
Vivado Design Suite User
Guide

Design Flows Overview

UG892 (v2020.2) February 12, 2021

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG892

Revision History
The following table shows the revision history for this document.

Section Revision Summary
02/12/2021 Version 2020.2

Using Xilinx XHub Stores Added

Block Design Containers Added

Chapter 5: Source Management and Revision Control
Recommendations

Updated

Revision History

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=2

Table of Contents
Revision History...2

Chapter 1: Vivado System-Level Design Flows...5
Industry Standards-Based Design.. 6
Design Flows.. 6
RTL-to-Bitstream Design Flow... 8
Alternate RTL-to-Bitstream Design Flows.. 11

Chapter 2: Understanding Use Models...14
Vivado Design Suite Use Models... 14
Working with the Vivado Integrated Design Environment (IDE).. 15
Working with Tcl.. 17
Understanding Project Mode and Non-Project Mode..19
Using Third-Party Design Software Tools...23
Interfacing with PCB Designers...24

Chapter 3: Using Project Mode... 26
Project Mode Advantages.. 27
Creating Projects... 28
Understanding the Flow Navigator...30
Performing System-Level Design Entry..34
Working with IP... 36
Creating IP Subsystems with IP Integrator..44
Logic Simulation.. 48
Running Logic Synthesis and Implementation..53
Viewing Log Files, Messages, Reports, and Properties...58
Opening Designs to Perform Design Analysis and Constraints Definition........................60
Device Programming, Hardware Verification, and Debugging...70
Using Project Mode Tcl Commands.. 71

Chapter 4: Using Non-Project Mode...74
Non-Project Mode Advantages..75
Reading Design Sources...76

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=3

Working with IP and IP Subsystems... 77
Running Logic Simulation.. 78
Running Logic Synthesis and Implementation..78
Generating Reports...79
Using Design Checkpoints... 79
Performing Design Analysis Using the Vivado IDE... 79
Using Non-Project Mode Tcl Commands... 81

Chapter 5: Source Management and Revision Control
Recommendations...84
Interfacing with Revision Control Systems.. 84
Revision Control Philosophy from 2020.2 Onwards..84
Revision Control Philosophy Pre 2020.2... 85
Other Files to Revision Control.. 88
Output Files to Optionally Revision Control...88
Managing Hardware Manager Projects and Sources...90

Appendix A: Additional Resources and Legal Notices............................. 91
Xilinx Resources...91
Solution Centers.. 91
Documentation Navigator and Design Hubs...91
References..92
Training Resources..93
Please Read: Important Legal Notices... 94

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=4

Chapter 1

Vivado System-Level Design Flows
This user guide provides an overview of working with the Vivado® Design Suite to create a new
design for programming into a Xilinx® device. It provides a brief description of various use
models, design features, and tool options, including preparing, implementing, and managing the
design sources and intellectual property (IP) cores.

The Vivado Design Suite offers multiple ways to accomplish the tasks involved in Xilinx device
design, implementation, and verification. You can use the traditional register transfer level (RTL)-
to-bitstream FPGA design flow, as described in RTL-to-Bitstream Design Flow. You can also use
system-level integration flows that focus on intellectual property (IP)-centric design and C-based
design, as described in Alternate RTL-to-Bitstream Design Flows.

Design analysis and verification is enabled at each stage of the flow. Design analysis features
include logic simulation, I/O and clock planning, power analysis, constraint definition and timing
analysis, design rule checks (DRC), visualization of design logic, analysis and modification of
implementation results, programming, and debugging.

The following documents and QuickTake videos provide additional information about Vivado
Design Suite flows:

• Vivado Design Suite QuickTake Video: Vivado Design Flows Overview

• Vivado Design Suite Tutorial: Design Flows Overview (UG888)

• Vivado Design Suite QuickTake Video: Getting Started with the Vivado IDE

• Xilinx Video Training: UltraFast Vivado Design Methodology

The entire solution is integrated within a graphical user interface (GUI) known as the Vivado
Integrated Design Environment (IDE). The Vivado IDE provides an interface to assemble,
implement, and validate the design and the IP. In addition, all flows can be run using Tcl
commands. Tcl commands can be scripted or entered interactively using the Vivado Design Suite
Tcl shell or using the Tcl Console in the Vivado IDE. You can use Tcl scripts to run the entire
design flow, including design analysis, or to run only parts of the flow.

Related Information

RTL-to-Bitstream Design Flow
Alternate RTL-to-Bitstream Design Flows

Chapter 1: Vivado System-Level Design Flows

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 5Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=hardware/vivado-design-flows-overview.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug888-vivado-design-flows-overview-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/getting-started-with-the-vivado-ide.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/vivado-design-methodology.htm
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=5

Industry Standards-Based Design
The Vivado Design Suite supports the following established industry design standards:

• Tcl

• AXI4, IP-XACT

• Synopsys design constraints (SDC)

• Verilog, VHDL, VHDL-2008, SystemVerilog

• SystemC, C, C++

The Vivado Design Suite solution is native Tcl based with support for SDC and Xilinx design
constraints (XDC) formats. Extensive Verilog, VHDL, and SystemVerilog support for synthesis
enables easier FPGA adoption. Vivado High-Level Synthesis (HLS) enables the use of native C, C+
+, or SystemC languages to define logic. Using standard IP interconnect protocol, such as AXI4
and IP-XACT, enables faster and easier system-level design integration. Support for these
industry standards also enables the electronic design automation (EDA) ecosystem to better
support the Vivado Design Suite. In addition, many new third-party tools are integrated with the
Vivado Design Suite.

Design Flows
The following figure shows the high-level design flow in the Vivado Design Suite. Xilinx Design
Hubs provide links to documentation organized by design tasks and other topics. On the Xilinx
website, see the Design Hubs page.

Chapter 1: Vivado System-Level Design Flows

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 6Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=6

Figure 1: Vivado Design Suite High-Level Design Flow

Hardware Bring-Up and Validation

Software DevelopmentSystem Design Entry

Configuring Xilinx and
Third-Party IP

Development Software
and Processor OS

IP Packager – IP Integrator

Configuring IP
Subsystems Embedded Processor Design

RTL
Development

Implementation
Logic Simulation

Dynamic Function
eXchange

Assign Logical and Physical Constraints

Logic Synthesis

Implementation

Timing Closure and Design Analysis

Generate Bitstream, Programming, and Debug

Processor Boot and Debug Export to Vitis™ Software
Development Platform

C-Based Design
with High-Level

Synthesis

Model-Based Design with
MATLAB® and Simulink® Software

System Generator
for DSP Model Composer

X15150-090920

Chapter 1: Vivado System-Level Design Flows

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=7

RTL-to-Bitstream Design Flow
RTL Design
You can specify RTL source files to create a project and use these sources for RTL code
development, analysis, synthesis and implementation. Xilinx supplies a library of recommended
RTL and constraint templates to ensure RTL and XDC are formed optimally for use with the
Vivado Design Suite. Vivado synthesis and implementation support multiple source file types,
including Verilog, VHDL, SystemVerilog, and XDC. For information on creating and working with
an RTL project, see this link in the Vivado Design Suite User Guide: System-Level Design Entry
(UG895).

The UltraFast Design Methodology Guide for Xilinx FPGAs and SoCs (UG949) focuses on proper
coding and design techniques for defining hierarchical RTL sources and Xilinx design constraints
(XDC), as well as providing information on using specific features of the Vivado Design Suite, and
techniques for performance improvement of the programmed design.

IP Design and System-Level Design Integration
The Vivado Design Suite provides an environment to configure, implement, verify, and integrate
IP as a standalone module or within the context of the system-level design. IP can include logic,
embedded processors, digital signal processing (DSP) modules, or C-based DSP algorithm
designs. Custom IP is packaged following IP-XACT protocol and then made available through the
Vivado IP catalog. The IP catalog provides quick access to the IP for configuration, instantiation,
and validation of IP. Xilinx IP utilizes the AXI4 interconnect standard to enable faster system-level
integration. Existing IP can be used in the design either in RTL or netlist format. For more
information, see the Vivado Design Suite User Guide: Designing with IP (UG896).

IP Subsystem Design
The Vivado IP integrator environment enables you to stitch together various IP into IP
subsystems using the AMBA® AXI4 interconnect protocol. You can interactively configure and
connect IP using a block design style interface and easily connect entire interfaces by drawing
DRC-correct connections similar to a schematic. Connecting the IP using standard interfaces
saves time over traditional RTL-based connectivity. Connection automation is provided as well as
a set of DRCs to ensure proper IP configuration and connectivity. These IP block designs are then
validated, packaged, and treated as a single design source. Block designs can be used in a design
project or shared among other projects. The IP integrator environment is the main interface for
embedded design and the Xilinx evaluation board interface. For more information, see the Vivado
Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994).

Chapter 1: Vivado System-Level Design Flows

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 8Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf;a=xCreatingAnRTLProjec
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=8

I/O and Clock Planning
The Vivado IDE provides an I/O pin planning environment that enables I/O port assignment
either onto specific device package pins or onto internal die pads, and provides tables to let you
design and analyze package and I/O-related data. Memory interfaces can be assigned
interactively into specific I/O banks for optimal data flow. You can analyze the device and design-
related I/O data using the views and tables available in the Vivado pin planner. The tool also
provides I/O DRC and simultaneous switching noise (SSN) analysis commands to validate your
I/O assignments. For more information, see the Vivado Design Suite User Guide: I/O and Clock
Planning (UG899).

Xilinx Platform Board Support
In the Vivado Design Suite, you can select an existing Xilinx evaluation platform board as a target
for your design. In the platform board flow, all of the IP interfaces implemented on the target
board are exposed to enable quick selection and configuration of the IP used in your design. The
resulting IP configuration parameters and physical board constraints, such as I/O standard and
package pin constraints, are automatically assigned and proliferated throughout the flow.
Connection automation enables quick connections to the selected IP. For more information see
this link in the Vivado Design Suite User Guide: System-Level Design Entry (UG895).

Synthesis
Vivado synthesis performs a global, or top-down synthesis of the overall RTL design. However,
by default, the Vivado Design Suite uses an out-of-context (OOC), or bottom-up design flow to
synthesize IP cores from the Xilinx IP Catalog and block designs from the Vivado IP integrator.
You can also choose to synthesize specific modules of a hierarchical RTL design as OOC modules.
This OOC flow lets you synthesize, implement, and analyze design modules of a hierarchical
design, IP cores, or block designs, out of the context of, or independent from the top-level
design. The OOC synthesized netlist is stored and used during top-level implementation to
preserve results and reduce runtime. The OOC flow is an efficient technique for supporting
hierarchical team design, synthesizing and implementing IP and IP subsystems, and managing
modules of large complex designs. For more information on the out-of-context design flow, see
Out-of-Context Design Flow.

The Vivado Design Suite also supports the use of third-party synthesized netlists, including EDIF
or structural Verilog. However, IP cores from the Vivado IP Catalog must be synthesized using
Vivado synthesis, and are not supported for synthesis with a third-party synthesis tool. There are
a few exceptions to this requirement, such as the memory IP for 7 series devices. Refer to the
data sheet for a specific IP for more information.

Note: The ISE Netlist format (NGC) is supported for 7 series devices. It is not supported for UltraScale and
later devices.

Chapter 1: Vivado System-Level Design Flows

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 9Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf;a=xUsingTheVivadoDesignSuiteBoardFlow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=9

Related Information

Out-of-Context Design Flow

Design Analysis and Simulation
The Vivado Design Suite lets you analyze, verify, and modify the design at each stage of the
design process. You can run design rule and design methodology checks, logic simulation, timing
and power analysis to improve circuit performance. This analysis can be run after RTL
elaboration, synthesis, and implementation. For more information, see the Vivado Design Suite
User Guide: Design Analysis and Closure Techniques (UG906).

The Vivado simulator enables you to run behavioral and structural logic simulation of the design
at different stages of the design flow. The simulator supports Verilog and VHDL mixed-mode
simulation, and results can be displayed in a waveform viewer integrated in the Vivado IDE. You
can also use third-party simulators that can be integrated into and launched from the Vivado IDE.
Refer to Running Logic Simulation for more information.

Related Information

Running Logic Simulation

Placement and Routing
When the synthesized netlist is available, Vivado implementation provides all the features
necessary to optimize, place and route the netlist onto the available device resources of the
target part. Vivado implementation works to satisfy the logical, physical, and timing constraints
of the design.

For challenging designs the Vivado IDE also provides advanced floorplanning capabilities to help
drive improved implementation results. These include the ability to constrain specific logic into a
particular area, or manually placing specific design elements and fixing them for subsequent
implementation runs. For more information, see the Vivado Design Suite User Guide: Design
Analysis and Closure Techniques (UG906).

Hardware Debug and Validation
After implementation, the device can be programmed and then analyzed with the Vivado logic
analyzer, or within the standalone Vivado Lab Edition environment. Debug signals can be
identified in the RTL design, or inserted after synthesis and are processed throughout the flow.
You can add debug cores to the RTL source files, to the synthesized netlist, or in an implemented
design using the using the Engineering Change Order (ECO) flow. You can also modify the nets
connected to a debug probe, or route internal signals to a package pin for external probing using
the ECO flow. For more information, see the Vivado Design Suite User Guide: Programming and
Debugging (UG908).

Chapter 1: Vivado System-Level Design Flows

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 10Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=10

Alternate RTL-to-Bitstream Design Flows
The Vivado Design Suite also supports several alternate design flows, as described in the
following sections. Each of these flows is derived from the RTL-to-bitstream flow, so the
implementation and analysis techniques described above also apply to these other design flows.

