CORDIC v6.0

LogiCORE IP Product Guide

Vivado Design Suite

PG105 August 6, 2021

& XILINX

& XILINX

Table of Contents

IP Facts

Chapter 1: Overview

Navigating Content by Design Process.............ccvuu..
COre OVeIVIBW ...t iiiiiiii it ieerasansansansonsnnans
FeatureSummary.cciiiiiiiiiiiiinnnnnertonnnans
Applicationsttt it et e it e
Licensingand Orderingccoitiiiiiiiniinnennnns

Chapter 2: Product Specification

T (oY o 1 T= 1 [
Resource Utilization.civiiiiiiiininnneernnnnn
PortDescriptionsoiiiiiiiieieieinnnnneereannans

Chapter 3: Designing with the Core

0 o Yo 4 V-
=T =
Protocol Description — AXI4-Stream......................
Functional Description.cciiiiiiiiineinnnnnnns
Input/Output Data Representation

Chapter 4: Design Flow Steps

Customizing and GeneratingtheCore
System GeneratorforDSP.ttt
ConstrainingtheCorecoiiiiiiiinrnnernnnnnns
Simulation ...ttt i i i i i
Synthesis and Implementation..........................

Chapter 5: C Model

Featurescciiiiiiiiiiiiiiiii ittt
OVEIVIEBW ..ttt iiii ettt iittetanrnesnssnnansnnsnss
Installationciiiiiiiiiii ittt ittt
CModellnterface.........coviiiiiiiiiininnenennnnnns

CORDIC v6.0
PG105 August 6, 2021 www.Xxilinx.com

| Send Feedback I 2

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=2

& XILINX.

(00T 4o 11 11 - 2P 53
LINKING. ..ttt ittt ittt ettt tieeeteneeenaeenaeenaseeaseanssenasenassanesannnnns 53
Dependent Librariesc.iiiiiiiiiiiiiiit i it itiettiat e tiet e 54
3= 1 4o][55

Chapter 6: Test Bench

Demonstration Test BencCh . ..ottt ittt ittt ittt eteennneeerennennnesennnns 56

Appendix A: Upgrading
Migratingtothe Vivado Design Suite.ttt it ettt eierannaannannns 58
Upgradinginthe Vivado Design Suiteciiiiiiiiiiiitinetrnnernnnrenneennnnns 58

Appendix B: Debugging

Finding Help on XilinX.Com oottt ittt it ittt tenerenaeseneseaesannnnns 62
[7=« 10 =00 o Yo] 3 63
Simulation DebUg.ottt i i i i it i e et et e e e et 64
AXl4-Stream Interface Debug oottt i i i it ittt e ettt et e 65

Appendix C: Additional Resources and Legal Notices

XiliNX RESOUICES . o v vttt ittt ittt ite e s tetneesasanansasasasasnsnsnsasensnsasasas 66
Documentation Navigatorand Design Hubsc0 ittt iiiiiiiiennennnnnns 66
3 TS =T =T 4T P 67
REVISION HIiStOry ittt i ittt it i iee et tenenaneseennnanessennnnsssseannnns 67
Please Read: ImportantLegal Noticesciitiiiiiiiiiieiiennrnnrnernennsnnnanss 68

CORDIC v6.0 o l Send Feedback I 3
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=3

& XILINX

IP Facts

Introduction

This Xilinx® LogiCORE™ IP core implements a
generalized coordinate rotational digital
computer (CORDIC) algorithm.

Features

« Functional configurations

« Optional coarse rotation module to extend
the range of CORDIC from the first
quadrant (+Pi/4 to - Pi/4 Radians) to the
full circle

« Optional amplitude compensation scaling
module to compensate for the output
amplitude scale factor of the CORDIC
algorithm

« Output rounding modes: Truncation, Round
to Pos Infinity, Round to Pos/Neg Infinity,
and Round to Nearest Even

« Word serial architectural configuration for
small area

« Parallel architectural configuration for high
throughput

« Control of the internal add-sub precision
« Control of the number of add-sub iterations

« X and Y data formats: Signed Fraction,
Unsigned Fraction, and Unsigned Integer

« Phase data formats: Radian, Pi Radian

« Fully synchronous design using a single
clock

CORDIC v6.0
PG105 August 6, 2021

LogiCORE IP Facts Table

Core Specifics

Supported
Device Family(1)

Versal™ ACAP
UltraScale+™ Families
UltraScale™ Architecture
Zynq®-7000 SoC

7 Series
Supported User AXI4-Stream
Interfaces
Resources Performance and Resource Utilization web page

Provided with Core

Design Files

Encrypted RTL

Example Design

Not Provided

Test Bench

VHDL

Constraints File

Not Provided

Simulation Encrypted VHDL
Model C Model
Supported

S/W Driver N/A

Tested Design Flows(2)

Design Entry

Vivado® Design Suite
System Generator for DSP

Simulation

For supported simulators, see the
Xilinx Design Tools: Release Notes Guide.

Synthesis

Vivado Synthesis

Support

Release Notes
and Known
Issues

Master Answer Record: 54497

All Vivado IP
Change Logs

Master Vivado IP Change Logs: 72775

Xilinx Support web page

1.

2.

Notes:
For a complete listing of supported devices, see the Vivado IP

catalog.

For the supported versions of third-party tools, see the

Xilinx Design Tools: Release Notes Guide.

www.Xxilinx.com

Send Feedback 4
Product Specification

https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=cordic.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=cordic.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;t=vivado+release+notes
https://www.xilinx.com/support/answers/54497.html
https://www.xilinx.com/support/answers/72775.html
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;t=vivado+release+notes
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=4

& XILINX

Chapter 1

Overview

Navigating Content by Design Process

Xilinx® documentation is organized around a set of standard design processes to help you
find relevant content for your current development task. This document covers the
following design processes:

« Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the
Vivado timing, resource and power closure. Also involves developing the hardware
platform for system integration. Topics in this document that apply to this design
process include:

o Port Descriptions
o Clocking
o Resets

o Customizing and Generating the Core

Core Overview

The CORDIC core implements a generalized coordinate rotational digital computer
(CORDIC) algorithm, initially developed by Volder [Ref 1] to iteratively solve trigonometric
equations, and later generalized by Walther [Ref 2] to solve a broader range of equations,
including the hyperbolic and square root equations. The CORDIC core implements the
following equation types:

+ Rectangular <-> Polar Conversion
» Trigonometric
» Hyperbolic

+ Square Root

Two architectural configurations are available for the CORDIC core:

CORDIC v6.0 o l Send Feedback I
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=5

(: X”_INX® Chapter 1: Overview

« A fully parallel configuration with single-cycle data throughput at the expense of
silicon area

« A word serial implementation with multiple-cycle throughput but occupying a small
silicon area

A coarse rotation is performed to rotate the input sample from the full circle into the first
quadrant. (The coarse rotation stage is required as the CORDIC algorithm is only valid over
the first quadrant). An inverse coarse rotation stage rotates the output sample into the
correct quadrant.

The CORDIC algorithm introduces a scale factor to the amplitude of the result, and the
CORDIC core provides the option of automatically compensating for the CORDIC scale
factor.

The CORDIC algorithm can be used to solve several functions as described above. These
functions take different combinations of Cartesian and polar operands. The operands X_IN
and Y_IN are input using the S_AXIS_CARTESIAN channel and the PHASE_IN operand is
input using the S_AXIS_PHASE input.

Feature Summary

« Vector rotation (polar to rectangular)

« Vector translation (rectangular to polar)
« Sin and Cos

« Sinh and Cosh

+ Atan

« Atanh

» Square root

Applications

The CORDIC core can be used to implement any of the general purpose functions listed in
Feature Summary.

CORDIC v6.0 o l Send Feedback I 6
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=6

(: X”_INX® Chapter 1: Overview

Licensing and Ordering

This Xilinx® LogiCORE IP module is provided at no additional cost with the Xilinx Vivado®
Design Suite under the terms of the Xilinx End User License. Information about this and

other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For
information about pricing and availability of other Xilinx LogiCORE IP modules and tools,

contact your local Xilinx sales representative.

CORDIC v6.0 . l Send Feedback I
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/about/contact.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=7

& XILINX

Chapter 2

Product Specification

The equations used to define the CORDIC are detailed in Functional Description in
Chapter 3.

Performance

The latency and throughput of the core is influenced by the selection of Parallel or Serial
Architecture. The resulting basic latency and throughput are described in Parallel
Architectural Configuration and Word Serial Architectural Configuration, though it should
be noted that latency is affected by the form of AXI4-Stream protocol selected. The CORDIC
user interface in the Vivadoe Integrated Design Environment (IDE) shows the latency for the
selected configuration. It should be stated that when AXI blocking mode is selected, latency
should not be a primary design consideration, because the AXI protocol manages data
traffic dynamically.

Two architectural configurations are available for the CORDIC core:

« Parallel, with single-cycle data throughput and large silicon area

» Word Serial, with multiple-cycle throughput and a smaller silicon area.

This choice is independent of choices relating to AXI4-Stream behavior.

Parallel Architectural Configuration

The CORDIC algorithm requires approximately one shift-addsub operation for each bit of
accuracy. A CORDIC core with a parallel architectural configuration implements these
shift-addsub operations in parallel using an array of shift-addsub stages.

A parallel CORDIC core with N bit output width has a latency of N cycles and produces a
new output every cycle. The implementation size of this parallel circuit is directly
proportional to the internal precision times the number of iterations.

Word Serial Architectural Configuration

The CORDIC algorithm requires approximately one shift-addsub operation for each bit of
accuracy. A CORDIC core implemented with the word serial architectural configuration,

CORDIC v6.0 o l Send Feedback I 8
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=8

2: X”_INX® Chapter 2: Product Specification

implements these shift-addsub operations serially, using a single shift-addsub stage and
feeding back the output.

A word serial CORDIC core with N bit output width has a latency of N cycles and produces
a new output every N cycles. The implementation size this iterative circuit is directly
proportional to the internal precision.

Resource Utilization

For details about performance, visit Performance and Resource Utilization.

Port Descriptions

A block diagram of the CORDIC core is presented in Figure 2-1.

s_axis_cartesian_tvalid m_axis_dout_tvalid ——pm
s_axis_cartesian_tready m_axis_dout_tready |-a——
s_axis_cartesian_tdata m_axis_dout_tdata
s_axis_cartesian_tuser m_axis_dout_tuser

s_axis_cartesian_tlast m_axis_dout_tlast F—

s_axis_phase_tvalid
s_axis_phase_tready
s_axis_phase_tdata
s_axis_phase_tuser
s_axis_phase_tlast

aclk

aresetn

ty vbitd b

aclken

DS858_01_082311

Figure 2-1: CORDIC Symbol and Pinout

CORDIC v6.0 . l Send Feedback I 9
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=cordic.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=9

& XILINX.

Chapter 2: Product Specification

Table 2-1 describes the port names in Figure 2-1.

Table 2-1: Core Pinout
Port Name 1/0 Description
aclk | Clock.
Active rising edge.
ACLKEN | | Clock Enable. Active-High
Synchronous Reset. Active-Low. ARESETn must be active for at
ARESETn I
least 2 clock cycles when asserted.
s_axis_cartesian_tvalid | Handshake signal for channel S_AXIS_CARTESIAN.(1
s_axis_cartesian_tready O | Handshake signal for channel S_AXIS_CARTESIAN.“)
Depending on Functional Configuration, this port has one or two
s_axis_cartesian_tdata[A-1:0] | subfields; X_IN and Y_IN. These are the Cartesian operands. Each
- - ’ subfield is Input_Width bits wide, padded to the next byte width
before being concatenated. See TDATA Packing.
s_axis_cartesian_tuser[B-1:0] | Data on this port is delayed w(|1t)h the same latency as tdata and
appear on m_axis_dout_tuser.
tlast is not used by the core, but is combined with
s_axis_cartesian_tlast | | s_axis_phase_tlast, or passed untouched to m_axis_dout_tlast
according to TLAST_Behavior.
s_axis_phase_tvalid | Handshake signal for channel S_AXIS_PHASE.(”
s_axis_phase_tready O | Handshake signal for channel S_AXIS_PHASE.(”

.] This port has one subfield, PHASE_IN. It is the polar operand. The
s.axis_phase_tdata[C-1:0] ! subfield is Input_Width bits wide, padded to the next byte width.
s_axis_phase_tuser[D-1:0] | Data on this port is delayed w(|1t)h the same latency as tdata and

appear on m_axis_dout_tuser.

tlast is not used by the core, but is combined with
s_axis_phase_tlast | s_axis_cartesian_tlast, or passed untouched to m_axis_dout_tlast

according to TLAST_Behavior.
m_axis_dout_tvalid O | Handshake signal for channel M_AXIS_DOUT. M
m_axis_dout_tready [Handshake signal for channel M_AXIS_DOUT.(”

Depending on Functional Configuration this port contains the
m_axis_dout_tdata[E-1:0] 0 following subfields; X_OUT, Y_OUT, PHASE_OUT. Each subfield is
- - ' Output_Width bits wide, padded to the next byte width before

concatenation.

.) This port contains the values input to s_axis_cartesian_tuser and/
m_axis_dout_tuser[F-1:0] © or s_axis_phase_tuser delayed by the same latency as for tdata.
m axis dout tlast 0 This port outputs s_axis_cartesian_tlast, s_axis_phase_tlast or some

- - combination of the two delayed by the same latency as for tdata.

Notes:

1. For AXI4-Stream details see Protocol Description — AXI4-Stream.

Width constants A to F are arbitrary values, determined by the CORDIC Vivado IDE
parameters. Many pins are optional. Input channels are absent if the function selected does

CORDIC v6.0
PG105 August 6, 2021

l Send Feedback I 10

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=10

& XILINX.

Chapter 2: Product Specification

not require the operands carried by the channel in question. For example, the Square Root
function does not require PHASE_IN, so S_AXIS_PHASE is not present for this function.

Data Inputs and Outputs

The set of data input ports and output tdata subfields for a particular functional
configuration are automatically determined by the Vivado IDE, as shown in Table 2-2.

