
Complex Multiplier
v6.0

LogiCORE IP Product Guide

Vivado Design Suite
PG104 August 6, 2021

Complex Multiplier v6.0 2
PG104 August 6, 2021 www.xilinx.com

Table of Contents
IP Facts

Chapter 1: Overview
Navigating Content by Design Process . 5
Core Overview . 5
Feature Summary. 5
Applications . 6
Licensing and Ordering Information . 6

Chapter 2: Product Specification
Performance. 7
Resource Utilization. 8
Port Descriptions . 8

Chapter 3: Designing with the Core
Hardware Implementation . 10
Rounding. 11
Clocking. 15
Resets . 15
Protocol Description . 15

Chapter 4: Design Flow Steps
Customizing and Generating the Core . 21
System Generator for DSP Graphical User Interface . 26
Constraining the Core . 26
Simulation . 27
Synthesis and Implementation . 27

Chapter 5: C Model
Features . 28
Overview . 28
Installation . 29
C Model Interface. 30

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=2

Complex Multiplier v6.0 3
PG104 August 6, 2021 www.xilinx.com

Compiling . 33
Linking. 34
Dependent Libraries . 35
Example . 35

Chapter 6: Test Bench

Appendix A: Upgrading
Migrating to the Vivado Design Suite. 41
Upgrading in the Vivado Design Suite . 45

Appendix B: Debugging
Finding Help on Xilinx.com . 46
Debug Tools . 47
Simulation Debug. 48
AXI4-Stream Interface Debug . 48

Appendix C: Additional Resources and Legal Notices
Xilinx Resources . 50
References . 50
Revision History . 51
Please Read: Important Legal Notices . 51

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=3

Complex Multiplier v6.0 4
PG104 August 6, 2021 www.xilinx.com Product Specification

Introduction
The Xilinx® LogiCORE™ IP Complex Multiplier
core implements AXI4-Stream compliant,
high-performance, optimized complex
multipliers based on user-specified options.

The two multiplicand inputs and optional
rounding bit are input on independent
AXI4-Stream channels as slave interfaces and
the resulting product output on an AXI4-Stream
master interface.

Within each channel, operands and the results
are represented in signed twos complement
format. The operand widths and the result
width are parameterizable.

Features
• 8-bit to 63-bit input precision and up to

127-bit output precision
• Supports truncation or unbiased rounding
• Configurable minimum latency
• Implementation options include

3-multiplier, 4-multiplier and dedicated
primitive solutions.

• Option to use LUTs or DSP Slices

IP Facts

LogiCORE IP Facts Table
Core Specifics

Supported
Device Family(1)

Versal™ ACAP
UltraScale+™

UltraScale™
Zynq®-7000 SoC

7 Series
Supported User
Interfaces AXI4-Stream

Resources Performance and Resource Utilization web page

Provided with Core
Design Files Encrypted RTL
Example Design Not Provided
Test Bench VHDL
Constraints File Not Provided
Simulation
Model Encrypted VHDL

Supported
S/W Driver N/A

Tested Design Flows(2)

Design Entry Vivado® Design Suite
System Generator for DSP

Simulation For supported simulators, see the
Xilinx Design Tools: Release Notes Guide.

Synthesis Vivado Synthesis

Support
Release Notes
and Known
Issues

AR: 54495

All Vivado IP
Change Logs Master Vivado IP Change Logs: 72775

 Xilinx Support web page

Notes:
1. For a complete listing of supported devices, see the Vivado IP

catalog.
2. For the supported versions of the tools, see the

Xilinx Design Tools: Release Notes Guide.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=cmpy.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=cmpy.html
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.1;t=vivado+release+notes
https://www.xilinx.com/support/answers/72775.html
https://www.xilinx.com/support/answers/54495.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=4

Complex Multiplier v6.0 5
PG104 August 6, 2021 www.xilinx.com

Chapter 1

Overview

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you
find relevant content for your current development task. This document covers the
following design processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the
Vivado timing, resource and power closure. Also involves developing the hardware
platform for system integration. Topics in this document that apply to this design
process include:

° Port Descriptions

° Clocking

° Resets

° Customizing and Generating the Core

° C Model

Core Overview
The Complex Multiplier core performs complex multiplication of two operands in Cartesian
form. The result is also in Cartesian form.

Feature Summary
The Complex Multiplier core provides a complex multiplication solution for two complex
operands where each operand can be from 8 to 63 bits wide. The real and imaginary
components of each operand must be the same width as each other, but the widths of the
two operands are individually configured. Options are provided to bias the implementation
to the needs of the application. For instance, latency is configurable, implementation can
use DSP Slices or LUTs and the algorithm can use a 3 or 4 multiplier solution which trades

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=5

Complex Multiplier v6.0 6
PG104 August 6, 2021 www.xilinx.com

Chapter 1: Overview

latency for resource. AXI4-Stream interfaces are provided, but if the full traffic management
capabilities of AXI4-Stream interfaces are not required, the interfaces can be configured for
no additional resource.

Applications
Complex Multipliers are common in many DSP applications, including signal mixing and in
Fast Fourier Transforms.

Licensing and Ordering Information
This Xilinx® LogiCORE™ IP module is provided at no additional cost with the Xilinx
Vivado® Design Suite under the terms of the Xilinx End User License. Information about
this and other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property
page. For information about pricing and availability of other Xilinx LogiCORE IP modules
and tools, contact your local Xilinx sales representative.

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/about/contact.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=6

Complex Multiplier v6.0 7
PG104 August 6, 2021 www.xilinx.com

Chapter 2

Product Specification
There are two basic architectures to implement complex multiplication, given two operands:

 and , yielding an output .

Direct implementation requires four real multiplications:

Equation 2-2

Equation 2-3

By exploiting that

Equation 2-4

Equation 2-5

a three real multiplier solution can be devised, which trades off one multiplier for three
pre-combining adders and increased multiplier word length.

Performance
Latency
Latency is configurable. For the performance tables, latency was set to automatic, which
results in a fully pipelined circuit.

Throughput
The Complex Multiplier supports full throughput in all configurations, that is, one output
per cycle.

a ar jai+= b br jbi+= p ab pr jpi+= =

pr arbr aibi–=

pi arbi aibr+=

pr arbr aibi– ar br bi+() ar ai+()bi–= =

pi arbi aibr+ ar br bi+() ai ar–()br+= =

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=7

Complex Multiplier v6.0 8
PG104 August 6, 2021 www.xilinx.com

Chapter 2: Product Specification

Resource Utilization
For full details about performance and resource utilization, visit the Performance and
Resource Utilization web page.

Port Descriptions

Table 2-1 describes the Complex Multiplier core ports as shown in Figure 2-1.

X-Ref Target - Figure 2-1

Figure 2-1: Core Schematic Symbol

m_axis_dout_tdata

m_axis_dout_tvalid

m_axis_dout_tready

m_axis_dout_tuser

m_axis_dout_tlast

X14028

s_axis_a_tdata

s_axis_a_tvalid

s_axis_a_tready

s_axis_a_tlast

s_axis_a_tuser

s_axis_b_tdata

s_axis_b_tvalid

s_axis_b_tready

s_axis_b_tlast

s_axis_b_tuser

s_axis_ctrl_tdata

s_axis_ctrl_tvalid

s_axis_ctrl_tready

s_axis_ctrl_tlast

s_axis_ctrl_tuser

aclk

aresetn

aclken

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=cmpy.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=cmpy.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=8

Complex Multiplier v6.0 9
PG104 August 6, 2021 www.xilinx.com

Chapter 2: Product Specification

Table 2-1: Core Signal Pinout
Name I/O Optional Description

aclk I Yes
Rising-edge clock. The aclk signal is optional. It is not
present when FlowControl is NonBlocking and
MinimumLatency = 0.

aclken I Yes Active-High clock enable (optional)

aresetn I Yes
Active-Low synchronous clear (optional, always take
priority over aclken)
aresetn should be asserted or deasserted for not less
than two aclk cycles.

s_axis_a_tvalid I No TVALID for channel A
s_axis_a_tready O Yes TREADY for channel A
s_axis_a_tuser[A-1:0] I Yes TUSER for channel A. Width selectable from 1 to 256 bits

s_axis_a_tdata[B-1:0] I No TDATA for channel A. See TDATA Packing for internal
structure and width.

s_axis_a_tlast I Yes TLAST for channel A.
s_axis_b_tvalid I No TVALID for channel B
s_axis_b_tready O Yes TREADY for channel B
s_axis_b_tuser[C-1:0] I Yes TUSER for channel B. Width selectable from 1 to 256 bits

s_axis_b_tdata[D-1:0] I No TDATA for channel B. See TDATA Packing for internal
structure and width.

s_axis_b_tlast I Yes TLAST for channel B.
s_axis_ctrl_tvalid I Yes TVALID for channel CTRL
s_axis_ctrl_tready O Yes TREADY for channel CTRL

s_axis_ctrl_tuser[E-1:0] I Yes TUSER for channel CTRL. Width selectable from 1 to 256
bits

s_axis_ctrl_tdata[7:0] I Yes TDATA for channel CTRL. See TDATA Packing for internal
structure and width.

s_axis_ctrl_tlast I Yes TLAST for channel CTRL.
m_axis_dout_tvalid O No TVALID for channel DOUT
m_axis_dout_tready I Yes TREADY for channel DOUT

m_axis_dout_tuser[G-1:0] O Yes TUSER for channel DOUT. Width is the sum of the
enabled TUSER fields on input channels.

m_axis_dout_tdata[H-1:0] O No TDATA for channel DOUT. See TDATA Packing internal
structure.

m_axis_dout_tlast O Yes TLAST for channel DOUT.
Notes:
1. All AXI4-Stream port names are lower case but for ease of visualization, upper case is used in this document when

referring to port name suffixes, such as TDATA or TLAST.
2. Width constants A to H are arbitrary variables, determined by GUI or configuration parameters.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=9

Complex Multiplier v6.0 10
PG104 August 6, 2021 www.xilinx.com

Chapter 3

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the
core.

