FFT consists of log4 (N) stages, with
each stage containing N/4 Radix-4 butterflies. Point sizes that are not a power of 4 need an extra Radix-2 stage for
combining data. An N-point FFT using Radix-2 decomposition has log2 (N) stages, with each stage containing N/2
Radix-2 butterflies.

The inverse FFT (IFFT) is computed by conjugating the phase factors of the corresponding forward FFT.

Finite Word Length Considerations

The Burst I/O architectures process an array of data by successive passes over the input data array. On each pass,
the algorithm performs Radix-4 or Radix-2 butterflies, where each butterfly picks up four or two complex numbers,
respectively, and returns four or two complex numbers to the same memory. The numbers returned to memory by
the core are potentially larger than the numbers picked up from memory. A strategy must be employed to
accommodate this dynamic range expansion. A full explanation of scaling strategies and their implications is
beyond the scope of this document; for more information about this topic; see [Ref 1] and [Ref 2].

For a Radix-4 DIT FFT, the values computed in a butterfly stage can experience growth by a factor of up to
. This implies a bit growth of up to 3 bits.

For Radix-2, the growth is by a factor of up to . This implies a bit growth of up to 2 bits. This bit
growth can be handled in three ways:

• Performing the calculations with no scaling and carrying all significant integer bits to the end of the
computation

• Scaling at each stage using a fixed-scaling schedule

• Scaling automatically using block floating-point

All significant integer bits are retained when using full-precision unscaled arithmetic. The width of the data path
increases to accommodate the bit growth through the butterfly. The growth of the fractional bits created from the
multiplication are truncated (or rounded) after the multiplication. The width of the output is (input width +
log2(transform length) + 1). This accommodates the worst case scenario for bit growth.

Consider an unscaled Radix-2 DIT FFT: the data path in each stage must grow by 1 bit as the adder and subtractor
in the butterfly may add/subtract two full-scale values and produce a sample which has grown in width by 1 bit.
This yields the log2(transform length) part of the increase in the output width relative to the input width. The
complex multiplier preserves the magnitude of an input (as it applies a rotation on the complex plane), but can
theoretically produce bit-growth when the magnitude of the input is greater than 1 (for example, 1+j has a
magnitude of 1.414). This means that the complex multiplier bit growth must only be considered once in the entire
FFT process, yielding the additional +1 increase in the output width relative to the input width. For example, a
1024-point transform with an input of 16 bits consisting of 1 integer bit and 15 fractional bits has an output of 27 bits
with 12 integer bits and 15 fractional bits. Note that the core does not have a specific location for the binary point.
The output simply maintains the same binary point location as the input. For the preceding example, a 16 bit input
with 3 integer bits and 13 fractional bits would have an unscaled output of 27 bits with 14 integer bits and 13
fractional bits.

1 3 2 5.242≈+

1 2 2.414+ ≈

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 4
Product Specification

Fast Fourier Transform v8.0

When using scaling, a scaling schedule is used to divide by a factor of 1, 2, 4, or 8 in each stage. If scaling is
insufficient, a butterfly output may grow beyond the dynamic range and cause an overflow. As a result of the
scaling applied in the FFT implementation, the transform computed is a scaled transform. The scale factor s is
defined as

Equation 3

where bi is the scaling (specified in bits) applied in stage i.

The scaling results in the final output sequence being modified by the factor 1/s. For the forward FFT, the output
sequence X’ (k), k = 0,...,N - 1 computed by the core is defined as

Equation 4

For the inverse FFT, the output sequence is

Equation 5

If a Radix-4 algorithm scales by a factor of 4 in each stage, the factor of 1/s is equal to the factor of 1/N in the inverse
FFT equation (Equation 2). For Radix-2, scaling by a factor of 2 in each stage provides the factor of 1/N.

With block floating-point, each stage applies sufficient scaling to keep numbers in range, and the scaling is tracked
by a block exponent.

As with unscaled arithmetic, for scaled and block floating-point arithmetic, the core does not have a specific
location for the binary point. The location of the binary point in the output data is inherited from the input data and
then shifted by the scaling applied.

Floating Point Considerations

The FFT core optionally accepts data in IEEE-754 single-precision format with 32-bit words consisting of a 1-bit
sign, 8-bit exponent, and 23-bit fraction. The construction of the word matches that of the Xilinx Floating-Point
Operator core.

Implementing full floating-point on an FPGA can be expensive in terms of the resources required. The floating-
point option in the Xilinx FFT core utilizes a higher precision fixed-point FFT internally to achieve similar noise
performance to a full floating-point FFT, with significantly fewer resources. Figure 1 illustrates the two levels of
noise performance possible by selecting either 24 bits or 25 bits for the phase factor width. By increasing the phase
factor width to 25 bits, more resources may be required, depending on the target FPGA device.

log 1

02

N

i
i

b

s

−

=


=

1
' 2 /

0

1 1() () () 0, , 1
N

jnk N

n

X k X k x n e k N
s s

π
−

−

=

= = = − 

1
2 /

0

1() () 0, , 1
N

jnk N

k

x n X k e n N
s

π
−

=

= = − 

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 5
Product Specification

Fast Fourier Transform v8.0

Figure 1 shows the ratio of the RMS difference between various models and the double-precision MATLAB® FFT to
the data set peak amplitude. The models shown are the single-precision MATLAB FFT function (calculated by
casting the input data to single-precision floating-point type), the Xilinx FFT core using a 24-bit phase factor width,
and the Xilinx FFT core using a 25-bit phase factor width. To calculate the error signal, a randomized impulse (in
magnitude and time) was used as the input signal, with the RMS error averaged over five simulation runs.

All optimization options (memory types and XtremeDSP™ slice optimization) remain available when floating-
point input data is selected, allowing you to trade off resources with transform time.

Transform time for Burst I/O architectures is increased by approximately N, the number of points in the transform,
due to the input normalization requirements. For the Pipelined Streaming I/O architecture, the initial latency to fill
the pipeline is increased, but data still streams through the core with no gaps.

Denormalized Numbers

The floating-point interface to the FFT core does not support denormalized numbers. To match the behavior of the
Xilinx Floating-Point Operator core, the core treats denormalized operands as zero, with a sign taken from the
denormalized number.

NaNs and ± Infinity

If the core detects a NaN or ± Infinity value on the input, all output samples associated with the current input frame
are set to NaN. The sign bit is set to zero and all exponent and fraction bits are set to 1.

X-Ref Target - Figure 1

Figure 1: Comparison of Two Levels of Noise Performance

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 6
Product Specification

Fast Fourier Transform v8.0

Real-Valued Input Data

The FFT core accepts complex data samples, but can perform a transform on real-valued data by setting all
imaginary input samples to zero.

Due to the finite wordlength effects described previously, noise is introduced during the transform, resulting in the
output data not being perfectly symmetric. The DIT and DIF FFT algorithms have different noise effects due to the
different calculation order.

For a thorough treatment of this topic, see [Ref 3] and [Ref 4].

The asymmetry between the two halves of the result is more noticeable at larger point sizes. In addition, the noise
is more prominent in the lower frequency bins. Therefore, Xilinx recommends that the upper half (N/2+1 to N
points) of the output data is used when performing a real-valued FFT.

Rounding Implementation

An option is available, in all architectures, to apply convergent rounding to the data after the butterfly stage.
However, selecting this option does not apply convergent rounding to all points in the data path where wordlength
reduction occurs.

In particular, the outputs of all complex multipliers in the FFT data path are truncated to reduce data path width
(while still maintaining adequate precision) and a simple rounding constant added to the fractional bits. This
constant implements non-symmetric, round-towards-minus-infinity rounding, and can introduce a small bias to
the FFT results over a large number of samples.

Dynamic Range Characteristics

The dynamic range characteristics are shown by performing slot noise tests. First, a frame of complex Gaussian noise
data samples is created. An FFT is taken to acquire the spectrum of the data. To create the slot, a range of frequencies
in the spectra is set to zero. To create the input slot noise data frame, the inverse FFT is taken, then the data is
quantized to use the full input dynamic range. Because of the quantization, if a perfect FFT is done on the frame, the
noise floor on the bottom of the slot is non-zero. The Input Data figures, which basically represent the dynamic
range of the input format, display this.

This slot noise input data frame is fed to the FFT core to see how shallow the slot becomes due to the finite precision
arithmetic. The depth of the slot shows the dynamic range of the FFT.

Figure 2 through Figure 11 show the effect of input data width on the dynamic range. All FFTs have the same bit
width for both data and phase factors. Block floating-point arithmetic is used with rounding after the butterfly. The
figures show the input data slot and the output data slot for bit widths of 24, 20, 16, 12, and 8.

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 7
Product Specification

Fast Fourier Transform v8.0

X-Ref Target - Figure 2

Figure 2: Input Data: 24 Bits

X-Ref Target - Figure 3

Figure 3: FFT Core Results: 24 Bits

X-Ref Target - Figure 4

Figure 4: Input Data: 20 Bits

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT BinNumber

dB

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT BinNumber

dB

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 8
Product Specification

Fast Fourier Transform v8.0

X-Ref Target - Figure 5

Figure 5: FFT Core Results: 20 Bits

X-Ref Target - Figure 6

Figure 6: Input Data: 16 Bits

X-Ref Target - Figure 7

Figure 7: FFT Core Results: 16 Bits

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT BinNumber

dB

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 9
Product Specification

Fast Fourier Transform v8.0

X-Ref Target - Figure 8

Figure 8: Input Data: 12 Bits

X-Ref Target - Figure 9

Figure 9: FFT Core Results: 12 Bits

X-Ref Target - Figure 10

Figure 10: Input Data: 8 Bits

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT BinNumber

dB

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT BinNumber

dB

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 10
Product Specification

Fast Fourier Transform v8.0

There are several options available that also affect the dynamic range. Consider the arithmetic type used.

Figure 12, Figure 13, and Figure 14 display the results of using unscaled, scaled (scaling of 1/1024), and block
floating-point. All three FFTs are 1024 point, Radix-4 Burst I/O transforms with 16-bit input, 16-bit phase factors,
and convergent rounding.

X-Ref Target - Figure 11

Figure 11: FFT Core Results: 8 Bits

X-Ref Target - Figure 12

Figure 12: Full-Precision Unscaled Arithmetic

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 11
Product Specification

Fast Fourier Transform v8.0

After the butterfly computation, the LSBs of the data path can be truncated or rounded. The effects of these options
are shown in Figure 15 and Figure 16. Both transforms are 1024 points with 16-bit data and phase factors using
block floating-point arithmetic.

X-Ref Target - Figure 13

Figure 13: Scaled (scaling of 1/N) Arithmetic

X-Ref Target - Figure 14

Figure 14: Block Floating-Point Arithmetic

X-Ref Target - Figure 15

Figure 15: Convergent Rounding

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 12
Product Specification

Fast Fourier Transform v8.0

For illustration purposes, the effect of point size on dynamic range is displayed Figure 17 through Figure 19. The
FFTs in these figures use 16-bit input and phase factors along with convergent rounding and block floating-point
arithmetic.

X-Ref Target - Figure 16

Figure 16: Truncation

X-Ref Target - Figure 17

Figure 17: 64-point Transform

X-Ref Target - Figure 18

Figure 18: 2048-point Transform

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

10 20 30 40 50 60

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

200 400 600 800 1000 1200 1400 1600 1800 2000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 13
Product Specification

Fast Fourier Transform v8.0

All of the preceding dynamic range plots show the results for the Radix-4 Burst I/O architecture. Figure 20 and
Figure 21 show two plots for the Radix-2 Burst I/O architecture. Both use 16-bit input and phase factors along with
convergent rounding and block floating-point.

X-Ref Target - Figure 19

Figure 19: 8192-point Transform

X-Ref Target - Figure 20

Figure 20: 64-point Radix-2 Transform

X-Ref Target - Figure 21

Figure 21: 1024-point Radix-2 Transform

1000 2000 3000 4000 5000 6000 7000 8000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

10 20 30 40 50 60

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

100 200 300 400 500 600 700 800 900 1000

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

FFT Bin Number

dB

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 14
Product Specification

Fast Fourier Transform v8.0

Architecture Options

The FFT core provides four architecture options to offer a trade-off between core size and transform time.

• Pipelined Streaming I/O – Allows continuous data processing.

• Radix-4 Burst I/O – Loads and processes data separately, using an iterative approach. It is smaller in size than
the pipelined solution, but has a longer transform time.

• Radix-2 Burst I/O – Uses the same iterative approach as Radix-4, but the butterfly is smaller. This means it is
smaller in size than the Radix-4 solution, but the transform time is longer.

• Radix-2 Lite Burst I/O – Based on the Radix-2 architecture, this variant uses a time-multiplexed approach to
the butterfly for an even smaller core, at the cost of longer transform time.

Figure 22 illustrates the trade-off of throughput versus resource use for the four architectures. As a rule of thumb,
each architecture offers a factor of 2 difference in resource from the next architecture. The example is for an even
power of 2 point size. This does not require the Radix-4 architecture to have an additional Radix-2 stage.

All four architectures may be configured to use a fixed-point interface with one of three fixed-point arithmetic
methods (unscaled, scaled or block floating-point) or may instead use a floating-point interface.

Bit and Digit Reversal

Each architecture offers the option of natural or reversed ordering of output data, with data being input in natural
order. The FFT algorithm reorders the samples during processing such that data input in natural order is output in
reversed order. The core can optionally output the data in natural order. However, this imposes a cost on each
architecture. For the Burst I/O architectures, this imposes a time penalty, because unloading the data cannot take
place at the same time as loading input data for the next frame, so separate unload and load phases are required. In
the pipelined architecture, it requires additional RAM storage to perform the reordering.

In the Radix-2 Burst I/O, Radix-2 Lite Burst I/O, and Pipelined Streaming I/O architectures, the Bit Reverse order
is simple to calculate by taking the index of the data point, written in binary, and reversing the order of the digits.
Hence, 0000, 0001, 0010, 0011, 0100,...(0, 1, 2, 3, 4,...) becomes 0000, 1000, 0100, 1100, 0010,...(0, 8, 4, 12, 2,...).

In the case of the Radix-4 Burst I/O architecture, the reversal applies to digits and, therefore, is called Digit Reversal.
A digit in Radix-4 is two bits. Hence, 0000, 0001, 0010, 0011, 0100,...(0, 1, 2, 3, 4,...) becomes 0000, 0100, 1000, 1100,
0001,...(0, 4, 8, 12, 1,...), as the pairs of digits are reversed. Where the transform size requires an odd number of index

X-Ref Target - Figure 22

Figure 22: Resource versus Throughput for Architecture Options

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 15
Product Specification

Fast Fourier Transform v8.0

bits, the odd digit in the least significant place is moved to the most significant place, so 00000, 00001, 00010, 00011,
00100,... (0, 1, 2, 3, 4,...) becomes 00000, 10000, 00100, 10100, 01000,...(0, 16, 4, 20, 8,...)

Note: The core can optionally output a data point index along with the data. See XK Index for more information.

Pipelined Streaming I/O

The Pipelined Streaming I/O solution pipelines several Radix-2 butterfly processing engines to offer continuous
data processing. Each processing engine has its own memory banks to store the input and intermediate data
(Figure 23). The core has the ability to simultaneously perform transform calculations on the current frame of data,
load input data for the next frame of data, and unload the results of the previous frame of data. You can
continuously stream in data(1) and, after the calculation latency, can continuously unload the results. If preferred,
this design can also calculate one frame by itself or frames with gaps in between.

In the scaled fixed-point mode, the data is scaled after every pair of Radix-2 stages. The block floating-point mode
may use significantly more resources than the scaled mode, as it must maintain extra bits of precision to allow
dynamic scaling without impacting performance. Therefore, if the input data is well understood and is unlikely to
exhibit large amplitude fluctuation, using scaled arithmetic (with a suitable scaling schedule to avoid overflow in
the known worst case) is sufficient, and resources may be saved.

The input data is presented in natural order. The unloaded output data can either be in bit reversed order or in
natural order. When natural order output data is selected, additional memory resource is utilized.

This architecture covers point sizes from 8 to 65536. You have the flexibility to select the number of stages to use
block RAM for data and phase factor storage. The remaining stages use distributed memory.

Radix-4 Burst I/O

With the Radix-4 Burst I/O solution, the FFT core uses one Radix-4 butterfly processing engine (Figure 24). It loads
and/or unloads data separately from calculating the transform. Data I/O and processing are not simultaneous.
When the FFT is started, the data is loaded. After a full frame has been loaded, the core computes the transform.

1. Note that continually streaming data does not imply that AXI4-Stream waitstates from the FFT can be ignored. There are situations where
the FFT core may have to insert waitstates to pause the incoming sample data.

X-Ref Target - Figure 23

Figure 23: Pipelined Streaming I/O

Memory

Memory Memory

Memory Memory Memory

Radix-2
Butterfly

Radix-2
Butterfly

Radix-2
Butterfly

Radix-2
Butterfly

Radix-2
Butterfly

Radix-2
Butterfly

Group 0 Group 1

Stage 0 Stage 1 Stage 2 Stage 3

Output
Shuffling

Output Data

Input Data

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 16
Product Specification

Fast Fourier Transform v8.0

When the computation has finished, the data can be unloaded, but cannot be loaded or unloaded during the
calculation process. The data loading and unloading processes can be overlapped if the data is unloaded in digit
reversed order.

This architecture has lower resource usage than the Pipelined Streaming I/O architecture, but a longer transform
time, and supports point sizes from 64 to 65536. Data and phase factors can be stored in block RAM or in distributed
RAM (the latter for point sizes less than or equal to 1024).

Radix-2 Burst I/O

The Radix-2 Burst I/O architecture uses one Radix-2 butterfly processing engine (Figure 25). After a frame of data
is loaded, the input data stream must halt until the transform calculation is completed. Then, the data can be
unloaded. As with the Radix-4 Burst I/O architecture, data can be simultaneously loaded and unloaded when the
output samples are in bit reversed order. This solution supports point sizes from 8 to 65536. Both the data memories
and phase factor memories can be in either block RAM or distributed RAM (the latter for point sizes less than or
equal to 1024).

X-Ref Target - Figure 24

Figure 24: Radix-4 Burst I/O

 -

 -

 -

 - -j

ROM for
Twiddles

RADIX-4
DRAGONFLY

Data
RAM 0

Data
RAM 1

Data
RAM 2

Data
RAM 3

sw
itc

h

sw
itc

h

Input Data

Output Data

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 17
Product Specification

Fast Fourier Transform v8.0

Radix-2 Lite Burst I/O

This architecture differs from the Radix-2 Burst I/O in that the butterfly processing engine uses one shared
adder/subtractor, hence reducing resources at the expense of an additional delay per butterfly calculation. Again,
as with the Radix-4 and Radix-2 Burst I/O architectures, data can be simultaneously loaded and unloaded only if
the output samples are in bit reversed order. This solution supports point sizes from 8 to 65536. See Figure 26.

Run-Time Transfer Configuration

All run-time configuration options discussed in this section are programed using the Configuration channel. Please
see section Configuration Channel for more information.

X-Ref Target - Figure 25

Figure 25: Radix-2 Burst I/O

X-Ref Target - Figure 26

Figure 26: Radix-2 Lite Burst I/O

 -

ROM for
Twiddles

Data
RAM 0

Data
RAM 1

sw
itc

h

sw
itc

h

Input Data

Output Data

RADIX-2
BUTTERFLY

Generate one
output each cycle

Sine one cycle,
cosine the next

Multiply real one cycle,
imaginary the next

Store data in
single RAM

ds260_05_102306

Input Data

Output Data

ROM for
Twiddles

Data
DPM 0

Data
DPM 1

RADIX-2
BUTTERFLY

-

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 18
Product Specification

Fast Fourier Transform v8.0

Transform Size

The transform point size can be set through the NFFT field in the Configuration Channel if the run-time
configurable transform length option is selected. Valid settings and the corresponding transform sizes are provided
in Table 1. If the NFFT value entered is too large, the core sets itself to the largest available point size (selected in the
GUI). If the value is too small, the core sets itself to the smallest available point size: 64 for the Radix-4 Burst I/O
architecture and 8 for the other architectures.

Forward/Inverse and Scaling Schedule

The transform type (forward or inverse) and the scaling schedule can be set frame-by-frame without interrupting
frame processing. Both the transform type and the scaling schedule can be set independently for each FFT channel
in a multichannel core. Each FFT data channel has an assigned FWD_INV field and SCALE_SCH field in the
Configuration channel.

Setting the FWD_INV field to 0 produces an inverse FFT, and setting the FWD_INV field to 1 creates the forward
transform.

Burst I/O Architectures

The scaling performed during successive stages can be set via the appropriate SCALE_SCH field in the
Configuration channel. For the Radix-4, Burst I/O and Radix-2 architectures, the value of the SCALE_SCH field is
used as pairs of bits [... N4, N3, N2, N1, N0], each pair representing the scaling value for the corresponding stage.
Stages are computed starting with stage 0 as the two LSBs. There are log4(point size) stages for Radix-4 and
log2(point size) stages for Radix-2. In each stage, the data can be shifted by 0, 1, 2, or 3 bits, which corresponds to
SCALE_SCH values of 00, 01, 10, and 11. For example, for Radix-4, when N = 1024, [01 10 00 11 10] translates to a right
shift by 2 for stage 0, shift by 3 for stage 1, no shift for stage 3, a shift of 2 in stage 3, and a shift of 1 for stage 4 (there
are log4(1024) = 5 Radix-4 stages). This scaling schedule scales by a total of 8 bits which gives a scaling factor of
1/256. The conservative schedule SCALE_SCH = [10 10 10 10 11] completely avoids overflows in the Radix-4, Burst
I/O architecture. For the Radix-2, Burst I/O and Radix-2 Lite, Burst I/O architectures, the conservative scaling
schedule of [01 01 01 01 01 01 01 01 01 10] prevents overflow for N = 1024 (there are log2(1024) = 10 Radix-2 stages).

