LogiCORE IP CAN
v4.2

Product Guide

PG096 December 18, 2012

& XILINX.

& XILINX.

Table of Contents

SECTION I: SUMMARY
IP Facts

Chapter 1: Overview

Feature SUMMaArY. . ..ottt it iiietatnenasessssssssssaanasasasnsnsssananans 8
Operating System Requirementsciiiiiiiitiin it iinetrneesnensnnnnenanss 11
Recommended Design EXperiencecvviiiieiinetnneeeneesenesennssnnssanesannsans 12
Licensing and Ordering Information. ittt iieieernennnnans 12

Chapter 2: Product Specification

Operational CAN Controller Modesciitiiiintintiiernrnrenrennansnennsannnns 13
L] = 1 T - T L3 16
[T g o]y T T TP 16
Resource Utilization.ciiiiiii ittt ittt iiietetetststsrasensnsasasannenas 16
o] o 0 LT ol] 4] 4T 26
Xilinx CAN Controller Configuration Register Descriptions.c.cciiiiiinnnnennnn. 28

Chapter 3: Designing with the Core

Configuringthe CAN Controller.ottt i ittt ieteneennnaraenneannnns 54
0] o ol (1 - PP 58
=T = 58
0 =T T o3 59
Xilinx CAN Controller Design Parameters.ciiiiiininieneenennennenneneanennnns 60
LogiCORE IP CAN v4.2 www.xilinx.com 2

PG096 December 18, 2012

http://www.xilinx.com

& XILINX

SECTION II: VIVADO DESIGN SUITE

Chapter 4: Customizing and Generating the Core

CAN Graphical UserInterface oottt ittt it it tineteneernaeeenesenneenanns 62
Parameter Valuesinthe XCIFile.ccitiiiiiiiiitiineieieennnneeenennnneeseannnas 64
Output Generation.o iit ittt ittt it iiietsnaesanssonasonnsssosssasssnnsannsas 64

Chapter 5: Constraining the Core

Required Constraints. c.ititiitintie e ieereeenreaneeseesasansaneaennsnnnanns 69
(0 o Yo 1 1= [0 1T 4 Vo =13 69

Chapter 6: Detailed Example Design

Generating the Core.ttt ittt it et e titeteeneeeneeenaesaaesenssannnenanns 71
Implementingthe Example Design.ciiiiiiiiiiieiiieitenereneesnnessnesaansnns 73
Simulatingthe Example Design. . ..ottt ittt it eeeenenneansananennennnas 74
Directoryand File Contents.o iitiiiiiiii ittt iietenneeeneeenaeennesaaesannnnns 75
Example Design Configurationciiiiiiiiiiiiiiiiiierieeinrentnorsensssnnanss 76
Demonstration TestBenchottt iiiiiiiiiiiiiii i intstnresensnsasasasnenas 77
Implementationottt ittt titetreoeeeeneeeneeenasenassaaesannnnns 80

SECTION Ill: ISE DESIGN SUITE

Chapter 7: Customizing and Generating the Core

P 82
Parameter Valuesinthe XCOFile.oiiiiiiiiiiiiiiininintnrnnenensasasannenas 83
Output Generation. ittt it it et et tnestasetasaesnnssnassnnssannses 84

Chapter 8: Constraining the Core

Device and Package Selection.coiiiiiiiiiiiiiiiiiiiereenarenrnotsenasannanss 89
Location Constraintsc.iuiitiitiiiiiinereennrenronsossossnsansossossassnsanss 89
Placement Constraints. oviiiiiininin it inenennsasasosososesasensasasasssnesnesns 89
TiMINg Constraints.ottt i it ittt itettnnetnaesaensonssannsennssnnns 20
0 00T 3 4 11 11 -3 91
0 35 =T e =1 o L3 91
LogiCORE IP CAN v4.2 www.xilinx.com 3

PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 9: Detailed Example Design

Generatingthe Core. iii ittt ittt it et iiettenerenesenassnassaassannnannnas
Implementing the Example Design.ttt iiiin ittt eierearanrnennenananns
Simulating the Example Design. viiiiiiint it iiieteneeenaereneeeneeennsenanns
Directoryand FileContents.ciiiiiiiiiiiii it it iiettenetenonsnnesnnesaansnns
Implementation SCriPtS i ittt ittt ittt e eereeraenaraasansaennsnananns
Example Design Configurationcitiiiiiiieiiietrnnerenerenoeenaesaaesannnnns
Demonstration TestBenchttt ittt it iitenrenraaransasansans

SECTION IV: APPENDICES

Appendix A: Verification, Compliance, and Interoperability

Compliance Testing . ..o ittt ittt ittt ittt ttetenaeeenesenesenesennsennsennsnnness

Appendix B: Migrating
Parameter Changesinthe XCOFilettt it iietenrnnrnnnnnnns
Parameter Valuesinthe XCIFile.ttt iiinttinetnnereansennnnns

Appendix C: Debugging
Finding Help on XilinX.com ittt it it ittt e tetennennnnnnnsasennans
[0 7= o 10 =00 1o Yo) 3
Simulation DebUg. ittt i i i i it it it i e e e e e
Interface DebUgttt i i i it ettt ittt i et

Appendix D: Additional Resources
XiliNX RESOUINCES . o v vttt ittt ittt tintneteeeseonesnsansosssssnssnssnsanssssassass
3 S =T =T 4T
Technical SUPPOIt ... oottt i i et e tte e raenaeansansaenassasensansnnnnns
ReVISION HIiStOryo it i i i et it ittt atenasennetanarannsannnans
Notice of Disclaimer.iii ittt ittt ittt iiennsasasesssssssesensasasannnns

LogiCORE IP CAN v4.2 www.xilinx.com
PG096 December 18, 2012

http://www.xilinx.com

& XILINX.

SECTION I. SUMMARY

IP Facts
Overview
Product Specification

Designing with the Core

LogiCORE IP CAN v4.2 www.xilinx.com
PG096 December 18, 2012

http://www.xilinx.com

& XILINX.

IP Facts

Introduction

The Xilinx LogiCORE™ IP Controller Area
Network (CAN) product specification describes
the architecture and features of the Xilinx CAN
controller core and the functionality of the
various registers in the design. In addition, the
CAN core user interface and its customization
options are described. Defining the CAN
protocol is outside the scope of this document,
and knowledge of the specifications described
in the References section is assumed.

Features

« Industrial (I, -40 to +100°C junction
temperature) and Automotive/Defense Q-Grade
(Q, -40 to +125°C junction temperature) device
support.

« Supports both standard (11-bit identifier) and
extended (29-bit identifier) frames

* Supports bit rates up to 1 Mb/s

« Transmit message First In First Out (FIFO) with a
user-configurable depth of up to 64 messages

« Transmit prioritization through one
High-Priority Transmit buffer

« Automatic re-transmission on errors or
arbitration loss

* Receive message FIFO with a user-configurable
depth of up to 64 messages

» Acceptance filtering (through a
user-configurable number) of up to 4
acceptance filters

« Sleep Mode with automatic wake up
« Loop Back Mode for diagnostic applications
« Maskable Error and Status Interrupts

« Readable Error Counters

LogiCORE IP Facts Table

Core Specifics

Zyng™-7000?)

Virtex®-7

Supported Kintex™-7
Device Family(®) Artix™-7
XC Virtex-6

XA/XC Spartan®-6

Supported User

Interfaces AXI4-Lite
LUTs | FFs | Slices | Block | y0(4)
RAMs
Resources(3)
811—- | 553—- | 272 - 5 3

1006 | 743 415

Provided with Core

ISE®: VHDL

Design Files Vivado™: Encrypted RTL

Example Design Verilog and VHDL

Test Bench VHDL, Verilog

ISE: Xilinx Constraints File

Constraints Fil . - . .
onstraints riie Vivado: Xilinx Design Constraints (XDC)

Simulation

Model Verilog
Supported “
S/W Driver Standalone

Tested Design Flows!6)

ISE Design Suite v14.4

Design E
esign Entry Vivado Design Suite!’) v2012.4

Mentor Graphics ModelSim

Simulation
imutat Cadence Incisive Enterprise Simulator (IES)

XST

Synthesis Vivado Synthesis

Support

Provided by Xilinx @ www.xilinx.com/support

For the complete list of supported devices, see the release notes
for this core release notes.

. Supported in ISE Design Suite implementations only.

. Resources numbers for Zyng-7000 devices are expected to be
similar to 7 series device numbers.

For External I/0 only.

Standalone driver details can be found in the EDK or SDK directory
(<install_directory>/doc/usenglish/xilinx_drivers.htm).

For the supported versions of the tools, see the Xilinx Design
Tools: Release Notes Guide.

Supports only 7 series devices.

LogiCORE IP CAN v4.2

www.xilinx.com 6

PG096 December 18, 2012

Product Specification

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/irn.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf

& XILINX.
Chapter 1

Overview

Figure 1-1 illustrates the high-level architecture of the CAN core. Descriptions of the
submodules follow.

Xilinx CAN Controller
Object Layer Transfer Layer
AXl4-Lite TX Storage X I caN
Interface TX [xPriority| | | | cAN Protocol o | PHY [eaeUs
FIFO Logic Engine -
TX Bit Stream
Micro HPB Processor
Cntl >
. Configuration |
- | Registers o
Bit Timing CAN CLK
RX FIFO Module ‘
Acceptance
Filtering

X13151

Figure 1-1: CAN Core Block Diagram

The CAN core requires an external 3.3 V compatible physical-side interface (PHY) device.

LogiCORE IP CAN v4.2 www.xilinx.com 7
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 1: Overview

Feature Summary

This section contains the following subsections.

« Configuration Registers

« Transmit and Receive Messages
« TX High Priority Buffer

» Acceptance Filters

« CAN Protocol Engine

« Bit Timing Logic

e Bit Stream Processor

Configuration Registers

Table 2-8 defines the configuration registers. This module allows for read and write access
to the registers through the external micro-controller interface.

Transmit and Receive Messages

Separate storage buffers exist for transmit (TX FIFO) and receive (RX FIFO) messages
through a FIFO structure. The depth of each buffer is individually configurable up to a
maximum of 64 messages.

TX High Priority Buffer

The Transfer High Priority Buffer (TX HPB) provides storage for one transmit message.
Messages written on this buffer have maximum transmit priority. They are queued for
transmission immediately after the current transmission is complete, preempting any
message in the TX FIFO.

Acceptance Filters

Acceptance Filters sort incoming messages with the user-defined acceptance mask and ID
registers to determine whether to store messages in the RX FIFO, or to acknowledge and
discard them. The number of acceptance filters can be configured from 0 to 4. Messages
passed through acceptance filters are stored in the RX FIFO.

LogiCORE IP CAN v4.2 www.xilinx.com 8
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

CAN Protocol Engine

Chapter 1: Overview

The CAN protocol engine consists primarily of the Bit Timing Logic (BTL) and the Bit Stream
Processor (BSP) modules.

Figure 1-2 illustrates a block diagram of the CAN protocol engine.

CAN Protocol Engine

TX Me .
ﬂ_» Bit Stream % Bit Timing
Processor Logic 1D.4 » CAN
Control PHY
Control / RX
Status ¢RX Bit g
To / From
Object Layer Sampling
Clock
RX Message
-
Clock
BRPR p| Prescalar |@-CANCLK
Figure 1-2: CAN Protocol Engine

Bit Timing Logic

The primary functions of the Bit Timing Logic (BTL) module include:

« Synchronizing the CAN controller to CAN traffic on the bus

CAN|BUS

« Sampling the bus and extracting the data stream from the bus during reception

« Inserting the transmit bitstream onto the bus during transmission

« Generating a sampling clock for the BSP module state machine

| TS1 | TS2
Sync Propagation Phase Phase
Segment Segment Segment 1 Segment 2
Figure 1-3: CAN Bit Timing

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

http://www.xilinx.com

& XILINX. Chapter 1: Overview

Figure 1-3 illustrates the CAN bit-time divided into four parts:

+ Sync segment
* Propagation segment
* Phase segment 1

« Phase segment 2

The four bit-time parts are comprised of many smaller segments of equal length called time
quanta (tq). The length of each time quantum is equal to the quantum clock time period
(period = tq). The quantum clock is generated internally by dividing the incoming oscillator
clock by the baud rate pre-scaler. The pre-scaler value is passed to the BTL module through
the Baud Rate Prescaler (BRPR) register.

The propagation segment and phase segment 1 are joined together and called 'time
segmentl’ (TS1), while phase segment 2 is called 'time segment2' (TS2). The number of time
quanta in TS1 and TS2 vary with different networks and are specified in the Bit Timing
Register (BTR), which is passed to the BTL module. The Sync segment is always one time
quantum long.

The BTL state machine runs on the quantum clock. During the Start Of Frame (SOF) bit of
every CAN frame, the state machine is instructed by the Bit Stream Processor module to
perform a hard sync, forcing the recessive (r) to dominant edge (d) to lie in the sync
segment. During the rest of the recessive-to-dominant edges in the CAN frame, the BTL is
prompted to perform resynchronization.

During resynchronization, the BTL waits for a recessive-to-dominant edge. After that occurs,
it calculates the time difference (number of tqs) between the edge and the nearest sync
segment. To compensate for this time difference, and to force the sampling point to occur
at the correct instant in the CAN bit time, the BTL modifies the length of phase segment 1
or phase segment 2.

The maximum amount by which the phase segments can be modified is dictated by the
Synchronization Jump Width (SJW) parameter, which is also passed to the BTL through the
BTR. The length of the bit time of subsequent CAN bits are unaffected by this process. This
synchronization process corrects for propagation delays and oscillator mismatches between
the transmitting and receiving nodes.

After the controller is synchronized to the bus, the state machine waits for a time period of
TS1 and then samples the bus, generating a digital O or 1. This is passed on to the BSP
module for higher level tasks.

LogiCORE IP CAN v4.2 www.xilinx.com 10
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 1: Overview

Bit Stream Processor

The Bit Stream Processor (BSP) module performs several Media Access Controller/Logical
Link Control (MAC/LLC) functions during reception (RX) and transmission (TX) of CAN
messages. The BSP receives a message for transmission from either the TX FIFO or the TX
HPB and performs the following functions before passing the bitstream to BTL.

« Serializing the message

« Inserting stuff bits, Cyclic Redundancy Check (CRC) bits, and other protocol defined
fields during transmission

During transmission the BSP simultaneously monitors RX data and performs bus arbitration
tasks. It then transmits the complete frame when arbitration is won, and retrying when
arbitration is lost.

During reception the BSP removes stuff bits, CRC bits, and other protocol fields from the
received bitstream. The BSP state machine also analyses bus traffic during transmission and
reception for Form, CRC, ACK, Stuff and Bit violations. The state machine then performs
error signaling and error confinement tasks. The CAN controller does not voluntarily
generate overload frames but does respond to overload flags detected on the bus.

This module determines the error state of the CAN controller: Error Active, Error Passive or
Bus-off. When TX or RX errors are observed on the bus, the BSP updates the transmit and
receive error counters according to the rules defined in the CAN 2.0 A, CAN 2.0 B and ISO
11898-1 standards. Based on the values of these counters, the error state of the CAN
controller is updated by the BSP.

Operating System Requirements

For a list of operating system requirements, For the supported versions of the tools, see the
Xilinx Design Tools: Release Notes Guide.

LogiCORE IP CAN v4.2 www.xilinx.com 11
PG096 December 18, 2012

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/irn.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/irn.pdf
http://www.xilinx.com

& XILINX. Chapter 1: Overview

Recommended Design Experience

Although the CAN core is a fully-verified targeted design platform, the challenge associated
with implementing a complete CAN design varies, depending on the application
requirements.

O RECOMMENDED: For best results, previous experience with building high-performance FPGA designs
using Xilinx implementation software and a user constraints file (UCF) is recommended.

Contact your local Xilinx representative for assistance in evaluating your specific
requirements.

Licensing and Ordering Information

This Xilinx LogiCORE™ IP module is provided under the terms of the CAN LogiCORE IP
License Agreement for Automotive or Non-Automotive applications. The module is shipped
as part of the Vivado™ Design Suite/ISE Design Suite. For full access to all core
functionalities in simulation and in hardware, you must purchase a license for the core. Click
here for more information about obtaining a CAN license.

For more information, visit the CAN product web page.

Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual
Property page. For information on pricing and availability of other Xilinx LogiCORE IP
modules and tools, contact your local Xilinx sales representative.

Extra Design Consideration:

The CAN and Xilinx Platform Studio (XPS) CAN cores require an input register on the RX line
to avoid a potential error condition where multiple registers receive different values
resulting in error frames. This error condition is rare; however, the work-around should be
implemented in all cases. To work around this issue, insert a register on the RX line clocked
by CAN_CLK with an initial value of '1". This applies to all versions of the CAN and XPS CAN
cores.

LogiCORE IP CAN v4.2 www.xilinx.com 12
PG096 December 18, 2012

http://www.xilinx.com/ipcenter/ip_license/license_terms/can_xa_license_agreement.htm
http://www.xilinx.com/ipcenter/ip_license/license_terms/can_non_xa_license_agreement.htm
http://www.xilinx.com/ipcenter/can/can_registration.htm
http://www.xilinx.com/ipcenter/can/can_registration.htm
http://www.xilinx.com/products/intellectual-property/DO-DI-CAN.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/products/intellectual-property/index.htm
http://www.xilinx.com/company/contact/index.htm
http://www.xilinx.com/products/ipcenter/DO-DI-CAN.htm
http://www.xilinx.com/products/ipcenter/DO-DI-CAN.htm
http://www.xilinx.com

& XILINX.
Chapter 2

Product Specification

Operational CAN Controller Modes

The CAN controller supports these modes of operation:

« Configuration

+ Normal
« Sleep
» Loop Back

Table 2-1 defines the CAN Controller modes of operation and corresponding control and
status bits. Inputs that affect the mode transitions are defined in Xilinx CAN Controller
Configuration Register Descriptions.

Table 2-1: CAN Controller Modes of Operation

S_AXI S;ST CEN | LBACK | SLEEP Status R?ﬁtngg;tls)(SR) .
ARESETN it Bit Bit Bit y Operation Mode
(SRR) | (SRR) | (MSR) | (MSR) | cONFIG | LBACK | SLEEP | NORMAL
‘0’ X X X X ‘7 ‘0’ ‘0’ ‘0 Core is Reset
T 1 X X X e ‘0’ 0 ‘0 Core is Reset
1 0 ‘0’ X X 1 0’ 0 0’ Configuration Mode
1 ‘0 g 1 X ‘0’ 1 ‘0’ ‘0’ Loop Back Mode
1 0 1 ‘0’ g ‘0’ ‘0 1 ‘0’ Sleep Mode
1 0 e ‘0’ ‘0’ ‘0’ ‘0’ 0 g Normal Mode
LogiCORE IP CAN v4.2 www.xilinx.com 13

PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Co

The
any

Foll

Wh

Chapter 2: Product Specification

nfiguration Mode

CAN controller enters Configuration mode, irrespective of the operation mode, when
of the following actions are performed:

Writing a '0' to the CEN bit in the SRR register.

Writing a '1' to the Software Reset (SRST) bit in the SRR register. The core enters
Configuration mode immediately following the software reset.

Driving a '1' on the S_AXI_ARESETN input. The core continues to be in reset as long as
S_AXI_ARESETN is 'l". The core enters Configuration mode after S_AXI_ARESETN is
negated to '0".

owing are the Configuration Mode features

CAN controller loses synchronization with the CAN bus and drives a constant recessive
bit on the bus line.

Error Counter Register (ECR) register is reset.

Error Status Register (ESR) register is reset.

BTR and BRPR registers can be modified.

CONFIG bit in the Status Register is 'L

CAN controller does not receive any new messages.

CAN controller does not transmit any messages. Messages in the TX FIFO and the TX
high priority buffer are pended. These packets are sent when normal operation is
resumed.

