
Collaborative and Accelerated
Design with Vivado IP Integrator

Amir Zeineddini

Agenda

1

Introduction

Designing with the IP Integrator

Building a Custom IP

Collaborative Features

Building a Versal Design

Summary

What is Vivado IP Integrator?

IP integration tool for creating complex platform designs

1
- 3

• GUI & script flow support

• Cross-probing and error correction in design views

• Collaboration support for modular team design

Interactive design
environment

• Simplifies AXI-based designs

• Integration of subsystems (RTL, HLS, …)

• Domain support: embedded, DSP, connectivity, analog, and logic IPs

Suitable to create
complex systems

• Revision control and packaging support for re-use

• System-level optimization

• Designer assistance, connection automation, parameter propagation

Ease-of-use at every
level

What are the benefits of Vivado IP Integrator?
1
- 3

Automation at various levels by being device- and platform-aware

Higher level of abstraction by enabling interface level connections

Re-usability of IP and subsystems by leveraging AXI standardization

Increase

Productivity

&

Decrease

Complexity

Accelerated Design with IP Integrator

5

Designing with IP Integrator

Creating a Block Design

Use Designer Assistance

Interface-level or net connections

Using Connection Automation

Canvas Toolbar

Address Editing

Design Validation

Parameter Propagation

Debug

Tcl Support

1
- 5

108933**slide

Creating and Packaging Custom IP

7

1-

4

IP Packager

The IP Packager is based on the IP-XACT
(IEEE-1685) standard

Converts your design into reusable IP

Packaging Flow

 Create a Vivado user design to package into an IP

 Add the IP to Vivado IP catalog to share among the design

team

1. Unzip the IP to a local directory

2. Add the directory to the IP repository of the IP catalog

1
- 7

Custom IP Packaging Files
1-

4

IP Packaging and Usage Flow

Module Referencing

RTL file needs to be added to the project

The Add Module dialog box lets you add a module in the current block design

 It displays the modules that are available to add to the block design

 If the entity/module name changes in the source RTL file, the referenced module instance

must be deleted from the block design and a new module should be added

1
- 8

Managing Remote IP Repository and Cache

12

User IP repositories allow users to add their own IP to the Vivado IP catalog

Significant reduction of compile time when used alongside a Remote IP Cache

Steps:

1. Create the following directory structure:

2. Package IP & point to remote IP repository and cache locations

Managing Remote IP Repository and Cache

13

3. Add the IP to the BD in IPI

 If IP is configurable, add multiple configurations to further populate the IP Cache with common
configurations

4. Generate output products in Out-Of-Context (OOC) per IP

5. After generation, cache folder is populated for each IP

 Each IP gets a hash code as the directory name

6. When generating the design, re-synthesis will not occur if part/board & IP configuration

options are not changed

7. In other projects, just point to the top-level IP repository to use both the User IP and the

Remote IP Cache.

Collaborative Design in IPI

14

Block Design Container

15

Ability to instantiate/create one Block Design inside another

 Enables Modular Designing for Reusability

 Allows Team Based Designs

 Enables DFX Flow

Overcomes limitations in the current solutions

 Parameter Propagation

 Addressing Limitations

 Module Reference

BDC Capabilities

Supported features from the top-level BD:

 Connection automation

 Parameter propagation

 Can lock boundaries to prevent propagation

 Addressing view/edit of sub-level BDCs

 Variants:

 Ability to specify a variant for synthesis or simulation

 In-place expansion on canvas

Change sub-level BD independently

 Refresh the top-level BD to apply changes

16

Top-level BD

Sub-level BD

BDC & DFX Flow

BDC variants can be used as RMs

(Reconfigurable Module) in the DFX

Flow

Users can toggle between DFX and

non-DFX mode seamlessly

Variants must keep the same

boundary when in DFX mode.

