
© Copyright 2021 Xilinx

Vivado Adapt 2021
Design Closure
Methodology, tips, and tricks for achieving better Quality-of-Results (QoR)

Feb 11, 2021

© Copyright 2021 Xilinx

Design Closure Sessions

2

Session 1

Methodology, tips, and tricks for achieving better Quality-of-Results

Session 2

Using Timing Closure Assistance tools to address tough timing issues

Session 3

Power Constraints, best practices for an accurate Report Power estimation

© Copyright 2021 Xilinx

Agenda - Methodology, Tips, and Tricks

3

Vivado Tool and Methodology Updates

Synthesis

 Key Synthesis Features (2020.X)

 Tips and Tricks

Implementation Updates

 Key Implementation Features (2020.X)

 Versal Implementation Guidelines

© Copyright 2021 Xilinx

Tool and Methodology Updates

4

© Copyright 2021 Xilinx

Vivado Compile Time Improvements

5

Synthesis speedup

 2020.1: Constant RTL function compile times reduced to tiny fraction of 2019.2 time

 2020.2: Average 20% overall improvement compared to 2020.1 (Versal devices)

Placer 20% average speedup on SSI designs with UltraThreads

 Initial support (2020.2): enabled for Default, RuntimeOptimized, and Quick directives

 Planned improvements (2021.x): enabled for other directives using
place_design -ultrathreads

 Use with general.maxThreads >= number of SLRs

Router 33% average speedup in 2020.2 compared to 2019.2

 Major initialization tasks are now completed offline

 Improved SLR crossing routing algorithms

© Copyright 2021 Xilinx

Incremental Synthesis

6

HDL Synthesis Implementation
Reference

Run

Synthesis ImplementationHDL

DCP Reuse

Incremental

Run

Synthesis ImplementationHDL

DCP Reuse

Incremental

Run

Changes

Changes

Time

Bitstream

Bitstream

Bitstream

• Incremental Compile includes Synthesis, runs almost twice as fast!

• Setup in Synthesis Options or use read_checkpoint -incremental --- See UG901

© Copyright 2021 Xilinx

New Methodology Checks

7

UltraFast Methodology checks are built into

Vivado reports

 Access under Reports menu or Tcl command
report_methodology

 Automatically generated in Vivado projects

Review and correct or waive warnings and

critical violations!

Rule ID Severity Description

XDCB-6 Advisory Timing constraint pointing to hierarchical pins

TIMING-54 Critical Warning Scoped false path or clock group constraint between clocks

TIMING-56 Warning Missing logically or physically exclusive clock groups constraint

Recently added checks in 2020

© Copyright 2021 Xilinx

Help -> Leave Feedback

Community Forums

 Discussions

 Categories for all tools

 Experts and other users

 Design Blogs

 Written by Xilinx experts

 Most new features are introduced in blogs

 Leave comments at end!

Vivado: Feedback, Discussions, and Blogs

8

© Copyright 2021 Xilinx

Tool and Methodology Takeaways

9

Enable Incremental Synthesis with Incremental Compile to speed up iterations

Review Methodology Reports and correct or waive warnings and critical

violations

Share feedback on Vivado, join online forum discussions, and review and

comment on our blogs

© Copyright 2021 Xilinx

Key Synthesis Features (2020.X)

10

© Copyright 2021 Xilinx

Expanded Language Support

11

VHDL-2008 IEEE fixed-point and floating-point packages

 Now can target both packages using ieee statements instead of using an intermediate file

 use ieee.float_pkg.all;

 use ieee.fixed_pkg.all;

SystemVerilog: constant strings

 Strings can be used as parameters/localparams where the size of the string is fixed (Not to
be used in logic)

 Support for methods Len(), Getc(), Toupper(), Tolower(), Compare(), Atopi(), Atohex(),
Atooct(), Atobin(), Atoreal()