Reads from the RX FIFO can be performed.
Writes to the TX FIFO and TX HPB can be performed.

Interrupt Status Register bits ARBLST, TXOK, RXOK, RXOFLW, ERROR, BSOFF, SLP and
WKUP are cleared.

Interrupt Status Register bits RXNEMP, RXUFLW can be set due to read operations to
the RX FIFO.

Interrupt Status Register bits TXBFLL and TXFLL, and the Status Register bits TXBFLL and
TXFLL, can be set due to write operations to the TX HPB and TX FIFO, respectively.

Interrupts are generated if the corresponding bits in the Interrupt Enable Register (IER)
are 'l

All Configuration Registers are accessible.

en in Configuration mode, the CAN controller stays in this mode until the CEN bit in the

SRR register is set to 'L.' After the CEN bit is set to '1' the CAN controller waits for a

seq

uence of 11 recessive bits before exiting Configuration mode.

LogiCORE IP CAN v4.2 www.xilinx.com 14
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

The CAN controller enters Normal, Loop Back, or Sleep modes from Configuration mode,
depending on the LBACK and SLEEP bits in the MSR Register.

Normal Mode

In Normal mode, the CAN controller participates in bus communication by transmitting and
receiving messages. From Normal mode, the CAN controller can enter either Configuration
or Sleep modes.

For Normal mode, the CAN controller normal mode state transitions include the following:

« Enters Configuration mode when any configuration condition is satisfied
« Enters Sleep mode when the SLEEP bit in the Mode Select Register (MSR) is "1’

« Enters Normal mode from Configuration mode only when LBACK and SLEEP bits in the
MSR are '0" and CEN bit is '1'

« Enters Normal mode from Sleep mode when a wake-up condition occurs

Sleep Mode

The CAN controller enters Sleep mode from Configuration mode when the LBACK bit in
MSR is '0,' the SLEEP bit in MSR is '1," and the CEN bitin SRR is '1.' The CAN controller enters
Sleep mode only when there are no pending transmission requests from either the TX FIFO
or the TX High Priority Buffer.

The CAN controller enters Sleep mode from Normal mode only when the SLEEP bitis '1, the
CAN bus is idle, and there are no pending transmission requests from either the TX FIFO or
TX High Priority Buffer.

When another node transmits a message, the CAN controller receives the transmitted
message and exits Sleep mode. When the controller is in Sleep mode, if there are new
transmission requests from either the TX FIFO or the TX High Priority Buffer, these requests
are serviced, and the CAN controller exits Sleep mode. Interrupts are generated when the
CAN controller enters Sleep mode or wakes up from Sleep mode. From sleep mode, the
CAN controller can enter either the Configuration or Normal modes.

The CAN controller can enter Configuration mode when any configuration condition is
satisfied, and enters Normal mode under these (wake-up) conditions:

* Whenever the SLEEP bit is set to '0’
« Whenever the SLEEP bit is '1," and bus activity is detected
« Whenever there is a new message in the TX FIFO or the TX High Priority Buffer

LogiCORE IP CAN v4.2 www.xilinx.com 15
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Loop Back Mode

In Loop Back mode, the CAN controller transmits a recessive bitstream on to the CAN Bus.
Any message transmitted is looped back to the RX line and is acknowledged. The CAN
controller receives any message that it transmits. It does not participate in normal bus
communication and does not receive any messages transmitted by other CAN nodes.

This mode is used for diagnostic purposes—when in Loop Back mode, the CAN controller
can only enter Configuration mode. The CAN controller enters Configuration mode when
any of the configuration conditions are satisfied.

The CAN controller enters Loop Back mode from the Configuration mode if the LBACK bit
in MSR is '1" and the CEN bit in SRR is 'L

Standards

CAN 4.2 core conforms to the ISO 11898 -1, CAN 2.0A, and CAN 2.0B standards

Performance

Maximum Frequencies

The range of CAN_CLK clock is 8-24 MHZ.

Resource Utilization

Resources required for the CAN v4.2 core have been estimated for the following devices.

« Virtex®-7 FPGA (xc7v285t-1-ffgl157) Table 2-2

« Kintex™-7 FPGA (xc7k410t-1-ffg900) Table 2-3

« Artix™-7 FPGA (xc7a355tdie-3) Table 2-4

« Spartan®-6 FPGA (xc6sIx45t-2-fgg484) Table 2-5

« Virtex-6 FPGA (xc6vIx130t-2-ff484) Table 2-6

These values were generated using ISE® Design Suite 14.4 and Vivado™ Design Suite

2012.4. The results are post PAR results. For Zyng™-7000, estimated resources depend upon
the fabric used.

LogiCORE IP CAN v4.2 www.xilinx.com 16
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-2: Performance and Resource Utilization Benchmarks for Virtex-7 FPGA
(xc7v285t-1-ffg1157)
Parameter Values Device Resources FMAX (MHz)

T T v]
2 E 2
3 2 2 i x
S S S g s @ g
J U U @ @ 2 2
2 2 0 326 557 757 142
2 2 1 304 650 844 145
2 2 2 280 653 852 137
2 2 3 309 656 840 141
2 2 4 317 659 847 142
4 4 0 301 565 773 141
4 4 1 291 666 856 134
4 4 2 342 669 864 128
4 4 3 353 672 866 139
4 4 4 313 675 869 134
8 8 0 319 589 796 136
8 8 1 337 682 870 129
8 8 2 338 685 869 129
8 8 3 340 688 870 130
8 8 4 341 691 867 137
16 16 0 316 605 813 132
16 16 1 334 698 884 134
16 16 2 383 701 886 134
16 16 3 347 680 872 131
16 16 4 350 707 901 124

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

17

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-2: Performance and Resource Utilization Benchmarks for Virtex-7 FPGA
(xc7v285t-1-ffg1157) (Cont’d)
Parameter Values Device Resources FMAX (MHz)
[T
I I (0] 7]
£ £ < 8
o a :E> o
X \
mI ﬁ| Z| .E' E
Z Z Z [
< < < o o » -
o 9] (@)) (¥} - —
| | | = = o X
(8} 8} 8} (7 (7 = <
32 32 0 333 621 819 137
32 32 1 364 714 888 136
32 32 2 324 717 895 149
32 32 3 309 720 911 149
32 32 4 355 723 906 138
64 64 0 342 637 831 132
64 64 1 363 730 934 132
64 64 2 347 733 927 136
64 64 3 348 736 927 133
64 64 4 314 739 936 134

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

18

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-3: Performance and Resource Utilization Benchmarks for Kintex-7 FPGA
(xc7k410t-1-ffg900)
Parameter Values Device Resources FMAX (MHz)

T T v]
2 F 3
z x = f %
3 3 3 g [& g
o o o @ @ 3 <
2 2 0 339 557 758 148
2 2 1 372 650 844 145
2 2 2 362 653 851 144
2 2 3 356 656 849 134
2 2 4 369 659 854 146
4 4 0 341 565 767 151
4 4 1 338 666 861 122
4 4 2 366 669 858 144
4 4 3 359 672 867 141
4 4 4 355 675 862 125
8 8 0 330 589 788 106
8 8 1 345 682 861 140
8 8 2 355 685 874 149
8 8 3 352 688 870 142
8 8 4 342 691 879 154
16 16 0 339 605 803 134
16 16 1 350 698 886 142
16 16 2 349 701 899 142
16 16 3 341 680 868 139
16 16 4 370 707 894 143

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

19

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-3: Performance and Resource Utilization Benchmarks for Kintex-7 FPGA
(xc7k410t-1-ffg900) (Cont’d)
Parameter Values Device Resources FMAX (MHz)
[T
. I (O] 7]
i £ < g
S | = =
él 'EI z| .é' E
P4 z 2 ™
< < < o o " -
1S/ 9] (O]) (Y] - —
| | | = = o x
v v v 7] w o <
32 32 0 337 621 822 148
32 32 1 389 714 890 146
32 32 2 375 717 905 133
32 32 3 378 720 898 136
32 32 4 373 723 903 137
64 64 0 345 637 825 140
64 64 1 388 730 920 148
64 64 2 373 733 929 140
64 64 3 384 736 925 137
64 64 4 365 739 927 125

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

20

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-4: Performance and Resource Utilization Benchmarks for Artix-7 FPGA (xc7a355tdie-3)
Parameter Values Device Resources FMAX (MHz)

T T v]
: § g
= < 2 i %
S 5 S g [@ g
o ¢ Jd & | 7 2 2
2 2 0 314 552 754 151
2 2 1 353 644 842 157
2 2 2 344 648 846 141
2 2 3 350 651 861 160
2 2 4 326 653 850 115
4 4 0 277 560 744 131
4 4 1 355 660 844 136
4 4 2 337 664 866 135
4 4 3 333 667 852 123
4 4 4 329 669 859 145
8 8 0 305 584 760 131
8 8 1 339 677 868 152
8 8 2 338 680 868 130
8 8 3 349 683 879 139
8 8 4 337 685 878 133
16 16 0 308 600 800 102
16 16 1 343 693 874 130
16 16 2 335 696 879 140
16 16 3 330 675 876 134
16 16 4 347 701 895 139

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

21

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-4: Performance and Resource Utilization Benchmarks for Artix-7 FPGA (xc7a355tdie-3)
Parameter Values Device Resources FMAX (MHz)

T T v] "
£ £ < 8
QI QI E o
él ﬁ| z| .é' é
z 4 4 [=
< < <] v » u-
v 9] (@] = (%] - —

| | | = = =] x
8) (@) () () 7] <
32 32 0 299 6161 799 114
32 32 1 348 709 893 115
32 32 2 364 712 901 117
32 32 3 323 715 902 133
32 32 4 364 717 889 123
64 64 0 341 632 829 133
64 64 1 342 727 931 134
64 64 2 355 730 922 141
64 64 3 359 733 914 132
64 64 4 359 735 923 143

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

22

http://www.xilinx.com

& XILINX

Table 2-5: Performance and Resource Utilization Benchmarks for the Spartan-6

FPGA (xc6sIx45t-2-fggas4)

Chapter 2: Product Specification

Parameter values Device resources FMAX (MHz)

z z 2 .

5 3 s &

él |>_<| 2| ; %
Z Z Z g F .
o o o 5] o = =
o o o @ @ 2 Z:
2 2 0 374 553 794 75
2 2 1 405 648 866 68
2 2 2 311 651 896 80
2 2 3 394 654 878 79
2 2 4 386 648 864 72
4 4 0 378 561 805 62
4 4 1 398 664 893 76
4 4 2 385 667 897 73
4 4 3 389 670 891 75
4 4 4 393 664 886 74
8 8 0 368 585 826 71
8 8 1 403 680 895 75
8 8 2 384 683 909 71
8 8 3 392 686 912 83
8 8 4 365 680 902 77
16 16 0 391 601 848 70
16 16 1 402 696 919 84
16 16 2 411 699 925 75
16 16 3 401 678 905 73
16 16 4 430 696 905 70
32 32 0 371 617 845 66
32 32 1 419 712 926 75
32 32 2 430 715 924 75
32 32 3 401 718 935 81
32 32 4 372 712 911 84
64 64 0 364 633 889 76
64 64 1 428 728 962 74

LogiCORE IP CAN v4.2 www.xilinx.com 23

PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-5: Performance and Resource Utilization Benchmarks for the Spartan-6 FPGA

(Cont’d)(xc6slx45t-2-fgg484) (Cont’d)

Parameter values Device resources FMAX (MHz)
T T G
- - <]
a [- % | Q.
°, QI S °
s | [

él |>5| = & 5
Z g Z g F :
bS] o O S ot 2 =

1 I I = = =) x
o (&) o 7)) 7)) o <
64 64 2 404 731 970 60
64 64 3 428 734 955 73
64 64 4 399 728 948 75

Table 2-6: Performance and Resource Utilization Benchmarks for Virtex-6 FPGA
(xcbvix130t-2-ff484)
Parameter values Device resources FMAX (MHz)
T T G
= = < n
a [- % | Qo
°, QI = o
> [

él '>'<| = s 5
g g : g 3 :
bS] O o S ot 2 =

1 I I = =) x
o (&) (&) () wn a <
2 2 0 263 555 799 200
2 2 1 287 642 874 181
2 2 2 314 651 879 206
2 2 3 305 654 875 195
2 2 4 311 652 864 172
4 4 0 284 563 805 174
4 4 1 284 658 896 184
4 4 2 312 667 895 187
4 4 3 280 670 893 194
4 4 4 310 668 877 169
8 8 0 290 587 822 187
8 8 1 269 674 901 196
8 8 2 328 683 916 184
8 8 3 299 686 905 197
8 8 4 271 684 897 171

LogiCORE IP CAN v4.2 www.xilinx.com 24

PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Table 2-6: Performance and Resource Utilization Benchmarks for Virtex-6 FPGA

(xc6vix130t-2-ff484) (Cont’d)

Chapter 2: Product Specification

Parameter values Device resources FMAX (MHz)
T T G
- - <]
o [- % | Q.
°, Ql S °
-] [V
él |>£| ZI o %
Z g Z g F :
bS] o O S ot 2 =
1 I I = = =) x
o (&) o 7)) 7)) o <
16 16 0 284 602 843 201
16 16 1 294 690 922 184
16 16 2 327 699 925 179
16 16 3 295 678 899 197
16 16 4 280 700 918 176
32 32 0 271 618 860 194
32 32 1 257 706 906 165
32 32 2 296 715 920 190
32 32 3 311 718 924 195
32 32 4 325 717 914 167
64 64 0 269 634 884 201
64 64 1 305 722 949 174
64 64 2 293 731 942 192
64 64 3 309 734 944 192
64 64 4 299 732 934 183
LogiCORE IP CAN v4.2 www.xilinx.com 25

PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Port Descriptions

The external interface of the CAN controller is a AXI4-Lite Interface.

Table 2-7 defines CAN controller interface signalling.

Table 2-7: CAN Controller External 1/0Os

. Default .
No. | Signal Name 1/0 Value Description
1 S AXLACLK I N/A Advanced eXtensible Interface (AXI)
Clock
2 S_AXI_ARESETN I N/A AXI Reset (active-Low)
) AXI Write address.The write address bus
3]S—AXI—AWADDR[C—S—AXI—ADDR—WIDTH_1'0 I N/A gives the address of the write
transaction.
Write address valid.This signal indicates
4 S_AXI_AWVALID I N/A that valid write address and control
information are available.
Write address ready. This signal indicates
5 S_AXI_AWREADY o] N/A that the slave is ready to accept an
address and associated control signals.
6 S_AXI_WDATA[C_S_AXI_DATA_WIDTH-1:0] I N/A Write Data
7 S_AXI_WSTB[C_S_AXI DATA_WIDTH/8-1:0] |1 N/A Write strobes.This S|gpal indicates which
byte lanes to update in memory.
Write valid.This signal indicates that valid
8 S-AXLWVALID I N/A write data and strobes are available.
9 S_AXI_WREADY 0 0x0 Write ready. This signal |.nd|cates that the
slave can accept the write data.
Write response. This signal indicates the
status of the write transaction.
10 S_AXI_BRESP[1:0] O |0x0 “00"- OKAY
“10"- SLVERR
“11"- DECERR
11 S_AXI_BVALID 0 0x0 Write responsgvalld.Thls S|gnal |r'1d|cates
that a valid write response is available
Response ready. This signal indicates that
12 S_AXI_BREADY I Ox1 the master can accept the response
information
13 S_AXI_ARADDR[C_S_AXI ADDR_WIDTH-1:0] |1 N/A Read address.The read address bus gives

the address of a read transaction.

LogiCORE IP CAN v4.2

www.xilinx.com

PG096 December 18, 2012

26

http://www.xilinx.com

& XILINX

Table 2-7: CAN Controller External 1/Os (Cont’d)

Chapter 2: Product Specification

No.

Signal Name

1/0

Default
Value

Description

14

S_AXI_ARVALID

N/A

Read address valid. This signal indicates,
when HIGH, that the read address and
control information is valid and remains
stable until the address
acknowledgement signal,
S_AXI_ARREADY, is high.

15

S_AXI_ARREADY

Ox1

Read address ready. This signal indicates
that the slave is ready to accept an
address and associated control signals.

16

S_AXI_RDATA[C_S_AXI_DATA_WIDTH-1:0]

0x0

Read data

17

S_AXI_RRESP[1:0]

0x0

Read response. This signal indicates the
status of the read transfer.

“00"- OKAY
“10"- SLVERR
“11"- DECERR

18

S_AXI_RVALID

0x0

Read valid. This signal indicates that the
required read data is available and the
read transfer can complete

19

S_AXI_RREADY

Ox1

Read ready.This signal indicates that the
master can accept the read data and
response information.

20

IP2Bus_IntrEvent

0x0

Active-High Interrupt line.?

21

CAN_CLK

24 MHz oscillator clock input.

22

CAN_PHY_TX

1

CAN bus transmit signal to PHY.

23

CAN_PHY_RX

N/A

CAN bus receive signal from PHY.

a. The interrupt line is edge sensitive. Interrupts are indicated by the transition of the interrupt line logic from 0 to 1.

LogiCORE IP CAN v4.2

www.xilinx.com

PG096 December 18, 2012

27

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Xilinx CAN Controller Configuration Register

Descriptions

Table 2-8 defines the CAN controller configuration registers. Each of these registers is
32-bits wide and is represented in big endian format. Because the controller supports
32-bit word access, the S_AXI_AWADDR/S_AXI_ARADDR is appended with 2'b00
internally. Any read operations to reserved bits or bits that are not used return '0." A 'O’

should be written to reserved bits and bit fields not used. Writes to reserved locations are

ignored.

Table 2-8: CAN Controller Configuration Register

Register Name Address Access
Control Registers
Software Reset Register (SRR) 0x000 Read/Write
Mode Select Register (MSR) 0x004 Read/Write
Transfer Layer Configuration Registers
Baud Rate Prescaler Register (BRPR) 0x008 Read/Write
Bit Timing Register (BTR) 0x00C Read/Write
Error Indication Registers
Error Counter Register (ECR) 0x010 Read
Error Status Register (ESR) 0x014 Read/Write to Clear
CAN Status Registers
Status Register (SR) 0x018 Read
Interrupt Registers
Interrupt Status Register (ISR) 0x01C Read
Interrupt Enable Register (IER) 0x020 Read/Write
Interrupt Clear Register (ICR) 0x024 Write

Reserved

Reserved Locations

0x028 to 0x02C

Reads Return 0/
Write has no affect

Messages

Transmit Message FIFO (TX FIFO)
ID 0x030 Write
DLC 0x034 Write
Data Word 1 0x038 Write
Data Word 2 0x03C Write

Transmit High Priority Buffer (TX HPB)

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

28

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-8: CAN Controller Configuration Register (Cont’d)

Register Name Address Access
ID 0x040 Write
DLC 0x044 Write
Data Word 1 0x048 Write
Data Word 2 0x04C Write
Receive Message FIFO (RX FIFO)
ID 0x050 Read
DLC 0x054 Read
Data Word 1 0x058 Read
Data Word 2 0x05C Read
Acceptance Filtering
Acceptance Filter Register (AFR) 0x060 Read/Write
Acceptance Filter Mask Register 1 (AFMR1) 0x064 Read/Write
Acceptance Filter ID Register 1 (AFIR1) 0x068 Read/Write
Acceptance Filter Mask Register 2(AFMR2) 0x06C Read/Write
Acceptance Filter ID Register 2 (AFIR2) 0x070 Read/Write
Acceptance Filter Mask Register 3(AFMR3) 0x074 Read/Write
Acceptance Filter ID Register 3 (AFIR3) 0x078 Read/Write
Acceptance Filter Mask Register 4(AFMR4) 0x07C Read/Write
Acceptance Filter ID Register 4 (AFIR4) 0x080 Read/Write
Reserved
Reserved Locations 0x084 to 0xOFC Reads Return 0/

Write has no affect

Control Registers

Software Reset Register (0x000)

Writing to the Software Reset Register (SRR) places the CAN controller in Configuration
mode. When in Configuration mode, the CAN controller drives recessive on the bus line and
does not transmit or receive messages. During power-up, CEN and SRST bits are '0" and
CONFIG bit in the Status Register (SR) is '1L.' The Transfer Layer Configuration Registers can
be changed only when CEN bit in the SRR Register is '0.’