Table 2-2: Input/Output Subfields vs. Functional Configuration

S_AXIS_CARTESIAN S_AXIS_PHASE M_AXIS_DOUT
Function XIN YIN PHASE_IN XOUT | YOUT PHASE_OUT
Rotate 1 1 1 1 1 0
Translate 1 1 0 1 0 1
Sin and Cos 0 0 1 1 1 0
ArcTan 1 1 0 0 0 1
Sinh and Cosh 0 0 1 1 1 0
ArcTanh 1 1 0 0 0 1
Square Root 1 0 0 1 0 0

Notes:

1. A 1 indicates that the subfield and parent channel are present. A 0 indicates that the subfield is absent. If all
subfields of a channel are absent, the channel is also absent. The X_IN operand, if present, is in the least significant
bit positions of S_AXIS_CARTESIAN. SImilarly, X_OUT is in the least significant position of M_AXIS_DOUT, with
Y_OUT in the next significant position and PHASE_OUT in the most significant position. Where one or more is
missing, the remaining operands shift down in bit position. For example, for Translate with an Output_Width of 8,
XOUT is [7:0] and PHASE_OUT is [15:8] of m_axis_dout_tdata.

CORDIC v6.0
PG105 August 6, 2021

www.Xxilinx.com

l Send Feedback I 1

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=11

& XILINX

Chapter 3

Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the
core.

Clocking

The CORDIC core uses a single clock, called aclk. All input and output interfaces and
internal state are subject to this single clock.

Resets

The CORDIC core uses a single, optional reset input called ARESETn. This signal is
active-Low and must be active or inactive for a minimum of two clock cycles to ensure
correct operation. ARESETn is a global synchronous reset which resets all control states in
the core; all data in transit through the core is lost when ARESETn is asserted.

Protocol Description — AXI4-Stream

The conversion to AXI4-Stream interfaces brings standardization and enhances
interoperability of Xilinx® LogiCORE™ IP solutions. Other than general control signals such
as aclk, ACLKEN, and ARESETn, all inputs and outputs to the CORDIC core are conveyed
using AXI4-Stream channels. A channel consists of tvalid and tdata always, plus several
optional ports and fields. In the CORDIC core, the optional ports supported are tready,
tlast, and tuser. Together, tvalid and tready perform a handshake to transfer a
message, where the payload is tdata, tuser, and tlast. The CORDIC core operates on
the operands contained in the tdata fields and outputs the result in the tdata field of the
output channel. The CORDIC core does not use inputs, tuser and tlast as such, but the
core provides the facility to convey these fields with the same latency as for tdata. This
facility of passing tlast and tuser from input to output is intended to ease use of the
CORDIC core in a system. For example, the CORDIC core might operate on streaming
packetized data. In this example, the core could be configured to pass the tlast of the
packetized data channel, thus saving the system designer the effort of constructing a

CORDIC v6.0 o l Send Feedback I 12
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=12

(: XI LI NX® Chapter 3: Designing with the Core

CORDIC v6.0

bypass path for this information. For more information about AXI4-Stream Interfaces see
[Ref 3] and [Ref 4].

Basic Handshake

Figure 3-1 shows the transfer of data in an AXl4-Stream channel. tvalid is driven by the
source (master) side of the channel and tready is driven by the receiver (slave). tvalid
indicates that the value in the payload fields (tdata, tuser, and tlast) is valid. tready
indicates that the slave is ready to receive data. When both tvalid and tready are TRUE
in a cycle, a transfer occurs. The master and slave set tvalid and tready respectively for
the next transfer appropriately.

|
ACLK'
| | T T T T T T |
TVALD |/ | L l T S
TREADY: 1 1 af T T T T
| + + + | | | | |
TDATA | D1 | b2 | bs) bs
I T T T T T T
TLAST, L1 X L2 X L3 X L4
| T T T T T T
TUSER]| Ut fuz f us) ua

Figure 3-1: Data Transfer in an AXI4-Stream Channel

NonBlocking Mode

The CORDIC core provides a mode intended to ease the migration from previous, non-AXI|
versions of this core. The term "NonBlocking” is used to indicate that lack of data on one
input channel does not cause incoming data on the other channel to be buffered. Also, back
pressure from the output is not possible because in NonBlocking mode the output channel
does not have a tready signal. The full flow control of AXI4-Stream is not always required.
Blocking or NonBlocking behavior is selected using the flow_control parameter or GUI field.
The choice of Blocking or NonBlocking applies to the whole core, not each channel
individually. Channels still have the non-optional tvalid signal, which is analogous to the
New Data (ND) signal on many cores prior to the adoption of AXI4-Stream. Without the
facility to block dataflow, the internal implementation is much simplified, so fewer
resources are required for this mode. This mode is recommended for users migrating their
design to this version from a pre-AXI version with minimal change.

When all of the present input channels receive an active tvalid (and tready, if present, is
asserted), an operation is validated and the output tvalid (suitably delayed by the latency
of the core) is asserted to qualify the result. This is to allow a minimal migration from
previous versions. If one channel receives tvalid and the other does not, an operation
does not occur, even if tready is present and asserted. Unlike Blocking mode (which is fully
AXI4-Stream compliant) valid transactions on an individual channel can be ignored in
NonBlocking mode. For performance, ARESETn is registered internally, which delays its

. l Send Feedback I 13
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=13

(: XI LI NX® Chapter 3: Designing with the Core

action by one clock cycle. The effect is that the core is still reset and does not accept input
in the cycle following the deassertion of ARESETn. tvalid is also inactive on the output
channel for this cycle.

Figure 3-2 shows the NonBlocking mode in operation. For simplicity of illustration, the
latency of the core is zero. As indicated by s_axis_cartesian_tready and
s_axis_phase_tready (which are ultimately the same signal), the core can accept data
on every third cycle. Data A1 in the Cartesian channel is ignored because
s_axis_phase_tvalid is deasserted. Data inputs A2 and B1 are accepted because both
tvalids and tready are asserted.

I
aclk }

|
s_axis_cartesian_tvalid }

. . |
s_axis_cartesian_tready |

|
|
1
s_axis_cartesian_tdata 1-
I

s_axis_phase_tvalid i } } i i } } } / } \ } } } } / i } \ 1 1
T T T T T
s.axis_phase tready |, 1} ‘ (AT A U Y A U Y A U Y L

| | | | | | | | | | | |
maxsdoutvaid | L ¢ 1 L
I
m_axis_dout_tdata }

Figure 3-2: NonBlocking Mode

:

Blocking Mode

The term ‘Blocking’” means that each channel with tready buffers data for use. The full flow
control of AXI4-Stream aids system design because the flow of data is self-regulating.
Blocking or NonBlocking behavior is selected using the flow_control parameter or GUI field.
Data loss is prevented by the presence of back pressure (tready), so that data is only
propagated when the downstream datapath is ready to process the data. The CORDIC core
has one or two input channels and one output channel. When all input channels have
validated data available, an operation occurs and the result becomes available on the
output. If the output is prevented from off-loading data because m_axis_dout_tready
is low, data accumulates in the output buffer internal to the core. When this output buffer
is nearly full the core stops further operations. This prevents the input buffers from
off-loading data for new operations so the input buffers fill as new data is input. When the
input buffers fill, their respective treadys (s_axis_cartesian_tready and
s_axis_phase_tready) are deasserted to prevent further input. This is the normal action
of back pressure. The two input channels are tied, as each must receive validated data
before an operation can proceed. As an additional blocking mechanism, one input channel
does not receive validated data while the other does. In this case, the validated data is
stored in the input buffer of the channel. After a few cycles of this scenario, the buffer of the
channel receiving data fills and tready for that channel is deasserted until the empty
channel receives some data.

[y
=Y

CORDIC v6.0 . | Send Feedback I
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=14

(: XI LI NX® Chapter 3: Designing with the Core

Figure 3-3 shows both blocking behavior and back pressure. The first data on channel
S_AXIS_CARTESIAN is paired with the first data on channel S_AXIS_PHASE, the second with
the second, and so on. This demonstrates the ‘blocking’ concept. The channel names
S_AXIS_CARTESIAN and S_AXIS_PHASE are used conceptually. Either can be taken to mean
the Cartesian or phase channel. Figure 3-3 further shows how data output is delayed not
only by latency, but also by the handshake signal m_axis_dout_tready. This is ‘back
pressure’. Sustained back pressure on the output along with data availability on the inputs
eventually leads to a saturation of the core buffers, causing the core to signal that it can no
longer accept further input by deasserting the input channel tready signals. The minimum
latency in this example is two cycles, but it should be noted that in Blocking operation
latency is not a useful concept. Instead, as Figure 3-3 shows, each channel acts as a queue,
ensuring that the first, second, third data samples on each channel are paired with the
corresponding samples on the other channels for each operation.

|
aclk }

s_axis_cartesian_tready i } , \ ! ! ! ! /—r\ ! ! ! ! /—r\ !
s_axis_cartesian_tdata i- A | a2 | AS‘X | ™ X | " X po
s_axis_phase_tvalid | | 1 1
s_axis_phase_tready | i i i
m_axis_dout_tvalid i i i i /_r\ i i i i /_r\ i i
m_axis_dout_tready i | | i i i i i i i i i\

Figure 3-3: Blocking Mode

TDATA Packing

Fields within an AXI4-Stream interface follow a specific nomenclature. In this core the
operands are both passed to or from the core over the tdata port of the channel. To ease
interoperability with byte-oriented protocols, each subfield within tdata that could be
used independently is first extended, if necessary, to fit a bit field which is a multiple of 8
bits. For the output DOUT channel, result fields are sign-extended to the byte boundary.
The bits added by byte orientation are ignored by the core and do not use additional
resources.

TDATA Structure for Cartesian Channel

Input channel s_axis_cartesian carries the two scalar operands X_IN (real) and Y_IN
(imaginary) byte-aligned in the tdata field. Each operand occupies the least significant
position in the bytes occupied. The tdata port width itself is the minimum number of bytes
required to hold the operands (see Figure 3-4).

CORDIC v6.0 . | Send Feedback I 15
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=15

(: XI LI NX® Chapter 3: Designing with the Core

PAD Y_IN PAD X_IN

\ 0
Input_Width

Figure 3-4: TDATA Structure for Cartesian Channel

TDATA Structure for Phase Channel

Input channel s_axis_phase carries the operand PHASE_IN in the tdata field. The
tdata port width itself is the minimum multiple of bytes wide required to contain the
operand (see Figure 3-5).

PAD PHASE_IN

0
\ Input_Width

Figure 3-5: TDATA Structure for Phase Channel

TDATA Structure for Output (DOUT) Channel

The structure of m_axis_dout_tdata is more complex. This port can contain several
combinations of output subfields X_OUT, Y_OUT and PHASE_OUT, depending on the
Functional Selection parameter. The possible formats are shown with the corresponding
functional selections in Figure 3-6.

Rotate,
PAD Y_OUT PAD X_OuUT Sin_and_Cos,

\ 5 Sinh_and_Cosh
Output_Width

PAD PHASE_OUT PAD X_OuT Translate
\ 0
Output_Width
ArcTan,
PAD PHASE_OUT ArcTanh
\ 0
Output_Width
PAD X_OouT Square_Root

0
\Output_Width

Figure 3-6: TDATA Structure for Output (DOUT) Channel

CORDIC v6.0 o l Send Feedback I 16
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=16

(: XI LI NX® Chapter 3: Designing with the Core

TLAST and TUSER Handling

tlast in AXI4-Stream is used to denote the last transfer of a block of data. tuser is for
ancillary information which qualifies or augments the primary data in tdata. The CORDIC
core operates on a per-sample basis where each operation is independent. Because of this,
there is no need for tlast on any of the input (s_axis) channels. The tlast and tuser
signals are supported on each input channel as an optional aid to system design for
implementations in which the data stream being passed through the CORDIC core has some
packetization or ancillary field, but is not relevant to the CORDIC. The facility to pass tlast
and/or tuser removes the burden of matching latency to the tdata path (which can be
variable) through the CORDIC core.

TLAST Options

tlast for each input channel is optional. When present, each can be passed through the
CORDIC. When more than one channel has tlast enabled, the core can pass a logical AND
or logical OR of the tlasts input. When no tlasts are present on any input channel, the
output channel does not have tlast either.

TUSER Options

tuser for each input channel is optional. Each has user-selectable width. These fields are
concatenated, without any byte-orientation or padding, to form the output channel tuser
field. The tuser field from the Cartesian channel occupies the least significant position,
followed by the tuser field from the phase channel.

TUSER from S_AXIS_PHASE TUSER from S_AXIS_CARTESIAN
0

CARTESIAN_TUSER_WIDTH+ CARTESIAN_TUSER_WIDTH-1
PHASE_TUSER_WIDTH-1

Figure 3-7: TUSER for Cartesian and Phase Channel

Functional Description

The CORDIC algorithm was initially designed to perform a vector rotation, where the vector
(X,Y) is rotated through the angle 6 yielding a new vector (X'Y').

Vector Rotation Equation
a) X =(cos(0)xX-sin(0)xY) Equation 3-1
b) Y' = (cos(0) X Y+ sin(0) x X)

c) 9I=O

CORDIC v6.0 o l Send Feedback I 17
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=17

(: XI LI NX® Chapter 3: Designing with the Core

The CORDIC algorithm performs a vector rotation as a sequence of successively smaller
rotations, each of angle atan(2™), known as micro-rotations. Equation 3-2 shows the
expression for the it" iteration where i is the iteration index from 0 to n.
Expression for the it" microrotation
2a) X, q=X;—0;- ;27 Equation 3-2
2b) Y q= Yoy X2

o; = (+ or-) 1, where a; is the direction of rotation.

See CORDIC Scale Factor or Vector Translation for details on selecting a;. Each
micro-rotation stage can be expressed as a simple shift and add/subtract operation.
Equation 3-3 shows the Vector rotation expression for the nth iteration. Vector rotation
expressed as a series of ‘'n" micro-rotations

h .
3a) X' = H cos(atan(2))(X; - o;,Y;27) Equation 3-3

i=1

n .
3b) YV = H cos(atan(2-)) (Y, + o, X;27)
i=1

n .
3c) 0 = Z 0— (o atan(27h)
i=1
o, = (+or-) 1.

The CORDIC algorithm can be used to generate either a vector rotation or a vector
translation.

Vector Rotation

Vector rotation rotates the vector (X, Y) through the angle 6 to yield a new vector (X',Y’), as
shown in Figure 3-8.

Vector rotation is performed by selecting o;, such that 6'converges towards zero; that is,
when 6, ; >=0, o; is setto -1 and when 6, ; <0, o; is set +1.