Mixed language support - passing generics and parameters in between VHDL

and Verilog improved

 Can handle multidimensional arrays/records/structs

© Copyright 2021 Xilinx

Maps to a mix of LUTRAM, Block RAM, and UltraRAM for highest efficiency

 2020.1: HDL attribute ram_style=mixed added

 2020.2: Pipeline register mapping

 2021.1: Planned support for XPMs

Heterogeneous RAM Mapping

12

URAMURAM

URAMURAM

5184x128
URAM URAM

Example:

5184x128 array

4 URAMs

holds 8192x144

so portions are

wasted

2 URAMs

4 BRAMs

128 LUTRAMs ~

8 SLICEs

Heterogeneous

Mapping:

Note: report_ram_utilization reports

bit utilization percentage (depth x width util)

5184x128

© Copyright 2021 Xilinx

Logic Compaction Optimization

13

Reduce slice utilization of low-precision arithmetic

Available globally as a directive or per-hierarchy

using BLOCK_SYNTH cell property

Supports both CARRY and LOOKAHEAD (Versal)

Versal example:

9x9 Multiply-Add, 3 stages

Default: timing-optimized

240 LUTs, 12 LOOKAHEADs

49 Slices

Smaller with Logic Compaction

186 LUTs, 27 LOOKAHEADs

40 Slices

© Copyright 2021 Xilinx

Ease of Use Enhancements

14

SRL_STYLE for static shift registers becomes a global

option, additional usage now includes:

 Hierarchical cells
set_property BLOCK_SYNTH.SRL_STYLE REG_SRL [get_cells mod_inst]

 Tcl command
synth_design –top <top_name> -srl_style reg_srl_reg ...

Override KEEP and DONT_TOUCH in RTL code

 Set KEEP or DONT_TOUCH false in XDC to optimize away

 Useful when RTL code cannot be modified

If used in XDC files, limit USED_IN to Synthesis - will generate critical

warnings in Implementation due to constraints applied to optimized nets

Value Style

register no SRL, all FFs

srl SRL only

srl_reg SRL->FF

reg_srl FF->SRL

reg_srl_reg FF->SRL->FF

block block RAM

HDL:

Synthesis XDC:

© Copyright 2021 Xilinx

Fewer Block RAM aspect ratios: 8kx4, 16kx2, 32kx1 not supported

UltraRAM initialization is supported, more aspect ratios: 8kx16, 16kx8, 32kx4

Synthesizing for Versal: RAM Mapping

15

Depth Width UltraScale+ Versal
210 (1k) 32 1 1

211 (2k) 16 1 1

212 (4k) 8 1 1

213 (8k) 4 1 2

214 (16k) 2 1 4

215 (32k) 1 1 8

Block RAMs vs array sizes

Depth Width UltraScale+ Versal
212 (4k) 32 1 1

213 (8k) 16 2 1

214 (16k) 8 4 1

215 (32k) 4 8 1

UltraRAMs vs array sizes

© Copyright 2021 Xilinx

Synthesizing for Versal: DSP Block Mapping

16

Complex Multiplier: 18x18 in 2 DSP blocks (3 required for UltraScale+)

Dot Product: single DSP block holds 3 9x8 signed multiply-add

See Language Templates

Floating point modes:

DSPFP32 instantiation required

See AM004 for further details on Versal DSP

© Copyright 2021 Xilinx

Synthesis Tips & Tricks

17

© Copyright 2021 Xilinx

Optimizing a Critical Multiplexer 1/2

18

Multiplexer in the critical path

 Select path driven by counter->comparator

 Mux inputs are driven by adder-subtractor

Can the multiplexer be optimized further?

Device : xcvc1902-vsva2197-1LP-i-S

Frequency : 500 MHz

© Copyright 2021 Xilinx

Optimizing a Critical Multiplexer 2/2

19

Trick: replace counter - comparator with one-hot shift

register

 No complex decode logic, single bit for mux selection

 Long shift register can be mapped to SRLs (LUTRAMs)

Device : xcvc1902-vsva2197-1LP-i-S

Frequency : 500 MHz

Version LUTs FFs WNS Critical Path

Original 24 56 -0.298 ns FF -> LUT -> 2 LOOKAHEADs -> FF

Modified 24 49 0.232 ns FF -> 2 LOOKAHEADs -> FF

© Copyright 2021 Xilinx

Optimizing Logical Comparisons 1/2

20

Comparing two bit vectors: count and din

 Is count >= din?