Use these steps to configure the CAN controller at power up:

1. Configure the Transfer Layer Configuration Registers (BRPR and BTR) with the values
calculated for the particular bit rate.

LogiCORE IP CAN v4.2 www.xilinx.com 29
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

See Baud Rate Prescaler Register (0x008) and Bit Timing Register (0x00C).

2. Do one of the following:

o For Loop Back mode, write '1' to LBACK bit in the MSR.

o For Sleep mode, write '1' to the SLEEP bit in the MSR.
See Table 2-7 defines CAN controller interface signalling. for information about
operational modes.

3. Set the set the CEN bit in the SRR to 1.

After the occurrence of 11 consecutive recessive bits, the CAN controller clears the
CONFIG bit in the Status Register to '0," and sets the appropriate Status bit in the Status
Register.

Table 2-9 defines the bit positions in the Software Reset Register (SRR) and Table 2-10
defines the Software Reset Register bits.

Table 2-9: Software Reset Register BIT Positions
0—29 30 31
Reserved CEN SRST
Table 2-10: Software Reset Register Bits
Bit(s) | Name Access Default Description
Value

R d

0-29 |Reserved |Read/Write | 0 eserve .
Reserved for future expansion.
Can Enable
The Enable bit for the CAN controller.

30 CEN Read/Write 0 '1' = The CAN controller is in Loop Back, Sleep or Normal mode
depending on the LBACK and SLEEP bits in the MSR.
'0' = The CAN controller is in the Configuration mode.
Reset
The Software reset bit for the CAN controller.

31 SRST Read/Write 0 'l' = CAN controller is reset.
If a '1" is written to this bit, all the CAN controller configuration
registers (including the SRR) are reset. Reads to this bit always return
a'l

Mode Select Register (0x004)

Writing to the Mode Select Register (MSR) enables the CAN controller to enter Sleep, Loop
Back, or Normal modes. In Normal mode, the CAN controller participates in normal bus
communication. If the SLEEP bit is set to '1,' the CAN controller enters Sleep mode. If the
LBACK bit is set to '1," the CAN controller enters Loop Back mode.

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com 30

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

The LBACK and SLEEP bits should never be set to '1' at the same time. At any given point the
CAN controller can be either in Loop Back mode or Sleep mode, but not both
simultaneously. If both are set, the LBACK Mode takes priority.

Table 2-11 shows the bit positions in the MSR and Table 2-12 describes the MSR bits.

Table 2-11: Mode Select Register Bit Positions
0-29 30 31
Reserved LBACK SLEEP
Table 2-12: Mode Select Register Bits
. Default -
Bit(s) | Name Access Value Description
0-29 |Reserved | k&3 0 Reserved .
Write Reserved for future expansion.
Loop Back Mode Select
Read The Loop Back Mode Select bit.
30 LBACK V\?r?te/ 0 ‘1" = CAN controller is in Loop Back mode.
‘0’ = CAN controller is in Normal, Configuration, or Sleep mode.
This bit can be written to only when CEN bit in SRR is ‘0.
Sleep Mode Select
The Sleep Mode select bit.
31 SLEEP Rea)d/ 0 1' = CAN controller'ls 'm Sleep mode. ' .
Write ‘0’ = CAN controller is in Normal, Configuration or Loop Back mode.
This bit is cleared when the CAN controller wakes up from the Sleep
mode.

LogiCORE IP CAN v4.2

Transfer Layer Configuration Registers

There are two Transfer Layer Configuration Registers: Baud Rate Prescaler Register (BRPR)
and Bit Timing Register (BTR). These registers can be written to only when CEN bit in the
SRR is '0.’

Baud Rate Prescaler Register (0x008)
The CAN clock for the CAN controller is divided by (prescaler+1) to generate the quantum

clock needed for sampling and synchronization. Table 2-13 shows the bit positions in the
BRPR, and Table 2-14 defines the BRPR bits.

Table 2-13: Baud Rate Prescaler Register Positions
0—23 24 — 31
Reserved BPR [7.0]
www.xilinx.com 31

PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-14: Baud Rate Prescaler Register Bits

Bit(s)

Default i
Name Access Description
Value

0-23

Reserved

Reserved Read/Write 0 .
Reserved for future expansion.

24-31

Baud Rate Prescaler

BRP[7.0] Read/Write 0 These bits indicate the prescaler value. The actual value
ranges from 1—256.

The BRPR can be programmed to any value in the range 0-255. The actual value is 1 more
than the value written into the register.

The CAN quantum clock can be calculated using this equation:
tq = tosc*(BRP+1)

—-where tg and tosc are the time periods of the quantum and oscillator/system clocks
respectively.

Note: A given CAN bit rate can be achieved with several bit-time configurations, but values should
be selected after careful consideration of oscillator tolerances and CAN propagation delays. For
details about CAN bit-time register settings, see the CAN 2.0A, CAN 2.0B, ISO 11898-1 specifications.

Bit Timing Register (0x00C)

The Bit Timing Register (BTR) specifies the bits needed to configure bit time. Specifically,
the Propagation Segment, Phase segment 1, Phase segment 2, and Synchronization Jump
Width (as defined in CAN 2.0A, CAN 2.0B and ISO 11891-1) are written to the BTR. The
actual value of each of these fields is one more than the value written to this register.
Table 2-15 shows the bit positions in the BTR and Table 2-16 defines the BTR bits.

Table 2-15: Bit Timing Register BIT Positions
0—22 23—-24 25—-27 28—31
Reserved SJWI1..0] TS2[2..0] TS1[3..0]

LogiCORE IP CAN v4.2 www.xilinx.com 32
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-16: Bit Timing Register Bits

. Default .
Bit(s) Name Access Value Description
0-22 Reserved | Read/Write 0 Reserved .
Reserved for future expansion.
Synchronization Jump Width
_ . Indicates the Synchronization Jump Width as specified in the
23-24 | SIWIL.O] | Read/Write O | CAN 2.0A and CAN 2.08 standard. The actual value is one more
than the value written to the register.
Time Segment 2
_ . Indicates Phase Segment 2 as specified in the CAN 2.0A and CAN
25-27 | T52(2.01 | Read/Write 0 2.0B standard. The actual value is one more than the value
written to the register.
Time Segment 1
_ . Indicates the Sum of Propagation Segment and Phase Segment
28-31 TS1[3.0] | Read/Write 0 1 as specified in the CAN 2.0A and CAN 2.0B standard. The actual
value is one more than the value written to the register.
These equations can be used to calculate the number of time quanta in bit-time segments:
tTSEG1= tg*(8*TSEG1[3]+4*TSEG1[2]+2*TSEG1[1]+TSEG1[0]+1)
tTSEG2= tq*(4*TSEG2[2]+2*TSEG2[1]+TSEG2[0]+1)
tSIW = tg*(2*SJIW[1]+SJW[0]+1)
—where tTSEG1, tTSEG2 and tSJW are the lengths of TS1, TS2 and SJW.
Note: A given bit-rate can be achieved with several bit-time configurations, but values should be
selected after careful consideration of oscillator tolerances and CAN propagation delays. For details
on CAN bit-time register settings, see the CAN 2.0A, CAN 2.0B, and /SO 11898-1 specifications.
Error Indication Registers
The Error Counter Register (ECR) and the Error Status Register (ESR) comprise the Error
Indication Registers.
Error Counter Register (0x010)
The ECR is a read-only register. Writes to the ECR have no effect. The value of the error
counters in the register reflect the values of the transmit and receive error counters in the
CAN Protocol Engine Module (see Figure 1-1).
LogiCORE IP CAN v4.2 www.xilinx.com 33

PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

These conditions reset the Transmit and Receive Error counters:

« When '1l' is written to the SRST bit in the SRR
« When '0' is written to the CEN bit in the SRR
« When the CAN controller enters Bus Off state

» During Bus Off recovery when the CAN controller enters Error Active state after 128
occurrences of 11 consecutive recessive bits

When in Bus Off recovery, the Receive Error counter is advanced by 1 when a sequence of
11 consecutive recessive bits is seen.

Table 2-17 shows the bit positions in the ECR and Table 2-18 defines the ECR bits.

Table 2-17: Error Count Register BIT Positions

0-—15 16 — 23 24 — 31
Reserved REC[7..0] TEC[7..0]

Table 2-18: Error Count Register Bits

. Default -
Bit(s) Name Access u Description
Value
R d
0-15 Reserved Read Only 0 eserve .
Reserved for future expansion.
Receive Error Counter
16-23 REC[7..0 Read Onl 0
[7.01 ea ny Indicates the Value of the Receive Error Counter.
Transmit Error Counter
24-31 TEC[7.. R |
3 cl7.0] ead Only 0 Indicates the Value of the Transmit Error Counter.

Error Status Register (0x014)

The Error Status Register (ESR) indicates the type of error that has occurred on the bus. If

more than one error occurs, all relevant error flag bits are set in this register. The ESR is a

write-to-clear register. Writes to this register do not set any bits, but clear the bits that are
set.

LogiCORE IP CAN v4.2 www.xilinx.com 34
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-19 shows the bit positions in the ESR and Table 2-20 describes the ESR bits. All the
bits in the ESR are cleared when '0" is written to the CEN bit in the SRR.

Table 2-19: Error Status Register BIT Positions

0— 26 27 28 29 30 31
Reserved ACKER BERR STER FMER CRCER

Table 2-20: Error Status Register Bits

) Default i
Bit(s) Name Access Description
Value
R d
0—26 Reserved Read/Write 0 eserve .
Reserved for future expansion.
ACK Error
Indicates an acknowledgement error.
27 ACKER Write to Clear 0 1’ = Indicates an acknowledgement error has occurred.

‘0" = Indicates an acknowledgement error has not occurred
on the bus after the last write to this register.

If this bit is set, writing a ‘1" clears it.

Bit Error

Indicates the received bit is not the same as the transmitted
bit during bus communication.

28 BERR Write to Clear 0 ‘1" = Indicates a bit error has occurred.

‘0" = Indicates a bit error has not occurred on the bus after
the last write to this register.

If this bit is set, writing a ‘1" clears it.

Stuff Error
Indicates an error if there is a stuffing violation.
‘1" = Indicates a stuff error has occurred.

‘0" = Indicates a stuff error has not occurred on the bus after
the last write to this register.

If this bit is set, writing a ‘1’ clears it.

29 STER Write to Clear 0

Form Error

Indicates an error in one of the fixed form fields in the
message frame.

30 FMER Write to Clear 0 ‘1" = Indicates a form error has occurred.

‘0" = Indicates a form error has not occurred on the bus after
the last write to this register.

If this bit is set, writing a ‘1" clears it.

CRC Error @
Indicates a CRC error has occurred.
‘1" = Indicates a CRC error has occurred.

‘0" = Indicates a CRC error has not occurred on the bus after
the last write to this register.

If this bit is set, writing a ‘1’ clears it.

31 CRCER Write to Clear 0

a. In case of a CRC Error and a CRC delimiter corruption, only the FMER bit is set.

LogiCORE IP CAN v4.2 www.xilinx.com 35
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

CAN Status Register (0x018)

The CAN Status Register provides a status of all conditions of the core. Specifically, FIFO

Chapter 2: Product Specification

status, Error State, Bus State and Configuration mode are reported.

Table 2-21 shows the SR bit positions in the SR and Table 2-22 provides SR bit descriptions.

Table 2-21: Status Register BIT Positions
0—19 20 21 22 23 — 24 25
Reserved ACFBSY TXFLL TXBFLL ESTAT[1..0] ERRWRN
26 27 28 29 30 31
BBSY BIDLE NORMAL SLEEP LBACK CONFIG
Table 2-22: Status Register Bits
. Default L.
Bit(s) Name Access Description
Value
. R d
0—19 Reserved Read/Write |0 eserve .
Reserved for future expansion.
Acceptance Filter Busy
This bit indicates that the Acceptance Filter Mask Registers
and the Acceptance Filter ID Registers cannot be written to.
‘1" = Acceptance Filter Mask Registers and Acceptance Filter
ID Registers cannot be written to.
20 ACFBSY Read Only |0 ‘0" = Acceptance Filter Mask Registers and the Acceptance
Filter ID Registers can be written to.
This bit exists only when the number of acceptance filters is
not ‘0’
This bit is set when a ‘0" is written to any of the valid Use
Acceptance Filter (UAF) bits in the Acceptance Filter Register.
Transmit FIFO Full
Indicates that the TX FIFO is full.
21 TXFLL Read Onl 0
eadnly ‘1" = Indicates the TX FIFO is full.
‘0" = Indicates the TX FIFO is not full.
High Priority Transmit Buffer Full
Indicates the High Priority Transmit Buffer is full.
22 TXBFLL R I
ead Only 0 ‘1" = Indicates the High Priority Transmit Buffer is full.
‘0" = Indicates the High Priority Transmit Buffer is not full.
Error Status
Indicates the error status of the CAN controller.
"00" = Indicates Configuration Mode (CONFIG = '1’). Error
23-24 ESTATI[1..0] Read Only |0 State is undefined.
"01" = Indicates Error Active State.
“11" = Indicates Error Passive State.
“10" = Indicates Bus Off State.
LogiCORE IP CAN v4.2 www.xilinx.com 36

PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-22: Status Register Bits (Cont’d)

. Default A
Bit(s) Name Access Value Description

Error Warning

Indicates that either the Transmit Error counter or the Receive
Error counter has exceeded a value of 96.

25 ERRWRN Read Only 0 1" = One or more error counters have a value greater than or
equal to 96.

‘0" = Neither of the error counters has a value greater than or
equal to 96.

Bus Busy
Indicates the CAN bus status.

‘1" = Indicates that the CAN controller is either receiving a
message or transmitting a message.

‘0’ = Indicates that the CAN controller is either in
Configuration mode or the bus is idle.

Bus Idle
Indicates the CAN bus status.
Read . T .
27 BIDLE 0 ‘1" = Indicates no bus communication is taking place.

Onl
Y ‘0" = Indicates the CAN controller is either in Configuration
mode or the bus is busy.

26 BBSY Read Only 0

Normal Mode

Read Indicates the CAN controller is in Normal Mode.
28 NORMAL 0
Only 1" = Indicates the CAN controller is in Normal Mode.

‘0" = Indicates the CAN controller is not in Normal mode.

Sleep Mode
29 SLEEP Read 0 Tn'dicates' the CAN controller is in S.Ie'ep mode.
Only 1’ = Indicates the CAN controller is in Sleep mode.

‘0" = Indicates the CAN controller is not in Sleep mode.

Loop Back Mode
30 LBACK Read 0 ?n,dlcates. the CAN controller is in |TO(.')p Back mode.
Only 1" = Indicates the CAN controller is in Loop Back mode.

‘0" = Indicates the CAN controller is not in Loop Back mode.

Configuration Mode Indicator
Indicates the CAN controller is in Configuration mode.
31 CONFIG Read Only 1 ‘1" = Indicates the CAN controller is in Configuration mode.

'0" = Indicates the CAN controller is not in Configuration
mode.

LogiCORE IP CAN v4.2 www.xilinx.com 37
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Interrupt Registers

Chapter 2: Product Specification

The CAN controller contains a single interrupt line, but several interrupt conditions.

Interrupts are controlled by the interrupt status, enable, and clear registers.

Interrupt Status Register (0x01C)

The Interrupt Status Register (ISR) contains bits that are set when a particular interrupt
condition occurs. If the corresponding mask bit in the Interrupt Enable Register is set, an
interrupt is generated.

Interrupt bits in the ISR can be cleared by writing to the Interrupt Clear Register. For all bits
in the ISR, a set condition takes priority over the clear condition and the bit continues to

remain '1.'

Table 2-23 shows the bit positions in the ISR and Table 2-24 describes the ISR bits.

Table 2-23: Interrupt Status Register BIT Positions
0—19 20 21 22 23 24 25
Reserved WKUP SLP BSOFF ERROR RXNEMP RXOFLW
26 27 28 29 30 31
RXUFLW RXOK TXBFLL TXFLL TXOK ARBLST
Table 2-24: Interrupt Status Register Bits
Default
Bit Nam A Description
(s) ame ccess Value escriptio
R d
0-19 Reserved Read/Write 0 eserve .
Reserved for future expansion.
Wake up Interrupt
A '1l" indicates that the CAN controller entered Normal mode
Read from Sleep Mode.
20 WKUP 0 L .
Only This bit can be cleared by writing to the ICR.
This bit is also cleared when a ‘0’ is written to the CEN bit in
the SRR.
Sleep Interrupt
Read A '1l" indicates that the CAN controller entered Sleep mode.
21 SLP Only 0 This bit can be cleared by writing to the ICR.
This bit is also cleared when a ‘0" is written to the CEN bit in
the SRR.
Bus Off Interrupt
A ‘1" indicates that the CAN controller entered the Bus Off
Read state.
22 BSOFF 0
Only This bit can be cleared by writing to the ICR.
This bit is also cleared when a ‘0’ is written to the CEN bit in
the SRR.

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com 38

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-24: Interrupt Status Register Bits (Cont’d)

. Default _—
Bit(s Name Access Description
(s) Value P

Error Interrupt
A '1l" indicates that an error occurred during message

73 ERROR Read 0 tra.nsrr.ﬂssion or reception. N

Only This bit can be cleared by writing to the ICR.

This bit is also cleared when a ‘0" is written to the CEN bit in
the SRR.

Receive FIFO Not Empty Interrupt

Read
24 RXNEMP Oia; 0 A ‘1" indicates that the Receive FIFO is not empty.
y This bit can be cleared only by writing to the ICR.
RX FIFO Overflow Interrupt
A ‘1" indicates that a message has been lost. This condition
Read occurs when a new message is being received and the Receive
25 RXOFLW onl 0 FIFO is Full.
ny This bit can be cleared by writing to the ICR.
This bit is also cleared when a ‘0’ is written to the CEN bit in
the SRR.
RX FIFO Underflow Interrupt
A ‘1" indicates that a read operation was attempted on an
26 RXUFLW Read Only 0 empty RX FIFO.
This bit can be cleared only by writing to the ICR.
New Message Received Interrupt
A 'l" indicates that a message was received successfully and
57 RXOK Read 0 sto.red. into the RX FIFO. N
Only This bit can be cleared by writing to the ICR.
This bit is also cleared when a 0’ is written to the CEN bit in
the SRR.
High Priority Transmit Buffer Full Interrupt
TXBELL Read A 1" indicates that'th.e High PI’IOI’It'y Tra'msmlt Bufﬂj:‘r is full.
28 onl 0 The status of the bit is unaffected if write transactions occur
y on the High Priority Transmit Buffer when it is already full.
This bit can be cleared only by writing to the ICR.
Transmit FIFO Full Interrupt
A '1" indicates that the TX FIFO is full.
Read The status of the bit is unaffected if write transactions occur
29 TXFLL 0 . o
Only on the Transmit FIFO when it is already full.
This bit can be cleared only by writing to the Interrupt Clear
Register.
LogiCORE IP CAN v4.2 www.xilinx.com 39

PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-24: Interrupt Status Register Bits (Cont’d)

. Default .
Bit(s Name Access Description
(s) Value P
Transmission Successful Interrupt
Read A '1" indicates that a message was transmitted successfully.
30 TXOK® Only 0 This bit can be cleared by writing to the ICR.
This bit is also cleared when a ‘0’ is written to the CEN bit in
the SRR.
Arbitration Lost Interrupt
A ‘1" indicates that arbitration was lost during message
transmission.
31 ARBLST Read Onl 0
ead Lnly This bit can be cleared by writing to the ICR.
This bit is also cleared when a ‘0" is written to the CEN bit in
the SRR.