17

Strategy for Successful Revision Control

18

Use Vivado / IPI frameworks to develop your revision control strategy

Use scripted flows for revision control

Keep source files in a repository

Revision control the repository

Create a Tcl script to recreate the project

Revision control the script

Test your scripts

2020.1 & older releases generated output products in <project>.srcs directory

Only .srcs directory exists

Source and output files reside side by side

IP & IPI Directory Structure in Previous Releases

19

2020.2 generates output products in a separate <project>.gen directory than source files

IP & IPI Directory Structure in 2020.2 & Future Releases

20

Generated outputs

in .gen directory

IP & BD source files

in .srcs directory

New project.gen directory

contains all subcore IP

and scoped BD files

Before After

Useful Tool for Revision Control

Diffbd Utility

 Standalone command to compare two
block designs

 Same as Compare Block Designs…
command in GUI

 Reads two .bd files and generates a diff
report

 Diff report in text (default) or HTML

21

Reading JSON: ext_platform.bd

Reading JSON: mpsoc_preset.bd

< ext_platform.bd

> mpsoc_preset.bd

design_info
< device=xcvc1902-vsva2197-2MP-e-S

> device=xczu9eg-ffvb1156-2-e

components
> zynq_ultra_ps_e_0

< CIPS_0

< axi_intc_0

< axi_noc_ddr4

< clk_wizard_0

< proc_sys_reset_0

< smartconnect_1

< ai_engine_0

< axi_noc_lpddr4

nets
> zynq_ultra_ps_e_0_pl_clk0

< CIPS_0_pl_clk0

< CIPS_0_pl_resetn1

< CIPS_0_ps_pmc_noc_axi0_clk

< CIPS_0_ps_ps_noc_cci_axi0_clk

< axi_intc_0_irq

< clk_wizard_0_clk_out1

< clk_wizard_0_locked

< proc_sys_reset_0_peripheral_aresetn

< ai_engine_0_s00_axi_aclk

design
< interface_ports

< interface_nets

< comments

< addressing

Platforms for Acceleration Development

22

Platform provides hardware capabilities

that matches the needs of the software

application

IPI supports preparing the hardware

design for export the platform to

software environment

Kernels App

SW

PFM IO

PFM IP

PL Host (PS/x86)

Export
XSA

Interrupt
AXI

Interfaces
Clock and

Reset

Platform Setup

23

Control Interfaces

 Minimum of one for kernel control

Memory Interfaces

 Minimum of one for data exchange

Streaming Interfaces

Clocks and Reset

Interrupt

Export to Vitis

24

1. Generate Block Design

2. Generate Output Products

3. Run Export Platform Wizard

Creating a Simple Versal Design

25

IPI Advantage for Versal

26

Major changes in Versal architecture:​

 AIE, NoC, new PS​

 Shared DDR through NoC (no PS DDR)​

 HW & SW programmability​

 PL configuration through PMC​

 Debug through PMC​

 PCIe/CPM/GT-based IP sharing methodology (quad)​

 AXI interface for all hard, soft IP, AIE, NoC​

IPI offering for Versal:

 Automatic configuration updates between Versal device-specific blocks (incl. CIPS & NoC)

 Automatic connectivity between various blocks, which prevents errors

 Seamless interaction with the Vitis tools, allowing export of custom hardware platforms

Versal Control, Interface, & Processing System (CIPS)​

27

Centralized device control

 Covers many functions for PS, PMC,
debug, NoC, CPM, system monitors,
SEM, tamper

 Required for basic non-JTAG boot

 CIPS design flow via IPI

Must have for all Versal designs

Versal NoC

28

Facilitates communication among PS, DDR, AI Engines, Programmable Logic,

and any other hardened components

 Shared connectivity to move packetized data around the SoC

Building A Simple Versal Design

29

Xilinx recommends using IPI to instantiate and configure the CIPS & NOC IPs

Summary

30

Summary

31

Leverage IPI automation and ease-of-use features to tackle complex designs

Use IPI block design containers for design re-use and team collaboration

Use Vivado IP integrator for Versal designs

 Especially for instantiation and configuration of the CIPS and NOC IPs

Additional references:

 For IPI usage information and general hardware platform generation information, see UG994

 For a tutorial on creating and packaging custom IP, see UG1119

 For a high-level overview of the Versal ACAP design flow, see UG1273

Thank You