Accelerated Kernel Flows
The Xilinx® Vitis™ unified software platform introduces acceleration use cases into Vivado®

flows. In this design methodology, Vivado is used to create a platform which is consumed by the
Vitis software platform to add accelerated kernels. The hardware design is comprised of the
platform and the accelerators. In this case, the final bitstream is created by the Vitis software
platform because the complete design is not visible in Vivado. For more information on platform
creation, see Vitis Unified Software Platform Documentation: Application Acceleration Development
(UG1393).

Embedded Processor Design
A slightly different tool flow is needed when creating an embedded processor design. Because
the embedded processor requires software in order to boot-up and run effectively, the software
design flow must work in unison with the hardware design flow. Data hand-off between the
hardware and software flows, and validation across these two domains is critical for success.

Creating an embedded processor hardware design involves the IP integrator of the Vivado
Design Suite. In a Vivado IP integrator block design, you instantiate, configure, and assemble the
processor core and its interfaces. The IP Integrator enforces rules-based connectivity and
provides design assistance. After it is compiled through implementation, the hardware design is
exported to Xilinx Vitis™ for use in software development and validation. Simulation and debug
features allow you to simulate and validate the design across the two domains.

The Vitis Design Suite is Xilinx's unified software suite that includes compilers for all embedded
applications and accelerated applications on Xilinx platforms. Vitis supports developing in higher
level languages, leverages open source libraries, and supports domain specific development
environments.

VIDEO: For training videos on the Vivado IP integrator and the embedded processor design flow, see the
Vivado Design Suite QuickTake Video: Targeting Zynq Devices Using Vivado IP Integrator.

The embedded processor design flow is described in the following resources:

• Vivado Design Suite User Guide: Embedded Processor Hardware Design (UG898)

• Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940)

• UltraFast Embedded Design Methodology Guide (UG1046)

Chapter 1: Vivado System-Level Design Flows

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 11Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1393-vitis-application-acceleration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/targeting-zynq-using-vivado-ip-integrator.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug898-vivado-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=11

Model-Based Design Using Model Composer
Model Composer is a model-based graphical design tool that enables rapid design exploration
within the MathWorks MATLAB® and Simulink® products and accelerates the path to production
for Xilinx devices through automatic code generation. For information, see the Model Composer
User Guide (UG1262).

Model-Based DSP Design Using Xilinx System
Generator
The Xilinx System Generator tool, which is installed as part of the Vivado Design Suite, can be
used for implementing DSP functions. You create the DSP functions using System Generator as a
standalone tool, and then package your System Generator design into an IP module that can be
included in the Vivado IP catalog. From there, the generated IP can be instantiated into your
Vivado design as a submodule. For more information, see the Vivado Design Suite User Guide:
Model-Based DSP Design Using System Generator (UG897).

High-Level Synthesis C-Based Design
The C-based High-Level Synthesis (HLS) tools within the Vivado Design Suite enable you to
describe various DSP functions in the design using C, C++, and SystemC. You create and validate
the C code with the Vivado HLS tools. Use of higher-level languages allows you to abstract
algorithmic descriptions, data type, specification, etc. You can create “what-if” scenarios using
various parameters to optimize design performance and device area.

HLS lets you simulate the generated RTL directly from its design environment using C-based test
benches and simulation. C-to-RTL synthesis transforms the C-based design into an RTL module
that can be packaged and implemented as part of a larger RTL design, or instantiated into an IP
integrator block design.

VIDEO: For various training videos on Vivado HLS, see the Vivado High-Level Synthesis video tutorials
available from the Vivado Design QuickTake Video Tutorials page on the Xilinx website.

The HLS tool flow and features are described in the following resources:

• Vivado Design Suite User Guide: High-Level Synthesis (UG902)

• Vivado Design Suite Tutorial: High-Level Synthesis (UG871)

Dynamic Function Exchange Design
Dynamic function exchange (DFx) allows portions of a running Xilinx device to be reconfigured in
real-time with a partial bitstream, changing the features and functions of the running design. The
reconfigurable modules must be properly planned to ensure they function as needed for
maximum performance.

Chapter 1: Vivado System-Level Design Flows

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 12Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1262-model-composer-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug897-vivado-sysgen-user.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=12

The DFx flow requires a strict design process to ensure that the reconfigurable modules are
designed properly to enable glitch-less operation during partial bitstream updates. This includes
reducing the number of interface signals into the reconfigurable module, floorplanning device
resources, and pin placement; as well as adhering to special DFx DRCs. The device programming
method must also be properly planned to ensure the configuration I/O pins are assigned
appropriately.

VIDEO: Information on the DFx flow is available from the Vivado Design Suite QuickTake Video: DFx.

The DFx tool flow and features are described in the following resources:

• Vivado Design Suite User Guide: Dynamic Function eXchange (UG909)

• Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947)

Hierarchical Design
Hierarchical Design (HD) flows enable you to partition a design into smaller, more manageable
modules to be processed independently. The hierarchical design flow involves proper module
interface design, constraint definition, floorplanning, and some special commands and design
techniques. For more information, see the Vivado Design Suite User Guide: Hierarchical Design
(UG905).

Using a modular approach to the hierarchical design lets you analyze modules independent of the
rest of the design, and reuse modules in the top-down design. A team of users can iterate on
specific sections of a design, achieving timing closure and other design goals, and reuse the
results.

There are several Vivado features that enable a hierarchical design approach, such as the
synthesis of a logic module outside of the context (OOC) of the top-level design. You can select
specific modules, or levels of the design hierarchy, and synthesize them OOC. Module-level
constraints can be applied to optimize and validate module performance. The module design
checkpoint (DCP) will then be applied during implementation to build the top-level netlist. This
method can help reduce top-level synthesis run time, and eliminate re-synthesis of completed
modules.

Chapter 1: Vivado System-Level Design Flows

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 13Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=hardware/partial-reconfiguration-in-vivado.htm
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=13

Chapter 2

Understanding Use Models

Vivado Design Suite Use Models
RECOMMENDED: Before beginning your first design with the Vivado® tools, review the information in
the Vivado Design Suite User Guide: Getting Started (UG910).

Just as the Vivado supports many different design flows, the tools support several different use
models depending on how you want to manage your design and interact with the Vivado tools.
This section will help guide you through some of the decisions that you must make about the use
model you want to use for interacting with the Vivado tools.

Some of these decisions include:

• Are you a script or command-based user; or do you prefer working through a graphical user
interface (GUI)? See Working with the Vivado Integrated Design Environment (IDE) and
Working with Tcl.

• Do you want the Vivado Design Suite to manage the design sources, status, and results by
using a project structure; or would you prefer to quickly create and manage a design yourself?
See Understanding Project Mode and Non-Project Mode.

• Do you want to configure IP cores and contain them within a single design project for
portability; or establish a remote repository of configured IP cores outside of the project for
easier management across multiple projects?

• Are you managing your source files inside a revision control system? See Interfacing with
Revision Control Systems.

• Are you using third-party tools for synthesis or simulation? See Using Third-Party Design
Software Tools.

Related Information

Working with the Vivado Integrated Design Environment (IDE)
Working with Tcl
Understanding Project Mode and Non-Project Mode
Using Third-Party Design Software Tools

Chapter 2: Understanding Use Models

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 14Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=14

Working with the Vivado Integrated Design
Environment (IDE)

The Vivado Integrated Design Environment (IDE) can be used in both Project Mode and Non-
Project Mode. The Vivado IDE provides an interface to assemble, implement, and validate your
design and IP. Opening a design loads the current design netlist, applies design constraints, and
fits the design onto the target device. The Vivado IDE allows you to visualize and interact with
the design as shown in the following figure.

Figure 2: Opening the Implemented Design in the Vivado IDE

When using Project Mode, the Vivado IDE provides an interface called Flow Navigator, that
supports a push-button design flow. You can open designs after RTL elaboration, synthesis, or
implementation and analyze the design, make changes to constraints, logic or device
configuration, and implementation results. You can also use design checkpoints to save the
current state of any design. For more information on the Vivado IDE, see the Vivado Design Suite
User Guide: Using the Vivado IDE (UG893).

Chapter 2: Understanding Use Models

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 15Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=15

VIDEO: For more information, see the Vivado Design QuickTake Video: Getting Started with the Vivado
IDE.

Launching the Vivado IDE on Windows
Select Start → All Programs → Xilinx Design Tools → Vivado <version> → Vivado <version>.

Note: You can also double-click the Vivado IDE shortcut icon on your desktop.

Figure 3: Vivado IDE Desktop Icon

TIP: You can right-click the Vivado IDE shortcut icon, and select Properties to update the Start In field.
This makes it easier to locate the project file, log files, and journal files, which are written to the launch
directory.

Launching the Vivado IDE from the Command Line
on Windows or Linux
Enter the following command at the command prompt:

vivado

When you enter this command, it automatically runs vivado -mode gui to launch the Vivado
IDE. If you need help, type vivado -help.

TIP: To add the Vivado tools path to your current shell/command prompt, run settings64.bat or
settings64.sh  from the <install_path>/Vivado/<version>  directory.

When launching the Vivado Design Suite from the command line, change directory to your
project directory so that the Vivado tool will write its log and journal files to your project
directory. This makes it easy to locate and review these files as needed.

RECOMMENDED: Launch the Vivado Design Suite from your project directory to make it easier to locate
the project file, log files, and journal files, which are written to the launch directory.

Launching the Vivado IDE from the Vivado Design
Suite Tcl Shell
When the Vivado Design Suite is running in Tcl mode, enter the following command at the Tcl
command prompt to launch the Vivado IDE:

start_gui

Chapter 2: Understanding Use Models

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 16Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/getting-started-with-the-vivado-ide.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/getting-started-with-the-vivado-ide.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=16

Working with Tcl
All supported design flows and use models can be run using Tcl commands. You can use Tcl
scripts to run the entire design flow, including design analysis and reporting, or to run parts of
the design flow, such as design creation and synthesis. You can use either individual Tcl
commands or saved scripts of Tcl commands.

If you prefer working directly with Tcl commands, you can interact with your design using a
Vivado Design Suite Tcl shell, using the Tcl Console from within the Vivado IDE. For more
information about using Tcl and Tcl scripting, see the Vivado Design Suite User Guide: Using Tcl
Scripting (UG894) and Vivado Design Suite Tcl Command Reference Guide (UG835). For a step-by-
step tutorial that shows how to use Tcl in the Vivado tools, see the Vivado Design Suite Tutorial:
Design Flows Overview (UG888).

For more information on using a Tcl-based approach using either the Project Mode or Non-
Project Mode, see Understanding Project Mode and Non-Project Mode.

Related Information

Using Project Mode
Using Non-Project Mode

Launching the Vivado Design Suite Tcl Shell
Use the following command to invoke the Vivado Design Suite Tcl Shell either at the Linux
command prompt or within a Windows Command Prompt window:

vivado -mode tcl

Note: On Windows, you can also select Start → All Programs → Xilinx Design Tools → Vivado <version> → 
Vivado <version> Tcl Shell.

Launching the Vivado Tools Using a Batch Tcl Script
You can use the Vivado tools in batch mode by supplying a Tcl script when invoking the tool. Use
the following command either at the Linux command prompt or within a Windows Command
Prompt window:

vivado -mode batch -source <your_Tcl_script>

Note: When working in batch mode, the Vivado tools exit after running the specified script.

Chapter 2: Understanding Use Models

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 17Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug888-vivado-design-flows-overview-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=17

Using the Vivado IDE with a Tcl Flow
When working with Tcl, you can still take advantage of the interactive GUI-based analysis and
constraint definition capabilities in the Vivado IDE. You can open designs in the Vivado IDE at
any stage of the design cycle, as described in Performing Design Analysis Using the Vivado IDE.
You can also save the design database at any time as a checkpoint file, and open the checkpoint
later as described in Using Design Checkpoints.

Related Information

Performing Design Analysis Using the Vivado IDE
Using Design Checkpoints

Using Xilinx XHub Stores
The Xilinx® XHub Stores enables you to download Tcl apps, board files, and example designs
from Xilinx's public GitHub repository. The download path for both boards and example designs
can be defined in your Tool→Settings. Third-parties can also contribute to these repositories by
submitting GitHub pull requests. For more information on submitting, please refer to the
documentation on the GitHub for the following repositories:

• Xilinx/XilinxTclStore

• Xilinx/XilinxBoardStore

• Xilinx/XilinxCEDStore

Xilinx Tcl Apps

The Xilinx Tcl Store is an open source repository of Tcl code designed primarily for use in FPGA
designs with the Vivado Design Suite. The Tcl Store provides access to multiple scripts and
utilities contributed from different sources, which solve various issues and improve productivity.
You can install Tcl scripts and also contribute Tcl scripts to share your expertise with others. For
more information on working with Tcl scripts and the Xilinx Tcl Store, see the Vivado Design Suite
User Guide: Using Tcl Scripting (UG894).

Board Files

Board files define external connectivity for Vivado. Board files information is available in the IP
integrator when you select a board, as opposed to a part, when creating the project. Board
interfaces can be enabled in the IP integrator by selecting the appropriate interface in the Boards
tab in Vivado. For more information, see Vivado Design Suite User Guide: Designing IP Subsystems
using IP Integrator (UG994) and Integrated Interlaken up to 150G LogiCORE IP Product Guide
(PG169).

Chapter 2: Understanding Use Models

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 18Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug894-vivado-tcl-scripting.pdf;a=xXilinxTclStore
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=interlaken;v=latest;d=pg169-interlaken.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=18

Example Design

Example designs are available in Vivado to demonstrate a particular functionality. By hosting
example designs on GitHub, they are updated asynchronously to the Vivado release. Example
designs are accessed through the new project wizard when installed through the Xilinx XHub
Store.