Hardware Implementation
Three Real Multiplier Solution
The three real multiplier implementation takes advantage of the pre-adder in the DSP Slice,
saving general fabric resources. In general, the three multiplier solution uses more slice
resources (LUTs/flipflops) and have a lower maximum achievable clock frequency than the
four multiplier solution.

Four Real Multiplier Solution
The four real multiplier solution makes maximum use of DSP Slice resources, and has higher
clock frequency performance than the three real multiplier solution, in many cases reaching
the maximum clock frequency of the FPGA.

It still consumes slice resources for pipeline balancing, but this slice cost is always less than
that required by the equivalent three real multiplier solution.

Dedicated Primitive Solution
Devices such as Versal™ have a dedicated DSPCPLX primitive capable of performing a full
complex multiplication using the equivalent of two DSP slices. This solution uses fewer
resources and has lower latency than either the 3- or 4-multiplier solution. No special
selection is required; the system uses this solution automatically when the configuration
allows.

You can set a specific latency value: set Latency Configuration to Manual and then set the
Minimum Latency value accordingly. This allows you to specify adjust for some situations
when you may want a higher latency value than what the automatic latency allocation
provides:

• For backwards compatibility

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=10

Complex Multiplier v6.0 11
PG104 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

• For very high performance. (Using a higher latency value adds faster programmable
logic registers before input and after the output stages.)

LUT-based Solution
The core offers the option to build the complex multiplier using LUTs only. While this option
uses a significant number of slices, achieves a lower maximum clock frequency and uses
more power than DSP Slice implementations, it might be suitable for applications where
DSP Slices are in limited supply, or where lower clock rates are in use.

The three real multiplier configuration is used exclusively when LUT implementation is
selected.

Rounding
In a DSP system, especially if the system contains feedback, the word length growth
through the multiplier should be offset by quantizing the results. Quantization, or reduction
in word length, results in error, introduces quantization noise, and can introduce bias. For
best results, it is favorable to select a quantization method that introduces zero mean noise
and minimizes noise variance. Figure 3-1 illustrates the quantization method used for
truncation.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=11

Complex Multiplier v6.0 12
PG104 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

.

For truncation the probability density function (PDF) of the noise is:

therefore the mean and the variance of the error introduced are:

X-Ref Target - Figure 3-1

Figure 3-1: Truncation

3

3

2

1

0

1

2

3

2 1 0

Input

O
u
tp

u
t

1 2 3

X14032

p e() 1
Δ
0







Δ e 0< <

otherwise
–= Equation 3-1

me ep e() ed
Δ–

0
 1

Δ
--- e ed

Δ–

0
 Δ

2---–= = = Equation 3-2

σe
2 e2p e() ed

0

Δ

 1
Δ
--- e2 ed

0

Δ

 Δ2

3-----= = = Equation 3-3

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=12

Complex Multiplier v6.0 13
PG104 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Implementing truncation has no cost in hardware; the fractional bits are simply trimmed.

For rounding the PDF of the noise is:

the mean and the variance of the error introduced are:

X-Ref Target - Figure 3-2

Figure 3-2: Rounding

3

3

2

1

0

1

2

3

2 1 0

Input

O
u
tp

u
t

1 2 3

X14029

p e() 1
Δ
0







Δ 2⁄ e Δ 2⁄< <

otherwise
–= Equation 3-4

me ep e() ed
Δ 2⁄–

Δ 2⁄

 1
Δ
--- e ed

Δ 2⁄–

Δ 2⁄

 0= = = Equation 3-5

σe
2 e2p e() ed

Δ 2⁄–

Δ 2⁄

 1
Δ
--- e2 ed

Δ 2⁄–

Δ 2⁄

 Δ2
12-----= = = Equation 3-6

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=13

Complex Multiplier v6.0 14
PG104 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Therefore, the ideal rounder introduces no DC bias to the signal flow. If the full product
word (for example, arbr - aibi) is represented with BP bits, and the actual result of the core
(for example, pr) is represented with BR bits, then bits BP-1...BP-BR are the integer part, and
BP-BR-1..0 are the fractional part of the result.

To implement the rounding function shown in Figure 3-2, 0.5 (represented in BP.BP-BR
format) has to be added to the full product word, then the lower BP-BR bits need to be
truncated. However, if the fractional part is exactly 0.5, this method always rounds up, which
introduces positive bias to the computation. Also, if the rounding constant is -1
(Figure 3-3), 0.5 would be always rounded down, introducing negative bias.

If 0.5 is rounded using a static rule, the resulting quantization always introduces bias. To
avoid bias, rounding must be randomized. Therefore, the core adds a rounding constant,
and an extra 1 should be added with ½ probability, thus dithering the exact rounding
threshold. Typical round carry sources being used extensively as control signals are listed in
Table 3-1.

Rounding of the results is not trivial when multiple, cascaded DSP Slices are involved in the
process, such as evaluation of Equation 3-5 or Equation 3-6. The sign of the output (MSBo)
cannot be predicted from the operands before the actual multiplications and additions take
place, and would incur additional latency or resource to implement outside the DSP Slices.
Therefore an external signal should be used to feed the round carry input, through the
ROUND_CY (Bit 0 of s_axis_ctrl_tdata) pin.

A good candidate for a source can be a clock-dividing flip-flop, or any 50% duty cycle
random signal, which is not correlated with the fractional part of the results. For predictable
behavior (as for bit-true modeling) the ROUND_CY signal might need to be connected to a
CLK independent source in your design, such as an LSB of one of the complex multiplier
inputs.

X-Ref Target - Figure 3-3

Figure 3-3: Rounding to Br Bits from Bp Bits

Table 3-1: Unbiased Rounding Sources
0.5 Rounding Rule Round Carry Source
Round towards 0 -MSB(P)
Round towards +/- infinity MSB(P)
Round towards nearest even LSB(P)

+ROUND_CY

Rounding constant (provided by the core)

BR

B P

+0111111111111111

X14030

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=14

Complex Multiplier v6.0 15
PG104 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

Nevertheless, even when a static rule is used (such as tying ROUND_CY = 0), bias and
quantization error are reduced compared to using truncation.

In many cases, for DSP Slice implementation, the addition of the rounding constant is ’free’,
as the C port and carry-in input can be utilized. In devices without DSP Slices, the addition
of rounding typically requires an extra slice-based adder and an additional cycle of latency.

Clocking
The core uses a single clock, aclk. All input and output interfaces and internal state are
subject to this single clock.

Resets
The Floating-Point Operator core uses a single, optional, reset input called aresetn. This
signal is active-Low and must be asserted for a minimum of two clock cycles to ensure
correct operation. aresetn is a global synchronous reset which resets all control states in
the core; all data in transit through the core is lost when aresetn is asserted.

Protocol Description
AXI4-Stream Considerations
The conversion to AXI4-Stream interfaces brings standardization and enhances
interoperability of Xilinx® IP LogiCORE solutions. Other than general control signals such
as aclk, aclken and aresetn, all inputs and outputs to the Complex Multiplier are
conveyed using AXI4-Stream channels. A channel consists of TVALID and TDATA always,
plus several optional ports and fields. In the Complex Multiplier, the optional ports
supported are TREADY, TLAST and TUSER. Together, TVALID and TREADY perform a
handshake to transfer a message, where the payload is TDATA, TUSER and TLAST. The
Complex Multiplier operates on the operands contained in the TDATA fields and outputs
the result in the TDATA field of the output channel. The Complex Multiplier does not use
TUSER and TLAST as such, but the core provides the facility to convey these fields with the
same latency as for TDATA. This facility is intended to ease use of the Complex Multiplier in
a system. For example, the Complex Multiplier can be used as a mixer or phase shift
operating on streaming packetized data. In this example, the core could be configured pass
the TLAST of the packetized data channel saving the system designer the effort of
constructing a bypass path for this information.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=15

Complex Multiplier v6.0 16
PG104 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

For further details on AXI4-Stream interfaces see the Vivado Design Suite AXI Reference
Guide (UG1037) [Ref 1] and the AMBA 4 AXI4-Stream Protocol Version: 1.0 Specification
[Ref 2].

Basic Handshake

Figure 3-4 shows the transfer of data in an AXI4-Stream channel. TVALID is driven by the
source (master) side of the channel and TREADY is driven by the receiver (slave). TVALID
indicates that the value in the payload fields (TDATA, TUSER and TLAST) is valid. TREADY
indicates that the slave is ready to receive data. When both TVALID and TREADY are TRUE in
a cycle, a transfer occurs. The master and slave set TVALID and TREADY respectively for the
next transfer appropriately.

NonBlocking Mode

The term NonBlocking means that lack of data on one input channel does not block the
execution of an operation if data is received on another input channel. The full flow control
of AXI4-Stream is not always required. Blocking or NonBlocking behavior is selected using
the FlowControl parameter or GUI field. The Complex Multiplier core supports a
NonBlocking mode in which the AXI4-Stream channels do not have TREADY, that is, they do
not support back pressure. The choice of Blocking or NonBlocking applies to the whole
core, not each channel individually. Channels still have the non-optional TVALID signal,
which is analogous to the New Data (ND) signal on many cores prior to the adoption of
AXI4-Stream. Without the facility to block dataflow, the internal implementation is much
simplified, so fewer resources are required for this mode. This mode is recommended for
users wishing to move to this version from a pre-AXI version with minimal change.

When all of the present input channels receive an active TVALID, an operation is validated
and the output TVALID (suitably delayed by the latency of the core) is asserted to qualify
the result. Operations occur on every enabled clock cycle and data is presented on the
output channel payload fields regardless of TVALID. This is to allow a minimal migration
from v3.1. Figure 3-5 shows the NonBlocking behavior for a case with latency of one cycle.