Table 1: Valid NFFT Settings

NFFT[4:0] Transform size (N)

00011 8

00100 16

00101 32

00110 64

00111 128

01000 256

01001 512

01010 1024

01011 2048

01100 4096

01101 8192

01110 16384

01111 32768

10000 65536

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 19
Product Specification

Fast Fourier Transform v8.0

Pipelined Streaming I/O Architecture

For the Pipelined Streaming I/O architecture, consider every pair of adjacent Radix-2 stages as a group. That is,
group 0 contains stage 0 and 1, group 1 contains stage 2 and 3, and so forth. The value of the SCALE_SCH field is also
used as pairs of bits [... N4, N3, N2, N1, N0]. Each pair represents the scaling value for the corresponding group of
two stages. Groups are computed starting with group 0 as the two LSBs. In each group, the data can be shifted by
0, 1, 2, or 3 bits which corresponds to SCALE_SCH values of 00, 01, 10, and 11. For example, when N = 1024, [10 10
00 01 11] translates to a right shift by 3 for group 0 (stages 0 and 1), shift by 1 for group 1 (stages 2 and 3), no shift
for group 3 (stages 4 and 5), a shift of 2 in group 3 (stages 6 and 7), and a shift of 2 for group 4 (stages 8 and 9). The
conservative schedule SCALE_SCH = [10 10 10 10 11] completely avoids overflows in the Pipelined Streaming I/O
architecture. When the point size is not a power of 4, the last group only contains one stage, and the maximum bit
growth for the last group is one bit. Therefore, the two MSBs of the scaling schedule can only be 00 or 01. A
conservative scaling schedule for N = 512 is SCALE_SCH = [01 10 10 10 11].

The initial value and reset value of the FWD_INV field is forward = 1. The scaling schedule is set to 1/N. That
translates to [10 10 10 10... 10] for the Radix-4, Burst I/O and Pipelined Streaming I/O architectures, and [01 01... 01]
for the Radix-2 architectures. The core uses the (2*number of stages) LSBs for the scaling schedule. So, when the
point size decreases, the leftover MSBs are ignored. However, all bits are programmed into the core and are used in
later transforms if the point size increases.

Cyclic Prefix Insertion

Cyclic prefix insertion takes a section of the output of the FFT and prefixes it to the beginning of the transform. The
resultant output data consists of the cyclic prefix (a copy of the end of the output data) followed by the complete
output data, all in natural order. Cyclic prefix insertion is only available when output ordering is Natural Order.

When cyclic prefix insertion is used, the length of the cyclic prefix can be set frame-by-frame without interrupting
frame processing. The cyclic prefix length can be any number of samples from zero to one less than the point size.
The cyclic prefix length is set by the CP_LEN field in the Configuration channel. For example, when N = 1024, the
cyclic prefix length can be from 0 to 1023 samples, and a CP_LEN value of 0010010110 produces a cyclic prefix
consisting of the last 150 samples of the output data.

The initial value and reset value of CP_LEN is 0 (no cyclic prefix). The core uses the log2(point size) MSBs of CP_LEN
for the cyclic prefix length. So, when the point size decreases, the leftover LSBs are ignored. This effectively scales
the cyclic prefix length with the point size, keeping them in approximately constant proportion. However, all bits of
CP_LEN are programmed into the core and are used in later transforms if the point size increases.

Transfer Status

Overflow

Fixed-Point Data

The Overflow (OVFLO) field in the Data Output and Status channels is only available when the Scaled arithmetic is
used. OVFLO is driven high during unloading if any point in the data frame overflowed. For a multichannel core,
there is a separate OVFLO field for each channel.

When an overflow occurs in the core, the data is wrapped rather than saturated, resulting in the transformed data
becoming unusable for most applications.

Floating-Point Data

The Overflow field is used to indicate an exponent overflow when the FFT is processing floating-point data. The
output sample which overflowed is set to +/- Infinity, depending on the sign of the internal result. The Overflow

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 20
Product Specification

Fast Fourier Transform v8.0

field is not asserted when a NaN value is present on the output. NaN values can only occur at the FFT output when
the input data frame contains NaN or +/- Infinity samples.

Block Exponent

The Block Exponent (BLK_EXP) field in the Data Output and the Status channels (used only with the block floating-
point option) contains the block exponent. For a multichannel core, there is a separate BLK_EXP field for each
channel. The value present in the field represents the total number of bits the data was scaled during the transform.
For example, if BLK_EXP has a value of 00101 = 5, this means the associated output data (XK_RE, XK_IM) was scaled
by 5 bits (shifted right by 5 bits), or in other words, was divided by 32, to fully utilize the available dynamic range
of the output data path without overflowing.

XK Index

The XK_INDEX field (if present in the Data Output channel) gives the sample number of the XK_RE/XK_IM data
being presented at the same time. In the case of natural order outputs, XK_INDEX increments from 0 to (point size)
-1. When bit reversed outputs are used, XK_INDEX covers the same range of numbers, but in a bit (or digit) reversed
manner.

For example, when you have an 8 point FFT, XK_INDEX takes on the following values:

If cyclic prefix insertion is used, the cyclic prefix is unloaded first and XK_INDEX counts from (point_size) - (cyclic
prefix length) up to (point size) -1. After the cyclic prefix has been unloaded, or if the cyclic prefix length is zero, the
whole frame of output data is unloaded. XK_INDEX counts from 0 up to (point size) -1 as before. Cyclic Prefix
Insertion is only possible with natural order outputs.

Controlling the FFT

Symbol data to be processed is loaded into the FFT core using the Data Input channel. Processed symbol data is
unloaded using the Data Output channel. Both of these use the AXI4-Stream protocol. Figure 27 shows the basics of
this protocol.

TVALID is driven by the Master component to show that it has data to transfer, and TREADY is driven by the Slave
component to show that it is ready to accept data. When both TVALID and TREADY are high, a transfer takes place.
Points A in the diagram show clock cycles where no data is transferred because neither the Master or the Slave is
ready. Point B shows two clock cycles where data isn't transferred because the Master doesn't have any data to
transfer. This is known as a Master Waitstate. Point C shows a clock cycle where no data is transferred because the

Table 2: XK _INDEX values for 8 point FFT

XK_INDEX with Natural Outputs XK_INDEX with Bit Reversed Outputs

0 (‘b000) 0 (‘b000)

1 (‘b001) 4 (‘b100)

2 (‘b010) 2 (‘b010)

3 (‘b011) 6 (‘b110)

4 (‘b100) 1 (‘b001)

5 (‘b101) 5 (‘b101)

6 (‘b110) 3 (‘b011)

7 (‘b111) 7 (‘b111)

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 21
Product Specification

Fast Fourier Transform v8.0

Slave isn't ready to accept data. This is known as a Slave Waitstate. Master and Slave waitstates can extend for any
number of clock cycles.

Once the master asserts TVALID high, it must remain asserted (and the associated data remain stable) until the
slave asserts TREADY high.

To load a frame into the FFT, the upstream master supplying the XN_RE and XN_IM data simply has to send it when
it is ready. If the FFT core can accept it (which is when s_axis_data_tready = 1) then it is buffered by the FFT
core until it can be processed. If the FFT core cannot accept it (which is when s_axis_data_tready = 0), a slave
waitstate exists in the AXI channel and the master is stalled. Figure 27 shows the loading of the sample data for an
8 point FFT. The upstream master drives TVALID and the FFT drives TREADY. In this case, both the master and the
FFT insert waitstates.

Unloading a frame works in a similar manner, except that the FFT core is the master in this case. When it has XK_RE
and XK_IM data to unload, it asserts its TVALID signal (m_axis_data_tvalid = 1). The downstream slave that
consumes the processed sample data can then accept the data (m_axis_data_tready = 1) or not
(m_axis_data_tready = 0). Figure 27 also shows the unloading of the sample data for an 8 point FFT (with no
cyclic prefix). The FFT drives TVALID and the downstream slave drives TREADY. In this case, both the FFT and the
slave insert waitstates.

The previous description only applies when the core is configured to use Non-Realtime mode. The situation is
different in Realtime mode, which is used to create a smaller and faster design at the expense of flexibility in loading
and unloading data. When the core is configured to use Realtime mode, the following occurs:

1. The TREADY signal on the Data Output channel (m_axis_data_tready) is removed

2. The TREADY signal on the Status channel (m_axis_status_tready) is removed

3. The TVALID signal on the Data Input channel is ignored once the loading of a frame has begun

The first two points mean that neither the downstream slave that consumes processed data, or the downstream
slave that consumes status information, can insert waitstates using TREADY (m_axis_data_tready and
m_axis_status_tready respectively) as the pins are not present on the core. Both slaves must be able to respond
immediately on every clock cycle where the FFT is producing data (m_axis_data_tvalid asserted high or
m_axis_status_tvalid asserted high). If the slave cannot respond immediately, then data will be lost.

The third point is slightly more complex as TVALID (s_axis_data_tvalid) cannot be removed. The upstream
master still controls the start of a frame with TVALID. The FFT does not try to load a frame until the upstream
master has asserted TVALID to provide the first symbol and there is no requirement for the master to supply the
first sample of a frame at any particular time. However, once this has occurred, TVALID is then ignored by the FFT
and it assumes that the master provides symbol data immediately on every clock cycle where TREADY is high. If
the master does not provide data when requested, the data from the last provided symbol is reused and the
event_data_in_channel_halt is asserted to show that the timing requirements have been violated. Please

X-Ref Target - Figure 27

Figure 27: AXI Transfers and Terminology

ACLK

TVALID

TREADY

TDATA

A B A

C

D1 D2 D3 D4 D5 D6 D7 D8

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 22
Product Specification

Fast Fourier Transform v8.0

note that the FFT can still insert waitstates when in Realtime mode. It is only the response to externally induced
waitstates that changes.

Figure 28 shows the upstream master inserting waitstates while loading an 8 point frame in Realtime mode. At
point A, the master has sent one sample to the Data Input Channel. The FFT then inserts a waitstate while it waits
for the FFT processing core to start the transform. This is shown as one cycle here, but it could be longer in certain
cases. At point B, the master inserts two waitstates using TVALID. However, the FFT ignores them and uses the
previous data (D3) for the missing data. It is likely that the processed frame will be corrupted.

At point C, the master starts supplying the last samples of the frame (D7 and later D8) but the FFT has already
started processing the frame and inserts a waitstate. The Master and the FFT are now out of synchronisation. When
the FFT finishes processing the frame and is ready for a new frame, it sees D7 as the first symbol of the new frame
and starts to consume another 8 samples.

It is important that Realtime mode is only selected when the appropriate external masters and slaves can meet the
timing requirements on supplying and consuming data.

Transfer Timing

The FFT starts to process a frame as soon as a) the upstream master asks it to by supplying data to process, and b)
when it is able to. The chosen architecture and cyclic prefix insertion are the major configuration options that affect
when the FFT is able to process a new frame.

The following timing diagrams are generalisations of actual behaviour used to show the broad phases the FFT
moves through when processing frames, and how these phases can (or cannot) overlap. The lengths of the various
phases are not to scale, and the processing time may be much longer than the time required to input or output a
frame.

In particular, the behaviour of TREADY on the input data channel is not fully accurate as the Data Input channel
buffers the data (16 symbols in Non-Realtime mode and 1 symbol in Realtime mode). However, this data waits in
the buffer until the FFT processing core is ready for it. The Data Input channel's TREADY in these diagrams is used
as an indication of when the FFT processing core wants data rather than when the AXI channel (with its buffer)
wants data.

Pipelined Streaming I/O with no Cyclic Prefix Insertion

When Pipelined Streaming I/O is selected and no cyclic prefix is used, the FFT can overlap the loading of a frame
with the processing and unloading of earlier frames. If the upstream master supplies the first symbol for a new
frame immediately after the last symbol for the previous frame, the FFT starts loading it immediately.

X-Ref Target - Figure 28

Figure 28: Incorrect transfer in Realtime mode

ACLK

TVALID

TREADY

TDATA

Data processed by FFT

B

A C

D1 D2 D3 D4 D5 D6 D7

D1 D2 D3 D3 D3 D4 D5 D6

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 23
Product Specification

Fast Fourier Transform v8.0

Figure 29 shows the general timing for back-to-back frames in the Pipelined Streaming architecture.

Note that there is a latency between a frame being loaded and the processed data for that frame being available.
This latency depends on the options chosen in the GUI to parameterise the core. However, once that latency has
passed, processed frames appear back-to-back.

Pipelined Streaming I/O with Cyclic Prefix Insertion

If cyclic prefix insertion is used, more samples are unloaded from the core than are loaded. Therefore, the core
cannot continuously stream frames, but must insert a gap of cyclic prefix length clock cycles in between each frame
of input data to accommodate the additional clock cycles required to unload the cyclic prefix (see Figure 30). This is
indicated by the TREADY signal on the Data Input channel. This goes low to allow the FFT time to unload the cyclic
prefix
.

X-Ref Target - Figure 29

Figure 29: Transfer timing for entire frames in Pipelined Streaming I/O with no Cyclic Prefix Insertion

X-Ref Target - Figure 30

Figure 30: Transfer timing for entire frames in Pipelined Streaming I/O with Cyclic Prefix Insertion

g p g (y p)

Data In Channel

s_axis_data_tvalid

s_axis_data_tready

FFT stage 1

FFT stage 2

FFT stage X

Data Out Channel

m_axis_data_tvalid

m_axis_data_tready

Data Frame A Data Frame B Data Frame C

Process Frame A Process Frame B Process Frame C

Process Frame A Process Frame B Process Frame C

Process Frame A Process Frame B Process Frame C

Data Frame A Data Frame B Data Frame C

N Cycles N Cycles N Cycles

N Cycles N Cycles N Cycles

N Cycles N Cycles N Cycles

Data In Channel

s_axis_data_tvalid

s_axis_data_tready

FFT stage 1

FFT stage 2

FFT stage X

Data Out Channel

m_axis_data_tvalid

m_axis_data_tready

Data Frame A Data Frame B Data Frame C

Process Frame A Process Frame B Process Frame C

Process Frame A Process Frame B Process Frame C

Process Frame A Process Frame B Process Frame C

Data Frame A Data Frame B Data Frame C

N Cycles N Cycles N Cycles

N + cp_len Cycles N + cp_len Cycles N + cp_len Cycles

N + cp_len Cycles N Cycles N Cycles

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 24
Product Specification

Fast Fourier Transform v8.0

Burst I/O Architectures

The Burst I/O architectures do not allow frame overlapping to the same degree as the Pipelined Streaming I/O
architecture. When natural ordered outputs are used, a frame has to be processed and unloaded before the FFT can
start to load the following frame(1). When bit reversed outputs are used, the FFT only unloads data when a new
frame is loaded. This means that the loading of frame N+1 overlaps with (and actually causes) the unloading of
frame N. However, if the upstream master does not supply data to the FFT when it is ready to start unloading a
frame, the FFT will flush the frame out manually. If this occurs, the loading and unloading phases do not overlap.

Figure 31 shows the general transform timing for a Burst I/O architecture with natural ordered outputs. This
requires distinct load, process and unload phases. The upstream master is constantly attempting to stream data as
is the downstream slave. These examples do not show the effect of a cyclic prefix, which is to extend the unloading
phase.

The Upstream Master loads all of the data for Frame A into the Data Input Channel of the FFT. As the FFT is loading
this data to process it, the buffer in the channel never fills. However, the master immediately starts sending data for
Frame B. At point A in the waveform, the buffer in the Data Input channel fills, because the FFT is processing frame
A and no longer draining the buffer. This can be seen externally as s_axis_data_tready going low. The Data
Input Channel will remain in a slave waitstate situation, where the FFT cannot accept data from the upstream
Master, until point B. At this point the FFT has unloaded frame A and started loading Frame B into the processing
core. This drains the buffer in the Data Input Channel, which unblocks the Upstream Master and allows it to send
the remaining data for Frame B. The situation then repeats itself with Frame C.

The important points here are:

1. Activity on the AXI interface to the Data Input channel does not necessarily correlate to the activity inside the
FFT. For example, just before point A, the channel loads sample data for frame B yet the FFT is internally
processing Frame A.

2. The Upstream Master cannot always stream frame data without reference to s_axis_data_tready.

3. The FFT unloads a frame before loading the subsequent frame.

Figure 32 is similar to Figure 31, except that the FFT is configured to have bit reversed outputs. As the upstream
master is always supplying data, the loading and unloading of frames can overlap.

Figure 33 is similar to Figure 32, except that the upstream master does not supply data for Frame B until the FFT has
started flushing out Frame A. As the FFT has already started flushing Frame A, it will complete this before loading
Frame B. The loading and unloading of frames do not overlap.

In this example, s_axis_data_tready remains high at Point A. Loading Frame A into the FFT drained the buffer
in the Data Input Channel, and as the Upstream Master didn't send any new data, the buffer is empty. The FFT is
ready to accept new frame data at point A although it isn't able to do anything with it at this point. At point B the
Upstream Master starts to send data from Frame B. This fills the buffer in the Data Input Channel, but as the FFT is
committed to flushing Frame A, the buffer fills and the FFT stalls the Upstream Master with waitstates. At point C,
the FFT has started loading Frame B to process it, so the buffer drains and more data can be accepted to finish off
Frame B.

The key difference between the situation in Figure 32 and Figure 33 is that the master in Figure 32 has provided new
frame data during the processing phase of the previous frame. As a result, the FFT knows there is a new frame

1. This refers to the FFT processing core. As the Data In channel has a 16 element deep buffer on its input, it can start to pre-buffer a frame while
a frame is still being processed. In the case of 8 and 16 point FFTs, it can pre-buffer entire frames. However, this buffered data waits in the
buffer until the FFT engine has finished dealing with the current frame.

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 25
Product Specification

Fast Fourier Transform v8.0

coming so when processing finishes, it starts to load the new frame as this will flush the old frame out. In Figure 33,
the master did not provide data (and therefore did not tell the FFT that there would be a new frame) during the
processing phase, so when the FFT finishes processing the frame, it moves to a flushing phase where it is no longer
possible to load a new frame. Even if the master provides a sample for the new frame a cycle after unloading has
begin, that sample will not be loaded until the FFT is finished unloading the old frame.

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 26
Product Specification

Fast Fourier Transform v8.0

X-Ref Target - Figure 31

Figure 31: Transfer timing for entire frames in Burst I/O mode with natural ordered outputs

D
at

a
In

 C
ha

nn
el

s_
ax

is
_d

at
a_

tv
al

id

s_
ax

is
_d

at
a_

tre
ad

y

FF
T

D
at

a
O

ut
 C

ha
nn

el

m
_a

xi
s_

da
ta

_t
va

lid

m
_a

xi
s_

da
ta

_t
re

ad
y

Fr
am

e
A

Fr
am

e
B

Fr
am

e
C

A
B

A

Lo
ad

 F
ra

m
e

A
Pr

oc
es

s
Fr

am
e

A
U

nl
oa

d
Fr

am
e

A
Lo

ad
 F

ra
m

e
B

Pr
oc

es
s

Fr
am

e
B

U
nl

oa
d

Fr
am

e
B

Fr
am

e
A

Fr
am

e
B

W
ai

tin
g

on
 F

FT
 to

 a
cc

ep
t m

or
e

da
ta

W
ai

tin
g

on
 F

FT
 to

 a
cc

ep
t m

or
e

da
ta

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 27
Product Specification

Fast Fourier Transform v8.0

X-Ref Target - Figure 32

Figure 32: Transfer timing for entire frames in Burst I/O mode with bit reversed outputs

D
at

a
In

 C
ha

nn
el

s_
ax

is
_d

at
a_

tv
al

id

s_
ax

is
_d

at
a_

tr
ea

dy

F
F

T

D
at

a
O

ut
 C

ha
nn

el

m
_a

xi
s_

da
ta

_t
va

lid

m
_a

xi
s_

da
ta

_t
re

ad
y

F
ra

m
e

A
F

ra
m

e
B

F
ra

m
e

C

A
B

A

Lo
ad

 F
ra

m
e

A
P

ro
ce

ss
 F

ra
m

e
A

U
nl

oa
d

A
 ~

 L
oa

d
B

P
ro

ce
ss

 F
ra

m
e

B
U

nl
oa

d
B

 ~
 L

oa
d

C

F
ra

m
e

A
F

ra
m

e
B

W
ai

tin
g

on
 F

F
T

 to
 a

cc
ep

t m
or

e
da

ta
W

ai
tin

g
on

 F
F

T
 to

 a
cc

ep
t m

or
e

da
ta

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 28
Product Specification

Fast Fourier Transform v8.0

X-Ref Target - Figure 33

Figure 33: Transfer timing for entire frames in Burst I/O mode with bit reversed outputs when the FFT has to
flush the frame itself

D
at

a
In

 C
ha

nn
el

s_
ax

is
_d

at
a_

tv
al

id

s_
ax

is
_d

at
a_

tr
ea

dy

F
F

T

D
at

a
O

ut
 C

ha
nn

el

m
_a

xi
s_

da
ta

_t
va

lid

m
_a

xi
s_

da
ta

_t
re

ad
y

F
ra

m
e

A
F

ra
m

e
B

A
B

C

Lo
ad

 F
ra

m
e

A
P

ro
ce

ss
 F

ra
m

e
A

F
lu

sh
 F

ra
m

e
A

Lo
ad

 F
ra

m
e

B
P

ro
ce

ss
 F

ra
m

e
B

F
lu

sh
 F

ra
m

e
B

F
ra

m
e

A
F

ra
m

e
B

S
ta

lle
d

un
til

 fl
us

h
fin

is
he

d

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 29
Product Specification

Fast Fourier Transform v8.0

Configuring the FFT

FFT transforms are configured using the Configuration channel. Details about the configuration information
carried in this channel, and how it is packed, is discussed in more detail in section Configuration Channel, page 48.
When the FFT is ready to load a new frame for processing, it checks to see if a new configuration has been supplied
on the Configuration channel. If it has, the FFT processing core is configured using that information before the
frame is loaded. If no new configuration information has been supplied then the FFT processes the frame using the
last configuration it had. If no configuration has ever been supplied, then the core defaults described in aresetn
(Synchronous Clear), page 44 are used.

