
Vivado Design Suite User
Guide

Design Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG906

Revision History
The following table shows the revision history for this document.

Section Revision Summary
01/25/2021 Version 2020.2

General Updates Updated for Vivado 2020.2 release.

06/10/2020 Version 2020.1

Using the Netlist Window Section rewritten for clarity.

Understanding the Clock Domain Crossings Report Rules Added a note about the -all_checks_per_endpoint
command line option.

Executing Suggestions Section rewritten for clarity.

Non-Project Mode Added a note about running report_qor_suggestions.

RQS in the Incremental Flow Updated information.

CDC Rules Precedence Updated information about CDC-3 and CDC-6.

Report RAM Utilization Added information about CSV format.

How to Run the Report Updated to include information about the CSV file and
LUTRAM.

Revision History

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=2

Table of Contents
Revision History...2

Chapter 1: Overview..7
Navigating Content by Design Process.. 7

Chapter 2: Implementation Results Analysis Features............................ 8
Using the Design Runs Window.. 8
Placement Analysis... 10
Routing Analysis.. 16
Report Design Analysis...21
Report QoR Assessment...45
Report QoR Suggestions.. 50

Chapter 3: Logic Analysis Within the IDE.. 62
Design Analysis Within the IDE..62
Logic Analysis Features.. 62
Using the Netlist Window...62
Using the Hierarchy Window... 64
Using the Utilization Report...65
Using the Schematic Window.. 66
Searching for Objects Using the Find Dialog Box... 70
Analyzing Device Utilization Statistics.. 74
Using Report DRC..74
Validating Design Methodology DRCs..75

Chapter 4: Timing Analysis Features... 78
Report Timing Summary.. 78
Report Clock Networks... 94
Report Clock Interaction...96
Report Pulse Width... 104
Report Timing.. 105
Report Datasheet.. 111
Report Exceptions... 116

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=3

Report Exceptions in the Vivado IDE...125
Report Clock Domain Crossings.. 132
Report Bus Skew..154

Chapter 5: Viewing Reports and Messages.. 163
Introduction to Reports and Messages..163
Viewing and Managing Messages in the IDE...164
Vivado Generated Messages... 167
Generating and Waiving Design Checks.. 168
Configurable Report Strategies...183
Creating Design Related Reports.. 188

Chapter 6: Performing Timing Analysis... 220
Introduction to Timing Analysis.. 220
Understanding the Basics of Timing Analysis... 224
Reading a Timing Path Report...235
Verifying Timing Signoff... 243

Chapter 7: Synthesis Analysis and Closure Techniques........................ 245
Using the Elaborated View to Optimize the RTL..245
Decomposing Deep Memory Configurations for Balanced Power and Performance... 248
Optimizing RAMB Utilization when Memory Depth is not a Power of 2.......................... 251
Optimizing RAMB Input Logic to Allow Output Register Inference..................................253
Improving Critical Logic on RAMB Outputs... 257

Chapter 8: Implementation Analysis and Closure Techniques.........262
Using the report_design_analysis Command.. 262
Identifying the Longest Logic Delay Paths in the Design.. 265
Identifying High Fanout Net Drivers...266
Determining if Hold-Fixing is Negatively Impacting the Design.......................................268
Quickly Analyzing All Failing Paths..270
Floorplanning.. 271

Appendix A: Timing Methodology Checks.. 286
TIMING-1: Invalid Clock Waveform on Clock Modifying Block.. 286
TIMING-2: Invalid Primary Clock Source Pin..288
TIMING-3: Invalid Primary Clock on Clock Modifying Block.. 289
TIMING-4: Invalid Primary Clock Redefinition on a Clock Tree... 290
TIMING-5: Invalid Waveform Redefinition on a Clock Tree... 292

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=4

TIMING-6: No Common Primary Clock Between Related Clocks...................................... 293
TIMING-7: No Common Node Between Related Clocks...294
TIMING-8: No Common Period Between Related Clocks...295
TIMING-9: Unknown CDC Logic...296
TIMING-10: Missing Property on Synchronizer... 297
TIMING-11: Inappropriate Max Delay with Datapath Only Option...................................298
TIMING-12: Clock Reconvergence Pessimism Removal Disabled.....................................299
TIMING-13: Timing Paths Ignored Due to Path Segmentation...300
TIMING-14: LUT on the Clock Tree.. 300
TIMING-15: Large Hold Violation on Inter-Clock Path..301
TIMING-16: Large Setup Violation...302
TIMING-17: Non-Clocked Sequential Cell...302
TIMING-18: Missing Input or Output Delay... 303
TIMING-19: Inverted Generated Clock Waveform on ODDR... 303
TIMING-20: Non-Clocked Latch... 304
TIMING-21: Invalid COMPENSATION Property on MMCM...304
TIMING-22: Missing External Delay on MMCM... 305
TIMING-23: Combinatorial Loop Found... 305
TIMING-24: Overridden Max Delay Datapath Only...306
TIMING-25: Invalid Clock Waveform on Gigabit Transceiver (GT).................................... 307
TIMING-26: Missing Clock on Gigabit Transceiver (GT)..307
TIMING-27: Invalid Primary Clock on Hierarchical Pin... 308
TIMING-28: Auto-Derived Clock Referenced by a Timing Constraint............................... 309
TIMING-29: Inconsistent Pair of Multicycle Paths...309
TIMING-30: Sub-Optimal Master Source Pin Selection for Generated Clock...................310

Appendix B: Report QoR Suggestion RTL Code Change Example....311
TIMING-201: Add an Output Register to RAM... 311
TIMING-202: Add Extra Pipelining to Wide Multipliers...315
UTIL-203: Large ROM Inferred using Distributed RAM.. 318
UTIL-204: RAM Array is Not Efficiently Used.. 322
Reference Design Files... 326

Appendix C: Additional Resources and Legal Notices........................... 327
Xilinx Resources...327
Solution Centers.. 327
Documentation Navigator and Design Hubs.. 327
References..328
Training Resources..328

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=5

Please Read: Important Legal Notices... 329

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=6

Chapter 1

Overview

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. This document covers the following design
processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the Vivado®

timing, resource use, and power closure. Also involves developing the hardware platform for
system integration. Topics in this document that apply to this design process include:

• Chapter 4: Timing Analysis Features

• Chapter 6: Performing Timing Analysis

• Chapter 8: Implementation Analysis and Closure Techniques

Chapter 1: Overview

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=7

Chapter 2

Implementation Results Analysis
Features

Using the Design Runs Window
The Design Runs window displays the state of the current runs.

For more information, see this link in the Vivado Design Suite User Guide: Using the Vivado IDE
(UG893).

If the run is running, finished cleanly, or finished with errors, the Design Runs window appears
when a run is done.

TIP: If the run is not up to date, you can select Force Up-to-Date from the pop-up menu.

Figure 1: Design Runs Window

The Design Runs Window columns show:

• The name of the run

• The target part

• The constraints set associated with a run

• The run strategy

• The status of the last completed step of a run

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 8Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf;a=xUsingTheDesignRunsWindow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=8

• The progress of a run

• The start time of a run

• The elapsed time of a run during execution or the final runtime of a completed run

• The timing score of a run: WNS, TNS, WHS, THS, WBSS, and TPWS (see Report Timing
Summary for more information on these numbers). This is where you can quickly verify that a
run meets timing. If it does not meet timing, you must start the analysis with the Timing
Summary Report.

Note: WBSS represents the Worst Bus Skew Slack reported by report_bus_skew.

• The number of nets that were not successfully routed

• The utilization of the design LUT, FF, block RAMs, DSP, and if applicable, UltraRAMs.

• The total power estimate

• A brief description of the run strategy

• The incremental mode of the design run

If you are using the Vivado® IDE project flow, review the Messages tab for your active synthesis
and implementation runs. Messages are grouped by run steps in the flow. All the information
saved in the run log files, and the main Vivado session log file, appear in this consolidated and
filtered view.

Figure 2: Messages Grouped by Step

Some messages crossprobe back to a source file that can always be opened by clicking on the file
name, or in some cases to a design object related to the message. Depending on which step of
the flow you are analyzing, you must open either the synthesized design or the implemented
design in order to be able use the object crossprobing from the message.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=9

Placement Analysis
This section discusses Placement Analysis and includes:

• Highlighting Placement

• Showing Connectivity

• Viewing Metrics

Highlighting Placement
Another way to review design placement is to analyze cell placement. The Highlight Leaf Cells
command helps in this analysis.

1. In the Netlist Window, select the levels of hierarchy to analyze.

2. From the popup menu, select Highlight Leaf Cells → Select a color.

3. If you select multiple levels of hierarchy, select Cycle Colors.

The leaf cells that make up the hierarchical cells are color coded in the Device window.

Figure 3: Highlight Hierarchy

The color coding shows the placement of the key hierarchical blocks in the device. The
usbEngine0 (in blue):

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=10

• Uses a number of Block RAM and DSP48 cells.

• Is in the middle clock regions of the chip.

• Is intermingled with other logic (fftEngine) in the design.

It is easy to see that the fftEngine (in green) and the cpuEngine (in yellow) are intermingled.
The two blocks primarily use different resources (DSP48 as opposed to slices). Intermingling
makes best use of the device.

Showing Connectivity
It can be useful to analyze a design based on connectivity. Run Show Connectivity to review the
placement of all logic driven by an input, a Block RAM, or a bank of DSPs. Show Connectivity
takes a set of cells or nets as a seed, and selects objects of the other type.

TIP: Use this technique to build up and see cones of logic inside the design.

The following figure shows a Block RAM driving logic inside the device including OBUFs. A
synthesis pragma stops synthesis from placing the output flop in the Block RAM during memory
inferencing.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=11

Figure 4: Show Connectivity

Fixed and Unfixed Logic
The Vivado tools track two different types of placement:

• Elements placed by the user (shown in orange) are Fixed.

○ Fixed logic is stored in the XDC.

○ Fixed logic normally has a LOC constraint and might have a BEL constraint.

• Elements placed by the tool (shown in blue) are Unfixed.

In the following figure, the I/O and Block RAM placement is Fixed. The slice logic is Unfixed.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=12

Figure 5: Fixed and Unfixed Placement

Cross Probing
For designs synthesized with Vivado Synthesis, it is possible to cross probe back to the source
files once the netlist design is in memory.

To cross probe:

1. Select the gate.

2. Select Go to Source from the popup menu, shown in the following figure.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=13

Figure 6: Cross Probe Back To Source

Use cross probing to determine which source is involved in netlist gates. Due to the nature of
synthesis transforms, it is not possible to cross probe back to source for every gate in the design.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=14

Viewing Metrics
After implementation finishes, you may want to analyze the design to see how it interacts with
the device. The Vivado IDE has a number of metrics to help you determine logic and routing
usage inside the device. The Metrics color code the device window based on a specified rule. To
view a metric, right-click in the Device window, select Metric, and then select the metric you
would like to view. See the following figure.

Figure 7: Metrics

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=15

Metrics Requiring a Placed Design
Four metrics require a placed design in order to be accurate. They do not require a fully routed
design.

• LUT Utilization per CLB: Color codes slices based on placed LUT utilization.

• FF Utilization per CLB: Color codes slices based on placed FF utilization.

• Vertical Routing Congestion per CLB: Color codes the fabric based on a best case estimate of
vertical routing usage.

• Horizontal Routing Congestion per CLB: Color codes the fabric based on a best case estimate
of horizontal routing usage.

For UltraScale+ and newer architectures:

• Interconnect Congestion Level: Color codes the Interconnect Congestion Level based on a
worst case estimate of routing usage over contiguous regions.

Metrics in a Netlist Design with No Placement
Two metrics are applicable if there are Pblocks. They do not depend on placement:

• LUT Utilization per Pblock: Color codes the Pblock based on an estimate of how the LUTs will
be placed into the slices contained in the Pblock.

• FF Utilization per Pblock: Color codes the Pblock based on an estimate of how the FFs will be
packed into the slices contained in the Pblock.

More than one rule can be used at a time as shown in the previous figure. Both LUT Utilization
per CLB and FF Utilization per CLB are on.

TIP: If there are sections of the design with high utilization or high estimates of routing congestion,
consider tweaking the RTL or placement constraints to reduce logic and routing utilization in that area.

Routing Analysis
Turn on Routing Resources in the Device window to view the exact routing resources.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=16

Figure 8: Enable Routing

Displaying Routing and Placement
Routing and placement display in two different ways depending on the zoom level:

• When zoomed out

• At closer zoom levels

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=17

TIP: The two visualizations of the Device window minimize runtime and memory usage while showing
the details of designs of all sizes.

Displaying Routing and Placement when Zoomed Out

When zoomed out, an abstract view is shown. The abstract view:

• Condenses the routes through the device.

• Shows lines of different thicknesses depending on the number of routes through a particular
region.

Placement similarly displays a block for each tile with logic placed in it. The more logic in a tile,
the larger the block representing that tile will be.

Figure 9: Abstract View

Displaying Routing and Placement at Closer Zoom Levels

At closer zoom levels, the actual logic cells and routes show.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=18

Figure 10: Detailed View

Viewing Options
The Device window is customizable to show the device, and design, in a variety of ways. Most of
these are controlled through the Device Options slideout.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=19

Figure 11: Device Window Layers

You can enable or disable the graphics for different design and device resources, as well as
modify the display colors.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=20

Navigating in the Device Window
Figure 12: Navigating the Device Window

Use the following tools to navigate in the Device window:

• Zoom Controls: Standard Zoom In, Zoom Out, and Zoom Full tools.

• Auto-fit Selection: Automatically zoom and pan to an object selected in any view outside of
the device. Autofit Selection is particularly useful for cross probing.

• World View: The World View shows where the currently visible portion of the device is on the
overall device. You can move and resize the World View, as well as drag and resize the yellow
box to zoom and pan.

• Control Hotkey: Press Ctrl while clicking and dragging to pan the view. Use Ctrl and the
mouse wheel to zoom in and out at the position of the cursor.

Report Design Analysis
The Design Analysis report provides information on timing path characteristics, design
interconnect complexity, and congestion. You can use this information to make design or
constraint changes that improve QoR and possibly alleviate routing congestion.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=21

Running Report Design Analysis
You can run Report Design Analysis from the Tcl console or the Vivado® IDE. Report Design
Analysis generates three categories of reports:

• Timing: reports timing and physical characteristics of timing paths

• Complexity: analyzes the design for routing complexity and LUT distribution

• Congestion: analyzes the design for routing congestion

To run Report Design Analysis in the Vivado IDE, select Reports → Report Design Analysis.

Equivalent Tcl command: report_design_analysis -name design_analysis_1

Note: There are some Report Design Analysis options that are only available when running the
report_design_analysis Tcl command. You can use the -name option to view the results of this Tcl
command in the GUI.

In the Vivado IDE, the Report Design Analysis dialog box (shown in the following figure) includes
the following:

• Results Name Field

• Options Tab

• Advanced Tab

• Timer Settings Tab

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=22

Figure 13: Report Design Analysis Dialog Box

Results Name Field

In the Results Name field at the top of the Report Design Analysis dialog box, specify the name of
the graphical window for the report.

Equivalent Tcl option: -name <windowName>

Options Tab

In the Options tab (shown in the previous figure), the following fields are available:

• Timing

• Complexity

• Congestion

Timing Field

The Timing field allows you to report timing and physical characteristics of timing paths.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=23

Equivalent Tcl option: -timing

You have the option to generate reports for all paths or specific timing paths. If you select the All
Paths option you can specify the path delay type: max for setup, min for hold or min_max for
setup and hold.

Equivalent Tcl option: -setup/-hold

You can also specify the maximum number of paths per clock group (default is 10).

Equivalent Tcl option: -max_paths <arg>

When you select the Specific Paths option, analysis is performed on the specified path objects.
Click the Browse button (on the right) to open a search dialog box to aid in finding path objects.
For more information about get_timing_paths, refer to this link in the Vivado Design Suite Tcl
Command Reference Guide (UG835).

Equivalent Tcl option: -of_timing_paths <args>

Select the Extend Analysis option to perform an extended analysis for each path of interest by
also reporting the worst path to the startpoint and the worst path from the endpoint.

Equivalent Tcl option: -extend

Note: When running the Extend Analysis option (Tcl option -extend) for hold path analysis, the tool
generates a report showing the setup and hold characteristics of the paths with the same start and
endpoints to show if hold fixing is impacting setup timing.

Include logic-level distribution information by selecting that option and specifying the number of
paths to be used. If you are also analyzing all paths, the number of paths selected overrides the
maximum number of paths per clock group. If you are analyzing specific paths, logic-level
distribution information is limited to the specified paths.

Equivalent Tcl option: -logic_level_distribution -logic_level_dist_paths
<arg>

Complexity Field

The Complexity field allows you to report the complexity of the design netlist which is a measure
of the connectivity density throughout the hierarchy. See Complexity Report.

Equivalent Tcl option: -complexity

Select the Cells to Analyze option to specify the hierarchical cells to use for the complexity
analysis. Click the Browse button (on the right) to open a search dialog box to aid in finding cell
objects.

Equivalent Tcl option: -cells <args>

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 24Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xget_timing_paths
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=24

When you select the Hierarchical Depths option, you can select the levels of hierarchy to
examine at the top level by default or at the level of the cells specified by the -cells option.

Equivalent Tcl option: -hierarchical_depth <arg>

Congestion Field

The Congestion field toggles the -congestion Tcl switch ON and OFF.

Select the Minimum congestion level option to specify the minimum congestion to show router
congestion in the design. The default minimum congestion level is 5 if not specified. The value
must be between 3 and 8.

Equivalent Tcl option: -min_congestion_level <args>

Note: The congestion report is not generated/displayed if there are no router congested regions greater
than or equal to the threshold level (-min_congestion_level). In that case, re-run the command with
a lower threshold (values between 3 and 8).

Advanced Tab

In the Advanced tab (shown in the following figure), the following fields are available:

• File Output

• Miscellaneous

File Output Field

You can write the results to a file in addition to generating a GUI report by selecting Export to
file and specifying a file name in the field to the right. Click the Browse button to select a
different directory.

Equivalent Tcl option: -file <arg>

Select the Overwrite option to overwrite an existing file with the new analysis results.

Select Append to append the new results.

Equivalent Tcl option: -append

Miscellaneous Field

The Miscellaneous field provides options to ignore command errors and suspend message limits
during command execution.

Equivalent Tcl option: -quiet/-verbose

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=25

Figure 14: Report Design Analysis Dialog Box, Advanced Tab

Timer Settings Tab

In the timer settings tab (shown in the following figure), the following fields and options are
available.

• Interconnect Option

• Speed Grade Option

• Multi-Corner Configuration Field

• Disable Flight Delays Option

Interconnect Option

You can select the interconnect model to be used in your analysis of timing paths:

• actual: provides the most accurate delays for a routed design.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=26

• estimated: includes an estimate of the interconnect delays based on the placement and
connectivity of the design onto the device prior to implementation. Estimated delay can be
specified even if the design is fully routed.

• none: includes no interconnect delay in the timing analysis; only the logic delay is applied.

Equivalent Tcl command: set_delay_model -interconnect <arg>

For more information about set_delay_model, refer to the Vivado Design Suite Tcl Command
Reference Guide (UG835).

Speed Grade Option

You can perform analysis on the default speed grade or select a different speed grade for
analysis.

Equivalent Tcl command: set_speed_grade <arg>

For more information about set_speed_grade, refer to the Vivado Design Suite Tcl Command
Reference Guide (UG835).

Multi-Corner Configuration Field

You can limit the default four-corner analysis performed by the Vivado timing analysis engine, as
appropriate, using the options available in this field.

Equivalent Tcl command: config_timing_corners -corner <arg> -delay_type
<arg>

For more information about config_timing_corners, refer to the Vivado Design Suite Tcl
Command Reference Guide (UG835).

Disable Flight Delays Option

You can select this option to disable the addition of package delays to I/O timing calculations.

Equivalent Tcl command: config_timing_analysis -disable_flight_delays <arg>

For more information about config_timing_analysis, refer to the Vivado Design Suite Tcl
Command Reference Guide (UG835).

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 27Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=27

Figure 15: Report Design Analysis, Timer Settings Tab

Command Line Only Options
The following Timing options are only available from the Tcl command line and can be used with
the -name option to generate a GUI report.

• -routed_vs_estimated

This option reports the estimated versus actual routed delays side-by-side for the same path.
Some fields within the Timing Category in the report are prefaced with "Estimated" or
"Routed" for comparison.

• -return_timing_paths

• -end_point_clock

• -logic_levels

The following Complexity options are only available from the command line and can be used with
the -name option to generate a GUI report.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=28

• -bounding_boxes <arg>

This option performs the complexity analysis of the specified bounding boxes. For example:

-bounding_boxes { "CLE_M_X21Y239:CLEL_R_X28Y254"
"CLEL_R_X18Y171:CLE_M_X26Y186" }

Note: A space is required between the open bracket `{` and the start of the bounding box, as shown in
the previous example.

Timing Path Characteristics Report
The following figure shows example output after running the Report Design Analysis in Timing
Mode to show the path characteristics of only the ten worst Setup paths in the design. You can
generate the report from the GUI (Reports > Report Design Analysis) or using the Tcl command:

report_design_analysis -name <arg>

TIP: To create hold path characteristics, select Path delay type: min in the Options tab of the Report
Design Analysis dialog box or add -hold to the Tcl command. For more information on Tcl command syntax,
see the Vivado Design Suite Tcl Command Reference Guide (UG835) .

Figure 16: Example Setup Path Characteristics

Report Design Analysis can also provide a Logic Level Distribution table for the worst timing
paths. The default number of paths analyzed for the Logic Level Distribution table is 1,000 and
can be changed in the Report Design Analysis dialog box. The Logic Level Distribution table is not
generated by default but can be generated when you select the Include logic level distribution in
the Report Design Analysis dialog box Options tab. An example of the Logic Level Distribution
table is shown in the following figure.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 29Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=29

Figure 17: Example of Logic Level Distribution Report

Logic level distribution GUI has been enhanced to have hyperlinks for the individual bins. By
clicking on these hyperlinks you can run report_design_analysis or report_timing on
paths or select timing path objects as shown in the following figure.

Figure 18: Report Design Analysis on a Selected Path

The command line option -routes can be used with -logic_level_distribution to
generate a report based on the number of routes instead of the number of logic levels.

Figure 19: Example of Logic Level Distribution Report with -routes

The command line options -min_level and -max_level can be used with -
logic_level_distribution to control the bins.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=30

All the paths with logic levels less than -min_level are placed in a single bin and all the paths
with logic levels greater than -max_level are placed in a single bin.

Create an individual bin for each logic level where at least one path exists in between the levels.
For example, if a design has paths with logic levels of 0, 1, 3, 4, 5, 11, 12, 14, 15, 16 (see Timing
Path Characteristics Report) using -min_level 3 and -max_level 11,
report_design_analysis reports using the 0-2, 3, 4, 5, 11, 12+ bins.

Figure 20: Example of Logic Level Distribution Report with -min_level and -max_level

Analyzing Specific Paths

Analyzing Specific Paths shows an example report from Report Design Analysis in Timing Mode
with specific paths selected.

Figure 21: Example of Specific Timing Path Characteristics

In this case, the Path Characteristics and the Logic Level Distribution tables (if selected) are
limited to the specified path. To specify the paths, click the Browse button to the right of the
Specific paths selection in the Report Design Analysis dialog box. This opens the Find Timing
Paths dialog box (shown in the following figure).

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=31

Figure 22: Find Timing Paths Dialog Box

Analyzing the Worst Path along with Preceding and Following Worst
Paths

The figure below shows an example report from Report Design Analysis in Timing Mode with the
Extend analysis option selected.

Note: The Extend Analysis for All Paths option is currently only available for setup analysis.

The Path Characteristics are reported on the worst setup path along with the worst setup path to
the startpoint cell (PrePath) and the worst setup path from the endpoint cell (PostPath). The
-extend option incurs higher runtime as several timing analyses are required to collect the
characteristics of all reported paths.

Equivalent Tcl Command: report_design_analysis -extend

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=32

Figure 23: Extended Path Characteristics of the Worst Setup Path

Reading and Interpreting Timing Path Characteristics Reports

The path characteristics fall into four main categories: timing, logic, physical, and property. You
can find the definition of each characteristics in the command long help.

Tcl Command: report_design_analysis -help

Alternatively, you can find the same information in the Vivado Design Suite Tcl Command Reference
Guide (UG835).

Category 1: Timing

• Timing Analysis: The Path Type and Requirement detail the timing analysis type (SETUP or
HOLD) along with the timing path requirement. The Slack indicates whether or not the timing
path requirement is met based on the timing analysis as dictated by the timing constraints.
The Timing Exception indicates if any timing exceptions such as multicycle path or max delay
have been applied to the timing path.

Checking the path requirement is often the first step in debugging missing or incorrect timing
constraints:

○ Paths with setup requirement under 4 ns must be reviewed to verify their validity in the
design, especially for clock domain crossing paths.

○ Paths with setup requirement under 2 ns are difficult to meet and must be avoided in
general, especially for the older architectures.

○ In general, when small setup requirements are present, check for missing timing exception
constraints and also check the source and destination clock edges. The timing analysis
always assumes the smallest positive difference between source and destination clock
edges unless overridden by a timing exception constraint.

○ Positive hold path requirements need to be reviewed as they are not common and are
difficult to meet. When positive hold path requirements are present, check for missing
multicycle path constraints for hold analysis that might have only been applied to the path
for setup analysis. Also check the relationship between source and destination clocks for
correctness.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 33Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=33

• Datapath: The Path Delay, Logic Delay, and Net Delay detail the total datapath delay along
with its breakdown into delay contribution by logic cells and nets.

○ If the Logic Delay makes up an unusually high proportion of the total datapath delay, for
example 50% or higher, it is advised to examine the datapath logic depth and types of cells
on the logic path, and possibly modify the RTL or synthesis options to reduce the path
depth or use cells with faster delays.

○ If the Net Delay dominates the total path delay for a setup path where the Requirement is
reasonable, it is advised to analyze some of the physical characteristics and property
characteristics of the path listed in this section. Specific items to look at include the High
Fanout and Cumulative Fanout characteristics to understand if some nets of the path have
a high fanout that could potentially be causing a placement problem. Also check the Hold
Fix Detour characteristic to understand if hold fixing has occurred on the path.

IMPORTANT! The LUT input pins have different delay characteristics. The physical pins (or site pins) of
higher index are faster than the pins of lower index. Be aware of the difference in 7 series and
UltraScale device LUT delay reporting. In 7 Series devices, the variable portion of LUT delay is reported
as part of the net delay in front of the LUT. In UltraScale devices, the variable portion of LUT delay is
reported as logic delay. Therefore, the 7 Series device Net Delay/Logic Delay  ratio will be larger
than the ratio for UltraScale devices.

• Clocks: The Start Point Clock, End Point Clock, Clock Relationship, and Clock Skew detail
information regarding the timing path clocks. The Start Point Clock and Endpoint Clock list the
respective source clock and destination clock for the timing path.

○ Check that the Clock Relationship is correct and expected. For intra-clock paths or
synchronous clock domain crossing paths, the relationship is labeled as "Safely Timed." You
must verify that the Requirement and Clock Skew are reasonable. For asynchronous clocks,
the relationship is labeled as "No Common Primary Clock", "No Common Period", "No
Common Node", or "No Common Phase". Asynchronous clock domain crossing paths must
be covered by timing exceptions (check the Timing Exception value).

○ Check that the Clock Skew is reasonable. When analyzing clock skew, check the clock tree
structure for cascaded clock buffers. In 7 series devices, check for different clock buffer
types for the source and destination clocks. In UltraScale devices, it might be necessary to
examine the placement and routing of the clock nets because it depends on logic loads
placement. The crossing of a Clock Region boundary or an I/O Column can result in higher
clock skew; this is expected.

Note: Almost all of the Timing Characteristics provided by report_design_analysis are available
in a timing report.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=34

Category 2: Logic

• Path: The Start Point Pin Primitive, End Point Pin Primitive, Start Point Pin, End Point Pin,
Logic Levels, Logical Path, and Routes provide some basic information about the timing path.

○ The Start Point Pin Primitive and End Point Pin Primitive are the reference pin names of the
timing path start point and end point. Check that the Start Point Pin Primitive and End
Point Pin Primitive are expected timing path start and endpoints. The Start Point Pin and
End Point Pin identify the actual timing path pin startpoints and endpoints that would show
in the header of a typical timing report.

Check for endpoint pins such as CLR, PRE, RST, and CE that could potentially be part of high-
fanout nets for control signals such as asynchronous resets and clock enable signals. Also
check the type of cell, because some primitives like block RAMs and DSPs have larger Clock-
to-Q delay and setup/hold requirements than other cells. Their presence in the path can
potentially consume a significant portion of the path timing budget.

○ The Logic Levels and Logical Path detail the number of logic levels and the types of
primitives in the datapath. Routes indicates the number of routable nets in the datapath.
You can use this information to quickly check if a high number of logic levels is mostly due
to LUTs or to a mix of LUT/CARRY/MUXF cells. CARRY and MUXF cells are usually
connected to nets with dedicated routes that have null or very small delays, while LUT
inputs always need to be routed through the fabric.

When the path mostly contains LUTs, it is also important to check their size. Try to understand
why there are several smaller LUTs (non-LUT6) that are chained and what prevents synthesis
from targeting LUT6 only, which can reduce the logic levels. There can be properties like
KEEP/DONT_TOUCH/MARK_DEBUG or mid-to-high fanout nets in the path that also impact
mapping efficiency.

Based on the outcome of your analysis, you can either modify the RTL source, add/modify
attributes in the RTL, or use different synthesis settings to reduce the number of LUTs on the
path. Also, you can use the option -remap of the opt_design command to re-optimize LUT
mapping and possibly eliminate some smaller LUTs.

• Cells: Presence of DSP block(s) and BRAM(s) in the datapath. Timing is more difficult to meet
on paths from RAMBs or DSPs with no output registers and with several logic levels. You
should consider modifying your design to use the RAMB or DSP output registers if these
paths are having difficulty meeting the timing requirements.

Category 3: Physical

• Architectural Boundary Crossings: The IO Crossings and SLR Crossings identify whether the
path is crossing architectural resources such as IO Columns or SLR boundaries.

The crossing of many architectural columns does not always represent a problem. Check for
high net delay or large skew in conjunction with the crossing of many architectural columns. If
many architectural column crossings appear to be the cause of timing issues across multiple
implementation runs for a particular module, consider minimal floorplanning using Pblocks to
reduce the crossings of the architectural column(s) or SLR boundary.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=35

• Path Placement Restrictions: Pblocks. Excessive floorplanning can sometimes prevent the tool
from achieving the optimal results. Paths that cross multiple Pblocks can sometimes
experience timing issues.

○ If the path crosses multiple Pblocks, examine the location of the Pblocks and the impact on
the timing path placement.

○ If the Pblocks are adjacent, consider creating a single Pblock that is a super-set of each
individual Pblock. This could potentially improve timing by being less restrictive on the
placer.

If physical requirements dictate that the Pblocks are placed far apart, consider pipelining
between the Pblocks to help meet timing requirements.

• Placement Box: Bounding Box Size, Clock Region Distance, Combined LUT Pairs

○ If the Bounding Box Size or Clock Region Distance of the timing path is too large, try using
directives in place_design. In UltraScale devices, be especially aware of the Clock
Region Distance and its possible impact on timing path Clock Skew.

• Net Fanout and Detour:

○ High Fanout shows the highest fanout of all nets in the datapath, and Cumulative Fanout
corresponds to the sum of all datapath net fanouts.

If High Fanout and Cumulative Fanout are large, the timing violations are very likely due to
the fanout impact on routing and net delay.

If physical optimization was run and did not reduce the fanout, check for MARK_DEBUG and
DONT_TOUCH constraints preventing replication.

If replication is desired on the net prior to implementation, you can use the MAX_FANOUT
constraint in synthesis, either inside the RTL or in an XDC file. Due to reliance on
placement for good timing for high fanout nets, it is usually not recommended to have
synthesis perform replication and it is best to rely on post-placement physical optimization
(phys_opt_design) for replication. You can also increase the physical optimization effort
to also optimize paths with a small positive slack by using different directives such as
Explore, AggressiveExplore, or AggressiveFanoutOpt.

If fanout reduction is desired on a specific net during implementation, you can force the
replication using the command: phy_opt_design -force_replication_on_nets
<netName>

○ When the Hold Fix Detour is asserted, the routing on the datapath was delayed in order to
meet the path hold time requirement. If the path is failing setup, check for excessive skew
between the Source and Destination clocks. Also check for proper timing constraints
between the Source and Destination clocks in case the hold path requirement is positive (it
should be zero or negative in most common cases).

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=36

Category 4: Property

• LUT Combining: Combined LUT Pairs indicates that there are combined LUT pairs present in
the path. While combining LUT pairs can reduce logic utilization, it can also restrict the
placement solutions and can create congestion due to high pin density. If LUT combining
appears to be an issue in the design, it is recommended to disable LUT combining in synthesis
by using the -no_lc option.

• Optimization Blocking: Mark Debug and Dont Touch can quickly identify whether there are
any nets or cells in the path that the tool is not allowed optimize.

○ The default behavior of setting the MARK_DEBUG property is to also to set the
DONT_TOUCH property. Consider setting DONT_TOUCH to FALSE to allow for optimization.

○ DONT_TOUCH disables optimizations such as cell or net replication. Evaluate the need for
DONT_TOUCH constraints and remove them if possible. When a net enters a hierarchical
cell with DONT_TOUCH, the portion of the net inside the hierarchical cell cannot be
replicated. If DONT_TOUCH is used to prevent logic trimming, check the design for
correctness. One simple example would be logic removed due to unconnected outputs.

• Fixed Placement and Routing: The Fixed Loc, Fixed Route can quickly identify whether there
are any fixed placement or fixed routing constraints that might be impacting the timing path
slack.

○ Using cell location constraints can help stabilizing QoR for a difficult design. If timing can
no longer be met after modifying the design, you can try removing the placement
constraints to give more flexibility to the placer.

○ Having fixed routes prevents the router from optimizing the net delays to meet timing. A
timing path with locked routing usually shares nets with other paths that can be negatively
impacted by this constraint. Use fixed routes only when necessary and when it does not
affect interacting paths. Always be aware that changes to other physical constraints such as
Pblocks might require the fixed cell locations or fixed routes to also be updated.

Category 5: Dynamic Function Exchange Designs

For Dynamic Function Exchange (DFX) designs, each cell in the logical path is prefixed to identify
the cell as belonging to a reconfigurable partition (RP#:), or to the static region of the design (S:).

• DFX Path Type: Specifies the path as being completely in the static region, completely in a
reconfigurable partition (RP), or as crossing the boundary between regions. The delay
elements for the timing path are also broken down between the regions.

• DFX Boundary Nets: Reports the number of times a timing path crosses between either a
static and reconfigurable module (RM) or between two RMs in the netlist.

• Boundary Fanout: Reports the fanout of a boundary path at the PPLOC to its downstream
loads.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=37

Design QoR Summary

The command line option -qor_summary can be used to generate QoR summary for each step
of the flow. This option is only available from the Tcl console.

report_design_analysis -qor_summary

Figure 24: Report Design Analysis QoR Summary

Complexity Report
The complexity report shows the Rent Exponent, Average Fanout, and distribution of the types
of leaf cells of the top-level design and/or of hierarchical cells that contain more than 1000 leaf
cells. The Rent exponent is the relationship between the number of ports and the number of cells
of a netlist partition when recursively partitioning the design with a min-cut algorithm. It is
computed with similar algorithms as the ones used by the placer during global placement.
Therefore it can provide a good indication of the challenges seen by the placer, especially when
the hierarchy of the design matches well the physical partitions found during global placement.

The Rent Exponent is defined by the Rent's rule:

ports = constant x cellsRent

log(ports) = Rent x log(cells) + constant

A design with higher Rent exponent corresponds to a design where the groups of highly
connected logic also have strong connectivity with other groups. This usually translates into a
higher utilization of global routing resources and an increased routing complexity. The Rent
exponent provided in this report is computed on the unplaced and unrouted netlist.

After placement, the Rent exponent of the same design can differ as it is based on physical
partitions instead of logical partitions. The post-placement Rent exponent is not reported by the
Report Design Analysis command as it is recommended to analyze the congestion reports once
the design is placed instead.

Report Design Analysis runs in Complexity Mode when you do either of the following:

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=38

• Check the Complexity option in the Report Design Analysis dialog box Options tab.

• Execute the report_design_analysis Tcl command and use any of the options shown in
the following table.

Table 1: Options that Run Report Design Analysis in Complexity Mode

Tcl Option Description
-complexity Must be specified to run the report design analysis in Complexity Mode.

-cells <arg> Specifies the hierarchical cells to use when analyzing the complexity.

-hierarchical_depth <arg> The levels of hierarchy to examine at the top level by default or at the level of
the cells specified by the -cells option.

Analyzing the Design Complexity at the Top Level

The following figure shows an example report from Report Design Analysis in Complexity Mode
that reports up to one level of hierarchy from the top module.

Tcl Command:

report_design_analysis -complexity -hierarchical_depth 1

Figure 25: Complexity Analysis at the Top Level and Hierarchical Depth of 1

Reading and Interpreting a Complexity Report

The Complexity Characteristics table from the previous example shows the Rent exponent and
average fanout for each level of hierarchy below the top level. The typical ranges to consider
when reviewing these metrics are the following:

• Rent exponent:

○ Between 0.0 and 0.65: The complexity is considered low to normal and does not highlight
any potential problems.

○ Between 0.65 and 0.85: The complexity is considered high, especially when the total
number of instances is above 25k.

○ Above 0.85: The complexity is very high, and if the number of instances is also high, the
design can potentially fail during implementation.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=39

• Average fanout:

○ Below 4: It is considered normal.

○ Between 4 and 5: The implementation tools can show difficulty to place the design without
congestion. In the case of a SSI device, if the total number of instances is above 100k, the
placer can have problems finding a placement solution that fits in 1 SLR or that is spread
over 2 SLRs.

○ Above 5: The design can potentially fail during implementation.

You must treat high Rent exponents and/or high average fanouts for larger modules with higher
importance. Smaller modules, especially under 10k total instances, can have higher Rent
exponent and average fanout, and yet be simple to place and route successfully. For this reason,
the Total Instances column must always be reviewed along with the Rent exponent and average
fanout.

The complexity characteristics might not always predict routing congestion. Other factors such
as I/O location constraints, floorplanning, and macro primitive location in the target device can
limit the placement solution space and introduce congestion. The effect of such constraints is
better analyzed by the congestion reports available after placement.

Other items to consider when interpreting the Complexity Characteristics table:

• A higher percentage of LUT6s in a module usually increases the average fanout and
potentially the Rent exponent.

• A high number of RAMB and DSPs can increase the Rent exponent because these primitives
have a large amount of connectivity.

• The hierarchical instances with higher Rent exponents or higher average fanouts are not
always a problem because the placer operates on a flat netlist and can break these instances
into easier groups of logic to place. This report provides an indication of where a netlist
problem can possibly exist if a module stands out clearly.

When a large module exhibits a high Rent exponent and/or average fanout that is causing
congestion and timing issues, consider the following actions:

• Reduce the connectivity of the module. Preserving the hierarchy to prevent cross-boundary
optimization in synthesis can reduce the use of LUT6s and consequently reduce the netlist
density.

• Try to disable LUT combining in synthesis.

• Use a Congestion Strategy during Implementation or SpreadLogic placement directive that can
potentially help to relieve congestion. If the design is targeting an SSI Device, consider trying
several SSI placement directives.

• Use simple floorplanning at the SLR level for SSI devices, or at the clock region level in
general, to keep congested groups of logic separate, or to guide global placement towards a
solution similar to a previously found good placement.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=40

Congestion Report
The Congestion reports show the congested areas of the device and the name of design modules
present in these areas. Congestion can potentially lead to timing closure issues if the critical
paths are placed inside or next to a congested area.

Analyzing the Design Congestion

To run Report Design Analysis in Congestion Mode, the Congestion option must be specified in
the Options tab of the Report Design Analysis dialog box, and the design must be placed and/or
routed. Running Report Design Analysis with Congestion Mode on an unplaced design results in
nothing being reported.

Report Design Analysis produces three congestion tables:

• Placer Final Congestion Reporting

• Router Initial Congestion Reporting

• SLR Net Crossing Reporting

Maximum Congestion Reports

These tables report all the windows with the same maximum congestion level seen in a particular
direction. The columns are defined as follows:

• Direction: The direction of the congested routing resources (North, South, West, or East).

• Congestion Level: The maximum congestion level in CLB tiles.

• Congestion: Indicates the estimated routing resource utilization in the defined window. This
value can be greater than 100%.

• Congestion Window: Indicates the bounding CLB tiles where the congestion for the identified
Direction is present. The CLB coordinates correspond to the lower left and upper right corners
of the window.

TIP: The Congestion Window column is only available in the text report. In the GUI report, you can
select the congestion window, which highlights the congested area in the Device window.

• Cell Names: Indicates the parent instance that contains the hierarchical cells involved in the
Congestion Window, up to the three largest contributors along with their contribution
percentage.

TIP: In the GUI report, you can select the hyperlinked cell names to highlight the respective leaf cells in
the congestion window.

• Avg LUT Input: This is the average LUT inputs of the LUTs in the Window.

• COMBINED LUTs %: Indicates the percentage of LUTs combined in the window.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=41

• LUT usage %: The percentage of LUT utilization in the Window.

• LUTRAM usage %: The percentage of LUTRAM utilization in the Window.

• Flop usage %: The percentage of FD (including LD) utilization in the Window.

• MUX usage %: The percentage of MUXF utilization in the Window.

• RAMB usage %: The percentage of RAMB utilization in the Window.

• URAM usage %: The percentage of URAM utilization in the Window.

• DSP usage %: The percentage of DSP utilization in the Window.

• CARRY usage %: The percentage of CARRY utilization in the Window.

• SRL usage %: The percentage of SRL utilization in the Window.

Placer Final Congestion Reporting

When analyzing the Placer Final Congestion Reporting Table of your design for Congestion and
Timing QoR, look for the following:

• If a high level of LUT usage exists, examine the instances that have a high percentage of
LUT6s in the Complexity report.

• In case of high RAMB or DSP utilization in the congested area, check for Pblock constraints
that might be limiting the available placement area of the reported modules. Use various
targeted placement directives to relieve congestion such as the BlockPlacement or
SpreadLogic directives. In some cases, it might be beneficial to reuse the RAMB or DSP
placement from a previous run that showed low congestion and resulted in good Timing QoR.

The following figure shows an example of the Placer Final Congestion Reporting table. Using this
report, you can examine areas of the device defined by the Congestion window along with the
modules residing in that window. The resource usage percentages gives an indication of the
types of resources located in the congested area.

Figure 26: Example Placer Final Congestion Reporting Table

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=42

Router Initial Congestion Reporting

Router Initial Congestion (named Initial Estimated Router Congestion for 7 series FPGAs) is only
available when the router has been run. It shows the routing congestion initially faced by the
router during the early stages of routing.

Figure 27: Example of Router Initial Congestion Reporting Table

When the congestion level is 5 or higher, report_design_analysis generates a congestion
table that provides details about the nature of congestion and region(s) associated with the
highest congestion in a particular direction and type.

• Global congestion is estimated similar to placer congestion and is based on all types of
interconnects.

• Long congestion only considers long interconnect utilization for a given direction.

• Short congestion considers all other interconnect utilization for a given direction.

Any congestion area greater than 32x32 (level 5) is likely to impact QoR and routability.
Congestion on long interconnects increases usage of short interconnects and results in longer
routed delays. Congestion on short interconnects usually induces longer runtimes and if their
window size is big, it is also likely to cause QoR degradation.

When analyzing the Router Initial Congestion table, look for the following:

• If the congestion level is greater than 6, the design is unlikely to meet timing and might fail
during routing.

• If the congestion level is 4 or 5, then identify the module(s) located in the congested area(s).
You can apply a congestion alleviation technique on these modules or rerun the placer with
different directives, such as *SpreadLogic*.

• If the congestion level is 3 or less, the congestion is probably not a cause for concern unless
the design has a very tight timing budget.