 Critical path: add-sub -> 3-input mux -> comparator

How can the critical path be improved?

Device : xcvc1902-vsva2197-1LP-i-S

Frequency : 500 MHz

© Copyright 2021 Xilinx

Optimizing Logical Comparisons 2/2

21

Trick: move final comparison before 3-input mux

 3 comparators in parallel, area tradeoff

Device : xcvc1902-vsva2197-1LP-i-S

Frequency : 500 MHz

Version LUTs FFs WNS Critical Path

Original 25 23 -0.501 ns FF -> LOOKAHEAD -> LUT -> 2 LOOKAHEADs -> FF

Modified 42 23 0.311 ns FF -> 2 LUTS -> LOOKAHEADs -> FF

count + 1 >= din
count - 1 >= din
count >= din

count_next >= din

© Copyright 2021 Xilinx

Key Synthesis Takeaways

22

New features help you use device resources more efficiently

 Logic Compaction for low-precision arithmetic

 RAM_STYLE = mixed for heterogeneous RAM mapping

Remember key differences when migrating to Versal

 Versal has more UltraRAM capabilities, fewer BRAM options

 Versal DSP block natively supports complex multiplication and dot products

To improve critical paths, look at the Elaborated Design and think of ways to

improve the data flow

© Copyright 2021 Xilinx

Key Implementation Features (2020.X)

23

© Copyright 2021 Xilinx

Pblocks are Treated as Soft By Default

Soft Pblocks have been supported since Vivado 2019.1

 In 2020.2 Pblocks are treated as Soft by default and are honored until
Physical-Synthesis-In-Placer in Global Placement

 Reduces need to update pblocks when changing design

 Reduces pblock restriction on congestion handling in rest of placer flow

 Allows all physical optimizations (PSIP, phys_opt_design)

DFX parent & child pblocks = hard by default
 HD.ISOLATED

 HD.RECONFIGURABLE

 HD.TANDEM

 HD.TANDEM_IP_PBLOCK

 HD.RECONFIGURABLE_CONTAINER

User constraint IS_SOFT=FALSE carried forward in DCPs from

previous Vivado releases when loaded in Vivado 2020.2

Hard Pblocks

Soft Pblocks

24

© Copyright 2021 Xilinx

Physical-Synthesis-In-Placer (PSIP) Improvements

25

Equivalent Driver Re-wire Optimization

 Loads are redistributed between logically-equivalent drivers based
on their placements

 Helps reduce routing resource utilization and congestion

After rewiring it is possible that some inputs of a LUT are

connected to the same net and LUT reduction can result

© Copyright 2021 Xilinx

PSIP Replication Properties

26

MAX_FANOUT_MODE and

FORCE_MAX_FANOUT allow user to direct

replication in PSIP

 Works for FF and LUT

For replication of drivers with far-apart loads

 MAX_FANOUT_MODE values

 MACRO (Block RAM, UltraRAM, DSP)

 CLOCK_REGION

 SLR

© Copyright 2021 Xilinx

MAX_PROG_DELAY Capped For SLR Crossing
Performance

27

Placer limits MAX_PROG_DELAY for UltraScale+ devices

 Minimizes clock skew on SLR crossing when balancing clock network delays

 USER_MAX_PROG_DELAY property allows user to cap delays further if required

Clock Utilization Report shows programmable delays used for each clock

© Copyright 2021 Xilinx

Versal Implementation Guidelines

28

© Copyright 2021 Xilinx

Versal Changes to Fabric

Versal has a Uniform fabric

 Half of LUTs in every CLB are LUTRAM/SRL capable

 Even Block RAM & UltraRAM distribution

Simplified CLB architecture with fast LUT cascade

 No F7/F8/F9 muxes

 CARRY8 replaced by LOOKAHEAD8 and LUTCY

 Fast LUT cascade

 More LUT combining options

To take full advantage of the architectural changes need to re-synthesize

 Remove instantiated legacy primitives and synthesis attributes

 Re-targeting prior architecture netlist will result in sub-optimal implementation