The process of applying configuration data to a particular frame depends on the current status of the FFT:

1. To apply a configuration to the very first frame after power on or after an idle period

2. To apply the configuration to the next frame in a sequence of frames

Applying a New Configuration While Idle

If the FFT core is idle (that is, it isn't loading, processing or unloading any frames), it waits for either frame data or
configuration data to decide what action to take next. If new frame data is seen by the FFT control module without
new configuration information being seen, then the FFT starts to process a frame using the existing configuration.
If configuration information is seen before frame data, or on the same clock edge as frame data, then the
configuration is applied to that frame.

To ensure that the configuration data is applied before the frame is processed, the configuration information should
be written to the Configuration channel with the following timing:

• Realtime Mode: the write of configuration data to the Configuration channel must complete at least 1 clock
cycle before the write of the first data to the Data Input channel. Failure to do so results in the frame being
processed with the previous configuration options in use.

• Non-Realtime Mode: the write of configuration data to the Configuration channel can happen before or with
the write of the first data to the Data Input channel.

Perhaps the easiest way to satisfy this in a system context is to configure the FFT before enabling the upstream data
master.

Applying a New Configuration While Streaming Frames

Once the upstream master is active and sending frame data to the FFT core, it becomes difficult to use the previous
technique to synchronise configuration with particular frames as data for a new frame may have already been
loaded into the Data Input channel. The recommended way of synchronising configuration to frames is to use the
event_frame_started signal.

This signal is asserted high when the FFT starts to load data for a frame into the FFT processing core. This is a
known safe point to send configuration information for the next frame. Configuration data sent after this may or
may not be applied to the subsequent frame, depending on the frame size and the latency between
event_frame_started asserting and the configuration write occurring.

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 30
Product Specification

Fast Fourier Transform v8.0

How Changing the Configuration can Change Transfer Timing

There are two situations where changing the configuration can temporarily reduce the throughput of the FFT core:

1. A Pipelined Streaming FFT is processing frames and the transform size (NFFT) is changed.

2. A Burst I/O FFT with bit reversed outputs is processing a frame, and the master supplies frame data in time to
avoid the FFT automatically flushing the frame, and the transform size (NFFT) is changed.

Both the Pipelined Streaming architecture and the Burst I/O architectures (when bit reversed outputs are used)
implement pipelining to achieve better throughput. In the case of the Pipelined Streaming architecture, it pipelines
the loading, processing and unloading of entire frames (see Figure 29). In Burst I/O architectures when bit reversed
outputs are used, the FFT implements a partial pipeline to overlap the loading on one frame with the unloading of
another (see Figure 32).

However, a change to the transform size can only be applied when the pipeline is empty. Changing the transform
size when the pipeline is not empty would result in data loss, so the FFT prevents this. When new configuration
information is sent to the Configuration channel, and that information contains a change in transform size, the FFT
will not load any more frames until all frames already in the pipeline are processed and unloaded.

This is all handled automatically by the FFT core, allowing the user to send the configuration information at any
time they desire. However, throughput will drop until the pipeline is fully flushed. This behaviour only occurs if the
transform size is to change. All other configuration options can be applied without waiting for the FFT's pipeline to
empty.

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 31
Product Specification

Fast Fourier Transform v8.0

Pinout

This section describes the core ports as shown in Figure 34 and described in Table 3.

X-Ref Target - Figure 34

Figure 34: Core Schematic Symbol

Table 3: Core Signal Pinout

Name Direction Optional Description

aclk Input No Rising-edge clock.

aclken Input Yes Active-high clock enable (optional).

aresetn Input Yes Active-low synchronous clear (optional, always take priority over
aclken).
A minimum aresetn active pulse of two cycles is required.

s_axis_config_tvalid Input No TVALID for the Configuration channel.
Asserted by the external master to signal that it is able to provide
data.

s_axis_config_tready Output No TREADY for the Configuration channel.
Asserted by the FFT to signal that it is ready to accept data.

s_axis_config_tdata Input No TDATA for the Configuration channel.
Carries the configuration information: CP_LEN, FWD/INV, NFFT
and SCALE_SCH.
See Section Run-Time Transfer Configuration.

s_axis_data_tvalid Input No TVALID for the Data Input channel.
Used by the external master to signal that it is able to provide data.

s_axis_data_tready Output No TREADY for the Data Input channel.
Used by the FFT to signal that it is ready to accept data.

s_axis_config_tdata

s_axis_config_tvalid

s_axis_config_tready

s_axis_data_tdata

s_axis_data_tvalid

s_axis_data_tready

s_axis_data_tlast

aclk

aresetn

aclken

m_axis_data_tdata

m_axis_data_tvalid

m_axis_data_tready

m_axis_data_tuser

m_axis_data_tlast

m_axis_status_tdata

m_axis_status_tvalid

m_axis_status_tready

event_frame_started

event_tlast_unexpected

event_tlast_missing

event_fft_overflow

event_data_in_channel_halt

event_data_out_channel_halt

event_status_channel_halt

DS808_01_080910

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 32
Product Specification

Fast Fourier Transform v8.0

s_axis_data_tdata Input No TDATA for the Data Input channel.
Carries the unprocessed sample data: XN_RE and XN_IM.
See section Data Input Channel.

s_axis_data_tlast Input No TLAST for the Data Input channel.
Asserted by the external master on the last sample of the frame.
This is not used by the FFT except to generate the events
event_tlast_unexpected and
event_tlast_missing events

m_axis_data_tvalid Output No TVALID for the Data Output channel.
Asserted by the FFT to signal that it is able to provide sample
data.

m_axis_data_tready Input No TREADY for the Data Output channel.
Asserted by the external slave to signal that it is ready to accept
data. Only present in “Non-Realtime” mode.

m_axis_data_tdata Output No TDATA for the Data Output channel.
Carries the processed sample data XK_RE and XK_IM.
See section Data Output Channel.

m_axis_data_tuser Output No TUSER for the Data Output channel.
Carries additional per-sample information, such as XK_INDEX,
OVFLO and BLK_EXP.
See section Data Output Channel.

m_axis_data_tlast Output No TLAST for the Data Output channel.
Asserted by the FFT on the last sample of the frame.

m_axis_status_tvalid Output No TVALID for the Status channel.
Asserted by the FFT to signal that it is able to provide status data.

m_axis_status_tready Input No TREADY for the Status channel.
Asserted by the external slave to signal that it is ready to accept
data. Only present in “Non-Realtime” mode

m_axis_status_tdata Output No TDATA for the Status channel.
Carries the status data: BLK_EXP or OVFLO.
See section Status Channel.

event_frame_started Output No Asserted when the FFT starts to process a new frame.
See section event_frame_started.

event_tlast_unexpected Output No Asserted when the FFT sees s_axis_data_tlast high on a
data sample that isn't the last one in a frame.
See section event_tlast_unexpected.

event_tlast_missing Output No Asserted when s_axis_data_tlast is low on the last data
sample of a frame.
See section event_tlast_missing.

event_fft_overflow Output No Asserted when an overflow is seen in the data samples being
unloaded from the Data Output channel. Only present when
overflow is a valid option.
See section event_fft_overflow.

event_data_in_channel_halt Output No Asserted when the FFT requests data from the Data Input
channel and none is available.
See section event_data_in_channel_halt.

Table 3: Core Signal Pinout (Cont’d)

Name Direction Optional Description

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 33
Product Specification

Fast Fourier Transform v8.0

Note that all AXI4-Stream port names are lower case, but for ease of visualization, upper case is used in this
document when referring to port name suffixes, such as TDATA or TLAST.

CORE Generator Graphical User Interface
The FFT core graphical user interface (GUI) provides several screens with fields to set the parameter values for the
particular instantiation required. A description of each CORE Generator GUI field follows:

Page 1
• Component Name: The name of the core component to be instantiated. The name must begin with a letter and

be composed of the following characters: a to z, A to Z, 0 to 9, and “_”.

• Channels: Select the number of channels from 1 to 12. Multichannel operation is available for the three Burst
I/O architectures.

• Transform Length: Select the desired point size. All powers of two from 8 to 65536 are available.

• Implementation Options: Select an implementation option, as described in Architecture Options, page 14.

• The Pipelined Streaming I/O, Radix-2 Burst I/O, and Radix-2 Lite Burst I/O architectures support point
sizes 8 to 65536.

• The Radix-4 Burst I/O architecture supports point sizes 64 to 65536.

• Check Automatically Select to choose the smallest implementation that meets the specified Target Data
Throughput, provided the specified Target Clock Frequency is achieved when the FFT core is
implemented on an FPGA device.

• Target Clock Frequency and Target Data Throughput are only used to automatically select an
implementation and to calculate latency. The core is not guaranteed to run at the specified target clock
frequency or target data throughput.

• Transform Length Options: Select the transform length to be run-time configurable or not. The core uses fewer
logic resources and has a faster maximum clock speed when the transform length is not run-time configurable.

Page 2
• Data Format: Select whether the input and output data samples are in Fixed Point format, or in IEEE-754

single precision (32-bit) Floating-Point format. Floating-Point format is not available when the core is in a
multichannel configuration.

• Precision Options: Input data and phase factors can be independently configured to widths from 8 to 34 bits,
inclusive. When the Data Format is Floating-Point, the input data width is fixed at 32 bits and the phase factor
width can be set to 24 or 25 bits depending on the noise performance required and available resources.

• Scaling Options: Three options are available, for all architectures:

• Unscaled

- All integer bit growth is carried to the output. This can use more FPGA resources.

event_data_out_channel_halt Output No Asserted when the FFT tries to write data to the Data Output
channel and it is unable to do so. Only present in “Non-Realtime”
mode.
See section event_data_out_channel_halt.

event_status_channel_halt Output No Asserted when the FFT tries to write data to the Status channel
and it is unable to do so. Only present in “Non-Realtime” mode.
See section event_status_channel_halt.

Table 3: Core Signal Pinout (Cont’d)

Name Direction Optional Description

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 34
Product Specification

Fast Fourier Transform v8.0

• Scaled

- A user-defined scaling schedule determines how data is scaled between FFT stages.

• Block Floating-Point

- The core determines how much scaling is necessary to make best use of available dynamic range, and
reports the scaling factor as a block exponent.

• Control Signals: Clock Enable (aclken) and Synchronous Clear (aresetn) are optional pins. Synchronous
Clear overrides Clock Enable if both are selected. If an option is not selected, some logic resources may be
saved and a higher clock frequency may be attainable.

• Optional Output Fields: XK_INDEX is an optional field in the Data Output Channel. OVFLO is an optional
field in both the Data Output channel and Status Channel.

• Throttle Schemes: Select trade off between performance and data timing requirements. Realtime mode
typically gives a smaller and faster design, but has strict constraints on when data must be provided and
consumed. Non-Realtime mode has no such constraints, but the design may be larger and slower. See
Controlling the FFT for more details.

• Rounding Modes: At the output of the butterfly, the LSBs in the data path need to be trimmed. These bits can
be truncated or rounded using convergent rounding, which is an unbiased rounding scheme. When the
fractional part of a number is equal to exactly one-half, convergent rounding rounds up if the number is odd,
and rounds down if the number is even. Convergent rounding can be used to avoid the DC bias that would
otherwise be introduced by truncation after the butterfly stages. Selecting this option increases slice usage and
yields a small increase in transform time due to additional latency.

• Output Ordering: Output data selections are either Bit/Digit Reversed Order or Natural Order. The Radix-2
based architectures (Pipelined Streaming I/O, Radix-2 Burst I/O and Radix-2 Lite Burst I/O) offer bit-reversed
ordering, and the Radix-4 based architecture (Radix-4 Burst I/O) offers digit-reversed ordering. For the
Pipelined Streaming I/O architecture, selecting natural order output ordering results in an increase in memory
used by the core. For Burst I/O architectures, selecting natural order output increases the overall transform
time because a separate unloading phase is required.

• Cyclic Prefix Insertion can be selected if the output ordering is Natural Order. Cyclic Prefix Insertion is
available for all architectures, and is typically used in OFDM wireless communications systems.

Page 3
• Memory Options:

• Data And Phase Factors (Burst I/O architectures): For Burst I/O architectures, either block RAM or
distributed RAM can be used for data and phase factor storage. Data and phase factor storage can be in
distributed RAM for all point sizes up to and including 1024 points.

• Data And Phase Factors (Pipelined Streaming I/O): In the Pipelined Streaming I/O solution, the data can
be stored partially in block RAM and partially in distributed RAM. Each pipeline stage, counting from the
input side, uses smaller data and phase factor memories than preceding stages. You can select the number
of pipeline stages that use block RAM for data and phase factor storage. Later stages use distributed RAM.
The default displayed on the GUI offers a good balance between both. If output ordering is Natural Order,
the memory used for the reorder buffer can be either block RAM or distributed RAM. The reorder buffer
can use distributed RAM for point sizes less than or equal to 1024.

- When block floating-point is selected for the Pipelined Streaming I/O architecture, a RAM buffer is
required for natural order and bit reversed order output data. In this case, the reorder buffer options
remain available and distributed RAM may be selected for all point sizes below 2048.

• Hybrid Memories: Where data, phase factor, or reorder buffer memories are stored in block RAM, if the
size of the memory is greater than one block RAM, the memory can be constructed from a hybrid of block
RAMs and distributed RAM, where the majority of the data is stored in block RAMs and a few bits that are
left over are stored in distributed RAM. This Hybrid Memory is an alternative to constructing the memory
entirely from multiple block RAMs. It provides a reduction in the block RAM count, at the cost of an

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 35
Product Specification

Fast Fourier Transform v8.0

increase in the number of slices used. Hybrid Memories are only available when block RAM is used for
one or more memories and the number of slices required for a Hybrid Memory implementation is below
an internal threshold of 256 LUTs per memory. If these conditions are met, Hybrid Memories are made
available and can be selected.

• Optimize Options:

• Complex Multipliers: Three options are available for customization of the complex multiplier
implementation:

- Use CLB logic: All complex multipliers are constructed using slice logic. This is appropriate for target
applications that have low performance requirements, or target devices that have few XtremeDSP
slices.

- Use 3-multiplier structure (resource optimization): All complex multipliers use a three real multiply,
five add/subtract structure, where the multipliers use XtremeDSP slices. This reduces the XtremeDSP
slice count, but uses some slice logic. This structure can make use of the XtremeDSP slice pre-adder to
reduce or remove the need for extra slice logic, and improve performance.

- Use 4-multiplier structure (performance optimization): All complex multipliers use a four real
multiply, two add/subtract structure, utilizing XtremeDSP slices. This structure yields the highest
clock performance at the expense of more dedicated multipliers. In devices with XtremeDSP slices, the
add/subtract operations are implemented within the XtremeDSP slices.

Note: The core may override the complex multiplier implementation internally to ensure the fewest number of
XtremeDSP slices are used, without impacting performance. For this reason, some core configurations may show no
difference in XtremeDSP slice usage when toggling between the 3-multiplier and 4-multiplier options. If “Use CLB logic”
is selected, however, slice logic is always utilized.

• Butterfly Arithmetic: Two options are available for customization of the butterfly implementation:

- Use CLB logic: All butterfly stages are constructed using slice logic.

- Use XtremeDSP Slices: For devices with XtremeDSP slices, this option forces all butterfly stages to be
implemented using the adder/subtracters in XtremeDSP slices.

Information Tabs
• Implementation Details:

• Implementation: This field displays the currently selected architecture. This is useful to see the result of
automatic architecture selection.

• Transform Size: When the transform length is run-time configurable, the core has the ability to reprogram
the point size while the core is running; that is, the core can support the selected point size and any smaller
point size. This field displays the supported point sizes based on the Transform Length, Transform Length
Options, and the Implementation Options selected.

• Output Data Width: The output data width equals the input data width for scaled arithmetic and block
floating-point arithmetic. With unscaled arithmetic, the output data width equals (input data width +
log2(point size) + 1).

• Resource Estimates: Based on the options selected, this field displays the XtremeDSP slice count and 18K
block RAM numbers (9K block RAM numbers for Spartan-6 devices). The resource numbers are just an
estimate. For exact resource usage, and slice/LUT-FlipFlop pair information, a MAP report should be
consulted.

• AXI4-Stream Port Structure: This section shows how the FFT's fields are mapped to the AXI channels.
This information can be copied to the Clipboard and pasted as plain text into other applications.

• Latency:

• This tab shows the latency of the FFT core in clock cycles and microseconds (μs) for each point size
supported. The latency is from the Upstream Master supplying the first sample of a frame to the last
sample of output data coming out of the core, assuming that the FFT core was idle and neither the

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 36
Product Specification

Fast Fourier Transform v8.0

Upstream Master or the Downstream Slave inserted wait states. This is not the minimum number of cycles
between starting consecutive frames, as frames may overlap in some cases. The latency in microseconds is
based on the target clock frequency. The latency figures can be copied to the Clipboard and pasted as plain
text into other applications.

• C Model:

• This tab provides a link to the Xilinx LogiCORE IP FFT web page where the core C model can be
downloaded. For details of the C model, see Bit Accurate C Model, page 38.

Using the FFT IP Core

Simulation Models
When the core is generated using the CORE Generator software, a UniSim-based simulation model is created. The
FFT core does not have a VHDL or Verilog functional behavioral model. For this reason, the core overrides the
CORE Generator Project Options and always delivers a Structural model type.

Xilinx recommends that the designer run simulations using a resolution of 1 ps. Some Xilinx library components
require a 1 ps resolution to work properly in either functional or timing simulation. The FFT core UniSim-based
structural model may produce incorrect results if simulated with a resolution other than 1 ps. See the “Register
Transfer Level (RTL) Simulation Using Xilinx Libraries” section in Chapter 6 of the Synthesis and Simulation Design
Guide for more information. This document is part of the ISE® Design Suite Manual set available at
www.xilinx.com/support/software_manuals.htm.

www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 37
Product Specification

Fast Fourier Transform v8.0

XCO Parameters

Table 4 defines valid entries for the XCO parameters. Parameters are not case sensitive. Default values are displayed
in bold. Xilinx strongly recommends that XCO parameters are not manually edited in the XCO file; instead, use the
CORE Generator GUI to configure the core and perform range and parameter value checking.

Table 4: XCO Parameters

XCO Parameter Valid Values

component_name Name must begin with a letter and be composed of the following
characters: a to z, A to Z, 0 to 9, and “_”.

channels 1 - 12 (default value is 1)

transform_length 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768,
65536

implementation_options automatically_select
pipelined_streaming_io
radix_4_burst_io
radix_2_burst_io
radix_2_lite_burst_io

target_clock_frequency 0 - 550 (default is 250)

target_data_throughput 0 - 550 (default is 50)

run_time_configurable_transform_length false
true

data_format fixed_point
floating_point

input_width 8 - 34 (default value is 16)

phase_factor_width 8 - 34 (default value is 16)

scaling_options scaled
unscaled
block_floating_point

rounding_modes truncation
convergent_rounding

aclken false
true

aresetn false
true

ovflo false
true

xk_index false
true

throttle_scheme nonrealtime
realtime

output_ordering bit_reversed_order
natural_order

cyclic_prefix_insertion false
true

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 38
Product Specification

Fast Fourier Transform v8.0

Bit Accurate C Model

The FFT core has a bit-accurate C model designed for system modeling and selecting parameters before generating
an FFT core. The model is bit-accurate but not cycle-accurate, so it produces exactly the same output data as the core
on a frame-by-frame basis. However, it does not model the core latency or its interface signals.

The C model is generally required before generating an FFT core, so it is not delivered as an output of CORE
Generator software. Instead it is available for download on the Xilinx LogiCORE IP FFT web page at
www.xilinx.com/products/ipcenter/FFT.htm. The C model is available as a dynamically-linked library for 32-bit
and 64-bit Windows platforms, and 32-bit and 64-bit Linux platforms. The C model may also be compiled into a
MATLAB software MEX function. Download a zip file and unzip it to install the C model. A README.txt file
describes the contents of the installed directory structure, and any further platform-specific installation
instructions.

C Model Interface

The C model is used through three functions, declared in the header file xfft_v8_0_bitacc_cmodel.h:

struct xilinx_ip_xfft_v8_0_state*
xilinx_ip_xfft_v8_0_create_state(struct xilinx_ip_xfft_v8_0_generics generics);

int xilinx_ip_xfft_v8_0_bitacc_simulate
(
 struct xilinx_ip_xfft_v8_0_state* state,
 struct xilinx_ip_xfft_v8_0_inputs inputs,
 struct xilinx_ip_xfft_v8_0_outputs* outputs
);

void xilinx_ip_xfft_v8_0_destroy_state(struct xilinx_ip_xfft_v8_0_state* state);

The first function, xilinx_ip_xfft_v8_0_create_state, creates a new state structure for the FFT C model,
allocating memory to store the state as required, and returns a pointer to that state structure. The state structure
contains all information required to define the FFT being modeled. The function is called with a structure

memory_options_data block_ram
distributed_ram

memory_options_phase_factors block_ram
distributed_ram

memory_options_reorder block_ram
distributed_ram

number_of_stages_using_block_ram_for_data_and_p
hase_factors

0 - 11 (default value depends on transform length)

memory_options_hybrid false
true

complex_mult_type use_luts
use_mults_resources
use_mults_performance

butterfly_type use_luts
use_xtremedsp_slices

Table 4: XCO Parameters (Cont’d)

XCO Parameter Valid Values

www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=FFT
http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 39
Product Specification

Fast Fourier Transform v8.0

containing the core generics: these are all of the parameters that define the bit-accurate numerical performance of
the core, represented as integers, and are derived from the XCO parameters that are the result of selections in the
CORE Generator GUI. The generics required for the C model and their mappings from XCO parameters are shown
in Table 5.