The previous figure illustrates an example of the Router Initial Congestion, where regions with
congestion level 5 or more are reported. To generate a congestion report with a lower congestion
threshold, use the switch -min_congestion_level. The default minimum congestion level is
5. The values must be between 3 and 8.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=43

In addition to the region where the design has maximum congestion in a given direction and
type, the congestion report also contains additional regions with the maximum congestion level
in that given direction and type (if any). These regions can have some amount of overlap or they
can be present in different regions of the device.

The following figure illustrates an example of where the design has a congestion level 6 for North
(Direction) Long (Type) in more than one region.

Figure 28: Example of Router Initial Congestion Reporting Table

SLR Net Crossing Reporting

The SLR Net Crossing Reporting is only applicable to SSI Devices and reports the number of nets
contained in a module that cross the SLR boundaries. For each module, the table provides further
details of which SLRs are crossed by the nets. The following figure shows an example of the SLR
Net Crossing Reporting table.

Note: When a net has loads in multiple SLRs, it is only counted once for the furthest cut. For example, a net
driven from SLR0 to loads in SLR1, SLR2, and SLR3 is only counted once under the 0-3 cuts, with SLR3
being the "furthest fanout" from SLR0. This counting method enables to sum the number of nets under
each column (0-1 Cuts, 1-2 Cuts, and so on) to match to total number of nets crossing, as each net is only
counted once.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=44

Figure 29: Example SLR Net Crossing Reporting Table

When analyzing the SLR Net Crossing Reporting Table of your design for Congestion and Timing
QoR, look for the following:

1. When using SSI Devices, the SSI placement directives can be beneficial for both timing and
congestion.

2. If a particular module that is crossing SLRs is consistently experiencing timing issues across
multiple implementation runs using various placement directives, attempt light Pblocking to
constrain the module to a single SLR.

Report QoR Assessment
The report_qor_assessment command generates a text report which provides:

• An assessment score that is indicative of how likely their design is to meet performance
targets.

• Flow guidance on the recommended next steps.

• A summary of utilization and performance metrics.

• A summary on methodology checks critical to QoR.

• Information on the availability of ML implementation run strategies.

As a design progresses through a design closure flow, there are many different strategies required
to bring the design to closure. Knowing in what order to address issues and when to change
approach in your implementation flow is something that even experienced designers can get
wrong. The cost of not switching at the correct times could be unnecessary implementation time
and additional cycles in analyzing implementation runs. For example, solving congestion issues
when key clocking issues should be dealt with first. Consequently, it can be costly from a
productivity perspective to get this wrong.

The following diagram illustrates in a simple manner how RQA interacts with changes in the
design.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=45

Figure 30: RQA Interaction with Design Changes

Typical Design
Modifications

Typical Implementation
Flow

RQA Guidance / Score

· Methodology Clean up
· Large RTL Changes
· Constraints Creation
· New IP added

· Default Flow
· Basic directives

· Resolve Methodology Issues
· Run Default Strategy
· RQA Score: 1-3

· Clocking optimization
· RTL Edits
· Netlist optimization
· IP Upgrades
· Floorplanning

· Adding switches
· Default flow

· More directives

· Run RQS Suggestions
· Use ML Strategy Suggestions
· RQA Score: 3-4

· Small RTL Edits
· Netlist optimization
· Adding debug cores
· Floorplanning

· Default flow
· Multiple directives

· Incremental Flow

· Run RQS Suggestions
· Use ML Strategy Suggestions
· Use Incremental flow
· RQA Score: 4-5

Design Closure Flow

X23299-093019

In the early stages, RQA uses the output from report_methodology to determine
methodology breaches. It is recommended to resolve these early in the design cycle. As the flow
progresses, running report_qor_suggestions generates automated suggestions that can
improve the RQA score. When the design is close to achieving timing closure, the focus shifts to
getting more out of the implementation tools. RQA will recommend optimal implementation
strategies that are generated by using machine learning algorithms to examine the design. Finally,
for last mile timing closure, RQA will recommend using Incremental Compile to fine tune the
implementation result and achieve timing closure. Only smaller gains are possible at this stage.

Typical designs might not progress smoothly through the design closure flow. There may be
jumps, or stages skipped as well as going backwards when larger changes occur. RQA can be
used to reassess the design and provide updated flow guidance at any time after synthesis.

Overall Assessment Summary
The summary contains both the QoR Assessment Score and Flow Guidance information.

The assessment score determines whether you should invest more time improving the design
(RTL, constraints, etc.) or continue with implementation runs. The earlier in the flow you run the
command, the greater the benefit. There is a small compromise on accuracy but the score should
not be greater than one away from the final post route score. It is generated by analyzing a
complex set of design metrics in areas such as Ultrafast Methodology, device utilization, control
sets, clocking, setup slack, and hold slack. In addition, device specific characteristics are also
considered. The scoring range is from 1 to 5. When less than 5, use
report_qor_suggestions to improve the score.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=46

Score details are provided in the following table:

Table 2: Report QoR Assessment Scoring

Score Meaning
1 Design is unlikely to complete the implementation flow

2 Design will complete the implementation flow but will not meet timing

3 Design is unlikely to meet timing

4 Design may meet timing

5 Design will easily meet timing

Flow guidance is part of the Overall Assessment Summary. It dynamically updates depending on
the current status of the design. It provides information about:

• Whether a user needs to address methodology issues

• Whether the design improves using QoR Suggestions

• Whether to use ML strategies or Incremental Compile

The following figure shows an example design with a QoR Assessment Score of 2:

Figure 31: Overall Assessment Summary

QoR Assessment Details
The QoR Assessment Details table (shown in the following figure) gives a convenient design
overview that highlights issues in the following areas:

• Utilization

• Clocking

• Congestion

• Timing

These categories form the basis of the RQA score. The following figure shows an example report.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=47

Figure 32: QoR Assessment Details

The table shows design characteristics broken into 4 categories. Each category is marked OK
when there are no sub-items marked REVIEW. When sub-items are marked REVIEW, the failing
item is displayed with its threshold and current value. The thresholds are not hard limits and can
be exceeded, but going over these limits can make timing closure difficult. Pay particular
attention when thresholds are significantly exceeded or when many categories are exceeding
their thresholds.

Utilization checks are performed on the whole device, at the SLR level and the pblock level.
Running report_qor_suggestions can help reduce utilization.

Clocking shows whether there is high clock skew on setup or hold paths. Running
report_qor_suggestions gives more information on the paths that are impacted by sub
optimal clocking and in some cases automated fixes.

Congestion looks into the netlist for profiles that can contribute to routing congestion.
Congested region information is not available before placement but some netlist items are
available. You may wish to evaluate congestion by running place and route before fixing these
items. They do not contribute to the RQA score before the design is placed. Run
report_qor_suggestions to generate suggestions that reduce congestion targeted at cells
in the congested area.

Timing looks at the current estimated timing and also performs net and LUT budget checks. LUT
and net budget checks provide an alternate view of a timing path. Most component delays are
fixed, but LUT delays can change during implementation. Net delays can also vary. These checks
replace the net and LUT delays with some typical numbers as opposed to more optimal numbers.
This can help account for when the tool has to compromise by optimizing a more critical path at
the expense of another. It is recommended to fix these paths early as they will be challenging to
meet timing. Run report_qor_suggestions to get more information on these paths.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=48

Methodology Checks
A limited number of methodology checks (from report_methodology) are run in order to
ensure that a stable foundation is in place for QoR suggestions to be effective. If methodology
checks are already run, the cached results will be reused unless there are changes in the design. If
methodology checks are required to be run, this will result in an increase in run time. This can be
disabled using the -no_methodology_checks switch.

ML Strategy Availability
There are two main reasons why ML strategies might not be generated by
report_qor_suggestions.

1. The required implementation flow has not been run.

2. The algorithm has failed to find a strategy that improves the design's QoR.

You can address the first point by examining the ML Strategy Availability table. An example is
shown here:

This checks off each required implementation step. The requirements are:

• opt_design must be run with directive Explore or Default

○ More than one call to opt_design is allowed but the final call must meet the previous
condition

• The remaining implementation directives must be either all set to Default or all set to Explore

○ Mix and match of these implementation steps is not permitted

○ phys_opt_design must be enabled

• The design must be routed

For the second item when no solution is found, it is not possible to predict this without running
the algorithm.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=49

Report QoR Suggestions
report_qor_suggestions is the principal command used when working with suggestion
objects. Suggestion objects are used to improve the ability of a design to meet timing by adding
switches to commands such as opt_design, properties to design objects such as cells and nets,
and full implementation strategies. report_qor_suggestions generates a report in either
the Vivado® IDE or a text based report. It can be used for both:

• Generating and viewing new suggestions on the current design in memory

• Viewing existing suggestions that have been read in using the read_qor_suggestions
command

The report_qor_suggestions command can be run on a design loaded in memory at any
time after synthesis. The suggestion objects generated consider many design characteristics and
generate suggestions in the following categories:

• Clocking

• XDC

• Utilization

• Congestion

• Timing

• Strategies

The generated suggestions must then be fed back into the flow to take effect. Design stages are
typically required to be rerun, as is shown in the following figure:

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=50

Figure 33: Suggestion Flow

synth_design

Reference Run

opt_design

place_design

route_design

synth_design
report_qor_suggestions

· Generate NEW suggestions
· Generate Suggestion Report

write_qor_suggestions

· ENABLE suggestions
· Write RQS file

get_qor_suggestions

· -filter {category==Clocking}
· ENABLED
· Automatic

· 80% of suggestions are AUTO
· List specific suggestions for -of_objects

read_qor_suggestions

· Read RQS file
· Typically before synth / opt

synth_design

Suggestion Run

opt_design

place_design

route_design

synth_design

delete_qor_suggestions

· Removes suggestions from memory

X23300-102319

Prior to generating new suggestions, a design must be loaded into memory.
report_qor_suggestions can be run at any stage of the flow after synthesis. The returned
suggestions are ordered based on importance, with the most important listed at the top of the
report.

It only reports suggestions required to improve the QoR of the design. Sometimes placement or
routing information is required before a suggestion can be issued. In addition, there are
restrictions to ensure only suggestions that contain necessary design changes are generated.

Clocking suggestions generally need to be generated after placement, but there are some
exceptions to this when accurate information is available before placement. With a few
exceptions, they require a failing timing path.

Timing suggestions are generated by examining the top 100 failing timing paths per clock group.

Utilization suggestions are generated when it judges that the resource targeted by the suggestion
is overused and does not result in an increase of a critical resource. These can be reported at any
design stage.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=51

Congestion is only reported after placement. If a design is routed and timing is met, it does not
report congestion suggestions as it is proven these are not having an impact on timing closure.

The final category, Strategies, is a special category that contains implementation strategies.
These are generated using machine learning algorithms that analyze many design characteristics.
The flow when using these objects is slightly different to that described above and is outlined in
more detail later in this chapter.

Executing Suggestions
Suggestions are executed in the suggestion run when the following criteria are met:

• The suggestion is ENABLED.

• The APPLICABLE_FOR stage must be run.

• The suggestion must be AUTO.

When a suggestion is executed, the APPLIED setting updates as is shown in the following figure:

Figure 34: Suggestion Execution

In the implementation flow, if a property contained in a suggestion is not applied correctly to the
associated cell or net, FAILED_TO_APPLY will be set to 1. If a suggestions is partially applied, a
new suggestion will be generated and the suggestion will be broken out into suggestions that
have been applied and failed to apply. FAILED_TO_APPLY will not be set if the implementation
tools reject the property later in the flow.

Suggestions can be executed in the same run as they were generated in if the APPICABLE_FOR
stage is after the stage they were generated at. To do this, you must manually enable the
suggestion first.

set_property ENABLED 1 [get_qor_suggestions <SuggID>]

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=52

When using this method, you must remember to write this suggestion to the RQS file when the
run is complete to use this moving forward.

Other Related Commands
There are five related commands when working with QoR suggestion objects:

Table 3: Other Related Commands

Command Function
report_qor_suggestions Generates new suggestions

Reports on existing suggestions

write_qor_suggestions Writes suggestion objects to a file. Suggestions are ENABLED
automatically during this process

read_qor_suggestions Reads suggestion objects from a file

get_qor_suggestions Returns QoR suggestion objects

delete_qor_suggestions Removes QoR suggestions from memory

Generating the QoR Suggestion Report
report_qor_suggestions can be run from the Vivado® IDE using the Reports → Report
QoR Suggestions pulldown menu.

Figure 35: Report QoR Suggestions Dialog Box

When running in the Vivado IDE, the report_qor_suggestions command generates new
suggestions and reports on existing suggestions.

The equivalent command at the Tcl console is:

report_qor_suggestions -name qor_suggestions_1

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=53

When report_qor_suggestions is run with -of_objects the command only reports
existing suggestions. This command executes very quickly and is useful to see what suggestions
are in an RQS file after it has been read:

report_qor_suggestions -of_objects [get_qor_suggestions <objectNames>]

To change the timing path limit from the default of 100, change the "Number of paths for
suggestion analysis" shown in the dialog box. the equivalent in Tcl is the -max_paths <N>
switch, where N is an integer:

report_qor_suggestions -max_paths <N>

The -report_all_suggestions switch instructs report_qor_suggestions to disregard
some of the gating criteria in offering suggestions. The behavior is as follows:

• Timing suggestions - offer suggestions on timing paths regardless of whether timing is met

• Utilization suggestions - offer suggestions on a resource that is not critical

• Congestion suggestions - offer suggestions on timing met designs at post route stage

For example:

report_qor_suggestions -report_all_suggestions

The QoR Suggestion Report
The report is separated into two parts, the suggestions and details. The following table shows an
example of the report generated:

Figure 36: Example report_qor_suggestions Report

In the report under RQS Summary there is a list of all suggestions. These are presented in four
categories, allowing the user to examine a particular set of suggestions. They can be considered
in the following pairs:

• GENERATED and EXISTING:

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=54

• Generated suggestions are newly generated at the current stage of the flow

• Existing suggestions may have come from earlier in the flow or by reading in an RQS file

• APPLIED and FAILED TO APPLY:

• Applied suggestions are suggestions that have been enabled and the APPLICABLE_FOR
stage has been passed. They have been successfully applied.

• Failed to apply suggestions have been enabled and passed through the APPLICABLE_FOR
stage but were not successfully applied. Users should examine the log file to understand
why suggestions were not applied.

The lower half of the report contains details on the suggestions generated. It is split into the
categories that report_qor_suggestions analyzes the design:

• Clocking

• Congestion

• Utilization

• Timing

• XDC

• Strategy

When looking at GENERATED suggestions, users can expect the detailed section to have a
degree of information that will allow a user to infer why the suggestion is reported. It is possible
to cross probe from the details section for GENERATED suggestions. The following cross probing
methods are useful:

• Selecting objects highlights objects in other windows e.g., device view

• Press F4 to show schematics of selected objects

• Right click menu to generate timing report

When looking at EXISTING suggestions, it is possible that the objects have been modified and do
not exist (for example, opt_design may remove objects from the netlist). For this reason, cross-
probing is not always available when selecting EXISTING suggestions.

For each suggestion, there are some columns that provide additional useful information on how
the suggestion should work. These columns show the following:

Table 4: Additional Information

Attribute Values Description
GENERATED_AT Design stage

For example, opt_design
Stage which the suggestion was generated.

APPLICABLE_FOR Design stage
For example, opt_design

Stage which must be rerun with the suggestion
enabled.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=55

Table 4: Additional Information (cont'd)

Attribute Values Description
SOURCE current_run, <filename>.rqs Where the suggestion source is.

AUTOMATIC Yes, No Describes if Vivado tools can automatically execute
the suggestion or it is manual suggestion.

Working with QoR Suggestions Objects in the IDE
After the QoR suggestion report has been generated, you must then generate an RQS file that
can be fed in to the Suggestion run. To do this, first select the suggestions to be included in the
run and then write the QoR suggestion file. This is illustrated in the following figure:

Figure 37: Select/Write Suggestions

Project Mode

In project mode the option to allow Vivado to automatically manage the RQS file is included. This
is activated when Add Suggestions to Project is used. When selected, the file will be
automatically added to the utility sources fileset in the project.

Once in the project, in the Design Runs window, you can right click on a run and select Set QoR
Suggestions… It may be required to add this to both synthesis and implementation runs.

Note: There may be multiple implementations for a parent synthesis run. Only one RQS file can be used for
a given run.

The equivalent TCL commands for this flow are:

write_qor_suggestions -of_objects [get_qor_suggestions \
{<NAME_1> <NAME_2>}] -file <fn.rqs>
add_files -fileset utils_1 <fn>.rqs
set_property RQS_FILES <fn>.rqs [get_runs <run name>]

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=56

Non-Project Mode

When opening a checkpoint, only the Export Suggestions button is available. This writes the
suggestion file that must then be added to the run using read_qor_suggestions. The
read_qor_suggestions command should be run either before synth_design or before
opt_design.

The equivalent TCL commands for this flow are:

write_qor_suggestions -of_objects [get_qor_suggestions \
{<NAME_1> <NAME_2>}] -file <fn.rqs>
…
read_vhdl <some_file>.vhd
read_qor_suggestions all_enabled_suggestions.rqs
synth_design -top <top> -part <part>
opt_design
...
write_qor_suggestions -force all_enabled_suggestions.rqs

Note: report_qor_suggestions cannot be run until a design is loaded.

Strategy Suggestions
Strategy suggestions are a special type of suggestion. They set implementation directives that are
optimal for the design. They are reported in the IDE but can only be generated via Tcl and are
applicable only to the implementation runs. The prediction is based off the netlist features and so
the synthesis settings should be the same in the strategy runs as they were in the reference run.
The flow is shown in the following figure:

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=57

Figure 38: Strategy Suggestion Flow

synth_design

place_design —directive
<Explore | Default>

phys_opt_design —directive
<Explore | Default>

route_design —directive
<Explore | Default>

opt_design —directive
<Explore | Default>

report_qor_suggestionsReference run

write_qor_suggestions
—strategy_dir <dir>

Tcl Run #1Tcl Run #1
Tcl Run #1

Tcl Run #1Tcl Run #1
RQS Strategy #1

synth_design

opt_design —directive RQS

place_design —directive RQS

phys_opt_design —directive RQS

New Project/Non-Project run

read_qor_suggestions

route_opt_design —directive RQS

<dir>

source

X23314-100119

As shown in the previous figure, there are four key points to this flow.

Firstly report_qor_suggestions should be run on a fully routed design that is generated
using either Default or Explore directives. For complete details about the requirements, see ML
Strategy Availability.

Secondly, write_qor_suggestions -strategy_dir <dir> generates Tcl and RQS files in
the directory specified. By default, three strategies are generated. For each strategy generated, a
single RQS file contains all the suggestion objects as well as the strategy suggestions object. The
RQS file specified using write_qor_suggestions -file <fn>.rqs can be discarded as
the information is replicated in each strategy RQS file.

Note: To generate more strategies, increase the number using:

report_qor_suggestions -max_strategies <n>

Thirdly the generated RQS file must be read in to the new implementation run.

Finally, the directive RQS must be set and the script must contain a call to opt_design,
place_design, phys_opt_design and route_design. The RQS directive instructs the
tools to reference the suggestion.

In project mode, source the project based Tcl script. This will automatically create a new run
based on the existing run, setup the RQS file to be read and adjust the directives.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=58

In non-project mode, an example Tcl script is provided. This shows how the RQS file must be read
and the directives for the implementation commands set to RQS. These scripts are intended to
be an example on a design loaded into memory in the pre-opt_design stage. They do not contain
any reporting or writing of checkpoints.

RQS in the Incremental Flow
When your design is very close to timing closure (typically the WNS is less than -250ps), enable
the incremental flow with RQS suggestions. This allows you to achieve timing closure and save
iteration time by taking advantage of both the incremental flow and RQS suggestions.
report_qor_assessment indicates when to use this flow. “Flow Guidance” section.

In the run, the suggestions generated from the reference routed DCP are read in before running
the incremental flow commands. The rest of the flow is applied automatically for the user. Vivado
understands which suggestions to apply at what stage in the flow by differentiating what
suggestions are newly GENERATED and which ones were APPLIED in the reference run. This is
shown in the following figure:

Figure 39: Incremental Flow

· Apply suggestions applicable for pre_opt_design

· Apply any suggestions already existing from the reference dcp

· Apply newly generated incremental friendly RQS suggestions

· The same pre opt_design checkpoint as the reference fileopen pre opt_design
checkpoint

read_qor_suggestion

opt_design

read_checkpoint –
incremental

Open Checkpoint

Apply Suggestions

Apply Suggestions

X23315-060120

In the case where the incremental flow is run, the suggestions that have been applied in the
reference are read from the reference DCP and applied regardless of whether they are enabled or
not. The ENABLED property is ignored because it is important to replicate the reference
checkpoint as closely as possible.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=59

Next incremental friendly suggestions from the RQS file are applied. These must be enabled,
which is done automatically during read_qor_suggestions. The suggestions are applied
during read_checkpoint -incremental and not at the APPLICABLE_FOR stages.
Therefore, suggestions should not be read after this stage, or enabled after this point as they will
be ignored. Any new non-incremental friendly suggestions in the RQS file will be ignored
(existing non-incremental friendly suggestions applied in the reference will be applied).

Special care should be taken when applying suggestions that are applicable for opt_design. As
this is before the flow is aware it is in incremental mode, it is not possible to automatically
manage these suggestions. The user must ensure that existing suggestions that are applied in the
reference are also applied in the incremental run and that no new suggestions are applied. If it is
desirable to apply these suggestions, the reference should be updated.

In the case where the incremental flow reverts to the default flow, (usually due to a negative
change), all suggestions will be executed from the RQS file. For this reason, before launching the
next incremental run, you must export all suggestions to the RQS file and not just the incremental
friendly ones.

Before adopting this flow, note the following prerequisites:

• The device part for the reference run and the incremental run should match.

• The reference checkpoint should be a post-route checkpoint.

• The same directive should be used for opt_design in the reference and incremental runs.

• The design should not have major design issues like high congestion, unbalanced clocking, or
have RQA score less than 4.

• The suggestions should be regenerated from the reference checkpoint.

• Newly-generated suggestions will only be applied if they are incremental friendly suggestions.
If suggestions are not incremental friendly, they will only be executed if the flow reverts back
to the default flow. If this does not happen they will be ignored.

• Newly generated suggestions must be generated from the reference checkpoint. This check
ensures suggestions are not impacting paths that have their timing resolved (for example at
post route phys_opt_design.

An example of the commands required to run the flow is shown here:

Reference

Generate RQS suggestions from the reference DCP
open_checkpoint reference_routed.dcp
report_qor_suggestions -file postroute_rqs.rpt
write_qor_suggestions -force ./post_route.rqs

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=60

Incremental

RQS-Incremental Run:
open_checkpoint <pre_opt.dcp>
read_qor_suggestions ./post_route.rqs
opt_design directive must be same as the reference run
opt_design -directive {same directive as reference run}
read_checkpoint -incremental reference_routed.dcp
place_design is running in TimingClosure mode
place_design
phys_opt_design is optimized for incremental
phys_opt_design
route_design is running in TimingClosure mode
route_design
write_checkpoint postroute.dcp

Automatic Removal of Suggestions
To prevent suggestions from accruing in number excessively, Vivado Design Suite carries out
automatic management of suggestions. It will delete suggestions that are identical to previously
generated suggestions at the time new suggestions are generated.

Viewing suggestions in TCL or Text Format
Suggestion objects are stored in binary and as a consequence, the only way to read the
suggestion is to load the design, read the suggestions and run report_qor_suggestions.
Support for viewing and executing suggestions in TCL is available for users who do not wish to
use the object flow.

To write out suggestions in TCL, the user must use:

write_qor_suggestions -tcl_output_dir <outputDir>

This will output one or more TCL files to the stated directory. This option is not available in the
Vivado IDE.

Once objects are in TCL, a user must maintain the TCL to remove objects that are no longer
required and append the TCL with newly generated TCL scripts.

Suggestions that are entered via TCL are no longer reported by report_qor_suggestions.

Chapter 2: Implementation Results Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=61

Chapter 3

Logic Analysis Within the IDE

Design Analysis Within the IDE
The following chapters provide an introduction to design analysis in the Xilinx® Vivado® Design
Suite Integrated Design Environment (IDE):

• Chapter 3: Logic Analysis Within the IDE (this chapter)

• Chapter 4: Timing Analysis Features

• Chapter 2: Implementation Results Analysis Features

Logic Analysis Features
This chapter discusses Logic Analysis Features, and includes:

• Using the Netlist Window

• Using the Hierarchy Window

• Using the Schematic Window

• Searching for Objects Using the Find Dialog Box

• Analyzing Device Utilization Statistics

• Using Report DRC

• Validating Design Methodology DRCs

Using the Netlist Window
The Netlist Window shows the design hierarchy as it is in the netlist, processed by the synthesis
tools. It is useful for exploring the logical hierarchy of the design.

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=62

Figure 40: Netlist Window

Depending on synthesis settings, the netlist hierarchy may be a one hundred percent match for
the original RTL, or there may be no hierarchy. Generally, the synthesis defaults to preserving
most of the user hierarchy while optimizing the logic. This results in a smaller and faster netlist.

With the synthesis tool defaults, the netlist hierarchy is recognizable, but the interfaces to the
hierarchies may be modified. Some pins and levels of hierarchy may be missing.

The netlist hierarchy is represented as a folder tree. At each level, the tool shows:

• A Nets folder for any nets at that level

• A Leaf Cells folder if there are hardware primitive instances at that level

• A hierarchy folder for any hierarchies instantiated at that level

Expanding a hierarchy folder reveals the Nets, Leaf Cells, and hierarchies at that level. The icons
next to the cells display information about the state of the design.

For more information, see this link in the Vivado Design Suite User Guide: Using the Vivado IDE
(UG893).

The Cell Properties Window for the selected hierarchy provides useful information filtered by the
category buttons at the bottom of the window. Selecting the Statistics button shows utilization
statistics including:

• Primitive usage for the whole hierarchical branch, grouped in higher level buckets

• The number of nets crossing the hierarchy boundary

• Each clock, whether it is on global routing and the number of its loads in the current
hierarchical branch

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 63Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf;a=xUsingTheNetlistWindow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=63

Figure 41: Cell Properties Window

If you floorplan the design, similar properties are displayed for the Pblock.

Using the Hierarchy Window
Explore the hierarchy physically to understand the resource usage. To open the Hierarchy
Window, select Tools > Show Hierarchy, or from the Netlist window, click F6.

As shown in the following figure, the Hierarchy Window displays a hierarchy map for the
selected hierarchy. The hierarchy map displays the leaf cells as yellow blocks nested within
rectangles corresponding to their parent hierarchy. Each level of the hierarchy is sized relative to
the flat number of instances at that level compared to the total number of instances in the
design.

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=64

Figure 42: Hierarchy Window

The previous figure shows that cpuEngine, usbEngine0, and usbEngine1 have most of the
logic in the design, and all use about the same number of resources.

Using the Utilization Report
The Utilization Report breaks down the design utilization based on resource type. The left panel
summarizes usage by resource type and the right panel displays usage per hierarchy.

To view the Utilization Report, select Reports → Report Utilization. The following figure shows
the Utilization Report.

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=65

Figure 43: Utilization Report

In this design, the two usbEngine blocks are the two biggest consumers of the RAMB36 and
FIFO36 blocks. Click the + (plus) icon to view the consumption at sub-hierarchies.

Using the Schematic Window
The schematic is a graphical representation of the netlist. View the schematic to:

• View a graphical representation for the netlist.

• Review the gates, hierarchies, and connectivity.

• Trace and expand cones of logic.

• Analyze the design.

• Better understand what is happening inside the design.

At the RTL level in Elaborated Design, you see how the tool has interpreted your code. In
Synthesize Design and Implemented Design, you see the gates generated by the synthesis tool.
To open the schematic, select Tools > Schematic. If nothing is selected, the gates, hierarchy, and
connectivity appear at the top level of the design, as shown in the following figure.

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=66

Figure 44: Top Level Schematic

TIP: The schematic is simpler if you use a single level of hierarchy only. The schematic populates with the
selected element emphasized (blue). The ports for the single hierarchy display.

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=67

Figure 45: Schematic with Single Hierarchy Selected

You can trace the schematic in multiple ways:

• Click the + (plus) icon in the upper left to display the gates in the hierarchy.

• Double-click a port or element to expand it.

• Right-click and select Schematic from the popup menu.

• Click the <- -> navigation arrows to switch between the previous and next schematic views.

For more information about schematics, see this link in the Vivado Design Suite User Guide: Using
the Vivado IDE (UG893).

After implementation, the schematic is the easiest way to visualize the gates in a timing path.
Select the path, then open the schematic with the gates and nets from that path.

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 68Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf;a=xUsingTheSchematicWindow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=68

Figure 46: Schematic with Timing Path

To identify the relevant levels of hierarchy of a selected cell in the schematic, choose Select Leaf
Cell Parents from the popup menu.

Figure 47: Timing Path with Select Primitive Parents

As you review the schematic, select the Highlight and Mark commands to track leaf cells of
interest. Color coding cells (using either a mark or a highlight) makes it easier to track which logic
was in the original path, and which logic was added.

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=69

Figure 48: Schematic with Timing Path Marked

Searching for Objects Using the Find Dialog
Box

The Vivado® IDE includes powerful find and search capabilities. To open the Find dialog box,
select Edit → Find. (See the following figure.)

Note: You can also open the Find window by pressing Ctrl+F.

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=70

Figure 49: Find Dialog Box

Find Criteria
The Find dialog box allows you to search the netlist for a wide range of criteria and properties, as
shown in the following figures.

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=71

Figure 50: Find Dialog Box Displaying Search Criteria

Figure 51: Find Dialog Box Showing Properties Options

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=72

Complex Finds
To run a complex find:

1. Set the first search criterion.

2. Click + (plus) next to the Properties drop-down options.

3. Add additional criteria.

4. Join the additional criteria with logical operators (AND, OR).

Find Examples
Select Edit → Find to find, for example:

• All unplaced I/Os:

Find: <Cells>, Properties: <Primitive> <is> <IO> + <AND> <STATUS> <is> <UNPLACED>

• All nets with a fanout over 10,000:

Find: <Nets>, Properties: <FLAT_PIN_COUNT> <is greater than> <10000>

• All DSPs using the PREG embedded register:

Find: <Cells>, Properties: <PRIMITIVE_TYPE> <is> <ARITHMETIC.DSP> + <AND> <PREG>
<is greater than> <0>

Tcl Finds
From the script or Tcl console, use the equivalent Tcl get_* command (such as get_cells) to
query Vivado objects.

TIP: The Tcl Console at the bottom of the Vivado® IDE shows the Vivado Design Suite Tcl commands run
for each action executed in the GUI. From the Tcl Console, you can also enter Vivado Design Suite Tcl
commands.

For more information on Tcl scripting, see the Vivado Design Suite User Guide: Using Tcl Scripting
(UG894).

For more information on Tcl commands, see the Vivado Design Suite Tcl Command Reference Guide
(UG835), or type <command> -help.

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 73Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=73

Analyzing Device Utilization Statistics
A common cause of implementation issues comes from not considering the explicit and implicit
physical constraints. The pinout, for example, becomes an explicit physical constraint on logic
placement. Slice logic is uniform in most devices. However, specialized resources such as the
following, represent implicit physical constraints because they are only available in certain
locations, and impact logic placement:

• I/O

• High Performance Banks

• High Range Banks

• MGT

• DSP Slices

• Block RAM

• MMCM

• BUFG

• BUFR

Blocks that are large consumers of these specialized resource may have to spread around the
device. Consider how this physically constrains the placement and routing when designing the
interface with the rest of the design. Additionally, Pblocks are explicit physical constraints used
to define allowable placement areas for specified logic. Use a combination of the following
methods to analyze block resource usage on the device:

• report_utilization

• netlist properties

• Pblock properties

Using Report DRC
Design Rule Checks (DRCs) check the design and report on common issues. Since the 2016.1
release, DRCs are split into two different commands. The methodology DRCs have been moved
to the report_methodology command, while all other DRCs are in the report_drc
command. Run non-methodology DRCs using the report_drc command. During
implementation, the tools also run DRCS. The DRCs become more complete and comprehensive
with placement and routing.

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=74

Figure 52: Showing Critical Warnings and Error

Review the DRC messages, Critical Warnings, and Warnings early in the flow to prevent issues
later.

Critical Warnings in early design stages become Errors later during the implementation flow and
prevent bitstream creation. In the above example generated from a post Synthesized Design, the
optional Report DRC step reports a Critical Warning for the unconstrained I/Os. The post-route
design DRC report also reports these Critical Warnings. You must review the report because at
write_bitstream the DRC is elevated to an Error. Review the DRC reports early to identify
areas of the design that need modification.

Validating Design Methodology DRCs
Due to the importance of methodology, the Vivado® tools provide the report_methodology
command, which specifically checks for compliance with methodology DRCs. There are different
types of DRCs depending on the stage of the design process. RTL lint-style checks are run on the
elaborated RTL design; netlist-based logic and constraint checks are run on the synthesized
design; and implementation and timing checks are run on the implemented design.

To run these checks at the Tcl prompt, open the design to be validated and enter following Tcl
command:

report_methodology

To run these checks from the IDE, open the design to be validated and run the Report
Methodology command from the Flow Navigator in project mode, or from Reports → Report
Methodology. The dialog box appears, as shown in the following figure.

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=75

Figure 53: Report Methodology Dialog Box

Violations (if there are any) are listed in the Methodology window, as shown in the following
figure.

Figure 54: DRC Violations

For more information on running design methodology DRCs, refer to this link in the Vivado
Design Suite User Guide: System-Level Design Entry (UG895).

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 76Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf;a=xRunningMethodologyChecks
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=76

Note: It is recommended to address all methodology violations with a special focus on Critical Warnings as
they affect both timing closure and sign-off quality.

Chapter 3: Logic Analysis Within the IDE

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=77

Chapter 4

Timing Analysis Features

Report Timing Summary
Timing analysis is available anywhere in the flow after synthesis. You can review the Timing
Summary report files automatically created by the Synthesis and Implementation runs.

If your synthesized or implemented design is loaded in memory, you can also generate an
interactive Timing Summary report from:

• Flow Navigator → Synthesis

• Flow Navigator → Implementation

• Reports → Timing → Report Timing Summary

Equivalent Tcl command: report_timing_summary

For more information on the report_timing_summary options, see this link in the Vivado
Design Suite Tcl Command Reference Guide (UG835).

In a synthesized design, the Vivado® IDE timing engine estimates the net delays based on
connectivity and fanout. The accuracy of the delays is greater for nets between cells that are
already placed by the user. There can be larger clock skew on paths where some of the cells have
been pre-placed, such as I/Os and GTs.

In an Implemented Design, the net delays are based on the actual routing information. You must
use the Timing Summary report for timing signoff if the design is completely routed. To verify
that the design is completely routed, view the Route Status report.

When run from the Tcl Console or the GUI, the report can be scoped to one or more hierarchical
cells using the -cells option. When the report is scoped, only paths with the datapath section
that start, end, cross, or are fully contained inside the cell(s) are reported.

Report Timing Summary Dialog Box
In the Vivado IDE, the Report Timing Summary dialog box includes the following tabs:

• Options Tab

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 78Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xreport_timing_summary
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=78

• Advanced Tab

• Timer Settings Tab

The Results name field at the top of the Report Timing Summary dialog box specifies the name of
the graphical report that opens in the Results window. The graphical version of the report
includes hyperlinks that allow you to cross-reference nets and cells from the report to Device and
Schematic windows, and design source files.

If this field is left empty, the report is returned to the Tcl Console, and a graphical version of the
report is not opened in the Results window.

Equivalent Tcl option: -name

Options Tab

The Options tab in the Report Timing Summary dialog box is shown in the figure below.

Figure 55: Report Timing Summary Dialog Box: Options Tab

Report Section

The Report section of the Options tab of the Report Timing Summary dialog box includes:

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=79

• Path delay type

Sets the type of analysis to be run. For synthesized designs, only max delay analysis (setup/
recovery) is performed by default. For implemented design, both min and max delay analysis
(setup/hold, recover/removal) are performed by default. To run min delay analysis only (hold
and removal), select delay type min.

Equivalent Tcl option: -delay_type

• Report unconstrained paths

Generates information on paths that do not have timing requirements. This option is checked
by default in the Vivado IDE, but is not turned on by default in the equivalent Tcl command
report_timing_summary.

Equivalent Tcl option: -report_unconstrained

• Report datasheet

Generates the design datasheet as defined in Report Datasheet, in this chapter.

Equivalent Tcl option: -datasheet

Path Limits Section

The Path Limits section of the Options tab of the Report Timing Summary dialog box includes:

• Maximum number of paths per clock or path group: Controls the maximum number of paths
reported per clock pair or path group.

Equivalent Tcl option: -max_paths

• Maximum number of worst paths per endpoint: Controls the maximum number of paths
potentially reported per path endpoint. This limit is bounded by the maximum number of
paths per clock pair or path group. Therefore, the total number of reported paths is still limited
by the number of -max_paths.

Equivalent Tcl option: -nworst

Path Display Section

The Path Display section of the Options tab of the Report Timing Summary dialog box includes:

• Display paths with slack less than: Filters the reported paths based on their slack value. This
option does not affect the content of the summary tables.

Equivalent Tcl option: -slack_lesser_than

• Significant digits: Controls the accuracy of the numbers displayed in the report.

Equivalent Tcl option: -significant_digits

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=80

Common Section

The following controls common to all three tabs are located at the bottom of the Report Timing
Summary dialog box:

• Command: Displays the Tcl command line equivalent of the various options specified in the
Report Timing Summary dialog box.

• Open in a New Tab: Opens the results in a new tab, or to replace the last tab opened by the
Results window.

• Open in Timing Analysis Layout: Resets the current view layout to the Timing Analysis view
layout.

For more information on view layouts, see this link in the Vivado Design Suite User Guide: Using
the Vivado IDE (UG893).

Advanced Tab

The Advanced tab in the Report Timing Summary dialog box is shown in the figure below.

Figure 56: Report Timing Summary Dialog Box: Advanced Tab

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 81Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf;a=xLayoutSelector
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=81

Report Section

• Report from cell: Enable to limit the timing reporting on the particular cell(s) of the design.
Only paths with the datapath section that start, end, cross, or are fully contained inside the
cell(s) are reported.

Equivalent Tcl option: -cells

• Show input pins in path: Displays which input pin of the cell is used for the path.

Equivalent Tcl option: -input_pins

RECOMMENDED: Keep this option selected to provide more information about all pins used in the
path.

• Report unique Pins: show only one timing path for each unique set of pins.

Equivalent Tcl option: -unique_pins

File Output Section

• Write results to file: Writes the result to the specified file name. By default the report is
written to the Timing window in the Vivado IDE.

Equivalent Tcl option: -file

• Overwrite/Append: When the report is written to a file, determines whether (1) the specified
file is overwritten, or (2) new information is appended to an existing report.

Equivalent Tcl option: -append

• Interactive report file: Writes the result in the Xilinx RPX format to the specified filename. The
RPX file is an interactive report that contains all the report information and can be reloaded
into memory in the Vivado Design Suite using the open_report command.

Miscellaneous Section

• Ignore command errors: Executes the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors
encountered during execution.

Equivalent Tcl option: -quiet

• Suspend message limits during command execution: Temporarily overrides any message limits
and return all messages.

Equivalent Tcl option: -verbose

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=82

Timer Settings Tab

To set the timer settings, use either: (1) one of the Vivado IDE timing analysis dialog boxes; or, (2)
one of the Tcl commands listed in this section. These settings affect other timing-related
commands run in the same Vivado IDE session, except the synthesis and implementation
commands.

The timer settings are not saved as a tool preference. The default values are restored for each
new session. Do not change the default values. Keeping the default values provides maximum
timing analysis coverage with the most accurate delay values.

The Timer Settings tab in the Report Timing Summary dialog box is shown in the figure below.

Figure 57: Report Timing Summary Dialog Box: Timer Settings Tab

Interconnect Setting

Controls whether net delays are calculated based on the estimated route distance between leaf
cell pins, by the actual routed net, or excludes net delay from timing analysis. This option is
automatically set to Estimated for post-synthesis designs, and to Actual for post-implementation
designs.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=83

• Estimated: For unplaced cells, the net delay value corresponds to the delay of the best
possible placement, based on the nature of the driver and loads as well as the fanout. A net
between unplaced leaf cell pins is labeled unplaced in the timing path report.

For placed cells, the net delay depends on the distance between the driver and the load as
well as the fanout. This net is labeled estimated in the timing path report.

• Actual: For routed nets, the net delay corresponds to the actual hardware delay of the routed
interconnect. This net is labeled routed in the timing path report.

• None: Interconnect delays are not considered in the timing report and net delays are forced to
zero.

Equivalent Tcl command: set_delay_model

Speed Grade Setting

Sets the device speed grade. By default, this option is set based on the part selected when
creating a project or opening a design checkpoint. You can change this option to report timing on
the same design database against another speed grade without rerunning the complete
implementation flow.

Equivalent Tcl command: set_speed_grade

Multi-Corner Configuration Setting

Specifies the type of path delays to be analyzed for the specified timing corner. Valid values are
none, max, min, and min_max. Select none to disable timing analysis for the specified corner.

RECOMMENDED: Keep both setup (max) and hold (min) analysis selected for both corners.

Equivalent Tcl command: config_timing_corners

Disable Flight Delays

Do not add package delays to I/O delay calculations.

Equivalent Tcl command: config_timing_analysis

Details of the Timing Summary Report
The Timing Summary Report contains the following sections:

• General Information Section

• Timer Settings Section

• Design Timing Summary Section

• Clock Summary Section

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=84

• Check Timing Section

• Intra-Clock Paths Section

• Inter-Clock Paths Section

• Other Path Groups Section

• User-Ignored Paths Section

• Unconstrained Paths Section

The comprehensive information contained in the Timing Summary Report is similar to the
information provided by several reports available from the Vivado IDE (Report Clock Interaction,
Report Pulse Width, Report Timing, Check Timing) and to some of the reports available in Tcl
only (report_clocks). However, the Report Timing Summary also includes information that is
unique to this report, such as Unconstrained Paths.

General Information Section

The General Information section of the Timing Summary Report provides information about the
following:

• Design name

• Selected device, package, and speed grade (with the speed file version)

• Vivado Design Suite release

• Current date

• Equivalent Tcl commands executed to generate the report

Timer Settings Section

The Timer Settings section of the Timing Summary Report contains details on the Vivado IDE
timing analysis engine settings used to generate the timing information in the report. The
following figure shows the default options in an example of the Timer Settings section, which
includes:

• Enable Multi-Corner Analysis: This analysis is enabled for each corner (Multi-Corner
Configuration).

• Enable Pessimism Removal (and Pessimism Removal Resolution): Ensures that the source and
destination clocks of each path are reported with no skew at their common node.

Note: This setting must always be enabled.

• Enable Input Delay Default Clock: Creates a default null input delay constraint on input ports
with no user constraint. It is disabled by default.

• Enable Preset / Clear Arcs: Enables timing path propagation through asynchronous pins. It
does not affect recovery/removal checks and is disabled by default.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=85

• Disable Flight Delays: Disables package delays for I/O delay calculations.

Figure 58: Timing Summary Report: Timer Settings

For additional information on default timer settings and how to change them, see
config_timing_analysis, available from this link in the Vivado Design Suite Tcl Command
Reference Guide (UG835).

Design Timing Summary Section

The Design Timing Summary section of the Timing Summary Report (shown in the following
figure) provides a summary of the timing for the design, and combines the results of all other
sections in one view.

RECOMMENDED: Review the Design Timing Summary section to verify that all timing constraints are
met after route, or to understand the status of the design at any point in the flow.

Figure 59: Design Timing Summary

The Design Timing Summary section includes the following:

• Setup Area (Max Delay Analysis)

• Hold Area (Min Delay Analysis)

• Pulse Width Area (Pin Switching Limits)

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 86Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xconfig_timing_analysis
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=86

Setup Area (Max Delay Analysis)

The Setup area of the Design Timing Summary section displays all checks related to max delay
analysis: setup, recovery, and data check.