1. In Loop Back mode, both TXOK and RXOK bits are set. The RXOK bit is set before the TXOK bit.

Interrupt Enable Register (0x020)

The Interrupt Enable Register (IER) is used to enable interrupt generation. Table 2-25 shows
the bit positions in the IER and Table 2-26 describes the IER bits.

Table 2-25: Interrupt Enable Register Bit Positions

0—19 20 21 22 23 24 25

Reserved EWKUP ESLP EBSOFF EERROR ERXNEMP ERXOFLW
26 27 28 29 30 31

ERXUFLW ERXOK ETXBFLL ETXFLL ETXOK EARBLST

Table 2-26: Interrupt Enable Register Bits

. Default .
Bit(s) | Name Access Value Description
R d
0-19 Reserved Read/Write 0 eserve

Reserved for future expansion.

Enable Wake up Interrupt

Writes to this bit enable or disable interrupts when the WKUP bit
20 EWKUP Read/Write 0 in the ISR is set.

‘1" = Enable interrupt generation if WKUP bit in ISR is set.

‘0" = Disable interrupt generation if WKUP bit in ISR is set.

Enable Sleep Interrupt

Writes to this bit enable or disable interrupts when the SLP bit in
21 ESLP Read/Write 0 the ISR is set.

‘1" = Enable interrupt generation if SLP bit in ISR is set.

‘0" = Disable interrupt generation if SLP bit in ISR is set.

LogiCORE IP CAN v4.2 www.xilinx.com 40
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-26: Interrupt Enable Register Bits (Cont’d)
Bit(s) | Name Access Default Description
Value
Enable Bus OFF Interrupt
Writes to this bit enable or disable interrupts when the BSOFF bit
22 EBSOFF Read/Write 0 in the ISR is set.
'l = Enable interrupt generation if BSOFF bit in ISR is set.
‘0’ = Disable interrupt generation if BSOFF bit in ISR is set.
Enable Error Interrupt
Writes to this bit enable or disable interrupts when the ERROR bit
23 EERROR Read/Write 0 in the ISR is set.
‘1’ = Enable interrupt generation if ERROR bit in ISR is set.
‘0" = Disable interrupt generation if ERROR bit in ISR is set.
Enable Receive FIFO Not Empty Interrupt
Writes to this bit enable or disable interrupts when the RXNEMP
24 ERXNEMP | Read/Write 0 bit in the ISR is set.
‘1" = Enable interrupt generation if RXNEMP bit in ISR is set.
‘0" = Disable interrupt generation if RXNEMP bit in ISR is set.
Enable RX FIFO Overflow Interrupt
Writes to this bit enable or disable interrupts when the RXOFLW
25 ERXOFLW | Read/Write 0 bit in the ISR is set.
'l" = Enable interrupt generation if RXOFLW bit in ISR is set.
‘0" = Disable interrupt generation if RXOFLW bit in ISR is set.
Enable RX FIFO Underflow Interrupt
Writes to this bit enable or disable interrupts when the RXUFLW
26 ERXUFLW | Read/Write 0 bit in the ISR is set.
‘1" = Enable interrupt generation if RXUFLW bit in ISR is set.
‘0" = Disable interrupt generation if RXUFLW bit in ISR is set.
Enable New Message Received Interrupt
Writes to this bit enable or disable interrupts when the RXOK bit
27 ERXOK Read/Write 0 in the ISR is set.
'l = Enable interrupt generation if RXOK bit in ISR is set.
‘0" = Disable interrupt generation if RXOK bit in ISR is set.
Enable High Priority Transmit Buffer Full Interrupt
Writes to this bit enable or disable interrupts when the TXBFLL bit
28 ETXBFLL Read/Write 0 in the ISR is set.
‘1" = Enable interrupt generation if TXBFLL bit in ISR is set.
‘0" = Disable interrupt generation if TXBFLL bit in ISR is set.
Enable Transmit FIFO Full Interrupt
Writes to this bit enable or disable interrupts when TXFLL bit in
29 ETXFLL Read/Write 0 the ISR is set.
‘1’ = Enable interrupt generation if TXFLL bit in ISR is set.
‘0’ = Disable interrupt generation if TXFLL bit in ISR is set.

LogiCORE IP CAN v4.2

PG096 December 18, 2012

www.xilinx.com 41

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-26: Interrupt Enable Register Bits (Cont’d)

. Default .
Bit(s) | Name Access Value Description

Enable Transmission Successful Interrupt

Writes to this bit enable or disable interrupts when the TXOK bit
30 ETXOK Read/Write 0 in the ISR is set.

‘1" = Enable interrupt generation if TXOK bit in ISR is set.

‘0’ = Disable interrupt generation if TXOK bit in ISR is set.

Enable Arbitration Lost Interrupt
Writes to this bit enable or disable interrupts when the ARBLST

31 EARBLST Read/Write 0 bit in the ISR is set.
‘1" = Enable interrupt generation if ARBLST bit in ISR is set.

‘0" = Disable interrupt generation if ARBLST bit in ISR is set.

Interrupt Clear Register (0x024)

The Interrupt Clear Register (ICR) is used to clear interrupt status bits. Table 2-27 shows the
bit positions in the ICR and Table 2-28 describes the ICR bits.

Table 2-27: Interrupt Clear Register Bit Positions

0—19 20 21 22 23 24 25
Reserved CWKuUP CSLP CBSOFF CERROR CRXNEMP CRXOFLW
26 27 28 29 30 31
CRXUFLW CRXOK CTXBFLL CTXFLL CTXOK CARBLST

Table 2-28: Interrupt Clear Register Bit Descriptions

. Default .
Bit(s) Name Access Value Description
R d
0-19 |Reserved | Read/Write 0 eserve .
Reserved for future expansion.
Clear Wake up Interrupt
20 CWKUP Write Only 0 Writing a '1’ to this bit clears the WKUP bit in the
ISR.
. Clear Sleep Interrupt
21 LP Writ |
cs rite Only 0 Writing a ‘1’ to this bit clears the SLP bit in the ISR.
Clear Bus Off Interrupt
22 CBSOFF Write Only 0 Writing a ‘1’ to this bit clears the BSOFF bit in the
ISR.
Clear Error Interrupt
23 CERROR Write Only 0 Writing a ‘1’ to this bit clears the ERROR bit in the
ISR.
LogiCORE IP CAN v4.2 www.xilinx.com 42

PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-28: Interrupt Clear Register Bit Descriptions (Cont’d)

. Default _—
Bit(s) Name Access Value Description

Clear Receive FIFO Not Empty Interrupt

24 CRXNEMP Write Only 0 Writing a "1’ to this bit clears the RXNEMP bit in the
ISR.

Clear RX FIFO Overflow Interrupt
25 CRXOFLW Write Only 0 Writing a ‘1’ to this bit clears the RXOFLW bit in the
ISR.

Clear RX FIFO Underflow Interrupt
26 CRXUFLW Write Only 0 Writing a ‘1’ to this bit clears the RXUFLW bit in the
ISR.

Clear New Message Received Interrupt

27 CRXOK Write Only 0 Writing a ‘1’ to this bit clears the RXOK bit in the
ISR.

Clear High Priority Transmit Buffer Full Interrupt

28 CTXBFLL Write Only 0 Writing a ‘1’ to this bit clears the TXBFLL bit in the
ISR.

Clear Transmit FIFO Full Interrupt

29 CTXFLL Write Only 0 Writing a ‘1’ to this bit clears the TXFLL bit in the
ISR.

Clear Transmission Successful Interrupt

30 CTXOK Write Only 0 Writing a ‘1’ to this bit clears the TXOK bit in the
ISR.

Clear Arbitration Lost Interrupt

31 CARBLST Write Only 0 Writing a "1’ to this bit clears the ARBLST bit in the
ISR.

Message Storage

The CAN controller has a Receive FIFO (RX FIFO) for storing received messages. The RX FIFO
depth is configurable and can store up to 64 messages. Messages that pass any of the
acceptance filters are stored in the RX FIFO. When no acceptance filter has been selected,
all received messages are stored in the RX FIFO.

The CAN controller has a configurable Transmit FIFO (TX FIFO) that can store up to 64
messages. The CAN controller also has a High Priority Transmit Buffer (TX HPB), with
storage for one message. When a higher priority message needs to be sent, write the
message to the High Priority Transmit Buffer. The message in the Transmit Buffer has
priority over messages in the TX FIFO.

LogiCORE IP CAN v4.2 www.xilinx.com 43
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Message Transmission and Reception
These rules apply regarding message transmission and reception:

» A message in the TX High Priority Buffer (TX HPB) has priority over messages in the TX
FIFO.

« In case of arbitration loss or errors during the transmission of a message, the CAN
controller tries to retransmit the message. No subsequent message, even a newer,
higher priority message is transmitted until the original message is transmitted without
errors or arbitration loss.

« The messages in the TX FIFO, TX HPB and RX FIFO are retained even if the CAN
controller enters Bus off state or Configuration mode.

Message Structure

Each message is 16 bytes. Byte ordering for CAN message structure is shown in Table 2-29
through Table 2-32.

Table 2-29: Message ldentifier [IDR]
0—10 11 12 13 — 30 31
ID [28..18] SRR/RTR IDE ID[17..0] RTR

Table 2-30: Data Length Code [DLCR]
0—3 4—31
DLC [3..0] Reserved

Table 2-31: Data Word 1 [DW1R]
0—7 8 —15 16 — 23 24 — 31
DBO[7..0] DB1[7..0] DB2[7..0] DB3[7..0]

Table 2-32: Data Word 2 [DW2R]
0—7 8 —15 16 — 23 24 — 31
DB4[7..0] DB5[7..0] DB6[7..0] DB7[7..0]

Reads from RX FIFO

All 16 bytes must be read from the RX FIFO to receive the complete message. The first word
read (4 bytes) returns the identifier of the received message (IDR). The second read returns
the Data Length Code (DLC) field of the received message (DLCR). The third read returns
Data Word 1 (DW1R), and the fourth read returns Data Word 2 (DW2R).

All four words have to be read for each message, even if the message contains less than 8
data bytes. Write transactions to the RX FIFO are ignored. Reads from an empty RX FIFO
return invalid data.

LogiCORE IP CAN v4.2 www.xilinx.com 44
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Writes to TX FIFO and High Priority TX Buffer

When writing to the TX FIFO or the TX HPB, all 16 bytes must be written. The first word
written (4 bytes) is the Identifier (IDR). The second word written is the DLC field (DLCR). The
third word written is Data Word 1 (DW1R) and the fourth word written is Data Word 2
(DW2R).

When transmitting on the CAN bus, the CAN controller transmits the data bytes in the
following order (DBO, DB1, DB2, DB3, DB4, DB5, DB6, DB7). The MSb of a data byte is
transmitted first.

ﬁ IMPORTANT: All four words must be written for each message, including messages containing fewer
than 8 data bytes. Reads transactions from the TX FIFO or the TX High Priority Buffer return 0.

« 0s must be written to unused Data Fields in the DW1R and DW2R registers
» 0s must be written to bits 4 to 31 in the DLCR

« 0s must be written to Identifier of Received Message (IDR) [13 to 31] for standard
frames

The Identifier (IDR) word contains the identifier field of the CAN message. Two formats exist
for the Identifier field of the CAN message frame:

- Standard Frames. Standard frames have an 11-bit identifier field called the Standard
Identifier. Only the ID[28..18], Software Reset Register/Remote Transmission Request
(SRR/RTR), and IDE bits are valid. ID[28..18] is the 11 bit identifier. The SRR/RTR bit
differentiates between data and remote frames. IDE is '0' for standard frames. The other
bit fields are not used.

« Extended Frames. Extended frames have an 18-bit identifier extension in addition to
the Standard Identifier. All bit fields are valid. The RTR bit is used to differentiate
between data and remote frames (The SRR/RTR bit and IDE bit are both '1' for all
Extended Frames).

Table 2-33 provides bit descriptions for the Identifier Word. Table 2-34 describes the DLC
Word bits. Table 2-35 describes the Data Word 1 and Data Word 2 bits.

LogiCORE IP CAN v4.2 www.xilinx.com 45
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-33: ldentifier Word Bits
. Default .
Bit(s) Name Access Description
Value
Reads from RX
FIFO Standard Message ID
The Identifier portion for a Standard Frame is 11 bits.
0-10 ID[28..18 0
[] Writes to These bits indicate the Standard Frame ID.
TX FIFO and This field is valid for both Standard and Extended Frames.
TX HPB
Reads from RX Substitute Remote Transmission Request
FIFO This bit differentiates between data frames and remote
frames. Valid only for Standard Frames. For Extended frames
TX FIFO and ‘1" = Indicates that the message frame is a Remote Frame.
TX HPB ‘0" = Indicates that the message frame is a Data Frame.
Reads from RX Identifier Extension
FIFO This bit differentiates between frames using the Standard
12 IDE 0 Identifier and those using the Extended Identifier. Valid for
Writes to both Standard and Extended Frames.
TX FIFO and ‘1" = Indicates the use of an Extended Message Identifier.
TX HPB ‘0’= Indicates the use of a Standard Message Identifier.
Eﬁ:gjs from RX Extended Message ID
This field indicates the Extended Identifier.
13-30 ID[18..0] . 0 Valid only for Extended Frames.
Writes to ..
For Standard Frames, reads from this field return Os
TX FIFO and dard . his field should b
TX HPB For Standard Frames, writes to this field shou e Os
Remote Transmission Request
Reads from RX This bit differentiates between data frames and remote
FIFO frames.
31 RTR 0 Valid only for Extended Frames.
Writes to ‘1" = Indicates the message object is a Remote Frame
TX FIFO and ‘0" = Indicates the message object is a Data Frame
TX HPB For Standard Frames, reads from this bit returns ‘0’

For Standard Frames, writes to this bit should be ‘0’

LogiCORE IP CAN v4.2

PG096 December 18, 2012

www.xilinx.com

46

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Table 2-34: DLC Word Bits
‘ Default A
Bit(s) Name Access Value Description
Data Length Code
. This is the data length portion of the control field of the
— DL R Writ . .
0-3 ¢ ead/Write 0 CAN frame. This indicates the number valid data bytes in
Data Word 1 and Data Word 2 registers.
Reads from this field return Os.
4-31 R R Wri
3 eserved | Read/Write Writes to this field should be Os.
Table 2-35: Data Word 1 and Data Word 2 Bits
Defaul i
Register Field Access etault Description
Value
Data Byte 0
DWIR [0..7] DBO[7..0] | Read/Write 0 Reads from this field return invalid data if the
message has no data.
Data Byte 1
DWIR [8..15] DB1[7..0] | Read/Write 0 Reads from this field return invalid data if the
message has only 1 byte of data or fewer.
Data Byte 2
DWIR [16..23] DB2[7..0] | Read/Write 0 Reads from this field return invalid data if the
message has 2 bytes of data or fewer.
Data Byte 3
DWIR [24..31] DB3[7..0] | Read/Write 0 Reads from this field return invalid data if the
message has 3 bytes of data or fewer.
Data Byte 4
DW?2R [0..7] DB4[7..0] | Read/Write 0 Reads from this field return invalid data if the
message has 4 bytes of data or fewer.
Data Byte 5
DW?2R [8..15] DB5[7..0] | Read/Write 0 Reads from this field return invalid data if the
message has 5 bytes of data or fewer.
Data Byte 6
DW2R [16..23] DB6[7..0] | Read/Write 0 Reads from this field return invalid data if the
message has 6 bytes of data or fewer.
Data Byte 7
DW2R [24..31] DB7[7..0] | Read/Write 0 Reads from this field return invalid data if the
message has 7 bytes of data or fewer.

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Acceptance Filters

The number of acceptance filters is configurable from 0 to 4. The Number of Acceptance
Filters parameter specifies the number of acceptance filters chosen. Each acceptance filter
has an Acceptance Filter Mask Register and an Acceptance Filter ID Register.

Acceptance filtering is performed in this sequence:

1. The incoming Identifier is masked with the bits in the Acceptance Filter Mask Register.

2. The Acceptance Filter ID Register is also masked with the bits in the Acceptance Filter
Mask Register.

3. Both resulting values are compared.
4. If both these values are equal, then the message is stored in the RX FIFO.

5. Acceptance Filtering is processed by each of the defined filters. If the incoming
identifier passes through any acceptance filter, then the message is stored in the RX
FIFO.

These rules apply to the Acceptance Filtering Process:

« If no acceptance filters are selected (for example, if all the valid UAF bits in the AFR
register are Os or if the parameter Number of Acceptance Filters = 0), all received
messages are stored in the RX FIFO.

« If the number of acceptance filters is greater than or equal to 1, all the Acceptance
Filter Mask Register and the Acceptance Filter ID Register locations can be written to
and read from. However, the use of these filter pairs for acceptance filtering is
governed by the existence of the UAF bits in the AFR register.

Acceptance Filter Register

The Acceptance Filter Register (AFR) defines which acceptance filters to use. Each
Acceptance Filter ID Register (AFIR) and Acceptance Filter Mask Register (AFMR) pair is
associated with a UAF bit.

When the UAF bit is '1,' the corresponding acceptance filter pair is used for acceptance
filtering. When the UAF bit is '0," the corresponding acceptance filter pair is not used for
acceptance filtering. The AFR exists only if the Number of Acceptance Filters parameter is
not set to '0.'

To modify an acceptance filter pair in Normal mode, the corresponding UAF bit in this
register must be set to '0." After the acceptance filter is modified, the corresponding UAF bit
must be set to 'L

LogiCORE IP CAN v4.2 www.xilinx.com 48
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

These conditions govern the number of UAF bits that can exist in the AFR.

« If the number of acceptance filters is 1:UAF1 bit exists

« If the number of acceptance filters is 2:2UAF1 and UAF2 bits exist

« If the number of acceptance filters is 3:UAF1, UAF2 and UAF3 bits exist

» If the number of acceptance filters is 4:UAF1, UAF2, UAF3 and UAF4 bits exist
« UAF bits that do not exist are not written to

» Reads from UAF bits that do not exist return Os

« If all existing UAF bits are set to '0," then all received messages are stored in the RX
FIFO

« If the UAF bits are changed from a '1' to '0' during reception of a CAN message, the
message might not be stored in the RX FIFO.

Table 2-36 shows the bit positions in the AFR and Table 2-37 describes the AFR bits.

Table 2-36: Acceptance Filter Register Bit Positions
0—27 28 29 30 31
Reserved UAF4 UAF3 UAF2 UAF1

Table 2-37: Acceptance Filter Register Bits

. Defaul .
Bit(s) Name Access efault Description
Value

Reserved

0-27 Reserved | Read/Write 0 .
Reserved for future expansion.

Use Acceptance Filter Number 4

Enables the use of acceptance filter pair 4.

‘1" = Indicates Acceptance Filter Mask Register 4 and

28 UAF4 Read/Write 0 Acceptance Filter ID Register 4 are used for acceptance
filtering.

‘0" = Indicates Acceptance Filter Mask Register 4 and
Acceptance Filter ID Register 4 are not used for acceptance
filtering.

Use Acceptance Filter Number 3

Enables the use of acceptance filter pair 3.

‘1" = Indicates Acceptance Filter Mask Register 3 and

29 UAF3 Read/Write 0 Acceptance Filter ID Register 3 are used for acceptance
filtering.

‘0’ = Indicates Acceptance Filter Mask Register 3 and
Acceptance Filter ID Register 3 are not used for acceptance
filtering.

LogiCORE IP CAN v4.2 www.xilinx.com 49
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-37: Acceptance Filter Register Bits (Cont’d)

Bit(s)

Name Access Default Description
Value

30

Use Acceptance Filter Number 2

Enables the use of acceptance filter pair 2.

‘1" = Indicates Acceptance Filter Mask Register 2 and

UAF2 Read/Write 0 Acceptance Filter ID Register 2 are used for acceptance
filtering.