X-Ref Target - Figure 3-4

Figure 3-4: Data Transfer in an AXI4-Stream Channel

ACLK

TVALID

TREADY

TDATA

TLAST

TUSER

D1 D2 D3 D4

L1 L2 L3 L4

U1 U2 U3 U4

X14025

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=16

Complex Multiplier v6.0 17
PG104 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

IMPORTANT: For performance, ARESETn is registered internally, which delays its action by a clock
cycle. The effect of this is that any transaction input in the cycle following the deassertion of ARESETn
is reset by the action of ARESETn, resulting in an output data value of zero. TVALID is also inactive on
the output channel for this cycle.

Blocking Mode

The term Blocking means that operation execution does not occur until fresh data is
available on all input channels. The full flow control of AXI4-Stream aids system design
because the flow of data is self-regulating. Blocking or NonBlocking behavior is selected
using the FlowControl parameter or GUI field. Data loss is prevented by the presence of
back-pressure (TREADY), so that data is only propagated when the downstream datapath is
ready to process the data.

The Complex Multiplier has two or three input channels and one output channel. When all
input channels have validated data available, an operation occurs and the result becomes
available on the output. If the output is prevented from off-loading data because TREADY is
Low then data accumulates in the output buffer internal to the core. When this output
buffer is nearly full the core stops further operations. This prevents the input buffers from
off-loading data for new operations so the input buffers fills as new data is input. When the
input buffers fill, their respective TREADYs are deasserted to prevent further input. This is
the normal action of backpressure.

The three inputs are tied in the sense that each must receive validated data before an
operation is prompted. Therefore, there is an additional Blocking mechanism, where at least
one input channel does not receive validated data while others do. In this case, the
validated data is stored in the input buffer of the channel. After a few cycles of this scenario,
the buffer of the channel receiving data fills and TREADY for that channel is deasserted until
the starved channel receives some data. Figure 3-6 shows both Blocking behavior and
back-pressure. The first data on channel A is paired with the first data on channel B, the
second with the second and so on. This demonstrates the Blocking concept. The diagram
further shows how data output is delayed not only by latency, but also by the handshake
signal DOUT_TREADY. This is back-pressure’ Sustained back-pressure on the output along

X-Ref Target - Figure 3-5

Figure 3-5: NonBlocking Mode

ACLK

A_TVALID

A_TDATA

B_TVALID

B_TDATA

DOUT_TVALID

DOUT_TDATA

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4 B5 B6 B7 B8

A1*B1 A2*B2 A3*B3 A4*B4 A5*B5 A6*B6 A7*B7 A8*B8

X14024

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=17

Complex Multiplier v6.0 18
PG104 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

with data availability on the inputs eventually lead to a saturation of the core buffers,
leading the core to signal that it can no longer accept further input by deasserting the input
channel TREADY signals. The minimum latency in this example is two cycles, but it should be
noted that in Blocking operation latency is not a useful concept. Instead, as the diagram
shows, the important idea is that each channel acts as a queue, ensuring that the first,
second, third data samples on each channel are paired with the corresponding samples on
the other channels for each operation.

IMPORTANT: The core buffers have a greater capacity than implied by Figure 3-6.

Note: Figure 3-6 illustrates Blocking behavior and handshake protocol. Latencies implied by the
diagram might not be accurate.

TDATA Packing

Fields within an AXI4-Stream interface follow a specific naming nomenclature. See
Figure 3-7. Normally, information pertinent to the application, complex multiplication in
this case, is carried in the TDATA field. In this core the complex operand components, real
and imaginary, are both passed to or from the core through the channel TDATA port, with
the real component in the least significant position. To ease interoperability with
byte-oriented protocols, each subfield within TDATA which could be used independently is
first extended, if necessary, to fit a bit field which is a multiple of 8 bits. For example, if the
Complex Multiplier is configured to have an A operand width of 11 bits. Each of the real and
imaginary components of A are 11 bits wide. The real component would occupy bits 10
down to 0. Bits 15 down to 11 would be ignored. Bits 26 down to 16 would hold the
imaginary component and bits 31 down to 27 would likewise be ignored. For the output
DOUT channel, result fields are sign extended to the byte boundary. The bits added by byte
orientation are ignored by the core and do not result in additional resource use.

X-Ref Target - Figure 3-6

Figure 3-6: Blocking Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=18

Complex Multiplier v6.0 19
PG104 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

TDATA Structure for A, B and DOUT Channels

Input ports A, B and output port DOUT carry complex data in their TDATA field. For each,
the real component occupies the least significant bits. The imaginary component occupies
a bit field which starts on the next byte-boundary above the real component as shown in
the previous section. See Figure 3-7.

TDATA Structure for CTRL Channel

The CTRL channel exists only when Rounding has been selected and exists to convey only
the rounding bit (referred to in this document as ROUND_CY). This bit occupies bit 0 of
TDATA for this channel. However, due to the byte-oriented nature of TDATA, this means that
TDATA has a width of 8 bits. ROUND_CY is added to the rounding constant of 0.01111...,
making the rounding constant either 0.01111.. or 0.100... Therefore, setting this bit to 0
causes the rounding to be rounded to negative infinity; setting it to 1 causes it to be
rounded to positive infinity and setting a new random value for each sample gives unbiased
random rounding. See Rounding for more information.

TLAST and TUSER Handling

TLAST in AXI4-Stream is used to denote the last transfer of a block of data. TUSER is for
ancillary information which qualifies or augments the primary data in TDATA. The Complex
Multiplier operates on a per-sample basis where each operation is independent of any
before or after. Because of this, there is no need for TLAST on a complex multiplier, nor is
there any need for TUSER. The TLAST and TUSER signals are supported on each channel
purely as an optional aid to system design for the scenario in which the data stream being
passed through the Complex Multiplier does indeed have some packetization or ancillary
field, but which is not relevant to the Complex Multiplier. The facility to pass TLAST and/or
TUSER removes the burden of matching latency to the TDATA path, which can be variable,
through the Complex Multiplier core.

TLAST Options

TLAST for each input channel is optional. Each, when present, can be passed through the
Complex Multiplier core, or, when more than one channel has TLAST enabled, can pass a
logical AND or logical OR of the TLASTs input. When no TLASTs are present on any input
channel, the output channel does not have TLAST either.

X-Ref Target - Figure 3-7

Figure 3-7: TDATA Structure for A, B and DOUT Channels

Unused Real ComponentImaginary Component Unused

31 15

1626

27

010

11

X14031

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=19

Complex Multiplier v6.0 20
PG104 August 6, 2021 www.xilinx.com

Chapter 3: Designing with the Core

TUSER Options

TUSER for each input channel is optional. Each has user-selectable width. These fields are
concatenated, without any byte-orientation or padding, to form the output channel TUSER
field. The TUSER field from channel A forms the least significant portion of the
concatenation, then TUSER from channel B, then TUSER from channel CTRL.

Examples:

If channels A and CTRL both have TUSER with widths of 5 and 8 bits respectively, the output
TUSER is a suitably delayed concatenation of A and CTRL TUSER fields, 13 bits wide, with A
in the least significant 5 bit positions (4 down to 0).

If B and CTRL have TUSER widths of 4 and 10 respectively, but A has no TUSER, DOUT TUSER
(m_axis_dout_tuser) has the bits of B_TUSER (s_axis_b_tuser) suitably delayed in
positions 3 down to 0 with CTRL_TUSER (s_axis_ctrl_tuser) bits, suitably delayed, in
positions 13 down to 4.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=20

Complex Multiplier v6.0 21
PG104 August 6, 2021 www.xilinx.com

Chapter 4

Design Flow Steps
This chapter describes customizing and generating the core, constraining the core, and the
simulation, synthesis and implementation steps that are specific to this IP core. More
detailed information about the standard Vivado® design flows and the IP integrator can be
found in the following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
[Ref 3]

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 5]
• Vivado Design Suite User Guide: Getting Started (UG910) [Ref 6]
• Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 7]

Customizing and Generating the Core
This section includes information about using Xilinx tools to customize and generate the
core in the Vivado® Design Suite.

If you are customizing and generating the core in the Vivado IP Integrator, see the Vivado
Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 3] for
detailed information. IP Integrator might auto-compute certain configuration values when
validating or generating the design. To check whether the values do change, see the
description of the parameter in this chapter. To view the parameter value you can run the
validate_bd_design command in the Tcl Console.

You can customize the IP for use in your design by specifying values for the various
parameters associated with the IP core using the following steps:

1. Select the IP from the IP catalog.
2. Double-click the selected IP or select the Customize IP command from the toolbar or

right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 5] and
the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 6].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=21

Complex Multiplier v6.0 22
PG104 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

The Complex Multiplier core in the Vivado Design Environment (IDE) has several fields to
set parameter values for the particular instantiation required. The following provides a
description of each field.

Component Name: The name of the core component to be instantiated. The name must
begin with a letter and be composed of the following characters: a to z, A to Z, 0 to 9 and ‘_’.

Input and Implementation Tab

Channel A Options:

° AR/AI Operand Width: Select the first operand width. The width applies to both
the real and imaginary components of the complex operand. See TDATA Structure
for A, B and DOUT Channels to see how the operand components map into TDATA
for this channel. This parameter is automatically updated in IP Integrator.

° Has TLAST: Select whether the channel has TLAST. To ease system design, the core
passes any TLAST and TUSER to the output with latency equal to the TDATA field.
See TLAST and TUSER Handling

° Has TUSER: Select whether the channel has TUSER. To ease system design, the core
passes any TLAST and TUSER to the output with latency equal to the TDATA field.
See TLAST and TUSER Handling.

° TUSER Width: Select the width, in bits, of the TUSER field for this channel. This
parameter is automatically updated in IP Integrator.

Channel B Options:

° BR/BI Operand Width: Select the second operand width. The width applies to both
the real and imaginary components of the complex operand. See TDATA Structure
for A, B and DOUT Channels to see how the operand components map into TDATA
for this channel. This parameter is automatically updated in IP Integrator.