Vector Rotation Equations
4a) X' = Z;x(cos(8) xX—sin(8)xY) Equation 3-4

4b) Y' = Z;x(cos(0) XY+ sin(0) xX)

CORDIC v6.0 o l Send Feedback I 18
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=18

(: XI LI NX® Chapter 3: Designing with the Core

4c) 0'=0

1
n .
H acos(atan(27))

i=1

Zl':

Polar to Rectangular Translation

When the vector rotation functional configuration is selected, the input vector (X_IN, Y_IN)
is rotated by the input angle, 8, using the CORDIC algorithm. This generates the scaled
output vector, Z; * (X', Y'), shown in Figure 3-8.

The input subfields, X_IN, Y_IN and PHASE_IN, are limited to the ranges given in Table 3-1
when coarse rotation is set. Inputs outside these ranges produce unpredictable results. See
Input/Output Data Representation for more information about the CORDIC binary data
formats.

An optional coarse rotation module is provided to extend the range of the input subfields,
X_IN, Y_IN and PHASE_IN, to the full circle. For this functional configuration, the coarse
rotation module is selected by default, but can be manually deselected. See Advanced
Configuration Parameters for more information. When this option is not set, inputs must be
constrained to lie in the first quadrant, -Pi/4 to + Pi/4.

An optional compensation scaling module is provided to compensate for the CORDIC scale
factor Z;. For this functional configuration, the compensation scaling module is selected by
default, but can be manually deselected. See Advanced Configuration Parameters for more
information.

A Polar to Rectangular Translation can be implemented by setting the functional
configuration to vector rotation, the input vector to (Mag, 0), and the rotation angle to 6,
shown in Figure 3-9.

Vector rotation is linear with respect to magnitude; thus the user can scale the input/output
range; that is:

if (X, Y) rotated by angle 6 = (X', Y') then
K*(X, Y) rotated by angle 6 = K*(X’, Y').

CORDIC v6.0 o l Send Feedback I 19
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=19

(: XI LI NX® Chapter 3: Designing with the Core

Z¥(X\Y)
Output Vector,
12> N

(§]
(XY") N (X,Y) Input Vector

< X

Figure 3-8: Vector Rotation

Table 3-1: Vector Rotation 1/0

Signal Range Description
X_IN -1 <= X_IN<=1 Input X Coordinate
Y_IN -1 <= Y_IN<=1 Input Y Coordinate
PHASE_IN -Pi <= PHASE_IN <= Pi Input Rotation Angle
X_OuUT -Sgrt(2) <= X_OUT< = Sqrt(2) Output X Coordinate * Z
Y_OUT -Sgrt(2) <= Y_OUT<= Sqrt(2) Output Y Coordinate * Z

Example 1: Vector Rotation

The input vector, (Xin, Yin), and the output vector, (Xout, Yout) are expressed as a pair of
fixed-point twos complement numbers with an integer width of 2 bits (1QN format). The
input rotation angle, Pin radians, is also expressed as a fixed-point twos complement
number but with an integer width of 3 bits (2QN format). See the Input/Output Data
Representation section for further information on the CORDIC binary data formats.

In this example, the input/output width is set to 10 bits and the output vector (Xout, Yout)
is scaled to compensate for the CORDIC scale factor.

Xin: “0010110101" => 00.10110101 => 0.707
Yin: “0001000000” => 00.01000000 => 0.25

Pin: “1100110111" => 110.0110111 => -Pi/2
Xout: “0001000001” => 00.01000001 => 0.25

Yout: “1101001011" => 11.01001011 => -0.707

Vector Translation

Vector translation rotates the vector (X_IN,Y_IN) around the circle until the Y component
equals zero as illustrated in Figure 3-9. The outputs from vector translation are the
magnitude, X', and phase, ', of the input vector (X,Y).

Vector translation is performed by selecting «; such that Y' converges towards zero; that is,
when Yy >= 0, o; is set to -1 and when Y;_; < 0, o; is set +1.

CORDIC v6.0 . l Send Feedback I 20
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=20

(: XI LI NX® Chapter 3: Designing with the Core

Vector Translation Equations:

5a) X =Z;x A/(X2 + Yz) Equation 3-5

5b) Y =0

5¢) ©'= atan()—;)

1

Z, = ~
- H acos(atan(27))
i=1

Rectangular to Polar Translation

When the vector translational functional configuration is selected, the input vector
(X_IN,Y_IN) is rotated using the CORDIC algorithm until the Y component is zero. This
generates the scaled output magnitude, Z; -« Mag(X_IN,Y_IN), and the output phase,
Atan(Y_IN/X_IN), shown in Figure 3-9.

The inputs, X_IN and Y_IN, are limited to the ranges given in Table 3-2 when coarse rotation
is set. Inputs outside these ranges produce unpredictable results. See Input/Output Data
Representation for more information about CORDIC binary data formats.

An optional coarse rotation module is provided to extend the range of inputs, X_IN and
Y_IN, to the full circle. For this functional configuration, the coarse rotation module is
selected by default, but can be manually deselected. See Advanced Configuration
Parameters for more information. When this option is not set, inputs must be constrained to
lie in the first quadrant, -Pi/4 to + Pi/4.

An optional compensation scaling module is provided to compensate for the CORDIC scale
factor Z;. For this functional configuration, the compensation scaling module is selected by
default, but can be manually deselected. See Advanced Configuration Parameters for more
information.

A rectangular to polar translation can be implemented by setting functional configuration
to vector translation, and the input vector to (X,Y), shown in Figure 3-9.

Vector translation is linear with respect to magnitude, making the input/output range
scalable:

if vector (X_IN, Y_IN) is translated to (X’,6), then
vector K*(X_IN, Y_IN) is translated to K*(X’,8").

The phase angle of a zero length vector, (0,0), is indeterminate and the output phase angle
generated by the core is unpredictable.

CORDIC v6.0 o l Send Feedback I 21
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=21

& XILINX.

Chapter 3: Designing with the Core

The accuracy of the phase output from the CORDIC vector translation algorithm is limited
by the number of significant magnitude bits of the input vector (X_IN, Y_IN). See
Customizing and Generating the Core for more information.

Y
J
(X,Y) g g Output Phase
Input Vector o =~ >~
\
\ Z{(Mag,0)
1> \ Output Ma
< 0\ e p R xg
) T ™eoo

Figure 3-9: Vector Trans

Example 2: Vector Translation

Table 3-2: Vector Translation 1/O

lation (Polar to Rectangular)

Signal Range Description
X_IN -1 <=X_IN <=1 Input X Coordinate
Y_IN -1 <=Y_IN <=1 Input Y Coordinate
X_OuUT 0 <= X_OUT <= Sqrt(2) Output Magnitude * Z
PHASE_OUT -Pi <= Phase Out <= Pi Output Phase

The individual input vector elements, (X_IN, Y_IN), and the output magnitude, X_OUT, are
expressed as fixed-point twos complement numbers with an integer width of 2 bits (1QN
format). The output phase angle, PHASE_OUT radians, is expressed as a fixed-point twos
complement number with an integer width of 3 bits (2QN format).

In this example the input/output width is set to 10 bits and the output X_OUT is scaled to

compensate for the CORDIC scale factor.

X_IN: “0010110101" => 00.10110101 => 0.707
Y_IN: “0001000000” => 00.01000000 => 0.25

X_OUT: “0011000000" => 00.11000000 => 0.75

PHASE_OUT: “"0000101011" => 000.0101011 => 0.336

CORDIC v6.0
PG105 August 6, 2021

www.Xxilinx.com

l Send Feedback I 22

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=22

(: XI LI NX® Chapter 3: Designing with the Core

CORDIC Scale Factor

The outputs of the CORDIC algorithm, Equation 3-4 and Equation 3-5, are equivalent to a
vector rotation or vector translation scaled by a constant Z;. The constant Z; is known as the
CORDIC scale factor.

1

" Equation 3-6
Zi = H acos (atan(2-%))
i=1

The Taylor series expansion of acos (atan (27) is (1 + 2721)1/2

expressed as

. Hence, the constant Z; can be

n
Zi = H(—I +2—21)1/2 Equation 3-7
i=1

The CORDIC scale factor, Z;, is only dependent on the number of iterations, n. Only
functional configurations Rotate, Translate, Rectangular to Polar, and Polar to Rectangular
are affected by the CORDIC scale factor. When these functional configurations are selected,
the CORDIC core provides the option of multiplying by 1/ Z; to cancel out the scaling factor.
See Advanced Configuration Parameters for more information.

Output Quantization Error

The Output Quantization Error can be split into two components; the Output Quantization
Error due to the Input Quantization (OQEIQ), and the Output Quantization Error due to
Internal Precision (OQEIP).

OQEIQ is due to the half LSB of quantization noise on the X_IN,Y_IN and PHASE_IN inputs.
In a vector rotation this input quantization noise results in OQEIQ of a half LSB on both the
X_OUT and Y_OUT outputs. In a vector translation this input quantization noise results in
OQEIQ of a half LSB on the X_OUT output; however, OQEIQ on the phase output is
dependent on the ratio (Y_IN/ X_IN). Thus for small X_IN inputs the effect of input
quantization noise on OQEIQ is greatly magnified.

OQEIP is due to the limited precision of internal calculations. In the CORDIC core the default
internal precision is set such that the accumulated OQEIP is less than 1/2 the OQEIQ. The
internal precision can be manually set to (Input_Width + Output_Width +
log,(Output_Width)). This reduces OQEIP to a half LSB (the phase is calculated to full
precision regardless of the magnitude input vector).

The Output Quantization Error, for a CORDIC core with default internal precision, is
dominated by OQEIQ. OQEIQ can only be reduced by increasing the number of significant
magnitude bits in the input vector (X_IN,Y_IN). Increasing the internal precision or zero
padding X_IN and Y_IN inputs only affects OQEIP and has minimal effect on the total output
quantization error.

CORDIC v6.0 o l Send Feedback I 23
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=23

(: XI LI NX® Chapter 3: Designing with the Core

The effect of input quantization and internal quantization on the CORDIC phase output
guantization error is illustrated in the following examples:

Example 1a: The quantization error in phase output for a small input vector, (Xin_small,
Yin_small).

Xin_small: “0000000001" => 1/256.
Yin_small: “0000000001" => 1/256.

Vector translation with no input quantization:
Xin_ideal: “0000000001" => 1/256.
Yin_ideal: “0000000001" => 1/256.
Pout_ideal: “0001100100" => 0.79.

Output quantization error due to the input quantization:
Xin_Quant = Xin_small - 1/2 LSB and Yin_Quant = Yin_small + 1/2 LSB.
Xin_Quant: "00000000001" => 1/512.

Yin_Quant: “00000000011" => 3/512.

Pout_Quant: "0010100000" =>1.25.

OQEIQ = abs(abs(Pout_Quant) - abs(Pout_ldeal)).
OQEIQ = "0000111100" => 0.47.

Output quantization error due to the internal precision:

Xin_cordic: "0000000001" => 1/256.

Yin_cordic: “0000000001" => 1/256.

Pout_cordic: "0001111010" => 0.95.

OQEIP = abs(abs(Pout_cordic) - abs(Pout_ldeal)).
OQEIP = "0000010110" => 0.17.

Example 1b: Quantization error in phase output for a large input vector, (Xin_large, Yin_large).
Xin_large: “0100000000" => 256/256.

Yin_large: “0100000000" => 256/256.

CORDIC v6.0 N Send Feedback 24
PG105 August 6, 2021 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=24

(: XI LI NX® Chapter 3: Designing with the Core

Vector translation with no input quantization:
Xin_ideal: “0100000000" => 256/256.
Yin_ideal: “0100000000" => 256/256.
Pout_ideal: "0001100100" => 0.79.

Output quantization error due to the input quantization:
Xin_Quant = Xin_large - 1/2 LSB and Yin_Quant = Yin_large + 1/2 LSB.
Xin_Quant: "00111111111" => 511/512.

Yin_Quant: “01000000001" => 513/512.
Pout_Quant: "0001100101" =>0.79.

OQEIQ = abs(abs(Pout_Quant) - abs(Pout_ldeal)).
OQEIQ = "0000000001" => 0.00.

Output quantization error due to the internal precision:

Xin_cordic: “0100000000" => 256/256.
Yin_cordic: “0100000000" => 256/256.
Pout_cordic: “0001100100" => 0.79.

OQEIP = abs(abs(Pout_cordic) - abs(Pout_ldeal)).

OQEIP = "0000000000" => 0.00

Sin and Cos

When the Sin and Cos functional configuration is selected, the unit vector is rotated by
input angle, 9, using the CORDIC algorithm. This generates the output vector (Cos(9),
Sin(e)).

The input PHASE_IN is limited to the range given in Table 3-3 when coarse rotation is set.
Inputs outside this range produce unpredictable results. See Input/Output Data
Representation for more information about CORDIC binary data formats.

An optional coarse rotation module is provided to extend the range of input angle, 6, to the
full circle. For this functional configuration, the coarse rotation module is selected by
default, but can be manually deselected. See Advanced Configuration Parameters for more
information. When this option is not set, inputs must be constrained to lie in the first
quadrant, -Pi/4 to + Pi/4.

CORDIC v6.0 o l Send Feedback I 25
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=25

(: XI LI NX® Chapter 3: Designing with the Core

The compensation scaling module is disabled for the Sin and Cos functional configuration
as it is internally pre-scaled to compensate for the CORDIC scale factor.

Table 3-3: Sin and Cos

Signal Range Description
PHASE_IN -Pi <= PHASE_IN <= Pi Input Angle 6
X_OUT -1 <= X OUT <=1 Output Cos(0)
Y_OUT -1 <=Y_OUT <=1 Output Sin(0)

Example 3: Sin and Cos

The input angle, PHASE_IN, is expressed as a fixed-point twos complement number with an
integer width of 3 bits (2QN format). The output vector, (X_OUT, Y_OUT), is expressed as a
pair of fixed-point twos complement numbers with an integer width of 2 bits (1QN format).

In this example the input/output width is set to 10 bits.
PHASE_IN: “0001100100” => 000.1100100 => 0.781
X_OUT: “0010110110" => 00.10110110 => 0.711

Y_OUT: “0010110100” => 00.10110100 => 0.703

Sinh and Cosh

When the Sinh Cosh functional configuration is selected, the CORDIC algorithm is used to
move the vector (1,0) through hyperbolic angle, p, along the hyperbolic curve shown in
Figure 3-10. The hyperbolic angle represents the log of the area under the vector (X, Y) and
is unrelated to a trigonometric angle. This generates the output vector (X_OUT =
Cosh(PHASE_IN), Y_OUT = Sinh(PHASE_IN)).