• Worst Negative Slack (WNS): This value corresponds to the worst slack of all the timing paths
for max delay analysis. It can be positive or negative.

• Total Negative Slack (TNS): The sum of all WNS violations, when considering only the worst
violation of each timing path endpoint. Its value is:

○ 0 ns when all timing constraints are met for max delay analysis.

○ Negative when there are some violations.

• Number of Failing Endpoints: The total number of endpoints with a violation (WNS<0 ns).

• Total Number of Endpoints: The total number of endpoints analyzed.

Hold Area (Min Delay Analysis)

The Hold area of the Design Timing Summary section displays all checks related to min delay
analysis: hold, removal, and data check.

• Worst Hold Slack (WHS): Corresponds to the worst slack of all the timing paths for min delay
analysis. It can be positive or negative.

• Total Hold Slack (THS): The sum of all WHS violations, when considering only the worst
violation of each timing path endpoint. Its value is:

○ 0 ns when all timing constraints are met for min delay analysis.

○ Negative when there are some violations.

• Number of Failing Endpoints: The total number of endpoints with a violation (WHS < 0 ns).

• Total Number of Endpoints: The total number of endpoints analyzed.

Pulse Width Area (Pin Switching Limits)

The Pulse Width area of the Design Timing Summary section displays all checks related to pin
switching limits:

• Min low pulse width

• Min high pulse width

• Min period

• Max period

• Max skew (between two clock pins of a same leaf cell, such as for PCIe or GT [UltraScale
devices only]).

The reported values are:

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=87

• Worst Pulse Width Slack (WPWS): Corresponds to the worst slack of all the timing checks
listed above when using both min and max delays.

• Total Pulse Width Slack (TPWS): The sum of all WPWS violations, when considering only the
worst violation of each pin in the design. Its value is:

○ 0 ns when all related constraints are met.

○ Negative when there are some violations.

• Number of Failing Endpoints: The total number of pins with a violation (WPWS< 0 ns).

• Total Number of Endpoints: The total number of endpoints analyzed.

Clock Summary Section

The Clock Summary section of the Timing Summary Report includes information similar to that
produced by report_clocks:

• All the clocks in the design (whether created by create_clock,
create_generated_clock, or automatically by the tool).

• The properties for each clock, such as name, period, waveform, and target frequency.

TIP: The indentation of names reflects the relationship between master and generated clocks.

Figure 60: Timing Summary Report: Clock Summary

Check Timing Section

The Check Timing section of the Timing Summary Report contains information about missing
timing constraints or paths with constraints issues that need to be reviewed. For complete timing
signoff, all path endpoints must be constrained.

For more information on constraints definition, see the Vivado Design Suite User Guide: Using
Constraints (UG903).

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 88Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=88

Figure 61: Timing Summary Report: Check Timing Section

To generate Check Timing as a standalone report, do one of the following:

• Run the Reports → Timing → Check Timing menu command.

• Run the Tcl check_timing command.

When run from the Tcl console, the check_timing report can be scoped to one or more
hierarchical cells using the -cells option. This option is not available from the Check Timing
GUI. Note that the categories loops and latch_loops are not scoped in the Vivado Design Suite
2018.1.

The list of checks reported by default, as shown in the previous figure is:

• pulse_width_clock: Reports clock pins that have only a pulse width check associated with
the pin, and no setup or hold check, no recovery, removal, or clk > Q check.

• no_input_delay: Number of non-clock input ports without any input delay constraints.

• no_clock: Number of clock pins not reached by a defined timing clock. Constant clock pins
are also reported.

• constant_clock: Checks for clock signals connected to a constant signal (gnd/vss/data).

• unconstrained_internal_endpoints: Number of path endpoints (excluding output
ports) without a timing requirement. This number is directly related to missing clock
definitions, which is also reported by the no_clock check.

• no_output_delay: Number of non-clock output ports without at least one output delay
constraint.

• multiple_clock: Number of clock pins reached by more than one timing clock. This can
happen if there is a clock multiplexer in one of the clock trees. The clocks that share the same
clock tree are timed together by default, which does not represent a realistic timing situation.
Only one clock can be present on a clock tree at any given time.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=89

If you do not believe that the clock tree is supposed to have a MUX, review the clock tree to
understand how and why multiple clocks are reaching the specific clock pins.

• generated_clocks: Number of generated clocks that refer to a master clock source which
is not part of the same clock tree. This situation can occur when a timing arc is disabled on the
logical path between the master clock and the generated clock source points. This check also
applies to individual edges of the generated clocks when specified with the -edges option:
the logical path unateness (inverting/non-inverting) must match the edge associations
between the master and generated clocks.

• loops: Number of combinational loops found in the design. The loops are automatically
broken by the Vivado IDE timing engine to report timing.

• partial_input_delay: Number of non-clock input ports with only a min input delay or
max input delay constraint. These ports are not reported by both setup and hold analysis.

• partial_output_delay: Number of non-clock output ports with only a min output delay
or max output delay constraint. These ports are not reported by both setup and hold analysis.

• latch_loops: Checks for and warns of loops passing through latches in the design. These
loops will not be reported as part of combinational loops, and will affect latch time borrowing
computation on the same paths.

Intra-Clock Paths Section

The Intra-Clock Paths section of the Timing Summary Report (shown in the following figure)
summarizes the worst slack and total violations of the timing paths with the same source and
destination clock.

Figure 62: Timing Summary Report: Intra-Clock Paths Section

To view detailed information, click the names under Intra-Clock Paths in the left index pane. For
example, you can view the slack and violations summary for each clock and details about the N-
worst paths for SETUP/HOLD/Pulse Width checks. The N-worst is defined using the -
max_paths on the command line or the maximum number of paths per clock or path group
(GUI).

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=90

The worst slack value and the number of reported paths are displayed next to the label for each
analysis type. In the following figure, a Setup summary is selected under the Intra-Clock Paths
section in the left index pane and a table listing all the paths related to that clock is displayed in
the right pane.

Figure 63: Timing Summary Report: Intra-Clock Paths Details

Inter-Clock Paths Section

Similar to the Intra-Clock Paths section, the Inter-Clock Paths section of the Timing Summary
Report (shown in the following figure) summarizes the worst slack and total violations of the
timing paths between different source and destination clocks.

Figure 64: Timing Summary Report Inter-Clock Paths Details

To view detailed information, click the names under Inter-Clock Paths in the left index pane. For
example, you can view the slack and violations summary for each clock and details about the N-
worst paths for SETUP/HOLD/Pulse Width checks. The N-worst is defined using the -
max_paths on the command line or the maximum number of paths per clock or path group
(GUI).

Other Path Groups Section

The Other Path Groups section of the Timing Summary Report displays default path groups and
user-defined path groups. The following figure shows an example of the Other Path Groups
summary table. To access this table, select Other Path Groups in the left pane.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=91

Figure 65: Timing Summary Report: Path Groups Section

TIP: **async_default** is a path group automatically created by the Vivado IDE timing engine. It includes
all paths ending with an asynchronous timing check, such as recovery and removal. These two checks are
respectively reported under SETUP and HOLD categories, which corresponds to max delay analysis and
min delay analysis. Any groups you create using group_path appear in this section as well. Any
combination of source and destination clocks can be present in a path group.

User-Ignored Paths Section

The User-Ignored Paths Section of the Timing Summary Report (shown in the following figure)
displays the paths that are ignored during timing analysis due to the set_clock_groups and
set_false_path constraints. The reported slack is infinite.

Figure 66: Timing Summary Report: User-Ignored Paths Section

Unconstrained Paths Section

The Unconstrained Paths section of the Timing Summary Report displays the logical paths that
are not timed due to missing timing constraints. These paths are grouped by source and
destination clock pairs. The clock name information displays as empty (or NONE) when no clock
can be associated with the path startpoint or endpoint.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=92

Figure 67: Timing Summary Report: Unconstrained Paths Section

Reviewing Timing Path Details

You can expand most of the sections to show paths organized by clock pairs. For each SETUP,
HOLD and Pulse Width sub-section, you can view the N-worst reported paths. Select any of
these paths to view more details in the Path Properties window (Report tab).

To view the same details in a new window, double click the path.

For more information on timing path details, see Chapter 6: Performing Timing Analysis.

To access more analysis views for each path:

1. Right click the path in the right pane.

2. Select one of the following options from the popup menu:

• Schematic: Open a Schematic of the path.

• Report Timing on Source to Destination: Rerun timing analysis on this same path.

• Highlight: Highlight the path in the Device and Schematic windows.

Filtering Paths with Violations

The report displays the slack value of failing paths in red. To focus on these violations, click the
Show only failing paths button .

The following figure shows the Timing Summary window with only failing paths displayed.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=93

Figure 68: Timing Summary Report: Violating Paths Filter

Report Clock Networks
The Report Clock Network command can be run from:

• The Flow Navigator in the Vivado® IDE, or

• The Tcl command:

report_clock_networks -name {network_1}

Report Clock Networks provides a tree view of the clock trees in the design. See the following
figure. Each clock tree shows the clock network from source to endpoint with the endpoints
sorted by type.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=94

Figure 69: Clock Networks

The clock trees:

• Show clocks defined by the user or generated automatically by the tool.

• Report clocks from I/O port to load.

Note: The full clock tree is only detailed in the GUI form of the report. The text version of this report
shows only the name of the clock roots.

• Can be used to find BUFGs driving other BUFGs.

• Shows clocks driving non-clock loads.

There is a folder containing each primary clock and any generated clocks defined in the design. A
separate folder displays each unconstrained clock root.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=95

Use the filter Ports, Nets, Instances, and related buttons to reduce the amount of data displayed

in the clock tree. The filter options can be viewed by clicking on the icon.

Figure 70: Clock Networks Filter

To view a schematic of the clock path:

1. Select an object in the tree.

2. Run the Trace to Source popup command.

Report Clock Interaction
To view the Clock Interaction Report, select one of the following:

• Reports → Timing → Report Clock Interaction

• Flow Navigator  → Synthesis → Report Clock Interaction

• Flow Navigator → Implementation → Report Clock Interaction

Equivalent Tcl command: report_clock_interaction -name clocks_1

When run from the Tcl console, the interaction report can be scoped to one or more hierarchical
cells using the -cells option. When the report is scoped, only paths with the datapath section
that start, end, cross, or are fully contained inside the cell(s) are reported.

Report Clock Interaction Dialog Box
In the Vivado® IDE, the Report Clock Interaction dialog box includes the following:

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=96

• Results Name Field

• Command Field

• Open in a New Tab Check Box

• Options Tab

• Timer Settings Tab

Results Name Field

The Results name field at the top of the Report Clock Interaction dialog box specifies the name
of the graphical report that opens.

Equivalent Tcl option: -name

Command Field

Use the Command field to display the Tcl command line equivalent of the various options
specified in the Report Clock Interaction dialog box.

Open in a New Tab Check Box

Use the Open in a New Tab check box to either: open the results in a new tab, or replace the last
tab opened by the Results window.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=97

Options Tab

Figure 71: Report Clock Interaction: Options Tab

The Options tab of the Report Clock Interaction dialog box contains the following:

• Report from Cells Field

• Delay Type Field

• Significant Digits Field

• File Output Section

Report from Cells Field

Enable to limit the timing reporting on the particular cell(s) of the design. Only paths with the
datapath section that start, end, cross, or are fully contained inside the cell(s) are reported.

Equivalent Tcl option: -cells

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=98

Delay Type Field

Use the Delay Type field to set the type of analysis to be run.

• For synthesized designs, only max delay analysis (setup/recovery) is performed by default.

• For implemented designs, both min delay and max delay analysis (setup/hold, recover/
removal) are performed by default.

To run min delay analysis only (hold and removal), select delay type min.

Equivalent Tcl option: -delay_type

Significant Digits Field

Use the Significant Digits field to specify the number of significant digits in the reported values.
The default is three.

Equivalent Tcl option: -significant_digits

File Output Section

The File Output section includes:

• Write Results to File: Use the Write Results to File field to write the result to a specified file.
In the Vivado IDE, the report is displayed in the Clock Interaction window.

Equivalent Tcl option: -file

• Overwrite/Append: Select the Overwrite/Append option buttons to determine whether,
when the report is written to a file: (1) the specified file is overwritten, or (2) new information
is appended to an existing report.

Equivalent Tcl option: -append

Timer Settings Tab
For details on this tab, see Timer Settings Tab .

Details of the Clock Interaction Report
The Clock Interaction report analyzes timing paths that cross from one clock domain (the source
clock) into another clock domain (the destination clock). The Clock Interaction report helps to
identify cases in which there may be data loss or metastability issues.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=99

After you run the Report Clock Interaction command, the results open in the Clock Interaction
window. As shown in the following figure, the Clock Interaction Report displays as a matrix of
clock domains with the source clocks in the vertical axis and the destination clocks in the
horizontal axis.

Figure 72: Report Clock Interaction

Matrix Color Coding

The tiles of the matrix are color coded. The colors of the matrix are determined by the
background color of the Graphical Editors as defined under Tools → Settings → Colors → Clock
Interaction Chart or by selecting the gear on the Clock Interactions tab. For more information,
see this link in the Vivado Design Suite User Guide: Using the Vivado IDE (UG893). To hide the
legend, click the ? button on the toolbar on the left of the matrix.

• No Path - Black: There are no timing paths that cross from the source clock to the destination
clock. In this case, there is no clock interaction and nothing to report.

• Timed - Green: The source clock and destination clock have a synchronous relationship, and
are safely timed together. This state is determined by the timing engine when the two clocks
have a common primary clock and a simple period ratio.

• User Ignored Paths - Dark Blue: User-defined false path or clock group constraints cover all
paths crossing from the source clock to the destination clock.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 100Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf;a=xSpecifyingColors
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=100

• Partial False Path - Light Blue: User-defined false path constraints cover some of the timing
paths crossing from the source clock to the destination clock where the source clock and
destination clock have a synchronous relationship.

• Timed (Unsafe) - Red: The source clock and destination clock have an asynchronous
relationship. In this case, there is no common primary clock or no expandable period. For more
information on asynchronous and unexpandable clocks, see this link in the Vivado Design Suite
User Guide: Using Constraints (UG903).

• Partial False Path (Unsafe) - Orange: This category is identical to Timed (Unsafe), except that
at least one path from the source clock to the destination clock is ignored due to a false path
exception.

• Max Delay Datapath Only - Gray: A set_max_delay -datapath_only constraint covers
all paths crossing from the source clock to the destination clock.

IMPORTANT! The color of a cell in the matrix reflects the state of the constraints between clock
domains, not the state of the timing paths worst slack between the domains. A green cell does not
indicate that the timing is met, only that all timing paths that cross clock domains are properly timed,
and that their clocks have a known phase relationship.

Clock Pair Classification

The Clock Pair Classification column provides information about the missing common primary
clock, missing common node, missing common phase, and missing common period between two
clocks, as well as the presence of a virtual clock.

The possible values, from the highest to the lowest priority, are listed below. As soon as a
condition is detected, the report command does not perform the remaining checks.

• Ignored: When the clock pair is entirely covered by a Clock Group, a False Path, or a Max
Delay Datapath Only, the analysis is ignored.

• Virtual Clock: At least one of the clocks is virtual, and common primary clock or common node
checks do not apply.

• No Common Clock: The two clocks do not have a common primary clock.

• No Common Period: The periods of the two clocks are not expandable.

• Partial Common Node: The two clocks appear synchronous, but a subset of the crossing paths
do not have a common node and cannot be safely timed.

• No Common Node: The two clocks appear synchronous, but the crossing paths do not have a
common node.

• No Common Phase: The two clocks do not have a known phase relationship.

• Clean: None of the above conditions applies.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 101Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf;a=xAsynchronousClockGroups
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=101

Filtering the Clocks

To filter the source clocks displayed in the Clock Interaction report:

1. Click on the settings button to display the Clock Visibility.

2. Select the source clocks to display. The list of destination clocks that are displayed in the
table is automatically derived from the selected source clocks.

The Clock Visibility filter reduces the matrix complexity by limiting the number of clocks, but
does not reduce the number of clock interactions reported in the table below the matrix. You can
also show and hide the clocks that do not directly time a logical path in the design by clicking the
Hide Unused Clocks button in the toolbar. Because these clocks do not contribute to
WNS/TNS/WHS/THS computation, they are hidden by default.

Figure 73: Clock Interaction View Layers

Clock Pairs Slack Table

The table below the matrix provides a comprehensive overview of the timing slack for setup/
recovery and/or for hold/removal for source/destination clock pair. It also shows useful
information about path requirement of the worst paths, common primary clock and constraints
status. See Details of the Clock Interaction Report. This provides details not displayed in the
matrix above.

Sorting the Data

To sort the data in the table in increasing or decreasing values, single click multiple times on a
column header.

Selecting Cells and Rows

Selecting a cell in the matrix cross-selects a specific row of the table below.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=102

Selecting a row from the table highlights a cell in the matrix above.

Table Columns

The table columns are:

• ID: A numeric ID for the source/destination clock pair being displayed.

• Source Clock: The clock domain from which the path originates.

• Destination Clock: The clock domain within which the path terminates.

• Edges (WNS): The clock edges used to calculate the worst negative slack for max delay
analysis (setup/recovery).

• WNS (Worst Negative Slack): The worst slack calculated for various paths crossing the
specified clock domains. A negative slack indicates a problem in which the path violates a
required setup (or recovery) time.

• TNS (Total Negative Slack): The sum of the worst slack violation for all the endpoints that
belong to paths crossing the specified clock domains.

• Failing Endpoints (TNS): The number of endpoints in the crossing paths that fail to meet
timing. The sum of the violations corresponds to TNS.

• Total Endpoints (TNS): The total number of endpoints in the crossing paths.

• Path Req (WNS): The timing path requirement corresponding to the path reported in the WNS
column. There can be several path requirements between any clock pairs if both rising and
falling edges are active for at least one of the two clocks, or some timing exceptions have
been applied on paths between the two clocks. The value reported in this column is not
always the most challenging requirement.

For more information, see Path Requirement.

• Clock Pair Classification: Provide information about the common node and common period
between the clock pair. From highest to lowest precedence: Ignored, Virtual Clock, No
Common Clock, No Common Period, Partial Common Node, No Common Node, No Common
Phase, and Clean. See Clock Pair Classification.

• Inter-Clock Constraints: Shows the constraints summary for all paths between the source
clock and destination clock. The possible values are listed in the Matrix Color Coding.
Following are example definitions of these constraints:

set_clock_groups -async -group wbClk -group usbClk
set_false_path -from [get_clocks wbClk] -to [get_clocks cpuClk]

When the min delay analysis is also selected (hold/removal), the following columns also appear in
the table:

• Edges (WHS): The clock edges used to calculate the worst hold slack.

• WHS (Worst Hold Slack): The worst slack calculated for various paths crossing the specified
clock domains. A negative slack indicates a problem in which the path violates a required hold
(or removal) time.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=103

• THS (Total negative Hold Slack): The sum of the worst slack violation for all the endpoints that
belong to paths crossing the specified clock domains for min delay analysis (hold/removal).

• Failing Endpoints (THS): The number of endpoints in the crossing paths that fail to meet
timing. The sum of the violations corresponds to THS.

• Total Endpoints (THS): The total number of endpoints in the crossing paths for min delay
analysis (hold/removal).

• Path Req (WHS): The timing path requirement corresponding to the path reported in the WHS
column. Like with WNS, there can be several possible path requirements for min delay analysis
between two clocks, and the value reported in this column does not always correspond to the
most challenging ones.

For more information, see Chapter 6: Performing Timing Analysis.

One or multiple clock pairs can be selected from the table. Report Timing between a selected
source/destination clock pair can be run from the popup menu.

Exporting the Table

Run the Export to Spreadsheet command to export the table to an XLS file for use in a
spreadsheet.

Report Pulse Width
The Pulse Width Report (shown in the figure below) checks that the design meets min period,
max period, high pulse time, and low pulse time requirements for each instance clock pin. It also
checks that the maximum skew requirement is met between two clock pins of a same instance in
the implemented design (for example, PCIe® clocks). The pulse width slack equations do not
include jitter or clock uncertainty.

Equivalent Tcl command: report_pulse_width

When run from the Tcl console, the pulse width report can be scoped to one or more hierarchical
cells using the -cells option. When the report is scoped, only pins included inside the cell(s) are
reported. This option is not available from the Report Pulse Width GUI.

Note: Xilinx® Integrated Software Environment (ISE) Design Suite implementation calls this check
Component Switching Limits.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=104

Figure 74: Report Pulse Width

Report Timing
Read Report Timing to view specific timing paths at any point of the flow after synthesis when
you need to further investigate timing problems reported by Report Timing Summary, or you
want to report the validity and the coverage of particular timing constraints. Report Timing does
not cover Pulse Width reports.

When run from the Tcl console or the GUI, the timing report can be scoped to one or more
hierarchical cells using the -cells option. When the report is scoped, only paths with the
datapath section that start, end, cross, or are fully contained inside the cell(s) are reported.

Running Report Timing
If a design is already loaded in memory, you can run Report Timing from the menu, the Clock
Interaction Report, or the Report Timing Summary paths list.

Running Report Timing from the Menu

To run Report Timing from the Menu, select Reports → Timing → Report Timing.

Running Report Timing from the Clock Interaction Report

To run Report Timing from the Clock Interaction Report:

1. Select a from/to clock pair.

2. Right-click and select Report Timing to run a report from or to the selected clocks.

Running Report Timing from a Paths List

To run Report Timing from a Paths List:

1. Select a path.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=105

2. Right-click and select Report Timing to run a report between the selected path startpoint
endpoint.

Equivalent Tcl command: report_timing

When setting specific Report Timing options, you can view the equivalent report_timing
command syntax in:

• The Command field at the bottom of the dialog box, and

• The Tcl console after execution

The report_timing options are listed along with the dialog box description in the following
section. Overall, the Report Timing options are identical to the Report Timing Summary options,
plus a few additional filtering options.

Report Timing Dialog Box

Targets Tab

Figure 75: Report Timing Dialog Box: Targets Tab

Report Timing provides several filtering options that you must use in order to report a particular
path or group of paths. The filters are based on the structure of a timing path.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=106

• Startpoints (From): List of startpoints, such as sequential cell clock pins, sequential cells, input
ports, bidirectional ports or source clock.

If you combine several startpoints in a list, the reported paths will start from any of these
netlist objects.

The Rise/Fall filter selects a particular source clock edge.

Equivalent Tcl option: -from, -rise_from, -fall_from

• Through Points (Through): List of pins, ports, combinational cells or nets.

You can combine several netlist objects in one list if you want to filter on paths that traverse
any of them.

You can also specify several Through options to refine your filters and report paths that
traverse all groups of through points in the same order as they are listed in the command
options.

The Rise/Fall filter applies to the data edge.

RECOMMENDED: Use the default value (Rise/Fall).

Equivalent Tcl option: -through, -rise_through, -fall_through

• Endpoints (To): List of endpoints, such as input data pins of sequential cells, sequential cells,
output ports, bidirectional ports or destination clock.

If you combine several endpoints in a list, the reported paths will end with any of these netlist
objects.

In general, the Rise/Fall option selects a particular data edge. But if you specified a destination
clock, it selects a particular clock edge.

Equivalent Tcl option: -to, -rise_to, -fall_to

The Targets tab in the Report Timing dialog box (see the previous figure) defines the paths from
the rising clock edge of usbClk_3, through any of the cpuEngine/or1200_cpu/
sprs_dataout[*] nets, to either edge of cpuClk_5 or sysClk.

Options Tab

The Options tab contains the following options:

• Reports

• Path Limits

• Path Display

Reports

• Path delay type: See Report Section.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=107

• Do not report unconstrained paths: By default, Report Timing reports paths that are not
constrained if no path that matches the filters (from/through/to), is constrained. Check this
box if you do not want to display unconstrained paths in your report.

Equivalent Tcl option: -no_report_unconstrained

Path Limits

• Number of paths per group: See Report Timing Summary.

• Number of paths per endpoint: See Report Timing Summary.

• Limit paths to group: Filters on one or more timing path groups. Each clock is associated to a
group. The Vivado IDE timing engine also creates default groups such as
async_default which groups all the paths ending with a recovery or removal timing
check.

Equivalent Tcl option: -group

Path Display

• Display paths with slack greater than: Displays the reported paths based on their slack value.

Equivalent Tcl option: -slack_greater_than

• Display paths with slack less than: See Report Timing Summary.

• Number of significant digits: See Report Timing Summary.

• Sort paths by: Displays the reported paths by group (default) or by slack. When sorted by
group, the N worst paths for each group and for each type of analysis (-delay_type
min/max/min_max) are reported.

The groups are sorted based on their individual worst path. The group with the worst violation
appears at the top of the list.

When sorted by slack, the N worst paths per type of analysis are reported (all groups
combined) and are sorted by increasing slack.

Equivalent Tcl option: -sort_by

Advanced Tab

The Advanced tab has the same options as Report Timing Summary.

Timer Settings Tab

The Timer Settings tab has the same options as Report Timing Summary.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=108

Reviewing Timing Path Details
After you click OK to run the report command, a new window opens. You can now review its
content. You can view the N-worst paths reported for each type of selected analysis (min/max/
min_max).

The following figure shows the Report Timing window in which both min and max analysis
(SETUP and HOLD) were selected, and N=4.

Figure 76: Report Timing Paths List

Select any of these paths to view more details in the Path Properties window (Report tab).

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=109

Figure 77: Timing Path Properties Window

To view the same details in a new window, double click the path.

For more information on timing path details, see Chapter 6: Performing Timing Analysis.

To access more analysis views for each path, right-click the path in the right pane and select one
of the following actions:

• View the timing path Schematic.

• Rerun timing analysis on the same startpoint and endpoint of the selected path.

• Highlight the path in the Device and Schematic windows.

Filtering Paths with Violation
The report displays the slack value of failing paths in red. To focus on these violations, click Show
only failing checks mode.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=110

Report Datasheet
The Report Datasheet command reports the operating parameters of the FPGA for use in
system-level integration.

Report Datasheet Dialog Box
In the Vivado® IDE, select Reports → Timing → Report Datasheet to open the Report Datasheet
dialog box. See the following figure.

Report Datasheet Dialog Box: Options Tab

Figure 78: Report Datasheet Dialog Box: Options Tab

The Report Datasheet Dialog Box Options tab includes the following:

• Results name: Specifies the name for the returned results of the Report Datasheet command.
The report opens in the Timing window of the Vivado IDE with the specified name.

Equivalent Tcl option: -name

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=111

• Sort by: Sorts the results by port name or by clock name.

Equivalent Tcl option: -sort_by

• Report all process corners separately: Reports the data for all defined process corners in the
current design.

Equivalent Tcl option: -show_all_corners

• Significant digits: Specifies the number of significant digits in the reported values. The default
is three.

Equivalent Tcl option: -significant_digits

• Write results to file: Write the result to the specified file name. By default the report is written
to the Timing window in the Vivado IDE.

Equivalent Tcl option: -file

• Overwrite / Append: When the report is written to a file, determines whether the specified
file is overwritten, or new information is appended to an existing report.

Equivalent Tcl option: -append

• Ignore command errors: Executes the command quietly, ignoring any command line errors and
returning no messages. Returns TCL_OK regardless of any errors encountered during
execution.

Equivalent Tcl option: -quiet

• Suspend message limits: Temporarily overrides any message limits. Returns all messages from
this command.

Equivalent Tcl option: -verbose

• Command: Displays the Tcl command line equivalent of the various options specified in the
Report Datasheet dialog box.

• Open in a new tab: Opens the results in a new tab, or replaces the last tab opened by the
Results window.

• Open in Timing Analysis layout: Resets the current view layout to the Timing Analysis view
layout.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=112

Report Datasheet Dialog Box: Groups Tab

Figure 79: Report Datasheet Dialog Box: Groups Tab

The Report Datasheet dialog box Groups tab allows you to define your own custom group of
ports for analysis by specifying the reference port and additional ports to report. When Groups
are not specified, the timer automatically finds the group of output ports based on the launching
clock, and reports skew based on that clock.

The Report Datasheet dialog box Groups tab includes:

• Reference: Specifies the reference port for skew calculation. In most cases, this will be a clock
port of a source synchronous output interface.

Equivalent Tcl option: -group

• Ports: Defines additional ports to report.

○ Notice the + and - (plus and minus) buttons to the right of the Ports field.

○ The + (plus) button specifies multiple groups, each with its own reference clock port
allowing you to define a new group of ports, including a new reference port.

○ The - (minus) button removes additional groups of ports as needed.

Report Datasheet Dialog Box: Timer Settings Tab

For details on this tab, see Timer Settings Tab .

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=113

Details of the Datasheet Report

General Information

This section provides details of the design and Xilinx® device, and the tool environment at the
time of the report.

• Design Name: The name of the design

• Part: The target Xilinx part and speed file information

• Version: The version of the Vivado tools used when the report was generated

• Date: The date and timestamp of the report

• Command: The command line used to generate the report

Input Ports Setup/Hold

The report displays worst-case setup and hold requirements for every input port with regard to
the reference clock. The internal clock used to capture the input data is also reported.

Max/Min Delays for Output Ports

Shows worst-case maximum and minimum delays for every output port with regard to the
reference clock. The internal clock used to launch the output data for is also reported.

Setup Between Clocks

For every clock pair, the worst-case setup requirements are reported for all clock edge
combinations.

Setup/Hold for Input Buses

Input buses are automatically inferred and their worst-case setup and hold requirements are
displayed. Worst case data window for the entire bus is the sum of the largest setup and hold
values. If the input ports are constrained, the slack is also reported.

An optimal tap point is reported for input clocks with IDELAY defined. The optimal tap point can
be used to configure IDELAY for balanced setup and hold slack.

The source offset is the delta between two windows. The first window is defined by the setup
and hold time of the input port with regard to the clock. The second window is derived from the
input delay and the clock period. If the input clock is offset with this value, then it will be in the
center of the window.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=114

The following figure reports a design in which a DDR input bus, vsf_data[0:9], has a worst
case data window of 1.663 ns. The ideal clock offset is 1.063 ns.

Figure 80: Setup and Hold Delays for Input Buses

Note: The optimal tap point can be specified by using the Tcl command:

set_property IDELAY_VALUE 13 [get_cells idelay_clk]

Max/Min Delays for Output Buses

Output buses are automatically inferred and their worst case maximum and minimum delays are
displayed. The bus skew is also reported. For bus skew calculation, one bit is considered as the
reference and the offset of every other bit is calculated with respect to this reference bit. The
worst offset is the skew for the entire bus.

Max/Min Delays for Groups

For Source Synchronous Output Interfaces, the output skew is desired with regard to the
forwarded clock. A custom group report can be generated by specifying the reference port as the
forwarded clock port. This table looks similar to "max/min delays for output buses" except the
reference port is used as the reference bit for calculating source offset and bus skew.

Note: This section might be hidden if empty.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=115

As an example, for a DDR output skew calculation, if multiple bits (for example,
rldiii_a[0-19], rldiii_ba[0-3], rldiii_ref_n, rldiii_we_n) should be grouped
together with regard to the forwarded clock port (rldiii_ck_n[0]), the following command
can be used:

report_datasheet -group [get_ports {rldiii_ck_n[0] rldiii_a[*] rldiii_ba[*]
rldiii_ref_n rldiii_we_n}] -name timing_1

The first port in the group list is considered the reference pin.

For all these sections, the worst case data is calculated from multi-corner analysis. If -
show_all_corners is used, the worst case data is reported for each corner separately.

The following figure shows the report data sheet for this example.

Figure 81: Report Data Sheet Max/Min Delay Example

Report Exceptions
You can use the Report Exceptions command anywhere in the flow after the synthesis. The
Report Exception command reports the following information:

• All the timing exceptions that have been set in the design and that are affecting timing
analysis

• All the timing exceptions that have been set in the design but that are being ignored as they
are overridden by other timing exception

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=116

The timing exceptions analyzed by the Report Exception command are (in the order of
precedence):

• clock groups

• false paths

• max/min delays

• multicycle paths

The Report Exception is a powerful command to help debugging issues related to timing
exceptions. Some designs have timing constraints with complex timing exceptions. Because the
timing exceptions have different priorities, it can quickly become difficult to understand which
timing exceptions might be partially or fully ignored by other exception(s). The Report Exception
reports timing exceptions that are partially overridden, as well as those that are totally
overridden. It also provides a hint to the overriding constraint(s).

For more information about the report_exceptions command line options, refer to this link
in the Vivado Design Suite Tcl Command Reference Guide (UG835). For more information about the
timing exception priority order, refer to this link in the Vivado Design Suite User Guide: Using
Constraints (UG903).

The report_exceptions command has several modes of operation:

• Reporting the timing exceptions affecting the timing analysis

• Reporting the timing exceptions being ignored

• Reporting the timing exceptions coverage

• Reporting the invalid objects specified for the -from/-through/-to command line options

• Writing out the timing exceptions with only the valid objects

• Writing out the timing exceptions merged by the timing engine

Note: Even though Clock Groups are not strictly timing exceptions, they are covered by the command
report_exceptions because they can override other timing exceptions.

Note: Using the report_exceptions command with the -from/-through/-to options only report
timing exceptions that have been defined with the same -from/-through/-to command line
options. The specified patterns can be different but there must be at least one object (cell, net, pin, or
port) matching inside each of the -from/-through/-to for it to be reported as an exception.

Example: Reporting the Timing Exceptions Affecting
the Timing Analysis
This example describes how to take the design, shown in the following figure, through some
timing exceptions. The design is fully constrained (clk and input/output delays defined relative
to clk).

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 117Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xreport_exceptions
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf;a=xXDCPrecedence
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=117

Figure 82: Fully Constrained Design for Timing Exception Example

The first mode of operation of the Report Exception command is report_exceptions.

1. Select Window → Timing Constraints.

2. In the Timing Constraints window, add the following timing exceptions to the design:

set_multicycle_path 3 -from [get_cell int10_reg] -to [get_cell int20_reg]

id="ab439753">set_multicycle_path 4 -to [get_cell int20_reg]
set_false_path -from [get_ports in6] -to [get_cell int20_reg]
set_false_path -to [get_ports out5]
set_false_path -to [get_cell int21_reg]
set_false_path -from [get_ports in6] -to [get_ports out6]
set_max_delay 5 -to [get_ports out6]
set_min_delay 3 -from [get_cells int10_reg] -to [get_cell int20_reg]

The Timing Constraints window displays the timing constraints applied to the design, as shown in
the following figure.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=118

Figure 83: Constraints Window Displaying Timing Constraint Changes

The actual Exception Report (report_exceptions) is shown in the following figure.

Figure 84: Report Exception

The Exceptions Report contains the following information:

• The Position column indicates the constraint position number. This is the same position
number reported by the Timing Constraint Window (shown previously).

• The From/Through/To columns indicate the patterns or objects specified with -*from/-
*through/-*to command line options (including all the rise/fall versions of those
options). An asterisk is displayed when the associated option was not specified.

• The Setup/Hold columns indicate whether the constraint applies to setup check, hold check,
or both. The naming conventions for the Setup/Hold columns are shown in the following
table:

Table 5: Setup/Hold Column Naming Conventions

Short Name Timing Exception
cycles= set_multicycle_path

false set_false_path

max= set_max_delay

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=119

Table 5: Setup/Hold Column Naming Conventions (cont'd)

Short Name Timing Exception
max_dpo= set_max_delay -datapath_only

min= set_min_delay

clock_group= set_clock_group

• The Status column reports a message when a constraint is partially overridden by another
timing exception. The naming conventions for the Status column are shown in the following
table:

Table 6: Status Column Naming Conventions

Short Timing Exception
MCP multicycle path

FP false path

MXD max delay

MND min delay

CG clock group

Note: The clock group is only reported in the Status column of the report_timing -ignored
command when a clock group constraint overrides another timing exception.

In this example, there are two messages regarding partially overridden constraints:

• The timing constraint position 5 (set_multicycle_path 4 -to [get_cell
int20_reg] based on the Timing Constraints Window) is partially overridden by the
multicycle constraint position 4 (set_multicycle_path 3 -from [get_cell
int10_reg] -to [get_cell int20_reg]) and by the false path constraint position 6
(set_false_path -from [get_ports in6] -to [get_cell int20_reg]).

• The timing constraint position 10 (set_max_delay 5 -to [get_ports out6]) is
partially overridden by the false path position 9 (set_false_path -from [get_ports
in6] -to [get_ports out6]).

Reporting the Timing Exceptions Being Ignored
The second mode of operation of the Report Exception command is report_exceptions -
ignored.

To illustrate, add the following timing exceptions on the top of the previous ones:

set_max_delay 5 -to [get_ports out5]
set_multicycle_path 1 -hold -to [get_cell int21_reg]
set_multicycle_path 2 -setup -to [get_ports out6]
set_false_path -from [get_cell int11_reg] -to [get_cell int20_reg]

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=120

All those exceptions are either already covered by a timing exception from the previous section
(reporting the timing exceptions affecting the timing analysis) or target a non-existing path (there
is no physical connection between the registers int11_reg and int20_reg).

After adding these four constraints, the Timing Constraints Window looks like the following
figure.

Figure 85: Timing Constraints Window

The Exceptions Report (report_exceptions -ignored) is as shown in the following figure:

Figure 86: Exceptions Report

Note: The Status column provides some explanations why the timing exceptions are being ignored.

Reporting the Timing Exceptions Coverage
The Vivado tools can generate a detailed coverage of each valid timing exception applied to the
design. All the timing exceptions are reported, including those that are fully overridden or that do
not have a path between startpoints and endpoints.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=121

The exceptions coverage report is generated using the -coverage command line option:

report_exceptions -coverage

The report includes, for each valid timing exception, the following information:

• Constraint position number.

• Number of objects selected by the -from/-through/-to command line options.

• The coverage, expressed as a percentage, between the number of pins reached by the timing
exception compared to the number of pins specified by the -from/-through/-to
command line options.

Note: When cells objects are specified, Vivado tools expand the cells into valid pins objects. This cell-to-
pin conversion tends to bring the coverage down because typically the timing exception only reaches a
subset of pins.

The following figure shows the exceptions coverage report.

Figure 87: Exceptions Coverage Report

When a timing exception does not have a path between the startpoints and endpoints, the
coverage report shows 0.0. In the above example, timing exception position 15 does not have a
timing path. This matches the result from report_exceptions -ignored where constraint
position 15 is reported as Non-Existent Path.

A coverage reports can assist in writing effective timing exceptions. The following figure shows
another example of a coverage report for the following set_multicycle_path constraint:

set_multicycle_path -setup 2 -from [all_registers] -to [get_cells
cpuEngine/or1200_cpu/or1200_ctrl/ex_insn_reg[*]]

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=122

Figure 88: Multicycle Path Coverage

In the example shown in the previous figure, the coverage for the -from option is only 0.95% for
15901 cells objects returned by all_registers. The efficiency of the constraint can be
improved by refining the list of objects specified for the -from option to only those objects that
have a path to the cells cpuEngine/or1200_cpu/or1200_ctrl/ex_insn_reg[*].

Reporting the Ignored Objects
The Report Exception command can generate a list of invalid startpoints and endpoints for each
of the timing exception constraints. Invalid startpoints and endpoints are ignored by the Vivado
tool because timing paths can neither originate from those startpoints nor end on those
endpoints. The ignored pins are reported by report_exceptions -ignored_objects.

Note: Invalid startpoints and endpoints with a Max Delay or Min Delay constraint are not ignored but result
in path segmentation.

Note: Startpoint or endpoint pins tied to POWER or GROUND are reported in the list of ignored objects.

To illustrate, set the following timing constraints on the small example design:

create_clock -period 10.000 -name clk [get_ports clk]
set_false_path -from [get_cells int10_reg] -to [get_cells int20_reg]
set_false_path -from [get_pins int11_reg/*] -to [get_pins int21_reg/*]

Note: When the second False Path constraint is entered, the Vivado tool generates Warning Constraints
18-402 because some startpoints and endpoints are invalid.

WARNING: [Constraints 18-402] set_false_path: 'int11_reg/CE' is not a valid startpoint.

Resolution: A valid start point is a main or generated clock pin or port, a clock pin of a sequential
cell, or a primary input or inout port. Please validate that all the objects returned by your query
belong to this list.

• The first set_false_path constraint uses the get_cells command. The Vivado tool
converts the cell(s) from get_cells into pins using only valid startpoint or endpoint pins.
This ensures that the constraint refers only to valid objects.

• The second set_false_path constraint uses the get_pins command and forces all the
register pins for -from and -to. This results in several invalid pins for both -from and -to.

The following figure shows the report from report_exceptions -ignored_objects.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=123

Figure 89: Ignored Objects

Exporting the Valid Exceptions
The Report Exception command can export the list of timing exceptions. Only the constraints
that cover at least one path are exported. Only valid startpoints and endpoints pins are exported
while the patterns used to specify the timing exceptions are expanded inside the Vivado Design
Suite Timer memory. This report can be used in conjunction with the coverage report to help
refine the patterns and collections of objects used to define the timing exceptions.

Note: Timing constraints set_clock_group and set_bus_skew are not exported.

The following figure illustrates report_exceptions -write_valid_exceptions on the
two False Path constraints explained in the section Reporting the Ignored Objects.

Figure 90: Valid Exceptions

Exporting the Merged Exceptions
The Report Exception command can export the list of timing exceptions as seen by the STA
engine. The Vivado timing engine internally merges the timing exceptions to reduce memory and
runtime. If the number of merged timing exceptions is different from the number of timing
exceptions specified for the design, then this could mean that the timing exceptions are not
optimally defined. The merged timing exceptions are reported with report_exceptions -
write_merged_exceptions.

Note: Timing constraints set_clock_group and set_bus_skew are not exported.

Note: Invalid startpoints and endpoints are not filtered out when the merged timing exceptions are
exported.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=124

The following figure illustrates the report_exceptions -write_merged_exceptions on
the two False Path constraints explained in the section Reporting the Ignored Objects. The
second False Path includes all the registers pins because the pattern for -from/-to for the
get_pins command is int21_reg/*.

Figure 91: Merged Exceptions

Report Exceptions in the Vivado IDE
Report Exceptions Dialog Box
In the Vivado® IDE, select Reports → Timing → Report Exceptions to open the Report Exceptions
dialog box.

The report generated from Report Exceptions GUI consolidates multiple tables in a single run.
Normally, several runs of report_exceptions with different command line options would be
required to generate such a report. As a result, the runtime of Report Exceptions through the GUI
can be higher than running report_exceptions through the Tcl console.

Report Exceptions Dialog Box: Options Tab

The Options tab in the Report Exceptions dialog box is shown in the figure below.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=125

Figure 92: Report Exceptions Dialog Box: Options Tab

The Report Exceptions Dialog Box Options tab includes the following sections:

Report Section

• Coverage: Reports the timing exceptions coverage through additional columns inside the
detailed tables.

Note: This option can result in a significant increase in the runtime.

Equivalent Tcl option: -coverage

File Output Section

• Write results to file: Writes the result to the specified file. By default the report is written to
the Timing window in the Vivado IDE.

Equivalent Tcl option: -file

• Overwrite or Append: When the report is written to a file, determines whether the specified
file is overwritten or new information is appended to an existing report.

Equivalent Tcl option: -append

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=126

Miscellaneous Section

• Ignore command errors: Executes the command quietly, ignores any command line errors, and
does not return messages. The command also returns TCL_OK regardless of any errors
encountered during execution.

Equivalent Tcl option: -quiet

• Suspend message limits during command execution: Temporarily overrides any message limits
and returns all messages.

Equivalent Tcl option: -verbose

Report Exceptions Dialog Box: Targets Tab

The Targets tab in the Report Exceptions dialog box is shown in the figure below.

Figure 93: Report Exceptions Dialog Box: Targets Tab

Report Exceptions provides several filtering options that can be used to report a particular timing
exception or group of timing exceptions:

• Start Points: See Targets Tab.

• Through Points: See Targets Tab.

• End Points: See Targets Tab.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=127

When the filtering options are used, only the timing exceptions that are strictly defined according
to those options are reported.