Understanding Project Mode and Non-Project
Mode

The Vivado Design Suite has two primary use models: Project Mode and Non-Project Mode.
Both Project Mode and Non-Project Mode can be developed and used through either the Vivado
IDE, or through Tcl commands and batch scripts. However, the Vivado IDE offers many benefits
for the Project Mode, such as the Flow Navigator graphical workflow interface. Tcl commands are
the simplest way to run the Non-Project Mode.

Project Mode
The Vivado Design Suite takes advantage of a project based architecture to assemble, implement,
and track the state of a design. This is referred to as Project Mode. In Project Mode, Vivado tools
automatically manage your design flow and design data.

TIP: The key advantage of Project Mode is that the Vivado Design Suite manages the entire design process,
including dependency management, report generation, data storage, etc.

When working in Project Mode, the Vivado Design Suite creates a directory structure on disk in
order to manage design source files, either locally or remotely, and manage changes and updates
to the source files.

Note: Certain operating systems (for example, Microsoft Windows) restrict the number of characters (such
as 256) that can be used for the file path and file name. If your operating system has such a limitation,
Xilinx recommends that you create projects closer to the drive root to keep file paths and names as short
as possible.

The project infrastructure is also used to manage the automated synthesis and implementation runs, track
run status, and store synthesis and implementation results and reports. For example:

• If you modify an HDL source after synthesis, the Vivado Design Suite identifies the current results as
out-of-date, and prompts you for re-synthesis.

• If you modify design constraints, the Vivado tools prompt you to either re-synthesize, re-implement, or
both.

• After routing is completed, the Vivado tool automatically generates timing, DRC, methodology, and
power reports.

Chapter 2: Understanding Use Models

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=19

• The entire design flow can be run with a single click within the Vivado IDE.

For detailed information on working with projects, see Chapter 3: Using Project Mode.

Related Information

Using Project Mode

Non-Project Mode
Alternatively, you can choose an in-memory compilation flow in which you manage sources and
the design process yourself, known as Non-Project Mode. In-memory compilation enables
project settings to be applied to Non-Project based designs. In Non-Project Mode, you manage
design sources and the design process yourself using Tcl commands or scripts. The key advantage
is that you have full control over each step of the flow.

When working in Non-Project Mode, source files are read from their current locations, such as
from a revision control system, and the design is compiled through the flow in memory. You can
run each design step individually using Tcl commands. You can also use Tcl commands to set
design parameters and implementation options.

You can save design checkpoints and create reports at any stage of the design process. Each
implementation step can be tailored to meet specific design challenges, and you can analyze
results after each design step. In addition, you can open the Vivado IDE at any point for design
analysis and constraints assignment.

In Non-Project Mode, each design step is controlled using Tcl commands. For example:

• If you modify an HDL file after synthesis, you must remember to rerun synthesis to update the
in-memory netlist.

• If you want a timing report after routing, you must explicitly generate the timing report when
routing completes.

• Design parameters and implementation options are set using Tcl commands and parameters.

• You can save design checkpoints and create reports at any stage of the design process using
Tcl.

As the design flow progresses, the representation of the design is retained in memory in the
Vivado Design Suite. Non-Project Mode discards the in-memory design after each session and
only writes data to disk that you instruct it to. For more information on Non-Project Mode, see
Chapter 4: Using Non-Project Mode.

Related Information

Using Non-Project Mode

Chapter 2: Understanding Use Models

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=20

Feature Differences
In Project Mode, the Vivado IDE tracks the history of the design and stores pertinent design
information. However, because many features are automated, you have less control in the default
flow. For example, only a standard set of report files is generated with each run. However,
through Tcl commands or scripting, you have access to customize the flow and features of the
tool in Project Mode.

The following automated features are only available when using Project Mode:

• Out-of-the-box design flow

• Easy-to-use, push-button interface

• Powerful Tcl scripting language for customization

• Source file management and status

• Automatically generated standard reports

• Storage and reuse of tool settings and design configuration

• Experimentation with multiple synthesis and implementation runs

• Run results management and status

Non-Project Mode, is more of a compilation methodology where you have complete control over
every action executed through a Tcl command. This is a fully customizable design flow suited to
specific designers looking for control and batch processing. All of the processing is done in
memory, so no files or reports are generated automatically. Each time you compile the design,
you must define all of the sources, set all tool and design configuration parameters, launch all
implementation commands, and generate report files. This can be accomplished using a Tcl run
script, because a project is not created on disk, source files remain in their original locations and
design output is only created when and where you specify. This method provides you with all of
the power of Tcl commands and full control over the entire design process. Many users prefer
this batch compilation style interaction with the tools and the design data.

The following table summarizes the feature differences between Project Mode and Non-Project
Mode.

Table 1: Project Mode versus Non-Project Mode Features

Flow Element Project Mode Non-Project Mode
Design Source File Management Automatic Manual

Flow Navigation Guided Manual

Flow Customization Unlimited with Tcl commands Unlimited with Tcl commands

Reporting Automatic Manual

Analysis Stages Designs and design checkpoints Designs and design checkpoints

Chapter 2: Understanding Use Models

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=21

Command Differences
Tcl commands vary depending on the mode you use, and the resulting Tcl run scripts for each
mode are different. In Non-Project Mode, all operations and tool settings require individual Tcl
commands, including setting tool options, running implementation commands, generating
reports, and writing design checkpoints. In Project Mode, wrapper commands are used around
the individual synthesis, implementation, and reporting commands.

For example, in Project Mode, you add sources to the project for management using the
add_files Tcl commands. Sources can be copied into the project to maintain a separate version
within the project directory structure or can be referenced remotely. In Non-Project Mode, you
use the read_verilog, read_vhdl, read_xdc, and read_* Tcl commands to read the
various types of sources from their current location.

In Project Mode, the launch_runs command launches the tools with preconfigured run
strategies and generates standard reports. This enables consolidation of implementation
commands, standard reporting, use of run strategies, and run status tracking. However, you can
also run custom Tcl commands before or after each step of the design process. Run results are
automatically stored and managed within the project. In Non-Project Mode, individual commands
must be run, such as opt_design, place_design, and route_design.

Many Tcl commands can be used in either mode, such as the reporting commands. In some cases,
Tcl commands are specific to either Project Mode or Non-Project Mode. Commands that are
specific to one mode must not be mixed when creating scripts. For example, if you are using the
Project Mode you must not use base-level commands such as synth_design, because these
are specific to Non-Project Mode. If you use Non-Project Mode commands in Project Mode, the
database is not updated with status information and reports are not automatically generated.

Note: Project Mode includes GUI operations, which result in a Tcl command being executed in most cases.
The Tcl commands appear in the Vivado IDE Tcl Console and are also captured in the vivado.jou file.
You can use this file to develop scripts for use with either mode.

The following figure shows the difference between Project Mode and Non-Project Mode Tcl
commands.

Chapter 2: Understanding Use Models

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=22

Figure 4: Project Mode and Non-Project Mode Commands

create_project …
add_files …
import_files …
…

launch_run synth_1
wait_on_run synth_1
open_run synth_1
report_timing_summary

launch_run impl_1
wait_on_run impl_1
open_run impl_1
report_timing_summary

launch_run impl_1 –to_step_write_bitstream
wait_on_run impl_1

read_verilog …
read_vhdl …
read_ip …
read_xdc …
read_edif …
…

synth_design …
report_timing_summary
write_checkpoint

opt_design
write_checkpoint
place_design
write_checkpoint
route_design
report_timing_summary
write_checkpoint

write_bitstream

GUI Tcl Script Tcl Script

Project Mode Non-Project Mode

X12974

Using Third-Party Design Software Tools
Xilinx has strategic partnerships with several third-party design tool suppliers. The following
software solutions include synthesis and simulation tools only.

Running Logic Synthesis
The Xilinx FPGA logic synthesis tools supplied by Synopsys and Mentor Graphics are supported
for use with the Vivado Design Suite. In the Vivado Design Suite, you can import the synthesized
netlists in structural Verilog or EDIF format for use during implementation. In addition, you can
use the constraints (SDC or XDC) output by the logic synthesis tools in the Vivado Design Suite.

Chapter 2: Understanding Use Models

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=23

All Xilinx IP and Block Designs use Vivado Synthesis. Use of third party synthesis for Xilinx IP or
IP integrator block designs is not supported, with a few exceptions, such as the memory IP for 7
series devices. Refer to the data sheet for a specific IP for more information.

Running Logic Simulation
Logic simulation tools supplied by Mentor Graphics, Cadence, Aldec, and Synopsys are integrated
and can be launched directly from the Vivado IDE. Netlists can also be produced for all supported
third-party logic simulators. From the Vivado Design Suite, you can export complete Verilog or
VHDL netlists at any stage of the design flow for use with third-party simulators. In addition, you
can export structural netlists with post-implementation delays in standard delay format (SDF) for
use in third-party timing simulation. The Vivado Design Suite also generates simulation scripts for
enterprise users. Using the scripts and compiled libraries, enterprise users can run the simulation
without the Vivado Design Suite environment.

VIDEO: For more information, see the Vivado Design Suite QuickTake Video: Simulating with Cadence IES
in Vivado and Vivado Design Suite QuickTake Video: Simulating with Synopsys VCS in Vivado.

Note: Some Xilinx IP provides RTL sources in only Verilog or VHDL format. After synthesis, structural
netlists can be created in either language.

Interfacing with PCB Designers
The I/O planning process is critical to high-performing systems. Printed circuit board (PCB)
designers are often concerned about the relationship and orientation of the FPGA on the PCB.
These large ball grid array (BGA) devices are often the most difficult routing challenge a PCB
designer faces. Additional concerns include critical interface routing, location of power rails, and
signal integrity. A close collaboration between FPGA and PCB designers can help address these
design challenges. The Vivado IDE enables the designer to visualize the relationship between the
physical package pins and the internal die pads to optimize the system-level interconnect.

The Vivado Design Suite has several methods to pass design information between the FPGA,
PCB, and system design domains. I/O pin configuration can be passed back and forth using a
comma separated value (CSV) spreadsheet, RTL header, or XDC file. The CSV spreadsheet
contains additional package and I/O information that can be used for a variety of PCB design
tasks, such as matched length connections and power connections. An I/O Buffer Information
Specification (IBIS) model can also be exported from the Vivado IDE for use in signal integrity
analysis on the PCB.

For more information see:

• Vivado Design Suite User Guide: I/O and Clock Planning (UG899)

• Vivado Design Suite QuickTake Video: I/O Planning Overview

Chapter 2: Understanding Use Models

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 24Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/simulating-with-cadence-ies-in-vivado.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/simulating-with-cadence-ies-in-vivado.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/simulating-with-synopsys-vcs-in-vivado.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/i-and-o-planning-overview.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=24

• Vivado Design Hub: I/O and Clock Planning

Chapter 2: Understanding Use Models

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 25Send Feedback

https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0007-vivado-pin-planning-hub.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=25

Chapter 3

Using Project Mode
In Project Mode, the Vivado® Design Suite creates a project directory structure and
automatically manages your source files, constraints, IP data, synthesis and implementation run
results, and reports. In this mode, the Vivado Design Suite also manages and reports on the
status of the source files, configuration, and the state of the design.

In Project Mode, the Vivado Design Suite creates a project directory structure and automatically
manages your source files, constraints, IP data, synthesis and implementation run results, and
reports. In this mode, the Vivado Design Suite also manages and reports on the status of the
source files, configuration, and the state of the design.

In the Vivado IDE, you can use the Flow Navigator (shown in the following figure) to launch
predefined design flow steps, such as synthesis and implementation. When you click Generate
Bitstream or Generate Device Image for Versal ACAP, the Vivado IDE ensures that the design is
synthesized and implemented with the most current design sources and generates a bitstream
file. The environment provides an intuitive pushbutton design flow and also offers advanced
design management and analysis features. Runs are launched with wrapper Tcl scripts that
consolidate the various implementation commands and automatically generates standard reports.
You can use various run strategies to address different design challenges, such as routing density
and timing closure. You can also simultaneously launch multiple implementation runs to see
which will achieve the best results.

Note: Run strategies only apply to Project Mode. In Non-Project Mode, all directives and command options
must be set manually.

You can run Project Mode using the Vivado IDE or using Tcl commands or scripts. In addition,
you can alternate between using the Vivado IDE and Tcl within a project. When you open or
create projects in the Vivado IDE, you are presented with the current state of the design, run
results, and previously generated reports and messages. You can create or modify sources, apply
constraints and debug information, configure tool settings, and perform design tasks.

RECOMMENDED: Project Mode is the easiest way to get acquainted with features of the Vivado tools
and Xilinx® recommendations.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=26

Vivado has the unique capability to open the design at various stages of the design flow. You can
open designs for analysis and constraints definition after RTL elaboration, synthesis, and
implementation. When you open a design, the Vivado tools compile the netlist and constraints
against the target device and show the design in the Vivado IDE. After you open the design, you
can use a variety of analysis and reporting features to analyze the design using different criteria
and viewpoints. You can also apply and save constraint and design changes. For more
information, see Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906).

Figure 5: Flow Navigator in the Vivado IDE

Project Mode Advantages
Project Mode has the following advantages:

• Automatically manages project status, HDL sources, constraint files, IP cores and block
designs.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 27Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=27

• Generates and stores synthesis and implementation results

• Includes advanced design analysis capabilities, including cross probing from implementation
results to RTL source files

• Automates setting command options using run strategies and generates standard reports

• Supports the creation of multiple runs to configure and explore available constraint or
command options

Creating Projects
The Vivado Design Suite supports different types of projects for different design purposes. For
example, you can create a project with RTL sources or synthesized netlists from third-party
synthesis providers. You can also create empty I/O planning projects to enable device exploration
and early pin planning. The Vivado IDE only displays commands relevant to the selected project
type.