° Has TLAST: Select whether the channel has TLAST. To ease system design, the core
passes any TLAST and TUSER to the output with latency equal to the TDATA field.
See TLAST and TUSER Handling

° Has TUSER: Select whether the channel has TUSER. To ease system design, the core
passes any TLAST and TUSER to the output with latency equal to the TDATA field.
See TLAST and TUSER Handling

° TUSER Width: Select the width, in bits, of the TUSER field for this channel. This
parameter is automatically updated in IP Integrator.

Multiplier Construction Options: Allows the choice of using LUTs (slice logic) to construct
the complex multiplier, or using DSP Slices.

Optimization Goal: Selects between Resource and Performance optimization.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=22

Complex Multiplier v6.0 23
PG104 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

° This selection affects both the internal architectural decisions and the performance/
resource trade-offs in the AXI4-Stream interfaces.

° For Multiplier-based implementations, Resource optimization generally uses the
three real multiplier structure. The core uses the four real multiplier structure when
the three real multiplier structure uses more multiplier resources. Performance
optimization always uses the four real multiplier structure to allow the best clock
frequency performance to be achieved.

Flow Control Options: Selects between Blocking and NonBlocking behavior for the
AXI4-Stream interfaces. See NonBlocking Mode and Blocking Mode for greater detail.

Configuration and Output Tab

Output Product Range

° Output Width: Selects the width of the output product real and imaginary
components. The values are automatically initialized to provide the full-precision
product when the A and B operand widths are set. The natural width of a complex
multiplication is the sum of the input widths plus one. If Output Width is set to be
less than this natural width, the least significant bits are truncated or rounded, as
selected by the next GUI field.

Output Rounding

If the full-precision product (output width equals natural width) is selected, no rounding
options are available. Otherwise either Truncation or Random Rounding can be selected.
When Random Rounding is selected, the CTRL channel is enabled. Bit 0 of the TDATA field
of this channel determines the particular type of rounding for the operation in question.
See Rounding for further details.

Channel CTRL Options

The control channel exists to supply the bit which determines the rounding type. However,
it also provides an opportunity to pass TUSER or TLAST information which has no
association with either of the input operands through the core.

° Has TLAST: Select whether the channel has TLAST. To ease system design, the core
passes any TLAST and TUSER to the output with latency equal to the TDATA field.
See TLAST and TUSER Handling.

° Has TUSER: Select whether the channel has TUSER. To ease system design, the core
passes any TLAST and TUSER to the output with latency equal to the TDATA field.
See TLAST and TUSER Handling.

° TUSER Width: Select the width, in bits, of the TUSER field for this channel. This
parameter is automatically updated in IP Integrator.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=23

Complex Multiplier v6.0 24
PG104 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Output TLAST Behavior

° TLAST Behavior: Determines which of the input channels’ TLAST or which
combination of input channel TLASTs is conveyed to the output channel TLAST.
Available options are to pass any one of the input channels’ TLAST or to pass the
logical OR of all available input TLASTs or to pass the logical AND of all available
input TLASTs. See TLAST and TUSER Handling.

Core Latency

Select the desired latency for the core.

• Latency Configuration: Selects between Automatic and Manual. When Automatic,
latency is set such that the core is fully pipelined for maximum performance. Manual
allows user-selectable minimum latency. Performance drops when the value set is less
than the fully pipelined latency. When the value set is larger than fully pipelined, the
core delays the output using an SRL. With Blocking Flow Control selected, the core
latency is not fixed, so only minimum latency can be specified.

• Minimum Latency: The value for Manual Latency Configuration.

Control Signals

Selects which control signals should be present on the core. These options are disabled
when the core has a minimum latency of zero.

° ACLKEN: Enables the clock enable (aclken) pin on the core. All registers in the
core are enabled by this signal.

° ARESETn: Enables the active-Low synchronous clear (aresetn) pin on the core. All
registers in the core are reset by this signal. This can increase resource use and
degrade performance, as the number of SRL-based shift registers that can be used
is reduced. aresetn always take priority over aclken.

Implementation Details Tab: Click the Implementation Details tab to see an estimate of
the DSP Slice resources used for a particular complex multiplier configuration. This value
updates instantaneously with changes in the GUI, allowing trade-offs in implementation to
be evaluated immediately.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=24

Complex Multiplier v6.0 25
PG104 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

User Parameters
Table 4-1 shows the relationship between the fields in the Vivado IDE and the User
Parameters (which can be viewed in the Tcl Console).

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 5].

Table 4-1: Vivado IDE Parameter to User Parameter Relationship
Vivado IDE Parameter User Parameter Default Value

AR/AI Operand Width aportwidth 16
Channel A: Has TLAST hasatlast FALSE
Channel A: Has TUSER hasatuser FALSE
Channel A: TUSER Width atuserwidth 1
BR/BI Operand Width bportwidth 16
Channel B: Has TLAST hasbtlast FALSE
Channel B: Has TUSER hasbtuser FALSE
Channel B: TUSER Width btuserwidth 1
Multiplier Construction multtype Use_Mults
Optimization Goal optimizegoal Resources
Flow Control flowcontrol NonBlocking
Output Rounding roundmode Truncate
Output Width outputwidth 33
Channel CTRL: Has TLAST hasctrltlast FALSE
Channel CTRL: Has TUSER hasctrltuser FALSE
Channel CTRL: TUSER Width ctrltuserwidth 1
TLAST Behavior outtlastbehv Null
Latency Configuration latencyconfig Automatic
Minimum Latency minimumlatency 0
ACLKEN aclken FALSE
ARESETn aresetn FALSE

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=25

Complex Multiplier v6.0 26
PG104 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

System Generator for DSP Graphical User Interface
This section describes each tab of the System Generator for DSP GUI and details the
parameters that differ from the Vivado IDE. The Complex Multiplier core can be found in the
Xilinx® Blockset in the Math section. The block is called ‘Complex Multiplier 6.0.’ See the
System Generator for DSP Help page for the ‘Complex Multiplier 6.0’ block for more
information on parameters not mentioned here. For more information about System
Generator see the System Generator for DSP User Guide (UG640) [Ref 10].

Page 1

Page 1 is used to specify the complex multiplier construction, optimization options and
output width in a similar way to the Vivado IDE.

Page 2

Page 2 is used to specify latency, output product rounding options and block control
signals. As with page 1, all controls have the same effect as controls in the Vivado IDE.

Implementation

This page is used only for System Generator for DSP FPGA area estimation and has no
equivalent parameters on the GUI.

Constraining the Core
This section contains information about constraining the core in the Vivado® Design Suite.

Required Constraints
This section is not applicable for this IP core.

Device, Package, and Speed Grade Selections
This section is not applicable for this IP core.

Clock Frequencies
This section is not applicable for this IP core.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=26

Complex Multiplier v6.0 27
PG104 August 6, 2021 www.xilinx.com

Chapter 4: Design Flow Steps

Clock Management
This section is not applicable for this IP core.

Clock Placement
This section is not applicable for this IP core.

Banking
This section is not applicable for this IP core.

Transceiver Placement
This section is not applicable for this IP core.

I/O Standard and Placement
This section is not applicable for this IP core.

Simulation
For comprehensive information about Vivado simulation components, as well as
information about using supported third party tools, see the Vivado Design Suite User
Guide: Logic Simulation (UG900) [Ref 7].

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide:
Designing with IP (UG896) [Ref 5].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=27

Complex Multiplier v6.0 28
PG104 August 6, 2021 www.xilinx.com

Chapter 5

C Model
The Complex Multiplier core bit accurate C model is a self-contained, linkable, shared
library that models the functionality of this core with finite precision arithmetic. This model
provides a bit accurate representation of the various modes of the Complex Multiplier core,
and it is suitable for inclusion in a larger framework for system-level simulation or
core-specific verification.

Features
• Bit accurate with Complex Multiplier core
• Available for 32-bit and 64-bit Linux platforms
• Available for 32-bit and 64-bit Windows platforms
• Supports all features of the Complex Multiplier core with the exception of those

affecting timing or AXI4-Stream configuration
• Designed for integration into a larger system model
• Example C code showing how to use the C model functions

Overview
The model consists of a set of C functions that reside in a shared library. Example C code is
provided to demonstrate how these functions form the interface to the C model. Full details
of this interface are given in C Model Interface.

The model is bit accurate but not cycle accurate; it performs exactly the same operations as
the core. However, it does not model the core latency, interface signals, or TUSER feature.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=28

Complex Multiplier v6.0 29
PG104 August 6, 2021 www.xilinx.com

Chapter 5: C Model

Unpacking and Model Contents
There are separate ZIP files containing all the files necessary for use. Each ZIP file contains:

• C model shared library
• C model header file
• Example code showing how to call the C model

Table 5-1 and Table 5-2 list the contents of each ZIP file.

Installation
Linux
• Unpack the contents of the ZIP file.
• Ensure that the directory where the libIP_cmpy_v6_0_bitacc_cmodel.so resides

is included in the path of the environment variable LD_LIBRARY_PATH.

Table 5-1: C Model ZIP File Contents: Linux
File Description

cmpy_v6_0_bitacc_cmodel.h Header file which defined the C model API
libIp_cmpy_v6_0_bitacc_cmodel.so Model shared object library
run_bitacc_cmodel.c Example program for calling the C model.
gmp.h MPIR header file, used by the C model
libgmp.so.11 MPIR library, used by the C model

Table 5-2: C Model ZIP File Contents: Windows
File Description

cmpy_v6_0_bitacc_cmodel.h Header file which defined the C model API
libIp_cmpy_v6_0_bitacc_cmodel.dll Model dynamically linked library
libIp_cmpy_v6_0_bitacc_cmodel.lib Model LIB file for compiling
run_bitacc_cmodel.c Example program for calling the C model
gmp.h MPIR header file, used by the C model
libgmp.dll MPIR library, used by the C model
libgmp.lib MPIR .lib file for compiling

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=29

Complex Multiplier v6.0 30
PG104 August 6, 2021 www.xilinx.com

Chapter 5: C Model

Windows
• Unpack the contents of the ZIP file.
• Ensure that the directory where the libIP_cmpy_v6_0_bitacc_cmodel.dll

resides is:

° Included in the path of the environment variable PATH, or

° In the directory in which the executable that calls the C model is run.