Details of the Exceptions Report
The Exceptions Report contains the following sections:

General Information Section

The General Information section of the Exceptions Report provides information about the
following:

• Design name

• Selected device, package, and speed grade (with the speed file version)

• Vivado Design Suite version

• Current date

• Equivalent Tcl commands executed to generate the report

Summary Section

This section provides a summary of all the timing exceptions and clock group constraints. For
each constraint type, the number of valid constraints, ignored constraints, number of ignored
objects, and number of covered setup and hold endpoints are reported. This table provides more
information than the summary table available when report_exceptions is run from the
command line (report_exceptions -summary).

To get the detailed information for each exception type, the summary table provides hyperlinks
to the Exceptions or Ignored Objects sections. The Valid Constraints and Ignored Constraints link
to the same Exceptions detailed table.

Note: An exception is considered ignored when there is no physical path that connects the -from, -
through, or -to or when the constraint is totally overridden by another constraint.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=128

Figure 94: Report Exceptions: Summary Section

Exceptions Section

This section provides access to the detailed table of each timing exception. A category is
available for each type of timing exceptions and the categories are hyperlinked from the
Summary table. The format of the detailed tables depends on whether the Coverage option has
been selected in the GUI or not.

Below is an example of a detailed table without the Coverage option selected.

Figure 95: Report Exceptions: Detailed Table without Coverage

The table column Position represents the timing constraint position number that matches the
position number reported by the Timing Constraints Editor (TCE). You can double-click on a row
to be redirected to the selected constraint inside TCE. An alternative is to right-click on the row
and select View Constraint from the pop-up menu.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=129

Figure 96: Report Exceptions Context Menu

The image below shows the selected constraint inside the Timing Constraint Editor (TCE).

Figure 97: Timing Exception inside Timing Constraint Editor

The columns From, Through, and To report the original patterns used to define the timing
exception. You can also refer to the constraint position number inside the TCE to review the
same patterns.

The following figure shows an example of a detailed table with the Coverage option selected
inside the Report Exception GUI.

Figure 98: Report Exceptions: Detailed Table with Coverage

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=130

The table column Position represents the timing constraint position number as described above.

When the Coverage option has been selected, the table columns From, To, and Through include
hyperlinks to the design objects targeted by the timing constraints. The objects can be cells, nets,
pins, ports, or clocks. It is possible to click on the blue hyperlinks to select the objects. After the
objects have been selected, the schematic can be opened with the F4 key. In addition, the
coverage information adds the table columns From (%), To (%), and Through (%) that indicate the
coverage percentage.

The table column Status reports the status of the constraint such as Invalid endpoint, Partially
overridden path, Non-existent path, or Totally overridden. The same status is reported when
report_exception is run on the command line:

• Non-existent path: The exception is considered invalid (does not impact timing analysis).

• Totally overridden: The exception is considered invalid (does not impact timing analysis).

Note: The coverages are calculated in the following order: From, Through, and To. The coverage
computed for a level depends on the previous level. When the calculated coverage is 0% for a given
level, all sub-sequent levels inherit the 0% coverage.

Note: A constraint with 0% coverage can be considered invalid because it does not impact timing
analysis.

Note: Pins tied to VCC/GND are reported as invalid pins.

The Clock Groups are not defined with -from, -through, and -to and therefore, the detailed
table is different.

Figure 99: Detailed Table for Clock Groups

When a Clock Group constraint involves multiple groups and each group has multiple clocks, the
table includes one row per clock-pair for all the possible combinations of clock-pairs. In this
scenario, the constraint spans over multiple rows and each row refers to the same constraint
position number.

The constraint position number 443 in the above design is defined as:

set_clock_groups -physically_exclusive -group RFSCLK -group LB_MD1SFSCLK

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=131

The constraint spans over two rows because some timing paths exist from clock RFSCLK to clock
LB_MD1SFSCLK and from clock LB_MD1SFSCLK to clock RFSCLK.

Ignored Objects Section

This section reports the ignored startpoint and endpoints, organized by constraint type. This is
equivalent to running report_exceptions -ignored_objects from the Tcl Console.

Figure 100: Report Exceptions: Ignored Objects

The table column Position represents the timing constraint position number that matches the
position number reported inside the TCE. You can double-click a row to be redirected to the
selected constraint inside the TCE. An alternative is to right-click on the row and select View
Constraint in the popup menu.

The table columns Ignored Startpoints and Ignored Endpoints report the ignored pins. A pin is
ignored when it is not a valid startpoint or endpoint, depending on which of the -from and -to
pattern the pin was specified. A constraint can span over multiple rows, depending on the
number of pins that are reported. Use the hyperlinks to select the design objects. After selection,
the properties can be reviewed in the Property page and the schematic opened by pressing the
F4 key.

Report Clock Domain Crossings
The Clock Domain Crossings (CDC) report performs a structural analysis of the clock domain
crossings in your design. You can use this information to identify potentially unsafe CDCs, which
will lead to metastability or data coherency issues. While the CDC report is similar to the Clock
Interaction Report, the CDC report focuses on structures and their timing constraints, but does
not provide information related to timing slack.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=132

When run from the Tcl console, the CDC report can be scoped to one or more hierarchical cells
using the -cells option. If the CDC is scoped, checks are reported when either the source or
destination pins are inside the list of hierarchical cells. The scoping option is not available from
the Report CDC GUI.

Overview
Before generating the CDC report, you must ensure that the design has been properly
constrained and there are no missing clock definitions. Report CDC only analyzes and reports
paths where both source and destination clocks have been defined. Report CDC performs
structural analysis:

• On all paths between asynchronous clocks.

• Only on paths between synchronous clocks that have the following timing exceptions:

○ Clock groups

○ False Path

○ Max Delay Datapath Only

Synchronous clock paths with no such timing exception are assumed to be safely timed and
are not analyzed by the CDC engine. The Report CDC operates without taking into
consideration any net or cell delays.

Terminology
The terminology for safe, unsafe, and endpoints is different in the context of Cross Domain
Crossing (CDC) and inter-clock timing analysis.

In the context of CDC, an asynchronous crossing is safe when proper synchronization circuitry is
used to prevent metastability. For example, a safe single-bit CDC can be implemented by a
synchronizer, which is a chain of registers with same clock and control signals. A safe multi-bit
CDC can be implemented with a MUX Hold circuitry or a Clock Enabled Controlled circuitry.

Conversely, an unsafe CDC is when the CDC analysis engine does not recognize a known safe
synchronization circuit on an asynchronous CDC path.

The number of endpoints reported for CDC between two clock domains can be different than
the number of endpoints reported by the timing analysis commands. For example, an
asynchronous reset synchronizer involves multiple timing path endpoints. However, the
synchronization circuitry is reported as a single element and therefore as a single CDC endpoint.
Similarly, a multi-bit CDC contains multiple single bit crossings but is reported as a single CDC
endpoint. However, the same bus is reported as multiple timing endpoints by other timing
reports.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=133

IMPORTANT! Because report_clock_interaction  and report_cdc  have different purposes,
the number of endpoints reported by each command must not be compared. In the context of
report_clock_interaction, safe/unsafe refers to the ability for the timing analysis engine to
provide a slack that matches the worst situation in hardware. For report_cdc, safe/unsafe refers to the
type of CDC circuitry implemented in the design.

Running Report Clock Domain Crossings
When you run Report CDC from the Vivado IDE, it provides all the details for the CDC paths
between the specified clocks by default. When you run Report CDC from the Tcl Console,
however, it only prints the Summary by Clock Pairs table. You must specify the -details option
in order to report all the details as in the GUI mode. Reporting the details can create very long
files or log files.

To run the Report Clock Domain Crossings in the Vivado IDE, select Reports → Timing → Report
CDC.

Equivalent Tcl command: report_cdc -name cdc_1

In the Vivado IDE, the Report CDC dialog box includes the following fields, as shown in the
following figure:

• Results Name Field

• Clocks Field (From/To)

• File Output Field

• Options Field

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=134

Figure 101: Report CDC Dialog Box

Results Name Field

In the Results Name field at the top of the Report Clock Domain Crossings dialog box, specify the
name of the graphical window for the report.

Equivalent Tcl option: -name <windowName>

Clocks Field (From/To)

The Clocks To and From fields allow you to optionally specify the source and/or destination
clocks on which to run the CDC analysis. You can use the From/To options to control the scope
of Report CDC to specific clocks and result in more readable reports. Click the Browse button

 to the right to open a search dialog box to aid in finding clock objects.

Equivalent Tcl option: -from <clockNames> -to <clockNames>

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=135

File Output Field

The File Output field allows you to optionally specify a file into which to write the results. You
can overwrite the file or append to it.

Equivalent Tcl option: -file <fileName> -append

Options Field

The Options field allows you to:

• Suspend message limits during command execution

Equivalent Tcl option: -verbose

• Ignore command errors

Equivalent Tcl option: -quiet

Understanding the Clock Domain Crossings Report
Rules
Report CDC tries to match each CDC path to a known CDC topology. Each CDC topology is
associated with one or several CDC rules, as presented in Table 7: CDC Rules and Description.
Note that you cannot modify the severity of the rules as with DRCs and Messages. Simplified
schematics and descriptions of the CDC Topologies being detected are included in Simplified
Schematics of the CDC Topologies.

The CDC topologies are analyzed based on some precedence rules. Table 8: CDC Rules and
Precedence (Highest to Lowest) shows the CDC rules ordered from the highest to the lowest
precedence. By default, only one CDC violation is reported at most per endpoint and if multiple
violations exist on a particular endpoint, the CDC rule with the highest precedence is reported
and masks any lower precedence CDC violation. For example, since CDC-15 has a higher
precedence than CDC-10, a safe CDC-15 detected on a register masks an unsafe CDC-10 on the
pin D of the same register.

Note: The default behavior can be overriden with the following command line option:

-all_checks_per_endpoint

This option forces the tool to report all the Info, Warning, and Critical checks that apply on the endpoints,
regardless of the rules of precedence. However, unsafe rules on a register are not reported if at least one
safe rule on the same register is detected.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=136

Table 7: CDC Rules and Description

CDC Topology CDC Rule Severity Description
Single-bit CDC CDC-1 Critical A single-bit CDC path is not synchronized or has unknown CDC

circuitry.

CDC-2 Warning A single-bit CDC path is synchronized with a 2+ stage
synchronizer but the ASYNC_REG property is missing on all or
some of the synchronizer flip-flops.

CDC-3 Info A single-bit CDC path is synchronized with a 2+ stage
synchronizer and the ASYNC_REG property is present.

Multi-bit CDC CDC-4 Critical A multi-bit bus CDC path is not synchronized or has unknown
CDC circuitry.

CDC-5 Warning A multi-bit bus CDC path is synchronized with a 2+ stage
synchronizer but the ASYNC_REG property is missing on all or
some of the synchronizer flip-flops.

CDC-6 Warning A multi-bit bus CDC path is synchronized with a 2+ stage
synchronizer and the ASYNC_REG property is present.

Asynchronous Reset CDC-7 Critical An asynchronous signal (clear or preset) is not synchronized or
has unknown CDC circuitry.

CDC-8 Warning An asynchronous signal (clear or preset) is synchronized but
the ASYNC_REG property is missing on all or some of the
synchronizer flip-flops.

CDC-9 Info An asynchronous reset is synchronized and the ASYNC_REG
property is present.

Combinatorial Logic CDC-10 Critical Combinatorial logic has been detected in the fanin of a
synchronization circuit.

Fanout CDC-11 Critical A fanout has been detected before a synchronization circuit.

Multi-Clock Fanin CDC-12 Critical Data from multiple clocks are found in the fanin of a
synchronization circuit.

non-FD primitive CDC-13 Critical CDC detected on a non-FD primitive.

CE-controlled CDC CDC-15 Warning Clock Enable controlled CDC.

Mux-controlled CDC CDC-16 Warning Multiplexer controlled CDC.

Mux Data Hold CDC CDC-17 Warning Multiplexer data holding CDC.

HARD_SYNC primitive CDC-18 Info A signal is synchronized with a HARD_SYNC primitive.

LUTRAM-to-FD CDC CDC-26 Warning LUTRAM read/write potential collision.

Table 8: CDC Rules and Precedence (Highest to Lowest)

CDC Topology CDC Rule
HARD_SYNC primitive CDC-18

Non-FD primitive CDC-13

Mux Data Hold CDC CDC-17

Mux-controlled CDC CDC-16

CE-controlled CDC CDC-15

LUTRAM-to-FD CDC CDC-26

Asynchronous Reset CDC-7

Single-bit CDC not synchronized CDC-1

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=137

Table 8: CDC Rules and Precedence (Highest to Lowest) (cont'd)

CDC Topology CDC Rule
Multi-bit CDC not synchronized CDC-4

Multi-Clock Fanin CDC-12

Combinatorial Logic CDC-10

Fanout CDC-11

Asynchronous Reset synchronized with property CDC-9

Single-bit CDC synchronized with property CDC-3

Multi-bit CDC synchronized with property CDC-6

Asynchronous Reset synchronized without property CDC-8

Single-bit CDC synchronized without property CDC-2

Multi-bit CDC synchronized without property CDC-5

Reviewing the Clock Domain Crossings Report
Sections
In the GUI mode, three sections are generated by default:

• Summary by Clock Pair

• Summary by Type

• Detailed Report

The summary sections provide a convenient overview of the issues that need review and possibly
a change in the design. These sections can be used to navigate to the violations of highest
Severity where additional information is contained within the Detailed Report section.

Note: By default, only the Summary by clock pair section is generated when running the report in text
mode.

Summary by Clock Pair

In the Summary (by clock pair) section, useful information about the number of CDC paths
between two clocks are presented, along with the severity of the most critical issue found among
these paths. The table includes the following columns:

• Severity: Reports the worst severity of all CDC paths from/to the listed clocks. Values are Info,
Warning, or Critical.

• Source Clock: Shows the name of the CDC Source Clock.

• Destination Clock: Shows the name of the CDC Destination Clock.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=138

• CDC Type: Reflects the relationship between two clocks and their dominant timing exception,
if any. Possible types are:

○ Safely Timed: All CDC paths are safely timed because the clocks are synchronous and
accurate timing is not prevented by a timing exception.

○ User Ignored: All CDC paths are covered by set_false_path or set_clock_groups.

○ No Common Primary Clock: The CDC clocks are asynchronous and at least 1 CDC path is
normally timed between two clocks that do not have a common primary clock.

○ No Common Period: The CDC clocks are asynchronous and at least 1 CDC path is normally
timed between two clocks that do not have a common period. For the definition of clocks
with no common period, refer to Understanding the Basics of Timing Analysis.

○ No Common Phase: The CDC clocks are asynchronous since there is no known phase
relationship between the two clocks.

• Exceptions: The timing exceptions applied to the CDC (if any) are:

○ None: No Clock Group/False Path/Max Delay Datapath Only timing exceptions exist on
the CDC paths. Other timing exceptions such as Multicycle Paths, Min Delay, and Max
Delay are not reported by report_cdc.

○ Asynch Clock Groups: The set_clock_groups -asynchronous exception was applied
to the CDC clocks.

○ Exclusive Clock Groups: The set_clock_groups -exclusive exception was applied
to the CDC clocks.

○ False Path: The set_false_path exception was applied to from/to the CDC clocks or to
all CDC paths.

○ Max Delay Datapath Only: The set_max_delay -datapath_only exception was
applied to all CDC paths. Note that "Max Delay Datapath Only" is reported when at least
one CDC path is only covered by set_max_delay -datapath_only, while all other
CDC paths are ignored due to set_false_path constraints.

○ Partial Exceptions: A mix of set_false_path and set_max_delay -datapath_only
constraints are applied to some of the CDC paths, and at least one CDC path is normally
timed.

• Endpoints: The total number of CDC path endpoints. This is the sum of Safe, Unsafe, and
Unknown endpoints. In this context, an endpoint is a sequential cell input data pin. An FD cell
can be counted several times depending on the D, CE, and SET/RESET/CLEAR/PRESET
connectivity. For some CDC topologies, only one endpoint is counted while there are
effectively several paths crossing the clock domain boundary to reach the CDC structure. For
example, in an asynchronous reset synchronizer, several CLEAR pins are connected to the
crossing net, but only the first pin of the synchronizer chain is counted.

• Safe: The number of safe CDC path endpoints. Safe endpoints are endpoints on CDC paths
identified as:

○ Asynchronous Clocks with known Safe CDC structures

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=139

○ Synchronous Clocks with exceptions and known Safe CDC structures

○ Synchronous Clocks without exceptions that are safely timed regardless of the CDC
structure

○ CDC synchronized with HARD_SYNC macro

• Unsafe: The number of CDC path endpoints that are recognized as having an unsafe structure.
The unsafe endpoints are CDC-10, CDC-11, CDC-12 and CDC-13.

○ Combinatorial Logic Topology

○ Fanout Topology

○ Multi-Clock Fan-in Topology

○ non-FD primitive Topology

• Unknown: The number of unknown CDC path endpoints. No CDC structure can be matched
on these endpoints or an unknown CDC circuitry has been detected (CDC-1, CDC-4 and
CDC-7).

• No ASYNC_REG: The number of identified synchronizers that are missing the ASYNC_REG
property on at least one of the two first FD cells of the chain.

The following figure shows an example of a Summary by clock pair section.

Figure 102: Summary by Clock Pair Section

Summary by Type

The Summary by Type table is convenient for quickly reviewing the nature of CDC structures
found in the current report. An example is shown in the following figure.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=140

Figure 103: Summary by Type Table

The Summary by Type table includes the following columns:

• Severity: Reports the severity of the CDC Rule as Info, Warning, or Critical.

• ID: Unique identification number of the CDC Rule, as listed in Table 7: CDC Rules and
Description.

• Count: Number of occurrences of the CDC Rule in the entire report.

• Description: Short description of the CDC Rule.

When analyzing the summary tables, it is important to start with the highest severity. Severity
levels are:

• Critical: This severity is for CDC paths with unknown or unsafe CDC Structures. You must
review each individual path to either fix the structure by modifying the RTL, or waive the
issue. The path details are generated by default when using the Vivado IDE, and only when -
details is used with report_cdc on the command line.

○ There is some combinatorial logic on the crossing net or several source clocks are found in
the fanin of the crossing net. This can degrade the Mean Time Between Failures (MTBF)
characteristics.

○ There is a fanout on the crossing net to the same destination clock domain. This can lead to
data coherency problems.

• Warning: This severity is for CDC paths with known CDC Structures that are safe but non-
ideal due to one of the following reasons:

○ At least one of the two first synchronizer flip-flops does not have the ASYNC_REG property
set to 1 (or true)

○ The CDC structure identified requires functional correctness that the CDC engine cannot
verify. These structures are Clock Enable Controlled, MUX Controlled, and MUX Data-Hold
controlled CDC topologies.

• Info: This severity indicates that CDC structures are all safe and properly constrained.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=141

Detailed Report

The Report CDC details can be viewed by looking at the CDC Details section in the report. You
can use the detailed report to view the schematic of the selected path (by pressing the F4 key),
view the timing report, or generate a new timing report by right-clicking on the individual entry.

You can use the timing reports and schematics to review unexpected CDC paths in the design, to
identify incorrect or missing timing exceptions, and to find missing ASYNC_REG properties. An
example of the CDC Detailed Report is shown in the following figure.

Figure 104: CDC Detailed Report

The CDC Detailed Report table includes the following columns:

• Severity: Reports the severity of the CDC Rule as Info, Warning, or Critical.

• ID: The unique identification number of the CDC Rule, as listed in Table 7: CDC Rules and
Description.

• Description: A short description of the CDC Rule.

• Depth: The number of synchronizer stages found (only applies to synchronizer topologies).

• Exception: The timing exception applied to the CDC path.

• Source (From): The CDC timing path startpoint.

• Destination (To): The CDC timing path endpoint.

• Category: Displays Safe, Unsafe, Unknown, etc.

• Source Clock (From): The name of the source clock.

Note: This column displays only when you click CDC Details (left column of Timing-Report CDC
window)

• Destination Clock (To): The name of the destination clock.

Note: This column displays only when you click CDC Details (left column of Timing-Report CDC
window)

IMPORTANT! The CDC report can flag issues in some of the Xilinx IPs because the CDC engine does
not recognize all possible CDC topologies and does not provide a built-in waiver mechanism. More
information can be found in each Xilinx IP Product Guide.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=142

Simplified Schematics of the CDC Topologies
Simplified schematics of the CDC Topologies along with brief descriptions are shown in the
following sections. In all schematics, the Source Clock net (typically clk_a) is highlighted in blue
and the Destination Clock net (typically clk_b) is highlighted in orange.

Single-Bit Synchronizer

The simplified topology of a Single-bit synchronizer is shown in the following figure. The
ASYNC_REG property must be set on at least the first two flip flops of the synchronization chain.
The synchronizer depth is defined by the number of chained flip-flops that share the same
control signals.

Figure 105: Simplified Topology of a Single-Bit Synchronizer

If the CLEAR or PRESET pins of the flip-flops are also connected to an asynchronous source, the
synchronizer is only reported as a single-bit synchronizer and not as an asynchronous reset
synchronizer.

Multi-Bit Synchronizer

The multi-bit synchronizer topology that is detected is equivalent to multiple single-bit
synchronizers grouped together based on the startpoint-endpoint names and matching CDC
rules. In this context, a bus is defined by the startpoint and endpoint cell names and not by the
net names. The expected bus name format is baseName[index]. Also the startpoint and
endpoint indexes must match. The following figure shows an example of a multi-bit synchronizer
that is 2 bits wide.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=143

Figure 106: Multi-Bit Synchronizer with 2-Bit Width

If all bits of a CDC bus do not match the same CDC rule, the bus is reported as single bits or bus
segments with continuous indexes that match a same CDC rule.

It is essential to understand that having a register-based synchronizer on a bus does not make
the domain crossing safe for the bus. This is the reason the CDC rule CDC-6 is a Warning, as the
tool cannot decide whether or not the topology is adequate for the design. It is up to the
designer to confirm the safety of the CDC.

If the bus is Gray coded, it is safe to use a register-based synchronizer on all the bits of the bus as
long as the adequate timing constraints have been set on the bus to make sure that no more than
one data at a time can be captured by the receiving domain.

If the bus is not Gray coded, other synchronizer topologies should be used instead, such as CE
Controlled CDC or MUX Controlled CDC.

Asynchronous Reset Synchronizer

The synchronization of an asynchronous reset is shown in the following figure for CLEAR-based
synchronization, and in the subsequent figure for PRESET-based synchronization. The FF1 cell is
respectively connected to the synchronized clear or preset signals and their deassertion can
safely be timed against clk_a. Note that flip-flops with CLEAR and PRESET cannot be mixed
within an asynchronous reset synchronizer.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=144

Figure 107: CLEAR-Based Asynchronous Reset Synchronizer

Figure 108: PRESET-Based Asynchronous Reset Synchronizer

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=145

The general recommendation is to avoid multiple synchronizations of the reset signal inside the
destination clock domain. This means that there should not be any fanout of the reset from the
source clock domain into the destination clock domain. This recommendation prevents the
destination clock domain to come out of reset at different time which could put the design in an
unknown state. Failing to follow this recommendation results in a critical CDC-11 Fan-out from
launch flop to destination clock violation.

However, there are scenarios involving the FIFO Generator IP where it is safe to have multiple
synchronizations of the reset signal inside the destination clock domain. The FIFO Generator
enters the reset state asynchronously and comes out synchronously. It applies true synchronous
reset to block RAM though the FIFO receives the asynchronous reset. There will not be a
situation where some part of logic is out of reset and some part is still in reset as long as its
wr_rst_busy signal is used by the design to hold the data flow.

The AXI interface uses 5 FIFO Generator IPs to synchronize the reset in each of the destination
clock domains and is another example of a reset circuitry that is safe by construction. In those
scenarios when it is safe to synchronize the reset signal multiple times, the CDC-11 violations
can be ignored.

The following figure illustrates an example of safe reset synchronization involving two FIFO
Generators in the same destination clock domain.

Figure 109: Safe Reset Synchronization Example

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=146

Combinatorial Logic

In the combinatorial logic simplified example presented in the following figure, a logic function
represented by the LUT3 is placed between the CDC from clk_a to clk_b synchronizers.

Figure 110: Combinatorial Logic Simplified Example

This structure is traditionally not recommended due the potential occurrence of glitches on the
output of the combinatorial logic, which is captured by the synchronizer and propagated
downward to the rest of the design.

Fanout

In the simplified Fanout example shown in the following figure, the source flip-flop drives a net
that is synchronized three times in the clk_b domain highlighted in red. This structure is not
recommended as it can lead to data coherency issues in the destination clock domain because
the latency through the synchronizers is bounded but not cycle-accurate.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=147

Figure 111: Simplified Fanout Example

Note: A fanout of N to N different clock domains is not a CDC problem and does not trigger a CDC-11
violation. Refer to the section Asynchronous Reset Synchronizer for examples of safe fanout on reset
signal.

Multi-Clock Fanin

In the Multi-Clock Fanin example shown in the following figure, both clk_a and clk_x are
transferring data through combinatorial logic (LUT2) to the synchronizer circuit in the clk_b
domain. It is recommended to first synchronize the source data from clk_a and clk_x
individually before combining them via some interconnect logic | FPGA logic. This improves the
MTBF characteristics of the overall CDC structure, and it prevents glitches to propagate to the
destination clock domain.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=148

Figure 112: Multi-Clock Fanin Example

Non-FD Primitive

In the Non-FD Primitive example presented in the following figure, a CDC is occurring between a
FDRE and a RAMB while no synchronization logic exists inside the RAMB primitive. Even if a
single stage flip-flop connected to clk_b is inserted in front of the RAMB, it is still considered an
inadequate synchronizer due to the routing distance between the FDRE and RAMB cells.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=149

Figure 113: Non-FD Primitive Example

Note: This rule does not include the HARD_SYNC macro, which is detected and covered by CDC-18.

CE-Controlled CDC

In the CE-controlled CDC example shown in the following figure, the clock enable signal is
synchronized in the destination clk_b domain before being used to control the crossing flip-
flops.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=150

Figure 114: CE-Controlled CDC Example

The CDC engine only checks that the signal connected to FF3/CE is also launched by clk_b.
There is no restriction on how the clock enable signal is synchronized or on the circuitry driving
the CE pin, as long as it is separately reported as a safe CDC path. Also, you are responsible for
constraining the latency from the clk_a domain to FF3, which is usually done by a
set_max_delay -datapath_only constraint.

Mux-Controlled CDC

In the Mux-controlled CDC example, shown in the following figure, the multiplexer select signal
is synchronized to the destination clock domain, clk_b.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=151

Figure 115: Mux-Controlled CDC Example

Similar to CE-controlled CDC, there is no restriction on how the select signal is synchronized as
long as it is reported as safe individually and the user is responsible for constraining the crossing
delay on FF2_c.

Mux Data Hold CDC

In the Mux Data Hold CDC example, presented in the following figure, the multiplexer select
signal is synchronized to the destination clock domain clk_b and the data_out is fed back to
the multiplexer.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=152

Figure 116: Mux Data Hold CDC Example

Similar to CE-controlled CDC, there is no restriction on how the multiplexer select signal is
synchronized as long as it is reported as safe individually and the user is responsible for
constraining the crossing delay on FF2_c.

LUTRAM Read/Write Potential Collision

In the LUTRAM Read/Write Potential Collision example below, the data is written inside the
LUTRAM with the write clock and the output of the LUTRAM is captured by the read clock.
When the read and write addresses are different, there is no CDC path between the write and
the read clocks. However, when the write and read addresses are the same, then there is a CDC
path between the write clock and the read clock.

To avoid a CDC path between the write and read clocks, it is necessary to ensure that the logic
around the LUTRAM can never generate the same read and write addresses during active read
and write operations. When this condition is ensured, the CDC violation related to this topology
can be waived. Xilinx's FIFO Generator IP, for example, has a built-in logic that prevents any
read/write collision.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=153

Figure 117: LUTRAM Read/Write Potential Collision

Report Bus Skew
The Bus Skew report covers all the bus skew constraints set in the design using set_bus_skew.
The bus skew report is currently not included inside the timing summary report and you must
manually generate the bus skew report in addition to the timing summary report for complete
timing signoff.

When run from the Tcl console, the bus skew report can be scoped to one or more hierarchical
cells using the -cells option. When the report is scoped, only paths with the datapath section
that start, end, or are fully contained inside the cell(s) are reported. This option is not available
from the Report Bus Skew GUI.

Running Report Bus Skew
The bus skew report is available from the command line with the report_bus_skew Tcl
command or from the GUI under Reports → Timing → Report Bus Skew. This command shares
many options with the report_timing command to filter and format the output report. The
bus skew constraints are reported in their order of definition. Use -sort_by_slack to sort the
constraints in an ascending order, from the smallest to the largest slack.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=154

Reviewing Bus Skew Path Details
The bus skew report includes two sections:

1. A bus skew report summary.

2. A bus skew report by constraint.

Report Summary Section

The Report Summary section reports all the set_bus_skew constraints defined in the design.
The following information is reported for each constraint:

• Id: constraint Id referred later in the report (makes it easier to search for that constraint inside
the report).

• From: pattern provided for the set_bus_skew -from option.

• To: pattern provided for the set_bus_skew -to option.

• Corner: corner (Slow or Fast) in which the worst bus skew was computed.

• Requirement: bus skew target value.

• Actual: worst bus skew computed across all the paths covered by the constraint.

• Slack: difference between the worst bus skew and the constraint requirement.

In the following example, the design has only one bus skew constraint with a 1 ns requirement.
The worst skew among all the paths covered by the constraint is 1.107 ns.

Report Per Constraint Section

The Report Per Constraint section provides more details for each of the set_bus_skew
constraints. Each reported constraint includes two parts:

1. Detailed summary of the paths covered by the constraint.

2. Detailed timing paths for the paths reported in the Per Constraint summary.

The detailed summary table provides the following information:

• From Clock: startpoints clock domain.

• To Clock: endpoints clock domain.

• Endpoint Pin: endpoint pin involved in the reported path.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=155

• Reference Pin: reference pin used to compute the skew. Each row of this table refers to the
reference pin which results in the largest skew for that endpoint path.

• Corner: Fast/Slow corner used to compute the worst skew to this endpoint.

• Actual: computed skew. The skew is the difference between the relative delay for Endpoint
Pin minus the relative delay for Reference Pin and minus the relative CRPR.

• Slack: difference between actual path skew and requirement.

Note: Both the -from and -to options must be specified when defining a bus skew constraint.

By default, only the endpoint with the worst bus skew is reported. To report multiple endpoints,
the command line options -max_paths and -nworst can be used. They work similarly as for
report_timing command. For example, the combination of -nworst 1 -max_path 16
reports, for each constraint, up to 16 endpoints with a single path per endpoint.

The detailed timing paths section provides a detailed timing path for each of the pin pairs
reported in the Per Constraint summary table. The number of detailed paths that are reported is
the same as the number of endpoints reported in the summary table and can be controlled with -
max_paths/-nworst command line options.

The format for the detailed bus skew timing path is similar to a traditional timing path, except for
the clock uncertainty that is not reported at the level of the endpoint or reference paths. Instead,
the worst of the clock uncertainty from the endpoint or reference paths is reported in the bus
skew header. Also note that the launch time of the destination clock is always zero. For each
slack, a timing path to the endpoint and a timing path to the reference pin are printed. When the
clock and/or datapath cross multiple SLRs, some Inter-SLR compensation is applied during the
slack computation to prevent unnecessary pessimism. Such compensation is then reported in the
bus skew header.

The following detailed path was reported using the command line option -path_type short
to collapse the clock network details. The path to the endpoint pin precedes the path to the
reference pin. The path header summarizes the information from the two detailed paths, plus the
requirement and the relative CRPR:

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=156

Report Bus Skew Dialog Box
In the Vivado® IDE, to open the Report Bus Skew dialog box, select Reports → Timing → Report
Bus Skew.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=157

Report Bus Skew Dialog Box: Options Tab

The Options tab in the Report Bus Skew dialog box is shown in the following figure.

Figure 118: Report Bus Skew Dialog Box: Options Tab

The Report Bus Skew Dialog Box Options tab includes the following sections:

• Report

• Path Limits

• Path Display

Report

• Delay type: See Report Section.

• Report unique pins: Show only one timing path for each unique set of pins.

Equivalent Tcl option: -unique_pins.

Path Limits

• Number of paths per group: See Report Timing Summary.

• Number of paths per endpoint: See Report Timing Summary.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=158

Path Display

• Number of significant digits: See Report Timing Summary.

Report Bus Skew Dialog Box: Advanced Tab

The Advanced tab in the Report Bus Skew dialog box is shown in the figure below.

Figure 119: Report Bus Skew Dialog Box: Advanced Tab

The Report Bus Skew Dialog Box Advanced tab includes the following sections:

• File Output

• Miscellaneous

File Output

• Write results to file: Writes the result to the specified file name. By default the report is
written to the Timing window in the Vivado IDE.

Equivalent Tcl option: -file.

• Overwrite/Append: When the report is written to a file, determines whether (1) the specified
file is overwritten, or (2) new information is appended to an existing report.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=159

Equivalent Tcl option: -append.

Miscellaneous

• Ignore command errors: Executes the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors
encountered during execution.

Equivalent Tcl option: -quiet.

• Suspend message limits during command execution: Temporarily overrides any message limits
and returns all messages.

Equivalent Tcl option: -verbose.

Details of the Timing Summary Report

The Bus Skew Report contains the following sections:

• General Information Section

• Summary Section

• Set Bus Skew Section

General Information Section

The General Information section of the Timing Summary Report provides information about the
following:

• Design name

• Selected device, package, and speed grade (with the speed file version)

• Vivado Design Suite release

• Current date

• Equivalent Tcl commands executed to generate the report

Summary Section

This section provides a summary of all the Bus Skew constraints, with their requirements, the
actual worst bus skew, and slack for each constraint. The summary table can be used to quickly
see whether any of the Bus Skew constraints is violated.

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=160

Figure 120: Report Bus Skew: Summary Section

The Constraint table column represents the timing constraint position number that matches the
position number reported inside the Timing Constraints Editor (TCE).

The From and To table columns include hyperlinks to the objects specified inside the
set_bus_skew command. The objects can be cells or pins. It is possible to click on the
hyperlinks to select all the startpoints or endpoints of a specific Bus Skew constraint. After the
objects have been selected, the schematic can be opened with F4.

Figure 121: Example Schematic of the Bus Skew Endpoints

Set Bus Skew Section

This section provides access to the detailed timing paths for each Bus Skew constraint. There is

an associated reference path that can be expanded for each timing path endpoint .

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=161

The bus skew calculation is:

Actual Bus Skew = Endpoint Relative Delay - Reference Relative Delay - Relative CRPR

Figure 122: Example of Detail Path for the First Endpoint and its Reference Path

It is possible to select a path and look at the detailed timing path report inside the Property pane.
The schematic of the path and/or reference path can be generated by clicking the schematic icon
and pressing F4 (the endpoint path and its reference path can be selected together).

Chapter 4: Timing Analysis Features

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=162

Chapter 5

Viewing Reports and Messages

Introduction to Reports and Messages
The Xilinx® Vivado® Integrated Design Environment (IDE) generates reports and messages to
inform you of the state of the design or design processes during various tool interactions.
Reports are generated by you (or by the tool) at key steps in the design flow. The reports
summarize specific information about the design.

The tool generates messages automatically at each step of the design process, and for many user
actions.

Messages and reports are stored in the Messages and Reports windows in the Results window
area.

When you run any of the following commands, the tool starts a new process:

• Run Synthesis

• Run Implementation

• launch_runs (Tcl)

For more information on Tcl commands, see the Vivado Design Suite Tcl Command Reference Guide
(UG835), or type <command> -help.

The process generates messages and reports that persist on disk until you reset the run.
Messages that relate to a run appear when a project is open. The tool displays only the messages
for the active run in the Messages window.

Reports result from a variety of actions in the Vivado IDE:

• When you load a design, many different reporting commands are available through the Tools
menu.

• Running Synthesis or Implementation creates reports as part of the run.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 163Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=163

Viewing and Managing Messages in the IDE
Messages provide brief status notes about specific elements of the design, or about errors that
occurred in tool processes.

TIP: Review the messages to determine whether the Vivado tools are having difficulty, or are encountering
errors in any sections of the design.

Using the Reports Window
The reports for the active Synthesis and Implementation runs appear in the Reports window.
Select the Reports tab of the Run Properties window to view reports of the run selected in the
Design Runs window. Double-click a report to view it in the text viewer.

Figure 123: Reports Window

Using the Messages Window
There are two types of messages:

• Messages stored on disk

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=164

• Messages stored in memory

The Vivado Integrated Design Environment (IDE) groups messages in the Messages window by
the action that created the message. Use the settings buttons on the toolbar menu to group the
messages by message ID or file.

Figure 124: Messages Window

Some messages include hyperlinks to a file or a design element to help in debugging. Click the
link to view the source.

TIP: Use the popup menu to copy messages to paste into another window or document.

Each message is labeled with a message ID and a message severity.

• Message ID: The message ID identifies different messages, allowing them to be grouped and
sorted.

• Message Severity: The message severity describes the nature of the information presented.

Some messages require your attention and resolution before the design can be elaborated,
synthesized, or implemented. Some messages are informational only. Informational messages
provide details about the design or process, but require no user action.

Table 9: Message Severities

Icon Severity Message
Status Communicates general status of the design processing.

Info General status of the process and feedback regarding design processing.

Warning Design results may be sub-optimal because constraints or specifications may not be applied as
intended.

Critical
Warning

Certain user input or constraints will not be applied, or are outside the best practices, which
usually leads to an error later on in the flow. Examine their sources and constraints. Changes are
highly recommended.

Error An issue that renders design results unusable and cannot be resolved without user intervention.
The design flow stops.

RECOMMENDED: Carefully review all errors and critical warnings issued by the tools when loading a
design in memory, or from your active synthesis and implementation run. The messages provide
information about problems that require your attention. Many messages include a longer description. along
with resolution advice that can be displayed by clicking on the message ID.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=165

For an example, see the following figure. In this example, a primary clock constraint refers to a
port that cannot be found in the design (first warning), so the clock is not created (first critical
warning) and any other constraints that refer to this clock fail as well.

Figure 125: Reviewing Errors and Critical Warning

Filtering Messages
You can filter messages by severity.

To enable or disable the display of a specific message type:

1. Go to the Messages window.

2. Select (to enable) or deselect (to disable) the check box next to a message severity in the
window header.

You can change the severity of a specific message ID. For example, you can decrease the severity
of a message you do not believe is critical, or increase the severity of a message you think
demands more attention.

To increase or decrease the severity of a message, use the set_msg_config Tcl command. For
example:

set_msg_config -id "[Common 17-81]" -new_severity "CRITICAL WARNING"

For more information on the set_msg_config Tcl command, see this link in the Vivado Design
Suite Tcl Command Reference Guide (UG835).

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 166Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xset_msg_config
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=166

Vivado Generated Messages
This section discusses Vivado Generated Messages and includes:

• Synthesis Log

• Implementation Log

• WebTalk Report

Synthesis Log
The Vivado Synthesis Log is the primary output from the Vivado Synthesis tool including:

• The files processed, which are:

○ VHDL

○ Verilog

○ System Verilog

○ XDC

• Parameter settings per cell

• Nets with Multiple Drivers

• Undriven hierarchical pins

• Optimization information

• Black boxes

• Final Primitive count

• Cell usage by Hierarchy

• Runtime and memory usage

IMPORTANT! Review this report or the messages tab for Errors, Critical Warnings and Warnings. The
Synthesis tool can issue Critical Warnings and Warnings that become more serious later in the flow.

Implementation Log
The Vivado Implementation Log includes:

• Information about the location, netlist, and constraints used.

• Logic optimization task. The tool runs logic optimization routines by default to generate a
smaller and faster netlist.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=167

• The placement phases, plus a post-placement timing estimate (WNS and TNS only).

• The router phases, plus several timing estimates and an estimated post-routing timing
summary (WNS, TNS, WHS and THS only).

• Elapsed time and memory for each implementation command and phases.

Review this report or the proper section of the messages tab for Errors, Critical Warnings and
Warnings. The Placer generates warnings that may be elevated to Errors later in the flow. If using
Stepwise runs, the log contains only the results for the last step.

IMPORTANT! Review the Timing Summary Report to view: (1) the Pulse Width timing summary, and (2)
additional information about timing violations or missing constraints.

WebTalk Report
The WebTalk Report is generated during Bitstream. This report helps Xilinx understand how its
customers use Xilinx FPGA devices, software, and Intellectual Property (IP). The information
collected and transmitted by WebTalk helps Xilinx improve features most important to customers.
No proprietary information is collected. For more information, see https://www.xilinx.com/
webtalk/.

Generating and Waiving Design Checks
The waiver mechanism provides the ability to waive CDC, DRC, and Methodology violations.
After a violation is waived, it is not reported anymore by the report_cdc, report_drc, and
report_methodology commands. Waived DRCs are also filtered out from the mandatory
DRCs which are run as a prerequisite for the implementation commands such as opt_design,
place_design, phys_opt_design, route_design or write_bitstream.

Waivers are XDC compatible and can be imported through the commands, read_xdc or
source. They can be included in any XDC file or Tcl script, in Project or Non-Project modes.
They can be created from the top-level or scoped to a hierarchical module. After waivers are
added to the design, they are automatically saved inside the checkpoint and restored when the
checkpoint is reloaded. The waivers can be written out with the commands, write_xdc and
write_waivers.

Waivers provide tracking capabilities. Vivado tools record the user who creates the waivers, the
date and time of creation, as well as a short description. This information is important for
tracking purposes. It is recommended that all the waivers applied to the design are reviewed and
verified to ensure that they are valid.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 168Send Feedback

https://www.xilinx.com/webtalk/
https://www.xilinx.com/webtalk/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=168

Waivers are first class objects that can be created, queried, reported on, and deleted. Waivers
reference other first class objects returned by the Vivado get_* commands, such as pins, cells,
nets, Pblocks, and sites. These objects must exist in the design prior to creating the waivers.
Design objects that do not exist at the time of waiver creation are not covered by the waivers.

IMPORTANT! Similar to other constraints, it is recommended to create the waivers on a post-synthesized
design. Waivers that are created on post-implemented designs could reference design objects that do not
exist inside the post-synthesis netlist. Such waivers are discarded if they are applied on the post-synthesis
design.

The waiver mechanism supports replication and deletion of netlist objects. When an object
involved in a waiver is replicated, the replicated object is automatically added to the waiver.
Similarly, when an object is deleted, any reference to it is automatically removed from the
waivers. When the deleted object results in a waiver referencing an empty list of objects, the
waiver is deleted from the in-memory design and is not saved in the subsequent checkpoints.
The same mechanism applies to timing constraints and clock objects. When a clock gets deleted
through logic optimization or by removing the timing constraints (reset_timing), any waiver
referencing the clock object gets deleted and is not saved in the subsequent checkpoints.

Note: the Vivado commands rename_net/rename_cell/rename_port/rename_pin do not rename the design
elements inside the waiver. If a waiver refers to a netlist element renamed by one of these commands, the
waiver becomes invalid because it still refers to the design element's original name.

Note: Custom Design Rule Checks cannot be waived. For more information about user written DRCs, refer
to this link in the Vivado Design Suite User Guide: Using Tcl Scripting (UG894).

Creating a Waiver
Waivers can be created from the GUI, from a DRC, Methodology, or CDC violation object, or by
manually specifying all the required arguments.

Creating Waivers from the GUI

Waivers can be directly created from any Report DRC, Report Methodology, and Report CDC
GUI result window. To waive violations(s) from the result window, select one or more violations
and right-click to select Create Waiver from the context menu. In the following figure, four
waivers are created from the four selected CDC violations.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 169Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug894-vivado-tcl-scripting.pdf;a=xCreatingCustomDesignRulesChecks
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=169

Figure 126: Waivers Created from CDC Violations

Selecting Create Waiver opens the following widget.