After a state structure has been created, it can be used as many times as required to simulate the FFT core. A
simulation is run using the second function, xilinx_ip_xfft_v8_0_bitacc_simulate. Call this function
with the pointer to the existing state structure, and structures to hold the inputs and outputs of the C model. These
input and output structures are fully defined and described in the C model header file. Note that memory for all
input and output data arrays must be allocated by the calling program before simulating the C model.

Finally, the state structure must be destroyed to free up any memory used to store the state, using the third function,
xilinx_ip_xfft_v8_0_destroy_state, called with the pointer to the existing state structure.

If the generics of the core need to be changed, destroy the existing state structure and create a new state structure
using the new generics. There is no way to change the generics of an existing state structure.

An example C++ file, run_bitacc_cmodel.c, is included in the C model zip file. This shows all of the stages
required to run the C model.

Due to differences between the FFT core and the C model in the order of operations within the processing phase,
when using the Pipelined Streaming I/O architecture, if fixed-point data is being processed, the scaling option is
Scaled and overflow occurs, the xk_re and xk_im data outputs of the C model may not match the XK_RE and
XK_IM data outputs of the core. The overflow output of the C model and the OVFLO output of the core (if present)
do match in all cases. The overflow output of the C model is always set correctly when the scaling option is Scaled
(when the C model generics C_HAS_SCALING = 1 and C_HAS_BFP = 0).

Table 5: C Model Generics

Generic Description Range XCO parameter and mapping

C_NFFT_MAX log2(maximum point size) 3-16 transform_length: take log2

C_ARCH Architecture 1-4 implementation_options:
radix_4_burst_io => 1,
radix_2_burst_io => 2,
pipelined_streaming_io => 3,
radix_2_lite_burst_io => 4

C_HAS_NFFT Run-time configurable transform
length

0,1 run_time_configurable_transform_length:
false => 0,
true => 1

C_INPUT_WIDTH Input data width (bits) 8-34 input_width

C_TWIDDLE_WIDTH Phase factor width (bits) 8-34 phase_factor_width

C_USE_FLT_PT Input/output data format 0,1 data_format:
fixed_point => 0,
floating_point => 1

C_HAS_SCALING Scaling option: unscaled or not.
Ignored when C_USE_FLT_PT = 1

0,1 scaling_options:
unscaled => 0,
scaled / block_floating_point => 1

C_HAS_BFP Scaling option: if not unscaled,
scaled or block floating-point.
Ignored when C_USE_FLT_PT = 1

0,1 scaling_options:
unscaled / scaled => 0,
block_floating_point => 1

C_HAS_ROUNDING Rounding mode.
Ignored when C_USE_FLT_PT = 1

0,1 rounding_modes:
truncation => 0,
convergent_rounding => 1

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 40
Product Specification

Fast Fourier Transform v8.0

Therefore, Xilinx recommends that the overflow output of the C model is always checked when the scaling option
is Scaled and the architecture is Pipelined Streaming I/O, and if overflow has occurred (overflow output = 1), the
xk_re and xk_im outputs of the C model are ignored. This is the only case where the C model is not entirely bit-
accurate to the core.

Using the C Model to Select a Scaling Schedule

When the scaling option for the FFT core is Scaled, you have great flexibility to set the scaling schedule that
determines by how much to scale data values at each stage of the FFT processing phase. See Forward/Inverse and
Scaling Schedule, page 18. It can be difficult to choose the best scaling schedule that avoids overflow in a
sufficiently large proportion of frames for a particular type of input data. The C model is a tool that can help with
the selection of a scaling schedule. A process for this is as follows:

1. Create a set of frames of typical FFT input data for the intended application.

2. Create a state structure using the required generics. Set the scaling option to Scaled by setting the C model
generics C_HAS_SCALING = 1 and C_HAS_BFP = 0.

3. Set the scaling schedule in the structure of inputs to some initial scaling schedule, such as the reset value of 1 in
each stage for Radix-2 Burst I/O and Radix-2 Lite Burst I/O architectures, or 2 in each stage for Radix-4 Burst
I/O, and Pipelined Streaming I/O architectures.

4. Simulate the C model with each frame of typical input data in turn. Count the number of frames in which
overflow occurred (overflow output was 1).

5. If the percentage of frames in which overflow occurred is lower than the acceptable overflow rate, reduce the
scaling value in one or more stages in the scaling schedule. If the percentage of frames in which overflow
occurred is higher than the acceptable overflow rate, increase the scaling value in one or more stages in the
scaling schedule.

6. Repeat stages 4 and 5 until the percentage of frames in which overflow occurred matches the acceptable
overflow rate.

This process produces a scaling schedule that is tailored to the typical FFT input data for the intended application.

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 41
Product Specification

Fast Fourier Transform v8.0

Demonstration Testbench
When the core is generated using CORE Generator, a demonstration testbench is created. This is a simple VHDL
testbench that exercises the core.

The demonstration testbench source code is one VHDL file: demo_tb/tb_<component_name>.vhd in the CORE
Generator output directory. The source code is comprehensively commented.

Using the Demonstration Testbench

The demonstration testbench instantiates the generated FFT core. If the CORE Generator project options were set to
generate a structural model, a VHDL or Verilog netlist named <component_name>.vhd or
<component_name>.v was generated. If this file is not present, generate it using the netgen program, for example
in Unix:

netgen -sim -ofmt vhdl <component_name>.ngc <component_name>.vhd

Compile the netlist and the demonstration testbench into the work library (see your simulator documentation for
more information on how to do this). Then simulate the demonstration testbench. View the testbench's signals in
your simulator's waveform viewer to see the operations of the testbench.

The Demonstration Testbench in Detail

The demonstration testbench performs the following tasks:

• Instantiates the core

• Generates an input data frame consisting of one or the sum of two complex sinusoids

• Generates a clock signal

• Drives the core's input signals to demonstrate core features (see below for details)

• Checks that the core's output signals obey AXI protocol rules (data values are not checked in order to keep the
testbench simple)

• Provides signals showing the separate fields of AXI TDATA and TUSER signals

The demonstration testbench drives the core's input signals to demonstrate the features and modes of operation of
the core. This includes performing an FFT on a pre-generated input data frame. The input data frame consists of a
complex sinusoid with a frequency of 2.6 times the frame size. The FFT of this input frame is a peak centred between
output samples 2 and 3. For FFTs with a maximum point size of 64 or greater, the input data is modified by adding
a second complex sinusoid with a frequency of 23.2 times the frame size and a quarter of the magnitude of the first
sinusoid. This modifies the FFT by adding a smaller peak centred between output samples 23 and 24. The testbench
captures this output frame and uses it as the input frame for an inverse transform. The output of this inverse
transform is therefore the same as the original input frame (modified by the scaling and finite precision effects of the
FFT core).

The operations performed by the demonstration testbench are appropriate for the configuration of the generated
core, and are a subset of the following operations:

• Frame 1: drive a frame of pre-generated input data

• Frame 2: configure an inverse transform; drive the output of frame 1 as a frame of input data

• Configure frame 3: a forward transform while the previous transform is running

• Frame 3: drive the output of frame 2 as a frame of input data; de-assert AXI TVALID (and TREADY if present)
signals occasionally to demonstrate AXI handshaking

• If ARESETn present: start another frame but reset the core before it completes

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 42
Product Specification

Fast Fourier Transform v8.0

• Frames 4-7: run these back-to-back, as quickly as possible:

• Queue up configurations for a forward transform (frame 4) followed by a reverse transform (frame 5), both
with a smaller point size (if point size is configurable) and a short cyclic prefix (if available)

• Frame 4: drive a frame of pre-generated input data

• Frame 5: drive the output of frame 1 as a frame of input data; simultaneously configure frame 6: a forward
transform with maximum point size, a longer cyclic prefix (if available) and a zero scaling schedule (if
fixed scaling is used)

• Frame 6: drive a frame of pre-generated input data; simultaneously configure frame 7: an inverse
transform with maximum point size, no cyclic prefix and default scaling schedule (if fixed scaling is used)

• Frame 7: drive the output of frame 1 as a frame of input data

• Wait until all frames are complete

Customizing the Demonstration Testbench

It is possible to modify the demonstration testbench to drive the core's inputs with different data or to perform
different operations.

Input data is pre-generated in the create_ip_table function and stored in the IP_DATA constant. New input
data frames can be added by defining new functions and constants. Make sure that each input data frame is of the
T_IP_TABLE array type.

All operations performed by the demonstration testbench to drive the core's inputs are done in the data_stimuli
process. This process also contains procedures to simplify driving a frame of input data. Configuration is requested
in this process by setting cfg_* signals to the desired configuration and setting the do_config shared variable to
either IMMEDIATE or AFTER_START. The configuration signals are actually driven by the config_stimuli
process.

The data_stimuli process is comprehensively commented, to explain clearly what is being done. New
configuration and data operations can be added by copying and modifying sections of this process.

The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 43
Product Specification

Fast Fourier Transform v8.0

System Generator For DSP Graphical User Interface
This section describes each tab of the System Generator GUI and details the parameters that differ from the CORE
Generator GUI. See CORE Generator Graphical User Interface, page 33 for more detailed information about all
other parameters.

Tab 1: Basic

The Basic tab is used to specify the transform configuration and architecture in a similar way to page 1 of the CORE
Generator GUI.

Implementation Options: Select an implementation option as described in Architecture Options, page 14.

• The Pipelined Streaming I/O, Radix-2 Burst I/O, and Radix-2 Lite Burst I/O architectures support point sizes
8 to 65536.

• The Radix-4 Burst I/O architecture supports point sizes 64 to 65536.

System Generator supports only single-channel implementation of the FFT and, hence, Channels is not available as
a GUI option.

Tab 2: Advanced

The Advanced tab is used to specify phase factor precision, scaling, rounding, optional output fields, throttle
scheme, and optional port options in a similar way to page 2 of the CORE Generator GUI.

System Generator can optionally shorten the AXI4-Stream signal names on the symbol by removing the m_axis_ or
s_axis_ prefixes.

System Generator automatically sets the Input Data Width parameter based on the signal properties of the XN_RE
and XN_IM ports. System Generator supports only fixed-point data types and, hence, Data Format is not available
as an option on the GUI.

Tab 3: Implementation

The Implementation tab is used to specify memory and optimization options in a similar way to page 3 of the CORE
Generator GUI.

• Number of stages using block RAM: Specifies the number of stages for the Pipelined Streaming I/O
architecture that uses block RAM for data and phase factor storage. As dynamic list boxes are not offered with
the System Generator GUI, this option displays the full range (0 to 11) selection, but allows you to select only
valid values as visible in the CORE Generator GUI.

• FPGA Area Estimation: See the System Generator documentation for detailed information about this option.

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 44
Product Specification

Fast Fourier Transform v8.0

Control Signals

aclken (Clock Enable)

If the Clock Enable (aclken) pin is present on the core, driving the pin low pauses the core in its current state. All
logic within the core is paused. Driving the aclken pin high allows the core to continue processing.

Note that aclken can reduce the maximum frequency that the core can run at.

aresetn (Synchronous Clear)

If the aresetn pin is present on the core, driving the pin low results in all output pins, internal counters, and state
variables being reset to their initial values. All pending load processes, transform calculations, and unload
processes stop and are re-initialized. NFFT is set to the largest FFT point size permitted (the Transform Length value
set in the GUI). The scaling schedule is set to 1/N. For the Radix-4 Burst I/O and Pipelined Streaming I/O
architectures with a non-power-of-four point size, the last stage has a scaling of 1, and the rest have a scaling of 2.
See Table 6.

The aresetn pin takes priority over aclken. If aresetn is asserted, reset occurs regardless of the value of
aclken. A minimum aresetn active pulse of two cycles is required, since the signal is internally registered for
performance. A pulse of one cycle resets the core, but the response to the pulse is not in the cycle immediately
following.

Table 6: Synchronous Clear Reset Values

Signal Initial / Reset Value

NFFT maximum point size = N

FWD_INV Forward = 1

SCALE_SCH 1/N
[10 10... 10] for Radix-4 Burst I/O or Pipelined Streaming I/O
architectures when N is a power of 4.
[01 10... 10] for Radix-4 Burst I/O or Pipelined Streaming I/O
architectures when N is not a power of 4.
[01 01... 01] for Radix-2 Burst I/O or Radix-2 Lite Burst I/O
architectures

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 45
Product Specification

Fast Fourier Transform v8.0

Event Signals
The FFT core provides some real-time non-AXI signals to report information about the core's status. These event
signals are updated on a clock cycle by clock cycle basis, and are intended for use by reactive components such as
interrupt controllers. These signals are not optionally configurable from the GUI, but are removed by synthesis
tools if left unconnected.

event_frame_started

This event signal is asserted for a single clock cycle when the FFT starts to process a new frame. This signal is
provided to allow users to count frames and to synchronise the configuration of the core to a particular frame if
required.

event_tlast_missing

This event signal is asserted for a single clock cycle when s_axis_data_tlast is low on a frame's last incoming
data sample. This is intended to show a configuration mismatch between the FFT and the upstream data source
with regard to the frame size, and indicates that the upstream data source is configured to a larger point size than
the FFT is.

This is only calculated when the FFT starts processing a frame, so the event can lag the missing
s_axis_data_tlast by a large number of clock cycles.

event_tlast_unexpected

This event signal is asserted for a single clock cycle when the FFT sees s_axis_data_tlast high on any incoming
data sample that isn't the last one in a frame.

This is intended to show a configuration mismatch between the FFT and the upstream data source with regard to
the frame size, and indicates that the upstream data source is configured to a smaller point size than the FFT is.

This is only calculated when the FFT starts processing a frame, so the event can lag the unexpected high on
s_axis_data_tlast by a large number of clock cycles.

If there are multiple unexpected highs on s_axis_data_tlast for a frame, then this is asserted for each of them.

event_fft_overflow

This event signal is asserted on every clock cycle when an overflow is seen in the data samples being transferred on
m_axis_data_tdata.

It is only possible to get FFT overflows when scaled arithmetic or single-precision floating-point I/O is used. In all
other configurations the pin is removed from the core.

event_data_in_channel_halt

This event is asserted on every cycle where the FFT needs data from the Data Input channel and no data is available.

• In Realtime Mode the FFT continues processing the frame even though it is unrecoverably corrupted.

• In Non-Realtime Mode, FFT processing halts and only continues when data is written to the Data Input
channel. The frame is not corrupted.

In both modes the event remains asserted until data is available in the Data Input Channel.

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 46
Product Specification

Fast Fourier Transform v8.0

event_data_out_channel_halt

This event is asserted on every cycle where the FFT needs to write data to the Data Output channel but cannot
because the buffers in the channel are full. When this occurs, the FFT core is halted and all activity stops until space
is available in the channel's buffers. The frame is not corrupted.

The event pin is only available in Non-Realtime mode.

event_status_channel_halt

This event is asserted on every cycle where the FFT needs to write data to the Status channel but cannot because the
buffers on the channel are full. When this occurs, the FFT core is halted, and all activity stops until space is available
in the channel's buffers. The frame is not corrupted

The event pin is only available in Non-Realtime mode.

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 47
Product Specification

Fast Fourier Transform v8.0

AXI4-Stream Considerations
The conversion to AXI4-Stream interfaces brings standardization and enhances interoperability of Xilinx IP
LogiCORE solutions. Other than general control signals such as aclk, aclken and aresetn, and event signals, all
inputs and outputs to the FFT are conveyed via AXI4-Stream channels. A channel always consists of TVALID and
TDATA plus additional ports (such as TREADY, TUSER and TLAST) when required and optional fields. Together,
TVALID and TREADY perform a handshake to transfer a message, where the payload is TDATA, TUSER and
TLAST. The FFT operates on the operands contained in the TDATA fields and outputs the result in the TDATA field
of the output channel.

For further details on AXI4-Stream Interfaces see the Xilinx AXI Design Reference Guide (UG761) and the AMBA 4
AXI4-Stream Protocol Version: 1.0 Specification.

Basic Handshake

Figure 35 shows the transfer of data in an AXI4-Stream channel. TVALID is driven by the source (master) side of the
channel and TREADY is driven by the receiver (slave). TVALID indicates that the value in the payload fields
(TDATA, TUSER and TLAST) is valid. TREADY indicates that the slave is ready to receive data. When both TVALID
and TREADY are true in a cycle, a transfer occurs. The master and slave will set TVALID and TREADY respectively
for the next transfer appropriately.

AXI Channel Rules

Note that all of the AXI channels follow the same rules:

• All TDATA and TUSER fields are packed in little endian format. That is, bit 0 of a sub-field is aligned to the
same side as bit 0 of TDATA or TUSER

• Fields are not included in TDATA or TUSER unless the core is configured in such a way that it needs the fields
to be present. For example, if the FFT is configured to have a fixed point size, no bits are allocated to the NFFT
field that specifies the point size

• All TDATA and TUSER vectors are multiples of 8 bits. Once all fields in a TDATA or TUSER vector have been
concatenated, the overall vector is padded to bring it up to an 8 bit boundary.

X-Ref Target - Figure 35

Figure 35: Data Transfer in an AXI-Stream Channel

ACLK

TVALID

TREADY

TDATA

TLAST

TUSER

D1 D2 D3 D4

L1 L2 L3 L4

U1 U2 U3 U4

www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 48
Product Specification

Fast Fourier Transform v8.0

Configuration Channel
Pinout

TDATA Fields

The Configuration channel (s_axis_config) is an AXI channel that carries the following fields in its TDATA vector:

Table 7: Configuration Channel Pinout

Port Name Port Width Direction Description

s_axis_config_tdata Variable.
Please refer to the CORE
Generator GUI when
configuring the FFT.

In Carries the configuration information: CP_LEN,
FWD/INV, NFFT and SCALE_SCH. See section
Run-Time Transfer Configuration for more information

s_axis_config_tvalid 1 In Asserted by the external master to signal that it is able to
provide data.

s_axis_config_tready 1 Out Asserted by the FFT to signal that it is able to accept
data.

Table 8: Configuration Channel TDATA Fields

Field Name Width Padded Description

NFFT 5 Yes Point size of the transform: NFFT can be the size of the maximum
transform or any smaller point size. For example, a 1024-point FFT can
compute point sizes 1024, 512, 256, and so on. The value of NFFT is
log2 (point size). This field is only present with run-time configurable
transform point size.
For more information, see Transform Size

CP_LEN log2
(maximum point size)

Yes Cyclic prefix length: The number of samples from the end of the
transform that are initially output as a cyclic prefix, before the whole
transform is output. CP_LEN can be any number from zero to one less
than the point size. This field is only present with cyclic prefix insertion.
For more information, see Cyclic Prefix Insertion

FWD_INV 1 bit per FFT data
channel

No Indicates if a forward FFT transform or an inverse FFT transform is
performed. When FWD_INV = 1, a forward transform is computed. If
FWD_INV = 0, an inverse transform is computed.
The field contains 1 bit per FFT data channel, bit 0 (LSB) representing
channel 0, bit 1 representing channel 1, etc.
For more information, see Forward/Inverse and Scaling Schedule

SCALE_SCH

for Pipelined
Streaming I/O and
Radix-4 Burst I/O
architectures or

2 x NFFT
for Radix-2, Burst I/O
and Radix-2 Lite Burst
I/O architectures
where NFFT is log2
(maximum point size)
or the number of
stages

No Scaling schedule: For Burst I/O architectures, the scaling schedule is
specified with two bits for each stage, with the scaling for the first stage
given by the two LSBs. The scaling can be specified as 3, 2, 1, or 0,
which represents the number of bits to be shifted. An example scaling
schedule for N =1024, Radix-4 Burst I/O is [1 0 2 3 2] (ordered from last
to first stage). For N =128, Radix-2 Burst I/O or Radix-2 Lite Burst I/O,
one possible scaling schedule is [1 1 1 1 0 1 2] (ordered from last to first
stage).
For Pipelined Streaming I/O architecture, the scaling schedule is
specified with two bits for every pair of Radix-2 stages, starting at the
two LSBs. For example, a scaling schedule for N = 256 could be [2 2 2
3]. When N is not a power of 4, the maximum bit growth for the last stage
is one bit. For instance, [0 2 2 2 2] or [1 2 2 2 2] are valid scaling
schedules for N = 512, but [2 2 2 2 2] is invalid. For this transform length
the two MSBs of SCALE_SCH can only be 00 or 01. This field is only
available with scaled arithmetic (not unscaled, block floating-point or
single precision floating-point).
For more information, see Forward/Inverse and Scaling Schedule

2
2

NFFT
ceil  ×  

 

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 49
Product Specification

Fast Fourier Transform v8.0

All fields with padding should be extended to the next 8 bit boundary if they don't already finish on an 8 bit boundary. The FFT
core ignores the value of the padding bits, so they can be driven to any value. Connecting them to constant values may help
reduce device resource usage.

TDATA Format

The configuration fields are packed into the s_axis_config_tdata vector in the following order (starting from
the LSB):

1. (optional) NFFT plus padding

2. (optional) CP_LEN plus padding

3. FWD/INV

4. (optional) SCALE_SCH

Optional fields are shown as dotted.