C Model Interface
An example file, run_bitacc_cmodel.c, is included. This demonstrates how to call the C
model. See this file for examples of using the interface described in this section.

The Application Programming Interface (API) of the C model is defined in the header file
cmpy_v6_0_bitacc_cmodel.h. The interface consists of data structures and functions
as described in the following sections.

Data Types
The C types defined for the Complex Multiplier C model are listed in Table 5-3.

Table 5-3: C Model Data Types
Name Type Description

xip_real Double Base data type for small width configurations(1)

xip_complex Struct {re,im} xip_real Base element of operands for small width
configurations(1)

xip_uint Unsigned int

Used for configuration parameter of integer or
Boolean type.
For Boolean:
0=false
1=true

xip_mpz Mpz_t(2) Base data type for larger width configurations(1)

xip_mpz_complex Struct {re, im} xip_mpz Base element of operand for larger width
configurations(1)

xip_array_complex Struct
Structure to hold data for input to the complex
multiplier (A or B operands) or output for small
configurations(1)

xip_array_mpz_complex Struct
Structure to hold data for input to the complex
multiplier (A or B operands) or output for larger
configurations.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=30

Complex Multiplier v6.0 31
PG104 August 6, 2021 www.xilinx.com

Chapter 5: C Model

The xip_array_complex, xip_array_mpz_complex and xip_array_uint data types are structures
with the following members:

• data: A pointer to the array of data values.
• data_size: Of type size_t, which describes the total size of the data array.
• data_capacity: Also of type size_t, which describes how much of the array is currently
• populated.
• dim: A pointer to a size_t array of values which indicate the size of each dimension.
• dim_size (size_t): Indicates the number of dimensions of the data array.
• dim_capacity: Indicates how much of the dimension array is currently populated.
• owner: This unsigned int member is provided as a handle for when the data structure is

intended to be passed from one core to another, but is not used by any of the Complex
Multiplier C model functions.

xip_array_uint Struct Structure to hold data for input to the complex
multiplier (ROUND operand).

xip_cmpy_v6_0_status Int Error code return from many C model functions. 0
indicates success. Any other value indicates failure.

xip_status Int Same as xip_cmpy_v6_0_status but used for
functions which are not core-specific.

xip_real Double

xip_cmpy_v6_0_config Struct

The configuration of the core itself. The members of
this structure are listed in the
cmpy_v6_0_bitacc_cmodel file. The names closely
match the same names in XCI files. The
cmpy_v6_0_bitacc_cmodel file also contains
#defined values for all.

xip_cmpy_v6_0 Struct Type defined which C (not C++) can use as a handle
(pointer) to a C++ object – the C model itself.

Notes:
1. Small configurations are where the natural width (APortWidth+BPortWidth+1) does not exceed 53 bits.
2. From gmp.h library

Table 5-3: C Model Data Types (Cont’d)

Name Type Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=31

Complex Multiplier v6.0 32
PG104 August 6, 2021 www.xilinx.com

Chapter 5: C Model

Functions
There are several accessible C model functions.

Information Functions

Table 5-4 lists the information functions. The prototypes for these functions can be found in
the C model header file.

Initialization Functions

The functions to create, configure and destroy the C model and associated data structures
are listed in Table 5-5.

Table 5-4: Information Functions
Name Return Arguments Description

xip_cmpy_get_version Const char* Void
Return the Complex
Multiplier C model version as
a null terminated string. For
v6.0, this is ‘6.0’.

xip_cmpy_v6_0_get_
default_config xip_cmpy_v6_0_status xip_cmpy_v6_0_config*

Populates the contents of
structure pointed to by the
input argument with the
values of a default
configuration.

Table 5-5: Initialization Functions
Name Return Arguments Description

xip_cmpy_v6_0_create
Pointer to structure
holding configuration
of C model object

Pointer to structure
holding configuration

Creates new C model object
and returns pointer to config
structure (which is pointer to
C model itself).

xip_cmpy_v6_0_destroy xip_cmpy_v6_0_status Pointer to xip_cmpy_v6_0
(C model itself)

Deallocates memory owned
by C model and destroys C
model itself.

xip_cmpy_v6_0_get_config xip_cmpy_v6_0_status
Pointer to C model,
pointer to configuration
structure

Copies the contents of the
configuration of the C model
indicated to the designated
configuration structure.

xip_array_#TYPE#_create(1) Pointer to created
data structure None

Allocates memory for the
structure itself, not the array
members within it.

xip_array_#TYPE#_reserve_data(1) xip_status
Pointer to data structure,
maximum number of
elements in data array.

(Re)allocates enough
memory for the maximum
size. Error is returned if the
data_capacity of the structure
is greater than space
allocated.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=32

Complex Multiplier v6.0 33
PG104 August 6, 2021 www.xilinx.com

Chapter 5: C Model

Execution Functions

The run time functions of the C model are described in Table 5-6.

Compiling
Compilation of user code requires access to the cmpy_v6_0_bitacc_cmodel.h header
file and the header file of the MPIR dependent library, gmp.h. The header files should be
copied to a location where they are available to the compiler. Depending on the location
chosen, the include search path of the compiler might need to be modified.
The cmpy_v6_0_bitacc_cmodel.h header file must be included first, because it defines
some symbols that are used in the MPIR header file. The cmpy_v6_0_bitacc_cmodel.h
header file includes the MPIR header file, so it does not need to be explicitly included in

xip_array_#TYPE#_reserve_dim(1) xip_status
Pointer to data structure,
maximum number of
dimensions.

Allocates a small array which
is to contain the size of each
dimension of the data array.
For example, 100 samples x 4
channels x 3 fields.

xip_array_#TYPE#_destroy(1) xip_status Pointer to data structure.
Frees up the memory
allocated for the data array,
the dimension array, and the
data structure itself.

Notes:
1. #TYPE# can be uint, complex or mpz_complex.

Table 5-6: Execution Functions
Name Return Arguments Description

xip_cmpy_v6_0_data_do xip_cmpy_v6_0_status

Pointer to C model, Pointer to
input data structure, Pointer
to output data structure,
Number of samples, number
of channels, number of fields
input and number of fields
output

The function which
prompts execution of the C
model. The number of
samples, channels and
fields must match the size
of the array passed or an
error is returned.

xip_array_#TYPE#_set_data(1) xip_status
Pointer to array structure, the
value to be written, the
sample to be written to

Used to populate the input
data structure.

xip_array_#TYPE#_get_data(1) xip_status
Pointer to the array structure,
pointer of #TYPE# type
(returned value), sample to be
read

Used to read the output (or
input) data structure.

Notes:
1. #TYPE# can be uint, complex or mpz_complex.

Table 5-5: Initialization Functions (Cont’d)

Name Return Arguments Description

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=33

Complex Multiplier v6.0 34
PG104 August 6, 2021 www.xilinx.com

Chapter 5: C Model

source code that uses the C model. When compiling on Windows, the symbol NT must be
defined, either by a compiler option, or in user source code before the
cmpy_v6_0_bitacc_cmodel.h header file is included.

Linking
To use the C model the user executable must be linked against the correct libraries for the
target platform.

Note: The C model uses an MPIR library. It is also possible to use GMP or MPIR libraries from other
sources, for example, compiled from source code. For details, see Dependent Libraries.

Linux
The executable must be linked against the following shared object libraries:

• libgmp.so.11

• libIp_cmpy_v6_0_bitacc_cmodel.so

Using GCC, linking is typically achieved by adding the following command line options:

-L. -Wl, -rpath,. -lIp_cmpy_v6_0_bitacc_cmodel

This assumes the shared object libraries are in the current directory. If this is not the case,
the -L. option should be changed to specify the library search path to use.

Using GCC, the provided example program run_bitacc_cmodel.c can be compiled and
linked using the following command:

gcc -x c++ -I. -L. -lIp_cmpy_v6_0_bitacc_cmodel -Wl, -rpath,. -o run_bitacc_cmodel
run_bitacc_cmodel.c

Windows
The executable must be linked against the following dynamic link libraries:

• libgmp.dll

• libIp_cmpy_v6_0_bitacc_cmodel.dll

Depending on the compiler, the import libraries might also be required:

• libgmp.lib

• libIp_cmpy_v6_0_bitacc_cmodel.lib

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=34

Complex Multiplier v6.0 35
PG104 August 6, 2021 www.xilinx.com

Chapter 5: C Model

Using Microsoft Visual Studio, linking is typically achieved by adding the import libraries to
the Additional Dependencies entry under the Linker section of Project Properties.

Dependent Libraries
The C model uses the MPIR library, which is governed by the GNU Lesser General Public
License. You can obtain source code for the MPIR library from www.xilinx.com/
guest_resources/gnu/. The following pre-compiled version of the MPIR library is provided
with the C model:

• MPIR 2.6.0

Because MPIR is a compatible alternative to GMP, the GMP library can be used in place of
MPIR. It is possible to use GMP or MPIR libraries from other sources, for example, compiled
from source code.

GMP and MPIR contain many low-level optimizations for specific processors. The libraries
provided are compiled for a generic processor on each platform, using no optimized
processor-specific code. These libraries work on any processor, but run more slowly than
libraries compiled to use optimized processor-specific code. For the fastest performance,
compile libraries from source on the machine on which you run the executables.

Source code and compilation scripts are provided for the version of MPIR used to compile
the provided libraries. Source code and compilation scripts for any version of the libraries
can be obtained from the GMP [Ref 11] and MPIR [Ref 12] web sites.

Note: If compiling MPIR using its configure script (for example, on Linux platforms), use the
--enable-gmpcompat option when running the configure script. This generates a libgmp.so
library and a gmp.h header file that provide full compatibility with the GMP library.