The input hyperbolic angle, PHASE_IN, is limited to the range given in Table 3-4. Inputs
outside this range produce unpredictable results. See Input/Output Data Representation for
more information about CORDIC binary data formats.

The coarse rotation module is disabled for the Sinh and Cosh functional configuration, as it
does not apply to hyperbolic transformations. The compensation scaling module is disabled
for the Sinh and Cosh functional configuration, as it is internally pre-scaled to compensate
for the CORDIC hyperbolic scale factor.

CORDIC v6.0 o l Send Feedback I 26
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=26

(: XI LI NX® Chapter 3: Designing with the Core

-7
; Output Vector (Sinh, Cosh)
/ Hyberbolic ‘Angle’ (PHASE_IN)
P T
o X

S~

\

Input Vector(X_IN,0)
\ Hyperbolic Curve
\ N \/

S~

Figure 3-10: Hyperbolic Sinh Cosh

Table 3-4: Sinh and Cosh

Signal Range Description
PHASE_IN -Pi/4 <= PHASE_IN <= Pi/4 Input Hyperbolic Angle
X_OUT 1<=X0UT <2 Output Cosh
Y_OUT -2 <=Y_OUT <2 Output Sinh

Example 4: Sinh and Cosh

The input hyperbolic angle, Pin, is expressed as a fixed-point twos complement number
with an integer width of 3 bits (2QN format). The output vector, (X_OUT, Y_OUT), is
expressed as a pair of fixed-point twos complement numbers with an integer width of 2 bits
(1QN format).

In this example the input/output width is set to 10 bits.
PHASE_IN: “0001001110"” => 000.1001110 => 0.609
X_OUT: “"0100110001" => 01.00110001 => 1.191

Y_OUT: "0010100110" => 00.10100110 => 0.648

ArcTan

When the ArcTan functional configuration is selected, the input vector (X_IN,Y_IN) is rotated
(using the CORDIC algorithm) until the Y component is zero. This generates the output
angle, Atan(Y_IN/X_IN).

The inputs, X_IN and Y_IN, are limited to the ranges given in Table 3-5 when coarse rotation
is set. Inputs outside these ranges produce unpredictable outputs. See Input/Output Data
Representation for more information about CORDIC binary data formats.

An optional coarse rotation module is provided to extend the range of inputs X_IN and Y_IN
to the full circle. For this functional configuration, the coarse rotation module is selected by
default, but can be manually deselected. See Advanced Configuration Parameters for more

CORDIC v6.0 o l Send Feedback I 27
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=27

(: XI LI NX® Chapter 3: Designing with the Core

information. When this option is not set, inputs must be constrained to lie in the first
quadrant, -Pi/4 to + Pi/4.

The compensation scaling module is disabled for the ArcTan functional configuration as no
magnitude data is output. The ArcTan of a zero length vector, (0,0), is indeterminate and the
output angle generated by the core is undefined.

The accuracy of the output angle from the CORDIC vector translation algorithm is limited by
the number of significant magnitude bits of the input vector (X_IN, Y_IN). See Output
Quantization Error for more information.

Table 3-5: ArcTan

Signal Range Description
X_IN -1 <= X_IN <=1 Input X Coordinate
Y_IN -1 <= Y_IN <=1 Input Y Coordinate
PHASE_OUT -Pi <= PHASE_OUT <= Pi Output Angle

Example 5: ArcTan

The input vector (X_IN, Y_IN) is expressed as a pair of fixed-point twos complement
numbers with an integer width of 2 bits (1QN format). The output angle, Pout radians, is
expressed as a fixed-point twos complement number with an integer width of 3 bits (2QN
format).

In this example, the input/output width is set to 10 bits.
X_IN: “0010100000" => 00.10100000 => 0.625
Y_IN: “0010000000” => 00.10000000 => 0.500

PHASE_OUT: “0001010110" => 000.1010110=> 0.672

ArcTanh

When the ArcTanh functional configuration is selected, the CORDIC algorithm is used to
move the input vector (X_IN,Y_IN) along the hyperbolic curve (Figure 3-11) until the Y
component reaches zero. This generates the hyperbolic “angle,” Atanh(Y_IN/X_IN). The
hyperbolic angle represents the log of the area under the vector (X_IN,Y_IN) and is
unrelated to a trigonometric angle.

The inputs, X_IN and Y_IN, are limited to the ranges given in Table 3-6. Inputs outside these
ranges produce unpredictable outputs. Additionally, Y_IN must be less than or equal to (4/
5 * X_IN) or the CORDIC algorithm does not converge. See Input/Output Data
Representation for more information about CORDIC binary data formats.

The coarse rotation module is disabled for the ArcTanh functional configuration, as it does
not apply to hyperbolic transformations.

CORDIC v6.0 o l Send Feedback I 28
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=28

(: XI LI NX® Chapter 3: Designing with the Core

The compensation scaling module is disabled for the ArcTanh functional configuration as
no output magnitude data is output.

-

Y
A -~
/__ Input Vector (Xin, Yin)

/ Hyperboalic “Angle” (Phase_out)
L X

\ " Internal Vector(Xout,0)
\

\\/ Hyperbolic Curve
N

~
~

X19458-072321

Figure 3-11: Hyperbolic ArcTan

Table 3-6: ArcTanh

Signal Range Description
X_IN 0 < X_IN <2 Input X Coordinate
-2<=Y_IN<2 .
Y_IN XN * 475 <= Y_IN <= X_IN * 4/5 Input Y Coordinate
PHASE_OUT -Pi/2 <= PHASE_OUT<= Pi/2 Output Hyperbolic Angle

Example 6: ArcTanh

The input vector, (X_IN, Y_IN), is expressed as a pair of fixed-point twos complement
numbers with an integer width of 2 bits (1QN format). The output, Pout, is expressed as a
fixed-point twos complement number with an integer width of 3 bits (2QN format).

In this example, the input/output width is set to 10 bits.
X_IN: "0111111111" => 01.11111111 => 0.998
Y_IN: "0101111011" => 01.01111011 => 0.740

PHASE_OUT: “0001111010" => 000.1111010 => 0.953

Square Root

When the square root functional configuration is selected, a simplified CORDIC algorithm is
used to calculate the positive square root of the input. The input, X_IN, and the output,
X_OUT, are always positive and are both expressed as either unsigned fractions or unsigned
integers. When the data format is set to Unsigned Fraction, X_IN is limited to the range:

0 <= X_IN < +2. When data format is set to Unsigned Integer, X_IN is limited to the range:
0 <= X_IN < 2**Input_Width, and the output width is determined automatically based on
the input width. See Input/Output Data Representation for more information about CORDIC
binary data formats.

CORDIC v6.0 o l Send Feedback I 23
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=29

(: XI LI NX® Chapter 3: Designing with the Core

The coarse rotation module is disabled because coarse rotation is not required for the
Square Root functional configuration. The compensation scaling module is disabled
because no output compensation is required for the Square Root functional configuration.

Table 3-7: Square Root

Signal Range Description

Unsigned Fraction:
0<X_ IN<+2

X_IN Unsigned Integer: Input X Value
0<X IN< 2Input_Width
Unsigned Fraction:
0<X OUT<+2
X_OUT Output Square Root

Unsigned Integer:

0<X OUT < Z[int(lnput_Width/Z) +1]

Example 7a: Square Root - Unsigned Fraction

The input, X_IN, and output, X_OUT, are expressed as an unsigned fixed-point number with
an integer width of 1 bit.

In this example the input/output width is set to 10 bits.
X_IN: “0000100000” => 0.000100000 => 1/16

X_OUT: “0010000000” => 0.010000000 => 1/4

Example 7b: Square Root - Unsigned Integer

The input, X_IN, is expressed as an unsigned integer. The output, X_OUT, is expressed as an
unsigned integer. In this example the input width is set to 10 bits so the output width is
automatically set to 6 bits.

X_IN: “0000100000" => 32

X_OUT: "000110" => 6

Input/Output Data Representation

The CORDIC algorithm is used for a variety of operations. Depending on the operation in
question, the input and output can be in Cartesian pair, Polar pair or Scalar form. The
following sections describe the representation of values in these various forms.

CORDIC v6.0 o l Send Feedback I 30
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=30

(: XI LI NX® Chapter 3: Designing with the Core

Cartesian Operands and Results

The s_axis_cartesian_tdata subfields are: X_IN, Y_IN. The m_axis_dout_tdata
subfields are X OUT and Y_OUT.

For Functional Configurations, Rotate, Translate, Sin, Cos and Atan, the Cartesian operands
and results are represented using fixed-point twos complement numbers with an integer
width of 2 bits. The integer width is fixed regardless of the word width; the remainder of the
bits are used for the fractional portion of the number. Using the Q Numbers Format this
representation is described as 1TQN where N = word width - 2. It can also be described as
Fix(N+2)_N using the System Generator Fix format.

Input operands, X_IN and Y_IN, must be in the range: -1 <= input data signal <= 1. Input
data outside this range produces undefined results.

Using a 10-bit word width, +1 and -1 are represented as:
“0100000000” => 01.00000000 => +1.0
“1100000000” => 11.00000000 => - 1.0

For the Square Root Functional Configuration, the Data Signals, X_IN and X_OUT, are both
represented in either Unsigned Fractional or Unsigned Integer data format.

The input operand, X_IN, must be in the range: 0 <= X_IN < +2 when data format is set to
Unsigned Fraction or in the range 0 <= X_IN < 2**Input_Width when data format is set to
Unsigned Integer.

When Unsigned Fractional data format has been selected the Data Signals are represented
using a unsigned fixed-point number with an integer with of 1 bit. The integer width is fixed
and the remainder of the word is used to represent the fractional portion of the number.
Using the System Generator Fix format this representation is described as UFix(N+1)_N,
where is the number of fractional bits being used and is defined as N = word width -1. The
Q Number format is used to represent signed twos complement numbers and is therefore
not suitable to describe the representation format used by the square root function.

Phase Signals

The s_axis_phase_tdata Phase operand is PHASE_IN. Them_axis_dout_tdata phase
output is called PHASE_OUT. The phase signals are always represented using a fixed-point
twos complement number with an integer width of 3 bits. As with the data signals the
integer width is fixed and any remaining bits are used for the fractional portion of the
number. The Phase Signals require an increased integer width to accommodate the
increased range of values they must represent when the Phase Format is set to Radians.

When Phase Format is set to Radians, PHASE_IN must be in the range: -Pi <= (PHASE_IN)
<= Pi. PHASE_IN outside this range produce undefined results.

CORDIC v6.0 o l Send Feedback I 31
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=31

(: XI LI NX® Chapter 3: Designing with the Core

In 2Q8, or Fix11_8, format values, +Pi and -Pi are:
“01100100100" => 011.00100100 => +3.14
“10011011100" => 100.11011100 => - 3.14

When Phase Format is set to Scaled Radians PHASE_IN must be in the range: -1 <=
(PHASE_IN) <= +1. PHASE_IN outside this range produce undefined results.

In 2Q7, or Fix10_7 format values, +1 and -1 are represented as:
“0010000000" => 001.0000000 => +1.0

“1110000000” => 111.0000000 => - 1.0

Q Numbers Format

An XQN format number is an 1+X+N bit twos complement binary number; a sign bit
followed by X integer bits followed by an N bit mantissa (fraction). XQN format can be used
to express numbers in the range (-2X) to (2% - 20:N)). An equivalent notation using the
System Generator Fix format, defined as Fixword_length_fractional_length, would be
Fix(1+X+N)_N.

A number using Q15 format is equivalent to a number using Fix16_15 representation, and a
number in 1Q15 format is equivalent to a number using Fix17_15 representation.

Table 3-8 and Table 3-9 contain examples of XQN Format Numbers.

Table 3-8: 1QN Format Data: Example of a 1Q7 (or Fix9_7) Format Number

(len) | Bit7 | Bit6 | Bits Bt Bit3 Bit2 Bitl | BitO
1 0 i 0 0 0 0 0 0 0
r : 1 0 0 0 0 0 0 0
+Pi/a 0 0 1 1 0 0 1 0 0
pi/a : 1 0 0 1 1 0 1 1
Fractional Bits

Table 3-9: 2QN Format Phase: Example of a 2Q6 (or Fix9_6) Format Number

(Sign) | git7 | Biteé | Bit5 | Bit4 Bit3 | Bit2 | Bitl | BitO

Bit 8
+1 0 0 1 0 0 0 0 0 0
-1 1 1 1 0 0 0 0 0 0
+Pi 0 1 1 0 0 1 0 0 1
-Pi 1 0 0 1 1 0 1 1 1

Fractional Bits

CORDIC v6.0 o l Send Feedback I 32
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=32

(: XI LI NX® Chapter 3: Designing with the Core

Mapping Different Data Formats

Rotate, Translate, Sin, Cos and Atan Functional Configurations

For functional configurations, Rotate, Translate, Sin, Cos and Atan it is possible to map
alternative Data Signal formats to the fixed integer width fractional number used by the
CORDIC core.

When the input and output width differ, care must be taken to re-interpret the CORDIC
output.

Example 8a develops Example 2: Vector Translation to demonstrate a possible remapping.

Example 8a

The Vector Translation function determines the magnitude and phase angle of a given input
vector (X_IN, Y_IN). The input and output width is set to 10 bits. The standard CORDIC data
representation is Fix10_8, the alternative format being mapped onto the input of the
CORDIC is Fix10_1.

