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ICMS Introduction

Model Selection,  Design, & Pruning

 2D Detection

 Pose Estimation

 Face Detection

Deployment Software

Distracted Driver Development

Summary
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Interior Cabin Monitoring Systems

3

 ICMS can involve many tasks:

 Detecting the location/presence of occupants

 This could be used to remove seat bladders for occupant 
detection, or as preprocessing for other tasks

 Detecting child/infant seats

 Could be used to ensure no child is left in the vehicle

 Detecting the body position of the occupants (leaning 
forward/backward)

 e.g. to assist with how to deploy air bags

 Detecting whether the seat belt is buckled

 Detecting other objects as they might be left behind in 
a ride share or taxi

 Gesture detection/recognition for cabin controls

 From Eyeris: https://www.eyeris.ai/automotive/

https://www.eyeris.ai/automotive/
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Statement of Intent
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What is intended:

 To demonstrate how a Xilinx device and DPU can be used to implement ICMS relevant 
networks 

 To provide a starting point for customer specific and/or joint development

What is not intended:

 This is not a fully tested automotive solution

 This is not intended as licensable IP

This development was limited to open-source data with limited resources

1) Open-source data (MS COCO 2017 and SVIRO datasets)

2) Publicly available models

 Models should ideally be trained using the production intent imager with real-world in cabin scene

 1x engineer working part time for a few weeks
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Model Selection Options
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 Many models already available from the Vitis AI Model Zoo 

 Pose Detection Options: 

 SP Net model

 Used recursively with a pedestrian detector for pose estimation

 SPNet can run ~3.5ms, >270 FPS, even on B1600 DPU

 OpenPose

 Whole scene pose estimation

 Can scale input dimensions to run faster, but by default only achieves 1.8 FPS on B1600 DPU

 Eyeris Upper Body Pose Model

 DPU deployment/testing in progress

 Trained on real in-cabin data

 2D Detection Options:

 Densebox (face detection)

 RefineDet (pedestrian)

 Yolov2/Yolov3/Yolov3-SPP/Yolov4-leaky-relu (general object/pedestrian)

 SSD (general object/pedestrian)

 All different types of backbones are possible (VGG, Mobilenet, Resnet, Inception, etc.)

https://github.com/Xilinx/AI-Model-Zoo
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2D Detection Task
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2D Detection Datasets
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SVIRO is a free synthetic dataset (Synthetic Vehicle 

Interior Rear Seat Occupancy Dataset)

 https://arxiv.org/abs/2001.03483

 https://sviro.kl.dfki.de/

 ~25K Images with 4 classes

 Person, Infant Seat, Child Seat, Everyday Object

COCO 2017 is a free detection dataset with real 

world images, though not taken in the context of the 

interior vehicle cabin

 https://cocodataset.org/#home

 ~123K Images with 80 classes

 Primary focus was on the pedestrian class (left this class as is)

 Included the “cell phone” class 

 Combined the cat and dog class into a “pet” class

 Combined the following classes into the Everyday Object class:

 Backpack, umbrella, handbag, suitcase, frisbee, sports ball, baseball bat, baseball 
glove, tennis racket, bottle, cup, banana, apple sandwich, orange, hot dog, pizza, 
donut, laptop, book

https://arxiv.org/abs/2001.03483
https://sviro.kl.dfki.de/
https://cocodataset.org/
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Initial Detection Model Development
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 For all models

 Started with Pretrained COCO weights and fine-tuned models

 Trained in Darknet from AlexeyAB: https://github.com/AlexeyAB/darknet

 Initial testing perform on a ZCU102 (ZU9 device)

 Hardware and board image already setup to support Vitis-AI and DPU

 Further experimentation done on Ultra96 Board

 Started with Yolov4 model

 Some modifications required to run the model on the DPU (smaller SPP kernel sizes, replace MISH with leaky-ReLU)

 Achieved high accuracy and model trained easily, however, the Vitis AI Optimizer doesn’t yet support Yolov4

 Researched Yolov4-tiny model

 Trains well and produces good accuracy

 There are some incompatibilities in the route layers for converting this model to Caffe/TF/Keras which is required for deployment

 Migrated to Yolov3-SPP

 More difficult to train, but fully compatible with Vitis AI Optimizer Toolchain

 Only modifications needed were to reduce # of classes and reduce SPP kernel sizes to 3, 5, & 7