Figure 127: Create Waiver GUI

Even though Vivado tools populate the user name, the field is editable. The description is
mandatory and it is recommended to provide some detailed information that can be reviewed by
the design team. The field Tags is optional and can be used to provide an additional description
through a string or a list of keywords. Its main purpose is documentation because it can be used,
for instance, when searching through the XDC file or to filter waivers with the get_waivers
command. The dialog box includes a preview of the Tcl commands that the GUI sends to the Tcl
console.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=170

After the Create Waiver window is submitted, one create_waiver command is sent to the Tcl
console by the GUI for each violation that is waived. For DRC and Methodology violations, the
create_waiver command generated by the GUI references the violation object but this is only
a transitional form. The waiver engine converts the violation object into a fully descriptive
waiver, referencing all the design objects involved in the violation. The waiver that is created
never references the original violation object that it is built from. The timestamp is automatically
added by the engine when the waiver is created.

After waivers are created from the GUI, the selected rows are grayed out as well as disabled and
the report goes stale. This is a visual confirmation that some waivers have been created from this
result window. After the GUI report is re-run, the waived violations are filtered out from the new
result window.

Figure 128: Disabled Rows after Waiver Creation

Note: The process to create a waiver from the GUI is the same for DRC and Methodology violations.

Creating Waivers from a Violation Object

The second method to create waivers is to use the DRC, Methodology, or CDC violation objects.
This is the method the GUI uses when the create_waiver commands are sent to the Tcl
console.

The following syntax is used to create a waiver from one or more violation objects:

create_waiver -of_objects <ViolationObject(s)> -description <string> [-user
<name>]

The description is mandatory. When the user is not specified, the system uses the user id running
the Vivado tools.

Note: When multiple violation objects are specified, the system creates one waiver per violation. The
waivers that are created do not reference the original violation objects. Instead, the waivers contain the list
of strings and objects included in the violations.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=171

The violation objects are returned through the get_cdc_violations,
get_drc_violations, and get_methodology_violations commands. These commands
only return objects when report_cdc, report_drc, and report_methodology have been
run earlier. Use the command line option -name to get the list of violation objects from one of
the GUI reports.

The following example code creates a waiver for all CDC-1 violations that have their startpoints
inside the module top/sync_1:

report_cdc -name cdc_1
set vios [get_cdc_violations -name cdc_1 -filter {CHECK == CDC-1}]
foreach vio $vios {
 if {[regexp {^top/sync_1} [get_property STARTPOINT_PIN $vio]]} {
 create_waiver -of $vio -description {Safe by protocol}
 }
}

A waiver created from a violation object is built from all the objects and strings referenced inside
the violation. This makes the waiver unique to that violation. If you want the waiver to cover
multiple violations, you must export the waiver to an external file and edit the create_waiver
command to replace single objects and strings with, for example, patterns and wildcards. See
Creating DRC and Methodology Waivers for more information on using patterns and wildcards.

Note: For a few DRC and Methodology checks some strings are automatically converted to wildcards, for
example, UCIO-1, NSTD-1, TIMING-15, and TIMING-16. For TIMING-15 or TIMING-16, the Setup and
Hold slack amount inside the violation is not relevant. When a waiver is created from a TIMING-15 or
TIMING-16 violation object, the create_waiver command automatically replaces the string that
represents the slack with a wildcard. This enables the waiver to waive the violation related to a specific
object and regardless of the reported slack. Similar behavior applies to UCIO-1 and NSTD-1.

Creating Waivers from the Command Line

The waiver for a specific DRC and Methodology violation is unique. A violation is an aggregation
of strings and/or various device and design objects, such as pins, cells, nets, Pblocks, sites, and
tiles. Some DRC, Methodology, and CDC violations could just have one of those elements while
others can have multiple elements. The order and content of all the strings and objects is
important and must be preserved. When a waiver is created with the arguments specified in the
wrong order, the waiver either never waives any violation or it could waive the wrong violation.

Before manually creating a waiver for a specific violation (for example, TIMING-14#1) or a class
of violations (for example, TIMING-14), it is recommended to first create an example waiver from
the GUI or from a violation object. Use the write_waiver or write_xdc commands to export
the waiver. You can then relate the content of the waiver created by the system to the original
violation and understand the order of strings and objects that need to be specified. You can
extrapolate this information for other waivers with the same CDC, DRC, or Methodology ID (for
example, TIMING-14).

There are two mandatory arguments for any CDC, DRC, and Methodology waiver:

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=172

• ID: The violation or check ID that is waived. The id is specified with -id. For example, CDC-1,
TIMING-14, or PDRC-1569. Only one id can be specified at a time.

• Description: Support multi-lines string. Must provide enough information to be reviewed by
the team. The description is specified with -description.

You can use the command line option -type to force the waiver type, CDC, DRC, or
Methodology. A waiver created with the wrong type does not match any violation. For instance,
to waive a CDC violation, the waiver type must be set as CDC. When the type is not specified,
the system infers the type from the check id specified with -id. The user name can be
overridden using the -user option. By default, the system uses the user id running Vivado
Design Suite.

The waivers support the XDC scoping mechanism and the current instance can be changed
before creating a waiver. In this case, the current instance information is saved along with the
waiver and restored when the waivers are exported as XDC. When scoped waivers are created, it
is recommended to use the command line option -scope to ensure that the wildcards are
scoped.

A waiver is considered by the system as a duplicate if another waiver already exists with all the
exact same arguments. To reduce the memory footprint and runtime, duplicate waivers are not
saved and result in a message similar to the following:

WARNING: [Vivado_Tcl 4-935] Waiver ID 'CDC-13' is a duplicate and will not
be added
again.

Some DRC/Methodology checks such as RTSAT-* are read-only and cannot be waived. The list of
DRC/Methodology checks that can be waived can be filtered by checking the property
IS_READ_ONLY on the DRC/Methodology check objects. For example:

set allWaivableChecks [get_drc_checks -filter {!IS_READ_ONLY}]
set allWaivableChecks [get_methodology_checks -filter {!IS_READ_ONLY}]

The following message is an example of an error message generated by create_waiver when
waiving a read-only check such as DRC RTSTAT-12:

ERROR: [Vivado_Tcl 4-934] Waiver ID 'RTSTAT-12' is READONLY and may not be
waived.

Creating DRC and Methodology Waivers

The number and types of additional arguments for create_waiver depends on the DRC and
Methodology violation that needs to be waived. Few DRC and Methodology violations, such as
TIMING-9, have no other arguments because the message is generic and non-specific. Other
DRC and Methodology violations can include multiple strings and different types of objects.

Note: It is not recommended to waive violations that do not reference any string or object such as
TIMING-9 and TIMING-10.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=173

The strings inside the violation are specified with -string inside the waiver. The device or
design objects (pins, cells, nets, Pblocks, and sites) are specified with the -objects option. Each
of these command line options should be specified as many times as the violation contains those
elements.

When a waiver is created from the GUI or from a violation object, the waiver is defined to only
waive that exact violation as it specifies all the strings and objects that make that violation
unique. When the waiver is manually created, it is possible to widen the coverage of the waiver
so that multiple violations can be waived from a single waiver. To expand a waiver to cover
multiple violations:

• Use patterns for the get_* commands in place of a specific name

• Use a wildcard in place of a string or an object. Wildcards are special keywords such as '*' for
'any string' or '*PIN' for 'any pin' (refer to the following table). As long as an object of the same
type matches the element found inside the violation for the same position, it is a match. When
all the elements from the waiver match the violation, then the violation is waived.

• Specify a list of objects instead of a single object. As long as the object inside the violation
matches one of the objects inside the list of objects at the same position inside the waiver, it
is a match. When all the elements from the waiver match the violation, then the violation is
waived.

For example: the command below waives a single TIMING-14 violation that references the cell
mux2_inst/mux_out_INST_0:

create_waiver -id "TIMING-14" -description "Reviewed by the team" \
 -objects [get_cells mux2_inst/mux_out_INST_0]

Suppose that the design has multiple cells mux2_inst/mux_out_INST_*, the above waiver
could be modified to waive the TIMING-14 violations related to all those cells by using a pattern
for the get_cells command:

create_waiver -id "TIMING-14" -description "Reviewed by the team" \
 -objects [get_cells mux2_inst/mux_out_INST_*]

The following table summarizes the keywords used as wildcards based on the object type.

Table 10: Wildcard Keywords

Object Wildcard
Cell *CELL

Net *NET

Pin *PIN

Port *PORT

Site *SITE

Tile *TILE

BEL *BEL

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=174

Table 10: Wildcard Keywords (cont'd)

Object Wildcard
Package Bank *PKGBANK

Clock Region *CLKREGION

Clock *CLOCK

Pblock *PBLOCK

String *

Note: create_waiver -scope forces the wildcards for pins and cells to be scoped to the current
instance where the waiver is created. When creating scoped waivers, -scope ensures that wildcards for
pins and cells do not match objects located at a higher level than the scope, which could result in waiving
violations that must not be waived.

Creating CDC Waivers

CDC waivers are simpler to define because each CDC violation references only two pin(s) or
port(s) objects for the source and destination elements. Use the command line options -from/-
to for specifying the source and destination pins or ports. CDC waivers cannot be defined with -
string/-objects.

IMPORTANT! The CDC waivers are not sensitive to the source and destination clocks but only to the
source and destination pins. As a result creating waivers from the GUI or from some CDC violation objects
that reference the same source and destination pins but for different clock pairs results in a warning such
as: WARNING: [Vivado_Tcl 4-935] Waiver ID 'CDC-7' is a duplicate and will not be added again.

The following command creates a CDC-1 waiver between the source pin U_CORE/U00_TOP/
sr_reg[3]/C and the destination pin U_CORE/U10/ar_reg[3]/CE.

create_waiver -id {CDC-1} -description "CDC violations" \
-from [get_pins {U_CORE/U00_TOP/sr_reg[3]/C}] \
-to [get_pins {U_CORE/U10/ar_reg[3]/CE}]

If one of the command line options -from or -to is omitted, the waiver engine considers the
missing option as a wildcard.

The following two commands are equivalent and waive all CDC-1 to the endpoint pin
U_CORE/U10/ar_reg[3]/CE, regardless of the startpoint:

create_waiver -id {CDC-1} -description "CDC violations" \
-from {*PIN} \
-to [get_pins {U_CORE/U10/ar_reg[3]/CE}]
create_waiver -id {CDC-1} -description "CDC violations" \
-to [get_pins {U_CORE/U10/ar_reg[3]/CE}]

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=175

CDC Rules Precedence

By default, Report CDC only reports one violation per endpoint and per clock-pair. When
multiple violations exist for an endpoint and for a specific clock-pair, only the CDC violation with
the highest precedence is reported.

The CDC rules are sorted as shown in the table below from the highest to the lowest
precedence.

Table 11: CDC Rules Precedence

Rule ID CDC Topology Severity Category
CDC-18 Synchronized with HARD_SYNC Primitive Info Safe

CDC-13,14 1-bit and multi-bit CDC path on a non-FD primitive Critical Unsafe

CDC-17 MUX Hold Type Warning Safe

CDC-16 MUX Type Warning Safe

CDC-15 CE Type Warning Safe

CDC-26 LUTRAM read/write potential collision Warning Safe

CDC-7 Asynchronous Reset not synchronized Critical Unknown

CDC-1, 4 1-bit and Multi-bit CDC not synchronized Critical Unknown

CDC-12 Multi-Clock Fan-in Critical Unsafe

CDC-10 Combinatorial Logic detected between synchronizer Critical Unsafe

CDC-11 Fan-out from Launch Flop to destination domain Critical Unsafe

CDC-9 Asynchronous Reset synchronized with ASYNC_REG property Info Safe

CDC-6 Multi-bit synchronized with ASYNC_REG property Warning Unsafe

CDC-3 1-bit synchronized with ASYNC_REG property Info Safe

CDC-8 Asynchronous Reset synchronized with missing ASYNC_REG
property

Warning Safe

CDC-2,5 1-bit and multi-bit CDC synchronized with missing
ASYNC_REG property

Warning Safe

Note: Some rules with severity Warning are listed above with a higher precedence than other critical rules
because those rules cannot actually apply to the same endpoint due to different CDC topologies.

When an endpoint has multiple CDC violations, if the violation with the highest precedence is
waived, the next violation is reported based on the precedence order.

To create waivers for a design, it could be convenient to report all the CDC violations for each
endpoint in a single run, regardless of the rules precedence. Use the report_cdc command line
option -all_checks_per_endpoint to generate an extensive report of all the CDC
violations in the design.

Note: -all_checks_per_endpoint is only available from the Tcl console and is not supported in the
Report CDC dialog window. However, the results of -all_checks_per_endpoint can be displayed in
the Vivado IDE using the -name option.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=176

Reporting the Waivers
It is recommended to verify that only the expected violations have been waived. This must be
done after the waivers are defined and before the final bitstream.

Report CDC, Report DRC, and Report Methodology commands support multiple reporting
modes:

• By default, the report_cdc, report_drc, and report_methodology commands only
report the violations that are not waived.

• Use -waived to force report_cdc, report_drc, and report_methodology commands
to only report the violations that have been waived. The report must be reviewed to confirm
that all the waived violations are expected.

• Use -no_waiver to force report_cdc, report_drc, and report_methodology
commands to run without applying the waivers. In this mode, all violations are reported
whether they are waived or not.

The three reporting modes are available from the command line and from the GUI Report dialog
windows. The image below from Report DRC illustrates the selection of the reporting modes
under the Waivers section. The same Waivers section is also available for Report CDC and
Report Methodology widgets.

Figure 129: Reporting Modes for Waivers

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=177

In the CDC, DRC, and Methodology GUI result windows, there are some visual differences when
a result window contains waived violations, the icon in front of each violation is different and the
name of the result window includes the number of waived violations.

Note: Waivers cannot be created from the result window of waived CDC, DRC, and Methodology
violations.

The example below illustrates a result window of waived DRCs with only two waived violations.

Figure 130: Waived DRC Violations

To get a summary report of all the waivers and the waived violations, use the report_waivers
command. The report is only available from the Tcl console.

report_waivers only reports statistics that are extracted by report_cdc, report_drc, and
report_methodology commands. To get accurate statistics, it is necessary to run
report_cdc, report_drc, and report_methodology before report_waivers and any
time the waivers have been modified (added or deleted). The statistics are updated regardless of
whether the reports are run from the command line or GUI. Failure to have updated statistics,
report_waivers issues one or more of the following messages, depending on which of the
CDC, DRC, or Methodology information is outdated:

WARNING: [Vivado_Tcl 4-972] Waiver counts for 'CDC' will be invalid because
report_cdc has not been run since waivers were changed; please run the
report_cdc
command.
WARNING: [Vivado_Tcl 4-972] Waiver counts for 'DRC' will be invalid because
report_drc has not been run since waivers were changed; please run the
report_drc
command.
WARNING: [Vivado_Tcl 4-972] Waiver counts for 'METHODOLOGY' will be invalid
because
report_methodology has not been run since waivers were changed; please run
the
report_methodology command.

The report from report_waivers includes a summary table and a detailed table for each of the
CDC, DRC, and Methodology waivers. The table columns are:

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=178

• Total Vios: Total number of violations before the waivers apply. That is the number of
violations that would be reported without waivers. Multi-bit rules are accounted for by the
number of endpoints.

• Remaining Vios: Number of violations after the waivers apply. When no violation is waived,
this number matches Total Vios. Multi-bit rules are accounted for by the number of endpoints.

• Waived Vios: Number of violations that are waived. When no violation is waived, this number
is 0. Multi-bit rules are accounted for by the number of endpoints.

• Used Waivers: Number of waivers that have waived some violation(s). One waiver can waive
multiple violations if it includes some patterns or wildcards.

• Set Waivers: Number of waivers that have been applied to the design. Ideally, the number of
Used Waivers and Set Waivers should match. The numbers do not match when some waivers
have been defined but they do not match any violation.

By default, only the rules that have some waivers defined are reported in the detailed tables.
However, the first Summary table reports all the violations in the design.

Figure 131: report_waivers Default Report

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=179

With the command line option -show_msgs_with_no_waivers, the detailed tables report all
the checks that have some violations, regardless of whether a waiver exists or not for that
particular rule.

Figure 132: report_waivers -show_msgs_with_no_waivers

In addition to the above reports, report_waivers can export the list of waivers that have
matched a CDC, DRC, or Methodology violation and those that did not match any violation. Use
the options -write_valid_waivers to export waivers that have matched a violation and -
write_ignore_waivers to export the waivers that did not match any violation. It is
recommended to review the list of waivers that did not match any violation. When waivers that
did not match are not expected, make sure that the waivers are correctly defined.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=180

The options -write_valid_waivers and -write_ignore_waivers filter the waivers
based on the information reported by the latest execution of report_cdc, report_drc, and
report_methodology commands. When report_drc or report_methodology are run
with a rule deck or a subset of checks, some waivers are ignored for the checks that have not
been run. It is recommended to run all the DRC/Methodology checks before using -
write_valid_waivers and -write_ignore_waivers. For example:

report_cdc -all_checks_per_endpoint
report_drc -checks [get_drc_checks]
report_methodology -checks [get_methodology_checks]
report_waivers -write_valid_waivers -file waivers_valid.xdc
report_waivers -write_ignored_waivers -file waivers_ignored.xdc

Exporting the Waivers
As part of the design constraints, the waivers are automatically saved inside the checkpoint and
restored from the checkpoint. Waivers are saved inside both the plain XDC and binary
constraints.

Use write_xdc and write_waivers commands to export the waivers as a standalone XDC
file. The XDC can be reloaded inside Vivado tools with the read_xdc or source commands.

The write_xdc command exports all the waivers inside the XDC file along with all the design
constraints. This includes the waivers defined by the user and also the Xilinx IP waivers. The
constraints inside the XDC are in the same order as they have been applied to the design. To only
export the waivers, use the command line option -typewaiver. For example:

write_xdc -type waiver -file waivers.xdc

IMPORTANT! The IP waivers are identified with the option create_waiver -internal . User
waivers must never use the option create_waiver -internal. This option is exclusively reserved for
Xilinx IP waivers.

The write_waivers command differs from write_xdc because it only exports the user
waivers and provides more control and granularity. The Xilinx IP waivers are not exported
through write_waivers. By default, all the user CDC, DRC, and Methodology waivers are
exported. Use the option -type to only export CDC, DRC, or Methodology waivers.

For example, the command below exports all CDC waivers to the file waivers_cdc.xdc:

write_waivers -type CDC -file waivers_cdc.xdc

All the waivers for a particular check id can be exported with the option -id. The example below
export all the waivers for the Methodology check TIMING-15:

write_waivers -id TIMING-15 -file waivers_timing_15.xdc

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=181

The following table summarizes the differences between write_xdc and write_waivers
commands with regards to the user waivers and Xilinx IP waivers.

Table 12: Exporting the Waivers

Vivado Command Export User Waivers Export Xilinx IP Waivers
write_xdc Yes Yes

write_waivers Yes No

Other Waiver Commands
The get_waivers command returns a collection of waiver objects. Waivers can be returned by
type, name, or pattern.

The following commands return all the DRC waivers:

get_waivers -type DRC
get_waivers -filter {TYPE == DRC}

The following commands return all the DRC DPIR-2 waivers:

get_waivers DPIR-2#*
get_waivers -filter {ID == DPIR-2}
get_waivers -filter {NAME =~ DPIR-2#*}

Note: Xilinx IP waivers are not returned by the get_waivers command.

The delete_waivers command deletes user waiver objects. The collection of waiver objects
must be built from get_waivers.

The following command deletes all the waivers:

delete_waivers [get_waivers]

The following command deletes all the CDC waivers:

delete_waivers [get_waivers -type CDC]

Note: Xilinx IP waivers cannot be deleted.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=182

Configurable Report Strategies
Configurable Report Strategies provide the ability to select which reporting commands are run
after each step of the synthesis and implementation runs in the Vivado project mode. Depending
on the design stage, the design complexity and the user preferences, a different set of reports
need to be automatically generated and are commonly reviewed. Several pre-defined synthesis
and implementation report strategies are available by default. In addition, the Vivado® IDE allows
the creation of new report strategies which are saved with the user preferences along with any
other Vivado IDE settings.

Setting Run Report Strategies
By default, all synthesis and implementation runs will use their corresponding default Reports
Strategy. To set a different Report Strategy:

1. Select a run in the Design Runs window.

2. Select the Reports tab in the Run Properties window.

3. Select the strategy from the Report Strategy drop down list.

Figure 133: Selecting the Report Strategy for an Implementation Run

Two Flow categories are available and each of them provide several pre-defined report strategies
as well as any user-defined strategies.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=183

Table 13: Flows and Report Strategies

Flow Report Strategy Note
Synthesis Vivado Synthesis Default Reports Only runs the utilization report at the end

of synthesis

No Reports Best strategy to minimize runtime

Implementation Vivado Implementation Default Reports Runs same reports as in Vivado releases
prior to 2017.3

UltraFast Design Methodology Reports Runs all reports recommended in the
UltraFast Design Methodology Guide for
Xilinx FPGAs and SoCs (UG949)

Performance Explore Reports Same as the default reports, plus
additional timing reports after
phys_opt_design

Timing Closure Reports Same as UltraFast Design Methodology
Reports, plus several
report_design_analysis and
report_qor_suggestions reports

No Reports Best strategy to minimize runtime

Before launching the run, some reports are greyed out due to one of the following reasons:

• They are associated with a disabled flow step

• They are disabled by the user

After the run has completed, all available reports have a green check mark and can be opened by
double-clicking on them from the Reports tab. Some reports are not available for one of the
following reasons:

• They are associated with a disabled flow step

• They are disabled by the user

• They are enabled in the Incremental Compile runs only

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 184Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=184

Figure 134: Viewing Generated Run Reports

TIP: Several timing summary reports are only generated when setting the legacy project property
ENABLE_OPTIONAL_RUNS_STA. Xilinx reserves the right to eliminate this property in a future
release. Example: set_property ENABLE_OPTIONAL_RUNS_STA 1 [current_project]

Editing Run Report Strategies
After selecting the Report Strategy for a Run, you can decide to add, delete, or edit reports by
selecting a report and clicking on the corresponding buttons in the Reports tab, or right-clicking
over any existing report, in the Run Properties window:

• Add Report (+): Select the Run Step and the Report Type, then review and edit the report
options. If an option is not visible, you can add it through the MORE_OPTIONS field. The
default unique report name is based on the run name, the flow step, and the report command
name.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 185Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=185

Figure 135: Adding a Report to a Run Report Strategy

• Delete Report (-): This button deletes the selected report from the Run Report Strategy. This
operation cannot be undone.

• Edit Report (): Edit the report name, enable or disable the report, or edit the report options.

To Enable or Disable a report, select the report, right-click on it, and use the contextual pop-up
menu.

After a Run has completed, you can add new reports for a particular step or enable a report that
was previously disabled. In this situation, you must click on the play button to generate the
report.

IMPORTANT! When generating a new report after the run has completed, Vivado opens the checkpoint
of the corresponding flow step in the background in order to generate the report file. This operation blocks
most Vivado IDE functions, including the Tcl Console, until the report has been successfully generated.
Generating the report can take a few minutes to over an hour depending on your design size and the
complexity of the report.

Any modification to a Report Strategy made for a specific run cannot be saved as a new report
strategy. Instead, you must create new report strategies or modify any existing user-defined
report strategies in the Project Settings window as explained in the next section.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=186

Creating New Report Strategies
New Report Strategies must be created in the Vivado IDE Project Settings window, under Tool
Settings and the subsection Strategies. Similarly, any existing user-defined Report Strategy can
only be permanently modified in the Project Settings window. The pre-defined Report Strategies
and the default association of a Run Strategy with a Report Strategy cannot be modified.

Figure 136: Report Strategies Configuration in the Settings Window

To create a new Report Strategy:

1. Click on "+" in the Strategy Window and perform the following steps:

a. Specify the name of the strategy.

b. Select the target Flow, Synthesis or Implementation.

c. Provide a description (optional).

d. Click OK.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=187

Or,

2. Select an existing strategy, click on the copy button, and edit the strategy name. Then:

a. Add a report using the "+" button.

3. Edit the report options by selecting the report and editing the options. If an option is not
available, it can be added in the MORE_OPTIONS field.

4. Remove a report using the "-" button.

5. After all the edits are complete, click OK.

Each flow category provides several pre-defined Report Strategies. See Table 13: Flows and
Report Strategies.

Creating Design Related Reports
This section discusses Creating Design Related Reports and includes:

• Report Utilization

• Report I/O

• Report Clock Utilization

• Report Control Sets

• Report DRC

• Report Route Status

• Report Noise

• Report Power

• Report RAM Utilization

Report Utilization
The Report Utilization Report helps you analyze the utilization of the design with different
resources, at the hierarchical, user-defined Pblocks, or SLR level. You can generate the Utilization
Report during various steps in the flow with the report_utilization Tcl command. (For
details on Tcl command usage see the Vivado Design Suite Tcl Command Reference Guide (UG835).)
The report details shown below are for UltraScale and UltraScale+ families. It includes the device
used for the run and utilization for the following (additional items might appear in each category):

• Slice Logic

○ LUT

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 188Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=188

○ MuxFx

○ Register

○ Slice

○ LUT as Memory

○ LUT Flip-Flop pairs

○ LUT as Logic

• Memory

○ BlockRam

○ FIFO

• DSPs

• I/O Resources

• Clocking Resources

• Specific Device Resources. Examples:

○ STARTUPE2

○ XADC

• Primitive type count sorted by usage

• Black Boxes

• Instantiated Netlists

• SLR Crossing Utilization

When run from the Tcl console, the report can include usage of a particular hierarchical cell when
using the -cells option. When run from the Vivado IDE, this information appears in an
interactive table.

The numbers may change at various points in the flow, when logic optimization commands
change the netlist.

Running Report Utilization

To generate the Utilization Report from the Vivado IDE, select Reports → Report Utilization.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=189

Figure 137: Report Utilization Dialog Box

Results Name Field

Specify the name of the result window in the Results Name field at the top of the Report Clock
Utilization dialog box.

Equivalent Tcl command:

report_utilization -name utilization_1

The following figure shows the detailed utilization report.

Figure 138: Report Utilization

The utilization number or the utilization percentage can be toggled using the button in the report
window.

Figure 139: Report Utilization Percentage Toggling

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=190

Show Utilization for Specific Cells

When selecting the -cells option, the generated report shows the utilization of the specified
cells and their children.

-cells {cell_name_list}

Specific cells can be excluded from the targeted cell level:

-exclude_cells {cell_name_list}

Show Utilization for Specific Pblocks

When selecting the following options, the utilization report reflects the specifics of the Pblocks
such as nested child Pblocks and overlapping Pblocks. These command line options are only
supported in the Tcl mode.

-pblocks {pblock_list}
-exclude_child_pblocks {child_pblock_list}
-exclude_non_assigned

In this mode, the text report shows two more tables related to the specified Pblocks (parent) and
child Pblocks are also printed.

Figure 140: Report Summary with Pblocks

The pre-placement and post-placement utilization numbers can vary due to LUT combining and
non-assigned cells that cannot be accounted for before placement.

When using Pblocks, the utilization tables include additional columns:

• Parent: Assigned to parent Pblocks only

• Child: Assigned to child Pblocks only

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=191

• Used: Total resources used in the area defined by the specified Pblocks

• Fixed: Total resources fixed by LOC constraints in the area defined by the specified Pblocks

• Non-Assigned: Total resources located in the area defined by the specified Pblocks and not
assigned to the specified Pblocks and their child Pblocks

• Available: Total resources available in the area defined by the specified Pblocks

• Util%: Used / Available

Figure 141: Table Header

The following example can help understand the report better. The following figure shows the
example design hierarchy and the subsequent figure shows the Pblock rectangles and the
resources inside each Pblock are also highlighted from post-route netlist.

Figure 142: Example Design Hierarchy

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=192

Figure 143: Design Pblocks

In this example:

• The pblock_usbEngine1 Pblock does not have a child Pblock

• The pblock_fftEngine Pblock has a child Pblock, pblock_usbEngine0

• The pblock_cpuEngine Pblock overlaps with the pblock_fftEngine

To generate a report for the entire design, run report_utilization without any option.

Figure 144: Top-Level Utilization Report

To generate a report for the pblock_usbEngine1 Pblock, use the following command:

report_utilization -pblocks pblock_usbEngine1

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=193

Figure 145: Utilization Report for Pblock pblock_usbEngine1

To generate a report for the pblock_fftEngine Pblock, use the command below. In this case, the
resource of the nested child Pblock, pblock_usbEngine0, is counted into the total used resources.

Note: If the property EXCLUDE_PLACEMENT is applied to the child Pblock, the child resources are isolated
from the parent Pblock, both for Used and Available.

The overlapping Pblock pblock_cpuEngine has partial cells being placed in the pblock_fftEngine
Pblock range and they are reported as Non-Assigned as external resources.

report_utilization -pblocks pblock_fftEngine

Figure 146: Parent Pblock with Nested and Overlapping Child Pblocks

To exclude some Pblocks or non-assigned resources, use the -exclude_child_pblocks or the -
exclude_non_assigned switch. The following example shows the Non-Assigned column removed
from the report.

report_utilization -pblocks [get_pblocks pblock_fftEngine] -
exclude_non_assigned

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 194Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=194

Figure 147: Utilization Report Excluding the Non-Assigned Resources

The following table describes the content of the report for various scenarios.

Table 14: Table Report with Pblock Assignments

Case Title Description Report
1 Report on the entire device (ROOT

Pblock): report_utilization
EXCLUDE_PLACEMENT has no effect on
the utilization report.

Util%: Used / Available

2 Report on the Parent Pblock:
report_utilization -pblocks
<parentPblockName>

Child Pblock is nested within Parent
Pblock. No EXCLUDE_PLACEMENT
property is specified for Child Pblock.

Non-Assigned: Total cells placed
within the Parent Pblock bounds
but not assigned to the Parent or
Child Pblocks
Fixed: Total cells fixed within the
Parent Pblock bounds
Used: Parent + Child + Non-
Assigned cells placed within the
Parent Pblock bounds
Available: Total of physical
resources within the Parent
Pblock bounds
Util%: Used / Available

Child Pblock is nested within the Parent
Pblock. EXCLUDE_PLACEMENT property
is specified for the Child Pblock.
Reported area corresponds to Parent
Pblock ranges minus Child Pblock
ranges.

Non-Assigned: Total cells placed
within reported area, not
assigned to Parent and Child
Pblocks.
Fixed: Total cells fixed within
reported area
Used: Parent Pblock cells
excluding the Child Pblock cells
Available: Total of physical
resources within reported area
Util%: Used / Available

3 Report on both Parent and Child
Pblocks:
report_utilization -pblocks
{<parentPblockName>
<childPblockName>}

Specifying a Child Pblock is redundant
if EXCLUDE_PLACEMENT is not set on it.
If the Child Pblock has
EXCLUDE_PLACEMENT set on it, the
report is equivalent to the union of
both Parent and Child Pblocks.

Same as the first case in Show
Utilization for Specific Pblocks .

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=195

Table 14: Table Report with Pblock Assignments (cont'd)

Case Title Description Report
4 Report on overlapping Pblocks Similar to the default Pblock report

except the Available becomes the
union of the reported Pblocks. The
EXCLUDE_PLACEMENT property is
ignored.

Available: Union of the Pblocks
physical resources
Util%: Used / Available

Show SLR Utilization

When selecting the -slr option, the generated report shows the SLR related utilization.
Starting with Vivado® Design Suite 2018.3, the SLR utilization tables have been enhanced in the
GUI and text report, which includes the following 4 different tables:

• SLR Connectivity

• SLR Connectivity Matrix

• SLR CLB Logic and Dedicated Block Utilization

• SLR IO Utilization

These tables are also shown by default when running report_utilization. The SLR
connectivity table shows the LAGUNA registers utilized for both TX and RX directions on each
SLR side.

Figure 148: SLR Connectivity Report in GUI

The total utilized LAGUNA registers are also reported in the ADVANCED table for both
directions.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=196

Figure 149: LAGUNA Register Report in GUI

The SLR CLB Logic and Dedicated Block Utilization table shows the resource utilization for each
SLR.

Figure 150: Utilization in Each SLR

Show Hierarchical Information with Customized Options

When selecting the following options, the report can be limited to certain levels of hierarchy.
Specifies the depth of the hierarchy to report when reporting utilization according to the
hierarchy. The default depth is 0, which means that by default, -hierarchical only reports
the top-level.

-hierarchical
-hierarchical_depth <args>
-hierarchical_percentage

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 197Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=197

Show Customized Table Report

When selecting the following options, the report can be customized to only address certain types
of resources along with the hierarchical depth.

-spreadsheet_table <args>
-spreadsheet_depth

Report I/O
The I/O Report replaces Xilinx® ISE® Design Suite PAD file. The I/O Report lists:

• Pin Number: All the pins in the device

• Signal Name: The name of the user I/O assigned to the pin

• Bank Type: The bank type where the I/O is located (High Range, High Performance,
Dedicated, etc.)

• Pin Name: Name of the pin

• Use: The I/O usage type (Input, Output, Power/Ground, Unconnected, etc.)

• I/O Standard: The I/O standard for the User I/O

An asterisk (*) indicates that it is the default. This differs from the I/O Ports window of the
Vivado IDE.

• I/O Bank Number: The I/O Bank where the pin is located

• Drive (mA): The drive strength in milliamps

• Slew Rate: The Slew Rate configuration of the buffer: Fast or Slow

• Termination: The on/off chip termination settings

• Voltage: The values for various pins, including VCCO, VCCAUX, and related pins

• Constraint: Displays Fixed if the pin has been constrained by the user

• Signal Integrity: The Signal Integrity of the pin

Report Clock Utilization
The Clock Utilization Report helps you analyze the utilization of clocking primitives and routing
resources inside the device at the clock region level or at the clock net level. It can be useful for
debugging clock placement issues and identify placement constraints to maximize the resource
utilization. The Clock Utilization Report provides information on:

• The number of clocking primitives available and utilized, and their physical constraints

• The timing clock name and period associated with each clock net

• Each clock region clocking and fabric loads utilization

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=198

• Each clock net loads in each clock region

In addition, the Clock Utilization Report in the Vivado IDE supports netlist and device objects
selection for highlighting placement information and creating schematics.

Report Clock Utilization Tables
The report presents the clocking topology and placement information organized by categories:

• Clock Primitive Utilization

• Global Clock Resources

• Global Clock Source Details

• Local Clock Resources

• Clock Regions utilization details

• Global Clocks placement details

Due to long netlist object names and to the large number of clock nets and clock primitives in
typical designs, a short ID is given to specific clock resources:

• A unique Global Id "g<n>" for each net driven by a clock buffer

• A unique Source Id “src<n>” for clock generator, such as an MMCM or an input buffer.

• A unique Local Id “<n>” for clock nets not routed with global clock resources.

The Global Source and Local IDs simplify searching specific clock nets throughout the report. The
original netlist object names are available in the last two columns of each table when applicable.

Clock Primitive Utilization Table

The Clock Primitive Utilization table shows the utilization summary for each clock primitive type
and their physical constraints.

Figure 151: Report Clock Utilization – Clock Primitive Utilization Table

Note: The Clock Region constraints do not apply to 7 series devices.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 199Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=199

Global Clock Resources Table

The Global Clock Resources table shows a summary for each clock net with important
constraints and placement information, as shown in the following figure.

Figure 152: Report Clock Utilization – Global Clock Resources Table

The columns in the Global Clock Resources table are listed in the following table.

Table 15: Global Clock Resources Table Details

Column Description
Global Id Unique global clock net ID

Source Id ID of the clock generating primitive connected to the clock buffer

Driver Type/Pin Primitive pin connected to the clock net

Constraint User physical constraint with highest precedence applied to the clock buffer. Priority
rule is as follows:

1. LOC

2. CLOCK_REGION*

3. PBLOCK

* Does not apply to 7 series.

Site Clock buffer location set by the user or by the Vivado implementation tools.

Clock Region Device clock region where the buffer is located.
Does not apply to 7 series.

Root Clock region where the clock net CLOCK_ROOT is located.
Does not apply to 7 series.

Clock Delay Group Name of the group of clock nets specified by the user to force routing matching by the
Vivado® implementation tools.
Does not apply to 7 series.

Load Clock Region Number of clock regions where clock net loads are located.

Clock Loads Number of clock pin loads.

Non-Clock Loads Number of non-clock pin loads, such as FDCE/CE pins for example.

Clock Period Period in ns of the timing clock which propagates on the clock net. If several clocks
propagate on the same clock net, the smallest clock period is reported.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 200Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=200

Table 15: Global Clock Resources Table Details (cont'd)

Column Description
Clock Name of the timing clock which propagates on the clock net. If several clocks propagate

on the same clock net, "Multiple" is reported.

Driver Pin Logical name of the clock net driver pin.

Net Logical name of the clock net segment connected to the clock driver pin.

Global Clock Source Details Table

The Global Clock Source Details table shows the global clock connectivity and timing clock
information for each clock generator output. The following figure shows the connectivity of each
output of an MMCM (src0/src1) to clock buffers. The output CLKOUT0 of src1 drives two
global clocks g7 and g8.

Figure 153: Report Clock Utilization – Global Clock Source Details Table

The columns in the Global Clock Source Details table are listed in the following table.

Table 16: Global Clock Source Details Columns

Column Description
Source Id ID of the clock generating primitive.

Global Id Global clock ID(s) driven by the Global Clock source pin.

Driver Type/Pin Output primitive pin which generates the clock.

Constraint User physical constraint with highest precedence applied to the
clock buffer. Priority rule is as follows:

1. LOC

2. PBLOCK

Site Global clock source location set by the user or by the Vivado
implementation tools.

Clock Region Device clock region where the clock source is located.

Clock Loads Number of clock pin loads connected to Global Clock source pin.

Non-Clock Loads Number of non-clock pin loads, such as FDCE/CE pins for example.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 201Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=201

Table 16: Global Clock Source Details Columns (cont'd)

Column Description
Source Clock Period Period in ns of the timing clock generated by the Global Clock

Source pin. If several clocks propagate on the same clock net, the
smallest clock period is reported.

Clock Name of the timing clock generated by the Global Clock Source pin.
If several clocks propagate on the same clock net, "Multiple" is
reported.

Driver Pin Logical name of the Global Clock Source pin.

Net Logical name of the clock net segment connected to the Global
Clock Source pin.

Local Clock Details Table

The Local Clock Details table is only reported when local clocks are found in the design. A local
clock is a clock net routed with regular fabric routing resources instead of global clocking
resources. This situation usually occurs when a clock net is not driven by a clock buffer. The
information provided by the table is similar to the one found in the Global Clock Resources table.

The following figure shows a local clock net driven by a 7 series MMCM output which directly
drives a register clock pin (FDRE/C).

Figure 154: Report Clock Utilization – Local Clock Example

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 202Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=202

Clock Regions Tables

The Clock Regions section is only available for the UltraScale device families and includes several
tables to cover primitive and routing resource utilization per clock region. In the Clock Utilization

window, the Show Metrics In Device Window button can be used to select the resource
types to be displayed over each clock region in the Device window, as shown in the following
figure.

Figure 155: Report Clock Utilization - Clock Region Resource Utilization Metrics in the
Device Window

The Clock Regions tables are:

• Clock Primitives: Utilization of each clock primitive type in each clock region.

• Load Primitives: Utilization of non-clock sequential primitives in each clock region.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 203Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=203

For both Clock Primitives and Load Primitives table, the Global Clock column shows the number
of global clock nets routed on the horizontal distribution layer with or without loads in the
reported clock region. Clock nets routed on the vertical distribution layer with no branching to
the horizontal layer in the reported clock region are not counted. Clock nets routed on the
routing layer are not counted.

• Global Clock Summary: Shows the utilization of Global Clocks per clock region in a table
which corresponds to the device clock region floorplan, as shown in the following figure. This
table is only available in the text report.

Figure 156: Report Clock Utilization – Global Clock Summary Example

• Routing Resource Utilization: Shows the global clock routing resource utilization per type and
per clock region.

Key Resource Utilization Table

The Key Resource Utilization table is only available for 7 series devices and is equivalent to the
combination of all Clock Regions tables for UltraScale devices. The Global Clock Summary table
is also available in the text report only.

Global Clocks Tables

The Global Clocks tables report the type of loads in each clock region for each global clock net,
as well as timing clock information and the clock track ID used to route the clock net. When
sorting the table by Global ID in the Vivado IDE, the clock regions where each global clock net is
routed can easily be identified and highlighted in the device by simply selecting the
corresponding table rows.

The column description is the same as in the Clock Primitive Utilization, Global Clock Resources,
and Global Clock Source Details tables.

For UltraScale devices, the Global ID of clock nets routed over a clock region without driving any
loads are tagged with a "+" character, as shown in the following figure.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=204

Figure 157: Report Clock Utilization – Clock Region Cell Placement Example

Report DRC
The DRC Report is generated by the router. Before the router runs, the tool checks for a common
set of design issues. The report lists the checks used in the run.

IMPORTANT! Review the Critical Warnings. The severity of a particular check may be increased later in
the flow.

Report DRC runs common Design Rule checks to look for common design issues and errors.

Elaborated Design

The tool checks for DRCs related to I/O, Clock Placement, potential coding issues with your
HDL, and XDC constraints. The RTL netlist typically does not have all the I/O Buffers, Clock
Buffers, and other primitives the post synthesis designs have. Elaborated Design DRCs do not
check for as many errors as later DRCs.

Synthesized Design and Implemented Design

• Checks for DRCs related to the post synthesis netlist.

• Checks for I/O, BUFG, and other placement.

• Basic checks on the attributes wiring on MGTs, IODELAYs, and other primitives.

• The same DRCs run taking into account any available placement and routing.

• DRCs have four severities: Info, Warning, Critical Warning, and Error. Critical Warnings and
Errors do not block the design flow at this point.

Steps of the implementation flow also run the DRCs, which can stop the flow at critical points.
The placer and router check for issues that block placement. Certain messages have a lower
severity depending on the stage. These are DRCs flagging conditions that do not stop
opt_design, place_design, or route_design from completing, but which can lead to
issues on the board.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=205

For example, some DRCs check that the user has manually constrained the package pin location
and the I/O standard for all design ports. If some of these constraints are missing,
place_design and route_design issue critical warnings. However, these DRCs appear as an
ERROR in write_bitstream. The tools will not program a part without these constraints.

The decreased severity earlier in the flow allows you to run the design through implementation
iterations before the final pinout has been determined. You must run bitstream generation for a
comprehensive DRC signoff.

The following figure shows the Vivado IDE graphical user interface form of Report DRC.

Figure 158: DRC Report

Click a DRC to open the properties for a detailed version of the message. Look in the Properties
window to view the details. Most messages have a hyperlink for nets, cells, and ports referenced
in the DRC.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=206

Figure 159: Violation Properties Dialog Box

The DRC report is static. You must rerun Report DRC for the report to reflect design changes.
The tool determines that the links are stale after certain design operations (such as deleting
objects and moving objects), and invalidates the links.

Selecting an object from the hyperlink selects the object, but does not refresh the Properties
window. To display the properties for the object, unselect and reselect it.

To create a DRC report in Tcl, run the command report_drc.

To write the results to a file, run the command report_drc -file myDRCs.txt.

TIP: For more information on report_drc, run report_drc -help.

Report Route Status
The Route Status Report is generated during the implementation flow and is available by using
the report_route_status Tcl command.

The Route Status Report displays a breakdown of the nets in the design as follows:

• The total number of logical nets in the design

○ The number of nets that do not need routing resources

○ The number of nets that do not use routing resources outside of a tile. Examples include
nets inside of a CLB, BlockRam, or I/O Pad.

○ The number of Nets without loads, if any exist

○ The number of routable nets that require routing resources

○ The number of unrouted nets, if any exist

○ The number of fully routed nets

○ The number of nets with routing errors

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 207Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=207

○ The number of nets with some unrouted pins, if any exist

○ The number of nets with antennas/islands, if any exist

○ The number of nets with resource conflicts, if any exist

The following is an example of the Report Route Status for a fully routed design:

Design Route Status
 : # nets :
 --- : -----------:
 # of logical nets.......................... : 6137 :
 # of nets not needing routing.......... : 993 :
 # of internally routed nets........ : 993 :
 # of routable nets..................... : 5144 :
 # of fully routed nets............. : 5144 :
 # of nets with routing errors.......... : 0 :
 --- :----------- :

Report Noise
The Report Noise command performs the Simultaneous Switching Noise (SSN) calculation for
Xilinx 7 series FPGA devices. By default, the Noise report opens in a new tab in the Noise
window area of the Vivado IDE. You can export the results to a CSV or HTML file.