X_IN value: “0010110101"

Table 3-10: Example 8: Mapping an Alternative Data Format onto the X_IN input

Sign Decimal
Bit 9 Bit8 Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | BitO Value

Binary Value 0 0 1 0 1 1 0 1 0 1 -
Fix10_8 weighting | -2 20 271 | 22 | 23 | 24 | 23 | 26 | 27 | 28 | 0707
Fix10_1 weighting | -28 | 27 26 2° 24 23 22 21 20 | 21 90.5

Y_IN value: “0001000000"

Table 3-11: Example 8: Mapping an Alternative Data Format onto the Y_IN input

Sign | Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bito Dcomal
Binary Value 0 | 0 1 o | 0o | 0] 0o 0o 0o | o0 -
Fix10_8 weighting | -2 20 |2V | 22 | 23 | 24 | 20 | 26 | 27 | 28 0.25
Fix10_1 weighting | -28 | 27 26 2° 24 23 22 21 20 | 21 32

MATLAB® software is used to generate the expected results. Firstly the magnitude and
phase angle for the standard CORDIC input format 1Q8, or Fix10_8 is generated:

>> a=0.707+0.25j
>> magnitude = abs(a)

magnitude = 0.7499

CORDIC v6.0 . l Send Feedback I 33
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=33

(: XI LI NX® Chapter 3: Designing with the Core

>> phase_angle = angle(a)
phase_angle = 0.3399

Secondly using the mapped input format, 9Q1 or Fix10_1:
>> b=90.5+32j
>> magnitude = abs(b)
magnitude = 95.9909
>> phase_angle = angle(b)
phase_angle = 0.3399

The CORDIC output is:
X_OUT value: "0011000000"
PHASE_OUT value: “0000101011"

Table 3-12 and Table 3-13 demonstrate the output value of the CORDIC being interpreted
using the two data representation formats.

Table 3-12: Example 8: X_OUT Interpretation

Sign | Bit8 | Bit7 | Bit6 Bit5 Bitd Bit3 Bit2 Bit1 | Bito Deomal
Binary Value 0 | 0 1 1 o | 0o | 0o | 0o | o] o -
Fix10_8 weighting | -2 20 | 20 | 22 | 23 | 24| 22 | 26 | 27 | 28 0.75
Fix10_1 weighting | -28 | 27 26 2° 24 23 22 21 20 el 9%

Table 3-13: Example 8: PHASE_OUT Interpretation

Sign Decimal
Bit 9 Bit8 | Bit7 | Bit6 | Bit5 Bit4 | Bit3 | Bit2 | Bit1 | Bit0 Value

Binary Value 0 0 0 0 1 0 1 0 1 1
Fix10_7 weighting | -2% | 27 20 | 27 |22 | 23 | 24 | 23 | 2% | 27 | 0336

Example 8b

If the output width is less than the input width, the CORDIC reduces the fractional width of
the result. When the data output, X_OUT, is being re-interpreted to an alternative data
format, the value must be scaled appropriately.

CORDIC v6.0 N Send Feedback 34
PG105 August 6, 2021 www.Xxilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=34

(: XI LI NX® Chapter 3: Designing with the Core

Table 3-14 demonstrates how the resulting decimal value might change when the output
width is reduced to 8 bits.

Table 3-14: Example 8b: X_OUT Interpretation with Reduced Output Width

80 | Bite | Bit5 | Bit4 Bit3 | Bit2 | Bitl | Bit0 Do
Binary Value 0 0 1 1 0 0 0 0 -
Fix8_6 weighting 2] 20 271 Pae 7= 24 7 2 0.75
Fix8_0 weighting 27 26 2° 24 23 22 21 20 48

A similar situation arises when the output width is greater than the input width. In this case,
the CORDIC increases the fractional width of the result. When the data output is being
re-interpreted to a data format with no fractional bits, this results in an increased
magnitude. This output then needs to be scaled appropriately.

Square Root Functional Configuration

For the Square Root functional configuration it is also possible to map other data formats
onto the data format of the CORDIC but it might be necessary to re-interpret and scale the
output.

Example 9 modifies Example 7a: Square Root - Unsigned Fraction.
Example 9

X_IN value: “00001000"

Table 3-15: Example 9: Mapping an Alternative Data Format onto the X_IN Input

Bit7 | Bit6 Bit5 Bitd | Bit3 | Bit2 | Bitl | Bit0 | Ceama
Binary Value 0 0 0 0 1 0 0 0 -
UFix8_7 weighting 20 2 2 2 2" 29 20 2 0.0625
UFix8_1 weighting 26 2° 24 23 22 21 20 7! 4
UFix8_0 weighting 27 26 2° 24 23 22 21 20 8

The expected output values for each input format are as follows:
UFix8_7 format: sqrt(0.0625) = 0.25
UFix8_1 format: sqrt(4) = 2
UFix8_0 format: sqrt(8) = 2.8284
The CORDIC output is:

X_OUT value: “00100000”

CORDIC v6.0 . | Send Feedback I 35
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=35

(: XI LI NX® Chapter 3: Designing with the Core

Table 3-16 demonstrates the output value directly interpreted in each of the input formats.

Table 3-16: X_OUT Direct Interpretation

Decimal
Value

Binary Value 0 0 1 0 0 0 0 0 -

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

UFix8_7 weighting | 20 277 22 2 274 Z® P 27 0.25
UFix8_1 weighting | 2° 2° 24 23 22 21 20 27 16
UFix8_0 weighting | 27 26 2° 24 23 22 2] 20 32

Table 3-16 shows that if the output value is directly interpreted in the alternative data
format the wrong decimal value is determined. The output value must be scaled correctly.

The output scaling is determined as follows.
The CORDIC core calculates the square root of input values in the range 0 <= X_IN < 2.
Y = ﬁ(Equation 3-8

The alternative data format represents values in the range 0<= X_IN < 2N*1 and the
requirement is to calculate:

Yo = Xaie Equation 3-9
Interpreting X,; using the standard CORDIC data format scales the input by 2N, shown in
Table 3-15.
v=J2".x,

Equation 3-10

(-N)/2
Yy=2 “MXai

As Table 3-16 shows, directly re-interpreting the CORDIC output in the alternative data
formats results in an incorrect decimal value. This is due to the scale factor introduced by
the remapping of the input and the square root function. This scaling factor introduced is
shown in Equation 3-10, 2-N/2,

The corrected results are shown:
UFix8_1 weighting: 16/2®/2) = 2
UFix8_0 weighting: 32/2(7/2) = 2.8284

When N is even the scaling factor is an integer power of two. This can be applied by right
shifting the CORDIC output, X_OUT, by N/2. The example using the UFix8_1 format
demonstrates this with a scaling factor of 273 = 1/8.

CORDIC v6.0 . l Send Feedback I 36
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=36

(: XI LI NX® Chapter 3: Designing with the Core

When N is odd the scaling factor is not an integer power of two. This introduces an
additional output scaling factor of /2. The example using UFix8_0 demonstrates this with a
scaling factor of 277/2 = 2732,

This could be implemented by first scaling the output by a right shift of 4 and then
multiplying by ~2 . A more efficient way would be to translate the /2 scaling to the input of
the square root function.

This is demonstrated in Equation 3-11 where 2-N/2=2-M-(1/2),

(—M-1/2)
Y =2 - X

alt Equation 3-11
y=2" 2" x,

The scaling becomes a simple divide by 2, or right shift, of the input, X_IN, before applying
it to the square root function. Followed by scaling the output, X_OUT, by 2M

An input value of 8 is used for the UFix8_0 formatting example. Divided by 2 this gives 4.
Table 3-15 shows that 4 maps to 1/32 in the CORDIC input range.

~1/32 = 0.17678 = 0.0010110

Table 3-16 shows that the CORDIC output value, 0.0010110, maps to a decimal value of 22
in UFix8_0 formatting. Applying the output scaling of 23, or 1/8, gives 2.75. The loss in
accuracy is due to representing ./1/32 using only 8 bits. If the full accuracy result is used
and then re-interpreted to the alternative data format (Fix8_0) and then scaled, the correct
result is obtained; for example:

J1732x2 %273 = 2.8284

CORDIC v6.0 o l Send Feedback I 37
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=37

& XILINX

Chapter 4

Design Flow Steps

This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

» Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 5]

« Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6]
« Vivado Design Suite User Guide: Getting Started (UG910) [Ref 7]
« Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 8]

Customizing and Generating the Core

This section includes information about using Xilinx tools to customize and generate the
core in the Vivadoe Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 5] for
detailed information. IP integrator might auto-compute certain configuration values when
validating or generating the design. To view the parameter value you can run the
validate_bd_design command in the Tcl Console.

You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.

2. Double-click the selected IP or select the Customize IP command from the toolbar or
right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6] and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 7].

The CORDIC GUI in the Vivado IDE contains two information tabs and two pages to
configure the core.

CORDIC v6.0 o l Send Feedback I 38
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=38

2: X”_INX® Chapter 4: Design Flow Steps

Tab 1 & 2: IP Symbol and Implementation Details

The IP Symbol tab displays the core pinout.

The Implementation Details tab displays the core latency and resource usage. The block
RAM and Multiplier/DSP Slice resources are only utilized when Compensation Scaling is
selected.

Component Name: Used as the base name of the output files generated for the core.
Names must begin with a letter and be composed from the following characters: ato z, 0 to
9,and "_."

Page 1 - Configuration Options

Used to configure the functional selection and architecture of the CORDIC core.

Functional Selection: The functional selections available are Rotate, Sin and Cos,
ArcTan, Square Root, Translate, Sinh and Cosh and ArcTanh. See Functional Description
for more information on each of the supported functions. In general, X_IN, Y_IN, X_OUT
and Y_OUT express signed binary numbers of 1QN format and PHASE_IN and
PHASE_OUT express signed binary numbers of 2QN format. When Square Root is
selected, two new data formats are available: Unsigned Integer and Unsigned Fraction.
For details about CORDIC binary data formats, see Input/Output Data Representation.

Architectural Configuration: Two architectural configurations are available for the
CORDIC core, Parallel and Word Serial. See Performance for more details.

Pipelining Mode: The CORDIC core provides three pipelining modes: None, Optimal,
and Maximum. The choice of pipelining mode is based on the selection of Functional
Configuration and Architectural Configuration. Unavailable pipelining modes are
greyed out in the CORDIC GUI.

- None: the CORDIC core is implemented without pipelining.

- Optimal: CORDIC core is implemented with as many stages of pipelining as
possible without using any additional LUTs.

o Maximum: CORDIC core is implemented with a pipeline after every shift-add sub
stage.

Data Format: CORDIC core provides three formats for expressing the X and Y
components of data samples:

- Signed Fraction: Default setting. The X and Y inputs and outputs are expressed as
fixed-point twos complement numbers with an integer width of 2 bits. Example:
11100000 represents the value -0.5.

- Unsigned Fraction: The X and Y inputs and outputs are expressed as unsigned
fixed-point number with an integer with of 1 bit.
Available only for Square Root functional configuration. Example: 11100000
represents the value +1.75.

CORDIC v6.0 o l Send Feedback I 39
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=39

& XILINX.

o

Chapter 4: Design Flow Steps

Unsigned Integer: The X and Y inputs and outputs express unsigned integers.
Available only for Square Root functional configuration. Example: 11100000
represents the value +224.

« Phase Format: CORDIC core provides two Phase Format options:

o

Radians: The phase is expressed as a fixed-point twos complement numbers with
an integer width of 3 bits, in radian units.
Example: 01100000 represents the value 3.0 radians.

Scaled Radians: The phase is expressed as fixed-point twos complement numbers
with an integer width of 3 bits, with Pi-radian units. One scaled-radian equals Pi * 1
radians.

Example: 11110000 represents the value -0.5 * Pi radians.

See Input/Output Data Representation for more information about CORDIC binary data
formats.

* Input/Output Options: CORDIC core provides four input/output common
configuration options.

o

Input Width: Input Width controls the widths of the input ports, X_IN, Y_IN and
PHASE_IN. The Input Width can be configured in the range 8 to 48 bits.

Register Inputs: Selects if the input signals X_IN, Y_IN, PHASE_IN are registered.

Output Width: Output Width controls the widths of the output ports, X_OUT,
Y_OUT, PHASE_OUT. The Output Width can be configured in the range 8 to 48 bits.

Register Outputs: Selects if the output signals, X_OUT, Y_OUT, PHASE_OUT are
registered.

* Round Mode: The CORDIC core provides four rounding modes. Table 4-1 illustrates the
behavior of the different Rounding modes.

o

o

Truncate: The X_OUT, Y_OUT, and PHASE_OUT outputs are truncated.

Positive Infinity: The X_OUT, Y_OUT, and PHASE_OUT outputs are rounded such
that 1/2 is rounded up (towards positive infinity). It is equivalent to the MATLAB®
function floor(x + 0.5).

Pos Neg Infinity: The outputs X_OUT, Y_OUT, and PHASE_OUT are rounded such
that 1/2 is rounded up (towards positive infinity) and -1/2 is rounded down
(towards negative infinity). It is equivalent to the MATLAB function round(x).

Nearest Even: The X_OUT, Y_OUT, and PHASE_OUT outputs are rounded toward the
nearest even number such that a 1/2 is rounded down and 3/2 is rounded up.

Table 4-1: Rounding Modes
Truncate Pos Neg Infinity | Positive Infinity Nearest Even
1.50 1 2 2 2
1.00 1 1 1 1
CORDIC v6.0 40

PG105 August 6, 2021

www.Xxilinx.com

l Send Feedback I

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=40

2: X”_INX® Chapter 4: Design Flow Steps

Table 4-1: Rounding Modes (Cont’d)

Truncate Pos Neg Infinity | Positive Infinity Nearest Even
0.50 0 1 1 0
0.25 0 0 0 0
0.00 0 0 0 0
-0.25 -1 0 0 0
- 0.50 -1 -1 0 -1
-0.75 -1 -1 -1 -1

« Advanced Configuration Parameters

o

CORDIC v6.0

Iterations: Controls the number of internal add-sub iterations to perform.When
Iterations is set to zero, the number of iterations performed is determined by the
required accuracy of the output. By default, Iterations is set to zero, thus the
number of iterations is automatically determined. In this case, for all operations
except square root, the basic number of iterations set is the output width. This is
then modified as follows; for Coarse Rotation set, subtract 2; for hyperbolic
functions with the iterations number of 4 or more, add 1 and for greater than or
equal to 13, add a further 1.

For square root, the number of iterations set when automatic is selected is again the
output width but modified as follows: Round Mode set to positive infinity, add 1;
Round Mode set to negative infinity or round to nearest even, add 2.

Precision: Configures the internal precision of the add-sub iterations. When
Precision is set to zero, internal precision is determined automatically based on the
required accuracy of the output and the number of internal iterations. By default,
Precision is set to zero, thus the internal precision is automatically determined.
When Precision is set to (Input_Width + Output_Width + log,(Output_Width)) the
output phase is precise to the full output width regardless of input magnitude.
However, the output phase accuracy is still limited by the OQEIQ component of
Output Quantization Error and by the number of Iterations of the CORDIC
Micro-Rotation block.