‘0" = Indicates Acceptance Filter Mask Register 2 and
Acceptance Filter ID Register 2 are not used for acceptance
filtering.

31

Use Acceptance Filter Number 1

Enables the use of acceptance filter pair 1.

‘1" = Indicates Acceptance Filter Mask Register 1 and

UAF1 Read/Write 0 Acceptance Filter ID Register 1 are used for acceptance
filtering.

‘0’ = Indicates Acceptance Filter Mask Register 1 and
Acceptance Filter ID Register 1 are not used for acceptance
filtering.

Acceptance Filter Mask Registers

The Acceptance Filter Mask Registers (AFMR) contain mask bits used for acceptance
filtering. The incoming message identifier portion of a message frame is compared with the
message identifier stored in the acceptance filter ID register. The mask bits define which
identifier bits stored in the acceptance filter ID register are compared to the incoming
message identifier.

There are at most four AFMRs. These registers are stored in a Block RAM. Asserting a
software reset or system reset does not clear register contents. If the number of acceptance
filters is greater than or equal to 1, then all the four AFMRs are defined. These registers can
be read from and written to. However, filtering operations are only performed on the
number of filters defined by the Number of Acceptance Filters parameter. These registers
are written to only when the corresponding UAF bits in the AFR are '0' and ACFBSY bit in the
SRis'0.'

These conditions govern AFMRs:

« If the number of acceptance filters is 1:AFMR 1 is used for acceptance filtering.

« If the number of acceptance filters is 2AFMR 1 and AFMR 2 are used for acceptance
filtering.

« If the number of acceptance filters is 3:AFMR 1, AFMR 2 and AFMR 3 are used for
acceptance filtering.

« If the number of acceptance filters is 4:AFMR 1, AFMR 2, AFMR 3 and AFMR 4 are used
for acceptance filtering.

LogiCORE IP CAN v4.2 www.xilinx.com 50
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 2: Product Specification

Extended Frames. All bit fields (AMID [28..18], AMSRR, AMIDE, AMID [17..0] and
AMRTR) need to be defined.

Standard Frames. Only AMID [28..18], AMSRR and AMIDE need to be defined. AMID
[17..0] and AMRTR should be written as '0."

Table 2-38 shows the bit positions in the AFMR and Table 2-39 describes the AFMR bits.

Table 2-38: Acceptance Filter Mask Registers Bit Positions

0—10

11

12 13— 30 31

AMID[28..18]

AMSRR

AMIDE AMID[17..0] AMRTR

Table 2-39: Acceptance Filter Mask Bit Descriptions
) Default .
Bit(s) Name Access Value Description
Standard Message ID Mask
These bits are used for masking the Identifier in a Standard
Frame.
AMID '1'= Indicates the corresponding bit in Acceptance Mask ID
0-10 (28.18] Read/Write 0 Register is used when comparing the incoming message
h identifier.
‘0" = Indicates the corresponding bit in Acceptance Mask ID
Register is not used when comparing the incoming message
identifier.
Substitute Remote Transmission Request Mask
This bit is used for masking the RTR bit in a Standard Frame.
'1'= Indicates the corresponding bit in Acceptance Mask ID
11 AMSRR Read/Write 0 Regis.te.zr is used when comparing the incoming message
identifier.
‘0" = Indicates the corresponding bit in Acceptance Mask ID
Register is not used when comparing the incoming message
identifier.
LogiCORE IP CAN v4.2 www.xilinx.com 51

PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

Table 2-39: Acceptance Filter Mask Bit Descriptions (Cont’d)

. Default _—
Bit(s) Name Access Value Description

Identifier Extension Mask

Used for masking the IDE bit in CAN frames.

'1'= Indicates the corresponding bit in Acceptance Mask ID
Register is used when comparing the incoming message
identifier.

‘0" = Indicates the corresponding bit in Acceptance Mask ID
Register is not used when comparing the incoming message
identifier.

If AMIDE = ‘1" and the AIIDE bit in the corresponding
Acceptance ID register is ‘0, this mask is applicable to only
Standard frames.

If AMIDE = ‘1" and the AIIDE bit in the corresponding
Acceptance ID register is ‘1, this mask is applicable to only
extended frames.

If AMIDE = ‘0" this mask is applicable to both Standard and
Extended frames.

Extended Message ID Mask

These bits are used for masking the Identifier in an Extended
Frame.

'1'= Indicates the corresponding bit in Acceptance Mask ID
13-30 AMID[17..0] | Read/Write 0 Register is used when comparing the incoming message
identifier.

‘0" = Indicates the corresponding bit in Acceptance Mask ID
Register is not used when comparing the incoming message
identifier.

12 AMIDE Read/Write 0

Remote Transmission Request Mask.

This bit is used for masking the RTR bit in an Extended Frame.
'1'= Indicates the corresponding bit in Acceptance Mask ID
31 AMRTR Read/Write 0 _Regisﬁgr is used when comparing the incoming message
identifier.

‘0" = Indicates the corresponding bit in Acceptance Mask ID
Register is not used when comparing the incoming message
identifier.

Acceptance Filter ID Registers

The Acceptance Filter ID registers (AFIR) contain Identifier bits, which are used for
acceptance filtering. There are at most four Acceptance Filter ID Registers. These registers
are stored in a Block RAM. Asserting a software reset or system reset does not clear the
contents of these registers. If the number of acceptance filters is greater than or equal to 1,
then all four AFIRs are defined. These registers can be read from and written to. These
registers should be written to only when the corresponding UAF bits in the AFR are '0' and
ACFBSY bit in the SR is '0.’

These conditions govern the use of the AFIRs:

LogiCORE IP CAN v4.2 www.xilinx.com 52
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 2: Product Specification

« If the number of acceptance filters is 1: AFIR 1 is used for acceptance filtering.

« If the number of acceptance filters is 2: AFIR 1 and AFIR 2 are used for acceptance
filtering.

« If the number of acceptance filters is 3: AFIR 1, AFIR 2 and AFIR 3 are used for
acceptance filtering.

« If the number of acceptance filters is 4: AFIR 1, AFIR 2, AFIR 3 and AFIR 4 are used for
acceptance filtering.

+ Extended Frames. All the bit fields (AIID [28..18], AISRR, AIIDE, AIID [17..0] and AIRTR)
must be defined.

« Standard Frames. Only AIID [28..18], AISRR and AIIDE need to be defined. AIID [17..0]
and AIRTR should be written with 0.

Table 2-40 shows AFIR bit positions, and Table 2-41 describes the AFIR bits.

Table 2-40: Acceptance Filter ID Registers Bit Positions
0—10 11 12 13 —30 31
AIID[28..18] AISRR AIIDE AIID[17..0] AIRTR

Table 2-41: Acceptance Filter ID Registers Bits

Bit(s) Name Access s:lf::lt Description
010 gy |Resawie |0 |G
B st [Reagwne | o | pubette Remete panmsnon Reaues it
12 ALIDE Read/Write 0 gji(:fr:ri::trialztxet:rk])zifv:een Standard and Extended frames
13-30 | AIID[17.0] | Read/Write 0 Ei:::g:g g:;i?f?:rm
[e |0 T e
LogiCORE IP CAN v4.2 www.xilinx.com 53

PG096 December 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 3

Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the
core. The chapter contains the following sections.

Configuring the CAN Controller
Clocking

Resets

Interrupts

Xilinx CAN Controller Design Parameters

Configuring the CAN Controller

This section covers the various configuration steps that must be performed to program the
CAN core for operation.

The key configuration steps are detailed in this section.

Choosing the operation mode

Programming the configuration registers to initialize the core
Writing messages to the TX FIFO/ TX HPB

Reading messages from the RX FIFO

LogiCORE IP CAN v4.2 www.xilinx.com 54
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Programming the Configuration Registers

These steps configure the core when the core is powered on or after system or software

reset.

1. Choose the operation mode

o

o

For Loop Back mode, write a '1' to the LBACK bit in the MSR and '0' to the SLEEP bit
in the MSR.

For Sleep mode, write a '1' to the SLEEP bit in the MSR and '0' to the LBACK bit in
the MSR.

For Normal Mode, write '0's to the LBACK and SLEEP bits in the MSR.

2. Configure the Transfer Layer Configuration Registers

o

Program the Baud Rate Prescaler Register and the Bit Timing Register to correspond
to the network timing parameters and the network characteristics of the system.

3. Configure the Acceptance Filter Registers

The number of Acceptance Filter Mask and Acceptance Filter ID Register pairs is chosen
at build time. To configure these registers do the following:

o

o

Write a '0' to the UAF bit in the AFR register corresponding to the Acceptance Filter
Mask and ID Register pair to be configured.

Wait until the ACFBSY bit in the SR is '0.'
Write the appropriate mask information to the Acceptance Filter Mask Register.
Write the appropriate ID information to the to the Acceptance Filter ID Register.

Write a '1' to the UAF bit corresponding to the Acceptance Filter Mask and ID
Register pair.

Repeat the preceding steps for each Acceptance Filter Mask and ID Register pair.

4. Write to the Interrupt Enable Register to choose the bits in the Interrupt Status Register
that can generate an interrupt.

5. Enable the CAN controller by writing a '1' to the CEN bit in the SRR register.

LogiCORE IP CAN v4.2 www.xilinx.com 55
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Transmitting a Message

A message to be transmitted can be written to either the TX FIFO or the TX HPB. A message
in the TX HPB gets priority over the messages in the TX FIFO. The TXOK bit in the ISR is set
after the CAN core successfully transmits a message.

Writing a Message to the TX FIFO

All messages written to the TX FIFO should follow the format defined in Message Storage.
To perform a write:

1. Poll the TXFLL bit in the SR. The message can be written into the TX FIFO when the TXFLL
bit is '0."

2. Write the ID of the message to the TX FIFO ID memory location (0x030).

3. Write the DLC of the message to the TX FIFO DLC memory location (0x034).

4. Write Data Word 1 of the message to the TX FIFO DW1 memory location (0x038).
5. Write Data Word 2 of the message to the TX FIFO DW2 memory location (0x03C).

Messages can be continuously written to the TX FIFO until the TX FIFO is full. When the TX
FIFO is full the TXFLL bit in the ISR and the TXFLL bit in the SR are set. If polling, the TXFLL
bit in the Status Register should be polled after each write. If using interrupt mode, writes
can continue until the TXFLL bit in the ISR generates an interrupt.

Writing a Message to the TX HPB
All messages written to the TX FIFO should follow the format described in Message Storage.
To write a message to the TX HPB:
1. Poll the TXBFLL bit in the SR.
The message can be written into the TX HPB when the TXBFLL bit is '0.’

2. Write the ID of the message to the TX HPB ID memory location (0x040).

3. Write the DLC of the message to the TX HPB DLC memory location (0x044).

4. Write Data Word 1 of the message to the TX HPB DW1 memory location (0x048).
5. Write Data Word 2 of the message to the TX HPB DW2 memory location (0x04C).

After each write to the TX HPB, the TXBFLL bit in the Status Register and the TXBFLL bit in
the Interrupt Status Register are set.

LogiCORE IP CAN v4.2 www.xilinx.com 56
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Receiving a Message

Whenever a new message is received and written into the RX FIFO, the RXNEMP bit and the
RXOK bits in the ISR are set. In case of a read operation on an empty RX FIFO, the RXUFLW
bit in the ISR is set.

Reading a Message from the RX FIFO
Perform these steps to read a message from the RX FIFO.

1. Poll the RXOK or RXNEMP bits in the ISR. In interrupt mode, the reads can occur after
the RXOK or RXNEMP bits in the ISR generate an interrupt.

- Read from the RX FIFO memory locations. All the locations must be read regardless
of the number of data bytes in the message.

- Read from the RX FIFO ID location (0x050)

. Read from the RX FIFO DLC location (0x054)
. Read from the RX FIFO DW1 location (0x058)
o Read from the RX FIFO DW2 location (0x05C)

2. After performing the read, if there are one or more messages in the RX FIFO, the
RXNEMP bit in the ISR is set. This bit can either be polled or can generate an interrupt.

3. Repeat until the FIFO is empty.

Extra Desigh Consideration

The CAN and Xilinx Platform Studio (XPS) CAN cores require an input register on the RX line
to avoid a potential error condition where multiple registers receive different values
resulting in error frames. This error condition is rare; however, the work-around should be
implemented in all cases.

To work around this issue, insert a register on the RX line clocked by CAN_CLK with an initial
value of '1'. This applies to all versions of the CAN and XPS CAN cores.

LogiCORE IP CAN v4.2 www.xilinx.com 57
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

Clocking

The CAN core has two clocks: CAN CLK and S_AXI_CLK. There is no fixed-frequency
dependency between the two clocks. These conditions apply for clock frequencies:

¢ CAN CLK can be 8 to 24 MHz in frequency
+ S_AXI_CLK can be 8 to 100 MHz in frequency

¢ CAN CLK and S_AXI_CLK can be asynchronous or can be clocked from the same source

ﬁ IMPORTANT: Either of these clocks can be sourced from external oscillator sources or generated within
the FPGA. The oscillator used for CAN CLK must be compliant with the oscillator tolerance range given
in the ISO 11898 -1, CAN 2.0A and CAN 2.0B standards.

S_AXI_ACLK

You can specify the operating frequency for S_AXI_ACLK; using a DCM to generate
S_AXI_ACLK is optional.

CAN_CLK
The range of CAN_CLK clock is 8-24 MHz.

You determine whether a DCM or an external oscillator is used to generate the CAN_CLK. If
an external oscillator is used, it should meet the tolerance requirements specified in the ISO
11898-1, CAN 2.0A and CAN 2.0B standards.

Resets

Two different reset mechanisms are provided for the CAN controller. The S_AXI_ARESETN
input mentioned in Table 2-7 acts as the system reset. Apart from the system reset, a
software reset is provided through the SRST bit in the SRR register. The software and system
reset both reset the complete CAN core (both the Object Layer and the Transfer Layer as
shown in Figure 1-1.)

Software Reset

The software reset can be enabled by writing a '1' to the SRST bit in the SRR Register. When
a software reset is asserted, all the configuration registers including the SRST bit in the SRR
Register are reset to their default values. Read/Write transactions can be performed starting
at the next valid transaction window.

LogiCORE IP CAN v4.2 www.xilinx.com 58
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 3: Designing with the Core

System Reset

The system reset can be enabled by driving a '1' on the S_AXI_ARESETN input. All the
configuration registers are reset to their default values. Read/Write transactions cannot be
performed when the S_AXI_ARESETN inputis 'l.'

Exceptions

The contents of the acceptance filter mask registers and acceptance filter ID registers are
not cleared when the software reset or system reset is asserted.

Reset Synchronization

A reset synchronizer resets each clock domain in the core. Because of this, some latency
exists between the assertion of reset and the actual reset of the core.

Interrupts

The CAN IP core uses a hard-vector interrupt mechanism. It has a single interrupt line
(IP2Bus_IntrEvent) to indicate an interrupt. Interrupts are indicated by asserting the
IP2Bus_IntrEvent line (transition of the IP2Bus_IntrEvent line from a logic '0' to a
logic '1").

Events such as errors on the bus line, message transmission and reception, FIFO overflows
and underflow conditions can generate interrupts. During power on, the Interrupt line is
driven low.

The Interrupt Status Register (ISR) indicates the interrupt status bits. These bits are set and
cleared regardless of the status of the corresponding bit in the Interrupt Enable Register

(IER). The IER handles the interrupt-enable functionality. The clearing of a status bit in the
ISR is handled by writing a '1' to the corresponding bit in the Interrupt Clear Register (ICR).

LogiCORE IP CAN v4.2 www.xilinx.com 59
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 3: Designing with the Core

Xilinx CAN Controller Design Parameters

To obtain a CAN controller tailored to meet your minimum system requirements, specific
features are parameterized. This results in a design using only the required resources,
providing the best possible performance. Table 3-1 shows the CAN controller features that

can be parameterized.

Table 3-1: CAN Controller Design Parameters

Feature Description

Parameter Name

Allowable Values

Default Value

Spartan-6 and

Target FPGA Family C_FAMILY Virtex-6

Depth of the RX FIFO C_CAN_RX_DPTH 2,4,8,16,32, 64 2
Depth of the TX FIFO C_CAN_TX_DPTH 2,4,8,16,32, 64 2
Number of Acceptance Filters used C_CAN_NUM_ACF 0-4 0

Based Address of Xilinx CAN
controller

C_S_AXI_BASEADDR

Valid Address

See note M and @

High Address of CAN Xilinx controller

C_S_AXI_HIGHADDR

Valid Address

See note M and @

AXI Address bus width

C_S_AXI_ADDR_WIDTH

32

32

AXI Data bus width

C_S_AXI_DATA_WIDTH

32

32

1. Address range is specified by C_S_AXI_BASEADDR and C_S_AXI_HIGHADDR must be at least 0x100 and must be
power of 2.C_S_AXI_BASEADDR must be multiple of the range, where the range is C_S_AXI_HIGHADDR -
C_S_AXI_BASEADDR + 1. Also make sure that LSB 8 bits of the C_S_AXI_BASEADDR to be zero.

2. No default value is specified to ensure that the actual value is set, that is, if the value is not set, a compiler error is
generated. The address range must be at least OxOOFF. For example, C_S_AXI_BASEADDR = 0x80000000,
C_S_AXI_HIGHADDR = 0x800000FF

Two conditions cause the IP2Bus_IntrEvent line to be asserted:

« IfabitintheISRis 'l" and the corresponding bit in the IER is 'L

« Changing an IER bit from a '0' to '1;' when the corresponding bit in the ISR is already

|1'|

Two conditions cause the IP2Bus_IntrEvent line to be deasserted:

« Clearing a bit in the ISR that is '1' (by writing a '1' to the corresponding bit in the ICR);
provided the corresponding bit in the IER is 'L

« Changing an IER bit from '1' to '0"; when the corresponding bit in the ISR is '1".

When both deassertion and assertion conditions occur simultaneously, the
IP2Bus_IntrEvent line is deasserted first, and is reasserted if the assertion condition

remains true.

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

60

http://www.xilinx.com

& XILINX.

SECTION II: VIVADO DESIGN SUITE

Customizing and Generating the Core
Constraining the Core

Detailed Example Design

LogiCORE IP CAN v4.2 www.xilinx.com 61
PG096 December 18, 2012

http://www.xilinx.com

& XILINX.

Chapter 4

Customizing and Generating the Core

This chapter includes information about using Xilinx tools to customize and generate the
core in the Vivado™ Design Suite.

CAN Graphical User Interface

The CAN graphical user interface (GUI) provides a single screen for configuring the CAN

core.

Figure 4-1 shows the main CAN customization screens, which you use to set the component

name and core options, described in the following sections.

[~]

Customize IP

© Options.
P Options

AXI CAN

] Show Disabled Pons

9 Customize AXI CAN (4.2) by specifying IP

| %]

| = |

Component Name [can_v4_2_0

LogiCORE IP CAN v4.2

PG096 December 18, 2012

www.xilinx.com

Core Options =
Mo_of Acceptance Filters
Tx Fifo Depth 2 [+]
Rix Fifo Depth 2 [~]
Mrcan s axt me P
4
Show Advanced Options
Bought IP license available Ok] | Cancel
Figure 4-1: Vivado Main Screen

62

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

Component Name

The Component Name is the base name of the output files generated for this core.

f IMPORTANT: The name must begin with a letter and be composed of the following characters: a to z,
AtoZ Oto9and "_."

Core Options

Number of Acceptance Filters

This specifies the number of acceptance filter pairs used by the CAN controller. Each
acceptance filter pair consists of a Mask Register and an ID register. These registers can be
configured so that a specific identifier or a range of identifiers can be received. Valid range
is from 0 to 4.

TX FIFO Depth

The TX FIFO depth is measured in terms of the number of CAN messages. For example, TX
FIFO with a depth of 2 can hold at most 2 CAN messages.

Valid values are 2, 4, 8, 16, 32, 64 to configure the depth of the TX FIFO.