Figure 160: Report Noise Dialog Box

The Noise Report has four sections:

• Noise Report Summary Section

• Noise Report Messages Section

• Noise Report I/O Bank Details Section

• Noise Report Links Section

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=208

Noise Report Summary Section

The Summary section of the Noise Report includes:

• When the report ran

• Number and percentage of applicable ports analyzed

• Status, including whether it passed

• Number of Critical Warnings, Warnings, and Info messages

Noise Report Messages Section

The Messages section of the Noise Report includes a detailed list of the messages generated
during the report.

Noise Report I/O Bank Details Section

The I/O Bank Details section of the Noise Report includes a list of Pins, Standards, and
Remaining Margin.

Noise Report Links Section

The Links section of the Noise Report contains links to documentation located online at
www.xilinx.com/support.

Figure 161: Noise Report

To create an HTML version of the report, select the option or run the following Tcl command:

report_ssn -format html -file myImplementedDesignSSN.html

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 209Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=209

Report Power
The Power Report is generated after routing to report details of power consumption based on
the current operating conditions of the device and the switching rates of the design. Power
analysis requires a synthesized netlist or a placed and routed design.

• Use the set_operating_conditions command to set operating conditions.

• Use the set_switching_activity command to define switching activity.

The Report Power command is available when a Synthesized Design or an Implemented Design is
open.

The Power Report estimates power consumption based on design inputs, including:

• Thermal statistics, such as junction and ambient temperature values.

Note: You can set the junction temperature using the -junction_temp option of the
set_operating_condition command. If you do not specify the temperature, the software
computes it for you based on your design inputs.

• Data on board selection, including number of board layers and board temperature.

• Data on the selection of airflow and the head sink profile used by the design.

• Reporting the FPGA current requirements from the different power supply sources.

• Allowing detailed power distribution analysis to guide power saving strategies and to reduce
dynamic, thermal or off-chip power.

• Simulation activity files can be used to make power estimation more accurate.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=210

Figure 162: Report Power Dialog Box

Analyzing the Power Report

Use the Report Power dialog box (see the following figure) to analyze power based on:

• Settings

• Power total

• Hierarchy

• Voltage rail

• Block type

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=211

Figure 163: Power Report

For more information on the power report and analyzing the results, see the Vivado Design Suite
User Guide: Power Analysis and Optimization (UG907).

A text version of the power report is generated by default after route during the implementation
process.

Reporting Power in a Non-Project Flow

In the non-project flow, report_power is available after link_design or synth_design.
The report generated uses the available placement and routing to give more accurate power
numbers. To generate this report from the Tcl Console or a script, run report_power.

Report Control Sets
A control set is the unique combination of a clock signal, a clock enable signal, and a set/reset
signal. Each slice supports a limited number of control sets in which a combination of flip flops
located in it can use. Some control set sharing is permissible within a slice depending on the
architecture being used. A user should be familiar with the Configurable Logic Block architecture
for the targeted family to understand what are the compatibility rules.

There are two key areas reported:

1. The absolute number of control sets. There is a finite number of control sets in any given
part. Exceeding the recommended number of control sets can have a negative impact on
QoR.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 212Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=212

2. The load profile of control sets. When control set reduction is required, reducing control sets
with a low number of loads is most effective as it adds the least amount of logic to the
design.

The following is an example of the Control Sets Report Summary. You should follow
recommendations in UltraFast Design Methodology Guide for Xilinx FPGAs and SoCs (UG949)
regarding recommended control set count.

Figure 164: Control Set Summary Table

Typically nets replicated at synthesis are more likely to overlap and place a higher burden on
routing resources. Typically nets replicated by physical synthesis overlap less and can be ignored
when calculating maximum number of control sets.

When control set counts are above the recommended level, users should reduce the count by
optimizing control sets with the lowest BEL count loads. A histogram summary is reported to give
an overview:

Figure 165: Control Set Histogram Table

Where more targeted information is required, the switches -hierarchical and -
hierarchical_depth will help highlight specific hierarchies to target. Synthesis
BLOCK_SYNTH.CONTROL_SET_THRESHOLD properties can be used to re-target control sets at
a particular level of hierarchy.

The control set report also details the Flip Flop Distribution types that are used in the design.
Asynchronous resets can not have their reset control re-targeted by Vivado.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 213Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=213

Figure 166: Control Set Flip Flop Distribution

For a comprehensive list of all control sets in the design, use the -verbose switch. This lists the
following information for each control set:

• Clock Signal: The logical clock signal name

• Enable Signal: The logical clock enable signal name

• Set/Reset Signal: The logical set/reset signal name

• Slice Load Count: The number of unique slices that contain cells connected to the control set

• BEL Load Count: The number of cells connected to the control set

Report Clock Utilization
To generate the Clock Utilization Report in the Vivado IDE, select Reports → Report Clock
Utilization.

Figure 167: Report Clock Utilization Dialog Box

Equivalent Tcl command:

report_clock_utilization -name clock_utilization_1

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=214

Results Name Field

In the Results Name field at the top of the Report Clock Utilization dialog box, specify the name
of the graphical window for the report.

Equivalent Tcl option:

-name <windowName>

Show Clock Roots Only

When selecting this option, the Global Clock Resources table only shows the clock root location
for each clock net instead of the complete source, load, and timing clock details.

Equivalent Tcl option:

-clock_roots_only

Write Clock Constraints to File

Select this option and specify the name of a new constraints file to export the clock source and
load physical constraints that correspond to the placement information of the design in memory.

Equivalent Tcl option:

-write_xdc <filename>

Export to File

You can write the results to a file in addition to generating a GUI report by selecting Export to
file and specifying a file name in the field on the right. Click the Browse button to select a
different directory.

Equivalent Tcl option:

-file <arg>

Select the Overwrite option to overwrite an existing file with the new analysis results. Select
Append to append the new results.

Equivalent Tcl option:

-append

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=215

Report RAM Utilization
The Ram Utilization Report helps you analyze the utilization of dedicated RAM blocks such as
URAM and block RAM as well as Distributed RAM primitives. By default, the report considers
the entire design but it can be limited to specific hierarchies using the -cell switch. The report
can be generated after synthesis and any implementation step but is only available from the Tcl
command line.

The RAM Utilization Report is most effective on memories inferred by Vivado synthesis because
you can compare the RTL Memory Array with the actual physical implementation in the FPGA.

The report shows:

• The utilization of each memory primitive

• The size of the array and the dimensions (inference only)

• The type of memory

• The utilization of the memory primitives

• The required performance of the memory

• Optional pipeline usage of the memory (where applicable)

• Worst case logical paths that start and end at the memory

• Power efficiency items such as cascading and enable rate

The report can also be generated in CSV format. This is the preferred method when you need to
manage and sort a large amount of data.

How to Run the Report

The following syntax will run the report in its default mode and send the contents to a file
ram_util.rpt.

report_ram_utilization -file ram_util.rpt

The following syntax will generate the report and a CSV file ram_util.csv.

report_ram_utilization -csv ram_util.csv -file ram_util.rpt

In order to report on all memories, including LUTRAM based memories, the -include_lutram
switch must be used:

report_ram_utilization -include_lutram

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 216Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=216

As path information can be run time intensive, you can optionally add this to the report using the
-include_path_info switch:

report_ram_utilization -include_path_info

Report Layout

Summary

The summary (shown in the following figure) provides an overview of the RAM primitives used in
the design and how many of them are inferred (or instantiated using XPMs).

Figure 168: Summary

The Summary is broken down by primitive type and the overall utilization of these primitives is
also shown. For distributed RAM, it is reported as used Memory LUTs (LUTMs), not the total
number of Distributed RAM primitives. This can help identify if a lot of inefficient DRAM
primitives are in the design (typically older designs or designs with a lot of instantiation may
exhibit this). For example, the cost per bit on RAM32X1D can be as high as 2 LUTs per bit (or 1
LUT per bit if LUT combined), but a RAM32M16 can be around ½ LUT per bit if all bits are used.

Memory Description

The memory description table is applicable to inferred RAM only. It details how the synthesis tool
saw the memory when it was inferred. The total array size, dimensions, memory type, and clock
period are detailed. This is shown in the following figure:

Figure 169: Memory Description Table

Note: If there are more than two ports inferred, the report will detail only two ports.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 217Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=217

Memory Utilization

The memory utilization table details how the array is mapped to primitives in the hardware.
Where there are inefficiencies, it is possible to identify whether the width or the depth is the
cause.

Figure 170: Memory Utilization Table

Memory Performance

The memory performance table provides details on registering and cascade settings where
applicable.

Figure 171: Memory Performance Table

If the -include_path_info switch is specified, extra path information will be displayed as
shown in the following figure.

Figure 172: -include_path_info

This section of the report shows REFNAME followed by the fanout (in brackets) of the worst
case path through the Port A Data Output Path (data and parity bits). This is repeated for each
bus on the memory. Where there is no fanout listed, it can be assumed that the shape will be
packed together in the same slice and the fanout is 1.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 218Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=218

Memory Power

The memory power table details whether the memory has been optimized by Vivado to reduce
power, or if the enable signals are driven by a POWER (Vcc) or a signal. Also repeated is the
cascade information and power relevant memory attributes.

Figure 173: Memory Power Table

Adding LUTRAMs to the Report

In order to report on LUTRAM primitives in the detailed tables, users must add the
-include_lutram switch.

Chapter 5: Viewing Reports and Messages

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=219

Chapter 6

Performing Timing Analysis

Introduction to Timing Analysis
The Xilinx® Vivado® Integrated Design Environment (IDE) provides several reporting commands
to verify that your design meets all timing constraints and is ready to be loaded on the
application board. Report Timing Summary is the timing signoff report, equivalent to TRCE in the
ISE® Design Suite. Report Timing Summary provides a comprehensive overview of all the timing
checks, and shows enough information to allow you to start analyzing and debugging any timing
issue. For more information, see Chapter 3: Logic Analysis Within the IDE.

You can generate this report in a window, write it to a file, or print it in your log file. Whenever
Report Timing Summary shows that your design does not meet timing, or is missing some
constraints, you can explore the details provided in the various sections of the summary and run
more specific analysis. The other timing reports provide more details on a particular situation and
can scope the analysis to some logic by using filters and scoping capabilities.

Before adding timing constraints to your design, you must understand the fundamentals of
timing analysis, and the terminology associated with it. This chapter discusses some of key
concepts used by the Xilinx Vivado Integrated Design Environment (IDE) timing engine.

Terminology
• The launch edge is the active edge of the source clock that launches the data.

• The capture edge is the active edge on the destination clock that captures the data.

• The source clock is also referred to as the launch clock.

• The destination clock is also referred to as the capture clock.

• The setup requirement is the relationship between the launch edge and the capture edge that
defines the most restrictive setup constraint.

• The setup relationship is the setup check verified by the timing analysis tool.

• The hold requirement is the relationship between the launch edge and capture edge that
defines the most restrictive hold constraint.

• The hold relationship is the hold check verified by the timing analysis tool.

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 220Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=220

Timing Paths
Timing paths are defined by the connectivity between the instances of the design. In digital
designs, timing paths are formed by a pair of sequential elements controlled by the same clock,
or by two different clocks.

Common Timing Paths

The most common paths in any design are:

• Path from Input Port to Internal Sequential Cell

• Internal Path from Sequential Cell to Sequential Cell

• Path from Internal Sequential Cell to Output Port

• Path from Input Port to Output Port

Path from Input Port to Internal Sequential Cell

In a path from an input port to a sequential cell, the data:

• Is launched outside the device by a clock on the board.

• Reaches the device port after a delay called the input delay [Synopsys Design Constraints
(SDC) definition].

• Propagates through the device internal logic before reaching a sequential cell clocked by the
destination clock.

Internal Path from Sequential Cell to Sequential Cell

In an internal path from sequential cell to sequential cell, the data:

• Is launched inside the device by a sequential cell, which is clocked by the source clock.

• Propagates through some internal logic before reaching a sequential cell clocked by the
destination clock.

Path from Internal Sequential Cell to Output Port

In a path from an internal sequential cell to an output port, the data:

• Is launched inside the device by a sequential cell, which is clocked by the source clock.

• Propagates through some internal logic before reaching the output port.

• Is captured by a clock on the board after an additional delay called the output delay (SDC
definition).

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 221Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=221

Path from Input Port to Output Port

In a path from an input port to output port, the data traverses the device without being latched.
This type of path is also commonly called an in-to-out path. The input and output delays
reference clock can be a virtual clock or a design clock.

Timing Paths Example

The following figure shows the paths described above. In this example, the design clock CLK0
can be used as the board clock for both DIN and DOUT delay constraints.

Figure 174: Timing Paths Example

REGB

D Q

REGA

D Q

Tsetup
Thold

CLK0

Board
Device

D Q D Q
DIN DOUT

Board Clock

FPGA DEVICE

BUFG

Input
Delay

Output
Delay

Data Path DelayInternal Delay Internal Delay

Tclk-Q Tsetup
Thold

Board Clock

Tclk-Q

In-2-Out Data Path

Board
Device

Timing Path Sections

Each timing path is composed of three sections:

• Source Clock Path

• Data Path

• Destination Clock Path

Source Clock Path

The source clock path is the path followed by the source clock from its source point (typically an
input port) to the clock pin of the launching sequential cell. For a timing path starting from an
input port, there is no source clock path.

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 222Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=222

Data Path

The data path is the section of the timing path where the data propagates, between the path
startpoint and the path endpoint. The following definitions apply: (1) A path startpoint is a
sequential cell clock pin or a data input port; and (2) A path endpoint is a sequential cell data
input pin or a data output port.

Destination Clock Path

The destination clock path is the path followed by the destination clock from its source point,
typically an input port, to the clock pin of the capturing sequential cell. For a timing path ending
at an output port, there is no destination clock path. Destination Clock Path shows the three
sections of a typical timing path.

Figure 175: Typical Timing Path

REGB

D Q

REGA

D Q

Data Path

Destination Clock Path

Source Clock Path Startpoint

Endpoint

Launch and Capture Edges

When transferring between sequential cells or ports, the data is:

• Launched by one of the edges of the source clock, which is called the launch edge.

• Captured by one of the edges of the destination clock, which is called the capture edge.

In a typical timing path, the data is transferred between two sequential cells within one clock
period. In that case: (1) the launch edge occurs at 0ns; and (2) the capture edge occurs one period
after.

The following section explains how the launch and capture edges define the setup and hold
relationships used for timing analysis.

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 223Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=223

Understanding the Basics of Timing Analysis
Max and Min Delay Analysis
Timing analysis is the static verification that a design timing behavior will be predictable once
loaded and run on hardware. It considers a range of manufacturing and environmental variations
that are combined into delay models that are grouped by timing corners and corner variations. It
is sufficient to analyze timing against all the recommended corners, and for each corner, to
perform all the checks under the most pessimistic conditions. For example, a design targeted to a
Xilinx FPGA must pass the four following analyses:

• Max delay analysis in Slow Corner

• Min delay analysis in Slow Corner

• Max delay analysis in Fast Corner

• Min delay analysis in Fast Corner

Depending on the check performed, the delays that represent the most pessimistic situation are
used. This is the reason why the following checks and delay types are always associated:

• Max Delay with Setup and Recovery Checks

• Min Delay with Hold and Removal Checks

Max Delay with Setup and Recovery Checks

• The worst-case delays (slowest delays) of a given corner are used for the source clock path
and data/reset path accumulated delay.

• The best-case delays (fastest delays) of the same corner are used for the destination clock
path accumulated delay.

Min Delay with Hold and Removal Checks

• The best-case delays (fastest delays) of a given corner are used for the source clock path and
data/reset path accumulated delay.

• The worst-case delays (slowest delays) of the same corner are used for the destination clock
path accumulated delay.

When mapped to the various corners, these checks become:

• Setup/Recovery (Max Delay Analysis)

• Hold/Removal (Min Delay Analysis)

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 224Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=224

Setup/Recovery (Max Delay Analysis)

• source clock (Slow_max), datapath(Slow_max), destination clock (Slow_min)

• source clock (Fast_max), datapath(Fast_max), destination clock (Fast_min)

Hold/Removal (Min Delay Analysis)

• source clock (Slow_min), datapath (Slow_min), destination clock (Slow_max)

• source clock (Fast_min), datapath (Fast_min), destination clock (Fast_max)

Delays from different corners are never mixed on a same path for slack computation.

Most often, setup or recovery violations occur with Slow corner delays, and hold or removal
violations occur with Fast corner delays. However, since this is not always true (especially for I/O
timing) Xilinx recommends that you perform both analyses on both corners.

Setup/Recovery Relationship
The setup check is performed only on the most pessimistic setup relationship between two
clocks. By default, this corresponds to the smallest positive delta between the launch and
capture edges. For example, consider a path between two flip-flops that are sensitive to the
rising edge of their respective clock. The launch and capture edges of this path are the clock
rising edges only.

The clocks are defined as follows:

• clk0 has a period of 6 ns with first rising @ 0 ns and falling edge @ 3 ns.

• clk1 has a period of 4 ns with first rising @ 0 ns and falling edge @ 2 ns.

As the following figure shows, there are two unique setup relationships: Setup(1) and Setup(2).

Figure 176: Setup Relationships

Common period

0ns 2ns 4ns 6ns 8ns 10ns 12ns

clk0 launch edges
(source clock)

clk1 capture edges
(destination clock)

Setup(1) Setup(2)

X13434

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 225Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=225

The smallest positive delta from clk0 to clk1 is 2 ;ns, which corresponds to Setup(2). The
Common Period is 12 ;ns, which corresponds to the time between two simultaneous alignments
of the two clocks.

TIP: The relationships are established when considering the ideal clock waveforms, that is, before applying
the insertion delay from the clock root to the flip-flop clock pin.

IMPORTANT! If the common period cannot be found over 1000 cycles of both clocks, the worst setup
relationship over these 1000 cycles is used for timing analysis. For such case, the two clocks are called
unexpandable, or clocks with no common period. The analysis will likely not correspond to the most
pessimistic scenario. You must review the paths between these clocks to assess their validity and
determine if they can be treated as asynchronous paths instead.

Once the path requirement is known, the path delays, the clocks uncertainty and the setup time
are introduced to compute the slack. The typical slack equation is:

Data Required Time (setup) =

capture edge time

+ destination clock path delay

- clock uncertainty

- setup time

Data Arrival Time (setup) = launch edge time
+ source clock path delay
+ datapath delay

Slack (setup) = Data Required Time - Data Arrival Time

As the equation shows, a positive setup slack occurs when the data arrives before the required
time.

The recovery check is similar to the setup check, except that it applies to asynchronous pins such
as preset or clear. The relationships are established the same way as for setup, and the slack
equation is the same except that the recovery time is used instead of the setup time.

Hold/Removal Relationship
The hold check (also called hold relationship) is directly connected to the setup relationship.
While the setup analysis ensures that data can safely be captured under the most pessimistic
scenario, the hold relationship ensures that:

• The data sent by the setup launch edge cannot be captured by the active edge before the
setup capture edge (H1a and H2a corresponding to setup edges S1 and S2 respectively in the
following figure).

• The data sent by the next active source clock edge after the setup launch edge cannot be
captured by the setup capture edge (H2a and H2b corresponding to setup edges S1 and S2
respectively in the following figure).

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=226

During hold analysis, the timing engine reports only the most pessimistic hold relationship
between any two clocks. The most pessimistic hold relationship is not always associated with the
worst setup relationship. The timing engine must review all possible setup relationships and their
corresponding hold relationships to identify the most pessimistic hold relationship.

For example, consider the same path as in the setup relationship example. Two unique setup
relationships exist.

The following figure illustrates the two hold relationships per setup relationship.

Figure 177: Hold Relationships per Setup Relationship

0ns 2ns 4ns 6ns 8ns 10ns 12ns

clk0 launch edges
(source clock)

clk1 capture edges
(destination clock)

H1a S1 H1b H2a S2 H2b

X13435

The greatest hold requirement is 0 ns, which corresponds to the first rising edge of both source
and destination clocks.

Once the path requirement is known, the path delays, the clocks' uncertainty, and the hold time
are introduced to compute the slack. The typical slack equation is:

Data Required Time (hold) = capture edge time + destination clock path delay
+ clock uncertainty + hold time

Data Arrival Time (hold) = launch edge time + source clock path delay +
datapath delay

Slack (hold) = Data Arrival Time - Data Required Time

As the equation shows, the hold slack is positive when the new data arrives after the required
time.

The removal check is similar to the hold check, except that it applies to asynchronous pins such
as preset or clear. The relationships are established the same way as for hold, and the slack
equation is the same except that the removal time is used instead of the hold time.

Path Requirement
The path requirement represents the difference in time between the capture edge and the launch
edge of a timing path.

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 227Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=227

For example, when considering the same path and clocks as in the previous section, the following
path requirements exist:

Setup Path Requirement (S1) = 1*T(clk1) - 0*T(clk0) = 4ns
Setup Path Requirement (S2) = 2*T(clk1) - 1*T(clk0) = 2ns

The corresponding hold relationships are:

• Corresponding to setup S1

Hold Path Requirement (H1a) = (1-1)*T(clk1) - 0*T(clk0) = 0ns
Hold Path Requirement (H1b) = 1*T(clk1) - (0+1)*T(clk0) = -2ns

• Corresponding to setup S2

Hold Path Requirement (H2a) = (2-1)*T(clk1) - 1*T(clk0) = -2ns
Hold Path Requirement (H2b) = 2*T(clk1) - (1+1)*T(clk0) = -4ns

The timing analysis is performed only with the two most pessimistic requirements. In the
example above, these are:

• The setup requirement S2

• The hold requirement H1a

Clock Phase Shift
A clock phase-shift corresponds to a delayed clock waveform with respect to a reference clock
due to special hardware in the clock path. In Xilinx FPGAs, clock phase-shift is usually introduced
by the MMCM or PLL primitives, when their output clock property CLKOUT*_PHASE is non-
zero.

MMCM/PLL Phase Shift Modes

During timing analysis, clock phase-shift can be modeled in two different ways by setting the
MMCM/PLL PHASESHIFT_MODE property, as described in the following table.

Table 17: MMCM/PLL PHASESHIFT_MODE Properties

PHASESHIFT_MODE
Property Phase-Shift Modeling Comment

WAVEFORM Clock Waveform Modification set_multicycle_path –setup constraints are usually
needed to adjust the timing path requirement on clock-
domain-crossing paths from or to the phase-shifted
clock.

LATENCY MMCM/PLL Insertion Delay No additional multicycle path constraint is needed.

The default MMCM/PLL clock phase-shift mode varies across Xilinx FPGA families. However, the
default mode can be overridden by the user on a per PLL/MMCM basis.

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=228

Table 18: Default MMCM/PLL Clock Phase Shift Handling

Technology Default MMCM/PLL Clock Phase Shift Handling
7 Series Clock Waveform Modification (WAVEFORM)

UltraScale Clock Waveform Modification (WAVEFORM)

UltraScale+ MMCM/PLL Insertion Delay (LATENCY)

IMPORTANT! The MMCM/PLL PHASESHIFT_MODE  property does not affect the device configuration.

IMPORTANT! When a pin phase-shift is defined on any of the CLKOUTx pins and multiple clocks reach
the input pins of the MMCM/PLL, the mode PHASESHIFT_MODE=LATENCY  is invalid and triggers a
Warning Timing 38-437. In such a scenario, the MMCM/PLL should be configured to use the mode
PHASESHIFT_MODE=WAVEFORM.

The use of PHASESHIFT_MODE=LATENCY is particularly convenient when introducing skew
between two clocks in order to meet timing. No additional multicyle path constraint is needed
for adjusting the timing path requirement when setting the clock phase-shift to negative, null, or
positive.

For legacy designs migrated from 7 series or UltraScale to UltraScale+, when the property
PHASESHIFT_MODE is not set on the MMCM/PLL, the default behavior applies and the
MMCM/PLL clock phase-shift is modeled as delay latency instead of clock edge shift. In this
case, all multicycle path constraints that were specified in the legacy designs to account for a
clock phase-shift need to be reviewed and usually removed. Such constraints can easily be
identified by running the Methodology Checks (report_methodology). TIMING-31 flags
multicycle paths between clocks where one of the clocks is phase-shifted and is generated by a
MMCM/PLL with PHASESHIFT_MODE set to LATENCY.

The Clocking wizard and High Speed SelectIO Wizard both provide options to force the clock
phase-shift modeling on each MMCM/PLL. The property PHASESHIFT_MODE is automatically
saved inside the IP XDC.

Phase Shift in Timing Reports

A positive phase shift moves the source clock edge forward, delaying the clock edge. A negative
phase shift moves the source clock edge backward. The modification of the clock waveform
result in potentially different clock edges being used by the static timing analysis for the source
and capture clocks.

In the examples below, clock clkout0 (period 10 ns) is auto-derived by a MMCM.

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 229Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=229

• No phase shift

vivado% set_property CLKOUT0_PHASE 0.000 [get_cells qpll/plle2_adv_inst]
vivado% report_timing
...
(clock clkout0 rise edge) 0.000 0.000 r
...
 MMCME2_ADV (Prop_mmcme2_adv_CLKIN1_CLKOUT0)
 -5.411 5.903 r mmcm_inst/mmcm_adv_inst/
CLKOUT0
...

The source clock edge is 0.0 ns.

• Positive phase shift of 12.0 with PHASESHIFT_MODE=WAVEFORM

vivado% set_property CLKOUT0_PHASE 12.000 [get_cells qpll/plle2_adv_inst]
vivado% report_timing
...
(clock clkout0 rise edge) 0.333 0.333 r
...
 MMCME2_ADV (Prop_mmcme2_adv_CLKIN1_CLKOUT0)
 -5.411 5.903 r mmcm_inst/mmcm_adv_inst/CLKOUT0
...

The source clock edge is delayed by 0.333 ns (10 ns / 360 * 12.0).

• Positive phase shift of 12.0 with PHASESHIFT_MODE=LATENCY

vivado% set_property CLKOUT0_PHASE 12.000 [get_cells qpll/plle2_adv_inst]
vivado% report_timing
...
(clock clkout0 rise edge) 0.000 0.000 r
...
 MMCME2_ADV (Prop_mmcme2_adv_CLKIN1_CLKOUT0)
 -5.078 6.236 r mmcm_inst/mmcm_adv_inst/
CLKOUT0
...

The MMCM insertion delay is increased by 0.333 ns (10 ns / 360 * 12.0). The source clock
edge is 0.0 ns.

• Negative phase shift of -15.0 with PHASESHIFT_MODE=WAVEFORM

vivado% set_property CLKOUT0_PHASE -15.000 [get_cells qpll/plle2_adv_inst]
vivado% report_timing
...
(clock clkout0 rise edge) -0.417 -0.417 r
...
 MMCME2_ADV (Prop_mmcme2_adv_CLKIN1_CLKOUT0)
 -5.411 5.903 r mmcm_inst/mmcm_adv_inst/CLKOUT0
...

The source clock edge is moved backward by -0.417 ns (10 ns / 360 * -15.0).

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 230Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=230

• Negative phase shift of -15.0 with PHASESHIFT_MODE=LATENCY

vivado% set_property CLKOUT0_PHASE -15.000 [get_cells qpll/plle2_adv_inst]
vivado% report_timing
...
(clock clkout0 rise edge) 0.000 0.000 r
...
 MMCME2_ADV (Prop_mmcme2_adv_CLKIN1_CLKOUT0)
 -5.828 5.486 r mmcm_inst/mmcm_adv_inst/
CLKOUT0
...

The MMCM insertion delay is decreased by 0.417 ns (10 ns / 360 * -15.0). The source clock
edge is 0.0 ns.

Phase Shift in Clock Reports

The clock phase shift information is provided in the Clock Report (report_clocks command).
When a MMCM/PLL clock is phase-shifted and the MMCM/PLL has the PHASESHIFT_MODE
property set to LATENCY, then the auto-derived clock is marked with the attribute S (pin phase-
shifted with Latency mode). In addition, the clock details under the section Generated Clocks
of the clock report show the amount of pin phase-shift that is accounted in the MMCM/PLL
insertion delay.

Note: Only the delay corresponding to the auto-derived clock phase-shift is reported. The amount of
phase-shift coming from the MMCM/PLL block is not included in the auto-derived clock waveform
definition.

In the example below, the MMCM has the property PHASESHIFT_MODE set to LATENCY. The
auto-derived clock clk_out1_clk_wiz_0 has no phase shift defined for the MMCM pin
CLKOUT0 but the clock clk_out2_clk_wiz_0 has a -90 degrees phase shift defined for the
MMCM pin CLKOUT2.

Attributes
 P: Propagated
 G: Generated
 A: Auto-derived
 R: Renamed
 V: Virtual
 I: Inverted
 S: Pin phase-shifted with Latency mode

Clock Period(ns) Waveform(ns) Attributes Sources
clk_in1 10.000 {0.000 5.000} P {clk_in1}
clk_out1_clk_wiz_0 10.000 {0.000 5.000} P,G,A {clknetwork/
inst/mmcme3_adv_inst/CLKOUT0}
clk_out2_clk_wiz_0 10.000 {0.000 5.000} P,G,A,S {clknetwork/
inst/mmcme3_adv_inst/CLKOUT2}

==
Generated Clocks
==

Generated Clock : clk_out1_clk_wiz_0

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 231Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=231

Master Source : clknetwork/inst/mmcme3_adv_inst/CLKIN1
Master Clock : clk_in1
Multiply By : 1
Generated Sources : {clknetwork/inst/mmcme3_adv_inst/CLKOUT0}

Generated Clock : clk_out2_clk_wiz_0
Master Source : clknetwork/inst/mmcme3_adv_inst/CLKIN1
Master Clock : clk_in1
Multiply By : 1
Pin Phase Shift(ns) : -2.5 (-90 degrees)
Generated Sources : {clknetwork/inst/mmcme3_adv_inst/CLKOUT2}

Clock Skew and Uncertainty
Skew and uncertainty both impact setup and hold computations and slack.

Skew Definition

Clock skew is the insertion delay difference between the destination clock path and the source
clock path: (1) from their common point in the design; (2) to, respectively, the endpoint and
startpoint sequential cell clock pins.

In the equation below:

• Tcj is the delay from the common node to the endpoint clock pin.

• Tci is the delay from the common node to the startpoint clock pin:

Tskewi,j = Tci- Tcj

Clock Pessimism Removal

A typical timing path report shows the delay details of both source and destination clock paths,
from their root to the sequential cell clock pins. As explained below, the source and destination
clocks are analyzed with a different delay, even on their common circuitry.

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 232Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=232

Figure 178: Common Clock Tree Section

D Q

REGA

D Q

REGB

TCKQ TSETUP

Data Path Delay

Source Clock

Clock
Source
Point

Destination Clock

Common Clock Tree Section

Min Delay

Max Delay

X13436

This delay difference on the common section introduces some additional pessimism in the skew
computation. To avoid unrealistic slack computation, this pessimism is compensated by a delay
called the Clock Pessimism Removal (CPR) value.

Clock Pessimism Removal (CPR) = common clock circuitry (max delay - min
delay)

The CPR is added or subtracted to the skew depending on the type of analysis performed:

• Max Delay Analysis (Setup/Recovery)

CPR is added to the destination clock path delay.

• Min Delay Analysis (Hold/Removal)

CPR is subtracted from the destination clock path delay.

The Vivado Design Suite timing reports clock skew for each timing path as shown below (hold
analysis in this case):

• DCD - Destination Clock Delay

• SCD - Source Clock Delay

• CPR - Clock Pessimism Removal

Clock Path Skew: 0.301ns (DCD - SCD - CPR)
Destination Clock Delay (DCD): 2.581ns
Source Clock Delay (SCD): 2.133ns
Clock Pessimism Removal (CPR): 0.147ns

In many cases, the CPR accuracy changes before and after routing. For example, let's consider a
timing path where the source and destination clocks are the same clock, and the startpoint and
endpoint clock pins are driven by the same clock buffer.

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 233Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=233

Before routing, the common point is the clock net driver, that is, the clock buffer output pin. CPR
compensates only for the pessimism from the clock root to the clock buffer output pin.

After routing, the common point is the last routing resource shared by the source and destination
clock paths in the device architecture. This common point is not represented in the netlist, so the
corresponding CPR cannot be directly retrieved by subtracting common clock circuitry delay
difference from the timing report. The timing engine computes the CPR value based on device
information not directly exposed to the user.

Optimistic Skew

Xilinx FPGA devices provide advanced clocking resources such as dedicated clock routing trees
and Clock Modifying Blocks (CMB). Some of the CMBs have the capability to compensate the
clock tree insertion delay by using a Phase Lock Loop circuit (present in PLL or MMCM
primitives). The amount of compensation is based on the insertion delay present on the feedback
loop of the PLL. In many cases, a PLL (or MMCM) drives several clock trees with the same type of
buffer, including on the feedback loop. As the device can be large, the insertion delay on all these
clock tree branches does not always match the feedback loop delay. The clocks driven by a PLL
become over-compensated when the feedback loop delay is bigger than the source or
destination clock delay. In this case, the sign of the CPR changes and it effectively removes skew
optimism from the slack value. This is needed in order to ensure that there is no artificial skew at
the common node of any timing path clocks during the analysis.

RECOMMENDED: Always use the CPR compensation during timing analysis to preserve the slack
accuracy and the overall timing signoff quality.

Clock Uncertainty

Clock uncertainty is the total amount of possible time variation between any pair of clock edges.
The uncertainty consists of the computed clock jitter (system, input, and discrete); the phase
error introduced by certain hardware primitives; and any clock uncertainty specified by the user
in the design constraints (set_clock_uncertainty).

For primary clocks, the jitter is defined by set_input_jitter and set_system_jitter. For
clock generators such as MMCM and PLL, the tool computes the jitter based on user-specified
jitter on its source clock and its configuration. For other generated clocks (such as flop based
clock dividers), the jitter is the same as that of its source clock.

The user-specified clock uncertainty is added to the uncertainty computed by the Vivado®

Design Suite timing engine. For generated clocks (such as from MMCM, PLL, and flop-based
clock dividers), uncertainty specified by the user on source clock does not propagate through the
clock generators.

For more information on jitter and phase error definitions, see the Vivado Design Suite User Guide:
Using Constraints (UG903).

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 234Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=234

The clock uncertainty has two purposes:

• Reserve some amount of margin in the slack numbers for representing any noise on the clock
that could affect the hardware functionality. Because the delay and jitter numbers are
conservative, Xilinx does not recommend adding extra uncertainty to ensure proper hardware
functionality.

• Over-constrain the paths related to a clock or a clock pair during one or several
implementation steps. This increases the QoR margin that can be used to help the next steps
to close timing on these paths. By using clock uncertainty, the clock waveforms and their
relationships are not modified, so the rest of the timing constraints can still apply properly.

Pulse Width Checks
The pulse width checks are some rule checks on the signal waveforms when they reach the
hardware primitives after propagation through the device. They usually correspond to functional
limits dictated by the circuitry inside the primitive. For example, the minimum period check on a
DSP clock pin ensures that the clock driving a DSP instance does not run at higher frequency
than what is tolerated by the internal DSP.

The pulse width checks do not affect synthesis or implementation. Their analysis must be
performed once before the bitstream generation like any other design rule check provided by the
Vivado Design Suite.

When a pulse width violation occurs, it is due to an inappropriate clock definition (pulse width
and period checks) or an inappropriate clock topology that induces too much skew (max_skew
check). You must review the Xilinx FPGA data sheet of the target device to understand the
operation range of the primitive where the violation occurs. In the case of a skew violation, you
must simplify the clock tree or place the clock resources closer to the violating pins.

Reading a Timing Path Report
The timing path report provides the information needed to understand what causes a timing
violation. The following sections describe the Timing Path Report.

The Timing Path Summary displays the important information from the timing path details. You
can review it to find out about the cause of a violation without having to analyze the details of
the timing path. It includes slack, path requirement, datapath delay, cell delay, route delay, clock
skew, and clock uncertainty. It does not provide any information about cell placement.

For more information about the terminology used for timing constraints and timing analysis, as
well as learn how slack and path requirement are determined, see Understanding the Basics of
Timing Analysis.

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 235Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=235

Timing Path Summary Header Examples
The following figure shows an example of the Timing Path Summary Header in a text report.

Figure 179: Timing Path Summary Header in Text Report

The followinf figure shows an example of the Timing Path Summary header in the Vivado IDE.

Figure 180: Timing Path Summary Header in Vivado IDE

Timing Path Summary Header Information
The Timing Path Summary header includes the following information:

• Slack

A positive slack indicates that the path meets the path requirement, which is derived from the
timing constraints. The Slack equation depends on the analysis performed.

○ Max delay analysis (setup/recovery) slack = data required time - data
arrival time

○ Min delay analysis (hold/removal) slack = data arrival time - data required
time

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 236Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=236

Data required and arrival times are calculated and reported in the other subsections of the
timing path report.

• Source

The path startpoint and the source clock that launches the data. The startpoint is usually the
clock pin of a sequential cell or an input port.

When applicable, the second line displays the primitive and the edge sensitivity of the clock
pin. It also provides the clock name and the clock edges definition (waveform and period).

• Destination

The path endpoint and the destination clock that captures the data. The endpoint is usually
the input data pin of the destination sequential cell or an output port. Whenever applicable,
the second line displays the primitive and the edge sensitivity of the clock pin. It also provides
the clock name and the clock edges definition (waveform and period).

• Path Group

The timing group that the path endpoint belongs to. This is usually the group defined by the
destination clock, except for asynchronous timing checks (recovery/removal) which are
grouped in the **async_default** timing group. User-defined groups can also appear
here. They are convenient for reporting purpose.

• Path Type

The type of analysis performed on this path.

○ Max: indicates that the maximum delay values are used to calculate the data path delay,
which corresponds to setup and recovery analysis.

○ Min: indicates that the minimum delay values are used to calculate the data path delay,
which corresponds to hold and removal analysis.

This line also shows which corner was used for the report: Slow or Fast.

• Requirement

The timing path requirement, when the startpoint and endpoint are controlled by the same
clock, or by clocks with no phase-shift, is typically:

○ One clock period for setup/recovery analysis.

○ 0 ns for hold/removal analysis.

When the path is between two different clocks, the requirement corresponds to the smallest
positive difference between any source and destination clock edges. This value is overridden
by timing exception constraints such as multicycle path, max delay and min delay.

For more information on how the timing path requirement is derived from the timing
constraints, Timing Paths.

• Data Path Delay

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 237Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=237

Accumulated delay through the logic section of the path. The clock delay is excluded unless
the clock is used as a data. The type of delay corresponds to what the Path Type line
describes.

• Logic Levels

The number of each type of primitives included in the data section of the path, excluding the
startpoint and the endpoint cells.

• Clock Path Skew

The insertion delay difference between the launch edge of the source clock and the capture
edge of the destination clock, plus clock pessimism correction (if any).

• Destination Clock Delay (DCD)

The accumulated delay from the destination clock source point to the endpoint of the path.

○ For max delay analysis (setup/recovery), the minimum cell and net delay values are used

○ For min delay analysis (hold/removal), the maximum delay values are used.

• Source Clock Delay (SCD)

The accumulated delay from the clock source point to the startpoint of the path.

○ For max delay analysis (setup/recovery), the maximum cell and net delay values are used.

○ For min delay analysis (hold/removal), the minimum delay values are used.

• Clock Pessimism Removal (CPR)

The absolute amount of extra clock skew introduced by the fact that source and destination
clocks are reported with different types of delay even on their common circuitry.

After removing this extra pessimism, the source and destination clocks do not have any skew
on their common circuitry.

For a routed design, the last common clock tree node is usually located in the routing
resources used by the clock nets and is not reported in the path details.

• Clock Uncertainty

The total amount of possible time variation between any pair of clock edges.

The uncertainty comprises the computed clock jitter (system and discrete), the phase error
introduced by certain hardware primitives and any clock uncertainty specified by the user in
the design constraints (set_clock_uncertainty).

The user clock uncertainty is additive to the uncertainty computed by the Vivado IDE timing
engine.

• Total System Jitter (TSJ)

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=238

The combined system jitter applied to both source and destination clocks. To modify the
system jitter globally, use the set_system_jitter constraint. The virtual clocks are ideal
and therefore do not have any system jitter.

• Total Input Jitter (TIJ)

The combined input jitter of both source and destination clocks.

To define the input jitter for each primary clock individually, use the set_input_jitter
constraint. The Vivado IDE timing engine computes the generated clocks input jitter based on
their master clock jitter and the clocking resources traversed. By default, the virtual clocks are
ideal and therefore do not have any jitter.

For more information on clock uncertainty and jitter, see this link in the Vivado Design Suite
User Guide: Using Constraints (UG903).

• Discrete Jitter (DJ)

The amount of jitter introduced by hardware primitives such as MMCM or PLL.

The Vivado IDE timing engine computes this value based on the configuration of these cells.

• Phase Error (PE)

The amount of phase variation between two clock signals introduced by hardware primitives
such as MMCM or PLL.

The Vivado IDE timing engine automatically provides this value and adds it to the clock
uncertainty

• User Uncertainty (UU)

The additional uncertainty specified by the set_clock_uncertainty constraint.

For more information on how to use this command, see this link in the Vivado Design Suite Tcl
Command Reference Guide (UG835).

Additional lines can appear in the Timing Path Summary depending on the timing constraints, the
reported path, and the target device:

• Inter-SLR Compensation

The additional margin required for safely reporting paths that cross SLR boundaries in Xilinx 7
series SSI devices only.

• Input Delay

The input delay value specified by the set_input_delay constraint on the input port. This
line does not show for paths that do not start from an input port.

• Output Delay

The output delay value specified by the set_output_delay constraint on the output port.
This line does not show for paths that do not end to an output port.

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 239Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf;a=xClockLatencyJitterAndUncertainty
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xset_clock_uncertainty
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=239

• Timing Exception

The timing exception that covers the path. Only the exception with the highest precedence is
displayed, as it is the only one affecting the timing path requirement.

For information on timing exceptions and their precedence rules, see Timing Paths.

Timing Path Details
The second half of the report provides more details on the cells, pins, ports and nets traversed by
the path. It is separated into three sections:

• Source Clock Path

The circuitry traversed by the source clock from its source point to the startpoint of the
datapath. This section does not exist for a path starting from an input port.

• Data Path

The circuitry traversed by the data from the startpoint to the endpoint.

• Destination Clock Path

The circuitry traversed by the destination clock from its source point to the datapath endpoint
clock pin.

The Source Clock Path and Data Path sections work together. They are always reported with the
same type of delay:

• max delay for setup/recovery analysis

• min delay for hold/removal analysis

They share the accumulated delay which starts at the data launch edge time, and accumulates
delay through both source clock and data paths. The final accumulated delay value is called the
data arrival time.

The destination clock path is always reported with the opposite delay to the source clock and
data paths. Its initial accumulated delay value is the time when the data capture edge is launched
on the destination clock source point. The final accumulated delay value is called the data
required time.

The final lines of the report summarize how the slack is computed.

• For max delay analysis (setup/recovery)

slack = data required time - data arrival time

• For min delay analysis (hold/removal)

slack = data arrival time - data required time

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 240Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=240

Timing Path Details In Text Report

Following is an example of the Source Clock, Data and Destination Clock Paths in the text report.
Because the path is covered by a simple period constraint of 5 ns, the source clock launch edge
starts at 0 ns and the destination clock capture edge starts at 5 ns.

Figure 181: Timing Path Details in Text Report

Timing Path Details in Vivado IDE

The Timing Path Details in the Vivado IDE, as shown in the he following figure, shows the same
information as is shown in the text report, seen in the previous figure.

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 241Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=241

Figure 182: Timing Path Details in Vivado IDE

The information on the path is displayed in five columns when the standard flow is used or six
columns when the Incremental Compile is used:

• Location

Where the cell or port is placed on the device.

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 242Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=242

• Delay Type

The unisim primitive and the particular timing arc followed by the path. In case of a net, it
shows the fanout (fo) and its status. A net can be:

○ Unplaced: The driver and the load are not placed.

○ Estimated: The driver or the load or both are placed. A partially routed net is also reported
as estimated.