29

© Copyright 2021 Xilinx

UltraScale+ uses 8 logic levels, 6 routes with CARRY8s

 Datapath delay = 3.822 ns

Comparing CARRY8 vs. LOOKAHEAD8/LUTCY

30

Versal uses 10 logic levels but still only 6 routes with LOOKAHEAD8s

 Datapath delay = 3.635 ns

Above results require re-synthesis of RTL

© Copyright 2021 Xilinx

Versal Multi-Clock Buffer - MBUFG

31

Versal supports a new Multi-Clock Buffer (MBUFG) that generates up to 4

output clocks from a single input clock

 Output clocks are /1, /2, /4, and /8 versions of input clock

MBUFG versions exist for BUFGCE, BUFGCE_DIV, BUFG_PS, BUFG_GT

and BUFGCTRL

MBUFG is a logical buffer with 4 outputs (O1, O2, O3, O4)

 Physical implementation uses BUFG* and BUFDIV_LEAF leaf clock dividers

 BUFDIV_LEAF buffers are driven by horizontal clock distribution and are the final clock buffer for fabric loads
(CLB, DSP, BRAM, URAM) and most hard-IP blocks (GTYP_QUAD, MRMAC, etc.)

© Copyright 2021 Xilinx

Versal MBUFG For Synchronous CDC

MBUFGCE

 Common node closer to path

 Inter Clock Skew ~ 0.174ns

 Inter Clock FMAX > 600 MHz

Parallel BUFGCE

 Common node at driver

 Can be far away if driver in XPIO
clock region or GT Column

 Inter Clock Skew > 0.500ns

 Inter Clock FMAX < 500 MHz
32

© Copyright 2021 Xilinx

MBUFG Transform In Logical Optimization Phase

opt_design –mbufg_opt for global transformation of parallel BUFG -> MBUFG

MBUFG_GROUP property allows for targeted transformation

 Set precedents over which BUFG* should get converted to MBUFG*

Transformations are prevented if timing constraints could result in mismatch

set_property MBUFG_GROUP group1 [get_nets -of [get_pins {u_buf0a/O u_buf1a/O u_buf2a/O u_buf3a/O }]]

MBUFG_GROUP property

applied here

33

© Copyright 2021 Xilinx

Clocking Wizard Support for MBUFG

34

Inferred MBUFGCE

1. Select Output

Frequencies that

are /1, /2, /4, /8

2. Select “Buffer” or

“Buffer with CE”

as clock driver

Instantiated MBUFGCE

1. Select “MBUFGCE”

as clock driver

/1

/4
/8
/2

© Copyright 2021 Xilinx

Real World Example Of QoR Improvement with MBUFG

WNS went from -1.737ns to timing closed!

 impl_1_AIE2PLFP WNS=-1.737ns

 Default strategy implementation

 impl_2 WNS=0.024ns

 Default strategy implementation

 MBUFG transform using MBUFG_GROUP constraint

35

© Copyright 2021 Xilinx

Top Takeaways

36

Run methodology reports, review and fix critical violations and warnings

Synthesis has many options to drive improved results. In addition, you can

develop your own bag of tricks to fine tune critical logic

Vivado placement has very comprehensive replication to improve QoR, both

automatic and user-driven

Versal architecture brings many improvements over prior architectures, be

aware of key differences

 Re-synthesize for optimal results, and recode if necessary

 Take advantage of new capabilities like MBUFG, URAM initialization, DSP complex and dot-
product modes

© Copyright 2021 Xilinx

Where to Find More Information

37

User Guides on xilinx.com

 UG901 - Synthesis

 UG904 - Implementation

 UG906 - Design Analysis & Closure

 UG949 - UltraFast Methodology

Xilinx Community Forums

 Vivado RTL Development

 Blogs: Design and Debug Techniques

© Copyright 2021 Xilinx

Thank You