RX FIFO Depth

The RX FIFO depth is measured in terms of the number of CAN messages. For example, RX
FIFO with a depth of 2 can hold at most 2 CAN messages.

Valid values are 2, 4, 8, 16, 32, 64 to configure the depth of the RX FIFO.

LogiCORE IP CAN v4.2 www.xilinx.com 63
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

Parameter Values in the XCI File

Table 4-1: Parameter Values in the XCI File

Parameter Value
C_CAN_RX_DPTH 2
C_CAN_TX_DPTH 2
C_CAN_NUM_ACF 0
C_FAMILY virtex7

Output Generation

This section provides detailed information about the example design, including a
description of files and the directory structure generated by the Xilinx Vivado Design Suite,
the purpose and contents of the provided scripts, the contents of the example HDL
wrappers, and the operation of the demonstration test bench.

In the IP Catalog project, clicking Open IP Example Design in GUI or typing the command
open_example_project [get_ips <component_name>]

in the TCL console invokes a separate example design project. In this new project
<component_name>_exdes is the top module for synthesis, and
<component_name>_tb is the top module for simulation. The implementation or
simulation of the example design can be run from the example project.

Directory and File Contents

) <project_name>/<project_name>.srcs/sources_1/ip/<component name>
Top-level project directory; name is user-defined

) <project_name>/<project_name>.srcs/sources_1/ip/<component name>
Core release notes file

) <component_name>example design
Verilog and VHDL design files

) <component_name>/implement
Implementation script files

1 <component_name>/implement/results

Results directory, created after implementation scripts are run, and contains
implement script results

LogiCORE IP CAN v4.2 www.xilinx.com 64
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 4: Customizing and Generating the Core

] <component_name>/simulation
Simulation scripts

7} <component_name>/simulation/functional
Functional simulation files

1 simulation/timing

Simulation files

The directory structure for a Vivado design suite project under <project_name>/
<project_name>.srcs/sources_1/ip/<component name> is same as <project_directory>/
<component name> for a CORE Generator™ tools project.

<project_name>/<project_name>.srcs/sources_1/ip/
<component name>

This directory contains all the Vivado Design Suite project files.

Table 4-2: Project Directory

Name Description

project_name>/<project_name>.srcs/sources_1/ip/<component name>

<component names xci Vivado device tools project-specific option file; can be used as an
P - ’ input to the Vivado Design Suite

<component_name>.{veo|vho} VHDL or Verilog instantiation template

<component_name>.xdc Constraints file for core.

<project_directory>/<component name>

The <component name> directory contains the release notes file provided with the core,
which can include last-minute changes and updates.

Table 4-3: Component Name Directory

Name Description

<project_dir>/<component_name>

can_release_notes.txt Core name release notes file.

LogiCORE IP CAN v4.2 www.xilinx.com

65
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

<component_name>example design

The example design directory contains the example design files provided with the core.

Table 4-4: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design

Provides example constraints necessary for processing the CAN core

<component_name>_top.ucf : .
component_name=_top.uc using the Xilinx implementation tools.

The VHDL or Verilog top-level file for the example design; it

<component_name>_top.v[hd] instantiates the CAN core.

Top-level file for the example design. Only generated when Verilog

<component_name>.v . i
P - design flow is selected.

<component_name>/implement

The implement directory contains the core implementation script files. Generated for
Full-System Hardware Evaluation and Full license types.

Table 4-5: Implement Directory

Name Description

<project_dir>/<component_name>/implement

implement.{bat|sh} | A Windows (.bat) or Linux script that processes the example design.

The XST project file for the example design that lists all of the source files to be
xst.prj synthesized. Only available when the CORE Generator system project option is set
to ISE or Other.

The XST script file for the example design used to synthesize the core. Only
xst.scr available when the CORE Generator system. Vendor project option is set to ISE or
Other.

<component_name>/implement/results

The results directory is created by the implement script, after which the implement script
results are placed in the results directory.

Table 4-6: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

Implement script result files.

LogiCORE IP CAN v4.2 www.xilinx.com 66
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 4: Customizing and Generating the Core

<component_name>/simulation

The simulation directory contains the simulation scripts provided with the core.

Table 4-7: Simulation Directory

Name Description

<project_dir>/<component_name>/simulation
glbl.v Verilog test file provided with the demonstration test bench.
can_v4_2_tb.v[hd] | Verilog/VHDL test file provided with the demonstration test bench.

<component_name>/simulation/functional

The functional directory contains functional simulation scripts provided with the core.
Table 4-8: Functional Directory

Name

Description

<project_dir>/<component_name>/simulation/functional

simulate_mti.do

A macro file for ModelSim that compiles the HDL sources and runs the
simulation.

simulate_ncsim.sh

A macro file for Cadence IES that compiles the HDL sources and runs the
simulation in a Linux environment.

simulate_ncsim.bat

A macro file for Cadence IES that compiles the HDL sources and runs the
simulation in a Windows environment.

A macro file for ModelSim that opens a wave window and adds key signals to the

wave.do wave viewer. This file is called by the simulate_mti.do file and is displayed after
the simulation is loaded.
wWave.sy A macro file for Cadence IES that opens a wave window and adds key signals to

the wave viewer.

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com 67

http://www.xilinx.com

& XILINX. Chapter 4: Customizing and Generating the Core

simulation/timing

The timing simulation directory is generated only for Full-System Hardware Evaluation and
Full-license types.

Table 4-9: Timing Directory

Name Description

<project_dir>/<component_name>/simulation/timing

A macro file for ModelSim that compiles the post-par timing netlist,

simulate_mti.do demonstration test bench files, and runs the simulation.

A macro file for Cadence IES that compiles the post-par timing netlist,

simulate_ncsim.sh .) . LA : .
- demonstration test bench files, and runs the simulation in a Linux environment.

A macro file for Cadence IES that compiles the post-par timing netlist,
simulate_ncsim.bat | demonstration test bench files, and runs the simulation in a Windows
environment.

A macro file for ModelSim that opens a wave window and adds key signals to the
wave.do wave viewer. This file is called by the simulate_mti.do file and is displayed after
the simulation is loaded.

A macro file for Cadence IES that opens a wave window and adds key signals to

wave.sv .
the wave viewer.

LogiCORE IP CAN v4.2 www.xilinx.com 68
PG096 December 18, 2012

http://www.xilinx.com

& XILINX.
Chapter 5

Constraining the Core

This chapter contains information about constraining the core in the Vivado™ Design Suite.

Required Constraints

set_false_path -from [all_registers -clock $clk_domain_a] -to [all_registers
-clock $clk_domain_b]

set_false path -from [all_registers -clock $clk_domain_b] -to [all_registers
-clock $clk_domain_al]

Clock Frequencies

« CAN CLK can be 8 to 24 MHz in frequency.
« S_AXI_CLK can be 8 to 100 MHz in frequency.

e CAN CLK and S_AXI_CLK can be asynchronous or can be clocked from the same source.

LogiCORE IP CAN v4.2 www.xilinx.com 69
PG096 December 18, 2012

http://www.xilinx.com

& XILINX.

Detailed Example Design

Chapter 6

This chapter contains information about the provided example design in the Vivado™

Design Suite.

Figure 6-1 illustrates the CAN example design.

Clock

Demonstration Test Bench

CAN Example Design

Generator

Stimulus

Generator

Checker [=

User
Interface CAN Core
10Bs

CAN Phy

10Bs

Figure 6-1: Example Design

The CAN example design consists of the following:

« CAN netlist

« HDL wrapper which instantiates the CAN netlist

« Demonstration test bench that is customized to simulate the example design

The CAN example design has been tested with Xilinx ISE® tools 14.4, Vivado Design Suite
2012.4, and the Mentor Graphics ModelSim v10.1a simulator.

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

70

http://www.xilinx.com

& XILINX

Chapter 6: Detailed Example Design

Generating the Core

Vivado IP Catalog

This section describes how to generate a CAN core with default values using Vivado Design
Suite.

To generate the core:

1. Start the Vivado Design Suite.
2. Choose File > New Project.
3. Click Next and select project name and project location.
4. Keep default settings for the succeeding pages until "Default Part" page.
5. Select the desired part.
Note: If an unsupported silicon family is selected, the CAN core will not appear in the taxonomy
tree.
6. Click Finish to create the project.
7. After creating the project, locate the CAN core in the taxonomy tree under Automotive
& Industrial >Automotive or Embedded Processing > AXI Peripheral > Low Speed
Peripheral > AXI CAN.
8. Double-click the core to display the main configuration screen.
LogiCORE IP CAN v4.2 www.xilinx.com 71
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

[~ Customize IP &3]
Customize AX| CAN (4.2) by specifying IP | o |
“ Options.,
IP Options
AXI CAN

¥ Show Disabled Ports Component Mame |can_\r4_2_0 |
Core Options =
Mo of Acceptance Filters
Tx Fifo Depth 2 [+]
Rx Fifo Depth 2z [x]

- 5.au1 kg
W rean ot el bt e |
i acin 5

ca_beedaceF|

i, 4 6 et

Show Acvanced Options

Bought IP license available | Ok] | Cancel
ke =i

Figure 6-2: Vivado Main Screen
9. In the Component Name field, enter a name for the core instance.

10. After selecting the parameters from the GUI screen, click Finish.

Field Descriptions

Component Name

The Component Name is the base name of the output files generated for this core.

ﬁ IMPORTANT: The name must begin with a letter and be composed of the following characters: a to z,
AtoZ Oto9and "_."

Core Options

Number of Acceptance Filters

This specifies the number of acceptance filter pairs used by the CAN controller. Each
acceptance filter pair consists of a Mask Register and an ID register. These registers can be
configured so that a specific identifier or a range of identifiers can be received. Valid range
is from O to 4.

LogiCORE IP CAN v4.2 www.xilinx.com 72
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

TX FIFO Depth

The TX FIFO depth is measured in terms of the number of CAN messages. For example, TX
FIFO with a depth of 2 can hold at most 2 CAN messages.

Valid values are 2, 4, 8, 16, 32, 64 to configure the depth of the TX FIFO.

RX FIFO Depth

The RX FIFO depth is measured in terms of the number of CAN messages. For example, RX
FIFO with a depth of 2 can hold at most two CAN messages.

Valid values are 2, 4, 8, 16, 32, 64 to configure the depth of the RX FIFO.

Implementing the Example Design

After generating a core with either a Full-System Hardware Evaluation or Full license, the
netlists and example design can be processed by the Xilinx implementation tools. The
generated output files include scripts to assist you in running the Xilinx software.

To implement the CAN example design, open a command prompt or terminal window and
type these commands:

For Windows:

ms-dos> ed <proj_dir>\quickstart\implement
ms-dos> implement.bat

For Linux:

Linux-shell% ed <proj_dir>/quickstart/implement
Linux-shell% ./implement.sh

These commands execute a script that synthesizes, builds, maps, and places-and-routes the
example design. The script then generates a post-par simulation model for use in timing
simulation. The resulting files are placed in the results directory.

For Vivado design tools:

1. Right-click on generated core, select "Open IP Example Design."
This creates a new project with the example design.

2. Click "Run Implementation” to implement the example design.

Note: Equivalent tcl commands can be found on the "tcl console" of the Vivado Design Suite.

LogiCORE IP CAN v4.2 www.xilinx.com 73
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

Simulating the Example Design

The CAN core provides a quick way to simulate and observe the behavior of the core by
using the provided example design. There are two different simulation types: functional and
timing. The simulation models provided are either in VHDL or Verilog, depending on the IP
catalog system Design Entry project option.

Setting up for Simulation

The Xilinx UNISIM and SIMPRIM libraries must be mapped into the simulator. If the UNISIM
or SIMPRIM libraries are not set for your environment, go to the Synthesis and Simulation
Guide in the Xilinx Software Manuals for assistance compiling Xilinx simulation models.
Simulation scripts are provided for ModelSim.

Functional Simulation

This section provides instructions for running a functional simulation of the CAN core using
either VHDL or Verilog. Functional simulation models are provided when the core is
generated. Implementing the core before simulating the functional models is not required.

To run a VHDL or Verilog functional simulation of the example design:
1. Set the current directory to:
<quickstart>/simulation/functional/
2. Launch the simulation script.
ModelSim: vsim -do simulate_mti.do
ncsim (ms-dos>): simulate_ncsim.bat
ncsim (Linux-shell%): ./simulate ncsim.sh

The simulation script compiles the functional simulation models and demonstration test
bench, adds relevant signals to the wave window, and runs the simulation. To observe the
operation of the core, inspect the simulation transcript and the waveform.

For Vivado design tools:

1. Right-click on generated core, select "Open IP Example Design."
This creates a new project with the example design.

2. Click "Run simulation" to simulate the example design.

Note: Equivalent tcl commands can be found on the "tcl console” of the Vivado design suite.

LogiCORE IP CAN v4.2 www.xilinx.com 74
PG096 December 18, 2012

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

& XILINX. Chapter 6: Detailed Example Design

Timing Simulation

Timing simulation is supported only for the Full-System Hardware Evaluation and Full
license types, as the core cannot be implemented using a Simulation Only Evaluation
license. This section contains instructions for running a timing simulation of the CAN core
using either VHDL or Verilog. A timing simulation model is generated when the core is run
through the Xilinx tools using the implement script. It is a requirement that the core is
implemented before attempting to run timing simulation.

To run a VHDL or Verilog functional simulation of the example design:

1. Set the current directory to:
<quickstart>/simulation/timing/
2. Launch the simulation script:

ModelSim: vsim -do simulate mti.do
ncsim (ms-dos>): simulate_ncsim.bat
ncsim (Linux-shell%) : ./simulate _ncsim.sh

The simulation script compiles the timing simulation model and the demonstration test
bench, adds relevant signals to the wave window, and runs the simulation. To observe the
operation of the core, inspect the simulation transcript and the waveform.

For Vivado design tools:

1. Right-click on generated core, select "Open IP Example Design"
This creates a new project with the example design.

2. Click "Run implementation” to implement the design.

3. Copy the implementation results to the directory specified in Directory and File
Contents in Chapter 3 for Vivado design tools.

4. Use the scripts in simulation/timing directory to run timing simulations.

Note: Equivalent tcl commands can be found on the "tcl console” of the Vivado design suite.

Directory and File Contents

See Directory and File Contents in Chapter 4.

LogiCORE IP CAN v4.2 www.xilinx.com 75
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 6: Detailed Example Design

Example Design Configuration

Figure 6-3 illustrates the example design configuration.

CAN Example Design

User

CAN Ph
Interface CAN Core |OBs Y
I0Bs

Y

Figure 6-3: Example Design Configuration
The example design contains the following:

« An instance of the CAN core

During simulation, the CAN core is instantiated as a black box and replaced with the
netlist during implementation and the gate-level simulation model.

« Input and output buffers for top-level port signal

LogiCORE IP CAN v4.2 www.xilinx.com

76
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

Demonstration Test Bench

Figure 6-4 illustrates the demonstration test bench.

Demonstration Test Bench

CAN Example Design

Clock
Generator
Stimulus User
Generator Interface CAN Core C'T‘gBPshy
10Bs
Checker |«

Figure 6-4: Demonstration Test Bench

Test Bench Functionality

The demonstration test bench is a straightforward VHDL or Verilog file to exercise the
example design and the core itself.

The test bench consists of the following:

» Clock Generators
« Procedure to write to a Configuration Register memory location
» Procedure to read from a Configuration Register memory location

» Procedure to display the bits set in the Interrupt Status Register (ISR)
Core with No Acceptance Filtering

The demonstration test bench performs the following tasks:

« Input clock signals are generated.
« Avresetis applied to the example design.

« The Baud Rate Prescalar register and Bit Timing registers are written to. These registers
are read from and the values read are compared with the values written.

LogiCORE IP CAN v4.2 www.xilinx.com 77
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

v ok w N

The Interrupt Enable Register is written to enable interrupts for TXBFLL and RXOK bits.
This register is read from and the value read is compared with the value written.

The Mode Select Register is written to select Loop Back mode of operation. This
register is read from and the value read is compared with the value written.

The Software Reset Register is written to enable CEN bit. This register is read from and
the value written is compared with the value read.

Five messages are written in sequence:

The first message is written to the TXHPB and is a standard data frame.

The second message is written to the TX FIFO and is a standard data frame.
The third message is written to the TX FIFO and is a standard remote frame.
The fourth message is written to the TX FIFO and is an extended data frame.

The fifth message is written to the TX FIFO and is an extended remote frame.

After each message is written, the test bench waits for the assertion of the interrupt line.
When the interrupt line is asserted, the following conditions occur:

o The bits set in the ISR are displayed.

o The RX FIFO is read if the RXOK bit is set. The message received is compared with
the message previously transmitted.

- The ICR is written to. This clears the bits in the ISR that are set.

With no acceptance filtering, all five messages are received in the RX FIFO.

Core with Acceptance Filtering

The demonstration test bench performs the following tasks:

Input clock signals are generated.
A reset is applied to the example design.

The Baud Rate Prescalar register and Bit Timing registers are written to. These registers
are read from and the values read are compared with the values written.

The Interrupt Enable Register is written to enable interrupts for TXBFLL and RXOK bits.
This register is read from and the value read is compared with the value written.

Acceptance Filter ID Register 1 and Acceptance Filter Mask Register 1 are written to.
These registers are read from and the values read are compared with the values written.

The Acceptance Filter Register is written to enable Acceptance Filter pair 1. This
register is read from and the value read is compared with the value written.

The Mode Select Register is written to select Loop Back mode. This register is read from
and the value read is compared with the value written.

LogiCORE IP CAN v4.2 www.xilinx.com 78
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

« The Software Reset Register is written to enable CEN bit. This register is read from and
the value written is compared with the value read.

+ Five messages are written in a sequence.

The first message is written to the TXHPB and is a standard data frame.

The second message is written to the TX FIFO and is a standard data frame.
The third message is written to the TX FIFO and is a standard remote frame.

The fourth message is written to the TX FIFO and is an extended data frame.

ARSI A

The fifth message is written to the TX FIFO and is an extended remote frame.

After each message is written, the test bench waits for the interrupt line to be asserted.
When the interrupt line is asserted, these conditions occur:

o The bits in the ISR that are set are displayed.

o The RX FIFO is read if the RXOK bit is set. The message that is received is compared
with the message that was transmitted.

o The ICR is written to. This clears the bits in the ISR that are set.

« After the fourth message is transmitted and received, the Interrupt Enable Register is
written to enable interrupts for TXOK, RXOK and TXBFLL. This register is read from and
the value read is compared with the value written.

« The fifth message does not pass acceptance filtering. Only the TXOK bit in the ISR is set
when the ISR is asserted.

Customizing the Demonstration Test Bench

This section describes the variety of demonstration test bench customization options that
can be used for individual system requirements.

Changing the Data

You can change the contents of the message written to the TX FIFO / TX HPB by changing
the procedure call that writes to the TX FIFO and the TX HPB memory locations. The relevant
fields in the checkers must also be changed to ensure that the message read from the RX
FIFO matches the message that was transmitted.

Changing the CAN Parameters

The values written to the BRPR and the BTR registers can be changed for appropriate bit
timing values. The test bench operates in the Loop Back mode of operation.

LogiCORE IP CAN v4.2 www.xilinx.com 79
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 6: Detailed Example Design

Changing the Test Bench Structure

You can add messages using these steps.

1. Write the message to the TX FIFO.
2. Wait for an interrupt and process the interrupt.

3. Read the received message from the RX FIFO.

Implementation

To implement the example design, select Run Implementation in the Vivado Project
Manager window. For further details on setting up the implementation, see the Vivado
Design Suite User Guide, Implementation (UG911).

LogiCORE IP CAN v4.2 www.xilinx.com
PG096 December 18, 2012

80

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/ug911-vivado-migration.pdf

& XILINX.

SECTION III: ISE DESIGN SUITE

Customizing and Generating the Core
Constraining the Core

Detailed Example Design

LogiCORE IP CAN v4.2 www.xilinx.com
PG096 December 18, 2012

81

http://www.xilinx.com

& XILINX.

