
© Copyright 2021 Xilinx

Dynamic Function eXchange
featuring Abstract Shell

David Dye

Xilinx Adapt

February 2021

© Copyright 2021 Xilinx

Agenda

Vivado Dynamic Function eXchange (DFX) solution

New DFX flow capabilities

 Nested DFX

 Abstract Shell

Customer Testimonial – Abaco Systems

Forthcoming DFX Solutions

 Block Design Containers

 Versal DFX

>> 2

© Copyright 2021 Xilinx

Xilinx DFX Solution Overview

© Copyright 2021 Xilinx

Dynamic Function eXchange Overview

Expand System Flexibility

 Swap functions on the fly

 Perform remote updates while system is operational

Cost and Size Reduction

 Time-multiplexing hardware requires a smaller FPGA

 Reduces board space

 Minimizes bitstream storage

Deploy Dynamic Systems

 Dynamically load accelerated functions

 Change features to systems in the field

>> 4

© Copyright 2021 Xilinx

Vivado DFX Tool Flow

In-context multi-pass hierarchical place and route solution

 First pass: route static plus one Reconfigurable Module (RM) per Reconfigurable Partition (RP)

 Remaining passes: route new RMs in context of locked static image

 Floorplan required to identify static vs. dynamic resources

Partitioning, Floorplanning

RP_color RP_pos

RM_orig

RM_rev

RM_allc

RM_gray

RM_sepia

Static Logic

Static Logic

RP_color
RP_pos

Implementing Configuration

RM_origRM_allcSTATIC
Storing Results

To Implement Next Configuration

RM_graySTATIC RM_rev

Implementing Configuration
Storing New Results

import

implement implement

preserved

implemented implemented

>> 5

© Copyright 2021 Xilinx

New DFX Solution Capabilities

© Copyright 2021 Xilinx

DFX within DFX: Subdivide an existing DFX region into multiple lower-level DFX regions

 Implementation flow follows hierarchical order

 Change scope of static / reconfigurable boundary down to a lower level

New in Vivado 2020.1 for UltraScale and UltraScale+ devices

 Tcl script only; project mode support on roadmap

Nested DFX – Expand Silicon Flexibility

2nd order implementation, ver 11st order implementation 2nd order implementation, ver 2

RP: A

RM: A0

RP: A

RM: A0

RP: A

RM: A1
RP: W

RM: W2

RP: Z

RM: Z2

RP: X

RM: X2

>> 7

© Copyright 2021 Xilinx

Nested Dynamic Function eXchange

Technology enables Dynamic Platforms

D
E

C
O

U
P

L
IN

G

PCIe

Base

Platform

Reconfigurable

Partition

D
E

C
O

U
P

L
IN

G

D
E

C
O

U
P

L
IN

G

Provider

Dynamic

Platform

VER1: XDMA

User Dynamic Region

VER1:

Search Algorithm

Provider

Dynamic

Platform

VER2: QDMA

User Dynamic Region

VER2:

Crypto Algorithm

User Dynamic Region

VER3:

Video codec

Channel 1 Channel 2Channel 1

>> 8

Reconfigurable Partition

D
E

C
O

U
P

L
IN

G

Provider

Dynamic

Platform

User Dynamic Region A D
E

C
O

U
P

L
IN

G

User Dynamic Region B

© Copyright 2021 Xilinx

Abstract Shell for DFX

Abstract Shell = Static Design limited to a minimal

interface around target Reconfigurable Partition

 Everything needed to implement Reconfigurable Modules must
be included in DCP

Key Solution Details

 Write complete RP interface (logical, physical) in Abstract Shell

 Must achieve sign-off timing from Abstract Shell environment

 Generation of partial bitstreams from Abstract Shell environment

Key Benefits

1. Faster runtime and lower memory usage

2. Compile all Reconfigurable Modules in parallel

3. Hide proprietary static design information

4. Bypass IP license check tags for static design

Production release in Vivado 2020.2 for UltraScale+

Workspace

Abstract Shell

Shell

Workspace

Licensed

IP

Proprietary

Design

>> 9

© Copyright 2021 Xilinx

Standard DFX flow vs Abstract Shell flow

write_abstract_shell –cell

<RM cell> abs_shell.dcp

add_files abs_shell.dcp

add_files rm2_synth.dcp

link_design

#Implement

update_design –black_box

–cell <RM cell>

lock_design –level routing

write_checkpoint –force

static_bb.dcp

add_files static_bb.dcp

add_files rm2_synth.dcp

link_design

#Implement

Standard DFX flow

Abstract Shell flow

Routed DCP after

first implementation

Intermediate DCP to second implementation Second Implementation

Routed DCP

Update_design and

lock_design routines

embedded in

write_abstract_shell

Identical first

implementation flow

Identical second

implementation flow,

but different starting

checkpoint

>> 10

© Copyright 2021 Xilinx

Abstract Shell Reduces Implementation Runtime

Average improvement across varied suite: 3X faster

Runtime improvements depend on (static + RM) design size

 Alveo platforms have smaller static portions compared to general DFX (e.g. Customer A) designs