In the Vivado IDE, the Create Project wizard walks you through the process of creating a project.
The wizard enables you to define the project, including the project name, the location in which to
store the project, the project type (for example, RTL, netlist, and so forth), and the target part.
You can add different types of sources, such as RTL, IP, Block designs, XDC or SDC constraints,
simulation test benches, DSP modules from System Generator as IP, or Vivado High-Level
Synthesis (HLS), and design documentation. When you select sources, you can determine
whether to reference the source in its original location or to copy the source into the project
directory. The Vivado Design Suite tracks the time and date stamp of each file and report status.
If files are modified, you are alerted to out-of-date source or design status. For more information,
see this link in the Vivado Design Suite User Guide: System-Level Design Entry (UG895).

CAUTION! The Windows operating system has a 260 character limit for path lengths which can affect the
Vivado tools. To avoid this issue, use the shortest possible names and directory locations when creating
projects, defining IP or managed IP projects, or creating block designs.

Different Types of Projects
The Vivado Design Suite allows for different design entry points depending on your source file
types and design tasks. Following are the different types of projects you can use to facilitate
those tasks:

• RTL Project: You can add RTL source files and constraints, configure IP with the Vivado IP
catalog, create IP subsystems with the Vivado IP integrator, synthesize and implement the
design, and perform design planning and analysis.

• Post-Synthesis Project: You can import third-party netlists, implement the design, and
perform design planning and analysis.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 28Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=28

• I/O Planning Project: You can create an empty project for use with early I/O planning and
device exploration prior to having RTL sources.

• Imported Project: You can import existing project sources from the ISE Design Suite, Xilinx
Synthesis Technology (XST), or Synopsys Synplify.

• Example Project: You can explore several example projects, including example Zynq®-7000
SoC or MicroBlaze™ embedded designs with available Xilinx evaluation boards.

• DFx: You can dynamically reconfigure an operating FPGA design by loading a partial bitstream
file to modify reconfigurable regions of the device.

Managing Source Files in Project Mode
In Project Mode, source management is performed by the project infrastructure. The Vivado IDE
manages different types of sources independently, including RTL design sources, IP, simulation
sources, and constraint sources. It uses the concept of a source set to enable multiple versions of
simulation or design constraints sets. This enables you to manage and experiment with different
sets of design constraints in one design project. The Vivado IDE also uses the same approach for
simulation, enabling management of module-level simulation sets for simulating different parts of
the design.

When adding sources, you can reference sources from remote locations or copy sources locally
into the project directory structure. Sources can be read from any network accessible location.
With either approach, the Vivado IDE tracks the time and date stamps on the files to check for
updates. If source files are modified, the Vivado IDE changes the project status to indicate
whether synthesis or implementation runs are out of date. Sources with read-only permissions
are processed accordingly.

When adding sources in the Vivado IDE, RTL files can optionally be scanned to look for include
files or other global source files that might be in the source directory. All source file types within
a specified directory or directory tree can be added with the File → Add Sources command. The
Vivado IDE scans directories and subdirectories and imports any file with an extension matching
the set of known sources types.

After sources are added to a project, the compilation order and logic hierarchy is derived and
displayed in the Sources window. This can help you to identify malformed RTL or missing
modules. The Messages window shows messages related to the RTL compilation, and you can
cross probe from the messages to the RTL sources. In addition, source files can be enabled and
disabled to allow for control over configuration.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=29

Using Remote, Read-Only Sources

The Vivado Design Suite can utilize remote source files when creating projects or when read in
Non-Project Mode. Source files can be read-only, which compiles the files in memory but does
not allow changes to be saved to the original files. Source files can be saved to a different
location if required.

Archiving Projects

In the Vivado IDE, the File → Project → Archive command creates a ZIP file for the entire project,
including the source files, IP, design configuration, and optionally the run result data. If the
project uses remote sources, the files are copied into the project locally to ensure that the
archived project includes all files.

Creating a Tcl Script to Recreate the Project

In the Vivado IDE, the File → Project → Write Tcl command creates a Tcl script you can run to
recreate the entire project, including the source files, IP, and design configuration. You can check
this script into a source control system in place of the project directory structure.

Working with a Revision Control System

Many design teams use source management systems to store various design configurations and
revisions. There are multiple commercially available systems, such as Revision Control System
(RCS), Concurrent Versions System (CVS), Subversion (SVN), ClearCase, Perforce, Git, BitKeeper,
and many others. The Vivado tools can interact with all such systems. The Vivado Design Suite
uses and produces files throughout the design flow that you can manage with a revision control
system. For more information on working with revision control software, refer to Source
Management and Revision Control Recommendations.

VIDEO: For information on best practices when using revision control systems with the Vivado tools, see
the Vivado Design Suite QuickTake Video: Using Vivado Design Suite with Revision Control.

Understanding the Flow Navigator
The Flow Navigator (shown in the following figure) provides control over the major design
process tasks, such as project configuration, synthesis, implementation, and bitstream generation.
The commands and options available in the Flow Navigator depend on the status of the design.
Unavailable steps are grayed out until required design tasks are completed.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 30Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-design-suite-revision-control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-design-suite-revision-control.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=30

Figure 6: Flow Navigator

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=31

The Flow Navigator (shown in the following figure) differs when working with projects created
with third-party netlists. For example, system-level design entry, IP, and synthesis options are not
available.

Figure 7: Flow Navigator for Third-Party Netlist Project

As the design tasks complete, you can open the resulting designs to analyze results and apply
constraints. In the Flow Navigator, click Open Elaborated Design, Open Synthesized Design, or
Open Implemented Design. For more information, see Opening Designs to Perform Design
Analysis and Constraints Definition.

When you open a design, the Flow Navigator shows a set of commonly used commands for the
applicable phase of the design flow. Selecting any of these commands in the Flow Navigator
opens the design, if it is not already opened, and performs the operation. For example, the
following figure shows the commands related to synthesis.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=32

Figure 8: Synthesis Section in the Flow Navigator

Related Information

Opening Designs to Perform Design Analysis and Constraints Definition

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=33

Performing System-Level Design Entry
Automated Hierarchical Source File Compilation and
Management
The Vivado IDE Sources window (shown in the following figure) provides automated source file
management. The window has several views to display the sources using different methods.
When you open or modify a project, the Sources window updates the status of the project
sources. A quick compilation of the design source files is performed and the sources appear in
the Compile Order view of the Sources window in the order they will be compiled by the
downstream tools. Any potential issues with the compilation of the RTL hierarchy are shown as
well as reported in the Message window. For more information on sources, see this link in the
Vivado Design Suite User Guide: System-Level Design Entry (UG895).

TIP: If you explicitly set a module as the top module, the module is retained and passed to synthesis.
However, if you do not explicitly set a top module, the Vivado tools select the best possible top module
from the available source files in the project. If a file includes syntax errors and does not elaborate, this file
is not selected as the top module by the Vivado tools.

Constraints and simulation sources are organized into sets. You can use constraint sets to
experiment with and manage constraints. You can launch different simulation sessions using
different simulation source sets. You can add, remove, disable, or update any of the sources. For
more information on constraints, see the Vivado Design Suite User Guide: Using Constraints
(UG903). For more information on simulation, see the Vivado Design Suite User Guide: Logic
Simulation (UG900).

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 34Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=34

Figure 9: Hierarchical Sources View window

RTL Development
The Vivado IDE includes helpful features to assist with RTL development:

• Integrated Vivado IDE Text Editor to create or modify source files

• Automatic syntax and language construct checking across multiple source files

• Language templates for copying recommended example logic constructs

• Find in Files feature for searching template libraries using a variety of search criteria

• RTL elaboration and interactive analysis

• RTL design rule checks

• RTL constraints assignment and I/O planning

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=35

RTL Elaboration and Analysis
When you open an elaborated RTL design, the Vivado IDE compiles the RTL source files and
loads the RTL netlist for interactive analysis. You can check RTL structure, syntax, and logic
definitions. Analysis and reporting capabilities include:

• RTL compilation validation and syntax checking

• Run checks to ensure your RTL is compliant with the UltraFast Methodology rules

• Netlist and schematic exploration

• Design rule checks

• Early I/O pin planning using an RTL port list

• Ability to select an object in one view and cross probe to the object in other views, including
instantiations and logic definitions within the RTL source files

For more information on RTL development and analysis features, see the Vivado Design Suite User
Guide: System-Level Design Entry (UG895). For more information on RTL-based I/O planning, see
the Vivado Design Suite User Guide: I/O and Clock Planning (UG899).

Timing Constraint Development and Verification
The Vivado IDE provides a Timing Constraints wizard to walk you through the process of creating
and validating timing constraints for the design. The wizard identifies clocks and logic constructs
in the design and provides an interface to enter and validate the timing constraints in the design.
It is only available in synthesized and implemented designs, because the in-memory design must
be clock aware post-synthesis. For more information, see the Vivado Design Suite User Guide:
Using Constraints (UG903).

TIP: The Vivado Design Suite only supports Synopsys design constraints (SDC) and Xilinx design
constraints (XDC). It does not support Xilinx user constraints files (UCF) used with the ISE Design Suite nor
does it directly support Synplicity design constraints. For information on migrating from UCF format to
XDC format, see this link in the ISE to ISE to Vivado Design Suite Migration Guide (UG911).

Working with IP
The Vivado Design Suite provides an IP-centric design flow that lets you configure, implement,
verify, and integrate IP modules to your design from various design sources. The tool also
provides an extensible IP catalog that includes Xilinx LogiCORE™ IP that can be configured and
verified as a standalone module or within the context of a system-level design. For more
information, see the Vivado Design Suite User Guide: Designing with IP (UG896).

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 36Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug911-vivado-migration.pdf;a=MigratingUCFConstraintsToXDC
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=36

You can also package custom IP using the IP-XACT protocol and make it available through the
Vivado IP catalog. Xilinx IP uses the AMBA® AXI4 interconnect standard to enable faster system-
level integration. Existing IP can be added to a design as either RTL source or a netlist.

The available methods to work with IP in a design are as follows:

• Use the managed IP flow to customize IP and generate output products, including a
synthesized design checkpoint (DCP) to preserve the customization for use in the current and
future releases. For more information, see this link in the Vivado Design Suite User Guide:
Design Flows Overview (UG892).

• Use IP in either Project or Non-Project modes by importing or reading the created Xilinx core
instance (XCI) file. This is the recommended method for large projects with many team
members.

• Access the IP catalog from a project to customize and add IP to a design. Store the IP files
either local to the project, or save them externally from the project. This is the recommended
method for small team projects.

Configuring IP
The Vivado IP catalog (shown in the following figure) lets you browse the available IP for the
target device in the current project. The catalog shows version and licensing information about
each IP and provides the applicable data sheet.

The Vivado IP catalog displays either Included or Purchase under the License column in the IP
catalog. The following definitions apply to IP offered by Xilinx:

• Included: The Xilinx End User License Agreement includes Xilinx LogiCORE™ IP cores that are
licensed within the Xilinx Vivado Design Suite software tools at no additional charge.

• Purchase: The Core License Agreement applies to fee-based Xilinx LogiCORE IP, and the Core
Evaluation License Agreement applies to the evaluation of fee-based Xilinx Xilinx IP.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 37Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf;a=UsingManageIPProjects
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=37

Figure 10: Vivado IP Catalog

This license status information is available for IP cores used in a project using Report IP Status by
selecting Reports → Report IP Status. For additional information on how to obtain IP licenses, see
the Xilinx IP Licensing page.

Xilinx and its partners provide additional IP cores that are not shipped as part of the default
Vivado IP Catalog. For more information on the available IP, see the Intellectual Property page on
the Xilinx website.

You can double-click any IP to launch the Configuration wizard to instantiate an IP into your
design. After configuring the IP, a Xilinx Core Instance (.xci) file is created. This file contains all
the customization options for the IP. From this file the tool can generate all output products for
the IP. These output products consist of HDL for synthesis and simulation, constraints, possibly a
test bench, C modules, example designs, etc. The tool creates these files based upon the
customization options used.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 38Send Feedback

https://www.xilinx.com/ipcenter/ip_license/ip_licensing.htm
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=38

Generating IP Output Products
IP output products are created to enable synthesis, simulation, and implementation tools to use a
specific configuration of the IP. While generating output products, a directory structure is set up
to store the various output products associated with the IP. The folders and files are fairly self-
explanatory and should be left intact. The Vivado Design Suite generates the following output
products:

• Instantiation template

• RTL source files and XDC constraints

• Synthesized design checkpoint (default)

• Third-party simulation sources

• Third-party synthesis sources

• Example design (for applicable IP)

• Test bench (for applicable IP)

• C Model (for applicable IP)

TIP: In Project Mode, missing output products are automatically generated during synthesis, including a
synthesized design checkpoint (DCP) file for the out-of-context flow. In Non-Project Mode, the output
products must be manually generated prior to global synthesis.

For each IP customized in your design, you should generate all available output products,
including a synthesized design checkpoint. Doing so provides you with a complete representation
of the IP that can be archived or placed in revision control. If future Vivado Design Suite versions
do not include that IP, or if the IP has changed in undesirable ways (such as interface changes),
you have all the output products required to simulate, and to use for synthesis and
implementation with future Vivado Design Suite releases.

Using IP Core Containers

The optional Core Container feature helps simplify working with revision control systems by
providing a single file representation of an IP. By enabling this option, you can store IP
configuration files (XCI) and output products in a single, binary IP core container file (XCIX) rather
than a loose directory structure. The XCIX file is similar to the XCI file and works in a similar way
in the tool. For more information on using IP core containers, see the Vivado Design Suite User
Guide: Designing with IP (UG896).