Example
The run_bitacc_cmodel.c file contains example code to show basic operation of the C
model. Part of this example code is shown here. The comments assist in understanding the
code.

#include <iostream>
#include <complex>

#define _USE_MATH_DEFINES

#include <math.h>
#include <fstream> // for debug only
#include "cmpy_v6_0_bitacc_cmodel.h"
#include "gmp.h"

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/guest_resources/gnu/
https://www.xilinx.com/guest_resources/gnu/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=35

Complex Multiplier v6.0 36
PG104 August 6, 2021 www.xilinx.com

Chapter 5: C Model

using namespace std;

#define DATA_SIZE 10

int main()
{
 size_t ii; //loop variable for data samples
 xip_uint roundbit;
 xip_complex value;

 // Create a configuration structure
 xip_cmpy_v6_0_config config, config_ret;
 xip_cmpy_v6_0_status status = xip_cmpy_v6_0_default_config(&config);
 if (status != XIP_CMPY_V6_0_STATUS_OK) {

 cerr << "ERROR: Could not get C model default configuration" << endl;
 return XIP_STATUS_ERROR;

 }

 //Configure this instance.
 config.APortWidth = 16;
config.BPortWidth = 16;
config.OutputWidth = 33;
config.RoundMode = XIP_CMPY_V6_0_TRUNCATE; //Note that the check later in this

file assumes full width

 // Create model object
 xip_cmpy_v6_0* cmpy_std;
 cmpy_std = xip_cmpy_v6_0_create(&config, &msg_print, 0);
 if (status != XIP_CMPY_V6_0_STATUS_OK) {

 cerr << "ERROR: Could not create C model state object" << endl;
 return XIP_STATUS_ERROR;

 }

 // Can we read back the updated configuration correctly?
 if (xip_cmpy_v6_0_get_config(cmpy_std, &config_ret) != XIP_CMPY_V6_0_STATUS_OK) {

 cerr << "ERROR: Could not retrieve C model configuration" << endl;
 }

 int number_of_samples = DATA_SIZE;
 // Create input data structure for operand A samples
 xip_array_complex* reqa = xip_array_complex_create();
 xip_array_complex_reserve_dim(reqa,1); //dimensions are (Number of samples)
 reqa->dim_size = 1;
 reqa->dim[0] = number_of_samples;
 reqa->data_size = reqa->dim[0];
 if (xip_array_complex_reserve_data(reqa,reqa->data_size) == XIP_STATUS_OK) {

 cout << "INFO: Reserved memory for request as [" << number_of_samples << "] array
" << endl;
 } else {

 cout << "ERROR: Unable to reserve memory for input data packet!" << endl;
 exit(2);

 }

 // Create input data structure for operand B samples
 xip_array_complex* reqb = xip_array_complex_create();
 xip_array_complex_reserve_dim(reqb,1); //dimensions are (Number of samples)
 reqb->dim_size = 1;
 reqb->dim[0] = number_of_samples;
 reqb->data_size = reqb->dim[0];

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=36

Complex Multiplier v6.0 37
PG104 August 6, 2021 www.xilinx.com

Chapter 5: C Model

 if (xip_array_complex_reserve_data(reqb,reqb->data_size) == XIP_STATUS_OK) {
 cout << "INFO: Reserved memory for request as [" << number_of_samples << "] array

" << endl;
 } else {

 cout << "ERROR: Unable to reserve memory for input data packet!" << endl;
 exit(2);

 }

 // Create input data structure for ctrl input (Round bit)
 xip_array_uint* reqctrl = xip_array_uint_create();
 xip_array_uint_reserve_dim(reqctrl,1); //dimensions are (Number of samples)
 reqctrl->dim_size = 1;
 reqctrl->dim[0] = number_of_samples;
 reqctrl->data_size = reqctrl->dim[0];
 if (xip_array_uint_reserve_data(reqctrl,reqctrl->data_size) == XIP_STATUS_OK) {

 cout << "INFO: Reserved memory for request as [" << number_of_samples << "] array
" << endl;
 } else {

 cout << "ERROR: Unable to reserve memory for input data packet!" << endl;
 exit(2);

 }

 //create example input data
 xip_complex a,b;
 for (ii = 0; ii < DATA_SIZE; ii++)
 {

 roundbit = ii % 2;
 a.re = (xip_real)ii;
 a.im = (xip_real)ii;
 b.re = (xip_real)(16-ii);
 b.im = (xip_real)ii;
 if (xip_array_complex_set_data(reqa, a, ii) != XIP_STATUS_OK)

cerr << "Error in xip_array_complex_set_data" << endl;
 if (xip_array_complex_set_data(reqb, b, ii) != XIP_STATUS_OK)

cerr << "Error in xip_array_complex_set_data" << endl;
 if (xip_array_uint_set_data(reqctrl, roundbit, ii) != XIP_STATUS_OK)

cerr << "Error in xip_array_uint_set_data" << endl;

 // Request memory for output data
 xip_array_complex* response = xip_array_complex_create();
 xip_array_complex_reserve_dim(response,1); //dimensions are (Number of samples)
 response->dim_size = 1;
 response->dim[0] = number_of_samples;
 response->data_size = response->dim[0];
 if (xip_array_complex_reserve_data(response,response->data_size) ==

XIP_STATUS_OK) {
 cout << "INFO: Reserved memory for response as [" << number_of_samples << "]

array " << endl;
 } else {

 cout << "ERROR: Unable to reserve memory for output data packet!" << endl;
 exit(3);

 }

 // Run the model
 cout << "Running the C model..." << endl;

 if (xip_cmpy_v6_0_data_do(cmpy_std, reqa, reqb, reqctrl, response) !=
XIP_CMPY_V6_0_STATUS_OK) {

 cerr << "ERROR: C model did not complete successfully" << endl;

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=37

Complex Multiplier v6.0 38
PG104 August 6, 2021 www.xilinx.com

Chapter 5: C Model

 xip_array_complex_destroy(reqa);
 xip_array_complex_destroy(reqb);
 xip_array_uint_destroy(reqctrl);
 xip_array_complex_destroy(response);
 xip_cmpy_v6_0_destroy(cmpy_std);
 return XIP_STATUS_ERROR;

 } else {
 cout << "C model completed successfully" << endl;

 }

 // Check response is correct
 for (ii = 0; ii < DATA_SIZE; ii++)
 {

 //This example has natural width, so simple calculation
 xip_complex expected, got, x, y;
 xip_array_complex_get_data(reqa, &x, ii);
 xip_array_complex_get_data(reqb, &y, ii);
 xip_array_complex_get_data(response, &got, ii);

 //Note that the following equations assume that the output width is the full
natural

 //width of the calculation, i.e. neither truncation nor rounding occurs
 expected.re = x.re*y.re - x.im*y.im;
 expected.im = x.re*y.im + x.im*y.re;
 if (expected.re != got.re || expected.im != got.im) {
 cerr << "ERROR: C model data output is incorrect for sample" << ii << "Expected

real = " << expected.re << " imag = " << expected.im << " Got real = " << got.re <<
" imag = " << got.im << endl;

xip_array_complex_destroy(reqa);
 xip_array_complex_destroy(reqb);
 xip_array_uint_destroy(reqctrl);
 xip_array_complex_destroy(response);
 xip_cmpy_v6_0_destroy(cmpy_std);
 return XIP_STATUS_ERROR;

 } else {
 cout << "Sample " << ii << " was as expected" << endl;

 }
 }
 cout << "C model data output is correct" << endl;

 // Clean up
 xip_array_complex_destroy(reqa);
 xip_array_complex_destroy(reqb);
 xip_array_uint_destroy(reqctrl);
 xip_array_complex_destroy(response);
 cout << "C model input and output data freed" << endl;

 xip_cmpy_v6_0_destroy(cmpy_std);
 cout << "C model destroyed" << endl;

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=38

Complex Multiplier v6.0 39
PG104 August 6, 2021 www.xilinx.com

Chapter 6

Test Bench
This chapter contains information about the test bench provided in the Vivado® Design
Suite.

When the core is generated using the Vivado Design Suite, a demonstration test bench is
created. This is a simple VHDL test bench that exercises the core.

The demonstration test bench source code is one VHDL file: demo_tb/
tb_<component_name>.vhd in the Vivado output directory. The source code is
comprehensively commented.

Using the Demonstration Test Bench
The demonstration test bench instantiates the generated Complex Multiplier core.

Compile the demonstration test bench into the work library (see your simulator
documentation for more information on how to do this). Then simulate the demonstration
test bench. View the test bench signals in your simulator waveform viewer to see the
operations of the test bench.

The Demonstration Test Bench in Detail
The demonstration test bench performs the following tasks:

• Instantiate the core
• Generate two input data tables containing complex sinusoids of different frequencies
• Generate a clock signal
• Drive the core clock enable and reset input signals (if present)
• Drive the core input signals to demonstrate core feature
• Checks that the core output signals obey AXI protocol rules (data values are not

checked in order to keep the test bench simple)
• Provide signals showing the separate fields of AXI TDATA and TUSER signals

The demonstration test bench drives the core input signals to demonstrate the features and
modes of operation of the core. The complex multiplier is treated as a mixer that combines
two complex sinusoids with different but similar frequencies, but opposite sign and

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=39

Complex Multiplier v6.0 40
PG104 August 6, 2021 www.xilinx.com

Chapter 6: Test Bench

different amplitude. The output of the core is therefore a complex sinusoid with a frequency
equal to the difference in frequencies of the inputs, that is, a much slower frequency. The
input data is pre-generated and stored in data tables, and the test bench drives the core
data inputs with the sinusoid data throughout the operation of the test bench.