 Second order dependencies: Isolation of RM from static, tool algorithm heuristics

 Memory Usage: 10x Design Checkpoint (.dcp) size reduction

0.00

5.00

10.00

15.00

20.00

25.00

0:00:00

1:12:00

2:24:00

3:36:00

4:48:00

6:00:00

7:12:00

Im
p

ro
v
e

m
e

n
t
a

n
d

 S
iz

e
 (

X
)

R
u

n
ti
m

e

Full Shell Vs Abstract Shell
Geomean: > 3X

FullShell Abstract Shell Full / Abs runtime Full / Abs (RM + static) size

Customer A – 6X Alveo – 1.8X

>> 11

© Copyright 2021 Xilinx

Customer Example Design

VCU118 (VU9P) design

 3 SLR device, 1 RP

 2 memory interfaces + PCIe

 File size 331 MB

Full Shell (locked static)

 File size 266 MB

 97 min to implement RM

 21385 MB peak memory

Abstract Shell

 File size 10 MB

 27 min to implement RM

 14446 MB peak memory

>> 12

© Copyright 2021 Xilinx

More Examples of Customer Designs

Full Shell

RM result

Abstract Shell

RM result

>> 13

© Copyright 2021 Xilinx

Multi-User Scenario – Secondary User Programming Path

 Primary Customer shares Abstract Shell checkpoint and static design bitstream

 Runtime details (e.g. Decoupling) managed in static design and loading firmware

 All must be updated if anything in shell is updated, unless part of shell is in a second RP

 IMPORTANT: Primary customer must have redistribution rights for any IP in static design

 Secondary Customer programs first with delivered static bitstream

 Then with their own partial bitstreams

Shell

Empty

Workspace

Licensed

IP

Proprietary

Design

Workspace

Abstract Shell

Static + Grey Box Bitstream (full device)

Abstract Shell DCP

Partial Bitstreams

Primary User

Secondary User

>> 14

© Copyright 2021 Xilinx

Forthcoming DFX Solutions

© Copyright 2021 Xilinx

Block Design Containers in IP Integrator

Instantiate or create one Block Design

inside another

 Enables Modular Design for reusability

 Allows Team Based Design

 Enables DFX Flow

Block Design Container capabilities

 Build designs bottom-up or top-down

 Load different versions to active status

 Differentiate between synthesis and simulation

 Modify address information from top level

>> 27

© Copyright 2021 Xilinx

Block Design Containers enable DFX

BDC can be set as Reconfigurable

 Establishes logical instance with multiple
design variants

Use DFX Wizard to manage system

 Define Configurations

 Create and Manage Runs

 Set strategies and options

>> 28

© Copyright 2021 Xilinx

Key Advancements in Versal for DFX

>> 29

Configuration Performance Increase

 Maximum bandwidth 8X faster than Zynq US+ MPSoC (6.4GByte/sec)*

 Capable of reconfiguring 1M logic cells in under 8ms

Hardened Memory Controllers + DDRIO moved to periphery

 Memory controllers remain active while fabric is reconfigured

 Moving DDRIO out of fabric improves ease of floorplanning

Hardened PCIe + DMA

 PCIe enumerated with minimal programming

 PCIe can remain active during reconfiguration

Floorplan granularity twice as fine

 Programming images aligned to half clock region height

* When using an external interface such as PCIe, DDR memory, etc.

© Copyright 2021 Xilinx

Versal DFX – Network on Chip (NoC)

NoC can be split between static and reconfigurable functions

 Any static part of the NoC continues to operate during reconfiguration

 One or more endpoints and associated paths can be reconfigured

NoC Represented as multiple instances of Hierarchical IP

 Each instance represents a subset of the master and slave units

 Each instance is customized individually to specify number
and type of ports, connectivity and QoS

INI connects different sections of NoC

 Logical/physical boundary established

Quiescing traffic occurs automatically

during reconfiguration

>> 30

© Copyright 2021 Xilinx

Platform remains operational at all times

Remainder of the device is the

reconfigurable area or “Workload”

The Platform may consist of:

 PS/PMC

 PCIe (CPM) with XDMA

 GTs + XPIPE

 DDR Memory Interface
(XPIO/XPHY/XPLL/DDRMC)

 AXI Connections to fabric and AIE through NoC

 Note: These elements must be configured initially

through a primary boot interface such as QSPI

Platform/Workload Model

>> 31

Platform

© Copyright 2021 Xilinx

Dynamic Function eXchange Resources

From the Xilinx.com home page:

 Products

 Hardware Development

 Vivado Design Suite,

 then click Dynamic Function eXchange

Resources available:

 Documentation

 Tutorials

 Application Notes

 IP Product Guides

 Videos

DocNav

Design

Hub

>> 32

https://www.xilinx.com/products/design-tools/vivado/implementation/dynamic-function-exchange.html#trainingSupport

© Copyright 2021 Xilinx

Thank You