TDATA Example

A core has a configurable transform size with a maximum size of 128 points, cyclic prefix insertion and 3 FFT
channels. The core needs to be configured to do an 8 point transform, with an inverse transform performed on
channels 0 and 1, and a forward transform performed on channel 2. A 4 point cyclic prefix is required. The fields
take on the following values:

This gives a vector length of 19 bits. As all AXI channels must be aligned to byte boundaries, 5 padding bits are
required, giving an s_axis_config_tdata length of 24 bits.

X-Ref Target - Figure 36

Figure 36: Configuration Channel TDATA (s_axis_config_tdata) Format

Table 9: Configuration Channel TDATA Example

Field Name Padding Value Notes

NFFT 000 00011 3 gives an 8-point FFT

CP_LEN 0 1000000 The FFT selects the top NFFT bits of the CP_LEN field (not including the
padding) to determine the cyclic prefix length. As we want a Cyclic Prefix length
of 4, and NFFT is 3, the field has to be set to 64

FWD_INV N/A 100 Channel 2: Forward
Channel 1: Inverse
Channel 0: Inverse

X-Ref Target - Figure 37

Figure 37: Configuration Channel TDATA Example

CP_LEN NFFT

s_axis_config_tdata[MSB downto 0]

SCALE_SCH PADPAD PADFWD/INV

DS808_02_080410

CP_LEN
1000000

NFFT
00011

s_axis_config_tdata[23 downto 0]

FWD/INV
100

PAD
000

PAD
00000

PAD
0

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 50
Product Specification

Fast Fourier Transform v8.0

Data Input Channel

The Data Input channel contains the real and imaginary sample data to be transformed.

Pinout

TDATA Fields

The Data Input channel (s_axis_data) is an AXI channel that carries the following fields in its TDATA vector:

All fields with padding should be extended to the next 8-bit boundary if they do not already finish on an 8-bit
boundary. The FFT core ignores the value of the padding bits, so they can be driven to any value. Connecting them
to constant values may help reduce device resource usage.

These fields are then repeated for each FFT channel that the design is configured to have.

TDATA Format

The data fields are packed into the s_axis_data_tdata vector in the following order (starting from the LSB):

1. XN_RE plus padding for channel 0

2. XN_IM plus padding for channel 0

3. (optional) XN_RE plus padding for channel 1

4. (optional) XN_IM plus padding for channel 1

5. (optional) XN_RE plus padding for channel 2

6. (optional) XN_IM plus padding for channel 2

7. etc, up to channel 11

Table 10: Data Input Channel Pinout

Port Name Port Width Direction Description

s_axis_data_tdata Variable.
Please refer to the CORE
Generator GUI when
configuring the FFT.

In Carries the sample data: XN_RE and XN_IM

s_axis_data_tvalid 1 In Asserted by the upstream master to signal that it is able
to provide data

s_axis_data_tlast 1 In Asserted by the upstream master on the last sample of
the frame. This is not used by the FFT except to
generate the events:
• event_tlast_unexpected
• event_tlast_missing events

s_axis_data_tready 1 Out Used by the FFT to signal that it is ready to accept data

Table 11: Data Input Channel TDATA Fields

Field Name Width Padded Description

XN_RE bxn Yes Real component (bxn = 8 - 34) in two's complement or single precision floating-point
format.

XN_IM bxn Yes Imaginary component (bxn = 8 - 34) in two's complement or single precision floating-point
format.

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 51
Product Specification

Fast Fourier Transform v8.0

Optional fields are shown as dotted.

TDATA Example

The core has been configured to have two FFT data channels with 12 bit data. Channel 0 has the following sample
value:

• Re = 0010 1101 1001

• IM = 0011 1110 0110

Channel 1 has the following sample value:

• Re = 0111 0000 0000

• IM = 0000 0000 0000

The fields take on the following values:

This gives a vector length of 64 bits.

X-Ref Target - Figure 38

Figure 38: Data Input Channel TDATA (s_axis_data_tdata) Format

Table 12: Data Input Channel TDATA Example

Field Name Padding Value

XN_RE (channel 0) 0000 0010 1101 1001

XN_IM (channel 0) 0000 0011 1110 0110

XN_RE (channel 1) 0000 0111 0000 0000

XN_IM (channel 1) 0000 0000 0000 0000

X-Ref Target - Figure 39

Figure 39: Data Input Channel TDATA Example

s_axis_data_tdata[MSB downto 0]

PADPAD
Channel 1

RE
PAD

Channel 1
IM

PAD

Only fields for channel 0
are mandatory

Channel 11
RE

PAD
Channel 11

IM
PAD

Fields for remaining channels continue here if required

Channel 0
RE

Channel 0
IM

DS808_04_080410

0010 1101 1001

s_axis_data_tdata[63 downto 0]

00000011 1110 011000000111 0000 000000000000 0000 00000000

Channel 0 Channel 1
DS808_05_080410

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 52
Product Specification

Fast Fourier Transform v8.0

Data Output Channel

The Data Output channel contains the real and imaginary results of the transform, which are carried on TDATA. In
addition, TUSER carries per-sample status information relating to the sample data on TDATA. This status
information is intended for use by downstream slaves that directly process data samples. It cannot get out of
synchronisation with the data as it is transferred in the same channel. The following information is classed as per-
sample status:

1. XK_INDEX

2. Block Exponent (BLK_EXP) for each FFT channel

3. Overflow (OVFLO) for each FFT channel

Pinout.

TDATA Fields

The Data Output channel (m_axis_data) is an AXI channel that carries the following fields in its TDATA vector:

All fields are sign extended to the next 8 bit boundary if they don't already finish on an 8 bit boundary.

These fields are then repeated for each FFT channel that the design is configured to have.

TDATA Format

The data fields are packed into the s_axis_data_tdata vector in the following order (starting from the LSB):

1. XK_RE plus padding for channel 0

2. XK_IM plus padding for channel 0

Table 13: Data Output Channel Pinout

Port Name Port Width Direction Description

m_axis_data_tdata Variable.
Please refer to the CORE
Generator GUI when
configuring the FFT.

Out Carries the sample data: XK_RE and XK_IM.

m_axis_data_tuser Variable.
Please refer to the CORE
Generator GUI when
configuring the FFT.

Out Carries additional per-sample: XK_RE and
XK_IM.

m_axis_data_tvalid 1 Out Asserted by the FFT to signal that it is able to
provide sample data

m_axis_data_tlast 1 Out Asserted by the FFT on the last sample of the
frame

m_axis_data_tready 1 In Asserted by the external slave to signal that it is
ready to accept data

Table 14: Data Output Channel TDATA Fields

Field Name Width Padded Description

XK_RE bxk Yes - sign
extended

Output data: Real component in two's complement or floating-point format. (For scaled
arithmetic and block floating-point arithmetic, bxk = bxn. For unscaled arithmetic, bxk =
bxn+ log2 (maximum point size) +1. For single precision floating-point bxk = 32).

XK_IM bxk Yes - sign
extended

Output data: Imaginary component in two's complement or single precision floating-
point format. (For scaled arithmetic and block floating-point arithmetic, bxk = bxn. For
unscaled arithmetic, bxk = bxn+ log2 (maximum point size) +1. For single precision
floating-point bxk = 32)

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 53
Product Specification

Fast Fourier Transform v8.0

3. (optional) XK_RE plus padding for channel 1

4. (optional) XK_IM plus padding for channel 1

5. (optional) XK_RE plus padding for channel 2

6. (optional) XK_IM plus padding for channel 2

7. etc, up to channel 11

Optional fields are shown as dotted.

TDATA Example

The core has been configured to have two FFT data channels with 12 bit output data. The FFT produces the
following sample result for channel 0:

• Re = 0010 1101 1001

• IM = 1011 1110 0110

The FFT produces the following sample result for channel 1:

• Re = 0111 0000 0000

• IM = 1000 0000 0000

The fields take on the following values:

This gives a vector length of 64 bits.

X-Ref Target - Figure 40

Figure 40: Data Output Channel TDATA (m_axis_data_tdata) Format

Table 15: Data Output Channel TDATA Example

Field Name Padding Value

XK_RE (channel 0) 0000 0010 1101 1001

XK_IM (channel 0) 1111 1011 1110 0110

XK_RE (channel 1) 0000 0111 0000 0000

XK_IM (channel 1) 1111 1000 0000 0000

X-Ref Target - Figure 41

Figure 41: Data Output Channel TDATA Example

m_axis_data_tdata[MSB downto 0]

PADPAD
Channel 1

RE
PAD

Channel 1
IM

PAD

Only fields for channel 0
are mandatory

Channel 11
RE

PAD
Channel 11

IM
PAD

Fields for remaining channels continue here if required

Channel 0
RE

Channel 0
IM

DS808_06_080410

0010 1101 1001

m_axis_data_tdata[63 downto 0]

00001011 1110 011011110111 0000 000000001000 0000 00001111

Channel 0 Channel 1
DS808_07_080410

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 54
Product Specification

Fast Fourier Transform v8.0

TUSER Fields

The Data Output channel carries the following fields in its TUSER vector:

All fields with padding should be 0 extended to the next 8 bit boundary if they don't already finish on an 8 bit
boundary.

TUSER Format

The data fields are packed into the m_axis_data_tuser vector in the following order (starting from the LSB):

1. (optional) XK_INDEX plus padding

2. (optional) BLK_EXP plus padding for channel 0

3. (optional) BLK_EXP plus padding for channel 1

4. etc

5. (optional) OVFLO for channel 0

6. (optional) OVFLO for channel 1

7. etc

8. Padding to make TUSER 8 bit aligned. Only needed when OVFLO is present

Note that the FFT cannot be configured to have both BLK_EXP and OVFLO.

Optional fields are shown as dotted. As all fields are optional, it's possible to configure the core such that TUSER
would have no fields. In this case it is automatically removed from the core's interface.

Table 16: Data Output Channel TUSER Fields

Field Name Width Padded Description

XK_INDEX log2
(maximum
point size)

Yes - zero
extended

Index of output data. This field is optional, and only included when XK_INDEX is
enabled in the GUI.

BLK_EXP bxk Yes - zero
extended

Block exponent: The amount of scaling applied. A separate BLK_EXP field is
included for each FFT channel that the core has.
Available only when block floating-point is used.
For more information on BLK_EXP, see Block Exponent

OVFLO 1 No Arithmetic overflow indicator (active high): OVFLO is high during result unloading
if any value in the data frame overflowed. The OVFLO signal is reset at the
beginning of a new frame of data.
A separate OVFLO field is included for each FFT channel that the core has.
This port is optional and only available with scaled arithmetic or single precision
floating-point I/O.
For more information on OVFLO, see Overflow

X-Ref Target - Figure 42

Figure 42: Data Output Channel TUSER (m_axis_data_tuser) Format

m_axis_data_tuser[MSB downto 0]

Channel
0

BLK_EXP

P
A
D

P
A
D

XK_INDEX
Channel

1
BLK_EXP

P
A
D

Channel
11

BLK_EXP

P
A
D

Channel
0

OVFLO

Channel
1

OVFLO

Channel
11

OVFLO

P
A
D

DS808_08_080410

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 55
Product Specification

Fast Fourier Transform v8.0

TUSER Examples

Example 1

The core has been configured to have two FFT data channels, a 128 point transform size, overflow, and XK_INDEX.
The third sample (XK_INDEX = 3) has an overflow on channel 0 but not on channel 1. XK_INDEX is 7 bits long.

The fields take on the following values:

This gives a vector length of 10 bits. As all AXI channels must be aligned to byte boundaries, 6 padding bits are
required, giving an m_axis_data_tuser length of 16 bits.

Example 2

The core has been configured to have two FFT data channels, block exponent, but no XK_INDEX. The output sample
for channel 0 has a block exponent of 4, and the output sample for channel 1 has a block exponent of 31.

The fields take on the following values:

This gives a vector length of 16 bits, so no more padding is required.

Table 17: Data Output Channel TUSER Example 1

Field Name Padding Value

XK_INDEX 0 000 0011

OVFLO (channel 0) None 1

OVFLO (channel 1) None 0

X-Ref Target - Figure 43

Figure 43: Data Output Channel TUSER Example 1

Table 18: Data Output Channel TUSER Example 2

Field Name Padding Value

BLK_EXP (channel 0) 000 0 0100

BLK_EXP (channel 1) 000 1 1111

X-Ref Target - Figure 44

Figure 44: Data Output Channel TUSER Example 2

m_axis_data_tuser[15 downto 0]

0 000 001110

XK_INDEXOVFLO
Channel 0

OVFLO
Channel 1

00 0000

Padding

DS808 09 080410

m_axis_data_tuser[15 downto 0]

000 0 0100

BLK_EXP
Channel 0

000 1 1111

BLK_EXP
Channel 1

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 56
Product Specification

Fast Fourier Transform v8.0

Status Channel

The Status channel contains per-frame status information. That is, information that relates to an entire frame's
worth of data. This is intended for downstream slaves that don't operate on the data directly but might need to
know the information to control another part of the system. The exact position in the frame where the status is sent
depends on the nature of the status information. The following information is classed as per-frame status:

1. BLK_EXP for each channel

2. OVFLO for each channel

Note that the FFT cannot be configured to have both BLK_EXP and OVFLO.

BLK_EXP status information is sent at the start of the frame and OVFLO status information is sent at the end of the
frame.

Pinout

TDATA Fields

The Status Channel carries the following fields in its TDATA vector:

All fields with padding should be 0 extended to the next 8 bit boundary if they don't already finish on an 8 bit
boundary.

Table 19: Status Channel Pinout

Port Name Port Width Direction Description

m_axis_status_tdata Variable.
Please refer to the CORE
Generator GUI when
configuring the FFT.

Out Carries the status data: BLK_EXP or OVFLO

m_axis_status_tvalid 1 Out Asserted by the FFT to signal that it is able to provide
status data

m_axis_status_tready 1 In Asserted by the external slave to signal that it is ready
to accept data

Table 20: Status Channel TDATA Fields

Field Name Width Padded Description

BLK_EXP 5 Yes - zero
extended

Block exponent: The amount of scaling applied. A separate BLK_EXP field is included
for each FFT channel that the core has.
Available only when block floating-point is used.
For more information on BLK_EXP, see Block Exponent.

OVFLO 1 No Arithmetic overflow indicator (active high): OVFLO is high during result unloading if any
value in the data frame overflowed. The OVFLO signal is reset at the beginning of a
new frame of data.
A separate OVFLO field is included for each FFT channel that the core has.
This port is optional and only available with scaled arithmetic or single precision
floating-point I/O.
For more information on OVFLO, see Overflow.

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 57
Product Specification

Fast Fourier Transform v8.0

TDATA Format

The data fields are packed into the m_axis_status_tdata vector in the following order (starting from the LSB):

1. (optional) BLK_EXP plus padding for channel 0

2. (optional) BLK_EXP plus padding for channel 1

3. etc

4. (optional) OVFLO for channel 0

5. (optional) OVFLO for channel 1

6. etc

7. Padding to make TDATA 8 bit aligned. Only needed when OVFLO is present

Note that the FFT cannot be configured to have both BLK_EXP and OVFLO.

Optional fields are shown as dotted. As all fields are optional, it's possible to configure the core such that TDATA
would have no fields. In this case the entire Status channel is automatically removed from the core's interface.

TDATA Example

Example 1: The core has been configured to have four FFT data channels and overflow. The current frame contains
an overflow in channels 2 and 3.

X-Ref Target - Figure 45

Figure 45: Status channel TDATA (m_axis_status_tdata) Format

Table 21: Status Channel TDATA Example 1

Field Name Padding Value

OVFLO (channel 0) None 0

OVFLO (channel 1) None 0

OVFLO (channel 2) None 1

OVFLO (channel 3) None 1

DS808_11_080410

m_axis_status_tdata[MSB downto 0]

Channel
0

BLK_EXP

P
A
D

Channel
1

BLK_EXP

P
A
D

Channel
11

BLK_EXP

P
A
D

Channel
0

OVFLO

Channel
1

OVFLO

Channel
11

OVFLO

P
A
D

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 58
Product Specification

Fast Fourier Transform v8.0

This gives a vector length of 4 bits. As all AXI channels must be aligned to byte boundaries, 4 padding bits are
required, giving an m_axis_status_tdata length of 8 bits.

Example 2: The core has been configured to have one FFT data channel and overflow. The current frame contains no
overflow.

This gives a vector length of 1 bit. As all AXI channels must be aligned to byte boundaries, 7 padding bits are
required, giving an m_axis_status_tdata length of 8 bits.

X-Ref Target - Figure 46

Figure 46: Status Channel TDATA Example 1

Table 22: Status Channel TDATA Example 2

Field Name Padding Value

OVFLO (channel 0) None 0

X-Ref Target - Figure 47

Figure 47: Status Channel TDATA Example 2

m_axis_status_tdata[7 downto 0]

11

OVFLO
Channel 2

OVFLO
Channel 3

0000

Padding

00

OVFLO
Channel 0

OVFLO
Channel 1

DS808_12_080410

m_axis_status_tdata[7 downto 0]

000 0000

Padding

0

OVFLO Channel 0
DS808_13_080410

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 59
Product Specification

Fast Fourier Transform v8.0

Migrating to FFT v8.0 from earlier versions

XCO Parameters Changes

The CORE Generator core update functionality may be used to update an existing XCO file from v7.1 to v8.0, but it
should be noted that the update mechanism alone does not create a core compatible with v7.1. See Instructions for
minimum change migration. FFT v8.0 has additional parameters for AXI4-Stream support. The following table
shows the changes to XCO parameters from version 7.1 to version 8.0.

Table 23: XCO Parameter Changes from v7.1 to v8.0

Version 7.1 Version 8.0 Notes

component_name component_name Unchanged

channels channels Unchanged

transform_length transform_length Unchanged

implementation_options implementation_options Unchanged

target_clock_frequency target_clock_frequency Unchanged

target_data_throughput target_data_throughput Unchanged

run_time_configurable_transform_length run_time_configurable_transform_length Unchanged

data_format data_format Unchanged

input_width input_width Unchanged

phase_factor_width phase_factor_width Unchanged

scaling_options_scaled scaling_options_scaled Unchanged

rounding_modes rounding_modes Unchanged

ce aclken Renamed

sclr aresetn Renamed

ovflo ovflo Unchanged

xk_index New to version 8.0

throttle_scheme New to version 8.0

output_ordering output_ordering Unchanged

cyclic_prefix_ordering cyclic_prefix_ordering Unchanged

memory_options_data memory_options_data Unchanged

memory_options_phase_factors memory_options_phase_factors Unchanged

memory_options_reorder memory_options_reorder Unchanged

number_of_stages_using_block_ram_for_data_
and_phase_factors

number_of_stages_using_block_ram_for_data
_and_phase_factors

Unchanged

memory_options_hybrid memory_options_hybrid Unchanged

input_data_offset Obsolete

complex_mult_type complex_mult_type Unchanged

butterfly_type butterfly_type Unchanged

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 60
Product Specification

Fast Fourier Transform v8.0

Port Changes

The following table details the changes to port naming, additional or deprecated ports and polarity changes from
v7.1 to v8.0.

Table 24: Port Changes from v7.1 to v8.0

Version 7.1 Version 8.0 Notes

CLK aclk Rename only

CE alcken Rename only

SCLR aresetn Renamed
Polarity change (now active low)
Minimum length now two clock cycles

XN_RE
XN_RE0 to XN_RE11

s_axis_data_tdata See section Data Input Channel for more
information on how the sample data is packed
into s_axis_data_tdata

XN_IM
XN_IM0 to XN_IM11

RFD s_axis_data_tready Renamed
May now go low during the loading of data into the
FFT. Data is still only transferred when high.
Can assert a significant time before sample
processing actually begins
(s_axis_data_tready signals that the buffer
in the Data Input Channel is ready for data. That
does not mean the FFT is immediately ready to
load and process that data).

NFFT s_axis_config_tdata See section Configuration Channel for more
information

FWD_INV
FWD_INV0 to FWD_INV11

SCALE_SCH
SCALE_SCH0 to SCALE_SCH11

CP_LEN

DV m_axis_data_tvalid Renamed
May now go low during the unloading of data from
the FFT. Data is still only transferred when high

XK_RE
XK_RE0 to XK_RE11

m_axis_data_tdata See section Data Output Channel for more
information on how the processed sample data
and XK_INDEX are packed into
m_axis_data_tdata and
m_axis_data_tuser

XK_IM
XK_IM0 to XK_IM11

XK_INDEX m_axis_data_tuser

BLK_EXP
BLK_EXP0 to BLK_EXP11

m_axis_data_tuser
m_axis_status_tdata

See section Data Output Channel for more
information on how BLK_EXP and OVFLO are
packed into m_axis_data_tuser.
See section Status Channel for more information
on how BLK_EXP and OVFLO are packed into
m_axis_status_tdata.

OVFLO
OVFLO0 to OVFLO11

START Obsolete. The FFT automatically starts (although
it doesn't immediately start) when sample data is
supplied on the Data Input channel.RFS

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 61
Product Specification

Fast Fourier Transform v8.0

Latency Changes
The latency of FFT v8.0 is greater than that of v7.1. The update process cannot account for this and guarantee
equivalent performance. Importantly, the latency of the core is variable, so that only the minimum possible latency
can be determined.

When in Non-Realtime mode the latency is 7 cycles longer than for the equivalent configuration of v7.1.

When in Realtime mode, the latency of the core for equivalent performance is 3 cycles longer than for the equivalent
configuration of v7.1.

See section Information Tabs for the definition of latency.