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 39Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=39

Out-of-Context Design Flow
By default, the Vivado Design Suite uses an out-of-context (OOC) design flow to synthesize IP
from the IP catalog, and block designs from the Vivado IP integrator. This OOC flow lets you
synthesize, implement, and analyze design modules in a hierarchical design, IP cores, or block
designs, independent of the top-level design. The OOC flow reduces design cycle time, and
eliminates design iterations, letting you preserve and reuse synthesis results.

IP cores that are added to a design from the Vivado IP catalog default to use the out-of-context
flow. For more information, see this link in the Vivado Design Suite User Guide: Designing with IP
(UG896). Block designs created in the Vivado IP integrator also default to the OOC flow when
generating output products. For more information, see this link in the Vivado Design Suite User
Guide: Designing IP Subsystems Using IP Integrator (UG994).

The Vivado Design Suite also supports global synthesis and implementation of a design, in which
all modules, block designs, and IP cores, are synthesized as part of the integrated top-level
design. You can mark specific modules or IP for out-of-context synthesis, and other modules for
inclusion in the global synthesis of the top-level design. In the case of a block design from Vivado
IP integrator, the entire block design can be specified for OOC synthesis, or you can specify OOC
synthesis for each individual IP, or per IP used in the block design. When run in global mode,
Vivado synthesis has full visibility of design constraints. When run in OOC mode, estimated
constraints are used during synthesis.

The Vivado synthesis tool also provides a cache to preserve OOC synthesis results for reuse in
other designs that use the same IP customization. This can significantly speed synthesis of large
complex designs.

A design checkpoint (DCP) is created for OOC IP or modules, which contains the synthesized
netlist and design constraints. OOC modules are seen as black boxes in the top-level design until
the synthesized design is open and all the elements are assembled. Before the top-level
synthesized design is opened, resource utilization and analysis of the top-level design may not
include netlist or resource information from the OOC modules, or black boxes, and so will not
provide a complete view of the design.

IMPORTANT! To obtain more accurate reports, you should open and analyze the top-level synthesized
design, which will include all the integrated OOC modules.

The OOC flow is supported in Vivado synthesis, implementation, and analysis. For more
information refer to this link in the Vivado Design Suite User Guide: Synthesis (UG901). OOC
synthesis can also be used to define a hierarchical design methodology and a team design
approach as defined in the Vivado Design Suite User Guide: Hierarchical Design (UG905).

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 40Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf;a=xGeneratingOutputProducts
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=40

IP Constraints
Many IP cores contain XDC constraint files that are used during Vivado synthesis and
implementation. These constraints are applied automatically in both Project Mode and Non-
Project Mode if the IP is customized from the Vivado IP catalog.

Many IP cores reference their input clocks in these XDC files. These clocks can come either from
the user through the top level design, or from other IP cores in the design. By default, the Vivado
tools process any IP clock creation and any user-defined top-level clock creation early. This
process makes these clocks available to the IP cores that require them. Refer to this link in Vivado
Design Suite User Guide: Designing with IP (UG896) for more information.

Validating the IP
You can verify Vivado IP by synthesizing the IP and using behavioral or structural logic
simulation, and by implementing the IP module to validate timing, power, and resource
utilization. Typically, a small example design is used to validate the standalone IP. You can also
validate the IP within the context of the top-level design project. Because the IP creates
synthesized design checkpoints, this bottom-up verification strategy works well either
standalone or within a project.

Many of the Xilinx IP delivered in the Vivado IP catalog have an example design. You can
determine if an IP comes with an example design by selecting the IP from the IP Sources area of
the Manage IP or RTL project and see if the Open IP Example Design is selectable, as shown in
the following figure. This can also be done using Tcl by examining the SUPPORTED_TARGETS
property of the IP.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 41Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf;a=xWorkingWithIPConstraints
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=41

Figure 11: Opening an Example Design

Use the Open IP Example Design right-click menu command for a selected IP to create an
example design to validate the standalone IP within the context of the example design project.
For more details on working with example designs and IP output products, refer to the Vivado
Design Suite User Guide: Designing with IP (UG896).

Some IP deliver test benches with the example design, which you can use to validate the
customized IP functionality. You can run behavioral, post synthesis, or post-implementation
simulations. You can run either functional or timing simulations. In order to perform timing/
functional simulations you will need to synthesize/implement the example design. For specific
information on simulating an IP, refer to the product guide for the IP. For more detail on
simulation, refer to the Vivado Design Suite User Guide: Logic Simulation (UG900).

Using Memory IP
Additional I/O pin planning steps are required when using Xilinx memory IP. After the IP is
customized, you then assign the top-level I/O ports to physical package pins in either the
elaborated or synthesized design in the Vivado IDE.

All of the ports associated with each memory IP are grouped together into an I/O Port Interface
for easier identification and assignment. A Memory Bank/Byte Planner is provided to assist you
with assigning Memory I/O pin groups to Byte lanes on the physical device pins.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 42Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=42

For more information, see this link in the Vivado Design Suite User Guide: I/O and Clock Planning
(UG899).

If you have memory IP in your design, see the following resources:

• For details on simulation, see the UltraScale Architecture-Based FPGAs Memory IP LogiCORE IP
Product Guide (PG150).

• For an example of simulating memory IP with a MicroBlaze™ processor design, see the
Reference System: Kintex-7 MicroBlaze System Simulation Using IP Integrator (XAPP1180).

Packaging Custom IP and IP Subsystems
The Vivado Design Suite lets you package custom IP or block designs into IP to list in the Vivado
IP catalog for use in designs or in the Vivado IP integrator. You can package IP from a variety of
sources, such as from a collection of RTL source files, a Vivado IP integrator block design, or an
entire Vivado Design Suite project.

The location of the packaged IP can be added to the IP Repository section of the Settings dialog
box which can be accessed through Tools → Settings menu in the Vivado IDE. After a repository
of one or more IP has been added, the IP core(s) from the repository will be shown in the IP
Catalog.

TIP: Before packaging your IP HDL, ensure its correctness by simulating and synthesizing to validate the
design.

There are multiple ways to configure the IP and make it available for use within the Vivado IP
catalog and IP integrator. For example, the Create and Package IP wizard takes you step-by-step
through IP packaging and lets you package IP from a project, a block design, or a specified
directory. You can also create and package a new template AXI4 peripheral for use in embedded
processor designs.

IMPORTANT! Ensure that the desired list of supported device families is defined properly while creating
the custom IP definition. This is especially important if you want your IP to be used with multiple device
families.

For more information, see the Vivado Design Suite User Guide: Creating and Packaging Custom IP
(UG1118) and Vivado Design Suite Tutorial: Creating, Packaging Custom IP (UG1119).

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 43Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug899-vivado-io-clock-planning.pdf;a=xIOPlanningForUltraScaleMemoryIP
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ultrascale_memory_ip;v=latest;d=pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1180.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1119-vivado-creating-packaging-ip-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=43

Upgrading IP
With each release of the Vivado Design Suite, new IP versions are introduced. It is recommended
that you upgrade the IP used in your designs at each new release. However, you can also use the
older version as a static IP that is already configured and synthesized to avoid introducing any
unnecessary changes into your design. To use the static version of an existing IP, all of the output
products must have been previously generated for the IP, and no changes to those generated
output files will be possible. For more information refer to this link in the Vivado Design Suite User
Guide: Designing with IP (UG896).

To report on the current status of the IP in a design, you can use the report_ip_status Tcl
command. If changes are needed, you can selectively upgrade the IP in the design to the latest
version. A change log for each IP details the changes made and lists any design updates that are
required. For example, top-level port changes are occasionally made in newer IP versions, so
some design modification might be required. If the IP version has changed in the latest release,
the version used in the design becomes locked and must be used as a static IP with the available
output products, or must be updated to support the current release. Locked IP are reported as
locked, and appear with a lock symbol in the Sources window of the Vivado IDE.

Creating IP Subsystems with IP Integrator
The Vivado IP integrator enables the creation of Block Designs (.bd), or IP subsystems with
multiple IP stitched together using the AXI4 interconnect protocol. The IP Integrator lets you
quickly connect IP cores to create domain specific subsystems and designs, including embedded
processor-based designs using Zynq UltraScale+ MPSoC, Zynq-7000 SoC, and MicroBlaze
processors. It can instantiate High-Level Synthesis modules from Vivado HLS, DSP modules from
System Generator, and custom user-defined IP as described in Packaging Custom IP and IP
Subsystems.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 44Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf;a=xUpgradingIP
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xreport_ip_status
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=44

Figure 12: Vivado IP Integrator

Using Vivado IP integrator you can drag and drop IP onto the design canvas, connect AXI
interfaces with one wire, and place ports and interface ports to connect the IP subsystem to the
top-level design. These IP block designs can also be packaged as sources (.bd) and reused in
other designs. For more information, see the Vivado Design Suite User Guide: Designing IP
Subsystems Using IP Integrator (UG994) or Vivado Design Suite User Guide: Embedded Processor
Hardware Design (UG898).

Related Information

Packaging Custom IP and IP Subsystems

Building IP Subsystems
The interactive block design capabilities of the Vivado IP integrator make the job of configuring
and assembling groups of IP easy.

TIP: If you prefer to work with a Tcl script, it is suggested to create the block design interactively using the
Vivado IDE and then capture and edit the script as needed to recreate the block design. The IP integrator
can create a Tcl script to re-create the current block design in memory.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 45Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug898-vivado-embedded-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=45

Block Design Containers

Block design containers allow a block diagram to reference a secondary block diagram. This
enables a design to be partitioned into several block diagrams. Block design containers also
support several instances of child block diagrams in a parent block diagram. In this manner, a
logic can be replicated even if each instance has different parametrization. For more information
on block design containers, see Vivado Design Suite User Guide: Designing IP Subsystems using IP
Integrator (UG994).

Referencing RTL Modules in Block Designs

The Module Reference feature of the Vivado IP Integrator lets you quickly add a module or entity
definition from a Verilog or VHDL source file directly into your block design. This provides a
means of quickly adding RTL modules without having to go through the process of packaging the
RTL as an IP to be added through the Vivado IP catalog. The Module Reference flow is quick, but
does not offer the benefits of the working through the IP catalog. Both flows have the benefits
and associated limitations. Refer to this link in Vivado Design Suite User Guide: Designing IP
Subsystems Using IP Integrator (UG994) for more information.

Designer Assistance

To expedite the creation of a subsystem or a design, the IP integrator offers Block Automation
and Connection Automation. The Block Automation feature can be used to configure a basic
processor-based design and some complex IP subsystems, while the Connection Automation
feature can be used to automatically make repetitive connections to different pins or ports of the
design. IP integrator also supports all the Xilinx evaluation boards in the Platform Board Flow, as
described below in Using the Platform Board Flow. This lets the Connection Automation feature
connect the I/O ports of the design to components on the target board. Designer assistance also
helps with defining and connecting clocks and resets. Using Designer Assistance not only
expedites the design process but also helps prevent unintended design errors.

Related Information

Using the Platform Board Flow

Using the Platform Board Flow

The Vivado Design Suite is board aware and can automatically derive I/O constraints and IP
configuration data from included board files. Through the board files, the Vivado Design Suite
knows the various components present on the target boards and can customize and configure an
IP to be connected to a particular board component. Several 7 series, Zynq-7000 SoC, and
UltraScale™ device boards are currently supported. You can download support files for partner-
developed boards from the partner websites or from the Xilinx XHub Store.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 46Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf;a=xReferencingAModule
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=46

The IP integrator shows all the component interfaces on the target board in a separate tab called
the Board tab. You can use this tab to connect to the desired components through the Designer
Assistance feature. All the I/O constraints are automatically generated as a part of using this
feature.

You can also generate board files for custom boards and add the repository that contains the
board file to a project. For more information on generating a custom board file, see this link in the
Vivado Design Suite User Guide: System-Level Design Entry (UG895).

Validating IP Subsystems
IP integrator runs basic design rule checks in real time as the design is being assembled.
However, there is still a potential for design errors, such as the frequency on a clock pin may be
set incorrectly. The tool can catch these types of errors by running a more thorough design
validation. You can run design validation by selecting Tools → Validate Design or through the Tcl
command validate_bd_design.

The Validate Design command applies design rule checks on the block design and reports
warnings and/or errors found in the design. You can cross-probe the warnings and/or errors from
the Messages window to locate objects in the block diagram. Xilinx recommends validating a
block design to catch errors that would otherwise be found later in the design flow.

Running design validation also runs Parameter Propagation on the block design. Parameter
Propagation enables IP integrator to automatically update the parameters associated with a
given IP based on its context and its connections in the design. You can package custom IP with
specific parameter propagation rules, and IP integrator applies these rules as the block diagram is
generated and validated. See this link in Vivado Design Suite User Guide: Designing IP Subsystems
Using IP Integrator (UG994) for more information.

Generating Block Design Output Products
After the block design or IP subsystem has been created, you can generate the block design
including all source codes, necessary constraints for the IP cores, and the structural netlist of the
block design. You can generate the block design by right-clicking on the block design (in the
Sources window) and selecting Generate Output Products from the pop-up menu. In the Vivado
Design Suite Flow Navigator you can also select IP Integrator → Generate Block Design.

There are two modes of OOC supported for block designs in the Vivado Design Suite: Out of
context per Block design and Out of context per IP. Refer to Out-of-Context Design Flow for
more information.

Related Information

Out-of-Context Design Flow

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 47Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf;a=xUsingTheVivadoDesignSuiteBoardFlow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf;a=xPropagatingParametersInIPIntegrator
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=47

Integrating the Block Design into a Top-Level Design
An IP integrator block design can be integrated into a higher-level design or it can be the highest
level in the design hierarchy. To integrate the IP Integrator design into a higher-level design,
instantiate the block design as a module in the higher-level HDL file.