 Experimented with pruning to show deployment path to ZU3

 Realized that pruning on SVIRO dataset produced poor “real world” performance -> augmented dataset with COCO images

https://github.com/AlexeyAB/darknet
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Yolov3-SPP Pruning
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*FPS numbers are for ZCU102 board (ZU9 device) with 3x B4096 DPUs

*Trend is showing that further pruning should be possible and enable deployment on ZU3 device
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Deployment Software
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Started with the Vitis-AI-Library software for SSD+Pose Detect

 https://github.com/Xilinx/Vitis-AI/tree/master/Vitis-AI-Library/overview/samples/posedetect

 Supports video with multithreading

 Uses the VART APIs

 Supports key-point detection with SP-Net model

Modified the software to use Yolov3-SPP instead of SSD for the detection stage

 Modified the number of classes from 1 to 6

 Modified to display bounding boxes with labels as well as keypoints

 Added Face Detection using the Densebox 320x320 model

Added tracking software to aid with continuity of detections

 Detections are tracked from frame to frame

 Detections are matched to existing known detections based on class, size, and position

 Includes programmable thresholds (e.g. number of frames):

 If a detection exceeds the maximum threshold without a match it is deleted

 A detection is not displayed until it meets a minimum threshold

https://github.com/Xilinx/Vitis-AI/tree/master/Vitis-AI-Library/overview/samples/posedetect
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Software Flow

Initialize Yolo, DenseBox, and SPNet objects

Run Yolo Model
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Processing (sigmoid, 

NMS, etc)

Track, Match, and 
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Distracted Driver Model Development
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Goal is to evaluate the feasibility of deploying distracted driver detection model 

 Potentially use a region of interest from the ICMS camera or

 Add a second camera pointed at the driver and run this model alongside the other tasks

 In 2016, State Farm produced a distracted driver dataset with 10 classes: 

 safe driving, texting/talking cell phone with right/left hand (4 classes), doing hair/makeup, 

operating the radio, reaching behind, and talking with passenger 

 Consists of ~25000 labelled images and ~75000 test images

Started by processing the images/labels into tfrecords

Trained DenseNetX from the Vitis AI Tutorials on this dataset

 Working through some deployment issues with global average pooling layer

Also attempted training Keras ResNet50 on the dataset 

 Model was initially highly overfitted because of limited amount of labelled data

https://www.kaggle.com/c/state-farm-distracted-driver-detection/overview
https://github.com/Xilinx/Vitis-AI-Tutorials/tree/DenseNetX_DPUv2
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Distracted Driver Dataset 
Improvements
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Labeled an additional 25,000 images 

from the test dataset

 Used the trained DenseNetX model to 
classify the images into categories

 Wrote a python GUI utility to assist with 
correcting and wrong labels

 Combing the left/right classes for cell phone 
and texting together

Added horizontal flips which results in 

a total of ~100K samples
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Distracted Driver Model Development
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Trained Keras ResNet50 on new dataset 

using TensorFlow 2.3 in Vitis AI 1.3

Floating point model validation accuracy 

reached 98.03% for Top1

 9000 images in validation set

Quantized model accuracy:

 Top1 : %97.88

 Top5 : %99.94 

Model was deployed on the ZCU102 and can 

still operate in conjunction with ICMS models 

at >30 FPS
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Other/Future Work
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Already Ported to Ultra96V2 platform using MIPI input sensor

 Input scaling and CSC performed on streaming input video using VPSS and Vitis 
Vision Libraries

 Achieved ~11-12FPS (B2304 DPU@250/500MHz) and possible to achieve higher 
performance with further pruning

Working on deploying partner (Eyeris) model for upper body pose 

detection (trained on better dataset for cabin monitoring)

Planning to port to RGB-IR sensor and integrate with either ZCU102 or 

ZCU104 board using GMSL or FPD-Link III FMC

 Investigating OmniVision and On-Semi sensors

 E.g. OV2778, OV2312, AR0239, etc.

 Potential for model retraining with IR data

Explore Drowsy Driver Algorithms

Explore Gesture Recognition

Planning to implement in Ford Escape demo vehicle
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Summary
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Vitis AI provides valuable components for rapid demo development

 Pre-trained models from the Vitis AI Model Zoo

 Vitis AI Library example code for rapid model deployment

 Pre-built ZCU102 and ZCU104 board images for hardware testing 

 no FPGA design or custom Linux build needed

Vitis AI Optimizer enabled >3x acceleration of the detection model

 Further optimization possible

Xilinx Zynq UltraScale+ enables a scalable platform for ICMS/DMS 

custom chip down solutions
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Thank You