UNLOAD Obsolete. The FFT automatically starts to unload
processed sample data when it is available. Data
is not actually unloaded until
m_axis_data_tready is asserted

NFFT_WE Obsolete. The application of new configuration
information is now handled automatically by the
core.
See section Configuration Channel for more
information

FWD_INV_WE
FWD_INV_WE0 to
FWD_INV_WE11

SCALE_SCH_WE
SCALE_SCH_WE0 to
SCALE_SCH_WE11

CP_LEN_WE

XN_INDEX Obsolete

BUSY Obsolete

EDONE Obsolete

DONE Obsolete

CPV Obsolete

s_axis_data_tlast New in v8.0

m_axis_data_tlast New in v8.0

s_axis_config_tvalid New in v8.0

s_axis_config_tready New in v8.0

s_axis_data_tvalid New in v8.0

m_axis_data_tready New in v8.0

event_frame_started New in v8.0

event_tlast_missing New in v8.0

event_tlast_unexpected New in v8.0

event_fft_overflow New in v8.0

event_status_channel_halt New in v8.0

event_data_in_channel_halt New in v8.0

event_data_out_channel_halt New in v8.0

Table 24: Port Changes from v7.1 to v8.0 (Cont’d)

Version 7.1 Version 8.0 Notes

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 62
Product Specification

Fast Fourier Transform v8.0

Instructions for minimum change migration

To configure the FFT v8.0 to most closely mimic the behaviour of v7.1 the translation is as follows:

XCO Parameters - Set throttle_scheme to realtime. If you previously had sclr set to true then remember that the reset
pulse is now active low and must be a minimum of two clock cycles long.

Ports - Rename and map signals as detailed in Port Changes. Tie s_axis_data_tvalid to 1. This tells the core
that you are always able to supply data when requested. Note, however, that the FFT cannot always consume data
on consecutive clock cycles, so s_axis_data_tready has to be used to control the flow of data into the FFT.

Performance and Resource Usage
The following tables list the resource usage and transform time for a selected set of parameters. This core does not
use placement constraints, allowing Place and Route full flexibility. The slice count, block RAM count, and
XtremeDSP slice count are listed. The maximum clock frequency is listed with the transform latency. The latency is
from the Upstream Master supplying the first sample of a frame to the last sample of output data coming out of the
core, assuming that the FFT core was idle and neither the Upstream Master or the Downstream Slave inserted wait
states. The following device architectures are represented:

• Virtex-6 Family

• Spartan-6 Family

The maximum clock frequency for each test was determined iteratively. For the determination of maximum
frequency, the core was generated with double registers on each input and output. The registers directly connected
to the core run on the core clock, whereas the outer registers run off a separate clock. This ensures that all paths in
the core are included in the timing constraint without artificially distorting the design to fit the chip. The slowest
speed grade is used for each family. The parameters used for map and par are as follows:

map -pr b -ol high

par -ol high

The maximum achievable clock frequency and the resource counts may also be affected by other tools options,
additional logic in the FPGA device, using a different version of Xilinx tools, and other factors.

Improved performance or resource usage may be achieved by applying an area group, or using map arguments
such as “-lc area.” Consult the ISE Design Suite 13.1 documentation for more details on available options.

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 63
Product Specification

Fast Fourier Transform v8.0

Virtex-6 Family

Table 25 and Table 26 show performance and resource usage numbers for Virtex-6 FPGAs for both realtime and
non-realtime modes. A range of FFT cores is shown for several typical applications: Baseband 3GPP LTE, Baseband
OFDM, CT scanners, Ultrasound, Test and measurement, and Radar. The parameters for each core are shown in the
tables. None of the optional pins (ACLKEN, ARESETN, OVFLO) are used and hybrid RAM is not used. The
performance and resource usage numbers were produced using ISE 13.1 software, with speed file versions:

• XC6VLX75T : "PRELIMINARY 1.08 2010-07-20"

• XC6VLX130T : "PRODUCTION 1.08 2010-07-20"

• XC6VLX550T : "PRELIMINARY 1.08 2010-07-20"

Table 25: Virtex-6 FPGA Family Performance and Resource Usage in Realtime Mode

A
p

p
lic

at
io

n

C
h

an
n

el
s

P
o

in
t

S
iz

e

Im
p

le
m

en
ta

ti
o

n
(1

)

V
ar

ia
b

le
 P

o
in

t
S

iz
e

In
p

u
t

D
at

a
W

id
th

P
h

as
e

Fa
ct

o
r

W
id

th

S
ca

lin
g

 T
yp

e(
2)

R
o

u
n

d
in

g
 M

o
d

e(
3)

O
u

tp
u

t
O

rd
er

in
g

(4
)

C
yc

lic
 P

re
fi

x
In

se
rt

io
n

M
em

o
ry

 T
yp

e(
5)

S
ta

g
es

 U
si

n
g

 B
lo

ck
 R

A
M

O
p

ti
m

iz
e

fo
r

S
p

ee
d

(6
)

X
ili

n
x

P
ar

t(
7)

L
U

T
/F

F
 P

ai
rs

L
U

T
s

F
F

s

18
k

B
lo

ck
 R

A
M

s(
8)

X
tr

em
eD

S
P

 S
lic

es

M
ax

 C
lo

ck
 F

re
q

u
en

cy
(9

)

L
at

en
cy

 (
cy

cl
es

)(
10

)

L
at

en
cy

 (
μs

)(
11

)

B
as

eb
an

d
 3

G
P

P
 L

T
E

1 1k R2L Y 16 16 S C N Y B - N XC6VLX75T 1033 853 1188 3 2 395 12456 31.53

1 1k R2L Y 16 16 S C N Y B - Y XC6VLX75T 1025 839 1190 3 3 395 12476 31.58

1 2k R2L Y 16 16 S C N Y B - N XC6VLX75T 1175 884 1249 5 2 395 26807 67.87

1 2k R2L Y 16 16 S C N Y B - Y XC6VLX75T 1137 882 1251 5 3 402 26829 66.74

4 1k R2L Y 16 16 S C N Y B - N XC6VLX130T 2214 1837 3015 9 8 380 12456 32.78

8 1k R2L Y 16 16 S C N Y B - N XC6VLX550T 4065 3031 5451 17 16 379 12456 32.87

4 2k R2L Y 16 16 S C N Y B - N XC6VLX130T 2513 1817 3100 17 8 401 26807 66.85

8 2k R2L Y 16 16 S C N Y B - N XC6VLX550T 4253 3069 5568 33 16 351 26807 76.37

1 1k R2 Y 16 16 S C N Y B - N XC6VLX75T 1199 1040 1362 3 3 395 7367 18.65

1 1k R2 Y 16 16 S C N Y B - Y XC6VLX75T 1106 882 1248 3 6 395 7357 18.63

1 2k R2 Y 16 16 S C N Y B - N XC6VLX75T 1233 1100 1431 5 3 395 15578 39.44

1 2k R2 Y 16 16 S C N Y B - Y XC6VLX75T 1082 952 1319 5 6 395 15567 39.41

2 1k R2 Y 16 16 S C N Y B - N XC6VLX130T 1868 1605 2221 5 6 402 7367 18.33

4 1k R2 Y 16 16 S C N Y B - N XC6VLX130T 3237 2714 3939 9 12 384 7367 19.18

8 1k R2 Y 16 16 S C N Y B - N XC6VLX550T 5644 4977 7375 17 24 368 7367 20.02

2 2k R2 Y 16 16 S C N Y B - N XC6VLX130T 1918 1687 2330 9 6 402 15578 38.75

4 2k R2 Y 16 16 S C N Y B - N XC6VLX130T 3415 2868 4128 17 12 374 15578 41.65

8 2k R2 Y 16 16 S C N Y B - N XC6VLX550T 6111 5275 7724 33 24 334 15578 46.64

O
F

D
M

1 256 R2 Y 12 12 S T N Y D - N XC6VLX75T 1048 850 947 0 3 444 1655 3.73

1 256 R2 Y 12 12 S T N Y B - N XC6VLX75T 842 650 933 3 3 400 1673 4.18

1 256 R2 Y 12 12 B T N Y B - N XC6VLX75T 863 719 937 3 3 400 1673 4.18

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 64
Product Specification

Fast Fourier Transform v8.0

C
T

 S
ca

n
n

er
s

1 1k Str N 24 24 S C R N - 3 Y XC6VLX75T 3437 2994 4989 8 62 399 2182 5.47

1 1k Str N 24 24 S C R N - 3 N XC6VLX75T 4141 3726 5472 8 32 395 2170 5.49

1 1k Str N 24 24 S C R N - 1 Y XC6VLX75T 4076 3713 5026 2 62 395 2182 5.52

1 1k Str N 24 24 S C R N - 5 Y XC6VLX75T 3455 2834 4970 14 62 395 2182 5.52

1 1k Str N 24 24 S C N N - 3 Y XC6VLX75T 3687 3030 5130 11 62 386 3210 8.32

1 1k Str N 24 24 U C N N - 3 Y XC6VLX75T 3542 3081 5582 12 62 401 3206 8.00

1 1k Str Y 24 24 S C N N - 3 Y XC6VLX75T 4343 3792 6114 11 62 369 3219 8.72

1 1k Str Y 16 24 U C R N - 3 Y XC6VLX75T 3420 2923 4990 6 52 396 2184 5.52

1 1k Str N 16 16 S C R N - 3 Y XC6VLX75T 2489 2127 3416 4 40 395 2174 5.50

1 1k Str N 16 16 S C R N - 3 N XC6VLX75T 3404 3049 4286 4 12 395 2174 5.50

1 1k Str N 16 16 S C N N - 3 Y XC6VLX75T 2445 2190 3541 6 40 395 3202 8.11

1 1k Str N 16 16 U C N N - 3 Y XC6VLX75T 2475 2255 4008 8 40 395 3198 8.10

1 1k Str N 34 34 S C N N - 3 Y XC6VLX75T 4902 4423 7514 12 94 374 3226 8.63

1 1k Str N 34 34 U C N N - 3 Y XC6VLX75T 5038 4389 8110 14 102 358 3226 9.01

1 1k Str N 34 34 B C N N - 3 Y XC6VLX75T 5371 4820 8303 14 102 347 3228 9.30

1 4k Str N 24 24 S C N N - 5 Y XC6VLX75T 4528 3714 6350 30 78 395 12448 31.51

1 4k Str N 24 24 U C N N - 5 Y XC6VLX75T 4453 3979 7110 36 78 384 12444 32.41

1 8k Str N 24 24 S C N N - 6 Y XC6VLX75T 4720 4355 7052 56 90 366 24751 67.63

1 8k Str N 24 24 U C N N - 6 Y XC6VLX75T 5088 4666 8095 69 94 292 24749 84.76

U
(1

2)

1 512 R2L Y 24 24 S C N N B - N XC6VLX75T 1173 790 1398 4 4 400 5803 14.51

Te
st

1 8k Str Y 24 24 U C N N - 6 Y XC6VLX75T 6148 5616 9582 69 94 307 24761 80.65

1 8k Str Y 24 24 U C N N - 6 N XC6VLX75T 7499 7186 10889 69 51 347 24748 71.32

1 16k Str Y 24 24 U C N N - 7 Y XC6VLX75T 7041 6086 10355 132 98 289 49344 170.74

1 16k Str Y 24 24 U C N N - 7 N XC6VLX75T 9034 7909 11723 132 51 310 49330 159.13

1 256 R4 N 32 24 F - R N B - Y XC6VLX75T 3419 3015 4505 16 40 399 1414 3.54

1 1k R4 N 32 24 F - R N B - Y XC6VLX75T 3469 3148 4661 18 40 398 5532 13.90

1 4k R4 N 32 24 F - R N B - Y XC6VLX75T 3477 3259 4768 37 40 400 22706 56.77

1 256 R2 N 32 24 F - R N B - Y XC6VLX75T 2127 1927 2842 8 12 395 2228 5.64

1 1k R2 N 32 24 F - R N B - Y XC6VLX75T 2264 1987 2917 10 12 395 9430 23.87

1 4k R2 N 32 24 F - R N B - Y XC6VLX75T 2181 2032 2979 31 12 395 41208 104.32

1 256 R2L N 32 24 F - R N B - Y XC6VLX75T 2105 1697 2728 6 6 395 3172 8.03

1 1k R2L N 32 24 F - R N B - Y XC6VLX75T 2145 1797 2797 10 6 395 14444 36.57

1 4k R2L N 32 24 F - R N B - Y XC6VLX75T 2093 1870 2850 31 6 400 65652 164.13

1 256 Str N 32 24 F - R N B 1 Y XC6VLX75T 3570 3217 5315 4 46 378 888 2.35

1 1k Str N 32 24 F - R N B 3 Y XC6VLX75T 4271 3949 6678 12 66 386 3212 8.32

1 4k Str N 32 24 F - R N B 5 Y XC6VLX75T 5177 4739 8124 36 86 346 12448 35.98

Table 25: Virtex-6 FPGA Family Performance and Resource Usage in Realtime Mode (Cont’d)
A

p
p

lic
at

io
n

C
h

an
n

el
s

P
o

in
t

S
iz

e

Im
p

le
m

en
ta

ti
o

n
(1

)

V
ar

ia
b

le
 P

o
in

t
S

iz
e

In
p

u
t

D
at

a
W

id
th

P
h

as
e

Fa
ct

o
r

W
id

th

S
ca

lin
g

 T
yp

e(
2)

R
o

u
n

d
in

g
 M

o
d

e(
3)

O
u

tp
u

t
O

rd
er

in
g

(4
)

C
yc

lic
 P

re
fi

x
In

se
rt

io
n

M
em

o
ry

 T
yp

e(
5)

S
ta

g
es

 U
si

n
g

 B
lo

ck
 R

A
M

O
p

ti
m

iz
e

fo
r

S
p

ee
d

(6
)

X
ili

n
x

P
ar

t(7
)

L
U

T
/F

F
 P

ai
rs

L
U

T
s

F
F

s

18
k

B
lo

ck
 R

A
M

s(
8)

X
tr

em
eD

S
P

 S
lic

es

M
ax

 C
lo

ck
 F

re
q

u
en

cy
(9

)

L
at

en
cy

 (
cy

cl
es

)(
10

)

L
at

en
cy

 (
μs

)(1
1)

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 65
Product Specification

Fast Fourier Transform v8.0

R
ad

ar

1 1k R4 Y 16 16 S C N N B - N XC6VLX75T 2237 1889 2586 7 9 395 3449 8.73

1 1k R4 Y 16 16 S C N N B - Y XC6VLX75T 1672 1529 2280 7 20 403 3454 8.57

1 1k R4 Y 16 16 B C N N B - N XC6VLX75T 2091 2001 2615 7 9 395 3449 8.73

1 1k R4 Y 20 16 S C N N B - N XC6VLX75T 2530 2243 3028 11 9 395 3449 8.73

1 1k R4 Y 20 16 B C N N B - N XC6VLX75T 2624 2321 3057 11 9 395 3449 8.73

1 32k R4 Y 16 16 S C N N B - N XC6VLX75T 2548 2388 2994 84 9 327 131259 401.40

1 32k R4 Y 16 16 B C N N B - N XC6VLX75T 2750 2463 3005 84 9 318 131259 412.76

1 32k Str Y 16 16 U C N N - 10 N XC6VLX75T 8364 7417 10872 201 31 248 98500 397.18

Notes:
1. Implementations: Str = Pipelined Streaming I/O; R4 = Radix-4, Burst I/O; R2 = Radix-2, Burst I/O; R2L = Radix-2 Lite, Burst I/O.
2. Scaling types: S = scaled; U = unscaled; B = block floating-point; F = single precision floating-point.
3. Rounding modes: C = convergent rounding; T = truncation.
4. Output ordering: N = Natural Order; R = Bit/Digit Reversed Order.
5. Memory types: B = block RAM, D = distributed RAM. Applies to data and phase factor storage in Burst I/O architectures, and to the output reorder buffer in the

Pipelined Streaming I/O architecture.
6. Optimize for Speed using XtremeDSP slices in both Complex Multipliers (4-multiplier structure) and Butterfly Arithmetic.
7. The -1 speedgrade was used in all cases.
8. Virtex-6 FPGAs have 18K block RAMs that may be packed in pairs to form 36K block RAMs. map reports the number of 36K block RAMs + 18K block RAMs,

which may not match the number of 18K block RAMs given here.
9. Area and maximum clock frequencies are provided as a guide. They may vary with the amount of other logic in the FPGA device, tools options, and other

releases of Xilinx implementation tools. Clock frequency does not take jitter into account and should be de-rated by an amount appropriate to the clock source
jitter specification.

10. Latency in clock cycles for the largest transform size.
11. Latency in microseconds for the largest transform size, when running at the maximum achievable clock frequency.
12. Ultrasound.

Table 25: Virtex-6 FPGA Family Performance and Resource Usage in Realtime Mode (Cont’d)
A

p
p

lic
at

io
n

C
h

an
n

el
s

P
o

in
t

S
iz

e

Im
p

le
m

en
ta

ti
o

n
(1

)

V
ar

ia
b

le
 P

o
in

t
S

iz
e

In
p

u
t

D
at

a
W

id
th

P
h

as
e

Fa
ct

o
r

W
id

th

S
ca

lin
g

 T
yp

e(
2)

R
o

u
n

d
in

g
 M

o
d

e(
3)

O
u

tp
u

t
O

rd
er

in
g

(4
)

C
yc

lic
 P

re
fi

x
In

se
rt

io
n

M
em

o
ry

 T
yp

e(
5)

S
ta

g
es

 U
si

n
g

 B
lo

ck
 R

A
M

O
p

ti
m

iz
e

fo
r

S
p

ee
d

(6
)

X
ili

n
x

P
ar

t(7
)

L
U

T
/F

F
 P

ai
rs

L
U

T
s

F
F

s

18
k

B
lo

ck
 R

A
M

s(
8)

X
tr

em
eD

S
P

 S
lic

es

M
ax

 C
lo

ck
 F

re
q

u
en

cy
(9

)

L
at

en
cy

 (
cy

cl
es

)(
10

)

L
at

en
cy

 (
μs

)(1
1)

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 66
Product Specification

Fast Fourier Transform v8.0

Table 26: Virtex-6 FPGA Family Performance and Resource Usage in Non-Realtime Mode

A
p

p
lic

at
io

n

C
h

an
n

el
s

P
o

in
t

S
iz

e

Im
p

le
m

en
ta

ti
o

n
(1

)

V
ar

ia
b

le
 P

o
in

t
S

iz
e

In
p

u
t

D
at

a
W

id
th

P
h

as
e

Fa
ct

o
r

W
id

th

S
ca

lin
g

 T
yp

e(
2)

R
o

u
n

d
in

g
 M

o
d

e(
3)

O
u

tp
u

t
O

rd
er

in
g

(4
)

C
yc

lic
 P

re
fi

x
In

se
rt

io
n

M
em

o
ry

 T
yp

e(
5)

S
ta

g
es

 U
si

n
g

 B
lo

ck
 R

A
M

O
p

ti
m

iz
e

fo
r

S
p

ee
d

(6
)

X
ili

n
x

P
ar

t(
7)

L
U

T
/F

F
 P

ai
rs

L
U

T
s

F
F

s

18
k

B
lo

ck
 R

A
M

s(
8)

X
tr

em
eD

S
P

 S
lic

es

M
ax

 C
lo

ck
 F

re
q

u
en

cy
(8

)

L
at

en
cy

 (
cy

cl
es

)(
10

)

L
at

en
cy

 (
μs

)(
11

)