Chapter 7

Customizing and Generating the Core

This chapter includes information about using Xilinx tools to customize and generate the
core in the ISE® Design Suite.

GUI

The CAN graphical user interface (GUI) provides a single screen for configuring the CAN

core.

Figure 7-1 shows the main CAN customization screens, which you use to set the component
name and core options, described in the following sections.

LogiCORE IP CAN v4.2
PG096 December 18, 2012

e AXI CAN

Figure 7-1: CORE Generator Main Screen

www.xilinx.com

e g e 4 T

| o |

82

http://www.xilinx.com

& XILINX. Chapter 7: Customizing and Generating the Core

Component Name

The Component Name is the base name of the output files generated for this core.

f IMPORTANT: The name must begin with a letter and be composed of the following characters: a to z,
AtoZ Oto9and "_."

Core Options

Number of Acceptance Filters

This specifies the number of acceptance filter pairs used by the CAN controller. Each
acceptance filter pair consists of a Mask Register and an ID register. These registers can be
configured so that a specific identifier or a range of identifiers can be received. Valid range
is from 0 to 4.

TX FIFO Depth

The TX FIFO depth is measured in terms of the number of CAN messages. For example, TX
FIFO with a depth of 2 can hold at most 2 CAN messages.

Valid values are 2, 4, 8, 16, 32, 64 to configure the depth of the TX FIFO.
RX FIFO Depth

The RX FIFO depth is measured in terms of the number of CAN messages. For example, RX
FIFO with a depth of 2 can hold at most 2 CAN messages.

Valid values are 2, 4, 8, 16, 32, 64 to configure the depth of the RX FIFO.

Parameter Values in the XCO File

Table 7-1: Parameter Values in the XCO File

component_name can_v4_2
number_of_acceptance_filters 0
rx_fifo_depth 2
tx_fifo_depth 2
LogiCORE IP CAN v4.2 www.xilinx.com 83

PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 7: Customizing and Generating the Core

Output Generation

Directory and File Contents

The CAN v4.2 core directories and their associated files are defined in the following
sections.

) <project directory>
Top-level project directory; name is user-defined

) <project_directory>/<component name>
Core release notes file

] <component_name>/doc
Product documentation

) <component_name>example design
Verilog and VHDL design files

] <component_name>/implement
Implementation script files

7} <component_name>/implement/results
Results directory, created after implementation scripts are run, and contains
implement script results
] <component_name>/simulation
Simulation scripts

) <component_name>/simulation/functional
Functional simulation files

) simulation/timing
Simulation files

LogiCORE IP CAN v4.2

www.xilinx.com 84
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Customizing and Generating the Core

<project directory>

The <project directory> contains all the CORE Generator™ tools project files.

Table 7-2: Project Directory

Name Description

<project_dir>

<component_name>.ngc Top-level netlist

<component_name>.v[hd] Verilog or VHDL simulation model

CORE Generator tool project-specific option file; can be used as an

<component_name>.xco input to the CORE Generator system.

<component_name>_flist.txt List of files delivered with the core.

<component_name>.{veo|vho} | VHDL or Verilog instantiation template.

Back to Top

<project_directory>/<component name>

The <component name> directory contains the release notes file provided with the core,
which can include last-minute changes and updates.

Table 7-3: Component Name Directory

Name Description

<project_dir>/<component_name>

can_release_notes.txt Core name release notes file.

Back to Top

<component_name>example design

The example design directory contains the example design files provided with the core.

Table 7-4: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design

Provides example constraints necessary for processing the CAN

< > . . - . .
component_name>_top.ucf core using the Xilinx implementation tools.

The VHDL or Verilog top-level file for the example design; it

<component_name>_top.v[hd] instantiates the CAN core.

Top-level file for the example design. Only generated when Verilog

<component_name>.v . .
P - design flow is selected.

Back to Top

LogiCORE IP CAN v4.2 www.xilinx.com 85
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Customizing and Generating the Core

<component_name>/doc

The doc directory contains the PDF documentation provided with the core.

Table 7-5: Doc Directory

Name Description

<project_dir>/<component_name>/doc

pg096-can,pdf product guide

Back to Top

<component_name>/implement

The implement directory contains the core implementation script files. Generated for
Full-System Hardware Evaluation and Full license types.

Table 7-6: Implement Directory

Name Description

<project_dir>/<component_name>/implement

implement.{bat|sh} A Windows (.bat) or Linux script that processes the example design.

The XST project file for the example design that lists all of the source
xst.prj files to be synthesized. Only available when the CORE Generator system
project option is set to ISE or Other.

The XST script file for the example design used to synthesize the core.
xst.scr Only available when the CORE Generator system. Vendor project option
is set to ISE or Other.

Back to Top

<component_name>/implement/results

The results directory is created by the implement script, after which the implement script
results are placed in the results directory.

Table 7-7: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

Implement script result files.

Back to Top

LogiCORE IP CAN v4.2 www.xilinx.com 86
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 7: Customizing and Generating the Core

<component_name>/simulation

The simulation directory contains the simulation scripts provided with the core.
Table 7-8: Simulation Directory

Name Description

<project_dir>/<component_name>/simulation

glbl.v Verilog test file provided with the demonstration test bench.
can_v4_2_tb.v[hd] Verilog/VHDL test file provided with the demonstration test bench.
Back to Top

<component_name>/simulation/functional

The functional directory contains functional simulation scripts provided with the core.

Table 7-9: Functional Directory

Name Description

<project_dir>/<component_name>/simulation/functional

A macro file for ModelSim that compiles the HDL sources and runs the

simulate_mti.do . .
simulation.

A macro file for Cadence IES that compiles the HDL sources and runs the

simulate_ncsim.sh . L . .
simulation in a Linux environment.

A macro file for Cadence IES that compiles the HDL sources and runs the

simulate_ncsim.bat . L . .
simulation in a Windows environment.

A macro file for ModelSim that opens a wave window and adds key
wave.do signals to the wave viewer. This file is called by the simulate_mti.do file
and is displayed after the simulation is loaded.

A macro file for Cadence IES that opens a wave window and adds key

wave.sv signals to the wave viewer.
Back to Top
LogiCORE IP CAN v4.2 www.xilinx.com 87

PG096 December 18, 2012

http://www.xilinx.com

& XILINX

simulation/timing

Chapter 7: Customizing and Generating the Core

The timing simulation directory is generated only for Full-System Hardware Evaluation and

Full-license types.

Table 7-10: Timing Directory

Name

Description

<project_dir>/<component_name>/simulation/timing

simulate_mti.do

A macro file for ModelSim that compiles the post-par timing netlist,
demonstration test bench files, and runs the simulation.

simulate_ncsim.sh

A macro file for Cadence IES that compiles the post-par timing netlist,
demonstration test bench files, and runs the simulation in a Linux
environment.

simulate_ncsim.bat

A macro file for Cadence IES that compiles the post-par timing netlist,
demonstration test bench files, and runs the simulation in a Windows
environment.

A macro file for ModelSim that opens a wave window and adds key

wave.do signals to the wave viewer. This file is called by the simulate_mti.do file
and is displayed after the simulation is loaded.
wave.sv A macro file for Cadence IES that opens a wave window and adds key
' signals to the wave viewer.
Back to Top

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com 88

http://www.xilinx.com

& XILINX.
Chapter 8

Constraining the Core

This chapter contains information about constraining the core in the ISE® Design Suite.

Device and Package Selection

The CAN controller can be implemented in Virtex®-6, XA Spartan®-6 and Spartan-6
devices. Ensure that the device used has these attributes:

« The device is large enough to accommodate the core.

« The device contains a sufficient number of Input Output Blocks (IOBs.)

Location Constraints

No specific I/O location constraints.

Placement Constraints

No specific placement constraints.

LogiCORE IP CAN v4.2 www.xilinx.com 89
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 8: Constraining the Core

Timing Constraints

The core has two different clock domains: S_AXI_ACLK and CAN_CLK. The following
constraints can be used with the CAN Controller.

PERIOD Constraints for Clock Nets

CAN_CLK

ﬁ IMPORTANT: The clock provided to CAN_CLK must be constrained for a clock frequency of less than or
equal to 24 MHz, based on the input oscillator frequency.

Set the CAN _CLK constraints

NET "CAN_CLK" TNM_NET = "CAN_CLK";
TIMESPEC "TS_CAN_CLK" = PERIOD "CAN_CLK" 40 ns HIGH 50%;
S_AXI_ACLK

ﬁ IMPORTANT: The clock provided to S_AXI_ACLK must be constrained for a clock frequency of 100
MHz or less.

Set the S_AXI_ACLK constraints

This can be relaxed based on the actual frequency

NET "S_AXI_ACLK" TNM_NET = "S_AXI_ACLK";

TIMESPEC "TS_S_AXI_ACLK" = PERIOD "S_AXI_ACLK" 10 ns HIGH 50%;

Timing Ignore Constraints

f IMPORTANT: A timing ignore (TIG) constraint must be specified on all the signals that cross clock
domains.

Timing Ignore constraint on all signals that cross from CAN_CLK domain to
S_AXI_ACLK domain

TIMESPEC "TS_CAN_SYS_TIG" = FROM "CAN_CLK" TO "S_AXI_ACLK" TIG;

Timing Ignore constraint on all signals that cross from S_AXI_ACLK domain to
CAN_CLK domain

TIMESPEC "TS_SYS_CAN_TIG" = FROM "S_AXI_ACLK" TO "CAN_CLK" TIG;

LogiCORE IP CAN v4.2 www.xilinx.com 20
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 8: Constraining the Core

/O Constraints

These constraints ensure that the flops associated with the external I/O signals are placed in
IOBs.

These constraints need to be given if the CAN controller is used in a stand-alone
mode.

INST "S_AXI_ARESETN" ION = true;

INST "S_AXI_AWADDR*"IOB = true;

INST "S_AXI_AWVALID"IOB = true;

INST "S_AXI_AWREADY"IOB = true;

INST "S_AXI_WDATA*"IOB = true;
INST "S_AXI_WSTB*" IOB = true;
INST "S_AXI_WVALID"IOB = true;

INST "S_AXI_WREADY"IOB = true;
INST "S_AXI_BRESP"IOB = true;

INST "S_AXI_BVALID"IOB = true;
INST "S_AXI_BREADY"IOB = true;
INST "S_AXI_ARADDR*"IOB = true;
INST "S_AXI_ARVALID"IOB = true;
INST "S_AXI_ARREADY"IOB = true;
INST "S_AXI_RDATA*"IOB = true;
INST "Ip2Bus_IntrEvent"IOB = true;
INST "S_AXI_ARESETNIOB = true;

1/0 Standards

The pins that interface to the CAN PHY device have a 3.3 volt signal level interface. These
constraints can be used provided the device I/O Banking rules are followed:

Select the I/O standards for the interface to the CAN PHY

INST "CAN_PHY_TX" TOSTANDARD = "LVTTL"
INST "CAN PHY RX" TOSTANDARD = "LVTTL"
LogiCORE IP CAN v4.2 www.xilinx.com 91

PG096 December 18, 2012

http://www.xilinx.com

& XILINX.

Detailed Example Design

Chapter 9

This chapter contains information about the provided example design in the ISE® Design

Suite environment.

Figure 9-1 illustrates the CAN example design.

Clock

Demonstration Test Bench

CAN Example Design

Generator

Stimulus

Generator

Checker [=

User
Interface CAN Core
10Bs

CAN Phy

10Bs

Figure 9-1: Example Design

The CAN example design consists of the following:

« CAN netlist

« HDL wrapper which instantiates the CAN netlist

» Demonstration test bench that can be customized to simulate the example design

The CAN example design has been tested with Xilinx ISE tools 14.4, Vivado™ Design Suite
2012.4, and the Mentor Graphics ModelSim v10.1a simulator.

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

92

http://www.xilinx.com

& XILINX. Chapter 9: Detailed Example Design

Generating the Core

This section describes how to generate a CAN core with default values using the Xilinx
CORE Generator™ tool.

To generate the core:

1. Start the CORE Generator tool.
2. Choose File >New Project.

3. Type a directory name.
This example uses the directory name design.

4. Do the following to set project options:
- Part Options

- From Target Architecture, select the desired family. For a list of supported
families, see IP Facts.

Note: If an unsupported silicon family is selected, the CAN core will not appear in the
taxonomy tree.

- Generation Options
- For Design Entry, select either VHDL or Verilog.

5. After creating the project, locate the CAN core in the taxonomy tree under Automotive
& Industrial >Automotive > CAN.

6. Double-click the core to display the main CAN configuration screen

L CAN = |
View Documents
IP Symbaol & 6 Pl

= 103’(L b CAN xilinx.com:ip:-can-4.2

5 AXI_ACLK
Component Name | can_v4_2

CAN_CLx

5_AXI_ARESETM Core Options
5 _AXI_AWADDR]3LD] CAN_PHY_RX

Number of Acceptance Fitters | 0 -

5_AXI_AWUALID.
5_AXI_NWREADY
B_AKI_WOATAJELT]

S_AXI_WSTRB{I 0]

AP TR Tx Fifo Depth . 2]
5_AXI_WUALID: paRBera [¥
5_ANI_WREADH
5_AN_BnesP{Lo]
5_AN)_BUALID)

5 _Ax|_BREADY
5_Axi_amaponfaia]
5_AXI_ARVALID:
5_AXI_ARREADY
5_AX|_MDATAJIL 0]
5_AX1_RAESP{LO]

5 AKI_RVALID

: - iQaTBEhEE‘ igenerabe | Cancel i Help
[A v -

Figure 9-2: CORE Generator System Main Screen

LogiCORE IP CAN v4.2 www.xilinx.com 93
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 9: Detailed Example Design

7. In the Component Name field, enter a name for the core instance.
This example uses the name quickstart.
8. After selecting the parameters from the GUI screens, click Finish.

The core and its supporting files, including the example design, are generated in the
project directory. For detailed information about the example design files and
directories see Chapter 3, Detailed Example Design.

Field Descriptions

Component Name

The Component Name is the base name of the output files generated for this core.

f IMPORTANT: The name must begin with a letter and be composed of the following characters: a to z,
AtoZ Oto9and "_."

Core Options

Number of Acceptance Filters

This specifies the number of acceptance filter pairs used by the CAN controller. Each
acceptance filter pair consists of a Mask Register and an ID register. These registers can be
configured so that a specific identifier or a range of identifiers can be received. Valid range
is from 0 to 4.

TX FIFO Depth

The TX FIFO depth is measured in terms of the number of CAN messages. For example, TX
FIFO with a depth of 2 can hold at most 2 CAN messages.

Valid values are 2, 4, 8, 16, 32, 64 to configure the depth of the TX FIFO.

RX FIFO Depth

The RX FIFO depth is measured in terms of the number of CAN messages. For example, RX
FIFO with a depth of 2 can hold at most 2 CAN messages.

Valid values are 2, 4, 8, 16, 32, 64 to configure the depth of the RX FIFO.

LogiCORE IP CAN v4.2 www.xilinx.com 94
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 9: Detailed Example Design

Implementing the Example Design

After generating a core with either a Full-System Hardware Evaluation or Full license, the
netlists and example design can be processed by the Xilinx implementation tools. The
generated output files include scripts to assist you in running the Xilinx software.

To implement the CAN example design, open a command prompt or terminal window and
type these commands:

For Windows:

ms-dos> ed <proj_dir>\quickstart\implement
ms-dos> implement.bat

For Linux:

Linux-shell% cd <proj_dir>/quickstart/implement
Linux-shell% ./implement.sh

These commands execute a script that synthesizes, builds, maps, and places-and-routes the
example design. The script then generates a post-par simulation model for use in timing
simulation. The resulting files are placed in the results directory.

Simulating the Example Design

The CAN core provides a quick way to simulate and observe the behavior of the core by
using the provided example design. There are two different simulation types: functional and
timing. The simulation models provided are either in VHDL or Verilog, depending on the
CORE Generator system Design Entry project option.

Setting up for Simulation

The Xilinx UNISIM and SIMPRIM libraries must be mapped into the simulator. If the UNISIM
or SIMPRIM libraries are not set for your environment, go to the Synthesis and Simulation
Guide in the Xilinx Software Manuals for assistance compiling Xilinx simulation models.
Simulation scripts are provided for ModelSim.

Functional Simulation

This section provides instructions for running a functional simulation of the CAN core using
either VHDL or Verilog. Functional simulation models are provided when the core is
generated. Implementing the core before simulating the functional models is not required.

To run a VHDL or Verilog functional simulation of the example design:

LogiCORE IP CAN v4.2 www.xilinx.com 95
PG096 December 18, 2012

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

& XILINX. Chapter 9: Detailed Example Design

1. Set the current directory to:
<quickstart>/simulation/functional/

2. Launch the simulation script.
ModelSim: vsim -do simulate_mti.do
ncsim (ms-dos>): simulate_ncsim.bat
ncsim (Linux-shell%): ./simulate_ncsim.sh

The simulation script compiles the functional simulation models and demonstration test
bench, adds relevant signals to the wave window, and runs the simulation. To observe the
operation of the core, inspect the simulation transcript and the waveform.

Timing Simulation

Timing simulation is supported only for the Full-System Hardware Evaluation and Full
license types, as the core cannot be implemented using a Simulation Only Evaluation
license. This section contains instructions for running a timing simulation of the CAN core
using either VHDL or Verilog. A timing simulation model is generated when the core is run
through the Xilinx tools using the implement script. It is a requirement that the core is
implemented before attempting to run timing simulation.

To run a VHDL or Verilog functional simulation of the example design:

1. Set the current directory to:
<quickstart>/simulation/timing/

2. Launch the simulation script:
ModelSim: vsim -do simulate_mti.do
ncsim (ms-dos>) : simulate_ncsim.bat
ncsim (Linux-shell%) : ./simulate _ncsim.sh

The simulation script compiles the timing simulation model and the demonstration test
bench, adds relevant signals to the wave window, and runs the simulation. To observe the
operation of the core, inspect the simulation transcript and the waveform.

Directory and File Contents

See Directory and File Contents in Chapter 7.

LogiCORE IP CAN v4.2 www.xilinx.com 96
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 9: Detailed Example Design

Implementation Scripts

Note: Present only with a Full license.

The implementation script is either a shell script(.sh) or batch file (.bat) that processes the
example design through the Xilinx tool flow. It is located at:

Linux
<project_dir>/<component_name>/implement/implement.sh

Windows
<project_dir>/<component_name>/implement/implement.bat

When the CORE Generator system is run with the Full System Hardware Evaluation, or Full
license types, the implement script performs these steps:

« Synthesizes the HDL example design files using XST

* Runs NGDBuild to consolidate the core netlist and the example design netlist into the
NGD file containing the entire design

» Maps the design to the target technology

« Place-and-routes the design on the target device

« Performs static timing analysis on the routed design using Timing Analyzer (TRCE)
« Generates a bitstream

« Enables Netgen to run on the routed design to generate a VHDL or Verilog netlist (as
appropriate for the Design Entry project setting) and timing information in the form of
SDF files.

The Xilinx tool flow generates several output and report files. These are saved in the
following directory which is created by the implement script:

<project_dir>/<component_name>/implement/results

Simulation Scripts

This subsection is only applicable for CORE Generator tools.

Functional Simulation

The test scripts are ModelSim macros that automate the simulation of the test bench. They
are available from the following location:

<project_dir>/<component_name>/simulation/functional/

LogiCORE IP CAN v4.2 www.xilinx.com 97
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 9: Detailed Example Design

The test script performs these tasks:

« Compiles the structural UNISIM simulation model

« Compiles HDL Example Design source code

+ Compiles the demonstration test bench

« Starts a simulation of the test bench

« Opens a Wave window and adds signals of interest (wave_mti.do/wave_ncsim.sv)

« Runs the simulation to completion

Timing Simulation
Note: Present only with a Full license.