○ Routed: The driver and the load are both placed, plus the net is fully routed.

• Incr(ns) (text report) / Delay (IDE report)

The value of the incremental delay associated to a unisim primitive timing arc or a net. It can
also show of a constraint such as input/output delay or clock uncertainty.

• Path(ns) (text report) / Cumulative (IDE report)

The accumulated delay after each segment of the path. On a given line, its value is the
accumulated value from the previous + the incremental delay of the current line.

• Netlist Resource(s) (text report) / Logical Resource (IDE report)

The name of the netlist object traversed.

• Pin Reuse (Incremental Compile only)

Indicates whether the path is being reused from the reference run. Applicable values are
ROUTING, PLACEMENT, MOVED, and NEW.

Each incremental delay is associated to one of the following edge senses:

• r (rising)

• f (falling)

The initial sense of the edge is determined by the launch or capture edge used for the analysis. It
can be inverted by any cell along the path, depending on the nature of the timing arc. For
example, a rising edge at the input of an inverter becomes a falling edge on the output.

The edge sense can be helpful in identifying that an overly-tight timing path requirement comes
from a clock edge inversion along the source or destination clock tree.

Verifying Timing Signoff
Before going into the details of timing analysis, it is important to understand which part of the
timing reports indicates that your design is ready to run in hardware.

IMPORTANT! Timing signoff is a mandatory step in the analysis of the implementation results, once your
design is fully placed and routed.

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 243Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=243

By default, when using projects in the Vivado Design Suite, the runs automatically generate the
text version of Report Timing Summary. You can also generate this report interactively after
loading the post-implementation design checkpoint in memory.

IMPORTANT! Report Timing Summary does not cover the bus skew constraints. To report the bus skew
constraints, you must run the report_bus_skew  command separately on the command line. There is
no GUI support for this command.

For a comprehensive Timing Signoff Verification methodology, see this link in the UltraFast Design
Methodology Guide for Xilinx FPGAs and SoCs (UG949).

Chapter 6: Performing Timing Analysis

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 244Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug949-vivado-design-methodology.pdf;a=xTimingClosure
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=244

Chapter 7

Synthesis Analysis and Closure
Techniques

Using the Elaborated View to Optimize the
RTL

When analyzing the timing results after any implementation step with report_timing, or
report_timing_summary or report_design_analysis, you must review the structure of
critical paths to understand if they can be mapped to logic primitives more efficiently by
modifying the RTL, using synthesis attributes, or using different synthesis options. This is
especially important for paths with high number of logic levels, which stress the implementation
tools and limit the overall design performance.

Whenever you find a critical path with a high number of logic levels, you must question whether
the functionality of the path requires so many logic levels or not. It is usually not easy to
determine the optimal number of logic levels because it depends on your knowledge of the
design and your knowledge of RTL optimization in general. It is a complex task to look at the
post-synthesis optimized netlist and identify where the problem comes from in the RTL and how
to improve it.

In project mode, the Vivado® IDE helps simplifying the analysis by providing a powerful cross-
probing mechanism between the synthesized or implemented design and the elaborated design.
Do the following to cross-probe the synthesized/implemented design and the elaborated design:

1. Open both the synthesized/implemented design and the elaborated design in memory.

2. Select the timing path in the synthesized/implemented design view and show its schematics
by pressing the F4 key.

3. Select the Elaborated Design in the Flow Navigator pane. The RTL cells that correspond to
the timing path are also selected, so that you can open the RTL schematics (by pressing the
F4 key) to view the same path in the elaborated view or trace from the endpoint pin back to
the startpoint cell.

4. Review the RTL logic traversed by the path, especially the size of the operators or vectors.

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 245Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=245

Example
In the following example, a user has written a counter as follows:

Figure 183: Simple Counter VHDL Example

The signal cnt counts from 0 to 16, which requires a 5-bit vector to encode. The post-route
critical schematics is shown in the following figure. The endpoint is the bit 30 of the cnt signal.

Figure 184: cnt Counter Post-Route Critical Path Schematic

After selecting the startpoint and endpoint cells of the critical path, you can visualize the
equivalent path in the elaborated view by opening a schematics of the selected cells and
expanding the logic from the endpoint pin back to the startpoint, as shown in the following
figure.

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 246Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=246

Figure 185: cnt Counter in the Elaborated View

The elaborated view shows that the adder-input has been sized to 32 bit, because the signal cnt
is declared as an integer. In this particular example, the 32-bit operator is retained throughout
the synthesis optimizations. The elaborated view gives a good hint of what is happening and you
can change the RTL as follows in order to get a better optimized netlist and timing QoR. As the
counter increments from 0 to 16, you can define a range for the signal cnt which forces the
adder-inputs to be 5 bits wide instead of 32 bits wide.

Figure 186: Simple Counter VHDL example with Integer Range

The change made to the RTL code will subsequently impact the synthesis optimization, which
you can verify using the elaborated view instead of going through the entire compilation flow:

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 247Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=247

Figure 187: cnt Counter in the Elaborated View after RTL Improvement

Decomposing Deep Memory Configurations
for Balanced Power and Performance

In deep memory configurations, the synthesis attribute RAM_DECOMP can be used for better
memory decomposition and reduced power consumption. This attribute can be set in the RTL.
When the RAM_DECOMP attribute is applied to a memory, the memory is setup in a wider
configuration (of primitives) instead of a deep and narrow configuration.

When the CASCADE_HEIGHT attribute is used along with the RAM_DECOMP attribute, the
synthesis inference has more granular control on cascading thereby providing balanced power
and performance. This approach requires additional address decoding logic but reduces the
number of block RAMs accessed at any given point in time, which helps reduce power
consumption. The memory configuration (32 × 16K) in the following figure shows an example of
how the memory is decomposed when the RAM_DECOMP and CASCADE_HEIGHT attributes are
set.

Figure 188: 32 × 16K Memory Configuration

If the attributes RAM_DECOMP = power and CASCADE_HEIGHT = 4 are applied, 16 RAMB36E2
are inferred and the memory is decomposed as shown in the following figure.

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 248Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=248

Figure 189: Generated Structure for 32 × 16K Memory Configuration using
RAM_DECOMP and CASCADE_HEIGHT Attributes

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

4:1 MUX

32

32

32

32

32

X19321-052517

The base primitive used here is 32 × 1K and four block RAMs are cascaded with a built-in feature
to form a 32 × 4K configuration. Four such parallel structures create a 16K deep memory. The
outputs are multiplexed to generate the output data.

Figure 190: RTL Code Snippet for 32 × 16K Memory Configuration using RAM_DECOMP
and CASCADE_HEIGHT Attributes

If only the RAM_DECOMP = power attribute is applied, 16 RAMB36E2 are inferred and the
memory is decomposed as shown in the following figure.

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 249Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=249

Figure 191: Generated Structure for 32 × 16K Memory Configuration using RAM_DECOMP
Attribute

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

2:1 MUX

32

32

32

0 1 6 7

X19320-052517

The base primitive used here is 32 × 1K and eight block RAMs are cascaded with a built-in
feature to form a 32 × 8K configuration. Two such parallel structures create a 16K deep memory.
The outputs are multiplexed to generate the output data. The multiplexer is a 2:1 MUX.

Figure 192: RTL Code Snippet for 32 × 16K Memory Configuration using RAM_DECOMP
Attribute

The overall power savings are similar for both the memory decomposition examples, shown in
Figure 189 and Figure 191, because only one block RAM is active at any given point in time.
However, in terms of performance, a four-level deep cascaded block RAM chain (Figure 189)
provides better performance than an eight-level deep cascaded block RAM chain (Figure 191).

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 250Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=250

Optimizing RAMB Utilization when Memory
Depth is not a Power of 2

The following test case can be used to observe the log file generated by the synthesis tool and
see if there is any improvement that can be done to the RTL to guide the tool in a better way.
The following code snippet shows a 40K-deep 36-bit wide memory description in VHDL. The
address bus requires 16 bits.

Figure 193: 40K x 36 bits Memory RTL Example

Using the report_utilization command post-synthesis, you can see that 72 block RAMs
are generated by the synthesis tool, as shown in the following figure.

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 251Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=251

Figure 194: Number of Block RAMs Generated by Synthesis in the Utilization Report

If you calculate the number of block RAMs that are supposed to be inferred for the 40K x 36
configuration, you would end up with fewer block RAMs than the synthesis tool generated.

The following shows the manual calculation for this memory configuration:

• 40K x 36 can be broken in two memories: (32K x 36) and (8K x 36)

• An address decoder based on the MSB address bits is required to enable one or the other
memory for read and write operations, and select the proper output data.

• The 32K x 36 memory can be implemented with 32 RAMBs: 4 * 8 * (4K x 9)

• The 8K x 36 memory can be implemented with 8 RAMBs: 8 * (1K x 36)

• In total, 40 RAMBs are required to optimally implement the 40K x 36 memory.

To verify that the optimal number of RAMBs have been inferred, the synthesis log file includes a
section that details how each memory is configured and mapped to FPGA primitives. As shown in
the following figure, memory depth is treated as 64K, which gives a clue that non-power of 2
depths are not handled in an optimal way.

Figure 195: RAM Configuration and Mapping Section in the Synthesis Log

The synthesis tool has used 64K x 1 (2 block RAMs with cascade feature), 36 such structures
because of 36-bit data. So in total, you have 36 x 2 = 72 block RAMs. The following figure shows
the code snippet that forces synthesis to infer the optimal number of RAMBs.

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 252Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=252

Figure 196: Optimized 40 K x 36 bits Memory RTL Example

Optimizing RAMB Input Logic to Allow Output
Register Inference

The following RTL code snippet generates a critical path from block RAM (actually it is a ROM)
with multiple logic levels ending at a flip-flop (FF). The RAMB cell has been inferred without the
optional output registers (DOA-0), which adds over 1 ns extra delay penalty to the RAMB output
path.

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 253Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=253

Figure 197: Memory RTL Code Without Inferred RAMB Output Register

The critical path for the above RTL code is shown by the tool, such as in the following figure.

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 254Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=254

Figure 198: Critical Path from RAMB Without Output Register Enabled

It is good practice to review the critical paths after synthesis and after each implementation step
in order to identify which groups of logic need to be improved. For long paths or any paths that
do not take advantage of the FPGA hardware features optimally, go back to the RTL description,
try to understand why the synthesized logic is not optimal, and modify the code to help the
synthesis tool improve the netlist.

Vivado has a powerful embedded debugging mechanism that you can use to start off with
elaborated view. The elaborated view helps to identify where the problem could be, instead of
manually searching through the RTL code. See the elaborated view shown in the following figure
for the above RTL code snippet.

Figure 199: Elaborated View of RTL Code Snippet

The elaborated view gives a good hint about the inefficient structure for the given test case. In
this case, the problem comes from the address register fanout (addr_reg3_reg), which drives the
memory address as well as some glue-logic, highlighted in blue.

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 255Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=255

RAMB inference by the synthesis tool requires a dedicated address register in the RTL code,
which is not compatible with the current address register fanout. As a consequence, the
synthesis tool re-times the output register in order to allow the RAMB inference instead of using
it to enable the RAMB optional output register.

By replicating the address register in the RTL code so that the memory address and the
interconnect logic | FPGA logic are driven by separate registers, the RAMB will be inferred with
the output registers enabled.

The RTL code and elaborated view after manual replication are shown in the following figures:

Figure 200: RTL Code with the Replicated Address Register

Figure 201: Elaborated View of the Replicated Address Register

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 256Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=256

The critical path for the modified RTL code can be seen in the following figure. Notice the
following:

• The addr_reg2_reg register is connected to the address pin of the block RAM.

• The addr_reg3_reg register has been absorbed in the Block RAM.

• The RAMB output register is enabled, which significantly reduces the datapath delay on the
RAMB outputs.

Figure 202: Critical Path for the Modified RTL Code

Improving Critical Logic on RAMB Outputs
The following test case highlights about improving critical paths through restructuring, such as
when pushing macro (block RAM) closer to the destination register.

The following figure shows a 16x1 Multiplexer with only one input to the Multiplexer coming
from block RAM and the rest of the inputs being fed by registers.

Critical path: block RAM-> 2 Logic levels -> FF.

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 257Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=257

Figure 203: 16x1 Multiplexer Connected to Block RAM Outputs

The following figure shows the critical path where the block RAM to FF path is highlighted in red.
There are 2 logic levels from block RAM->FF as well as FF->FF. Because block RAM CLK->Q
delay is higher for block RAM, block RAM->FF is critical.

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 258Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=258

Figure 204: Critical RAMB-LUT-FF Path

Next, look at the RTL code snippet shown in the following figure to see whether there is a way to
restructure the logic.

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 259Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=259

Figure 205: RTL Code Snippet

The optimal way to restructure the logic is to rewrite the above code snippet by breaking the
16x1 Multiplexer into two multiplexers. You can exempt the condition of select value 4'd5 and
use it as an enabling condition for the 2x1 Multiplexer as shown in the following figure, creating
this cascade Multiplexer structure results in FF->FF with 3 logic levels, but block ;RAM->FF is
reduced to 1 logic level. This way, the block RAM->FF path has been improved, which helps the
downstream tools for better placement because RAMB placement is more challenging than LUT
and FF placement. In general, fewer long paths around Macro primitives such RAMB, FIFO, and
DSP will yield better QoR for any given design.

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 260Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=260

Figure 206: Cascade Multiplexer Structure to Reduce RAMB Output Logic Levels

Chapter 7: Synthesis Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 261Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=261

Chapter 8

Implementation Analysis and
Closure Techniques

Using the report_design_analysis Command
When timing closure is difficult to achieve or when you are trying to improve the overall
performance of your application, you must review the main characteristics of your design after
running synthesis and after any step of the implementation flow. It is relatively easy to gather the
high-level metrics such as timing summary numbers (WNS/TNS/WHS/THS)
(report_timing_summary) or various resource utilization numbers (report_utilization,
report_clock_utilization, report_high_fanout_nets and
report_control_sets). But it is more difficult to analyze and identify which particular aspect
of your design is impacting a specific timing path and consequently the overall Quality of Result
(QoR). The QoR analysis usually requires you to look at several global and local characteristics at
the same time to figure out what is suboptimal in the design and the constraints, or which logic
structure is not suitable for the target device architecture and implementation tools. The
report_design_analysis command gathers logical, timing and physical characteristics in a
few tables that can simplify the QoR root cause analysis.

Note: The report_design_analysis command does not report on the completeness and correctness
of timing constraints. To verify your timing constraints, you must use the check_timing and
report_exceptions commands, as well as the XDC and TIMING methodology DRCs. For more
information on how to run these commands, see the corresponding sections:

• Report Timing Summary

• Report Exceptions

Two main categories of QoR problems are usually encountered:

• Timing Violations

• Congestion

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 262Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=262

Timing Violations
While analyzing and fixing the worst timing violation usually helps the overall QoR improvement,
you must also review the other critical paths as they often contribute to the timing closure
challenge. You can use the following command to report the 50 worst setup timing paths:

report_design_analysis -max_paths 50 -setup

The following figure shows an example of the Setup Path Characteristics table generated by this
command.

Figure 207: Setup Path Characteristics

From the table, you can isolate which characteristics are introducing the timing violation for each
path:

• High logic delay percentage (Logic Delay)

○ Are there many levels of logic? (Logic Levels)

○ Are there any constraints or attributes that prevent logic optimization? (Don't Touch, Mark
Debug)

○ Does the path include a cell with high logic delay such as RAMB or DSP?

○ Is the path requirement too tight for the current path topology? (Requirement)

• High net delay percentage (Net Delay)

○ Are there any high fanout nets in the path? (High Fanout, Cumulative Fanout)

○ Are the cells assigned to several Pblocks that can be placed far apart? (PBlocks)

○ Are the cells placed far apart? (Bounding Box Size, Clock Region Distance)

○ For SSI devices, are there nets crossing SLR boundaries? (SLR Crossings)

○ Are one or several net delay values a lot higher than expected while the placement seems
correct? See the section on Congestion.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 263Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=263

• Missing pipeline register in a RAMB or DSP cell (when present in the path)

○ Check the path to see if pipeline register is enabled for RAMBs or DSP cells

• High skew (<-0.5 ns for setup and >0.5 ns for hold) (Clock Skew)

○ Is it a clock domain crossing path? (Start Point Clock, End Point Clock)

○ Are the clocks synchronous or asynchronous? (Clock Relationship)

○ Is the path crossing I/O columns? (IO Crossings)

For visualizing the details of the timing paths and their placement/routing in the Xilinx®

Vivado® IDE, you must use the following command:

report_timing -max_paths 50 -setup -input_pins -name worstSetupPaths

The paths are sorted by slack and appear in the same order as in the Setup Path Characteristics
table (shown in the previous figure).

The report_design_analysis command also generates a Logic Level Distribution table for
the worst 1000 paths that you can use to identify the presence of longer paths in the design. The
longest paths are usually optimized first by the placer in order to meet timing, which will
potentially degrade the placement quality of shorter paths. You must always try to eliminate the
longer paths to improve the overall QoR. The following figure shows an example of the Logic
Level Distribution for a design with only one clock.

Figure 208: Logic Level Distribution Table

Based on what you find, you can improve the netlist by changing the RTL or using different
synthesis options, or you can modify the timing and physical constraints.

Congestion
The report_design_analysis command reports several congestion tables which show the
congested area seen by the placer and router. You can generate these tables using the following
command in the same Vivado tools session where the placer and router were run:

report_design_analysis -congestion

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 264Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=264

The following figure shows an example of the congestion tables which are equivalent to placer
final and router initial congestion.

Figure 209: Estimated Congestion Tables

The names provided for the Module Names correspond to the hierarchical cells present in each
reported Tile. You can retrieve the complete name using the following command:

get_cells -hier <moduleName>

Once the hierarchical cells present in the congested area are identified, you can use congestion
alleviating techniques to try reducing the overall design congestion.

Identifying the Longest Logic Delay Paths in
the Design

Timing paths correspond to logical paths in the design. Their delay is the accumulation of cell
delays and net delays. The Vivado® synthesis and implementation tools are timing-driven and
work on optimizing the worst violating paths of your design throughout the compilation flow. If
accumulated cell delay for a path is equal to or higher than the timing requirement (for example,
usually the clock period of the path), the design is unlikely to meet timing after implementation.
Analyzing the logic delay is better than simply counting logic levels, because it shows what the
worst paths are before estimated or routed net delays become a factor. The result of this analysis
is a list of the worst timing paths before placement and routing, and without net delay.

It is important to identify the paths that are the worst in terms of timing and not necessarily
levels of logic. For example, unregistered block RAM have very large clock to out delay, while a
series of carry chains may have multiple levels of levels of logic, each with a small delay. You
must analyze these paths carefully before implementation. There are three typical categories for
these long delay paths:

• Block RAMs that do not take advantage of the embedded output register

• DSP48s that are not pipelined

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 265Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=265

• Long logic paths

The most efficient method of identifying these long paths is to run a timing report post synthesis
with the routing estimates set to none. This can be done by changing the Interconnect model to
none in the Timer Settings tab of the Vivado IDE Timing Report dialog box, or by using the
following Tcl command in the Tcl console or shell:

set_delay_model -interconnect none

Review the timing results to identify any failing paths. If there are paths that fail to meet timing
without any routing delay, these paths will be impossible to meet timing with actual routing.
These paths must be addressed immediately. Typically, these would have to be fixed in RTL, but
the violations could also be due to missing synthesis attributes, or incorrect timing constraints.
After implementing the changes, the design will have sufficient slack as shown in the following
figure.

Figure 210: Timing Report with 0 Interconnect

Identifying High Fanout Net Drivers
High fanout nets often lead to implementation issues. As die sizes increase with each FPGA
family, fanout problems also increase. It is often difficult to meet timing on nets that have many
thousands of endpoints, especially if there is additional logic on the paths, or if they are driven
from non-sequential cells, such as LUTs or distributed RAMs.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 266Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=266

Many times, designers address the high fanout nets in RTL or synthesis by using a global fanout
limit or a MAX_FANOUT attribute on a specific net. Physical optimization (phys_opt_design)
automatically replicates the high fanout net drivers based on slack and placement information,
and usually significantly improves timing. Xilinx recommends that you drive high fanout nets with
a fabric register (FD*), which is easier to replicate and relocate during physical optimization. It is
important to look at the list of high fanout signals post synthesis as well as post physical
optimization. The command to identify these nets is report_high_fanout_nets.

Once the report has been generated, the timing through the high fanout nets and corresponding
schematic can be reviewed. This report does not list clocks as the high fanout driver. If a BUFG is
in the Driver Type column, this BUFG is driving logic and possibly also clock pins.

Report the high fanout net
report_high_fanout_nets -load_types -max_nets 100
Report timing through specific high fanout net
report_timing -through [get_nets I_GLOBAL_RST_N_i] -name high_fanout_1

Following is an example of a design in which phys_opt_design was able to reduce the fanout:

Post Place Checkpoint: report_high_fanout_nets

TIP: Use of -timing  and -load_types  option with the report_high_fanout_nets command
also shows the delay and the various types of loads for the high-fanout nets.

The Timing Report for that net post physical optimization is:

Figure 211: Timing Report Example

The fanout on that particular net was reduced from 2945 down to 464. More importantly, the
reduction in fanout improved the timing (on this particular path the improvement was over 1 ns).

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 267Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=267

The FLAT_PIN_COUNT property of each net indicates the number of leaf cells connected to this
net throughout the design hierarchy. Use the get_property command to extract the
FLAT_PIN_COUNT property:

get_property FLAT_PIN_COUNT [get_nets my_hfn]

TIP: You can use Tcl scripting to create additional reports for the paths that propagate through any
particular high fanout net.

Determining if Hold-Fixing is Negatively
Impacting the Design

The Vivado Design Suite router prioritizes fixing hold over setup. This is because your design may
work in the lab if you are failing setup by a small amount. There is always the option of lowering
the clock frequency. If you have hold violations, the design will most likely not work.

In most cases, the router can meet the hold timing without affecting the setup. In some cases
(mostly due to errors in the design or the constraints), the setup time will be significantly
affected. Improper hold checks are often caused by improper set_multicycle_path
constraints in which the -hold was not specified. In other cases, large hold requirements are due
to excessive clock skew. In this case, Xilinx recommends that you review the clocking
architecture for that particular circuit. For more information, see this link in the UltraFast Design
Methodology Guide for Xilinx FPGAs and SoCs (UG949).

This may occur if your design meets setup timing post placement, but fails setup post route. You
can utilize the report_design_analysis command with the -show_all option to view
path delay due to routing detours added by the router to fix hold violations. The following figure
shows an example of report_design_analysis report with the Hold Fix Detour column indicating
the delay (in ps) added to the timing path by the router due to hold fixing.

Figure 212: Report Design Analysis with Hold Fix Detour

TIP: Analyze the estimated hold timing post place and identify any unusually large hold violations (over
500ps).

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 268Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug949-vivado-design-methodology.pdf;a=xIdentifyingTimingViolationsRootCause
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=268

If you suspect that hold fixing is affecting timing closure, you can use one of the following to
determine if this is the case:

• Method 1: Routing without hold fixing

• Method 2: Run report_timing -min on Worst Failing Setup Path

Method 1: Routing without hold fixing
1. Read the post-placed checkpoint into Vivado Design Suite.

2. Add a constraint to disable all hold checking:

set_false_path -hold -to [all_clocks]

CAUTION! This constraint is for test purposes only. Never do this for designs that will be put into
production or delivered to another designer. You must remove this constraint before the production
design.

3. Run route_design and report_timing_summary.

If there is a significant difference between the WNS with and without the hold checks, the hold
violations might be too large, and the setup paths are being affected.

Method 2: Run report_timing -min on Worst Failing
Setup Path
To determine whether the worst failing setup path is due to hold fixing, review the hold timing of
that path. In the Vivado IDE, right click and report timing on source to destination. As opposed to
doing the setup timing analysis, it is important to look at the hold timing. Once you have the hold
report, verify the requirement and ensure that additional delay was not added on the path to be
able to meet hold.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 269Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=269

Figure 213: Running Timing Report on Specific Paths

Quickly Analyzing All Failing Paths
The report_timing_summary command is a powerful tool for determining all the timing
information for your design. Sometimes it is beneficial to simply look at all of the failing paths in a
single report. The command below works from the command line or from within the IDE.

report_timing -max_paths 100 -slack_less_than 0 -name worse_100_setup

TIP: When using the IDE, you can export the timing results to a spreadsheet to do more comprehensive
analysis of the failing paths.

The command above reports the top 100 failing paths. If there are less than 100 failing paths,
only the failing paths are reported because of the -slack_less_than 0 option. Reviewing the
failing paths in a single list helps to quickly identify the order of magnitude differences among the
failing paths.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 270Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=270

For example, the WNS could be -3 ns, which affects a few paths, but then the next WNS in the
list could be at -300 ps or better.

By default, when you analyze timing failures, you see the single worst timing path per endpoint.
There are generally many similar paths for the common failing endpoint.

To review all worst paths for a single endpoint, use the -nworst option with the
report_timing command. For example, run the following command to see all paths leading to
the worst case failing endpoint (assuming there are less than 100):

report_timing -max_paths 100 -nworst 100

Reviewing all the worst paths may yield considerable data. To minimize the amount of data to
analyze, you can review only the unique portions of paths by using the -unique_pins option
with the report_timing command. This provides a single path for each unique combination of
pins through the timing path. For example:

report_timing -max_paths 100 -nworst 100 -unique_pins

Floorplanning
This section discusses Floorplanning and includes:

• About Floorplanning

• Understanding Floorplanning Basics

• Using Pblock-Based Floorplanning

• Locking Specific Logic to Device Sites

• Floorplanning With Stacked Silicon Interconnect (SSI) Devices

About Floorplanning
Floorplanning can help a design meet timing. Xilinx recommends that you floorplan when a
design does not meet timing consistently, or has never met timing. Floorplanning is also helpful
when you are working with design teams, and consistency is most important.

Floorplanning can improve the setup slack (TNS, WNS) by reducing the average route delay.
During implementation, the timing engine works on resolving the worst setup violations and all
the hold violations. Floorplanning can only improve setup slack.

Manual floorplanning is easiest when the netlist has hierarchy. Design analysis is much slower
when synthesis flattens the entire netlist. Set up synthesis to generate a hierarchical netlist. For
Vivado synthesis use:

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 271Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=271

• synth_design -flatten_hierarchy rebuilt

or

• The Vivado Synthesis Defaults strategy

Large hierarchical blocks with intertwined logical paths can be difficult to analyze. It is easier to
analyze a design in which separate logical structures are in lower sub-hierarchies. Consider
registering all the outputs of a hierarchical module. It is difficult to analyze the placement of
paths that trace through multiple hierarchical blocks.

Understanding Floorplanning Basics
Not every design will always meet timing. You may have to guide the tools to a solution.
Floorplanning allows you to guide the tools, either through high-level hierarchy layout, or
through detailed gate placement.

You will achieve the greatest improvements by fixing the worst problems or the most common
problems. For example if there are outlier paths that have significantly worse slack, or high levels
of logic, fix those paths first. The Reports → Timing → Create Slack Histogram command can
provide a view of outlier paths. Alternatively, if the same timing endpoint appears in several
negative slack paths, improving one of the paths might result in similar improvements for the
other paths on that endpoint.

Consider floorplanning to increase performance by reducing route delay or increasing logic
density on a non-critical block. Logic density is a measure of how tightly the logic is packed onto
the chip.

Floorplanning can help you meet a higher clock frequency and improve consistency in the results.
There are multiple approaches to floorplanning, each with its advantages and disadvantages.

Detailed Gate-Level Floorplanning

Detailed gate-level floorplanning involves placing individual leaf cells in specific sites on the
device.

Advantages of Detailed Gate-Level Floorplanning

• Detailed gate-level floorplanning works with hand routing nets.

• Detailed gate-level floorplanning can extract the most performance out of the device.

Disadvantages of Detailed Gate-Level Floorplanning

• Detailed gate-level floorplanning is time consuming.

• Detailed gate-level floorplanning requires extensive knowledge of the device and design.

• Detailed gate-level floorplanning may need to be redone if the netlist changes.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 272Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=272

RECOMMENDED: Use detailed gate-level floorplanning as a last resort.

Information Reuse

Reuse information from a design that met timing. Use this flow if the design does not
consistently meet timing. To reuse information:

1. Open two implementation runs:

a. One for a run that is meeting timing.

b. One for a run that is not meeting timing.

TIP: On a computer with multiple monitors, select Open Implementation in New Window to open
a design in a new window.

2. Look for the differences between the two designs.

a. Identify some failing timing paths from report_timing_summary.

b. On the design that is meeting timing, run report_timing in min_max mode to time
those same paths on the design that meets timing.

3. Compare the timing results:

a. Clock skew

b. Datapath delay

c. Placement

d. Route delays

4. If there are differences in the amount of logic delay between path end points, revisit the
synthesis runs.

Review I/O and Cell Placement

Review the placement of the cells in the design. Compare two I/O reports to review the I/O
placement and I/O standards. Make sure all the I/Os are placed. A simple search finds all I/Os
without fixed placement as shown in the following figure.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 273Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=273

Figure 214: I/O Is Not Fixed

If clock skew has changed between the runs, consider re-using the clock primitive placement
from the run that met timing. The Clock Utilization Report lists the placement of the clock tree
drivers, as shown in the following figure.

Figure 215: Clock Locations

The LOC constraints can easily be copied into your XDC constraints file.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 274Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=274

Many designs have met timing by reusing the placement of the Block RAMs and DSPs. Select
Edit > Find to list the instances.

Figure 216: DSP or RAM

Adding Placement Constraints

Fix the logic to add the placement constraints to your XDC.

1. Select the macros from the find results.

2. Right click and select Fix Cells (shown in the following figure).

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 275Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=275

RECOMMENDED: Analyze the placement based on hierarchy name and highlight before fixing the
placement.

Reusing Placement

It is fairly easy to reuse the placement of I/Os, Global Clock Resources, Block RAM macros, and
DSP macros. Re-using this placement helps to reduce the variability in results from one netlist
revision to the next. These primitives generally have stable names. The placement is usually easy
to maintain.

TIP: Do not reuse the placement of general slice logic. Do not reuse the placement for sections of the
design that are likely to change.

Reusing Placement with Incremental Compile

Incremental Compile allows reuse of place and route data from a previous run. To set it up, simply
reference an existing placed or routed DSP before place_design. It is possible to reuse a full
design, a hierarchy level, or a cell type like DSPs or block RAMs. Incremental Compile also
automatically handles changes made to parts of a design.

For more information, see the Vivado Design Suite User Guide: Implementation (UG904).

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 276Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=276

Floorplanning Techniques

Consider gate-level floorplanning for a design that has never met timing, and in which changing
the netlist or the constraints are not good options.

RECOMMENDED: Try hierarchical floorplanning before considering gate level floorplanning.

Hierarchical Floorplanning

Hierarchical floorplanning allows you to place one or more levels of hierarchy in a region on the
chip. This region provides guidance to the placer at a global level, and the placer does the
detailed placement. Hierarchical floorplanning has the following advantages over gate-level
floorplanning:

• Hierarchical floorplan creation is fast compared to gate-level floorplanning. A good floorplan
can improve timing. The floorplan is resistant to design change.

• The level of hierarchy acts as a container for all the gates. It will generally work if the netlist
changes.

In hierarchical floorplanning:

• Identify the lower levels of hierarchy that contain the critical path.

• Use the top level floorplan to identify where to place them.

• Implementation places individual cells.

• Has comprehensive knowledge of the cells and timing paths.

• Generally does a good job of fine grain placement.

Manual Cell Placement

Manual cell placement can obtain the best performance from a device. When using this
technique, designers generally use it only on a small block of the design. They may hand place a
small amount of logic around a high speed I/O interface, or hand place Block RAMs and DSPs.
Manual placement can be slow.

All floorplanning techniques can require significant engineering time. They might require
floorplan iterations. If any of the cell names change, the floorplan constraints must be updated.

When floorplanning, you should have an idea of final pinout. It is useful to have the I/Os fixed.
The I/Os can provide anchor points for starting the floorplan. Logic that communicates to I/Os
migrates towards the fixed pins.

TIP: Place blocks that communicate with I/Os near their I/Os. If the pinout is pulling a block apart,
consider pinout or RTL modification.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 277Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=277

Figure 217: I/O Components Pulling Design Apart

The floorplan shown in the previous figure might not help timing. Consider splitting the block
apart, changing the source code, or constraining only the Block RAMs and DSPs. Also consider
unplacing I/O registers if external timing requirements allow.

The Pblock mentioned in this section is represented by the XDC constraints:

create_pblock Pblock_usbEngine
add_cells_to_pblock [get_pblocks Pblock_usbEngine] [get_cells -quiet [list
usbEngine1]]
resize_pblock [get_pblocks Pblock_usbEngine] -add
{SLICE_X8Y105:SLICE_X23Y149}

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 278Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=278

resize_pblock [get_pblocks Pblock_usbEngine] -add {DSP48_X0Y42:DSP48_X1Y59}
resize_pblock [get_pblocks Pblock_usbEngine] -add
{RAMB18_X0Y42:RAMB18_X1Y59}
resize_pblock [get_pblocks Pblock_usbEngine] -add
{RAMB36_X0Y21:RAMB36_X1Y29}

The first line creates the Pblock. The second line (add_cells_to_pblock) assigns the level of
hierarchy to the Pblock. There are four resource types (SLICE, DSP48, RAMB18, RAMB36) each
with its own grid. Logic that is not constrained by a grid can go anywhere in the device. To
constrain just the Block RAMs in the level of hierarchy, disable the other Pblock grids.

Figure 218: Pblock Grids

The resulting XDC commands define the simplified Pblock:

create_pblock Pblock_usbEngine
add_cells_to_pblock [get_pblocks Pblock_usbEngine] [get_cells -quiet [list
usbEngine1]]
resize_pblock [get_pblocks Pblock_usbEngine] -add
{RAMB18_X0Y42:RAMB18_X1Y59}
resize_pblock [get_pblocks Pblock_usbEngine] -add
{RAMB36_X0Y21:RAMB36_X1Y29}

The Block RAMs are constrained in the device, but the slice logic is free to be placed anywhere
on the device.

TIP: When placing Pblocks, be careful not to floorplan hierarchy in such a manner that it crosses the
central config block.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 279Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=279

Figure 219: Avoiding the Config Block

Using Pblock-Based Floorplanning
When you integrate RTL into a design, it helps to visualize the design inside the device.
Graphically seeing how the blocks interconnect between themselves and the I/O pinout after
synthesis helps you to understand your design.

To view the interconnect, generate a top level floorplan using Pblocks on upper levels of
hierarchy. To break apart the top level RTL into Pblocks, select Tools → Floorplanning → Auto
Create Pblocks.

To place the blocks in the device, select Tools → Floorplanning → Place Pblocks. The tool sizes
the Pblocks based on the slice count and target utilization.

Pblocks can be more than one hundred percent full during analysis, but not during
implementation. Overfilling the Pblock makes them smaller on the device. This is a useful
technique for getting an overview of the relative size of your design top-level blocks, and how
they will occupy the device.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 280Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=280

Figure 220: Place Pblocks Utilization

Top-Level Floorplan

The top-level floorplan shows which blocks communicate with I/Os (green lines). Nets
connecting two Pblocks are bundled together. The bundles change size and color based on the
number of shared nets. Two top-level floorplans are shown in the following figures.

The Data Path Top Level Floorplan shows how the data flows between the top-level blocks of the
design. Each block communicates only with two neighbors. The green lines show well-placed
I/Os that communicate with a single block.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 281Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=281

Figure 221: Data Path Top Level Floorplan

The Control Path Floorplan displays a design in which all the blocks communicate with a central
block. The largest connection is between the central block and the block in the bottom right. The
central block must spread out around the design to communicate with all the other loads.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 282Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=282

Figure 222: Control Path Floorplan

Reviewing the Floorplan

Consider device resources when reviewing the floorplan. The Pblock sizing does not take into
account specialized device resources such as:

• Block RAM

• DSPs

• MGTs

• ClockBuffers

TIP: Review the blocks with the floorplan and utilization in mind.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 283Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=283

Locking Specific Logic to Device Sites
You can place cells on specific locations on the FPGA, such as placing all the I/O ports on a Xilinx
7 series FPGA design. Xilinx recommends that you place the I/Os before attempting to close
timing.

The I/O placement can impact the cell placement in the FPGA fabric. Hand placing other cells in
the fabric can help provide some consistency to clock logic and macro placement, with the goal
of more consistent implementation runs.

Table 19: Constraints Used to Place Logic

Constraint Use Notes
LOC Places a gate or macro at a specific site. SLICE sites have subsites called BEL sites.

BEL Specifies the subsite in the slice to use for
a basic element.

Fixed and Unfixed Cells

Fixed and Unfixed apply to placed cells. They describe the way in which the Vivado tools view
placed cells in the design.

For more information about Fixed and Unfixed Cells, refer to this link in the Vivado Design Suite
User Guide: Implementation (UG904).

RECOMMENDED: After the I/Os are placed, use a hierarchical Pblock floorplan as a starting point for
user-controlled placement. Hand placing logic should be used when Pblocks have been found not to work.

Floorplanning With Stacked Silicon Interconnect
(SSI) Devices
There are extra considerations for Stacked Silicon Interconnect (SSI) parts. The SSI parts are
made of multiple Super Logic Regions (SLRs), joined by an interposer. The interposer connections
are called Super Long Lines (SLLs). There is some delay penalty when crossing from one SLR to
another.

Keep the SLRs in mind when structuring the design, generating a pinout, and floorplanning.
Minimize SLL crossings by keeping logic cells of critical timing paths inside a single SLR.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 284Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf;a=xModifyingPlacement
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=284

Figure 223: Minimize SLR Crossings

The I/Os must be placed in the same SLR as the relevant I/O interface circuitry. You must also
carefully consider clock placement when laying out logic for SSI parts.

RECOMMENDED: Let the placer try an automatic placement of the logic into the SSI parts before doing
extensive partitioning. Analyzing the automatic placement may suggest floorplanning approaches you
were not considering.

Chapter 8: Implementation Analysis and Closure Techniques

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 285Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=285

Appendix A

Timing Methodology Checks

TIMING-1: Invalid Clock Waveform on Clock
Modifying Block

Invalid clock waveform for clock <CLOCK_NAME> specified at a <CELL_TYPE> output
<PIN_NAME> that does not match the Clock Modifying Block (CMB) settings. The waveform of
the clock is <VALUE>. The expected waveform is <VALUE>.

Description
The Xilinx® Vivado® Design Suite automatically derives clocks on the output of a CMB based on
the CMB settings and the characteristics of the incoming master clock. If the user defines a
generated clock on the output of the CMB, Vivado does not auto-derive a generated clock on
the same definition point (net or pin). The DRC warning is reporting that the user-defined
generated clock does not match the expected auto-derived clock that Vivado would
automatically create. This could lead to hardware failures because the timing constraints for the
design do not match what happens on the device.

Resolution
If the user-defined generated clock is unnecessary, remove the constraint and use the auto-
derived clock instead. If constraint is necessary, verify that the generated clock constraint
matches the auto-derived clock waveform or modify the CMB properties to match the expected
clock waveform. If the intention is to force the name of the auto-derived clock, the
recommendation is to use the create_generated_clock constraint with only the -name
option defined and the name of the object where the clock is defined (typically output pin of
CMB). See the Vivado Design Suite User Guide: Using Constraints (UG903) for additional
information about creating generated clocks and restrictions of the auto-derived clocks renaming
constraint.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 286Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=286

Example
In the following figure, a create_generated_clock constraint was defined on the MMCM
instance pin CLKOUT0, but doesn't match the auto-derived waveform generated by Vivado from
the MMCM attribute settings.

To just rename the auto-derived clock, use the following constraint right after the master clock
definition in your constraint files:

create_generated_clock -name clkName [get_pins clk_gen_i0/clk_core_i0/
inst/mmcme3_adv_inst/CLKOUT0]

Figure 224: Invalid Clock Waveform on Clock Modifying Block

User generated
waveform doesn’t match
the automatically derived

waveform by Vivado

X15522-111715

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 287Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=287

TIMING-2: Invalid Primary Clock Source Pin
A primary clock <CLOCK_NAME> is created on an inappropriate pin <PIN_NAME>. It is
recommended to create a primary clock only on a proper clock root (input port or primitive
output pin with no timing arc).

Description
A primary clock must be defined on the source of the clock tree. For example, this would be the
input port of the design. When a primary clock is defined in the middle of a logic path, timing
analysis can become inaccurate because it ignores the insertion delay prior to the primary clock
source point, which prevents proper skew computation. Therefore, a primary clock created on an
internal driver pin should be discouraged. The consequence could be a failure in hardware.

Resolution
Modify the create_clock constraint to use the actual clock tree source.

Example
In the following figure, the primary clock definition, create_clock constraint, was placed on
the output pin of the IBUFCTRL instance. If the clock clk_pin_p is used to time an input or
output port path, the slack will be inaccurate because part of the clock tree insertion delay will
be missing. The primary clock definition for the differential input buffer should be placed on the
top-level port clk_pin_p.

Figure 225: Invalid Primary Clock on Internal Pin

Create the primary
clock on the

startpoint of the
clock tree

Primary clock
defined on an

internal pin

X15523-111715

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 288Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=288

TIMING-3: Invalid Primary Clock on Clock
Modifying Block

A primary clock <CLOCK_NAME> is created on the output pin or net <PIN/NET_NAME> of a
Clock Modifying Block.

Description
Vivado automatically derives clocks on the output of a CMB based on the CMB settings and the
characteristics of the incoming master clock. If the user defines a primary clock on the output of
the CMB, Vivado does not auto-derive a clock on the same output. This DRC is reporting that a
primary clock was created on the output of the CMB, which breaks the relationship with the
incoming clock and prevents proper clock insertion delay computation. This is not recommended
because it can lead to inaccurate timing analysis and incorrect hardware behavior.

Resolution
Modify the constraints to remove the create_clock constraint on the output of the CMB. If
the intention is to force the name of the auto-generated clock, Xilinx recommends using the
create_generated_clock constraint with only the -name option and the CMB output pin.
See the Vivado Design Suite User Guide: Using Constraints (UG903) for additional information
about creating generated clocks.

Example
In the following figure, a create_clock constraint was defined on the MMCM instance pin
CLKOUT0. This overrides the automatically derived clock created by Vivado and loses any
relationship with the incoming clock.

To just rename the auto-derived clock, use the following constraint right after the master clock
definition in your constraint files:

create_generated_clock -name clkName [get_pins clk_gen_i0/clk_core_i0/
inst/mmcme3_adv_inst/CLKOUT0]

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 289Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=289

Figure 226: Invalid Primary Clock on Clock Modifying Block

Primary clock object
defined on the output
of a Clock Modifying

Block

X15524-111715

TIMING-4: Invalid Primary Clock Redefinition
on a Clock Tree

Invalid clock redefinition on a clock tree. The primary clock <CLOCK_NAME> is defined
downstream of clock <CLOCK_NAME> and overrides its insertion delay and/or waveform
definition.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 290Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=290

Description
A primary clock must be defined on the source of the clock tree. For example, this would be the
input port of the design. When a primary clock is defined downstream that overrides the
incoming clock definition, timing analysis can become inaccurate because it ignores the insertion
delay prior to the redefined primary clock source point, which prevents proper skew
computation. It is not recommended as the consequence could be incorrect timing analysis which
might lead to a failure in hardware.

Resolution
Remove the create_clock constraint on the downstream object and allow the propagation of
the upstream clock or create a generated clock referencing the upstream primary clock.

Example
In the following figure, the primary clock was correctly defined on the top-level port
clk_pin_p. However, a create_clock constraint was used to redefine the primary clock on
the output of the IBUFCTRL output. This new clock will ignore all delays prior to the IBUFCTRL.

Figure 227: Invalid Primary Clock Redefinition on a Clock Tree

Previous primary
clock defined on

the clock tree

Primary clock
defined on the

clock tree

X15525-111715

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 291Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=291

TIMING-5: Invalid Waveform Redefinition on a
Clock Tree

Invalid inverted waveform on a clock tree. The generated clock <CLOCK_NAME> is defined
downstream of clock <CLOCK_NAME> and has an inverted waveform definition compare to the
incoming clock.