B
as

eb
an

d
 3

G
P

P
 L

T
E

1 1k R2L Y 16 16 S C N Y B - N XC6VLX75T 1192 1017 1350 3 2 397 12460 31.39

1 1k R2L Y 16 16 S C N Y B - Y XC6VLX75T 1192 1005 1352 3 3 404 12480 30.89

1 2k R2L Y 16 16 S C N Y B - N XC6VLX75T 1313 1085 1410 5 2 396 26811 67.70

1 2k R2L Y 16 16 S C N Y B - Y XC6VLX75T 1324 1060 1412 5 3 402 26833 66.75

4 1k R2L Y 16 16 S C N Y B - N XC6VLX130T 2981 2146 3528 9 8 367 12460 33.95

8 1k R2L Y 16 16 S C N Y B - N XC6VLX550T 5043 3864 6432 17 16 324 12460 38.46

4 2k R2L Y 16 16 S C N Y B - N XC6VLX130T 3041 2272 3618 17 8 350 26811 76.60

8 2k R2L Y 16 16 S C N Y B - N XC6VLX550T 5302 3886 6562 33 16 323 26811 83.01

1 1k R2 Y 16 16 S C N Y B - N XC6VLX75T 1376 1206 1507 3 3 396 7371 18.61

1 1k R2 Y 16 16 S C N Y B - Y XC6VLX75T 1272 1094 1410 3 6 400 7361 18.40

1 2k R2 Y 16 16 S C N Y B - N XC6VLX75T 1428 1292 1594 5 3 396 15582 39.35

1 2k R2 Y 16 16 S C N Y B - Y XC6VLX75T 1309 1154 1481 5 6 396 15571 39.32

2 1k R2 Y 16 16 S C N Y B - N XC6VLX130T 2174 1867 2483 5 6 378 7371 19.50

4 1k R2 Y 16 16 S C N Y B - N XC6VLX130T 3563 3171 4435 9 12 368 7371 20.03

8 1k R2 Y 16 16 S C N Y B - N XC6VLX550T 6649 5751 8339 17 24 317 7371 23.25

2 2k R2 Y 16 16 S C N Y B - N XC6VLX130T 2337 1991 2612 9 6 373 15582 41.77

4 2k R2 Y 16 16 S C N Y B - N XC6VLX130T 3674 3270 4648 17 12 362 15582 43.04

8 2k R2 Y 16 16 S C N Y B - N XC6VLX550T 7192 6179 8720 33 24 278 15582 56.05

O
F

D
M

1 256 R2 Y 12 12 S T N Y D - N XC6VLX75T 1177 1005 1078 0 3 422 1659 3.93

1 256 R2 Y 12 12 S T N Y B - N XC6VLX75T 948 784 1051 3 3 400 1677 4.19

1 256 R2 Y 12 12 B T N Y B - N XC6VLX75T 983 820 1044 3 3 360 1677 4.66

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 67
Product Specification

Fast Fourier Transform v8.0

C
T

 S
ca

n
n

er
s

1 1k Str N 24 24 S C R N - 3 Y XC6VLX75T 3421 3217 5136 8 62 366 2186 5.97

1 1k Str N 24 24 S C R N - 3 N XC6VLX75T 4122 3893 5628 8 32 379 2174 5.74

1 1k Str N 24 24 S C R N - 1 Y XC6VLX75T 4402 4029 5176 2 62 284 2186 7.7

1 1k Str N 24 24 S C R N - 5 Y XC6VLX75T 3495 3092 5117 14 62 280 2186 7.81

1 1k Str N 24 24 S C N N - 3 Y XC6VLX75T 3784 3310 5279 11 62 297 3214 10.82

1 1k Str N 24 24 U C N N - 3 Y XC6VLX75T 3669 3308 5680 12 62 298 3210 10.77

1 1k Str Y 24 24 S C N N - 3 Y XC6VLX75T 4449 4009 6266 11 62 324 3223 9.95

1 1k Str Y 16 24 U C R N - 3 Y XC6VLX75T 3612 3109 5111 6 52 354 2188 6.18

1 1k Str N 16 16 S C R N - 3 Y XC6VLX75T 2445 2272 3551 4 40 393 2178 5.54

1 1k Str N 16 16 S C R N - 3 N XC6VLX75T 3390 3209 4402 4 12 387 2178 5.63

1 1k Str N 16 16 S C N N - 3 Y XC6VLX75T 2531 2316 3678 6 40 379 3206 8.46

1 1k Str N 16 16 U C N N - 3 Y XC6VLX75T 2588 2415 4111 8 40 363 3202 8.82

1 1k Str N 34 34 S C N N - 3 Y XC6VLX75T 4922 4676 7651 12 94 273 3230 11.83

1 1k Str N 34 34 U C N N - 3 Y XC6VLX75T 5279 4531 8096 14 102 307 3230 10.52

1 1k Str N 34 34 B C N N - 3 Y XC6VLX75T 5689 4998 8300 14 102 271 3232 11.93

1 4k Str N 24 24 S C N N - 5 Y XC6VLX75T 4475 4062 6485 30 78 326 12452 38.20

1 4k Str N 24 24 U C N N - 5 Y XC6VLX75T 4701 4234 7180 36 78 287 12448 43.37

1 8k Str N 24 24 S C N N - 6 Y XC6VLX75T 4864 4510 7203 56 90 290 24755 85.36

1 8k Str N 24 24 U C N N - 6 Y XC6VLX75T 5624 4763 8131 69 94 265 24753 93.41

U
(1

2)

1 512 R2L Y 24 24 S C N N B - N XC6VLX75T 1324 1034 1597 4 4 385 5807 15.08

Te
st

1 8k Str Y 24 24 U C N N - 6 Y XC6VLX75T 6369 5870 9621 69 94 287 24765 86.29

1 8k Str Y 24 24 U C N N - 6 N XC6VLX75T 7812 7500 11015 69 51 309 24752 80.10

1 16k Str Y 24 24 U C N N - 7 Y XC6VLX75T 6679 6384 10361 132 98 253 49348 195.05

1 16k Str Y 24 24 U C N N - 7 N XC6VLX75T 9363 8214 11778 132 51 283 49334 174.33

1 256 R4 N 32 24 F - R N B - Y XC6VLX75T 3526 3331 4730 16 40 350 1418 4.05

1 1k R4 N 32 24 F - R N B - Y XC6VLX75T 3737 3429 4885 18 40 328 5536 16.88

1 4k R4 N 32 24 F - R N B - Y XC6VLX75T 3831 3510 4993 37 40 343 22710 66.21

1 256 R2 N 32 24 F - R N B - Y XC6VLX75T 2434 2162 3066 8 12 384 2232 5.81

1 1k R2 N 32 24 F - R N B - Y XC6VLX75T 2508 2261 3140 10 12 377 9434 25.02

1 4k R2 N 32 24 F - R N B - Y XC6VLX75T 2608 2318 3203 31 12 378 41212 109.03

1 256 R2L N 32 24 F - R N B - Y XC6VLX75T 2330 1998 2952 6 6 395 3176 8.04

1 1k R2L N 32 24 F - R N B - Y XC6VLX75T 2409 2055 3020 10 6 370 14448 39.05

1 4k R2L N 32 24 F - R N B - Y XC6VLX75T 2573 2075 3074 31 6 385 65656 170.54

1 256 Str N 32 24 F - R N B 1 Y XC6VLX75T 3789 3581 5513 4 46 348 892 2.56

1 1k Str N 32 24 F - R N B 3 Y XC6VLX75T 4723 4237 6843 12 66 299 3216 10.76

1 4k Str N 32 24 F - R N B 5 Y XC6VLX75T 5400 4951 8258 36 86 305 12452 40.83

Table 26: Virtex-6 FPGA Family Performance and Resource Usage in Non-Realtime Mode (Cont’d)
A

p
p

lic
at

io
n

C
h

an
n

el
s

P
o

in
t

S
iz

e

Im
p

le
m

en
ta

ti
o

n
(1

)

V
ar

ia
b

le
 P

o
in

t
S

iz
e

In
p

u
t

D
at

a
W

id
th

P
h

as
e

Fa
ct

o
r

W
id

th

S
ca

lin
g

 T
yp

e(
2)

R
o

u
n

d
in

g
 M

o
d

e(
3)

O
u

tp
u

t
O

rd
er

in
g

(4
)

C
yc

lic
 P

re
fi

x
In

se
rt

io
n

M
em

o
ry

 T
yp

e(
5)

S
ta

g
es

 U
si

n
g

 B
lo

ck
 R

A
M

O
p

ti
m

iz
e

fo
r

S
p

ee
d

(6
)

X
ili

n
x

P
ar

t(7
)

L
U

T
/F

F
 P

ai
rs

L
U

T
s

F
F

s

18
k

B
lo

ck
 R

A
M

s(
8)

X
tr

em
eD

S
P

 S
lic

es

M
ax

 C
lo

ck
 F

re
q

u
en

cy
(8

)

L
at

en
cy

 (
cy

cl
es

)(
10

)

L
at

en
cy

 (
μs

)(1
1)

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 68
Product Specification

Fast Fourier Transform v8.0

R
ad

ar

1 1k R4 Y 16 16 S C N N B - N XC6VLX75T 2133 2023 2727 7 9 400 3453 8.63

1 1k R4 Y 16 16 S C N N B - Y XC6VLX75T 1973 1665 2422 7 20 387 3458 8.94

1 1k R4 Y 16 16 B C N N B - N XC6VLX75T 2346 2150 2753 7 9 386 3453 8.95

1 1k R4 Y 20 16 S C N N B - N XC6VLX75T 2738 2492 3198 11 9 378 3453 9.135

1 1k R4 Y 20 16 B C N N B - N XC6VLX75T 2750 2505 3220 11 9 387 3453 8.925

1 32k R4 Y 16 16 S C N N B - N XC6VLX75T 2882 2572 3140 84 9 337 131263 389.50

1 32k R4 Y 16 16 B C N N B - N XC6VLX75T 2934 2658 3142 84 9 296 131263 443.46

1 32k Str Y 16 16 U C N N - 10 N XC6VLX75T 9279 7538 10878 201 31 249 98504 395.60

Notes:
1. Implementations: Str = Pipelined Streaming I/O; R4 = Radix-4, Burst I/O; R2 = Radix-2, Burst I/O; R2L = Radix-2 Lite, Burst I/O.
2. Scaling types: S = scaled; U = unscaled; B = block floating-point; F = single precision floating-point.
3. Rounding modes: C = convergent rounding; T = truncation.
4. Output ordering: N = Natural Order; R = Bit/Digit Reversed Order.
5. Memory types: B = block RAM, D = distributed RAM. Applies to data and phase factor storage in Burst I/O architectures, and to the output reorder buffer in the

Pipelined Streaming I/O architecture.
6. Optimize for Speed using XtremeDSP slices in both Complex Multipliers (4-multiplier structure) and Butterfly Arithmetic.
7. The -1 speedgrade was used in all cases.
8. Virtex-6 FPGAs have 18K block RAMs that may be packed in pairs to form 36K block RAMs. map reports the number of 36K block RAMs + 18K block RAMs,

which may not match the number of 18K block RAMs given here.
9. Area and maximum clock frequencies are provided as a guide. They may vary with the amount of other logic in the FPGA device, tools options, and other

releases of Xilinx implementation tools. Clock frequency does not take jitter into account and should be de-rated by an amount appropriate to the clock source
jitter specification.

10. Latency in clock cycles for the largest transform size.
11. Latency in microseconds for the largest transform size, when running at the maximum achievable clock frequency.
12. Ultrasound.

Table 26: Virtex-6 FPGA Family Performance and Resource Usage in Non-Realtime Mode (Cont’d)
A

p
p

lic
at

io
n

C
h

an
n

el
s

P
o

in
t

S
iz

e

Im
p

le
m

en
ta

ti
o

n
(1

)

V
ar

ia
b

le
 P

o
in

t
S

iz
e

In
p

u
t

D
at

a
W

id
th

P
h

as
e

Fa
ct

o
r

W
id

th

S
ca

lin
g

 T
yp

e(
2)

R
o

u
n

d
in

g
 M

o
d

e(
3)

O
u

tp
u

t
O

rd
er

in
g

(4
)

C
yc

lic
 P

re
fi

x
In

se
rt

io
n

M
em

o
ry

 T
yp

e(
5)

S
ta

g
es

 U
si

n
g

 B
lo

ck
 R

A
M

O
p

ti
m

iz
e

fo
r

S
p

ee
d

(6
)

X
ili

n
x

P
ar

t(7
)

L
U

T
/F

F
 P

ai
rs

L
U

T
s

F
F

s

18
k

B
lo

ck
 R

A
M

s(
8)

X
tr

em
eD

S
P

 S
lic

es

M
ax

 C
lo

ck
 F

re
q

u
en

cy
(8

)

L
at

en
cy

 (
cy

cl
es

)(
10

)

L
at

en
cy

 (
μs

)(1
1)

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 69
Product Specification

Fast Fourier Transform v8.0

Spartan-6 Family

Table 27 and Table 28 show performance and resource usage numbers for Spartan-6 FPGAs for both realtime and
non-realtime modes. A range of FFT cores is shown for several typical applications: Baseband 3GPP LTE, Baseband
OFDM, CT scanners, Ultrasound, Test and measurement, and Radar. The parameters for each core are shown in
both tables. Some rows of the table are grayed-out to indicate that these cores would not fit on the device due to
FPGA resource requirements (typically insufficient I/O pins to route all core signals outside the device). None of
the optional pins (ACLKN, ARESETN, OVFLO) are used and hybrid RAM is not used. The performance and
resource usage numbers were produced using ISE 13.1 software, with speed file version “PRELIMINARY 1.11 2010-
07-20”.

Table 27: Spartan-6 Family Performance and Resource Usage in Realtime Mode

A
p

p
lic

at
io

n

C
h

an
n

el
s

P
o

in
t

S
iz

e

Im
p

le
m

en
ta

ti
o

n
(1

)

C
o

n
fi

g
u

ra
b

le
 P

o
in

t
S

iz
e

In
p

u
t

D
at

a
W

id
th

P
h

as
e

Fa
ct

o
r

W
id

th

S
ca

lin
g

 T
yp

e(
2)

R
o

u
n

d
in

g
 M

o
d

e(
3)

O
u

tp
u

t
O

rd
er

in
g

(4
)

C
yc

lic
 P

re
fi

x
In

se
rt

io
n

M
em

o
ry

 T
yp

e(
5)

S
ta

g
es

 U
si

n
g

 B
lo

ck
 R

A
M

O
p

ti
m

iz
e

fo
r

S
p

ee
d

(6
)

X
ili

n
x

P
ar

t(
7)

L
U

T
/F

F
 P

ar
is

L
U

T
s

F
F

s

9k
 B

lo
ck

 R
A

M
s(

8)

X
tr

em
eD

S
P

 s
lic

es

M
ax

 c
lo

ck
 f

re
q

u
en

cy
(9

)

L
at

en
cy

 (
cl

o
ck

 c
yc

le
s)

(1
0)

L
at

en
cy

(μ
s)

(1
1)

B
as

eb
an

d
 3

G
P

P
 L

T
E

1 1k R2L Y 16 16 S C N Y B - N XC6SLX150T 1154 753 1187 6 2 246 12456 50.63

1 1k R2L Y 16 16 S C N Y B - Y XC6SLX150T 1149 728 1189 6 3 225 12476 55.45

1 2k R2L Y 16 16 S C N Y B - N XC6SLX150T 1168 894 1245 9 2 232 26807 115.55

1 2k R2L Y 16 16 S C N Y B - Y XC6SLX150T 1141 891 1247 9 3 232 26829 115.64

4 1k R2L Y 16 16 S C N Y B - N XC6SLX150T 2554 1586 3020 18 8 213 12456 58.48

8 1k R2L Y 16 16 S C N Y B - N

4 2k R2L Y 16 16 S C N Y B - N XC6SLX150T 2605 1742 3096 33 8 215 26807 124.68

8 2k R2L Y 16 16 S C N Y B - N

1 1k R2 Y 16 16 S C N Y B - N XC6SLX150T 1292 989 1361 6 3 237 7367 31.08

1 1k R2 Y 16 16 S C N Y B - Y XC6SLX150T 1197 842 1247 6 6 237 7357 31.04

1 2k R2 Y 16 16 S C N Y B - N XC6SLX150T 1374 1072 1428 9 3 228 15578 68.32

1 2k R2 Y 16 16 S C N Y B - Y XC6SLX150T 1221 935 1316 9 6 226 15567 68.88

2 1k R2 Y 16 16 S C N Y B - N XC6SLX150T 2006 1529 2220 10 6 226 7367 32.60

4 1k R2 Y 16 16 S C N Y B - N XC6SLX150T 3205 2654 3938 18 12 212 7367 34.75

8 1k R2 Y 16 16 S C N Y B - N

2 2k R2 Y 16 16 S C N Y B - N XC6SLX150T 2149 1622 2327 17 6 219 15578 71.13

4 2k R2 Y 16 16 S C N Y B - N XC6SLX150T 3588 2785 4125 33 12 221 15578 70.49

8 2k R2 Y 16 16 S C N Y B - N

O
F

D
M

1 256 R2 Y 12 12 S T N Y D - N XC6SLX150T 1054 868 946 0 3 236 1655 7.01

1 256 R2 Y 12 12 S T N Y B - N XC6SLX150T 872 665 932 3 3 228 1673 7.34

1 256 R2 Y 12 12 B T N Y B - N XC6SLX150T 924 700 934 3 3 218 1673 7.67

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 70
Product Specification

Fast Fourier Transform v8.0

C
T

 s
ca

n
n

er
s

1 1k Str N 24 24 S C R N - 3 Y XC6SLX150T 3850 3301 5563 9 94 162 2182 13.47

1 1k Str N 24 24 S C R N - 3 N XC6SLX150T 5614 5174 7293 9 48 198 2170 10.96

1 1k Str N 24 24 S C R N - 1 Y XC6SLX150T 4477 4069 5600 3 94 166 2182 13.14

1 1k Str N 24 24 S C R N - 5 Y XC6SLX150T 3775 3147 5545 15 94 171 2182 12.76

1 1k Str N 24 24 S C N N - 3 Y XC6SLX150T 4013 3354 5704 15 94 167 3210 19.22

1 1k Str N 24 24 U C N N - 3 Y XC6SLX150T 4138 3409 6254 17 94 169 3206 18.97

1 1k Str Y 24 24 S C N N - 3 Y XC6SLX150T 4990 4001 6691 15 94 184 3219 17.49

1 1k Str Y 16 24 U C R N - 3 Y XC6SLX150T 3969 3153 5449 7 80 177 2184 12.34

1 1k Str N 16 16 S C R N - 3 Y XC6SLX150T 2545 2164 3402 6 40 176 2174 12.35

1 1k Str N 16 16 S C R N - 3 N XC6SLX150T 3063 2621 3739 6 16 219 2174 9.93

1 1k Str N 16 16 S C N N - 3 Y XC6SLX150T 2633 2243 3527 10 40 202 3202 15.85

1 1k Str N 16 16 U C N N - 3 Y XC6SLX150T 2874 2340 4169 13 52 168 3198 19.04

1 1k Str N 34 34 S C N N - 3 Y XC6SLX150T 5361 4745 8080 18 126 146 3226 22.10

1 1k Str N 34 34 U C N N - 3 Y XC6SLX150T 5450 4629 8570 21 126 131 3226 24.63

1 1k Str N 34 34 B C N N - 3 Y XC6SLX150T 5750 5028 8765 21 126 134 3228 24.09

1 4k Str N 24 24 S C N N - 5 Y XC6SLX150T 4884 4112 7069 52 118 124 12448 100.39

1 4k Str N 24 24 U C N N - 5 Y XC6SLX150T 5432 4191 7983 64 118 154 12444 80.81

1 8k Str N 24 24 S C N N - 6 Y XC6SLX150T 5342 4675 7921 101 138 154 24751 160.72

1 8k Str N 24 24 U C N N - 6 Y XC6SLX150T 5814 5077 9186 128 146 144 24749 171.87

U
(1

2)

1 512 R2L Y 24 24 S C N N B - N XC6SLX150T 1130 906 1469 6 8 224 5803 25.91

Te
st

1 8k Str Y 24 24 U C N N - 6 Y XC6SLX150T 7435 6187 10676 128 146 152 24761 162.90

1 8k Str Y 24 24 U C N N - 6 N XC6SLX150T 10561 9299 13696 128 80 159 24748 155.65

1 16k Str Y 24 24 U C N N - 7 Y XC6SLX150T 8325 6622 11442 254 150 134 49344 368.24

1 16k Str Y 24 24 U C N N - 7 N XC6SLX150T 11273 10105 14535 254 80 129 49330 382.40

1 256 R4 N 32 24 F - R N B - Y XC6SLX150T 3824 3215 4932 16 64 155 1414 9.12

1 1k R4 N 32 24 F - R N B - Y XC6SLX150T 4133 3207 5096 22 64 148 5532 37.38

1 4k R4 N 32 24 F - R N B - Y XC6SLX150T 4012 3452 5203 66 64 134 22706 169.45

1 256 R2 N 32 24 F - R N B - Y XC6SLX150T 2428 1964 2993 8 20 180 2228 12.38

1 1k R2 N 32 24 F - R N B - Y XC6SLX150T 2488 2086 3066 18 20 166 9430 56.81

1 4k R2 N 32 24 F - R N B - Y XC6SLX150T 2558 2121 3128 58 20 185 41208 222.75

1 256 R2L N 32 24 F - R N B - Y XC6SLX150T 2374 1685 2824 6 10 215 3172 14.75

1 1k R2L N 32 24 F - R N B - Y XC6SLX150T 2437 1781 2891 18 10 220 14444 65.65

1 4k R2L N 32 24 F - R N B - Y XC6SLX150T 2408 1891 2944 28 10 208 65652 315.63

1 256 Str N 32 24 F - R N B 1 Y XC6SLX150T 4121 3452 5822 4 70 164 888 5.41

1 1k Str N 32 24 F - R N B 3 Y XC6SLX150T 5043 4348 7386 18 102 153 3212 20.99

1 4k Str N 32 24 F - R N B 5 Y XC6SLX150T 6094 5107 9051 62 134 122 12448 102.03

Table 27: Spartan-6 Family Performance and Resource Usage in Realtime Mode (Cont’d)
A

p
p

lic
at

io
n

C
h

an
n

el
s

P
o

in
t

S
iz

e

Im
p

le
m

en
ta

ti
o

n
(1

)

C
o

n
fi

g
u

ra
b

le
 P

o
in

t
S

iz
e

In
p

u
t

D
at

a
W

id
th

P
h

as
e

Fa
ct

o
r

W
id

th

S
ca

lin
g

 T
yp

e(
2)

R
o

u
n

d
in

g
 M

o
d

e(
3)

O
u

tp
u

t
O

rd
er

in
g

(4
)

C
yc

lic
 P

re
fi

x
In

se
rt

io
n

M
em

o
ry

 T
yp

e(
5)

S
ta

g
es

 U
si

n
g

 B
lo

ck
 R

A
M

O
p

ti
m

iz
e

fo
r

S
p

ee
d

(6
)

X
ili

n
x

P
ar

t(7
)

L
U

T
/F

F
 P

ar
is

L
U

T
s

F
F

s

9k
 B

lo
ck

 R
A

M
s(

8)

X
tr

em
eD

S
P

 s
lic

es

M
ax

 c
lo

ck
 f

re
q

u
en

cy
(9

)

L
at

en
cy

 (
cl

o
ck

 c
yc

le
s)

(1
0)

L
at

en
cy

(μ
s)

(1
1)

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 71
Product Specification

Fast Fourier Transform v8.0

R
ad

ar

1 1k R4 Y 16 16 S C N N B - N XC6SLX150T 2158 1923 2585 10 9 206 3449 16.74

1 1k R4 Y 16 16 S C N N B - Y XC6SLX150T 1912 1484 2277 10 20 198 3454 17.44

1 1k R4 Y 16 16 B C N N B - N XC6SLX150T 2349 1942 2614 10 9 209 3449 16.50

1 1k R4 Y 20 16 S C N N B - N XC6SLX150T 2757 2369 3153 14 18 197 3449 17.51

1 1k R4 Y 20 16 B C N N B - N XC6SLX150T 2874 2455 3182 14 18 201 3449 17.16

1 32k R4 Y 16 16 S C N N B - N XC6SLX150T 2779 2368 2993 164 9 165 131259 795.51

1 32k R4 Y 16 16 B C N N B - N XC6SLX150T 2800 2419 3005 164 9 148 131259 886.89

1 32k Str Y 16 16 U C N N - 10 N XC6SLX150T 8761 7852 10881 389 40 104 98500 947.12

Notes:
1. Implementations: Str = Pipelined Streaming I/O; R4 = Radix-4, Burst I/O; R2 = Radix-2, Burst I/O; R2L = Radix-2 Lite, Burst I/O.
2. Scaling types: S = scaled; U = unscaled; B = block floating-point; F = single precision floating-point.
3. Rounding modes: C = convergent rounding; T = truncation.
4. Output ordering: N = Natural Order; R = Bit/Digit Reversed Order.
5. Memory types: B = block RAM, D = distributed RAM. Applies to data and phase factor storage in Burst I/O architectures, and to the output reorder buffer in

the Pipelined Streaming I/O architecture.
6. Optimize for Speed using XtremeDSP slices in both Complex Multipliers (4-multiplier structure) and Butterfly Arithmetic.
7. The -2 speedgrade was used in all cases.
8. Spartan-6 FPGAs have 9K block RAMs that may be packed in pairs to form 18K block RAMs. map reports the number of 18K block RAMs + 9K block RAMs,

which may not match the number of 9K block RAMs given here.
9. Area and maximum clock frequencies are provided as a guide. They may vary with the amount of other logic in the FPGA device, tools options, and other

releases of Xilinx implementation tools. Clock frequency does not take jitter into account and should be de-rated by an amount appropriate to the clock source
jitter specification.