For all operations other than square root, the internal precision set when Precision
is set to zero is the Output_Width plus the log, rounded up of the number of
iterations, for example, the log, rounded up of 8 is 3 and of 9 is 4.

For square root, the precision is the Output_Width plus 1 for Round Mode positive
or negative infinity and plus 2 for round to nearest even.

Coarse Rotation: Controls the instantiation of the coarse rotation module.
Instantiation of the coarse rotation module is the default for the functional
configurations: Vector rotation, Vector translation, Sin and Cos, and ArcTan. If
Coarse Rotation is turned off for these functions, the input/output range is limited
to the first quadrant (-Pi/4 to + Pi/4). Coarse rotation is not required for the Sinh
and Cosh, ArcTanh, and Square Root configurations. The standard CORDIC
algorithm operates over the first quadrant. Coarse Rotation extends the CORDIC
operational range to the full circle by rotating the input sample into the first

o l Send Feedback I 41
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=41

2: X”_INX® Chapter 4: Design Flow Steps

quadrant and inverse rotating the output sample back into the appropriate
quadrant.

- Compensation Scaling: Controls the compensation scaling module used to
compensate for CORDIC magnitude scaling. CORDIC magnitude scaling affects the
Vector Rotation and Vector Translation functional configurations. It does not affect
the Sin, Cos, Sinh, Cosh, ArcTan, ArcTanh and Square Root functional configurations.
For the latter configurations, compensation scaling is set to No Scale
Compensation. CORDIC magnitude scaling is a side effect of the CORDIC algorithm.
The magnitude outputs, X and Y, are generated scaled by the CORDIC scale factor,
Z;. The compensation scaling module compensates for the effect of CORDIC
magnitude scaling by scaling the outputs, X and Y, by 1/Z;.

- No Scale Compensation: The outputs X and Y are not compensated and are
generated, scaled by the ratio Z;.

- LUT Based: The outputs X and Y are compensated using a LUT-based Constant
Coefficient Multiplier.

- BRAM: The outputs X and Y are compensated using a block RAM-based
Constant Coefficient Multiplier.

- Embedded Multiplier: The outputs X and Y are compensated using the DSP
Slice.

Page 2 - AXI4-Stream Options
Used to configure the AXI4-Stream interfaces.

« Cartesian Channel Options

- Has TLAST: Selects optional port s_axis_cartesian_tlast

- HAS TUSER: Selects optional port s_axis_cartesian_tuser

o TUSER Width: Determines width of s_axis_cartesian_tuser
« Phase Channel Options

- Has TLAST: Selects optional port s_axis_phase_tlast

- HAS TUSER: Selects optional port s_axis_phase_tuser

o TUSER Width: Determines width of s_axis_phase_tuser

» Flow Control: Selects Blocking or NonBlocking behavior of AXI4-Stream channels for
the whole core.

+ Optimize Goal: Selects between performance and resources as the goal of
optimization. Specifically in AXI4-Stream implementation, selecting Performance can
lead to a larger output buffer, but performance similar to DSP Slices. Selecting
Resources limits the size of the output buffer, but might result in a lower maximum
achievable clock frequency.

CORDIC v6.0 N Send Feedback 42
PG105 August 6, 2021 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=42

& XILINX.

Chapter 4: Design Flow Steps

Output has TREADY: Selects optional port m_axis_dout_tready. With this option,
the core might be stalled by backpressure and so needs an output buffer (internally).
Without this option, the core might not be stalled and does not require an output
buffer which results in a smaller design.

Output TLAST Behavior: Selects the logic combination of input tlasts to become
m_axis_dout_tlast. When neither input tlast is selected this is forced to Null and
m_axis_dout_tlast is not present. When only one is selected,
m_axis_dout_tlast exists and outputs the delayed input tlast. When both input
tlasts are selected, the output, suitably delayed can be selected as either input, or a
logical OR of the inputs, or a logical AND of the inputs.

Optional Pins

ACLKEN: Selects optional port ACLKEN. This is provided primarily for ease of migration.
It is not recommended when designing with AXI4-Stream Blocking modes.

ARESETn: Selects optional port ARESETn. ARESETn is active-Low and must be asserted
for a minimum of two aclk cycles to reset the core.

User Parameters

Table 4-2 shows the relationship between the fields in the Vivado IDE (described in
Customizing and Generating the Core) and the User Parameters (which can be viewed in the

Tcl Console).

Table 4-2: Vivado IDE Parameter to User Parameter Relationship

Vivado IDE Parameter

User Parameter

Default Value

Functional Selection functional_selection Rotate
Architectural Configuration architectural_configuration Parallel
Pipelining Mode pipelining_mode Maximum

Data Format

data_format

SignedFraction

Phase Format phase_format Radians
Input Width input_width 16
Output Mode output_width 16
Round Mode round_mode Truncate
Iterations iterations 0
Precision precision 0
Coarse Rotation coarse_rotation TRUE

Compensation Scaling

compensation_scaling

No_Scale_Compensation

Cartesian Channel Options: Has TUSER

cartesian_has_tuser

FALSE

Cartesian Channel Options: TUSER Width

cartesian_tuser_width

1

Cartesian Channel Options: Has TLAST

cartesian_has_tlast

FALSE

CORDIC v6.0
PG105 August 6, 2021

www.Xxilinx.com

l Send Feedback I

43

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=43

& XILINX.

Chapter 4: Design Flow Steps

Table 4-2: Vivado IDE Parameter to User Parameter Relationship (Cont’d)

Vivado IDE Parameter User Parameter Default Value
Phase Channel Options: Has TUSER phase_has_tuser FALSE
Phase Channel Options: TUSER Width phase_tuser_width 1
Phase Channel Options: Has TLAST phase_has_tlast FALSE
Flow Control flow_control NonBlocking
Optimize Goal optimize_goal Resources
Output has TREADY out_tready FALSE
Output TLAST Behavior out_tlast_behv Null
ACLKEN aclken FALSE
ARESETN aresetn FALSE

Output Generation

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 6].

System Generator for DSP

This section details the parameters that differ from the CORDIC GUI in the Vivado IDE. See
Customizing and Generating the Core for more information about all other parameters. The
CORDIC core can be found in the Xilinx® Blockset in the Math section. The block is called
"CORDIC v6.0". See the System Generator for DSP Help page for the “CORDIC v6.0" block for
more information on parameters not mentioned here. The System Generator for DSP GUI
provides the same parameters as the CORDIC GUI in the Vivado IDE.

Implementation

See the System Generator for DSP User Guide (UG640) [Ref 9] for information about the
FPGA Area Estimation parameter.

Constraining the Core

This section contains information about constraining the core in the Vivado® Design Suite.

Required Constraints

This section is not applicable for this IP core.

CORDIC v6.0
PG105 August 6, 2021

l Send Feedback I 44

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=44

2: X”_INX® Chapter 4: Design Flow Steps

Device, Package, and Speed Grade Selections

This section is not applicable for this IP core.

Clock Frequencies

This section is not applicable for this IP core.

Clock Management

This section is not applicable for this IP core.

Clock Placement

This section is not applicable for this IP core.

Banking

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/0 Standard and Placement

This section is not applicable for this IP core.

Simulation

For comprehensive information about Vivado® simulation components, as well as
information about using supported third-party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 8].

To simulate the core, generate the core simulation model and demonstration test bench.
Ensure that the demonstration test bench is the top-level entity in the simulation options.

ﬁ IMPORTANT: For cores targeting 7 series or Zynq-7000 devices, UNIFAST libraries are not supported.
Xilinx IP is tested and qualified with UNISIM libraries only.

CORDIC v6.0 N Send Feedback 45
PG105 August 6, 2021 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=45

2: X”_INX® Chapter 4: Design Flow Steps

Synthesis and Implementation

For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 6].

CORDIC v6.0 N Send Feedback 46
PG105 August 6, 2021 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=46

& XILINX

Chapter 5

C Model

The CORDIC core bit accurate C model is a self-contained, linkable, shared library that
models the functionality of this core with finite precision arithmetic. This model provides a
bit accurate representation of the various modes of the CORDIC core, and it is suitable for
inclusion in a larger framework for system-level simulation or core-specific verification.

Features

» Bit accurate with CORDIC core
« Available for 64-bit Linux platforms
« Available for 64-bit Windows platforms

« Supports all features of the CORDIC core with the exception of those affecting timing
or AXl4-Stream configuration

« Designed for integration into a larger system model

« Example C code showing how to use the C model functions

Overview

The model consists of a set of C functions that reside in a shared library. Example C code is
provided to demonstrate how these functions form the interface to the C model. Full details
of this interface are given in C Model Interface.

The model is bit accurate but not cycle-accurate; it performs exactly the same operations as
the core. However, it does not model the core latency, interface signals or TUSER feature.

Unpacking and Model Contents
There are separate ZIP files containing all the files necessary for use. Each ZIP file contains:

+ C model shared library
¢ C model header file

» Example code showing how to call the C model

CORDIC v6.0 N Send Feedback 47
PG105 August 6, 2021 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=47

& XILINX.

Chapter 5: C Model

Table 5-1 and Table 5-2 list the contents of each ZIP file.

Table 5-1: C Model ZIP File Contents: Linux

File

Description

cordic_v6_0_bitacc_cmodel.h

Header file which defines the C model API

liblp_cordic_v6_0_bitacc_cmodel.so

Model shared object library

run_bitacc_cmodel.c

Example program for calling the C model.

gmp.h

MPIR header file, used by the C model

libgmp.so.11

MPIR library, used by the C model

Table 5-2: C Model ZIP File Contents: Windows

File

Description

cordic_v6_0_bitacc_cmodel.h

Header file which defines the C model API

liblp_cordic_v6_0_bitacc_cmodel.dll

Model dynamically linked library

liblp_cordic_v6_0_bitacc_cmodel.lib

Model LIB file for compiling

run_bitacc_cmodel.c

Example program for calling the C model

gmp.h MPIR header file, used by the C model

libgmp.dll MPIR library, used by the C model

libgmp.lib MPIR .lib file for compiling

Installation

Installation instructions for Linux and Windows operating systems are described in this
section.

Linux

« Unpack the contents of the ZIP file.

» Ensure that the directory where the 1ibIP_cordic_vé6_0_bitacc_smodel.so

resides is included in the path of the environment variable LD_LIBRARY_PATH.

Windows

« Unpack the contents of the ZIP file.

« Ensure that the directory where the 1ibIP_cordic_vé_0_bitacc_cmodel.dll

resides is:

o Included in the path of the environment variable PATH, or

o In the directory in which the executable that calls the C model is run.

CORDIC v6.0
PG105 August 6, 2021

www.Xxilinx.com

l Send Feedback I

48

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=48

& XILINX.

Chapter 5: C Model

C Model Interface

An example file, run_bitacc_cmodel.c, is included. This demonstrates how to call the C
model. See this file for examples of using the interface described in this section.

The Application Programming Interface (API) of the C model is defined in the header file
cordic_vé6_0_bitacc_cmodel.h. The interface consists of data structures and
functions as described in the following sections.

Data Types

The C types defined for the CORDIC C model are listed in Table 5-3.

Table 5-3:

C Model Data Types

Name

Type

Description

xip_real

Double

Base type for scalar inputs and outputs (magnitude
and phase).

xip_complex

Struct {re,im} xip_real

Base type for Cartesian inputs and outputs.

xip_array_real Struct Structure to hold scalar input or scalar output.
«ip arrav complex Struct Structure to hold Cartesian (complex) data for input
p-array_ P or output from the CORDIC core.
Used for configuration parameter of integer or
Boolean type.
xip_uint Unsigned Int For Boolean:
O=false
T=true
. . Error code return from many C model functions. 0
xip_cordic_v6_0_status Int R . .
indicates success. Any other value indicates failure.
. Same as xip_cordic_v6_0_status but used for
Xip_status Int . . o
functions which are not core-specific.
The configuration of the core itself. The members of
this structure are listed in the
«ip cordic V6 0 confi Struct cordic_v6_0_bitacc_cmodel.h file. The names closely
P- - 9 match the same names in XCl files. The
cordic_v6_0_bitacc_cmodel.h file also contains
#defined values for all.
xip_cordic_v6_0 Struct Type defined which C (not C++) can use as a handle

(pointer) to a C++ object — the C model itself.

The xip_array_complex and xip_array_real types are structures with the following members:

data: A pointer to the array of data values.

data_size: Of type size_t, which describes the total size of the data array.

CORDIC v6.0
PG105 August 6, 2021

www.Xxilinx.com

l Send Feedback I 49

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=49

(: X”_INX® Chapter 5: C Model

« data_capacity: Also of type size_t, which describes how much of the array is currently

« populated.

« dim: A pointer to a size_t array of values which indicate the size of each dimension.

« dim_size (size_t): Indicates the number of dimensions of the data array.

« dim_capacity: Indicates how much of the dimension array is currently populated.

« owner: This unsigned int member is provided as a handle for when the data structure is
intended to be passed from one core to another, but is not used by any of the CORDIC
C model functions.

Data Values

The CORDIC core input and output fields are in standard twos complement binary form
with widths between 8 and 48 bits.

The CORDIC C model expects data to be in the C type double, equal to the raw value of the
twos complement bit vector input to the HDL. The parameters, DataFormat and
PhaseFormat determine how the value is interpreted by the C model just as the equivalent
parameters used to configure the HDL core determine how the HDL core interprets input
binary vectors.

For example, the 8 bit vector 11110000 input to the core should be input to the C model as
-16, regardless of the value of parameters for data format or phase format.

Functions
There are several accessible C model functions.

Information Functions

Table 5-4 lists the information functions. The prototypes for these functions can be found in
the C model header file.

Table 5-4: Information Functions

Name Return Arguments Description
Return the CORDIC C model
xip_cordic_get_version | Const char* Void version as a null terminated

string. For v6.0, this is '6.0".

Populates the contents of
structure pointed to by the
xip_cordic_v6_0_status | xip_cordic_v6_0_config* | input argument with the
values of a default
configuration.

xip_cordic_v6_0_get_
default_config

CORDIC v6.0 o l Send Feedback I 50
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=50

Chapter 5: C Model

& XILINX.

Initialization Functions

The functions to create, configure and destroy the C model and associated data structures
are listed in Table 5-5.