Description
A generated clock should be defined in relation to the incoming clock. The DRC warning is
reporting that the generated clock has an invalid definition, such as a different period, phase
shift, or inversion compared to the incoming clock.

Resolution
Modify the create_generated_clock constraint to define a proper waveform definition that
matches the incoming clock definition. For more details about creating a proper generated clock
constraint, refer to the Vivado Design Suite User Guide: Using Constraints (UG903).

Example
In the following figure, a create_generated_clock was created on the output of the LUT1
inverter, but the -invert switch was not applied.

Figure 228: Invalid Waveform Redefinition on a Clock Tree

Invalid waveform
redefinition on

clock tree

X15527-111715

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 292Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=292

TIMING-6: No Common Primary Clock
Between Related Clocks

The clocks <CLOCK_NAME1> and <CLOCK_NAME2> are related (timed together) but they have
no common primary clock. The design could fail in hardware even if timing is met. To find a
timing path between these clocks, run the following command: report_timing -from
[get_clocks <CLOCK_NAME1>] -to [get_clocks <CLOCK_NAME2>].

Description
The two clocks reported are considered related and timed as synchronous by default even if they
are not derived from a common primary clock and do not have a known phase relationship. The
DRC warning is reporting that the timing engine cannot guarantee that these clocks are
synchronous.

Resolution
The resolution depends on whether the two clock domains are asynchronous or synchronous. In
the case of the clocks being asynchronous, the paths between the two domains should be
covered by a timing exception (such as set_max_delay -datapath_only,
set_clock_groups, or set_false_path). The DRC will be resolved once all the paths
between these two domains have full exception coverage.

Example
In the case of the clocks being synchronous, you can define one timing clock on both clock
source objects if originally both clocks have the same waveform (see the first example below).

Example 1: create_clock -period 10 -name clk1 [get_ports <clock-1-
source> <clock-2-source>]

If the two clocks have different waveforms, you can define the first clock as a primary clock and
the second clock as a generated clock, with the first clock specified as the master clock (see
Example 2 below).

Example 2: create_clock -period 10 -name clk1 [get_ports <clock-1-
source>]

If the clocks are related, but have a clock period ratio of 2, the solution is to create a primary
clock on the one source, and create a generated clock on the second source:

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 293Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=293

create_generated_clock -source [get_ports <clock-1-source>] -name clk2
-divide_by 2 [get_ports <clock-2-source>]

TIMING-7: No Common Node Between Related
Clocks

The clocks <CLOCK_NAME1> and <CLOCK_NAME2> are related (timed together) but they have
no common node. The design could fail in hardware. To find a timing path between these clocks,
run the following command: report_timing -from [get_clocks <CLOCK_NAME1>] -
to [get_clocks <CLOCK_NAME2>].

Description
The two clocks reported are considered related and timed as synchronous by default. The DRC
warning is reporting that the timing engine cannot guarantee that these clocks are synchronous
in hardware, since it could not determine a common node between the two clock trees.

Resolution
The resolution depends on whether the two clock domains are asynchronous or synchronous. In
the case of the clocks being asynchronous, the paths between the two domains should be
covered by a timing exception (such as set_max_delay -datapath_only,
set_clock_groups, or set_false_path).

In the case of the clocks being synchronous, this DRC warning can be waived.

When the violation is reported during the OOC (Out-Of-Context) synthesis of a module and if
the two clocks are known to have a common node at the top-level, the TIMING-7 violation can
be prevented by the steps outlined below:

1. Define one of the clocks as a primary clock on the first input clock port.

2. Define the second clock as a generated clock on the second input clock port. This clock
should reference the primary clock defined in step 1.

3. Define the property HD.CLK_SRC on the two input clock ports.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 294Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=294

Example
In the following figure, a synchronous clock domain crossing (CDC) exists between the clk1 and
clk2 domains. Both clk1 and clk2 are determined to be synchronous in Vivado by default.
However, since clk1 and clk2 are input ports, there is no common node relationship between
the two clocks. For this case, Vivado Design Suite cannot guarantee that the two clocks are
synchronous.

However, if the module is synthesized Out-Of-Context and clk1 and clk2 have a common
node at the top-level, the TIMING-7 violation can be suppressed during the OOC synthesis by
defining, for example, the following constraints:

 create_clock -period 3.000 [get_ports clk1]
 set_property HD.CLK_SRC BUFGCTRL_X0Y2 [get_ports clk1]
 create_generated_clock -divide_by 2 -source [get_ports clk1] \
 [get_ports clk2]
 set_property HD.CLK_SRC BUFGCTRL_X0Y4 [get_ports clk2]

Figure 229: No Common Node Between Related Clocks

Clock domain crossing

Top-level ports clk1 and
clk2 do not have a common

node between them

X15526-111715

TIMING-8: No Common Period Between
Related Clocks

The clocks <CLOCK_NAME1> and <CLOCK_NAME2> are found related (timed together) but have
no common (expandable) period.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 295Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=295

Description
The two clocks reported are considered related and timed as synchronous by default. However,
the timing engine was unable to determine a common period after expanding the waveform of
both clocks over 1000 cycles. In such a case, the worst setup relationship over these 1000 cycles
is used for timing analysis. However, the timing engine cannot ensure this is the most pessimistic
case. This typically occurs with clocks with an odd fractional period ratio.

Resolution
As the waveforms do not allow safe timing analysis between the two clocks, it is recommended
to treat these clocks as asynchronous. Therefore, the paths between the two clock domains
should be covered by a timing exception (such as set_max_delay -datapath_only,
set_false_path, or set_clock_groups).

TIMING-9: Unknown CDC Logic
One or more asynchronous Clock Domain Crossing has been detected between two clock
domains through a set_false_path, or a set_clock_groups, or a set_max_delay -
datapath_only constraint. However, no double-registers logic synchronizer has been found on
the side of the capture clock. It is recommended to run report_cdc for a complete and detailed
CDC coverage. Also, consider using XPM_CDC to avoid critical severities

Description
The purpose of the DRC is to ensure that inter-clock domains constrained with timing exceptions
have been designed with safe asynchronous clock domain crossing circuitry. For more details on
recognized safe topologies, see Report Clock Domain Crossings.

Resolution
The recommendation is to make the appropriate design to have a proper synchronization for the
inter-clock paths. To do this, add, at minimum, a double-register logic synchronizer. In the case a
FIFO or higher-level protocol is already defined on the path, this DRC can be safely ignored. For a
detailed list of CDC violations, run report_cdc.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 296Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=296

Example
In the following figure, an asynchronous clock domain exists between clk1 and clk2. However,
the clk2 capture domain doesn't contain a double register logic synchronizer to synchronize the
data.

Figure 230: Missing Synchronizer

Missing double register
logic synchronizer on the

capture domain

Clock domain crossing

X15528-111715

TIMING-10: Missing Property on Synchronizer
One or more logic synchronizer has been detected between two clock domains but the
synchronizer does not have the property ASYNC_REG defined on one or both registers. It is
recommended to run report_cdc for a complete and detailed CDC coverage

Description
Synchronizer registers must have their ASYNC_REG property set to TRUE in order to preserve the
cells through any logic optimization during synthesis and implementation, and to optimize their
placement for the best mean time between failure (MTBF) statistics.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 297Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=297

Resolution
The solution is to add the ASYNC_REG constraint to each stage of the logic synchronizer. For a
detailed list of CDC violations, run report_cdc. To find out more information on the
ASYNC_REG constraint, refer to the Vivado Design Suite Properties Reference Guide (UG912). The
TIMING-10 violation is triggered when at least one of the first two synchronizer registers is
missing the ASYNC_REG property.

Example
In the following figure, an asynchronous clock domain exists between clk1 and clk2 and is
properly synchronized with a double register logic synchronizer. However, each register of the
synchronizer needs to have the ASYNC_REG property applied to increase the timing slack and
lower MTBF.

Figure 231: Missing Property on Synchronizer

X22694-041919

TIMING-11: Inappropriate Max Delay with
Datapath Only Option

A max delay constraint with -datapath_only has been applied between <PIN_NAME> and
<PIN_NAME>. The startpoint(s) and endpoint(s) either belong to the same clock domain or
belong to two clock domains that can safely be timed together. It is only recommended to use
the -datapath_only option on paths between clocks that do not have a known phase
relationship. This DRC is waived when a synchronizer is found on the path endpoint.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 298Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug912-vivado-properties.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=298

Description
The set_max_delay with the -datapath_only option is used to remove the clock skew
from the setup slack computation and to ignore hold timing. The set_max_delay -
datapath_only command is used to constrain asynchronous signals timing paths that: (1) do
not have a clock relationship; but which (2) require maximum delay. It is not recommended to use
this constraint on synchronous paths.

Resolution
The solution is to modify the set_max_delay -datapath_only constraint such that it does
not cover synchronous timing paths. Refer to the startpoint and endpoint cells listed in the
message to find the associated set_max_delay constraint.

TIMING-12: Clock Reconvergence Pessimism
Removal Disabled

Description
The Clock Reconvergence Pessimism Removal (CRPR) mode has been disabled. It is not
recommended to perform timing analysis in this mode as over-pessimistic clock tree delays could
result in impossible timing closure.

The CRPR feature is used to remove artificially induced pessimism that is derived from the usage
of the maximum and minimum delay along the common portion of the clock network. If the
CRPR is disabled, it might be difficult to close timing.

Resolution
The recommendation is to enable the CRPR analysis to ensure the design has accurate timing
information. The Tcl command to enable the CRPR analysis is config_timing_pessimism -
enable.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 299Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=299

TIMING-13: Timing Paths Ignored Due to Path
Segmentation

Some timing paths are not reported due to path segmentation on pin(s) <PIN_NAME>. To prevent
path segmentation, all the Min and Max delay constraints should be defined with a list of valid
startpoints and endpoints.

Description
Path segmentation occurs when a timing path is broken into a smaller path to be timed. When
max and min delay constraints are defined on pins that are invalid startpoints (and respectively,
endpoints), the timing engine breaks the timing arcs going through the node so that the node
becomes a valid startpoint (and respectively, endpoint). It is highly recommended to avoid path
segmentation as it might have unexpected consequences. This might result in incorrect timing
analysis and hardware failures.

Resolution
Avoid path segmentation whenever possible by carefully choosing valid startpoints and
endpoints in the set_max_delay and set_min_delay constraints. For additional information
on path segmentation and using the Min/Max delay constraints, refer to the Vivado Design Suite
User Guide: Using Constraints (UG903).

TIMING-14: LUT on the Clock Tree
The LUT <CELL_NAME> has been found on the clock tree. It is not recommended to have LUT
cells on the clock path.

Description
A LUT on the clock path might cause excess skew because the clock must be routed on general
routing resources through the fabric. In addition to excess skew, these paths are more
susceptible to PVT variations. It is highly recommended to avoid local clocks whenever possible.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 300Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=300

Resolution
The solution is to change the design to remove the LUT located on the clock tree. Synthesis can
create this situation in many cases such as clock gating and inversion. In the case of an inversion
LUT1 cell, the LUT might be absorbed into the downstream SLICE after opt_design.
Investigate the case to ensure that the situation is still valid after opt_design is complete.

Example
In the following figure, a LUT is used to gate the clock with a clock enable signal. The LUT on the
path can cause excess skew, which is undesirable.

Figure 232: LUT on the Clock Tree

LUT cell exists on
the clock tree

X15530-111715

TIMING-15: Large Hold Violation on Inter-
Clock Path

There is a large inter-clock skew of <VALUE> ns between <CELL_NAME> (clocked by
<CLOCK_NAME>) and <CELL_NAME> (clocked by <CLOCK_NAME>) that results in large hold
timing violation(s) of <VALUE> ns. Fixing large hold violations during routing might impact setup
slack and result in more difficult timing closure.

Description
The DRC warning is reporting that the large hold violation due to the inter-clock skew will most
likely be difficult to close timing during implementation. It is recommended to investigate the
large inter-clock skew greater than 1.0 ns to ensure proper constraints or design topology.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 301Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=301

Resolution
Investigate whether the large inter-clock skew on the timing path should be timed or is related to
non-optimal timing constraints. If the large skew occurs due to an unconstrained CDC path, add
the necessary timing exception. If the violation occurs due to a logic associated with the clock
tree, investigate the topology of path for improvements to more easily close timing.

TIMING-16: Large Setup Violation
There is a large setup violation of <VALUE> ns between <CELL_NAME> (clocked by
<CLOCK_NAME>) and <CELL_NAME> (clocked by <CLOCK_NAME>). Large setup violations at the
end of those stages might be difficult to fix during the post-placement implementation flow and
could be the result of non-optimal XDC constraints or non-optimal design architecture.

Description
This DRC warning reports setup violations that will most likely be difficult to close timing during
implementation. It is recommended to investigate setup violations greater than 1.0 ns to ensure
proper constraints or design topologies.

Resolution
Investigate whether the large setup violation is a timing path that should be timed or is related to
non-optimal timing constraints. If the setup violation occurs due to an unconstrained CDC path,
add the necessary timing exception. If the violation occurs due to a significant amount of
combinational logic, investigate the topology of the path for improvements to more easily close
timing.

TIMING-17: Non-Clocked Sequential Cell
The clock pin <PIN_NAME> is not reached by a timing clock.

Description
The DRC reports the list of sequential cells unconstrained by a timing clock which affect the
resulting timing analysis for the reported cells. It is highly recommended that all clocks be
properly defined in order to get the maximum timing path coverage with the best accuracy. The
consequence could be missing timing analysis, which might lead to hardware failures.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 302Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=302

Resolution
The resolution is to create the missing primary or generated clock on the clock tree driving the
unconstrained sequential cells.

TIMING-18: Missing Input or Output Delay
An <INPUT/OUTPUT> delay is missing on <PORT_NAME> relative to clock(s) <CLOCK_NAME>.

Description
IO timing is in reference to a timing path that includes an external device. The input and output
delays specify the paths delay of the ports relative to a clock edge at the interface of the design.
It is highly recommended to add input/output delay constraints to ensure that the FPGA
interface can meet the timing of the external devices.

Resolution
Add the required input and output delay constraints in correspondence with required board
application.

TIMING-19: Inverted Generated Clock
Waveform on ODDR

The waveform of the generated clock <CLOCK_NAME> is inverted compared to the waveform of
the incoming clock <CLOCK_NAME>.

Description
A generated clock on a forwarded clock port should be defined in relation to the incoming clock.
The DRC warning is reporting that the generated clock on the forwarding clock port has an
invalid waveform, such as an inversion, compared to the incoming source clock. This might lead
to hardware failures as the timing analysis of the ports associated with the forwarded clock do
not match what happens on the device.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 303Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=303

Resolution
Modify the create_generated_clock constraint to define a proper waveform that matches
the incoming clock definition. For more details about creating a proper generated clock
constraint, refer to the Vivado Design Suite User Guide: Using Constraints (UG903).

TIMING-20: Non-Clocked Latch
The latch <CELL_NAME> cannot be properly analyzed because its control pin <PIN_NAME> is
not reached by a timing clock.

Description
This DRC is reporting the list of latch cells not constrained by a timing clock which affect the
resulting timing analysis. It is highly recommended that all clocks be properly defined in order to
get the maximum timing path coverage with the best accuracy. The consequence could be
incomplete timing analysis coverage, which might lead to hardware failures.

Resolution
The resolution is to create the primary or generated clock on the source of the clock tree driving
the unconstrained control pins on the latch cells.

TIMING-21: Invalid COMPENSATION Property
on MMCM

The MMCM <CELL_NAME> has an invalid COMPENSATION property value relative to the
connection of its feedback loop. If the feedback loop goes outside the FPGA, the property should
be set to EXTERNAL. If the feedback loop is internal to the FPGA, the property should be set to
ZHOLD.

Description
MMCM compensation modes define how the MMCM feedback is configured for delay
compensation of the output clocks. Depending on the MMCM use case, the feedback path
should match a specific topology. This DRC warning is reporting that the topology of the MMCM
use case doesn't match the COMPENSATION property value. This might lead to unintended
behavior in hardware because the timing analysis does not match.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 304Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=304

Resolution
The recommendation is to leave the default value of AUTO to the COMPENSATION property of
the MMCM in the design. The Vivado Integrated Design Environment (IDE) will automatically
select the appropriate compensation value based on the circuit topology. For additional
information on the compensation property and the input delay compensation, refer to the
Clocking Resources User Guide for your specific architecture.

TIMING-22: Missing External Delay on MMCM
The MMCM <CELL_NAME> has an external feedback loop but no external delay has been
specified between FBOUT and FBIN. It is recommended to specify an external delay with
set_external_delay between the two ports connected to the pins FBOUT and FBIN with an
external feedback loop.

Description
The MMCM can be configured for external deskew where the feedback board trace matches the
trace to the external components. The external delay value is used in the calculation of the
MMCM compensation delay. This could lead to hardware failures, especially on the IO paths,
because the timing analysis of the MMCM compensation does not match what happens on the
device.

Resolution
Add a set_external_delay constraint between the external feedback input and output port
for the defined external trace delay. For additional information on the set_external_delay
command, refer to the Vivado Design Suite Tcl Command Reference Guide (UG835).

Example
set_external_delay -from <output_port> -to <input_port>
<external_delay_value>

TIMING-23: Combinatorial Loop Found
A timing loop has been detected on a combinational path. A timing arc has been disabled
between <CELL_NAME1> and <CELL_NAME2> to break the timing loop.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 305Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=305

Description
Combinatorial timing loops are created when the output of combinatorial logic is fed back to its
input, resulting in a timing loop. This loop unnecessarily increases the number of cycles by
infinitely going around the same path and cannot be timed. To resolve the timing loop, the
Vivado IDE disables the timing arc on the cell in the loop.

Resolution
If you didn't intend to create a combinatorial feedback loop, correct the issue by modifying the
design source files (RTL). But because the timing loop is expected, use the
set_disable_timing command to break the timing loop where it makes the most sense
(usually the feedback path) instead of letting Vivado Timing break it at a random location.

TIMING-24: Overridden Max Delay Datapath
Only

A set_clock_groups or a set_false_path between clocks <CLOCK_NAME1> and
<CLOCK_NAME2> overrides a set_max_delay -datapath_only (see constraint position
<#> in the Timing Constraints window in the Vivado IDE). It is not recommended to override a
set_max_delay -datapath_only constraint. Replace the set_clock_groups or
set_false_path between clocks with point-to-point set_false_path constraints.

Description
The DRC warning only occurs when a set_max_delay -datapath_only constraint is
overridden by a set_clock_groups or set_false_path constraint between clocks. If a
point-to-point set_false_path overrides a set_max_delay -datapath_only, the DRC
will not be reported.

Resolution
The solution is to replace the set_clock_groups or set_false_path between clocks with
point-to-point false path constraints to avoid incorrectly overriding a set_max_delay -
datapath_only constraint.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 306Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=306

TIMING-25: Invalid Clock Waveform on
Gigabit Transceiver (GT)

The waveform of the clock <CLOCK_NAME> defined on the transceiver output pin <PIN_NAME>
or on the net connected to that pin is not consistent with the transceiver settings or the
reference clock definition is missing. The auto-derived clock period is <PERIOD> and the user-
defined clock period is <PERIOD>.

Description
For UltraScale devices, Vivado automatically derives clocks on the output of a GT based on the
GT settings and the characteristics of the incoming master clock. For 7 series devices, Vivado
does not automatically derive the GT clocks; it is your responsibility to create the appropriate
primary clocks on the GT's output pins. The DRC warning is reporting that the user-defined clock
does not match the expected auto-derived clock that Vivado would automatically create. This
could lead to hardware failures as the timing constraints for the design do not match what
happens on the device.

Resolution
If the user-defined generated clock is unnecessary, remove the constraint and use the auto-
derived clock instead. If constraint is necessary, verify that the generated clock constraint
matches the auto-derived clock waveform or modify the GT properties to match the expected
clock waveform. If the intention is to force the name of the auto-derived clock, the
recommendation is to use the create_generated_clock constraint with only the -name
option defined and the name of the object where the clock is defined (typically output pin of GT).
See the Vivado Design Suite User Guide: Using Constraints (UG903) for additional information
about creating generated clocks and restrictions of the auto-derived clocks renaming constraint.

TIMING-26: Missing Clock on Gigabit
Transceiver (GT)

The output clock pin <PIN_NAME> does not have clock defined. Create a primary clock on the
<PORT_NAME> input port in order to let Vivado auto-derive the missing GT clocks.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 307Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=307

Description
For UltraScale devices, Vivado automatically derives clocks on the output of a GT based on the
GT settings and the characteristics of the incoming master clock. The DRC warning is reporting
that Vivado is unable to auto-derive the output clock of the GT due to the missing primary clock
on the input port. The consequence is that the downstream logic connected to the GT related
clocks will not be timed.

Resolution
Create a primary clock on the recommended input port to the GT.

TIMING-27: Invalid Primary Clock on
Hierarchical Pin

A primary clock <CLOCK_NAME> is created on an inappropriate internal pin <PIN_NAME>. It is
not recommended to create a primary clock on a hierarchical pin when its driver pin has a fanout
connected to multiple clock pins.

Description
If the driver is traversed by a clock and a new clock is defined downstream on a hierarchical pin,
the cells downstream of the hierarchal pin will have different timing analysis compared to the
cells on the fanout of the driver pin. If any synchronous paths exist between the driver clock and
the hierarchical pin clock, skew will be inaccurate and timing signoff will be invalid. This situation
can result in hardware failure.

Resolution
Remove the primary clock definition on the hierarchical pin, or if the downstream clock is
absolutely needed, use a generated clock constraint with the driver clock specified as master
clock instead.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 308Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=308

TIMING-28: Auto-Derived Clock Referenced by
a Timing Constraint

The auto-derived clock <CLOCK_NAME> is referenced by name inside timing constraint (see
constraint position <#> in the Timing Constraint window in the Vivado IDE). It is recommended
to reference an auto-derived clock by the pin name attached to the clock: get_clocks -
of_objects [get_pins <PIN_NAME>].

Description
An auto-derived clock should be referenced by the source pin object. The auto-derived clock
name might change during development due to modifications to the netlist or constraints. Unless
it has been renamed, referencing an auto-derived clock by name should be discouraged, because
the consequence could be invalidated constraints in subsequent runs after the design has been
modified.

Resolution
Modify the constraint to reference the auto-derived clock by the pin name attached to the clock
using [get_clocks -of_objects [get_pins <PIN_NAME>]]. Alternatively, use the
create_generated_clock constraint to force the name of the auto-derived clock. An auto-
derived clock can be renamed even after being referenced by some timing constraints. For more
details about using a generated clock constraint to force a clock name, refer to the Vivado Design
Suite User Guide: Using Constraints (UG903).

TIMING-29: Inconsistent Pair of Multicycle
Paths

Setup and hold multicycle path constraints should typically reference the same -start pair for
SLOW-to-FAST synchronous clocks or -end pair for FAST-to-SLOW synchronous clocks (see
constraint positions <#> in the Timing Constraint window in Vivado IDE).

Description
By default, the set_multicycle_path constraint is used to modify the path requirement
multipliers with respect to the source clock for hold or the destination clock for setup. For
certain use cases, the path requirement must be multiplied with respect to a specific clock edge.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 309Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=309

Resolution
For both setup and hold, modify the set_multicycle_path constraints to reference the
destination clock (-end) for SLOW-to-FAST synchronous clocks and the source clock (-start)
for FAST-to-SLOW synchronous clocks. See the Vivado Design Suite User Guide: Using Constraints
(UG903) for additional information about properly setting multicycle paths between clocks.

TIMING-30: Sub-Optimal Master Source Pin
Selection for Generated Clock

The generated clock <CLOCK_NAME> has a sub-optimal master source pin selection, timing can
be pessimistic.

Description
A generated clock should reference the clock that is propagating in its direct fanin, although the
create_generated_clock command lets you specify any reference clock. This DRC warning
is reporting that the generated clock is associated to a master clock defined farther upstream
than the incoming master clock. In this situation, timing analysis can be more pessimistic and
apply additional clock uncertainty on the paths between the master clock and the generated
clock. This can lead to slightly more difficult timing closure. Is is recommended to associate the
generated clock to the master clock source pin that the generated clock is derived.

Resolution
Modify the create_generated_clock constraint to reference the master clock source pin
from which the generated clock is directly derived in the design.

Appendix A: Timing Methodology Checks

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 310Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=310

Appendix B

Report QoR Suggestion RTL Code
Change Example

TIMING-201: Add an Output Register to RAM
Adding an output register to a RAM improves the clock to out time of the RAM read data path.
This provides more flexibility to the place and route tools to place the RAM optimally as well as
an option to place the register in the fabric instead of the RAM to optimize the critical path.

Output registers can be easily inferred by the synthesis tool. They must either have a
synchronous reset or no reset.

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 311Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=311

Verilog Code Example
Figure 233: Before

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 312Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=312

Figure 234: After

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 313Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=313

VHDL Code Example
Figure 235: Before

Figure 236: After

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 314Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=314

TIMING-202: Add Extra Pipelining to Wide
Multipliers

Wide multipliers (where at least one port is greater than the maximum width supported by the
DSP slice in the given architecture) need extra pipelines to achieve the maximum operating
frequency of the DSP slice. The number of pipeline stages require changes depending on the
width required.

By adding extra stages to the output of wide multipliers in the RTL, synthesis moves them to
optimal positions which makes recoding very simple.

Verilog Code Example
Figure 237: Before

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 315Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=315

Figure 238: After

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 316Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=316

VHDL Code Example
Figure 239: Before

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 317Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=317

Figure 240: After

UTIL-203: Large ROM Inferred using
Distributed RAM

ROMs whose array depth is significantly over 64 bits are better inferred into Block RAM. The
synthesis tool tries to do this by default but sometimes it is unable to do so due to coding or
constraint restrictions.

The primary reason for not inferring a Block RAM is a missing output register. Block RAMs only
support a synchronous read, but Distributed RAMs do not have this requirement. The second
reason when reading the array or a ROM_STYLE attribute forcing the type of resource that must
be inferred.

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 318Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=318

By making a simple modification, you can expect improvements in LUT utilization, timing, and
where applicable, congestion.

Verilog Code Example
Figure 241: Before

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 319Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=319

Figure 242: After

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 320Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=320

VHDL Code Example
Figure 243: Before

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 321Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=321

Figure 244: After

UTIL-204: RAM Array is Not Efficiently Used
When a RAM array address or data size is slightly larger than what fits ideally into a RAM, the
synthesis tool adds an extra RAM (typically RAMB18) to accommodate the extra bits required.
This can lead to inefficient use of the added RAM.

By breaking up the RAM into two arrays, one that targets Block RAM and the other targeting
Distributed RAM, it is possible to get an optimal utilization of resources that can be inferred by
the synthesis tool.

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 322Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=322

This approach works best where a RAM is in its own level of hierarchy. Then a single array can be
replaced with an extra level of hierarchy that allows the RAM array to be split easily.

Verilog Code Example
Figure 245: Before

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 323Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=323

Figure 246: After

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 324Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=324

VHDL Code Example
Figure 247: Before

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 325Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=325

Figure 248: After

Reference Design Files
Download the reference design files associated with this appendix from the Xilinx website.

Appendix B: Report QoR Suggestion RTL Code Change Example

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 326Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=856d67d5-5b60-4533-8ab5-8592b34d8e05;d=ug906-vivado-design-analysis.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=326

Appendix C

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Appendix C: Additional Resources and Legal Notices

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 327Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=327

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

1. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

2. Vivado Design Suite User Guide: Using Tcl Scripting (UG894)

3. Vivado Design Suite Tcl Command Reference Guide (UG835)

4. Vivado Design Suite User Guide: System-Level Design Entry (UG895)

5. Vivado Design Suite User Guide: Using Constraints (UG903)

6. UltraFast Design Methodology Guide for Xilinx FPGAs and SoCs (UG949)

7. Vivado Design Suite User Guide: Implementation (UG904)

8. Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)

9. 7 Series FPGAs Clocking Resources User Guide (UG472)

10. Vivado Design Suite Properties Reference Guide (UG912)

11. All Vivado Design Suite Documentation

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more about
the concepts presented in this document. Use these links to explore related training resources:

1. Designing FPGAs Using the Vivado Design Suite 1

2. Designing FPGAs Using the Vivado Design Suite 2

3. Designing FPGAs Using the Vivado Design Suite 3

4. Designing FPGAs Using the Vivado Design Suite 4

5. Vivado Design Suite QuickTake Video Tutorials

6. Vivado Design Suite QuickTake Video: Advanced Clock Constraints and Analysis

7. Vivado Design Suite QuickTake Video: Analyzing Implementation Results

8. Vivado Design Suite QuickTake Video: Timing Analysis Controls

9. Vivado Design Suite QuickTake Video: Cross Clock Domain Checking - CDC Analysis

Appendix C: Additional Resources and Legal Notices

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 328Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug472_7Series_Clocking.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug912-vivado-properties.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-4.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=advanced-clock-constraints-and-analysis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=analyzing-implementation-results.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=timing-analysis-controls.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=cross-clock-domain-checking-cdc-analysis.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=328

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2012-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and
used under license. All other trademarks are the property of their respective owners.

Appendix C: Additional Resources and Legal Notices

UG906 (v2020.2) January 25, 2021 www.xilinx.com
Design Analysis and Closure Techniques 329Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG906&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=329

	Vivado Design Suite User Guide
	Revision History
	Table of Contents
	Ch. 1: Overview
	Navigating Content by Design Process

	Ch. 2: Implementation Results Analysis Features
	Using the Design Runs Window
	Placement Analysis
	Highlighting Placement
	Showing Connectivity
	Fixed and Unfixed Logic
	Cross Probing
	Viewing Metrics
	Metrics Requiring a Placed Design
	Metrics in a Netlist Design with No Placement

	Routing Analysis
	Displaying Routing and Placement
	Displaying Routing and Placement when Zoomed Out
	Displaying Routing and Placement at Closer Zoom Levels

	Viewing Options
	Navigating in the Device Window

	Report Design Analysis
	Running Report Design Analysis
	Results Name Field
	Options Tab
	Timing Field
	Complexity Field
	Congestion Field

	Advanced Tab
	File Output Field
	Miscellaneous Field

	Timer Settings Tab
	Interconnect Option
	Speed Grade Option
	Multi-Corner Configuration Field
	Disable Flight Delays Option

	Command Line Only Options
	Timing Path Characteristics Report
	Analyzing Specific Paths
	Analyzing the Worst Path along with Preceding and Following Worst Paths
	Reading and Interpreting Timing Path Characteristics Reports
	Category 1: Timing
	Category 2: Logic
	Category 3: Physical
	Category 4: Property
	Category 5: Dynamic Function Exchange Designs

	Design QoR Summary

	Complexity Report
	Analyzing the Design Complexity at the Top Level
	Reading and Interpreting a Complexity Report

	Congestion Report
	Analyzing the Design Congestion
	Maximum Congestion Reports
	Placer Final Congestion Reporting
	Router Initial Congestion Reporting

	SLR Net Crossing Reporting

	Report QoR Assessment
	Overall Assessment Summary
	QoR Assessment Details
	Methodology Checks
	ML Strategy Availability

	Report QoR Suggestions
	Executing Suggestions
	Other Related Commands
	Generating the QoR Suggestion Report
	The QoR Suggestion Report
	Working with QoR Suggestions Objects in the IDE
	Project Mode
	Non-Project Mode

	Strategy Suggestions
	RQS in the Incremental Flow
	Automatic Removal of Suggestions
	Viewing suggestions in TCL or Text Format

	Ch. 3: Logic Analysis Within the IDE
	Design Analysis Within the IDE
	Logic Analysis Features
	Using the Netlist Window
	Using the Hierarchy Window
	Using the Utilization Report
	Using the Schematic Window
	Searching for Objects Using the Find Dialog Box
	Find Criteria
	Complex Finds
	Find Examples
	Tcl Finds

	Analyzing Device Utilization Statistics
	Using Report DRC
	Validating Design Methodology DRCs

	Ch. 4: Timing Analysis Features
	Report Timing Summary
	Report Timing Summary Dialog Box
	Options Tab
	Report Section
	Path Limits Section
	Path Display Section
	Common Section

	Advanced Tab
	Report Section
	File Output Section
	Miscellaneous Section

	Timer Settings Tab
	Interconnect Setting
	Speed Grade Setting
	Multi-Corner Configuration Setting
	Disable Flight Delays

	Details of the Timing Summary Report
	General Information Section
	Timer Settings Section
	Design Timing Summary Section
	Setup Area (Max Delay Analysis)
	Hold Area (Min Delay Analysis)
	Pulse Width Area (Pin Switching Limits)

	Clock Summary Section
	Check Timing Section
	Intra-Clock Paths Section
	Inter-Clock Paths Section
	Other Path Groups Section
	User-Ignored Paths Section
	Unconstrained Paths Section
	Reviewing Timing Path Details
	Filtering Paths with Violations

	Report Clock Networks
	Report Clock Interaction
	Report Clock Interaction Dialog Box
	Results Name Field
	Command Field
	Open in a New Tab Check Box
	Options Tab
	Report from Cells Field
	Delay Type Field
	Significant Digits Field
	File Output Section

	Timer Settings Tab
	Details of the Clock Interaction Report
	Matrix Color Coding
	Clock Pair Classification
	Filtering the Clocks
	Clock Pairs Slack Table
	Sorting the Data
	Selecting Cells and Rows
	Table Columns
	Exporting the Table

	Report Pulse Width
	Report Timing
	Running Report Timing
	Running Report Timing from the Menu
	Running Report Timing from the Clock Interaction Report
	Running Report Timing from a Paths List

	Report Timing Dialog Box
	Targets Tab
	Options Tab
	Reports
	Path Limits
	Path Display

	Advanced Tab
	Timer Settings Tab

	Reviewing Timing Path Details
	Filtering Paths with Violation

	Report Datasheet
	Report Datasheet Dialog Box
	Report Datasheet Dialog Box: Options Tab
	Report Datasheet Dialog Box: Groups Tab
	Report Datasheet Dialog Box: Timer Settings Tab

	Details of the Datasheet Report
	General Information
	Input Ports Setup/Hold
	Max/Min Delays for Output Ports
	Setup Between Clocks
	Setup/Hold for Input Buses
	Max/Min Delays for Output Buses
	Max/Min Delays for Groups

	Report Exceptions
	Example: Reporting the Timing Exceptions Affecting the Timing Analysis
	Reporting the Timing Exceptions Being Ignored
	Reporting the Timing Exceptions Coverage
	Reporting the Ignored Objects
	Exporting the Valid Exceptions
	Exporting the Merged Exceptions

	Report Exceptions in the Vivado IDE
	Report Exceptions Dialog Box
	Report Exceptions Dialog Box: Options Tab
	Report Section
	File Output Section
	Miscellaneous Section

	Report Exceptions Dialog Box: Targets Tab

	Details of the Exceptions Report
	General Information Section
	Summary Section
	Exceptions Section
	Ignored Objects Section

	Report Clock Domain Crossings
	Overview
	Terminology
	Running Report Clock Domain Crossings
	Results Name Field
	Clocks Field (From/To)
	File Output Field
	Options Field

	Understanding the Clock Domain Crossings Report Rules
	Reviewing the Clock Domain Crossings Report Sections
	Summary by Clock Pair
	Summary by Type
	Detailed Report

	Simplified Schematics of the CDC Topologies
	Single-Bit Synchronizer
	Multi-Bit Synchronizer
	Asynchronous Reset Synchronizer
	Combinatorial Logic
	Fanout
	Multi-Clock Fanin
	Non-FD Primitive
	CE-Controlled CDC
	Mux-Controlled CDC
	Mux Data Hold CDC
	LUTRAM Read/Write Potential Collision

	Report Bus Skew
	Running Report Bus Skew
	Reviewing Bus Skew Path Details
	Report Summary Section
	Report Per Constraint Section

	Report Bus Skew Dialog Box
	Report Bus Skew Dialog Box: Options Tab
	Report
	Path Limits
	Path Display

	Report Bus Skew Dialog Box: Advanced Tab
	File Output
	Miscellaneous

	Details of the Timing Summary Report
	General Information Section
	Summary Section
	Set Bus Skew Section

	Ch. 5: Viewing Reports and Messages
	Introduction to Reports and Messages
	Viewing and Managing Messages in the IDE
	Using the Reports Window
	Using the Messages Window
	Filtering Messages

	Vivado Generated Messages
	Synthesis Log
	Implementation Log
	WebTalk Report

	Generating and Waiving Design Checks
	Creating a Waiver
	Creating Waivers from the GUI
	Creating Waivers from a Violation Object
	Creating Waivers from the Command Line
	Creating DRC and Methodology Waivers
	Creating CDC Waivers

	CDC Rules Precedence

	Reporting the Waivers
	Exporting the Waivers
	Other Waiver Commands

	Configurable Report Strategies
	Setting Run Report Strategies
	Editing Run Report Strategies
	Creating New Report Strategies

	Creating Design Related Reports
	Report Utilization
	Running Report Utilization
	Results Name Field
	Show Utilization for Specific Cells
	Show Utilization for Specific Pblocks
	Show SLR Utilization
	Show Hierarchical Information with Customized Options
	Show Customized Table Report

	Report I/O
	Report Clock Utilization
	Report Clock Utilization Tables
	Clock Primitive Utilization Table
	Global Clock Resources Table
	Global Clock Source Details Table
	Local Clock Details Table
	Clock Regions Tables
	Key Resource Utilization Table
	Global Clocks Tables

	Report DRC
	Elaborated Design
	Synthesized Design and Implemented Design

	Report Route Status
	Report Noise
	Noise Report Summary Section
	Noise Report Messages Section
	Noise Report I/O Bank Details Section
	Noise Report Links Section

	Report Power
	Analyzing the Power Report
	Reporting Power in a Non-Project Flow

	Report Control Sets
	Report Clock Utilization
	Results Name Field
	Show Clock Roots Only
	Write Clock Constraints to File
	Export to File

	Report RAM Utilization
	How to Run the Report
	Report Layout
	Summary
	Memory Description
	Memory Utilization
	Memory Performance
	Memory Power
	Adding LUTRAMs to the Report

	Ch. 6: Performing Timing Analysis
	Introduction to Timing Analysis
	Terminology
	Timing Paths
	Common Timing Paths
	Path from Input Port to Internal Sequential Cell
	Internal Path from Sequential Cell to Sequential Cell
	Path from Internal Sequential Cell to Output Port
	Path from Input Port to Output Port
	Timing Paths Example

	Timing Path Sections
	Source Clock Path
	Data Path
	Destination Clock Path

	Launch and Capture Edges

	Understanding the Basics of Timing Analysis
	Max and Min Delay Analysis
	Max Delay with Setup and Recovery Checks
	Min Delay with Hold and Removal Checks
	Setup/Recovery (Max Delay Analysis)
	Hold/Removal (Min Delay Analysis)

	Setup/Recovery Relationship
	Hold/Removal Relationship
	Path Requirement
	Clock Phase Shift
	MMCM/PLL Phase Shift Modes
	Phase Shift in Timing Reports
	Phase Shift in Clock Reports

	Clock Skew and Uncertainty
	Skew Definition
	Clock Pessimism Removal
	Optimistic Skew
	Clock Uncertainty

	Pulse Width Checks

	Reading a Timing Path Report
	Timing Path Summary Header Examples
	Timing Path Summary Header Information
	Timing Path Details
	Timing Path Details In Text Report
	Timing Path Details in Vivado IDE

	Verifying Timing Signoff

	Ch. 7: Synthesis Analysis and Closure Techniques
	Using the Elaborated View to Optimize the RTL
	Example

	Decomposing Deep Memory Configurations for Balanced Power and Performance
	Optimizing RAMB Utilization when Memory Depth is not a Power of 2
	Optimizing RAMB Input Logic to Allow Output Register Inference
	Improving Critical Logic on RAMB Outputs

	Ch. 8: Implementation Analysis and Closure Techniques
	Using the report_design_analysis Command
	Timing Violations
	Congestion

	Identifying the Longest Logic Delay Paths in the Design
	Identifying High Fanout Net Drivers
	Determining if Hold-Fixing is Negatively Impacting the Design
	Method 1: Routing without hold fixing
	Method 2: Run report_timing -min on Worst Failing Setup Path

	Quickly Analyzing All Failing Paths
	Floorplanning
	About Floorplanning
	Understanding Floorplanning Basics
	Detailed Gate-Level Floorplanning
	Advantages of Detailed Gate-Level Floorplanning
	Disadvantages of Detailed Gate-Level Floorplanning

	Information Reuse
	Review I/O and Cell Placement
	Adding Placement Constraints
	Reusing Placement
	Reusing Placement with Incremental Compile
	Floorplanning Techniques
	Hierarchical Floorplanning
	Manual Cell Placement

	Using Pblock-Based Floorplanning
	Top-Level Floorplan
	Reviewing the Floorplan

	Locking Specific Logic to Device Sites
	Fixed and Unfixed Cells

	Floorplanning With Stacked Silicon Interconnect (SSI) Devices

	Appx. A: Timing Methodology Checks
	TIMING-1: Invalid Clock Waveform on Clock Modifying Block
	Description
	Resolution
	Example

	TIMING-2: Invalid Primary Clock Source Pin
	Description
	Resolution
	Example

	TIMING-3: Invalid Primary Clock on Clock Modifying Block
	Description
	Resolution
	Example

	TIMING-4: Invalid Primary Clock Redefinition on a Clock Tree
	Description
	Resolution
	Example

	TIMING-5: Invalid Waveform Redefinition on a Clock Tree
	Description
	Resolution
	Example

	TIMING-6: No Common Primary Clock Between Related Clocks
	Description
	Resolution
	Example

	TIMING-7: No Common Node Between Related Clocks
	Description
	Resolution
	Example

	TIMING-8: No Common Period Between Related Clocks
	Description
	Resolution

	TIMING-9: Unknown CDC Logic
	Description
	Resolution
	Example

	TIMING-10: Missing Property on Synchronizer
	Description
	Resolution
	Example

	TIMING-11: Inappropriate Max Delay with Datapath Only Option
	Description
	Resolution

	TIMING-12: Clock Reconvergence Pessimism Removal Disabled
	Description
	Resolution

	TIMING-13: Timing Paths Ignored Due to Path Segmentation
	Description
	Resolution

	TIMING-14: LUT on the Clock Tree
	Description
	Resolution
	Example

	TIMING-15: Large Hold Violation on Inter-Clock Path
	Description
	Resolution

	TIMING-16: Large Setup Violation
	Description
	Resolution

	TIMING-17: Non-Clocked Sequential Cell
	Description
	Resolution

	TIMING-18: Missing Input or Output Delay
	Description
	Resolution

	TIMING-19: Inverted Generated Clock Waveform on ODDR
	Description
	Resolution

	TIMING-20: Non-Clocked Latch
	Description
	Resolution

	TIMING-21: Invalid COMPENSATION Property on MMCM
	Description
	Resolution

	TIMING-22: Missing External Delay on MMCM
	Description
	Resolution
	Example

	TIMING-23: Combinatorial Loop Found
	Description
	Resolution

	TIMING-24: Overridden Max Delay Datapath Only
	Description
	Resolution

	TIMING-25: Invalid Clock Waveform on Gigabit Transceiver (GT)
	Description
	Resolution

	TIMING-26: Missing Clock on Gigabit Transceiver (GT)
	Description
	Resolution

	TIMING-27: Invalid Primary Clock on Hierarchical Pin
	Description
	Resolution

	TIMING-28: Auto-Derived Clock Referenced by a Timing Constraint
	Description
	Resolution

	TIMING-29: Inconsistent Pair of Multicycle Paths
	Description
	Resolution

	TIMING-30: Sub-Optimal Master Source Pin Selection for Generated Clock
	Description
	Resolution

	Appx. B: Report QoR Suggestion RTL Code Change Example
	TIMING-201: Add an Output Register to RAM
	Verilog Code Example
	VHDL Code Example

	TIMING-202: Add Extra Pipelining to Wide Multipliers
	Verilog Code Example
	VHDL Code Example

	UTIL-203: Large ROM Inferred using Distributed RAM
	Verilog Code Example
	VHDL Code Example

	UTIL-204: RAM Array is Not Efficiently Used
	Verilog Code Example
	VHDL Code Example

	Reference Design Files

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