You can perform a higher-level instantiation of the block design by selecting the block design in
the Vivado IDE Sources window and selecting Create HDL Wrapper. This generates a top-level
HDL file for the IP Integrator sub-system. See this link in the Vivado Design Suite User Guide:
Designing IP Subsystems Using IP Integrator (UG994) for more information.

Logic Simulation
The Vivado Design Suite has several logic simulation options for verifying designs or IP. The
Vivado simulator, integrated into the Vivado IDE, allows you to simulate the design, add and view
signals in the waveform viewer, and examine and debug the design as needed.

Figure 13: Simulation at Various Points in the Design Flow

Design
Entry

RTL Simulation
(Recommended before

proceeding to Synthesis
and implementation)

Implementation Post Implementation
functional simulation

Post Implementation timing
simulation (Verilog only)

Synthesis Post Synthesis functional
simulation

Post Synthesis timing
Simulation(Verilog only)

Testbench
Stimulus

Unisim

Unifast

Libraries used
for Timing
simulation

Libraries used for
Functional/RTL

simulation

SecureIP

Simprim
(verilog

only)

SecureIP

X14050-
010320

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 48Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf;a=xIntegratingTheBlockDesignIntoTheTopLevelDesign
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=48

You can use the Vivado simulator to perform behavioral and structural simulation of designs as
well as full timing simulation of implemented designs. The previous figure shows all the places
where Vivado simulation could be used for functional and timing simulation. You can also use
third-party simulators by writing Verilog or VHDL netlists, and SDF files from the elaborated,
synthesized, or implemented design. The Vivado IDE lets you configure and launch simulators
from Mentor Graphics, Synopsys, Cadence, and Aldec. For more information, see this link in the
Vivado Design Suite User Guide: Logic Simulation (UG900).

Simulation Flow Overview
The following are some key suggestions related to simulating in the Vivado Design Suite. Many of
these tips are described in greater detail in the text that follows, or in Vivado Design Suite User
Guide: Logic Simulation (UG900).

1. Run behavioral simulation before proceeding with synthesis and implementation. Issues
identified early will save time and money.

2. Infer logic wherever possible. Instantiating primitives adds significant simulation runtime cost.

3. Always set the Target Language to Mixed unless you do not have a mixed mode license for
your simulator.

4. Turn off the waveform viewer when not in use to improve simulation performance.

5. In the Vivado simulator, turn off debug during xelab for a performance boost.

6. In the Vivado simulator, turn on multi-threading to speed up compile time.

7. When using third-party simulators, always target supported versions. For more information,
see the Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973).

8. Make sure incremental compile is turned on when using third-party simulators.

9. Use the Xilinx Tcl command export_simulation to generate batch scripts for selected
simulators.

10. Generate simulation scripts for individual IP, BDs, and hierarchical modules as well as for the
top-level design.

11. If you are targeting a 7 series device, use UNIFAST libraries to improve simulation
performance.

Note: The UNIFAST libraries are not supported for UltraScale device primitives.

Compiling Simulation Libraries
Vivado delivers precompiled simulation libraries for use with the Vivado simulator, as well as
precompiled libraries for all the static files required by Xilinx IP. When simulation scripts are
created, they reference these precompiled libraries.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 49Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf;a=xUsingThirdPartySimulators
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;t=vivado+install+guide
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=49

When using third-party simulators, you must compile Xilinx simulation libraries prior to running
simulation, as explained in the Vivado Design Suite User Guide: Logic Simulation (UG900). This is
especially true if your design instantiates VHDL primitives or Xilinx IP, the majority of which are
in VHDL form. The simulation tool will return “library binding” failures if you do not precompile
simulation libraries.

You can run the compile_simlib Tcl command to compile the Xilinx simulation libraries for
the target simulator. You can also issue this command from the Vivado IDE by selecting Tools → 
Compile Simulation Libraries.

IMPORTANT! Simulation libraries are pre-compiled and provided for use with the Vivado simulator.
However, you must manually compile the libraries for use with a third-party simulator. Refer to this link in
the Vivado Design Suite User Guide: Logic Simulation (UG900) for more information.

Simulation Time Resolution
Xilinx recommends that you run simulations using a resolution of 1 ps. Some Xilinx primitive
components, such as MMCM, require a 1 ps resolution to work properly in either functional or
timing simulation.

TIP: Because most of the simulation time is spent in delta cycles, there is no significant simulator
performance gain by using coarser resolution with the Xilinx simulation models.

There is no need to use a finer resolution, such as femtoseconds (fs) as some simulators will
round the numbers while others will truncate the numbers.

Functional Simulation Early in the Design Flow
Use functional or register transfer level (RTL) simulation to verify syntax and functionality. This
first pass simulation is typically performed to verify the RTL or behavioral code and to confirm
that the design is functioning as intended.

With larger hierarchical designs, you can simulate individual IP, block designs, or hierarchical
modules before testing your complete design. This simulation process makes it easier to debug
your code in smaller portions before examining the larger design. When each module simulates
as expected, create a top-level design test bench to verify that your entire design functions as
planned. Use the same test bench again for the final timing simulation to confirm that your
design functions as expected under worst-case delay conditions.

RECOMMENDED: At this stage, no timing information is provided. Xilinx recommends performing
simulation in unit-delay mode to avoid the possibility of a race condition.

You should use synthesizable HDL constructs for the initial design creation. Do not instantiate
specific components unless necessary. This allows for:

• More readable code

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 50Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf;a=xUsingThirdPartySimulators
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=50

• Faster and simpler simulation

• Code portability (the ability to migrate to different device families)

• Code reuse (the ability to use the same code in future designs)

TIP: You might need to instantiate components if the components cannot be inferred.

Instantiation of components can make your design code architecture specific.

Using Structural Netlists for Simulation
After synthesis or implementation, you can perform netlist simulation in functional or timing
mode. The netlist simulation can also help you with the following:

• Identify post-synthesis and post-implementation functionality changes caused by:

○ Synthesis attributes or constraints that create mismatches (such as full_case and
parallel_case)

○ UNISIM attributes applied in the Xilinx Design Constraints (XDC) file

○ Differences in language interpretation between synthesis and simulation

○ Dual-port RAM collisions

○ Missing or improperly applied timing constraints

○ Operation of asynchronous paths

○ Functional issues due to optimization techniques

• Sensitize timing paths declared as false or multi-cycle during STA

• Generate netlist switching activity to estimate power

• Identify X state pessimism

For netlist simulation, you can use one or more of the libraries shown in the following table.

Table 2: Use of Simulation Library

Library Name Description VHDL Library
Name

Verilog Library
Name

UNISIM Functional simulation of Xilinx primitives UNISIM UNISIMS_VER

UNIMACRO Functional simulation of Xilinx macros UNIMACRO UNIMACRO_VER

UNIFAST Fast simulation library UNIFAST UNIFAST_VER

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=51

The UNIFAST library is an optional library that you can use during functional simulation to speed
up simulation runtime. UNIFAST libraries are supported for 7 series devices only. UltraScale and
later device architectures do not support UNIFAST libraries, because all the optimizations are
incorporated in the UNISIM libraries by default. For more information on Xilinx simulation
libraries, see this link in the Vivado Design Suite User Guide: Logic Simulation (UG900).

Primitives/elements of the UNISIM library do not have any timing information except the clocked
elements. To prevent race conditions during functional simulation, clocked elements have a
clock-to-out delay of 100 ps. Waveform views might show spikes and glitches for combinatorial
signals, due to lack of any delay in the UNISIM elements.

Timing Simulation

Xilinx supports timing simulation in Verilog only. You can export a netlist for timing simulation
from an open synthesized or implemented design using the File → Export → Export
Netlistcommand in the Vivado IDE, or by using the write_verilog Tcl command.

The Verilog system task $sdf_annotate within the simulation netlist specifies the name of the
standard delay format (SDF) file to be read for timing delays. This directive is added to the
exported netlist when the -sdf_anno option is enabled on the Netlist tab of the Simulation
Settings dialog box in the Vivado IDE. The SDF file can be written with the write_sdf
command. The Vivado simulator automatically reads the SDF file during the compilation step.

TIP: The Vivado simulator supports mixed-language simulation, which means that if you are a VHDL user,
you can generate a Verilog simulation netlist and instantiate it from the VHDL test bench.

Many users do not run timing simulation due to high run time. However, you should consider
using full timing simulation because it is the closest method of modeling hardware behavior. If
your design does not work on hardware, it is much easier to debug the failure in simulation, as
long as you have a timing simulation that can reproduce the failure.

If you decide to skip timing simulation, you should make sure of the following:

• Ensure that your STA constraints are absolutely correct. Pay special attention to exceptions.

• Ensure that your netlist is exactly equivalent to what you intended through your RTL. Pay
special attention to any inference-related information provided by the synthesis tool.

Simulation Flow
The Vivado Design Suite supports both integrated simulation, which allows you to run the
simulator from within the Vivado IDE, and batch simulation, which allows you to generate a
script from the Vivado tools to run simulation on an external verification environment.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 52Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf;a=xUsingXilinxSimulationLibraries
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xwrite_verilog
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=52

Integrated Simulation

The Vivado IDE provides full integration with the Vivado simulator, and all supported third-party
simulators. In this flow, the simulator is called from within the Vivado IDE, and you can compile
and simulate the design easily with a push of a button, or with the launch_simulation Tcl
command.

IMPORTANT! The launch_simulation  command launches integrated simulation for project-based
designs. This command does not support Non-Project Mode.

For information on the steps involved in setting up the integrated simulation flow, see this link in
the Vivado Design Suite User Guide: Logic Simulation (UG900).

Batch Simulation

RECOMMENDED: If your verification environment has a self-checking test bench, run simulation in batch
mode. There is a significant runtime cost when you view simulator waveforms using the integrated
simulation.

For batch simulation, the Vivado Design Suite provides the export_simulation Tcl command
to generate simulation scripts for supported simulators, including the Vivado simulator. You can
use the scripts generated by export_simulation directly or use the scripts as a reference for
building your own custom simulation scripts.

The export_simulation command creates separate scripts for each stage of the simulation
process (compile, elaborate, and simulate) so that you can easily incorporate the generated
scripts in your own verification flow. For more information about generating scripts for batch
simulation, see this link in the Vivado Design Suite User Guide: Logic Simulation (UG900).

Running Logic Synthesis and Implementation
Logic Synthesis
Vivado synthesis enables you to configure, launch, and monitor synthesis runs. The Vivado IDE
displays the synthesis results and creates report files. You can select synthesis warnings and
errors from the Messages window to highlight the logic in the RTL source files.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 53Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf;a=xUsingSimulationSettings
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf;a=xExportingSimulationFilesAndScripts
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=53

You can launch multiple synthesis runs concurrently or serially. On a Linux system, you can
launch runs locally or on remote servers. With multiple synthesis runs, Vivado synthesis creates
multiple netlists that are stored with the Vivado Design Suite project. You can open different
versions of the synthesized netlist in the Vivado IDE to perform device and design analysis. You
can also create constraints for I/O pin planning, timing, floorplanning, and implementation. The
most comprehensive list of DRCs is available after a synthesized netlist is produced, when clock
and clock logic are available for analysis and placement.

For more information, see the Vivado Design Suite User Guide: Synthesis (UG901).

Note: Launching multiple simulation jobs simultaneous on the same machine can exhaust memory,
resulting in random Vivado crashes. Ensure to reserve enough memory for all jobs running on a single
machine.

Implementation
Vivado implementation enables you to configure, launch, and monitor implementation runs. You
can experiment with different implementation options and create your own reusable strategies
for implementation runs. For example, you can create strategies for quick run times, improved
system performance, or area optimization. As the runs complete, implementation run results
display and report files are available.

You can launch multiple implementation runs either simultaneously or serially. On a Linux system,
you can use remote servers. You can create constraint sets to experiment with various timing
constraints, physical constraints, or alternate devices. For more information, see the Vivado
Design Suite User Guide: Implementation (UG904) and Vivado Design Suite User Guide: Using
Constraints (UG903).

TIP: You can add Tcl scripts to be sourced before and after synthesis, any stage of implementation, or
bitstream generation using the tcl.pre  and tcl.post  files. For more information, see the Vivado
Design Suite User Guide: Using Tcl Scripting (UG894).

Note: Launching multiple simulation jobs simultaneous on the same machine can exhaust memory,
resulting in random Vivado crashes. Ensure to reserve enough memory for all jobs running on a single
machine.

Configuring Synthesis and Implementation Runs
When using Project Mode, various settings are available to control the features of synthesis and
implementation. These settings are passed to runs using run strategies, which you set in the
Settings dialog box. A run strategy is simply a saved set of run configuration parameters. Xilinx
supplies several pre-defined run strategies for running synthesis and implementation, or you can
apply custom run settings. In addition, you can use separate constraint sets for synthesis and
implementation.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 54Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=54

For information on modifying settings, see this link to the Vivado Design Suite User Guide:
Synthesis (UG901) and see this link in the Vivado Design Suite User Guide: Implementation (UG904).

TIP: You can create an out-of-context module run to synthesize the Vivado Design Suite IP in the project. If
you generate a design checkpoint for the IP, the default behavior is to create an out-of-context run for
each IP in the design.

Creating and Managing Runs

After the synthesis and implementation settings are configured in the Settings dialog box, you
can launch synthesis or implementation runs using any of the following methods:

• In the Flow Navigator, select Run Synthesis, Run Implementation, or Generate Bitstream or
Generate Device Image for Versal ACAP.