The test scripts are a ModelSim or a Cadence IES macro that automates the simulation of
the test bench. They are located in:

<project_dir>/<component_name>/simulation/timing/

The test script performs these tasks:

« Compiles the SIMPRIM based gate level netlist simulation model

+ Compiles the demonstration test bench

« Starts a simulation of the test bench

« Opens a Wave window and adds signals of interest (wave_mti.do/wave_ncsim.sv)

* Runs the simulation to completion

LogiCORE IP CAN v4.2 www.xilinx.com 98
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Chapter 9: Detailed Example Design
Example Design Configuration
Figure 9-3 illustrates the example design configuration.
CAN Example Design
User
> CAN Phy

Interf CAN C

MoBe _ ore IOBs

Figure 9-3: Example Design Configuration

The example design contains the following:

« An instance of the CAN core

During simulation, the CAN core is instantiated as a black box and replaced with the
CORE Generator system netlist during implementation and the gate-level simulation

model.

« Input and output buffers for top-level port signal

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

99

http://www.xilinx.com

& XILINX. Chapter 9: Detailed Example Design

Demonstration Test Bench

Figure 9-4 illustrates the demonstration test bench.

Demonstration Test Bench

CAN Example Design

Clock
Generator
Stimulus User
Generator Interface CAN Core C?(')\IBZhy
10Bs
Checker |=

Figure 9-4: Demonstration Test Bench

Test Bench Functionality

The demonstration test bench is a straightforward VHDL or Verilog file to exercise the
example design and the core itself.

The test bench consists of the following:

» Clock Generators
« Procedure to write to a Configuration Register memory location
» Procedure to read from a Configuration Register memory location

» Procedure to display the bits set in the Interrupt Status Register (ISR)
Core with No Acceptance Filtering

The demonstration test bench performs the following tasks:

« Input clock signals are generated.
« Avresetis applied to the example design.

« The Baud Rate Prescalar register and Bit Timing registers are written to. These registers
are read from and the values read are compared with the values written.

LogiCORE IP CAN v4.2 www.xilinx.com 100
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 9: Detailed Example Design

v ok w N

The Interrupt Enable Register is written to enable interrupts for TXBFLL and RXOK bits.
This register is read from and the value read is compared with the value written.

The Mode Select Register is written to select Loop Back mode of operation. This
register is read from and the value read is compared with the value written.

The Software Reset Register is written to enable CEN bit. This register is read from and
the value written is compared with the value read.

Five messages are written in sequence:

The first message is written to the TXHPB and is a standard data frame.

The second message is written to the TX FIFO and is a standard data frame.
The third message is written to the TX FIFO and is a standard remote frame.
The fourth message is written to the TX FIFO and is an extended data frame.

The fifth message is written to the TX FIFO and is an extended remote frame.

After each message is written, the test bench waits for the assertion of the interrupt line.
When the interrupt line is asserted, the following conditions occur:

o The bits set in the ISR are displayed.

o The RX FIFO is read if the RXOK bit is set. The message received is compared with
the message previously transmitted.

- The ICR is written to. This clears the bits in the ISR that are set.

With no acceptance filtering, all five messages are received in the RX FIFO.

Core with Acceptance Filtering

The demonstration test bench performs the following tasks:

Input clock signals are generated.
A reset is applied to the example design.

The Baud Rate Prescalar register and Bit Timing registers are written to. These registers
are read from and the values read are compared with the values written.

The Interrupt Enable Register is written to enable interrupts for TXBFLL and RXOK bits.
This register is read from and the value read is compared with the value written.

Acceptance Filter ID Register 1 and Acceptance Filter Mask Register 1 are written to.
These registers are read from and the values read are compared with the values written.

The Acceptance Filter Register is written to enable Acceptance Filter pair 1. This
register is read from and the value read is compared with the value written.

The Mode Select Register is written to select Loop Back mode. This register is read from
and the value read is compared with the value written.

LogiCORE IP CAN v4.2 www.xilinx.com 101
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 9: Detailed Example Design

« The Software Reset Register is written to enable CEN bit. This register is read from and
the value written is compared with the value read.

+ Five messages are written in a sequence.

The first message is written to the TXHPB and is a standard data frame.

The second message is written to the TX FIFO and is a standard data frame.
The third message is written to the TX FIFO and is a standard remote frame.

The fourth message is written to the TX FIFO and is an extended data frame.

ARSI A

The fifth message is written to the TX FIFO and is an extended remote frame.

After each message is written, the test bench waits for the interrupt line to be asserted.
When the interrupt line is asserted, these conditions occur:

o The bits in the ISR that are set are displayed.

o The RX FIFO is read if the RXOK bit is set. The message that is received is compared
with the message that was transmitted.

o The ICR is written to. This clears the bits in the ISR that are set.

« After the fourth message is transmitted and received, the Interrupt Enable Register is
written to enable interrupts for TXOK, RXOK and TXBFLL. This register is read from and
the value read is compared with the value written.

« The fifth message does not pass acceptance filtering. Only the TXOK bit in the ISR is set
when the ISR is asserted.

Customizing the Demonstration Test Bench

This section describes the variety of demonstration test bench customization options that
can be used for individual system requirements.

Changing the Data

You can change the contents of the message written to the TX FIFO / TX HPB by changing
the procedure call that writes to the TX FIFO and the TX HPB memory locations. The relevant
fields in the checkers must also be changed to ensure that the message read from the RX
FIFO matches the message that was transmitted.

Changing the CAN Parameters

The values written to the BRPR and the BTR registers can be changed for appropriate bit
timing values. The test bench operates in the Loop Back mode of operation.

LogiCORE IP CAN v4.2 www.xilinx.com 102
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Chapter 9: Detailed Example Design

Changing the Test Bench Structure
You can add messages using these steps.

1. Write the message to the TX FIFO.
2. Wait for an interrupt and process the interrupt.

3. Read the received message from the RX FIFO.

LogiCORE IP CAN v4.2 www.xilinx.com 103
PG096 December 18, 2012

http://www.xilinx.com

& XILINX.

SECTION IV: APPENDICES

Verification, Compliance, and Interoperability
Migrating
Debugging

Additional Resources

LogiCORE IP CAN v4.2 www.xilinx.com

104
PG096 December 18, 2012

http://www.xilinx.com

& XILINX.
Appendix A

Verification, Compliance, and
Interoperability

Compliance Testing
Xilinx VHDL OPB CAN Core Version 1.00.a passed ISO CAN Conformance Tests.

The same compliance results are applicable for the current version of the core.

LogiCORE IP CAN v4.2 www.xilinx.com 105
PG096 December 18, 2012

http://www.xilinx.com

& XILINX.
Appendix B

Migrating

This appendix describes migrating from older versions of the IP to the current IP release.

For information on migrating to the Vivado™ Design Suite, see the Vivado Design Suite User
Guide Product Guide (UG911)

Parameter Changes in the XCO File

Table B-1: Parameter Changes in the XCO File

component_name can_v4_2
number_of_acceptance_filters 0
rx_fifo_depth 2
tx_fifo_depth 2

Parameter Values in the XCI File

Table B-2: Parameter Values in the XCI File

Parameter Value
C_CAN_RX_DPTH 2
C_CAN_TX_DPTH 2
C_CAN_NUM_ACF 0
C_FAMILY virtex7
LogiCORE IP CAN v4.2 www.xilinx.com 106

PG096 December 18, 2012

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/ug911-vivado-migration.pdf

& XILINX.
Appendix C

Debugging

This appendix includes details about resources available on the Xilinx Support website and
debugging tools. In addition, this appendix provides a step-by-step debugging process and
a flow diagram to guide you through debugging the CAN core.

The following topics are included in this appendix:

» Finding Help on Xilinx.com
« Debug Tools
« Simulation Debug

« Interface Debug

Finding Help on Xilinx.com

To help in the design and debug process when using the CAN core, the Xilinx Support web
page (www.xilinx.com/support) contains key resources such as product documentation,
release notes, answer records, information about known issues, and links for opening a
Technical Support WebCase.

Documentation

This product guide is the main document associated with the CAN core. This guide, along
with documentation related to all products that aid in the design process, can be found on
the Xilinx Support web page (www.xilinx.com/support) or by using the Xilinx
Documentation Navigator.

You can download the Xilinx Documentation Navigator from the Design Tools tab on the
Downloads page (www.xilinx.com/download). For more information about this tool and the
features available, open the online help after installation.

Release Notes

Known issues for all cores, including the CAN core are described in the IP Release Notes
Guide (XTP025.PDF).

LogiCORE IP CAN v4.2 www.xilinx.com 107
PG096 December 18, 2012

http://www.xilinx.com
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/download
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf

& XILINX. Appendix C: Debugging

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Known Issues

Answer Records include information about commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a Xilinx product.
Answer Records are created and maintained daily ensuring that users have access to the
most accurate information available.

Answer Records for this core can also be located by using the Search Support box on the
main Xilinx support web page. To maximize your search results, use proper keywords such
as

« Product name
« Tool message(s)

« Summary of the issue encountered
A filter search is available after results are returned to further target the results.

Answer Records for the CAN core can be found at:

www.xilinx.com/support/answers/37994.htm

LogiCORE IP CAN v4.2 www.xilinx.com 108
PG096 December 18, 2012

http://www.xilinx.com
http://www.xilinx.com/support/solcenters.htm
www.xilinx.com/support
http://www.xilinx.com/support/answers/37994.htm

& XILINX. Appendix C: Debugging

Contacting Technical Support

Xilinx provides premier technical support for customers encountering issues that require
additional assistance.

To contact Xilinx Technical Support:

1. Navigate to www.xilinx.com/support.

2. Open a WebCase by selecting the WebCase link located under Support Quick Links.
When opening a WebCase, include:

« Target FPGA including package and speed grade.
« All applicable Xilinx Design Tools and simulator software versions.

« Additional files based on the specific issue might also be required. See the relevant
sections in this debug guide for guidelines about which file(s) to include with the
WebCase.

Debug Tools

f IMPORTANT: There are many tools available to address CAN core design issues. It is important to know
which tools are useful for debugging various situations.

Example Design

The CAN core is delivered with an example design that can be synthesized, complete with
functional test benches. Information about the example design can be found in Chapter 6,
Detailed Example Design.

ChipScope Pro Debugging Tool

The ChipScope™ Pro debugging tool inserts logic analyzer, bus analyzer, and virtual I/O
cores directly into your design. The ChipScope Pro debugging tool allows you to set trigger
conditions to capture application and integrated block port signals in hardware. Captured
signals can then be analyzed through the ChipScope Pro Logic Analyzer tool. For detailed
information for using the ChipScope Pro debugging tool, see www.xilinx.com/tools/

cspro.htm.

LogiCORE IP CAN v4.2 www.xilinx.com 109
PG096 December 18, 2012

http://www.xilinx.com
www.xilinx.com/support
http://www.xilinx.com/support/clearexpress/websupport.htm
www.xilinx.com/tools/cspro.htm
www.xilinx.com/tools/cspro.htm

& XILINX. Appendix C: Debugging

License Checkers

If the IP requires a license key, the key must be verified. The ISE and Vivado design tool
flows have several license check points for gating licensed IP through the flow. If the license
check succeeds the IP can continue generation, otherwise generation halts with error.
License checkpoints are enforced by the following tools:

« ISE flow: XST, NgdBuild, Bitgen

« Vivado flow: Vivado Synthesis, Vivado Implementation, write_bitstream (Tcl command)

IMPORTANT: /P license level is ignored at checkpoints. The test confirms a valid license exists, it does
not check IP license level.

LogiCORE IP CAN v4.2 www.xilinx.com 110
PG096 December 18, 2012

http://www.xilinx.com

& XILINX

Appendix C: Debugging

Simulation Debug

The simulation debug flow for ModelSim is illustrated below. A similar approach can be

used with other simulators.

ModelSim
Simulation Debug

Check for the latest supported no

versions of ModelSim in the
CAN Datasheet. Is this
version being used?

If VHDL, do you have a
mixed-mode simulation
license?

Does simulating the CAN
Example Design give the
expected output?

yes

Do you get errors
referring to failing to
access library?

-

no

If problem is more design specific, open a case
with Xilinx Technical Support and include a
wif file dump of the simulation. For the best
results, dump the entire design hierarchy.

LogiCORE IP CAN v4.2
PG096 December 18, 2012

www.xilinx.com

»(Update to this version. >

Obtain a mixed —mode simulation |ice@

See simulating the CAN Example Design

in the CAN Getting Started Guide

Need to compile and map the proper
libraries. See “Compiling Simulation
Library Section” .

X13141

111

http://www.xilinx.com

& XILINX. Appendix C: Debugging

Interface Debug

AXl4-Lite Interfaces

Read from a register that does not have all Os as a default to verify that the interface is
functional. See Figure C-2 for a read timing diagram.

E ModelShm SE 18.1a [=IEl=]
Bl Edt Yiew Complle Sevulato Add Wy Tools Layout Bookmarks Window B
(0-cRe& s @02 | o-AF | B A ounn

[B om0 wHBUMNC (EUWS| At AL LoveSimlate |

|| Columnlapsut [AliCalumuns |%-3-08.8||[| pwDwd| |k GHsll | dbess i

| 3w+ o€2 3 | Soarch: [T ‘rpne | RQARRH | LLE (NI

K M |
aclk 0 i Ly T o o Y ey T Wy T Y e T o O ey TR ¥ ey M s |
#5 AXI ARESETN 1

« d araddr 0 [1] o
& arvalid 1] .._..._..._.r__l-
arrasdy 1 | 1
34 rdata 0] 15 i
= & rrasp [1] 1]
rvalid 0 T .
S rready 0 S I —
| ! ! ! il
A0 Mn‘“Ilslmmnp!|||||F|I|“|||||||I-|~ﬂ|||||I|‘|:m||1|-4--l|--|||||||:

Figure C-2: Read Timing Diagram

LogiCORE IP CAN v4.2 www.xilinx.com 112
PG096 December 18, 2012

http://www.xilinx.com

& XILINX. Appendix C: Debugging

Output s_axi_arready asserts when the read address is valid, and output
s_axi_rvalid asserts when the read data/response is valid. If the interface is
unresponsive, ensure that the following conditions are met.

« The S_AXI_ACLK and ACLK inputs are connected and toggling.

« The interface is not being held in reset, and S_AXI_ARESET is an active-Low reset.
« The interface is enabled, and s_axi_aclken is active-High (if used).

« The main core clocks are toggling and that the enables are also asserted.

« If the simulation been run, verify in simulation and/or a ChipScope debugging tool
capture that the waveform is correct for accessing the AXI4-Lite interface.

LogiCORE IP CAN v4.2 www.xilinx.com 113
PG096 December 18, 2012

http://www.xilinx.com

& XILINX.
Appendix D

Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

References

Unless otherwise noted, IP references are for the product documentation page. These
documents provide supplemental material useful with this product guide:

1. ISO 11898-1: Road Vehicles - Interchange of Digital Information - Controller Area
Network (CAN) for High-Speed Communication.

2. Controller Area Network (CAN) version 2.0A and B Specification, Robert Bosch GmbH.

3. Vivado™ Design Suite user documentation (www.xilinx.com/cgi-bin/docs/
rdoc?v=2012.4;t=vivado+docs)

4. Vivado Design Suite User Guide, Implementation (UG911)

Technical Support

Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support of product if implemented in devices that are not defined in the
documentation, if customized beyond that allowed in the product documentation, or if
changes are made to any section of the design labeled DO NOT MODIFY.

LogiCORE IP CAN v4.2 www.xilinx.com 114
PG096 December 18, 2012

http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/support
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.4;t=vivado+docs
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.4;t=vivado+docs
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/ug911-vivado-migration.pdf

& XILINX. Appendix D: Additional Resources

See the IP Release Notes Guide (XTP025) for more information on this core. For each core,
there is a master Answer Record that contains the Release Notes and Known Issues list for
the core being used. The following information is listed for each version of the core:

« New Features
« Resolved Issues

e Known Issues

Revision History

Date Version Revision

Initial release of document in product guide format. This product guide
replaces DS798 and UG765. The following items indicate new information
that those two documents did not have.

» Updated licensing and ordering information in Chapter 2.

« Added resource numbers and maximum frequencies in Chapter 3,
Product Specification.

» Updated all screen captures.
» Added false path constraints and clock frequencies.

» Added XCO file parameter values to Chapter 7: Customizing and
Generating the Core.

» Added compliance testing information to Appendix A.
» Added Appendix C, Debugging.

12/18/12 1.0

Notice of Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties
which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in
a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring
fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/
warranty.htm#critapps.

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zyng, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

LogiCORE IP CAN v4.2 www.xilinx.com 115
PG096 December 18, 2012

http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm#critapps

	LogiCORE IP CAN v4.2
	Table of Contents
	Section I: Summary
	IP Facts
	Overview
	Feature Summary
	Configuration Registers
	Transmit and Receive Messages
	TX High Priority Buffer
	Acceptance Filters
	CAN Protocol Engine
	Bit Timing Logic
	Bit Stream Processor

	Operating System Requirements
	Recommended Design Experience
	Licensing and Ordering Information

	Product Specification
	Operational CAN Controller Modes
	Configuration Mode
	Normal Mode
	Sleep Mode
	Loop Back Mode

	Standards
	Performance
	Maximum Frequencies

	Resource Utilization
	Port Descriptions
	Xilinx CAN Controller Configuration Register Descriptions
	Control Registers
	Transfer Layer Configuration Registers
	Error Indication Registers
	CAN Status Register (0x018)
	Interrupt Registers
	Message Storage
	Acceptance Filters

	Designing with the Core
	Configuring the CAN Controller
	Programming the Configuration Registers
	Transmitting a Message
	Extra Design Consideration

	Clocking
	Resets
	Software Reset
	System Reset
	Exceptions
	Reset Synchronization

	Interrupts
	Xilinx CAN Controller Design Parameters

	Section II: Vivado Design Suite
	Customizing and Generating the Core
	CAN Graphical User Interface
	Parameter Values in the XCI File
	Output Generation
	Directory and File Contents
	<project_name>/<project_name>.srcs/sources_1/ip/ <component name>

	Constraining the Core
	Required Constraints
	Clock Frequencies

	Detailed Example Design
	Generating the Core
	Vivado IP Catalog
	Field Descriptions

	Implementing the Example Design
	Simulating the Example Design
	Setting up for Simulation
	Functional Simulation
	Timing Simulation

	Directory and File Contents
	Example Design Configuration
	Demonstration Test Bench
	Test Bench Functionality
	Customizing the Demonstration Test Bench

	Implementation

	Section III: ISE Design Suite
	Customizing and Generating the Core
	GUI
	Parameter Values in the XCO File
	Output Generation
	Directory and File Contents

	Constraining the Core
	Device and Package Selection
	Location Constraints
	Placement Constraints
	Timing Constraints
	PERIOD Constraints for Clock Nets
	Timing Ignore Constraints

	I/O Constraints
	I/O Standards

	Detailed Example Design
	Generating the Core
	Field Descriptions

	Implementing the Example Design
	Simulating the Example Design
	Setting up for Simulation
	Functional Simulation
	Timing Simulation

	Directory and File Contents
	Implementation Scripts
	Simulation Scripts

	Example Design Configuration
	Demonstration Test Bench
	Test Bench Functionality
	Customizing the Demonstration Test Bench

	Section IV: Appendices
	Verification, Compliance, and Interoperability
	Compliance Testing

	Migrating
	Parameter Changes in the XCO File
	Parameter Values in the XCI File

	Debugging
	Finding Help on Xilinx.com
	Documentation
	Release Notes
	Solution Centers
	Known Issues
	Contacting Technical Support

	Debug Tools
	Example Design
	ChipScope Pro Debugging Tool
	License Checkers

	Simulation Debug
	Interface Debug
	AXI4-Lite Interfaces

	Additional Resources
	Xilinx Resources
	References
	Technical Support
	Revision History
	Notice of Disclaimer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