10. Latency in clock cycles for the largest transform size.
11. Latency in microseconds for the largest transform size, when running at the maximum achievable clock frequency.
12. Ultrasound.

Table 27: Spartan-6 Family Performance and Resource Usage in Realtime Mode (Cont’d)
A

p
p

lic
at

io
n

C
h

an
n

el
s

P
o

in
t

S
iz

e

Im
p

le
m

en
ta

ti
o

n
(1

)

C
o

n
fi

g
u

ra
b

le
 P

o
in

t
S

iz
e

In
p

u
t

D
at

a
W

id
th

P
h

as
e

Fa
ct

o
r

W
id

th

S
ca

lin
g

 T
yp

e(
2)

R
o

u
n

d
in

g
 M

o
d

e(
3)

O
u

tp
u

t
O

rd
er

in
g

(4
)

C
yc

lic
 P

re
fi

x
In

se
rt

io
n

M
em

o
ry

 T
yp

e(
5)

S
ta

g
es

 U
si

n
g

 B
lo

ck
 R

A
M

O
p

ti
m

iz
e

fo
r

S
p

ee
d

(6
)

X
ili

n
x

P
ar

t(7
)

L
U

T
/F

F
 P

ar
is

L
U

T
s

F
F

s

9k
 B

lo
ck

 R
A

M
s(

8)

X
tr

em
eD

S
P

 s
lic

es

M
ax

 c
lo

ck
 f

re
q

u
en

cy
(9

)

L
at

en
cy

 (
cl

o
ck

 c
yc

le
s)

(1
0)

L
at

en
cy

(μ
s)

(1
1)

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 72
Product Specification

Fast Fourier Transform v8.0

Table 28: Spartan-6 Family Performance and Resource Usage in Non-Realtime Mode

A
p

p
lic

at
io

n

C
h

an
n

el
s

P
o

in
t

S
iz

e

Im
p

le
m

en
ta

ti
o

n
(1

)

C
o

n
fi

g
u

ra
b

le
 P

o
in

t
S

iz
e

In
p

u
t

D
at

a
W

id
th

P
h

as
e

Fa
ct

o
r

W
id

th

S
ca

lin
g

 T
yp

e(
2)

R
o

u
n

d
in

g
 M

o
d

e(
3)

O
u

tp
u

t
O

rd
er

in
g

(4
)

C
yc

lic
 P

re
fi

x
In

se
rt

io
n

M
em

o
ry

 T
yp

e(
5)

S
ta

g
es

 U
si

n
g

 B
lo

ck
 R

A
M

O
p

ti
m

iz
e

fo
r

S
p

ee
d

(6
)

X
ili

n
x

P
ar

t(
7)

L
U

T
/F

F
 P

ar
is

L
U

T
s

F
F

s

9k
 B

lo
ck

 R
A

M
s(

8)

X
tr

em
eD

S
P

 s
lic

es

M
ax

 c
lo

ck
 f

re
q

u
en

cy
(9

)

L
at

en
cy

 (
cl

o
ck

 c
yc

le
s)

(1
0)

L
at

en
cy

(μ
s)

(1
1)

B
as

eb
an

d
 3

G
P

P
 L

T
E

1 1k R2L Y 16 16 S C N Y B - N XC6SLX150T 1280 933 1354 6 2 196 12460 63.57

1 1k R2L Y 16 16 S C N Y B - Y XC6SLX150T 1274 914 1356 6 3 181 12480 68.95

1 2k R2L Y 16 16 S C N Y B - N XC6SLX150T 1298 1048 1412 9 2 204 26811 131.43

1 2k R2L Y 16 16 S C N Y B - Y XC6SLX150T 1302 1054 1416 9 3 202 26833 132.84

4 1k R2L Y 16 16 S C N Y B - N XC6SLX150T 2825 2411 3542 18 8 196 12460 63.57

8 1k R2L Y 16 16 S C N Y B - N

4 2k R2L Y 16 16 S C N Y B - N XC6SLX150T 3061 2224 3623 33 8 172 26811 155.88

8 2k R2L Y 16 16 S C N Y B - N

1 1k R2 Y 16 16 S C N Y B - N XC6SLX150T 1453 1127 1507 6 3 208 7371 35.44

1 1k R2 Y 16 16 S C N Y B - Y XC6SLX150T 1344 1007 1410 6 6 206 7361 35.73

1 2k R2 Y 16 16 S C N Y B - N XC6SLX150T 1443 1260 1594 9 3 213 15582 73.15

1 2k R2 Y 16 16 S C N Y B - Y XC6SLX150T 1305 1117 1482 9 6 212 15571 73.45

2 1k R2 Y 16 16 S C N Y B - N XC6SLX150T 2175 1852 2484 10 6 194 7371 37.99

4 1k R2 Y 16 16 S C N Y B - N XC6SLX150T 3702 3177 4440 18 12 170 7371 43.36

8 1k R2 Y 16 16 S C N Y B - N

2 2k R2 Y 16 16 S C N Y B - N XC6SLX150T 2205 1977 2613 17 6 179 15582 87.05

4 2k R2 Y 16 16 S C N Y B - N XC6SLX150T 3941 3307 4652 33 12 179 15582 87.05

8 2k R2 Y 16 16 S C N Y B - N

O
F

D
M

1 256 R2 Y 12 12 S T N Y D - N XC6SLX150T 1163 977 1079 0 3 226 1659 7.34

1 256 R2 Y 12 12 S T N Y B - N XC6SLX150T 980 746 1051 3 3 217 1677 7.73

1 256 R2 Y 12 12 B T N Y B - N XC6SLX150T 990 777 1044 3 3 218 1677 7.69

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 73
Product Specification

Fast Fourier Transform v8.0

C
T

 s
ca

n
n

er
s

1 1k Str N 24 24 S C R N - 3 Y XC6SLX150T 4127 3764 5770 9 94 131 2186 16.69

1 1k Str N 24 24 S C R N - 3 N XC6SLX150T 8119 7800 9290 9 48 160 2174 13.59

1 1k Str N 24 24 S C R N - 1 Y XC6SLX150T 4797 4373 5810 3 94 129 2186 16.95

1 1k Str N 24 24 S C R N - 5 Y XC6SLX150T 3907 3385 5676 15 94 136 2186 16.07

1 1k Str N 24 24 S C N N - 3 Y XC6SLX150T 4461 4010 5908 15 94 140 3214 22.96

1 1k Str N 24 24 U C N N - 3 Y XC6SLX150T 4406 4025 6269 17 94 136 3210 23.60

1 1k Str Y 24 24 S C N N - 3 Y XC6SLX150T 5083 4457 6839 15 94 144 3223 22.38

1 1k Str Y 16 24 U C R N - 3 Y XC6SLX150T 4044 3337 5462 7 80 151 2188 14.49

1 1k Str N 16 16 S C R N - 3 Y XC6SLX150T 2661 2274 3540 6 40 187 2178 11.65

1 1k Str N 16 16 S C R N - 3 N XC6SLX150T 3138 2752 3858 6 16 206 2178 10.57

1 1k Str N 16 16 S C N N - 3 Y XC6SLX150T 2751 2378 3667 10 40 175 3206 18.32

1 1k Str N 16 16 U C N N - 3 Y XC6SLX150T 3049 2594 4222 13 52 140 3202 22.87

1 1k Str N 34 34 S C N N - 3 Y XC6SLX150T 5696 5288 8311 18 126 119 3230 27.14

1 1k Str N 34 34 U C N N - 3 Y XC6SLX150T 5622 5054 8548 21 126 114 3230 28.33

1 1k Str N 34 34 B C N N - 3 Y XC6SLX150T 6008 5423 8751 21 126 101 3232 32.00

1 4k Str N 24 24 S C N N - 5 Y XC6SLX150T 5249 4727 7266 52 118 111 12452 112.18

1 4k Str N 24 24 U C N N - 5 Y XC6SLX150T 5689 5166 7943 64 118 125 12448 99.58

1 8k Str N 24 24 S C N N - 6 Y XC6SLX150T 6007 5315 8135 101 138 125 24755 198.04

1 8k Str N 24 24 U C N N - 6 Y XC6SLX150T 6068 5533 9087 128 146 106 24753 233.52

U
(1

2)

1 512 R2L Y 24 24 S C N N B - N XC6SLX150T 1324 1187 1673 6 8 199 5807 29.18

Te
st

1 8k Str Y 24 24 U C N N - 6 Y XC6SLX150T 7605 6392 10486 128 146 107 24765 231.45

1 8k Str Y 24 24 U C N N - 6 N XC6SLX150T 16260 15006 17713 128 80 130 24752 190.40

1 16k Str Y 24 24 U C N N - 7 Y XC6SLX150T 8086 6950 11209 254 150 117 49348 421.78

1 16k Str Y 24 24 U C N N - 7 N XC6SLX150T 17150 15724 18501 254 80 114 49334 432.75

1 256 R4 N 32 24 F - R N B - Y XC6SLX150T 4477 3618 5086 16 64 144 1418 9.85

1 1k R4 N 32 24 F - R N B - Y XC6SLX150T 4436 3926 5246 22 64 146 5536 37.92

1 4k R4 N 32 24 F - R N B - Y XC6SLX150T 4747 3856 5356 66 64 140 22710 162.21

1 256 R2 N 32 24 F - R N B - Y XC6SLX150T 2697 2263 3186 8 20 180 2232 12.40

1 1k R2 N 32 24 F - R N B - Y XC6SLX150T 2833 2326 3259 18 20 176 9434 53.60

1 4k R2 N 32 24 F - R N B - Y XC6SLX150T 2896 2371 3321 58 20 177 41212 232.84

1 256 R2L N 32 24 F - R N B - Y XC6SLX150T 2522 2133 3060 6 10 197 3176 16.12

1 1k R2L N 32 24 F - R N B - Y XC6SLX150T 2588 2240 3125 18 10 188 14448 76.85

1 4k R2L N 32 24 F - R N B - Y XC6SLX150T 2676 2253 3176 58 10 176 65656 373.05

1 256 Str N 32 24 F - R N B 1 Y XC6SLX150T 4607 4239 6091 4 70 143 892 6.24

1 1k Str N 32 24 F - R N B 3 Y XC6SLX150T 5527 4851 7637 18 102 125 3216 25.73

1 4k Str N 32 24 F - R N B 5 Y XC6SLX150T 6485 5281 9168 62 134 108 12452 115.30

Table 28: Spartan-6 Family Performance and Resource Usage in Non-Realtime Mode (Cont’d)
A

p
p

lic
at

io
n

C
h

an
n

el
s

P
o

in
t

S
iz

e

Im
p

le
m

en
ta

ti
o

n
(1

)

C
o

n
fi

g
u

ra
b

le
 P

o
in

t
S

iz
e

In
p

u
t

D
at

a
W

id
th

P
h

as
e

Fa
ct

o
r

W
id

th

S
ca

lin
g

 T
yp

e(
2)

R
o

u
n

d
in

g
 M

o
d

e(
3)

O
u

tp
u

t
O

rd
er

in
g

(4
)

C
yc

lic
 P

re
fi

x
In

se
rt

io
n

M
em

o
ry

 T
yp

e(
5)

S
ta

g
es

 U
si

n
g

 B
lo

ck
 R

A
M

O
p

ti
m

iz
e

fo
r

S
p

ee
d

(6
)

X
ili

n
x

P
ar

t(7
)

L
U

T
/F

F
 P

ar
is

L
U

T
s

F
F

s

9k
 B

lo
ck

 R
A

M
s(

8)

X
tr

em
eD

S
P

 s
lic

es

M
ax

 c
lo

ck
 f

re
q

u
en

cy
(9

)

L
at

en
cy

 (
cl

o
ck

 c
yc

le
s)

(1
0)

L
at

en
cy

(μ
s)

(1
1)

http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 74
Product Specification

Fast Fourier Transform v8.0

Support
Xilinx provides technical support for this LogiCORE IP product when used as described in the product
documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that
are not defined in the documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

Refer to the IP Release Notes Guide (XTP025) for further information on this core. There is a link to all the DSP IP
and then to each core. For each core, there is a master Answer Record that contains the Release Notes and Known
Issues list for each core. The following information is listed for each version of the core:

• New Features

• Bug Fixes

• Known Issues

R
ad

ar

1 1k R4 Y 16 16 S C N N B - N XC6SLX150T 2420 2115 2731 10 9 189 3453 18.27

1 1k R4 Y 16 16 S C N N B - Y XC6SLX150T 2064 1679 2423 10 20 205 3458 16.87

1 1k R4 Y 16 16 B C N N B - N XC6SLX150T 2285 2125 2753 10 9 190 3453 18.17

1 1k R4 Y 20 16 S C N N B - N XC6SLX150T 2921 2732 3323 14 18 181 3453 19.08

1 1k R4 Y 20 16 B C N N B - N XC6SLX150T 3026 2505 3345 14 18 203 3453 17.01

1 32k R4 Y 16 16 S C N N B - N XC6SLX150T 2976 2662 3144 164 9 148 131263 886.91

1 32k R4 Y 16 16 B C N N B - N XC6SLX150T 2956 2625 3142 164 9 144 131263 911.55

1 32k Str Y 16 16 U C N N - 10 N XC6SLX150T 9019 7987 10896 389 40 103 98504 956.35

Notes:
1. Implementations: Str = Pipelined Streaming I/O; R4 = Radix-4, Burst I/O; R2 = Radix-2, Burst I/O; R2L = Radix-2 Lite, Burst I/O.
2. Scaling types: S = scaled; U = unscaled; B = block floating-point; F = single precision floating-point.
3. Rounding modes: C = convergent rounding; T = truncation.

4. Output ordering: N = Natural Order; R = Bit/Digit Reversed Order.

5. Memory types: B = block RAM, D = distributed RAM. Applies to data and phase factor storage in Burst I/O architectures, and to the output reorder buffer in
the Pipelined Streaming I/O architecture.

6. Optimize for Speed using XtremeDSP slices in both Complex Multipliers (4-multiplier structure) and Butterfly Arithmetic.

7. The -2 speedgrade was used in all cases.

8. Spartan-6 FPGAs have 9K block RAMs that may be packed in pairs to form 18K block RAMs. map reports the number of 18K block RAMs + 9K block RAMs,
which may not match the number of 9K block RAMs given here.

9. Area and maximum clock frequencies are provided as a guide. They may vary with the amount of other logic in the FPGA device, tools options, and other
releases of Xilinx implementation tools. Clock frequency does not take jitter into account and should be de-rated by an amount appropriate to the clock source
jitter specification.

10. Latency in clock cycles for the largest transform size.

11. Latency in microseconds for the largest transform size, when running at the maximum achievable clock frequency.

12. Ultrasound.

Table 28: Spartan-6 Family Performance and Resource Usage in Non-Realtime Mode (Cont’d)
A

p
p

lic
at

io
n

C
h

an
n

el
s

P
o

in
t

S
iz

e

Im
p

le
m

en
ta

ti
o

n
(1

)

C
o

n
fi

g
u

ra
b

le
 P

o
in

t
S

iz
e

In
p

u
t

D
at

a
W

id
th

P
h

as
e

Fa
ct

o
r

W
id

th

S
ca

lin
g

 T
yp

e(
2)

R
o

u
n

d
in

g
 M

o
d

e(
3)

O
u

tp
u

t
O

rd
er

in
g

(4
)

C
yc

lic
 P

re
fi

x
In

se
rt

io
n

M
em

o
ry

 T
yp

e(
5)

S
ta

g
es

 U
si

n
g

 B
lo

ck
 R

A
M

O
p

ti
m

iz
e

fo
r

S
p

ee
d

(6
)

X
ili

n
x

P
ar

t(7
)

L
U

T
/F

F
 P

ar
is

L
U

T
s

F
F

s

9k
 B

lo
ck

 R
A

M
s(

8)

X
tr

em
eD

S
P

 s
lic

es

M
ax

 c
lo

ck
 f

re
q

u
en

cy
(9

)

L
at

en
cy

 (
cl

o
ck

 c
yc

le
s)

(1
0)

L
at

en
cy

(μ
s)

(1
1)

www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com

DS808 July 25, 2012 www.xilinx.com 75
Product Specification

Fast Fourier Transform v8.0

Ordering Information
This LogiCORE IP module is included at no additional cost with the Xilinx ISE Design Suite software and is
provided under the terms of the Xilinx End User License Agreement. Use the CORE Generator software included
with the ISE Design Suite to generate the core. For more information, please visit the core page.

Please contact your local Xilinx sales representative for pricing and availability of additional Xilinx LogiCORE
modules and software. Information about additional Xilinx LogiCORE modules is available on the Xilinx IP Center.

References
1. W. R. Knight and R. Kaiser, A Simple Fixed-Point Error Bound for the Fast Fourier Transform, IEEE Trans. Acoustics,

Speech and Signal Proc., Vol. 27, No. 6, pp. 615-620, December 1979.

2. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice-Hall Inc., Englewood
Cliffs, New Jersey, 1975.

3. Quang Hung Nguyen and Istvan Kollar, Limited Dynamic Range of Spectrum Analysis Due To Round off Errors Of
The FFT, available at: home.mit.bme.hu/~kollar/papers/IMTC-FFT.pdf

4. I. Szolik, K. Kovac, V. Smiesko, Influence of Digital Signal Processing on Precision of Power Quality Parameters
Measurement, available at: www.measurement.sk/2003/S1/Szolik.pdf.

5. Xilinx AXI Reference Guide (UG761) available at
www.xilinx.com/support/ip_documentation/ug761_axi_reference_guide.pdf.

Revision History

Notice of Disclaimer
Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express
or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any
claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the
Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY
WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED
THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS
IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be
copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means
including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of
Xilinx.

Date Version Description of Revisions

09/21/10 1.0 First release of the core with AXI interface support. The previous release of this document was
ds260.

03/01/11 1.1 Support added for Virtex-7 and Kintex-7. ISE Design Suite 13.1.

7/25/12 1.2 Updated m_axis_data_tvalid data direction on page 32.

home.mit.bme.hu/~kollar/papers/IMTC-FFT.pdf
www.measurement.sk/2003/S1/Szolik.pdf
www.xilinx.com/products/ipcenter/FFT.htm
www.xilinx.com/support/ip_documentation/ug761_axi_reference_guide.pdf
www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/ipcenter
http://www.xilinx.com

	LogiCORE IP
	Fast Fourier Transform v8.0
	Introduction
	Features
	Functional Description
	Overview
	Theory of Operation
	Algorithm
	Finite Word Length Considerations
	Floating Point Considerations
	Real-Valued Input Data
	Rounding Implementation
	Dynamic Range Characteristics
	Architecture Options
	Run-Time Transfer Configuration
	Transfer Status
	Controlling the FFT
	Transfer Timing
	Configuring the FFT

	Pinout
	CORE Generator Graphical User Interface
	Page 1
	Page 2
	Page 3
	Information Tabs

	Using the FFT IP Core
	Simulation Models
	XCO Parameters
	Bit Accurate C Model
	C Model Interface
	Using the C Model to Select a Scaling Schedule

	Demonstration Testbench
	Using the Demonstration Testbench
	The Demonstration Testbench in Detail
	Customizing the Demonstration Testbench

	System Generator For DSP Graphical User Interface
	Tab 1: Basic
	Tab 2: Advanced
	Tab 3: Implementation

	Control Signals
	aclken (Clock Enable)
	aresetn (Synchronous Clear)

	Event Signals
	event_frame_started
	event_tlast_missing
	event_tlast_unexpected
	event_fft_overflow
	event_data_in_channel_halt
	event_data_out_channel_halt
	event_status_channel_halt

	AXI4-Stream Considerations
	Basic Handshake
	AXI Channel Rules
	Configuration Channel
	Data Input Channel
	Data Output Channel
	Status Channel

	Migrating to FFT v8.0 from earlier versions
	XCO Parameters Changes
	Port Changes
	Latency Changes
	Instructions for minimum change migration

	Performance and Resource Usage
	Virtex-6 Family
	Spartan-6 Family

	Support
	Ordering Information
	References
	Revision History
	Notice of Disclaimer