• In the Design Runs window, select a run, right-click, and select Launch Runs. Alternatively,
you can click the Launch Selected Runs button.

• Select Flow → Run Synthesis, Flow → Run Implementation, or Flow → Generate Bitstream or
Generate Device Image for Versal ACAP.

You can create multiple synthesis or implementation runs to experiment with constraints or tool
settings. To create additional runs:

1. In the Flow Navigator, right-click Synthesis or Implementation.

2. Select Create Synthesis Runs or Create Implementation Runs.

3. In the Create New Runs wizard (see the following figure), select the constraint set and target
part.

If more than one synthesis run exists, you can also select the netlist when creating
implementation runs. You can then create one or more runs with varying strategies, constraint
sets, or devices. There are several launch options available when multiple runs exist. You can
launch selected runs sequentially or in parallel on multiple local processors.

TIP: You can configure and use remote hosts on Linux systems only.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 55Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf;a=UsingSynthesisSettings
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf;a=xCustomizingImplementationStrategies
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=55

Figure 14: Creating Multiple Synthesis and Implementation Runs

Managing Runs with the Design Runs Window

The Design Runs windows (shown in the following figure) displays run status and information and
provides access to run management commands in the popup menu. You can manage multiple
runs from the Design Runs window. When multiple runs exist, the active run is displayed in bold.
The Vivado IDE displays the design information for the active run. The Project Summary, reports,
and messages all reflect the results of the active run.

The Vivado IDE opens the active design by default when you select Open Synthesized Design or
Open Implemented Design in the Flow Navigator. You can make a run the active run using the
Make Active popup menu command. The Vivado IDE updates results to reflect the information
about the newly designated active run. Double-click any synthesized or implemented run to open
the design in the Vivado IDE.

Figure 15: Design Runs Window

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=56

Resetting Runs

In the Flow Navigator, you can right-click Synthesis or Implementation, and use the following
popup menu commands to reset runs. For more information, see this link in the Vivado Design
Suite User Guide: Implementation (UG904).

• Reset Runs resets the run to its original state and optionally deletes generated files from the
run directory.

• Reset to Previous Step resets the run to the listed step.

TIP: To stop an in-process run, click the Cancel button in the upper right corner of the Vivado IDE.

Launching Runs on Remote Clusters

To launch runs on remote Linux hosts, you can directly access a load sharing facility (LSF) server
farm. Vivado® allows all cluster commands to be configured through Tcl. For more information,
see Using Remote Hosts and Compute Clusters Appendix in the Vivado Design Suite User Guide:
Implementation (UG904).

Performing Implementation with Incremental
Compile
You can specify the incremental compile flow when running Vivado implementation to facilitate
small design changes. Incremental compile can reduce place and route run times and preserve
existing implementation results depending on the scope of the change and the amount of timing-
critical logic that is modified.

You can specify the Set Incremental Compile option in the Implementation Settings dialog box in
the Vivado IDE, or by using the Set Incremental Compile command from the right-click menu of
the Design Runs window. You can also use the read_checkpoint Tcl command with the -
incremental option, and point to a routed design checkpoint to use as a reference. For more
information, see this link in the Vivado Design Suite User Guide: Implementation (UG904).

Implementing Engineering Change Orders (ECOs)
Engineering change orders (ECOs) are modifications to an implemented design, with the intent to
minimize impact to the original design. The Vivado Design Suite provides an ECO flow, which lets
you modify an existing design checkpoint to implement changes, run reports on the changed
netlist, and generate the required bitstream files.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 57Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf;a=xVerifyingRunStatus
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf;a=IncrementalCompile
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=57

The advantage of the ECO flow is fast turn-around time by taking advantage of the incremental
place and route features of the Vivado tool. The Vivado IDE provides a predefined layout to
support the ECO flow. Refer to this link in the Vivado Design Suite User Guide: Implementation
(UG904) for more information.

Viewing Log Files, Messages, Reports, and
Properties

Viewing Log Files
In the Log window (shown in the following figure), you can click the different tabs to view the
standard output for Synthesis, Implementation, and Simulation. This output is also included in the
vivado.log file that is written to the Vivado IDE launch directory.

Figure 16: Viewing Log Files

Viewing Messages
In the Messages window (shown in the following figure), messages are categorized according to
design step and severity level: Errors, Critical Warnings, Warnings, Info, and Status. To filter
messages, select the appropriate check boxes in the window header. You can expand the
message categories to view specific messages. You can click the Collapse All icon to show only
the main design steps. This enables better navigation to specific messages. Many messages
include links that take you to logic lines in the RTL files. For more information, including
advanced filtering techniques, see this link in the Vivado Design Suite User Guide: Using the Vivado
IDE (UG893).

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 58Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf;a=xVivadoECOFlow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf;a=xUsingTheMessagesWindow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug893-vivado-ide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=58

Figure 17: Viewing Messages

Viewing Reports
In the Reports window (shown in the following figure), several standard reports are generated
using the launch_runs Tcl commands. You can double-click any report to display it in the
Vivado IDE Text Editor. You can also create custom reports using Tcl commands in the Tcl
Console or using report strategies. For more information, see this link and this link in the Vivado
Design Suite User Guide: Using the Vivado IDE (UG893) and see this link and this link in Vivado
Design Suite User Guide: Design Analysis and Closure Techniques (UG906).

Figure 18: Viewing Reports

Viewing or Editing Device Properties
With the elaborated, synthesized, or implemented design open, you can use the Tools → Edit
Device Properties command to open the Edit Device Properties dialog box (shown in the
following figure) in which you can view and set device configuration and bitstream-related
properties. This command is available only when a design is open. For information on each
property, see the link in the Vivado Design Suite User Guide: Programming and Debugging (UG908).
For information on setting device configuration modes, see this link in the Vivado Design Suite
User Guide: I/O and Clock Planning (UG899).

Note: The Edit → Device Properties is only available when a design is open.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 59Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf;a=xUsingTheReportsWindow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf;a=xCreatingReportStrategies
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf;a=xViewingReportsAndMessages
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf;a=xConfigurableReportStrategies
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf;a=xDeviceConfigurationBitstreamSettings
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug899-vivado-io-clock-planning.pdf;a=xSettingDeviceConfigurationModes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=59

Figure 19: Viewing Device Properties

Opening Designs to Perform Design Analysis
and Constraints Definition

You can perform design analysis and assign constraints after RTL elaboration, after synthesis, or
after implementation. To identify design issues early, you can perform design analysis prior to
implementation, including timing simulation, resource estimation, connectivity analysis, and
DRCs. You can open the various synthesis or implementation run results for analysis and
constraints assignment. This is known as opening the design.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=60

When you open the design, the Vivado IDE compiles the netlist and applies physical and timing
constraints against a target part. You can open, save, and close designs. When you open a new
design, you are prompted to close any previously opened designs in order to preserve memory.
However, you are not required to close the designs, because multiple designs can be opened
simultaneously. When you open a synthesized design, the Vivado IDE displays the netlist and
constraints. When you open an implemented design, the Vivado IDE displays the netlist,
constraints, and implementation results. The design data is presented in different forms in
different windows, and you can cross probe and coordinate data between windows.

After opening a design, many analysis and reporting features are available in the Vivado IDE. For
example, you can analyze device resources in the graphical windows of the internal device and
the external physical package. You can also apply and analyze timing and physical constraints in
the design using the Netlist, Device, Schematic, or Hierarchy windows. For more information, see
the Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906) and Vivado
Design Suite User Guide: Using Constraints (UG903).

Note: If you make constraint changes while the design is open, you are prompted to save the changes to
the original XDC source files or to create a new constraint set. For more information, see this link in the
Vivado Design Suite User Guide: System-Level Design Entry (UG895).

Opening an Elaborated RTL Design
When you open an elaborated design, the Vivado Design Suite expands and compiles the RTL
netlist and applies physical and timing constraints against a target part. The different elements of
the elaborated design are loaded into memory, and you can analyze and modify the elements as
needed to complete the design. For more information, see this link in the Vivado Design Suite User
Guide: System-Level Design Entry (UG895).

The Vivado Design Suite includes linting DRCs and checking tools that enable you to analyze
your design for logic correctness. You can make sure that there are no logic compilation issues,
no missing modules, and no interface mismatches. In the Messages window, you can click links in
the messages to display the problem lines in the RTL files in the Vivado IDE Text Editor. In the
Schematic window, you can explore the logic interconnects and hierarchy in a variety of ways.
The Schematic window displays RTL interconnects using RTL-based logic constructs. You can
select logic in the Schematic window and see specific lines in the RTL files in the Vivado IDE Text
Editor. For more information, see this link in the Vivado Design Suite User Guide: System-Level
Design Entry (UG895).

Note: There is no FPGA technology mapping during RTL elaboration.

Constraints that are defined on specific logic instances within the logic hierarchy, such as
registers, might not be resolvable during RTL elaboration. The logic names and hierarchy
generated during elaboration might not match those generated during synthesis. For this reason,
you might see constraint mapping warnings or errors when elaborating the RTL design, if you
have these types of constraints defined. However, when you run synthesis on the design, these
issues are resolved.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 61Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf;a=xCreatingConstraintsSetsUsingTheSaveConstraintsAsCommand
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf;a=ElaboratingTheRTLDesign
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf;a=xCrossProbingToSourceFiles
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=61

Using the I/O planning capabilities of the Vivado IDE, you can interactively configure and assign
I/O Ports in the elaborated RTL design and run DRCs. When possible, it is recommended that
you perform I/O planning after synthesis. This ensures proper clock and logic constraint
resolution, and the DRCs performed after synthesis are more extensive. For more information,
see Vivado Design Suite User Guide: I/O and Clock Planning (UG899).

TIP: When you select the Report DRC command, the Vivado IDE invokes a set of RTL and I/O DRCs to
identify logic issues such as asynchronous clocks, latches, and so forth. For more information, see this link
in the Vivado Design Suite User Guide: System-Level Design Entry (UG895).

To open an elaborated design, use one of the following methods:

• In the RTL Analysis section of the Flow Navigator, select Open Elaborated Design.

• In the Flow Navigator, right-click RTL Analysis, and select New Elaborated Design from the
popup menu.

• Select Flow → Open Elaborated Design.

The following figure shows the default view layout for an open elaborated RTL design. Notice the
logic instance that was cross-selected from the schematic to the specific instance in the RTL
source file and within the elaborated RTL netlist.

Figure 20: Elaborated RTL Design View Layout

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 62Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf;a=xRunningDRCs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=62

Opening a Synthesized Design
When you open a synthesized design, the Vivado Design Suite opens the synthesized netlist and
applies physical and timing constraints against a target part. The different elements of the
synthesized design are loaded into memory, and you can analyze and modify these elements as
needed to complete the design. You can save updates to the constraints files, netlist, debug
cores, and configuration.

In a synthesized design, you can perform many design tasks, including early timing, power, and
utilization estimates that can help you determine if your design is converging on desired targets.
You can explore the design in a variety of ways using the windows in the Vivado IDE. Objects are
always cross-selected in all other windows. You can cross probe to problem lines in the RTL files
from various windows, including the Messages, Schematic, Device, Package, and Find windows.
The Schematic window allows you to interactively explore the logic interconnect and hierarchy.
You can also apply timing constraints and perform further timing analysis. In addition, you can
interactively define physical constraints for I/O ports, floorplanning, or design configuration. For
more information, see the Vivado Design Suite User Guide: Design Analysis and Closure Techniques
(UG906).

Using the I/O planning capabilities of the Vivado IDE, you can interactively configure and assign
I/O ports in the synthesized design and run DRCs. Select the Run DRC command to invoke a
comprehensive set of DRCs to identify logic issues. For more information, see this link in the
Vivado Design Suite User Guide: I/O and Clock Planning (UG899) and see this link in Vivado Design
Suite User Guide: Design Analysis and Closure Techniques (UG906).

You can configure and implement debug core logic in the synthesized design to support test and
debug of the programmed device. In the Schematic or Netlist windows, interactively select
signals for debug. Debug cores are then configured and inserted into the design. The core logic
and interconnect is preserved through synthesis updates of the design when possible. For more
information, see this link in the Vivado Design Suite User Guide: Programming and Debugging
(UG908).

To open a synthesized design, use one of the following methods:

• In the Synthesis section of the Flow Navigator, select Open Synthesized Design.

• In the Flow Navigator, right-click Synthesis, and select New Synthesized Design from the
popup menu.

• Select Flow → Open Synthesized Design.

• In the Design Runs view, double-click the run name.

The following figure shows the default view layout for an open synthesized design.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 63Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug899-vivado-io-clock-planning.pdf;a=xRunningDRCs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf;a=UsingReportDRC
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf;a=InSystemLogicDesignDebuggingFlows
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=63

Figure 21: Synthesized Design View Layout

Opening an Implemented Design
When you open an implemented design in the Flow Navigator, the Vivado IDE opens the
implemented netlist and applies the physical and timing constraints used during implementation,
placement, and routing results against the implemented part. The placed logic and routed
connections of the implemented design are loaded into memory, and you can analyze and modify
the elements as needed to complete the design. You can save updates to the constraints files,
netlist, implementation results, and design configuration. Because the Vivado IDE allows for
multiple implementation runs, you can select any completed implementation run to open the
implemented design.

In an implemented design, you can perform many design tasks, including timing analysis, power
analysis, and generation of utilization statistics, which can help you determine if your design
converged on desired performance targets. You can explore the design in a variety of ways using
the windows in the Vivado IDE. Selected objects are always cross-selected in all related
windows. You can cross probe to lines in the source RTL files from various windows, including
the Messages, Schematic, Device, Package, and Find windows. The Schematic window allows

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=64

you to interactively explore the logic interconnect and hierarchy. You can also apply timing
constraints and perform further timing analysis. In addition, you can interactively apply
floorplanning or design configuration constraints and save the constraints for future runs. For
more information, see the Vivado Design Suite User Guide: Design Analysis and Closure Techniques
(UG906).