Table 5-5: Initialization Functions

Name

Return

Arguments

Description

xip_cordic_v6_0_create

Pointer to structure
holding configuration
of C model object

Pointer to structure
holding configuration

Creates new C model object
and returns pointer to config
structure (which is pointer to
C model itself).

xip_cordic_v6_0_destroy

xip_cordic_v6_0_status

Pointer to
xip_cordic_v6_0
(C model itself)

Deallocates memory owned
by C model and destroys C
model itself.

xip_cordic_v6_0_get_config

xip_cordic_v6_0_status

Pointer to C model,
pointer to configuration
structure

Copies the contents of the
configuration of the C model
indicated to the designated
configuration structure.

Xip_a rray_#TYPE#_create(”

Pointer to created
data structure

None

Allocates memory for the
structure itself, not the array
members within it.

Pointer to data
structure, maximum

(Re)allocates enough
memory for the maximum
size. Error is returned if the

i rray_#TYPE#_reser M | xi . .
xip_array._ —reserve_data’’ | xip_status number of elements in | data_capacity of the structure
data array. is greater than space
allocated.
Allocates a small array which
Pointer to data is to contain the size of each
xip_array_#TYPE#_reserve_dim”) xip_status structure, maximum dimension of the data array.
number of dimensions. | For example, 100 samples x 4
channels x 3 fields.
Frees up the memory
xip_array #TYPE# destroy(") xip_status Pointer to data allocated for the data array,

structure.

the dimension array, and the
data structure itself.

Notes:

1. #TYPE# can be real or complex.

Execution Functions

The run time functions of the C model are described in Table 5-6.

CORDIC v6.0
PG105 August 6, 2021

www.Xxilinx.com

l Send Feedback I 51

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=51

(: X”_INX® Chapter 5: C Model

Table 5-6: Execution Functions

Name Return Arguments Description
Pointer to C model, function
selection, pointer to
magnitude in structure, The function which
pointer to phase in structure, | prompts execution of the C
pointer to Cartesian input model. The number of
xip_cordic_v6_0_data_do xip_cordic_v6_0_status | structure, pointer to samples, channels and
magnitude out structure, fields must match the size
pointer to phase output of the array passed or an
structure, pointer to error is returned.
Cartesian output structure,
number of samples.
Pointer to C model, pointer to
Cartesian data in structure, Simplified variant of
xip_cordic_v6_0_rotate xip_cordic_v6_0_status pointer to phase data in X|p_§qrd|c_v6_0_data_do
structure, pointer to specifically for the rotate
Cartesian data out structure, | function.
number of samples
Pointer to C model, pointer to
Cartesian data in structure, Simplified variant of
xip_cordic_v6_0_translate xip_cordic_v6_0_status pointer to magm.tude data X|p_§qrd|c_v6_0_data_do
out structure, pointer to specifically for the translate
phase data out structure, function.
number of samples
Pointer to C model, pointer to | Simplified variant of
. phase data in structure, xip_cordic_v6_0_data_do
xip_cordic_v6_0_sin_cos Xip_cordic_v6_0_status pointer to Cartesian data out | specifically for the sin_cos
structure, number of samples | function.
Pointer to C model, pointer to | Simplified variant of
. . . . Cartesian data in structure, xip_cordic_v6_0_data_do
Xip_cordic_v6_0_atan xip_cordic_v6_0_status pointer to phase data out specifically for the atan
structure, number of samples | function.
Pointer to C model, pointer to | Simplified variant of
. phase data in structure, xip_cordic_v6_0_data_do
xip_cordic_v6_0_sinh_cosh Xip_cordic_v6_0_status pointer to Cartesian data out | specifically for the
structure, number of samples | sinh_cosh function.
Pointer to C model, pointer to | Simplified variant of
. . . . Cartesian data in structure, xip_cordic_v6_0_data_do
xip_cordic_v6_0_atanh xip_cordic_v6_0_status pointer to phase data out specifically for the atanh
structure, number of samples | function.
Pomtgrto C modgl, pointer to simplified variant of
magnitude data in structure, . .
. xip_cordic_v6_0_data_do
xip_cordic_v6_0_sqrt xip_cordic_v6_0_status | pointer to magnitude data o
specifically for the sqrt
out structure, number of .
function.
samples
Pointer to array structure, the .
xip_array_#TYPE#_set_data”) xip_status value to be written, the Used to populate the input
. data structure.
sample to be written to

CORDIC v6.0 . l Send Feedback I 52
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=52

(: X”_INX® Chapter 5: C Model

Table 5-6: Execution Functions (Cont’d)

Name Return Arguments Description
Pointer to the array structure,
. . i #TYPE# type Used to read the output (or
0 pointer of yp . p
xip_array #TYPE#_get_data Xip_status (returned value), sample to be | input) data structure.
read

Notes:
1. #TYPE# can be real or complex.

Compiling

Compilation of user code requires access to the cordic_vé_0_bitacc_cmodel.h
header file and the header files of the MPIR dependent libraries, gmp.h. The header files
should be copied to a location where they are available to the compiler. Depending on the
location chosen, the include search path of the compiler might need to be modified.

The cordic_vé6_0_bitacc_cmodel.h header file must be included first, because it
defines some symbols that are used in the MPIR header files. The
cordic_vé6_0_bitacc_cmodel.h header file includes the MPIR header files, so these do
not need to be explicitly included in source code that uses the C model. When compiling on
Windows, the symbol NT must be defined, either by a compiler option, or in user source
code before the cordic_vé_0_bitacc_cmodel.h header file is included.

Linking

To use the C model the user executable must be linked against the correct libraries for the
target platform.

Note: The C model uses MPIR libraries. It is also possible to use GMP or MPIR libraries from other
sources, for example, compiled from source code. For details, see Dependent Libraries.

Linux
The executable must be linked against the following shared object libraries:

+ libgmp.so.1l1

+ 1libIp_cordic_v6_0_bitacc_cmodel.so
Using GCC, linking is typically achieved by adding the following command line options:

-L. -W1,-rpath,. -1Ip_cordic_v6_0_bitacc_cmodel

CORDIC v6.0 o l Send Feedback I 33
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=53

(: X”_INX® Chapter 5: C Model

This assumes the shared object libraries are in the current directory. If this is not the case,
the -L. option should be changed to specify the library search path to use.

Using GCC, the provided example program run_bitacc_cmodel.c can be compiled and
linked using the following command:

gcc -x c++ -I. -L. -1lIp cordic_vé_0_bitacc_cmodel -Wl,-rpath,. -o run_bitacc_cmodel
run_bitacc_cmodel.c

Windows

The executable must be linked against the following dynamic link libraries:
libgmp.dll
libIp_cordic_vé6_0_bitacc_cmodel.dll

Depending on the compiler, the import libraries might also be required:
libgmp.lib

* 1libIp cordic_v6_0_bitacc_cmodel.lib

Using Microsoft Visual Studio, linking is typically achieved by adding the import libraries to
the Additional Dependencies entry under the Linker section of Project Properties.

Dependent Libraries

The C model uses the MPIR library. This is governed by the GNU Lesser General Public
License. You can obtain source code for the MPIR library from https://www.xilinx.com/
products/design-tools/guest-resources.html. A pre-compiled MPIR library is provided with
the C model, using the following version:

« MPIR 2.6.0

As MPIR is a compatible alternative to GMP, the GMP library can be used in place of MPIR.
It is possible to use GMP or MPIR libraries from other sources, for example, compiled from
source code.

GMP and MPIR in particular contain many low level optimizations for specific processors.
The libraries provided are compiled for a generic processor on each platform, using no
optimized processor-specific code. These libraries work on any processor, but run more
slowly than libraries compiled to use optimized processor-specific code. For the fastest
performance, compile libraries from source on the machine on which you run the
executables.

Source code and compilation scripts are provided for the version of MPIR that was used to
compile the provided libraries. Source code and compilation scripts for any version of the
libraries can be obtained from the GMP [Ref 10] and MPIR [Ref 11] websites.

CORDIC v6.0 N Send Feedback 54
PG105 August 6, 2021 www.Xxilinx.com [—\/—]

https://www.xilinx.com/products/design-tools/guest-resources.html
https://www.xilinx.com/products/design-tools/guest-resources.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=54

(: X”_INX® Chapter 5: C Model

Note: If compiling MPIR using its configure script (for example, on Linux platforms), use the
- -enable-gmpcompat option when running the configure script. This generates a 1ibgmp. so
library and a gmp . h header file that provide full compatibility with the GMP library.

Example

The run_bitacc_cmodel.c file contains example code to show basic operation of the C
model. The comments assist in understanding the code.

CORDIC v6.0 . l Send Feedback I 35
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=55

& XILINX

Chapter 6

Test Bench

This chapter contains information about the test bench provided in the Vivado® Design
Suite.

Demonstration Test Bench

When the core is generated in the Vivado® IDE, a demonstration test bench is created. This
is a simple VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL file: demo_tb/
tb_<component_name>.vhd in the Vivado output directory. The source code is
comprehensively commented.

Using the Demonstration Test Bench

Compile the netlist and the demonstration test bench into the work library (see your
simulator documentation for more information). Then simulate the demonstration test
bench. View the test bench signals in the simulator waveform viewer to see the operations
of the test bench.

Demonstration Test Bench in Detail
The demonstration test bench performs the following tasks:

» Instantiates the core

« Generates stimulus data sets for each input channel. Both sets are rotating phasors
« Generates a clock signal

« Drives the clock enable and reset input signals of the core (if present)

« Drives the input signals of the core to demonstrate core features

» Checks that the core output signals obey AXI protocol rules (data values are not
checked in order to keep the test bench simple)

« Provides signals showing the separate fields of AXI tdata and tuser signals

CORDIC v6.0 o l Send Feedback I 56
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=56

2: X”_INX® Chapter 6: Test Bench

The demonstration test bench drives the input signals of the core to demonstrate the
features and modes of operation of the core. The CORDIC core is driven with two simple
data sets (phasors of different periods) to stimulate the core with a wide range of positive
and negative values, including zero. The input data is pre-generated and stored in data
tables, and the test bench drives the core data inputs with the ramp data throughout the
operation of the test bench.

The demonstration test bench drives the AXI handshaking signals in different ways, split
into three phases. The operations depend on whether Blocking Mode or NonBlocking Mode
is selected:

» Blocking Mode:
o Phase 1: full throughput, all tvalid and tready signals are tied High

o Phase 2: apply increasing amounts of back pressure by deasserting the tready
signal of the master channel

- Phase 3: deprive a single slave channel of valid transactions at an increasing rate by
deasserting its tvalid signal

* NonBlocking Mode:
o Phase 1: full throughput, all tvalid and tready signals are tied High

- Phase 2: deprive a single slave channel of valid transactions at an increasing rate by
deasserting its tvalid signal

o Phase 3: deprive all slave channels of valid transactions at different rates by
deasserting each of their tvalid signals

Customizing the Demonstration Test Bench

It is possible to modify the demonstration test bench to drive the inputs of the core with
different data or to perform different operations. Input data is pre-generated in the
create_ip cartesian_table and create_ip phase_table functions and stored in
the IP_cartesian_DATA and IP_phase_DATA constants. New input data frames can be added
by defining new functions and constants. Make sure that each input data frame is of an
appropriate type, similar to the T_IP_cartesian_TABLE and T_IP_phase_TABLE array types.

All operations performed by the demonstration test bench to drive the inputs of the core
are done in the stimuli process. This process is comprehensively commented, to explain
clearly what is being done. New input data or different ways of driving AXI handshaking
signals can be added by modifying sections of this process. The total run time of the test
can be modified by changing the TEST_CYCLES constant: this controls the number of clock
cycles before the simulation is stopped. The clock frequency of the core can be modified by
changing the CLOCK_PERIOD constant.

CORDIC v6.0 o l Send Feedback I 7
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=57

& XILINX

Appendix A

Upgrading

This appendix contains information about migrating a design from the ISE® Design Suite to
the Vivado® Design Suite, and for upgrading to a more recent version of the IP core. For
customers upgrading in the Vivado Design Suite, important details (where applicable)
about any port changes and other impact to user logic are included.

Migrating to the Vivado Design Suite

For information on migrating to the Vivado Design Suite, see the ISE to Vivado Design Suite
Migration Guide (UG911) [Ref 12].

Upgrading in the Vivado Design Suite

This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

The Vivado Design Suite core upgrade functionality can be used to upgrade an existing
XCO/XCI file from v4.0 or v5.0 to CORDIC v6.0. See Instructions for Minimum Change
Migration (v4.0 to v6.0). There are no changes of functionality, port or configuration from
v5.0 to v6.0.

Parameter Changes

Table A-1 shows the parameter changes from version 4.0 to version 6.0.

Table A-1: Parameter Changes from v4.0 to v6.0

Version 4.0 Version 6.0 Notes
Component_Name Component_Name Unchanged
Functional_Selection Functional_Selection Unchanged

Architectural_Configuration | Architectural_Configuration | Unchanged

Pipelining_Mode Pipelining_Mode Unchanged

Data_Format Data_Format Unchanged

CORDIC v6.0 o l Send Feedback I 58
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=58

& XILINX.

Appendix A: Upgrading

Table A-1: Parameter Changes from v4.0 to v6.0 (Cont’d)

Version 4.0 Version 6.0 Notes
Phase_Format Phase_Format Unchanged
Input_Width Input_Width Unchanged
Register_Inputs Register_Inputs Unchanged
Output_Width Output_Width Unchanged
Register_Inputs Register_Inputs Unchanged
Round_Mode Round_Mode Unchanged
Iterations Iterations Unchanged
Precision Precision Unchanged
Coarse_Rotation Coarse_Rotation Unchanged
Compensation_Scaling Compensation_Scaling Unchanged

CE

ACLKEN

Renamed only.

Renamed. Note that the parameter has not

SCLR ARESETn changed, but the signal in question is now
active-Low.
ND Deprecated.
RDY Deprecated.
Deprecated. If X_OUT is not connected,
X_OUT S :
unused logic is removed automatically.
Y ouT Deprecated. If Y_OUT is not connected,

unused logic is removed automatically.