The demonstration test bench drives the AXI handshaking signals in different ways, split
into three phases. The operations depend on whether Blocking Mode or NonBlocking Mode
is selected:

• Blocking Mode:

° Phase 1: full throughput, all TVALID and TREADY signals are tied High

° Phase 2: apply increasing amounts of backpressure by deasserting the TREADY
signal of the master channel

° Phase 3: deprive slave channel A of valid transactions at an increasing rate by
deasserting its TVALID signal

• NonBlocking Mode:

° Phase 1: full throughput, all TVALID and TREADY signals are tied High

° Phase 2: deprive slave channel A of valid transactions at an increasing rate by
deasserting its TVALID signal

° Phase 3: deprive all slave channels of valid transactions at different rates by
deasserting each of their TVALID signals

Customizing the Demonstration Test Bench
It is possible to modify the demonstration test bench to drive the core inputs with different
data or to perform different operations.

Input data is pre-generated in the create_ip_a_table and create_ip_b_table
functions and stored in the IP_A_DATA and IP_B_DATA constants. New input data frames
can be added by defining new functions and constants. Make sure that each input data
frame is of an appropriate type, similar to the T_IP_A_TABLE and T_IP_B_TABLE array
types.

All operations performed by the demonstration test bench to drive the inputs of the core
are done in the stimuli process. This process is comprehensively commented, to explain
clearly what is being done. New input data or different ways of driving AXI handshaking
signals can be added by modifying sections of this process.

The total run time of the test can be modified by changing the TEST_CYCLES constant: this
controls the number of clock cycles before the simulation is stopped.

The clock frequency of the core can be modified by changing the CLOCK_PERIOD constant.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=40

Complex Multiplier v6.0 41
PG104 August 6, 2021 www.xilinx.com

Appendix A

Upgrading
This appendix contains information about migrating a design from the ISE® Design Suite to
the Vivado® Design Suite, and for upgrading to a more recent version of the IP core. For
customers upgrading in the Vivado Design Suite, important details (where applicable)
about any port changes and other impact to user logic are included.

Migrating to the Vivado Design Suite
For information about migrating to the Vivado Design Suite, see the ISE to Vivado Design
Suite Migration Guide (UG911) [Ref 8].

Parameter Changes
The upgrade functionality can be used to update an existing XCO or XCI file from v3.1, v4.0
or v5.0 to Complex Multiplier v6.0, but is should be noted that the upgrade mechanism
alone does not create a core compatible with v3.1. See Instructions for Minimum Change
Migration (v3.1 to v6.0).

There are no parameter, port or functionality changes between v5.0 and v6.0. While there
are no parameter changes from v4.0 to v6.0 there are two changes of note. The first is that
the behavior of the NonBlocking mode has changed. The second is that the minimum
latency for Blocking modes has been reduced by 6 cycles. This means that for a given
performance, less latency is required. Retaining the same value of manual latency as v4.0
might result in a resource increase.

Table A-1 shows the changes to XCO parameters from version 3.1 to version 6.0.

Table A-1: Parameter Changes from v3.1 to v6.0
Version 3.1 Version 6.0 Notes
APortWidth APortWidth Unchanged, but the parameter no longer directly indicates the

width of the port carrying the A operand
BPortWidth BPortWidth Unchanged, but the parameter no longer directly indicates the

width of the port carrying the B operand
MultType MultType Unchanged
OptimizeGoal OptimizeGoal Unchanged

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=41

Complex Multiplier v6.0 42
PG104 August 6, 2021 www.xilinx.com

Appendix A: Upgrading

Port Changes
Table A-2 details the changes to port naming, additional or deprecated ports and polarity
changes from v3.1 to v6.0 There are no changes from v4.0 to 6.0 nor from v5.0 to v6.0.

OutputWidthHigh OutputWidth(1)

OutputWidthLow
RoundMode RoundMode Unchanged
Latency LatencyConfig Latency = -1 is now LatencyConfig = Automatic. All other

values map to LatencyConfig = Manual
MinimumLatency This field allows the input of Latency when

LatencyConfig=Manual, or reflects the actual value of
MinimumLatency when LatencyConfig=Automatic

ClockEnable ACLKEN Renamed only
SyncClear ARESETn Renamed only. Note that while the sense of the aresetn signal

has changed, this XCO determined whether or not the signal
exists and has not changed. Note also that a minimum length
of 2 cycles is recommended when aresetn is asserted.

SclrCEPriority Deprecated. aresetn always overrides aclken in accordance with
AXI4-Stream protocol.

HasATLAST Introduced in version 4.0
HasATUSER Introduced in version 4.0
ATUSERWidth Introduced in version 4.0
HasBTLAST Introduced in version 4.0
HasBTUSER Introduced in version 4.0
BTUSERWidth Introduced in version 4.0
HasCTRLTLAST Introduced in version 4.0
HasCTRLTUSER Introduced in version 4.0
CTRLTUSERWidth Introduced in version 4.0
FlowControl Introduced in version 4.0
OutTLASTBehv Introduced in version 4.0

Notes:
1. The natural output width of a complex multiplication is APortWidth+BPortWidth+1. When OutputWidth is set to

be less than this, the most significant bits of the result are those output. The remaining bits are either truncated
or rounded according to RoundMode. In other words OutputWidthHigh has been deprecated and is now fixed at
(APortWidth +BPortWidth).

Table A-1: Parameter Changes from v3.1 to v6.0 (Cont’d)

Version 3.1 Version 6.0 Notes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=42

Complex Multiplier v6.0 43
PG104 August 6, 2021 www.xilinx.com

Appendix A: Upgrading

Table A-2: Port Changes from Version 3.1 to Version 6.0
Version 3.1 Version 6.0 Notes
CLK aclk Rename only
CE aclken Rename only
SCLR aresetn Rename and change of sense (now

active-Low). Note recommendation that
aresetn should be asserted for a minimum of
2 cycles.

AR(N-1:0)(1) s_axis_a_tdata(N-1:0) Both AR and AI map to s_axis_a_tdata
AI(N-1:0) s_axis_a_tdata(N-1+byte(N):byte(N)) byte(N) is to round N up to the next multiple

of 8.
BR(M-1:0)(2) s_axis_b_tdata(M-1:0) Both BR and BI map to s_axis_b_tdata
BI(M-1:0) s_axis_b_tdata(M-1+byte(M):byte(M)) byte(M) is to round M up to the next multiple

of 8.
ROUND_CY s_axis_ctrl_tdata(0)
PR(S-1:0)(3) m_axis_dout_tdata(S-1:0) Both PR and PI map to m_axis_dout_tdata
PI(S-1:0) m_axis_dout_tdata(S-1+byte(S):byte(S)) byte(S) is to round S up to the next multiple of

8.

s_axis_a_tvalid TVALID (AXI4-Stream channel handshake
signal) for each channels_axis_b_tvalid

s_axis_ctrl_tvalid
m_axis_dout_tvalid
s_axis_a_tready TREADY (AXI4-Stream channel handshake

signal) for each channel.s_axis_b_tready
s_axis_ctrl_tready
m_axis_dout_tready
s_axis_a_tlast TLAST (AXI4-Stream packet signal indicating

the last transfer of a data structure) for each
channel. The complex multiplier does not use
TLAST, but provides the facility to pass TLAST
with the same latency as TDATA.

s_axis_b_tlast
s_axis_ctrl_tlast
m_axis_dout_tlast
s_axis_a_tuser (E-1:0)(4) TUSER (AXI4-Stream ancillary field for

application-specific information) for each
channel. The complex multiplier does not use
TUSER, but provides the facility to pass TUSER
with the same latency as TDATA.

s_axis_b_tuser (F-1:0)(5)

s_axis_ctrl_tuser (G-1:0)(6)

m_axis_dout_tuser (H-1:0)(7)

Notes:
1. N is APortWidth
2. M is BPortWidth
3. S is OutputWidth
4. E is ATUSERWidth
5. F is BTUSERWidth
6. G is CTRLTUSERWidth
7. H is calculated from the input channel TUSERWidth and HASTUSER parameters.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=43

Complex Multiplier v6.0 44
PG104 August 6, 2021 www.xilinx.com

Appendix A: Upgrading

Functionality Changes

Latency Changes

The latency of Complex Multiplier v6.0 is different compared to v3.1 for AXI Blocking mode.
The update process cannot account for this and guarantee equivalent performance. Latency
is the same as v3.1 in v6.0 for AXI NonBlocking mode. There are no changes to latency from
v5.0 to v6.0.

The latency of AXI NonBlocking mode is reduced by 1 from v4.0 going to v6.0 except for the
case of zero latency which is still zero in v6.0. The latency of AXI Blocking mode from v4.0
to v6.0 is reduced by 6 cycles.

IMPORTANT: When in Blocking Mode, the latency of the core is variable so only the minimum
possible latency can be determined.

Instructions for Minimum Change Migration (v3.1 to v6.0)

To configure the Complex Multiplier v6.0 to most closely mimic the behavior of v3.1 the
translation is as follows:

Parameters - Set FlowControl to NonBlocking and OutputWidth to
APortWidth+BPortWidth+1-OutputWidthLow. All other new parameters default to FALSE
and can be ignored. If OutputWidthHigh was previously set to other than
APortWidth+BPortWidth then translation is not directly possible, but the
(APortWidth+BPortWidth-OutputWidthHigh) most significant bits of the output can be
ignored.

Ports - Rename and map signals as detailed in Port Changes. Tie all TVALID signals on input
channels (A, B, CTRL) to 1.

Performance and resource use are mostly unchanged versus v3.1 other than small changes
due to the use of a different version of tools.

Instructions for Minimum Change Migration (v4.0 to v6.0)

For AXI Blocking Mode, the minimum latency is reduced by 6 cycles. The resource cost of
Blocking mode is also reduced versus v4.0. This saving is proportional to the total number
of input bits. NonBlocking behavior has also been changed relative to v4.0 to further reduce
the resource cost of moving to AXI from pre-AXI versions such as v3.1. Latency in v6.0 is one
cycle less than for v4.0 in NonBlocking mode except for the zero latency case, which is still
zero.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=44

Complex Multiplier v6.0 45
PG104 August 6, 2021 www.xilinx.com

Appendix A: Upgrading

Instructions for Minimum Change Migration (v5.0 to v6.0)

There are no changes of parameters, ports, or functionality from v5.0 to v6.0. No changes
are required other than the version change.