Phase_Output

Deprecated. If PHASE_OUT is not
connected, unused logic is removed
automatically.

cartesian_has_tuser

New addition in v5.0

cartesian_tuser_width

New addition in v5.0

cartesian_has_tlast

New addition in v5.0

phase_has_tuser

New addition in v5.0

phase_tuser_width

New addition in v5.0

phase_has_tlast

New addition in v5.0

flow_control

New addition in v5.0

optimize_goal

New addition in v5.0

out_tready

New addition in v5.0

out_tlast_behv

New addition in v5.0

CORDIC v6.0
PG105 August 6, 2021

www.Xxilinx.com

| Send Feedback I 39

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=59

& XILINX. Appendix A: Upgrading

Port Changes

Table A-2: Port Changes from Version v4.0 to v6.0

Version 4.0 Version 6.0 Notes
CLK aclk Rename only
CE ACLKEN Rename only
Rename and change of sense (now active-Low). Note
SCLR ARESETn that ARESETn should be asserted for a minimum of 2
cycles.

Deprecated. However, this is analogous to the tvalid
ND signals. See Instructions for Minimum Change Migration
(v4.0 to v6.0).

Deprecated. However, this is analogous to the tready
RFD signals. See Instructions for Minimum Change Migration
(v4.0 to v6.0).

Deprecated. However, this is analogous to the
RDY m_axis_dout_tvalid. See Instructions for Minimum
Change Migration (v4.0 to v6.0).

X_IN s_axis_cartesian_tdata subfield | subfield of s_axis_cartesian_tdata See TDATA Packing.
Y_IN s_axis_cartesian_tdata subfield | subfield of s_axis_cartesian_tdata. See TDATA Packing.
PHASE_IN s_axis_phase_tdata subfield s_axis_phase_tdata(N-1:0)

X_OUT m_axis_dout_tdata subfield Subfield of m_axis_dout_tdata. See TDATA Packing.
Y_OUT m_axis_dout_tdata subfield Subfield of m_axis_dout_tdata. See TDATA Packing.

PHASE_OUT | m_axis_dout_tdata subfield Subfield of m_axis_dout_tdata. See TDATA Packing.

Latency Changes

With the addition of AXI4-Stream interfaces, the latency of the CORDIC core v6.0 is different
compared to v4.0 for AXI Blocking mode. Latency is the same as v4.0 in v6.0 for AXI
NonBlocking mode. Importantly, when in Blocking Mode, the latency of the core is variable
due to the FIFO nature of the AXI4-Stream protocol, so only the minimum possible latency
can be determined. Relative to v4.0, with Blocking and Output tready present, minimum
latency is 3 cycles greater. With no output tready, minimum latency is increased by one
cycle only. There are no latency changes from v5.0 to v6.0.

Instructions for Minimum Change Migration (v4.0 to v6.0)

There are no changes of behavior, ports, or parameterization between v5.0 and v6.0. Use the
following information to configure the CORDIC core v6.0 to most closely mimic the
behavior of v4.0.

Parameters

« Set FlowControl to NonBlocking.

CORDIC v6.0 . l Send Feedback I 60
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=60

2: Xl |_| NX® Appendix A: Upgrading

All other new parameters default to FALSE and can be ignored.

Ports

* Rename and map signals as detailed in Port Changes.

« Map ND to both s_axis_cartesian_tvalid and s_axis_phase_tvalid, if
present for the function in question.

* Map RFD to s_axis_cartesian_tready or s_axis_phase_tready.

+ Map RDY tom_axis_dout_tvalid.

Performance and resource use is unchanged compared with CORDIC v4.0 and v5.0 other
than small changes due to the use of different tools

Functionality Changes

There are no functionality changes in v6.0 compared to v5.0. The addition of AXI4-Stream
interfaces in v5.0 causes functionality changes compared to v4.0. See Instructions for
Minimum Change Migration (v4.0 to v6.0).

Simulation Changes

Starting with CORDIC v6.0 (2013.3 version) behavioral simulation models have been
replaced with IEEE Encrypted VHDL. The resulting model is bit and cycle accurate with the
final netlist. For more information on simulation see the Vivado Design Suite User Guide:
Logic Simulation (UG900) [Ref 8].

CORDIC v6.0 o l Send Feedback I 61
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=61

& XILINX

Appendix B

Debugging

This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding Help on Xilinx.com

To help in the design and debug process when using the CORDIC core, the Xilinx Support
web page contains key resources such as product documentation, release notes, answer
records, information about known issues, and links for obtaining further product support.

Documentation

This product guide is the main document associated with the CORDIC core. This guide,
along with documentation related to all products that aid in the design process, can be
found on the Xilinx Support web page or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more
information about this tool and the features available, open the online help after
installation.

Answer Records

Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main
Xilinx support web page. To maximize your search results, use keywords such as:

Product name
+ Tool message(s)

« Summary of the issue encountered

A filter search is available after results are returned to further target the results.

CORDIC v6.0 o l Send Feedback I 62
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=62

(: X”_INX® Appendix B: Debugging

Master Answer Record for the CORDIC Core

AR: 54497

Technical Support

Xilinx provides technical support at the Xilinx Support web page for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support if you do any of the following:

« Implement the solution in devices that are not defined in the documentation.
« Customize the solution beyond that allowed in the product documentation.

« Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools

There are many tools available to address CORDIC design issues. It is important to know
which tools are useful for debugging various situations.

Vivado Design Suite Debug Feature

The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly
into your design. The debug feature also allows you to set trigger conditions to capture
application and integrated block port signals in hardware. Captured signals can then be
analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a
design running in Xilinx devices.

The Vivado logic analyzer is used with the logic debug IP cores, including:

* |ILA 2.0 (and later versions)

« VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 13].

CORDIC v6.0 o l Send Feedback I 63
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com/support/answers/54497.html
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=63

(: X”_INX® Appendix B: Debugging

Reference Boards

Various Xilinx development boards support the CORDIC core. These boards can be used to
prototype designs and establish that the core can communicate with the system.

« 7 series FPGA evaluation boards
KC705
KC724

C Model Reference

See Chapter 5, C Model in this guide for tips and instructions for using the provided C
Model files to debug your design.

Third-Party Tools

MATLAB® can be used to debug this core.

Simulation Debug

The simulation debug flow for Mentor Graphics Questa Advanced Simulator is shown in
Figure B-1. A similar approach can be used with other simulators.

CORDIC v6.0 N Send Feedback 64
PG105 August 6, 2021 www.Xxilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=64

(: X”_INX® Appendix B: Debugging

Questa Advanced
Simulator Simulation
Debug

A VHDL license is required
to simulate with the
behavioral model. If the
user design uses Verilog, a
mixed-mode license is required.

f using Verilog, do yo
have a mixed-mode
simulation license?

Obtain a mixed-mode
simulation license.

Check that the
simulator version matches that of
the Vivado release. See the Xilinx Design
Tools: Relase Notes Guide
(link at foot of IP Facts
table).

Although versions of
simulators more recent
than the Vivado release
might be compatible, no
guarantee can be given.

Update to this version.)

Do you get errors referring to

Need to compile and map the
failing to access library?,

proper libraries.

The core test bench
should allow you to quickly
determine if the simulator
is set up correctly.

Does simulating the core
test bench give the expected

Examine waveforms to gair)
output?

nderstanding of core behavior,

Check behavior of AXI interfaces If problem is more design specific,
is as described in this document. Yes open a case with Xilinx Technical
Ensure that the demonstration test Support and include a wif file dump of
bench has been selected as the top the simulation. For the best results,
level of the design. dump the entire design hierarchy.

X19457-062217

Figure B-1: Questa Advanced Simulator Debug Flow Diagram

AXl4-Stream Interface Debug

If data is not being transmitted or received, check the following conditions:

« If transmit <interface_name>_tready is stuck Low following the
<interface_name>_tvalid input being asserted, the core cannot send data.

« If the receive <interface_name>_tvalid is stuck Low, the core is not receiving
data.

» Check that the AcLK inputs are connected and toggling.

« Check that the AXI4-Stream waveforms are being followed. See Figure 3-1 to
Figure 3-3.

« Check core configuration.

CORDIC v6.0 o l Send Feedback I 65
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=65

& XILINX

Appendix C

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs

Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

« From the Vivado® IDE, select Help > Documentation and Tutorials.
« On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

« At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

« In the Xilinx Documentation Navigator, click the Design Hubs View tab.
* On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.

CORDIC v6.0 o l Send Feedback I 66
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=66

(: X”_INX® Appendix C: Additional Resources and Legal Notices

References

These documents provide supplemental material useful with this product guide:

1. Volder, J., The CORDIC Trigonometric Computing Technique IRE Trans. Electronic
Computing, Vol. EC-8, Sept. 1959, pp330-334.

2. Walther, J.S., A Unified Algorithm for Elementary Functions, Spring Joint computer conf,,
1971, proc., pp379-385.

Arm® AMBA® AXI4-Stream Protocol Specification (ARM IHI 0051A)

Vivado Design Suite AXI Reference Guide (UG1037)

Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
Vivado Design Suite User Guide: Designing with IP (UG896)

Vivado Design Suite User Guide: Getting Started (UG910)

Vivado Design Suite User Guide: Logic Simulation (UG900)

System Generator for DSP User Guide (UG640)

10. The GNU Multiple Precision Arithmetic (GMP) Library (gmplib.org)

© o N o U A~ W

11. The GNU Multiple Precision Integers and Rationals (MPIR) library (www.mpir.org)
12. ISE to Vivado Design Suite Migration Guide (UG911)

13. Vivado Design Suite User Guide: Programming and Debugging (UG908)

14. MPIR: Multiple Precision Integers and Rationals: (https://mpir.org/index.html)

Revision History

The following table shows the revision history for this document.

Date Version Revision

08/06/2021 6.0 « Updated Example 1b quantization error to Yin_large in Output
Quantization Error.

« In 2Q8, fix to Fix11_8 in Phase Signals.

02/04/2021 6.0 Added Versal ACAP support.

12/20/2017 6.0 Corrected C Model Linux command.
10/04/2017 6.0 Example 4: PHASE_IN decimal value updated.
10/05/2016 6.0 Example 6: ArcTanh updated.

11/18/2015 6.0 UltraScale+ device support added.

CORDIC v6.0 . l Send Feedback I 67
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
https://www.xilinx.com
https://mpir.org/index.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest+ise;d=sysgen_user.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
http://www.mpir.org
https://gmplib.org/
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=67

(: X”_INX® Appendix C: Additional Resources and Legal Notices

Date Version Revision

06/24/2015 6.0 « Remove references to divider signals.

04/02/2014 6.0 « Added link to resource utilization figures
« Added User Parameter table (Table 4-2)

12/18/2013 6.0 Added UltraScale™ architecture support.

10/02/2013 6.0 Document version number advanced to match the core version number.
Added Chapter 5, C Model.

03/20/2013 1.0 Ir;]itial release as a Product Guide; replaces DS858. No other documentation
changes.

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty,
please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.ntm#tos; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products
in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE I1SO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

© Copyright 2013-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex, Vivado, Zynqg, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. All other trademarks are the property of their respective
owners.

CORDIC v6.0 . l Send Feedback I 68
PG105 August 6, 2021 www.Xxilinx.com

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG105&Title=CORDIC%20v6.0&releaseVersion=6.0&docPage=68

	CORDIC v6.0
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Navigating Content by Design Process
	Core Overview
	Feature Summary
	Applications
	Licensing and Ordering

	Ch. 2: Product Specification
	Performance
	Parallel Architectural Configuration
	Word Serial Architectural Configuration

	Resource Utilization
	Port Descriptions
	Data Inputs and Outputs

	Ch. 3: Designing with the Core
	Clocking
	Resets
	Protocol Description – AXI4-Stream
	Basic Handshake
	NonBlocking Mode
	Blocking Mode
	TDATA Packing
	TDATA Structure for Cartesian Channel
	TDATA Structure for Phase Channel
	TDATA Structure for Output (DOUT) Channel

	TLAST and TUSER Handling
	TLAST Options
	TUSER Options

	Functional Description
	Vector Rotation
	Polar to Rectangular Translation
	Example 1: Vector Rotation

	Vector Translation
	Rectangular to Polar Translation
	Example 2: Vector Translation

	CORDIC Scale Factor
	Output Quantization Error
	Example 1a: The quantization error in phase output for a small input vector, (Xin_small, Yin_small).
	Example 1b: Quantization error in phase output for a large input vector, (Xin_large, Yin_large).

	Sin and Cos
	Example 3: Sin and Cos

	Sinh and Cosh
	Example 4: Sinh and Cosh

	ArcTan
	Example 5: ArcTan

	ArcTanh
	Example 6: ArcTanh

	Square Root
	Example 7a: Square Root - Unsigned Fraction
	Example 7b: Square Root - Unsigned Integer

	Input/Output Data Representation
	Cartesian Operands and Results
	Phase Signals
	Q Numbers Format
	Mapping Different Data Formats
	Rotate, Translate, Sin, Cos and Atan Functional Configurations
	Example 8a
	Example 8b

	Square Root Functional Configuration
	Example 9

	Ch. 4: Design Flow Steps
	Customizing and Generating the Core
	Tab 1 & 2: IP Symbol and Implementation Details
	Page 1 - Configuration Options
	Page 2 - AXI4-Stream Options
	Optional Pins

	User Parameters
	Output Generation

	System Generator for DSP
	Implementation

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Simulation
	Synthesis and Implementation

	Ch. 5: C Model
	Features
	Overview
	Unpacking and Model Contents

	Installation
	Linux
	Windows

	C Model Interface
	Data Types
	Data Values
	Functions
	Information Functions
	Initialization Functions
	Execution Functions

	Compiling
	Linking
	Linux
	Windows

	Dependent Libraries
	Example

	Ch. 6: Test Bench
	Demonstration Test Bench
	Using the Demonstration Test Bench
	Demonstration Test Bench in Detail
	Customizing the Demonstration Test Bench

	Appx. A: Upgrading
	Migrating to the Vivado Design Suite
	Upgrading in the Vivado Design Suite
	Parameter Changes
	Port Changes
	Latency Changes
	Instructions for Minimum Change Migration (v4.0 to v6.0)
	Parameters
	Ports

	Functionality Changes
	Simulation Changes

	Appx. B: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Master Answer Record for the CORDIC Core

	Technical Support

	Debug Tools
	Vivado Design Suite Debug Feature
	Reference Boards
	C Model Reference
	Third-Party Tools

	Simulation Debug
	AXI4-Stream Interface Debug

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