Simulation

Starting with Complex Multiplier v6.0 (2013.3 version), behavioral simulation models have
been replaced with IEEE P1735 Encrypted VHDL. The resulting model is bit and cycle
accurate with the final netlist. For more information on simulation, see the Vivado Design
Suite User Guide: Logic Simulation (UG900) [Ref 7].

Upgrading in the Vivado Design Suite
This section provides information about any changes to the user logic or port designations
that take place when you upgrade to a more current version of this IP core in the Vivado
Design Suite.

Parameter Changes
No change.

Port Changes
No change.

Other Changes
No change.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=45

Complex Multiplier v6.0 46
PG104 August 6, 2021 www.xilinx.com

Appendix B

Debugging
This appendix includes details about resources available on the Xilinx Support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the Complex Multiplier, the Xilinx
Support web page contains key resources such as product documentation, release notes,
answer records, information about known issues, and links for obtaining further product
support.

Documentation
This product guide is the main document associated with the Complex Multiplier. This
guide, along with documentation related to all products that aid in the design process, can
be found on the Xilinx Support web page or by using the Xilinx® Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more
information about this tool and the features available, open the online help after
installation.

Answer Records
Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main
Xilinx support web page. To maximize your search results, use proper keywords such as

• Product name
• Tool message(s)
• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/download.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=46

Complex Multiplier v6.0 47
PG104 August 6, 2021 www.xilinx.com

Appendix B: Debugging

Answer Records for the Complex Multiplier

AR: 54495

Technical Support
Xilinx provides technical support in the Xilinx Support web page for this LogiCORE™ IP
product when used as described in the product documentation. Xilinx cannot guarantee
timing, functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.
• Customize the solution beyond that allowed in the product documentation.
• Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools
There are many tools available to address the Complex Multiplier design issues. It is
important to know which tools are useful for debugging various situations.

Vivado Design Suite Debug Feature
The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly
into your design. The debug feature also allows you to set trigger conditions to capture
application and integrated block port signals in hardware. Captured signals can then be
analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a
design running in Xilinx devices.

The Vivado logic analyzer is used with the logic debug IP cores, including:

• ILA 2.0 (and later versions)
• VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 9].

C Model
See Chapter 5, C Model in this guide for tips and instructions for using the provided C
Model files to debug your design.

Send Feedback

https://www.xilinx.com/support/answers/54495.html
https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=47

Complex Multiplier v6.0 48
PG104 August 6, 2021 www.xilinx.com

Appendix B: Debugging

Simulation Debug
The simulation debug flow for Mentor Graphics Questa Advanced Simulator is illustrated in
Figure B-1. A similar approach can be used with other simulators.

AXI4-Stream Interface Debug
If data is not being transmitted or received, check the following conditions:

• If transmit <interface_name>_tready is stuck Low following the
<interface_name>_tvalid input being asserted, the core cannot send data.

• If the receive <interface_name>_tvalid is stuck Low, the core is not receiving
data.

X-Ref Target - Figure B-1

Figure B-1: Questa Advanced Simulator Debug Flow

Questa Advanced Simulator
Simulation Debug

Does simulating the core
test bench give the expected output?

No

No

The core test bench
 should allow the user to
quickly determine if the

simulator is set up correctly.

Do you get errors referring to
failing to access library?

Yes

Examine waveforms to gain
understanding of core behavior.

Check behavior of AXI Interfaces
is as described in this document.

Ensure that the demonstration
test bench has been selected
as the top level of the design.

If problem is more design specific, open
a case with Xilinx Technical Support

and include a wlf file dump of the simulation.
For the best results, dump the entire design

hierarchy.

No
If using Verilog, do you have a
mixed-mode simulation license?

Obtain a mixed-mode
simulation license.

Yes

No
Check that the simulator

version matches that of the Vivado
 release. See the Xilinx Design Tools:

Release Notes Guide (link at
 foot of IP Facts table)

Update to this version.

Although versions of
simulators more recent
than the Vivado release

might be compatible, no
guarantee can be given.

A VHDL license is required
to simulate with the

behavioral model. If the
user design uses Verilog, a

mixed mode license is required.

Need to compile and map the
correct libraries. See the Vivado
Design Suite User Guide – Logic

Simulation UG900

X14027-062521

Yes

Yes

Yes

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=48

Complex Multiplier v6.0 49
PG104 August 6, 2021 www.xilinx.com

Appendix B: Debugging

• Check that the ACLK inputs are connected and toggling.
• Check that the AXI4-Stream waveforms are being followed (see Figure 3-4).
• Check core configuration.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=49

Complex Multiplier v6.0 50
PG104 August 6, 2021 www.xilinx.com

Appendix C

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

References
These documents provide supplemental material useful with this product guide:

1. Vivado Design Suite: AXI Reference Guide (UG1037)
2. Arm® AMBA® AXI4-Stream Protocol Specification (ARM IHI 0051A)
3. Vivado® Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
4. Vivado Design Suite User Guide: Implementation (UG904)
5. Vivado Design Suite User Guide: Designing with IP (UG896)
6. Vivado Design Suite User Guide: Getting Started (UG910)
7. Vivado Design Suite User Guide - Logic Simulation (UG900)
8. ISE® to Vivado Design Suite Migration Guide (UG911)
9. Vivado Design Suite User Guide: Programming and Debugging (UG908)
10. System Generator for DSP User Guide (UG640)
11. The GNU Multiple Precision Arithmetic (GMP) Library (gmplib.org)
12. The GNU Multiple Precision Integers and Rationals (MPIR) library (www.mpir.org)
13. Multiple Precision Arithmetic on Windows, Brian Gladman:

(http://gladman.plushost.co.uk/oldsite/computing/gmp4win.php)

Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest+ise;d=sysgen_user.pdf
http://gmplib.org/
http://gladman.plushost.co.uk/oldsite/computing/gmp4win.php
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
http://www.mpir.org
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=50

Complex Multiplier v6.0 51
PG104 August 6, 2021 www.xilinx.com

Appendix C: Additional Resources and Legal Notices

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty,
please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products
in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2013–2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. All
other trademarks are the property of their respective owners.

Date Version Revision
08/06/2021 6.0 Updated Figure 3-6.
12/10/2020 6.0 Added support for Versal™ product families.

Added Dedicated Primitive Solution section.
11/18/2015 6.0 Added support for UltraScale+ families.
04/02/2014 6.0 Added link to resource utilization figures

Added Parameter table (Table 4-1)
12/18/2013 6.0 Added UltraScale™ architecture support.
10/02/2013 6.0 Minor updates to IP Facts table and Migrating appendix. Updates to C

Model Reference chapter.
06/19/2013 6.0 Added C Model chapter. Document version number advanced to match the

core version number.
03/20/2013 1.0 Initial release as a Product Guide; replaces DS793. Debug appendix added.

No other documentation changes.

Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG104&Title=Complex%20Multiplier%20v6.0&releaseVersion=6.0&docPage=51

	Complex Multiplier v6.0
	Table of Contents
	IP Facts
	Ch. 1: Overview
	Navigating Content by Design Process
	Core Overview
	Feature Summary
	Applications
	Licensing and Ordering Information

	Ch. 2: Product Specification
	Performance
	Latency
	Throughput

	Resource Utilization
	Port Descriptions

	Ch. 3: Designing with the Core
	Hardware Implementation
	Three Real Multiplier Solution
	Four Real Multiplier Solution
	Dedicated Primitive Solution
	LUT-based Solution

	Rounding
	Clocking
	Resets
	Protocol Description
	AXI4-Stream Considerations
	Basic Handshake
	NonBlocking Mode
	Blocking Mode
	TDATA Packing
	TDATA Structure for A, B and DOUT Channels
	TDATA Structure for CTRL Channel

	TLAST and TUSER Handling
	TLAST Options
	TUSER Options
	Examples:

	Ch. 4: Design Flow Steps
	Customizing and Generating the Core
	Input and Implementation Tab
	Channel A Options:
	Channel B Options:

	Configuration and Output Tab
	Output Product Range
	Output Rounding
	Channel CTRL Options
	Output TLAST Behavior
	Core Latency
	Control Signals

	User Parameters
	Output Generation

	System Generator for DSP Graphical User Interface
	Page 1
	Page 2
	Implementation

	Constraining the Core
	Required Constraints
	Device, Package, and Speed Grade Selections
	Clock Frequencies
	Clock Management
	Clock Placement
	Banking
	Transceiver Placement
	I/O Standard and Placement

	Simulation
	Synthesis and Implementation

	Ch. 5: C Model
	Features
	Overview
	Unpacking and Model Contents

	Installation
	Linux
	Windows

	C Model Interface
	Data Types
	Functions
	Information Functions
	Initialization Functions
	Execution Functions

	Compiling
	Linking
	Linux
	Windows

	Dependent Libraries
	Example

	Ch. 6: Test Bench
	Using the Demonstration Test Bench
	The Demonstration Test Bench in Detail
	Customizing the Demonstration Test Bench

	Appx. A: Upgrading
	Migrating to the Vivado Design Suite
	Parameter Changes
	Port Changes
	Functionality Changes
	Latency Changes
	Instructions for Minimum Change Migration (v3.1 to v6.0)
	Instructions for Minimum Change Migration (v4.0 to v6.0)
	Instructions for Minimum Change Migration (v5.0 to v6.0)
	Simulation

	Upgrading in the Vivado Design Suite
	Parameter Changes
	Port Changes
	Other Changes

	Appx. B: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Answer Records for the Complex Multiplier

	Technical Support

	Debug Tools
	Vivado Design Suite Debug Feature
	C Model

	Simulation Debug
	AXI4-Stream Interface Debug

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	References
	Revision History
	Please Read: Important Legal Notices