In the Device window, you can explore the placement or the routing results by toggling the
Routing Resources button . As you zoom, the amount of detail shown in the Device window
increases. You can interactively alter placement and routing as well as design configuration, such
as look-up table (LUT) equations and random access memory (RAM) initialization. You can also
select results in the Device or Schematic windows to cross probe back to problem lines in the
RTL files. In the Schematic window, you can interactively explore the logic interconnect and
hierarchy. For more information, see the Vivado Design Suite User Guide: Design Analysis and
Closure Techniques (UG906).

To open an implemented design, use one of the following methods:

• In the Implementation section of the Flow Navigator, click Open Implemented Design.

• Select Flow → Open Implemented Design.

• In the Design Runs view, double-click the run name.

TIP: Because the Flow Navigator reflects the state of the active run, the Open Implemented Design
command might be disabled or greyed out if the active run is not implemented. In this case, use the
Implementation popup menu in the Flow Navigator to open an implemented design from any of the
completed implementation runs.

The following figure shows the default layout view for an open implemented design.

Note: The Device window might display placement only or routing depending on the state the window was
in when it was last closed. In the Device window, click the Routing Resources button to toggle the view to
display only placement or routing.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 65Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=65

Figure 22: Implemented Design View Layout

Updating Out-of-Date Designs
During the design process, source files or constraints often require modification. The Vivado IDE
manages the dependencies of these files and indicates when the design data in the current
design is out of date. For example, changing settings, such as the target part or active constraint
set, can make a design out of date. As source files, netlists, or implementation results are
updated, an out-of-date message is displayed in the design window banner of an open
synthesized or implemented design to indicate that the run is out of date (shown in the following
figure). Click the associated more info link to view which aspects of the design are out of date.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=66

Figure 23: Design Out-of-Date and Reload Banner

From the design window banner, use any of the following actions to resolve an out-of-date
design:

• Click More Info, and click the Force up-to-date link in the Out-of-Date Due to window that
appears.

Force up-to-date resets the NEEDS_REFRESH property on the active synthesis or
implementation runs as needed to force the runs into an up-to-date state. The associated Tcl
command is shown in the following sample code:

set_property NEEDS_REFRESH false [get_runs synth_2]

Note: Use this command to force designs up to date when a minor design change was made, and you do
not want to refresh the design.

• Click Reload to refresh the in-memory view of the current design, eliminating any unsaved
changes you made to the design data.

• Click Close Design to close the out-of-date design.

Using View Layouts to Perform Design Tasks
When a design is open, several default view layouts (shown in the following figure) are provided
to enable you to more easily work on specific design tasks, such as I/O planning, floorplanning,
and debug configuration. Changing view layouts simply alters the windows that are displayed,
which enables you to focus on a particular design task. You can also create custom view layouts
using the Save Layout As command.

Note: Default view layouts are available only when a design is open.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=67

Figure 24: Selecting a View Layout

Saving Design Changes
In the Vivado IDE, you interactively edit the active design in memory. It is important to save the
design when you make changes to constraints, netlists, and design parameters, such as power
analysis characteristics, hardware configuration mode parameters, and debug configuration. For
changes made while interactively editing an open design, you can save the changes either back
to your original XDC constraint files or to a new constraint set as described in the following
sections.

Saving Changes to Original XDC Constraint Files

To save any changes you made to your design data back to your original XDC constraint files,
select File → Constraints → Save, or click the Save Constraints button .

The Save Constraints command saves any changes made to the constraints, debug cores and
configuration, and design configuration settings made in the open design. The Vivado IDE
attempts to maintain the original file format as much as possible. Additional constraints are
added at the end of the file. Changes to existing constraints remain in their original file locations.

Saving Changes to a New Constraint Set

To save changes to the design to a new constraint set, select File → Constraints → Save As to
create a new constraint file.

This saves any changes while preserving your original constraints source files. The new constraint
set includes all design constraints, including all changes. This is one way to maintain your original
XDC source files. You can also make the new constraint set the active constraint set, so that it is
automatically applied to the next run or when opening designs.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=68

Closing Designs
You can close designs to reduce the number of designs in memory and to prevent multiple
locations where sources can be edited. In some cases, you are prompted to close a design prior
to changing to another design representation. To close individual designs, do either of the
following:

• In the design title bar, click the close button (X).

• In the Flow Navigator, right-click the design, and select Close.

Analyzing Implementation Results
When you open an implemented design, placement and routing results are displayed in the
Device window. In the Timing Results window, you can select timing paths to highlight the
placement and routing for the selected path in the Device window. You can also interactively edit
placement and routing to achieve design goals and change design characteristics, such as LUT
equations, RAM initialization, and phase-locked loop (PLL) configuration. For more information,
see this link in the Vivado Design Suite User Guide: Implementation (UG904).

IMPORTANT! Changes are made on the in-memory version of the implemented design only. Resetting the
run causes changes to be lost. To save the changes, use the Save Checkpoint command, as described in
Saving Design Changes to Design Checkpoints.

Related Information

Saving Design Changes to Design Checkpoints

Running Timing Analysis
The Vivado IDE provides a graphical way to configure and view timing analysis results. You can
experiment with various types of timing analysis parameters using Tools → Timing commands.
You can use the Clock Networks and Clock Interaction report windows to view clock topology
and relationships. You can also use the Slack Histogram window to see an overall view of the
design timing performance. For more information, see this link in the Vivado Design Suite User
Guide: Design Analysis and Closure Techniques (UG906).

In addition, the Vivado IDE has many timing analysis options available through the Tcl Console
and SDC constraint options. Many standard report Tcl commands are available to provide
information about the clock structure, logic relationships, and constraints applied to your design.
For more information, see the Vivado Design Suite Tcl Command Reference Guide (UG835), or type
help report_*.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 69Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf;a=xAnalyzingAndViewingImplementationResults
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf;a=PerformingTimingAnalysis
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=69

Running Reports: DRC, Power, Utilization Analysis
The Vivado IDE provides a graphical way to configure and view power, utilization, and DRC
analysis results. The report_power command lets you experiment with power parameters and
quickly estimate power at any stage of the design. The report_utilization command lets
you analyze the utilization statistics of various types of device resources. The
report_design_analysis command lets you analyze critical path characteristics and the
complexity of the design to help identify and analyze problem areas that are prone to routing
congestion and timing closure issues. The report_drc command let you configure and run a
comprehensive set of DRCs to identify problems that must be solved prior to generating the
bitstream for the design.

In the Vivado IDE, report results are provided with links to select problem areas or offending
objects. In addition, many reports can write an RPX file to save the report results in an interactive
report file that can be reloaded into memory, with links to design objects. Reloading the report
reconnects the object links so that cross-selection between the report in the Vivado IDE and the
design is enabled. For more information, see the Vivado Design Suite User Guide: Design Analysis
and Closure Techniques (UG906), or refer to the report_xxx commands in the Vivado Design
Suite Tcl Command Reference Guide (UG835).

Report strategies enable you to define groups of reports and associate all the reports with a
particular run. Report strategies can be created by using Tools→Settings→Strategies→Report
Strategies. Individual reports can be specified for each step of a run. Report strategy is a property
of a run. Setting report strategy on the run generates all specified reports when the run is
launched.

Device Programming, Hardware Verification,
and Debugging

In the Vivado IDE, the Vivado logic analyzer includes many features to enable verification and
debugging of the design. You can configure and implement IP debug cores, such as the Integrated
Logic Analyzer (ILA) and Debug Hub core, in either an RTL or synthesized netlist. Opening the
synthesized or implemented design in the Vivado IDE enables you to select and configure the
required probe signals into the cores. You can launch the Vivado logic analyzer on any run that
has a completed bitstream file for performing interactive hardware verification. In addition, you
can create programming bitstream files for any completed implementation run. Bitstream file
generation options are configurable. Launch the Vivado device programmer to configure and
program the part. You can launch the Vivado logic analyzer directly from the Vivado IDE for
further analysis of the routing or device resources. For more information, see this link in the
Vivado Design Suite User Guide: Programming and Debugging (UG908).

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 70Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf;a=xDebuggingLogicDesignsInHardware
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=70

Implementing Engineering Changes (ECOs) for
Debugging
Engineering change orders (ECOs) are modifications to an implemented design. The Vivado
Design Suite provides an ECO flow that lets you implement changes to an existing design
checkpoint (DCP) and generate updated bitstream files. After implementing an ECO on the
design, you might also need to modify, add, or delete debug cores or probes to the implemented
design. Refer to this link in the Vivado Design Suite User Guide: Programming and Debugging
(UG908) for information on the debug ECO flow.

Using Project Mode Tcl Commands
The following table shows the basic Project Mode Tcl commands that control project creation,
implementation, and reporting.

TIP: The best way to understand the Tcl commands involved in a design task is to run the command in the
Vivado IDE and inspect the syntax in the Tcl Console or the vivado.jou  file.

Table 3: Basic Project Mode Tcl Commands

Command Description
create_project Creates the Vivado Design Suite project. Arguments include project name and location, design

top module name, and target part.

add_files Adds source files to the project. These include Verilog (.v), VHDL (.vhd or .vhdl), SystemVerilog
(.sv), IP and System Generator modules (.xco or .xci), IP Integrator subsystems (.bd), and
XDC constraints (.xdc or .sdc).
Individual files can be added, or entire directory trees can be scanned for legal sources and
automatically added to the project.

Note: The .xco file is no longer supported in UltraScale device designs.

set_property Used for multiple purposes in the Vivado Design Suite. For projects, it can be used to define VHDL
libraries for sources, simulation-only sources, target constraints files, tool settings, and so forth.

import_files Imports the specified files into the current file set, effectively adding them into the project
infrastructure. It is also used to assign XDC files into constraints sets.

launch_runs
launch_runs -to_step

Starts either synthesis or implementation and bitstream generation. This command encompasses
the individual implementation commands as well as the standard reports generated after the run
completes. It is used to launch all of the steps of the synthesis or implementation process in a
single command, and to track the tools progress through that process. The -to_step option is
used to launch the implementation process, including bitstream generation, in incremental steps.

wait_on_run Ensures the run is complete before processing the next commands in a Tcl script.

open_run Opens either the synthesized design or implemented design for reporting and analysis. A design
must be opened before information can be queried using Tcl for reports, analysis, and so forth.

close_design Closes the in-memory design.

start_gui
stop_gui

Opens or closes the Vivado IDE with the current design in memory.

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 71Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf;a=xUsingVivadoECOFlowToReplaceExistingDebugProbes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xcreate_project
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xadd_files
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xset_property
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=ximport_files
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xlaunch_runs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xwait_on_run
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xopen_run
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xclose_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xstart_gui
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xstop_gui
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=71

Note: This document is not a complete reference for the available Tcl commands. Instead, see the

Vivado Design Suite Tcl Command Reference Guide (UG835).

Project Mode Tcl Script Examples
The following examples show a Tcl script for an RTL project and a netlist project. The first
example script, run_bft_kintex7_project.tcl, is available in the Vivado Design Suite
installation at:

<install_dir>/Vivado/2020.2/examples/Vivado_Tutorial

You can source these scripts from the Vivado Tcl shell, or the Tcl Console inside of the Vivado
IDE.

RTL Project Tcl Script

run_bft_kintex7_project.tcl
BFT sample design
#
NOTE: Typical usage would be "vivado -mode tcl -source
run_bft_kintex7_project.tcl"
To use -mode batch comment out the "start_gui" and "open_run impl_1" to
save time
#
create_project project_bft ./Tutorial_Created_Data/project_bft -part
xc7k70tfbg484-2
add_files {./Sources/hdl/FifoBuffer.v ./Sources/hdl/async_fifo.v ./
Sources/hdl/bft.vhdl}
add_files -fileset sim_1 ./Sources/hdl/bft_tb.v
add_files ./Sources/hdl/bftLib
set_property library bftLib [get_files {./Sources/hdl/bftLib/round_4.vhdl \
./Sources/hdl/bftLib/round_3.vhdl ./Sources/hdl/bftLib/round_2.vhdl ./
Sources/hdl/bftLib/round_1.vhdl \
./Sources/hdl/bftLib/core_transform.vhdl ./Sources/hdl/bftLib/
bft_package.vhdl}]
import_files -force
import_files -fileset constrs_1 -force -norecurse ./Sources/
bft_full_kintex7.xdc
Mimic GUI behavior of automatically setting top and file compile order
update_compile_order -fileset sources_1
update_compile_order -fileset sim_1
Launch Synthesis
launch_runs synth_1
wait_on_run synth_1
open_run synth_1 -name netlist_1
Generate a timing and power reports and write to disk
report_timing_summary -delay_type max -report_unconstrained -
check_timing_verbose \
-max_paths 10 -input_pins -file ./Tutorial_Created_Data/project_bft/
syn_timing.rpt
report_power -file ./Tutorial_Created_Data/project_bft/syn_power.rpt
Launch Implementation
launch_runs impl_1 -to_step write_bitstream
wait_on_run impl_1
Generate a timing and power reports and write to disk
comment out the open_run for batch mode

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 72Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=72

open_run impl_1
report_timing_summary -delay_type min_max -report_unconstrained -
check_timing_verbose \
-max_paths 10 -input_pins -file ./Tutorial_Created_Data/project_bft/
imp_timing.rpt
report_power -file ./Tutorial_Created_Data/project_bft/imp_power.rpt
comment out the for batch mode
start_gui

Netlist Project Tcl Script

Kintex-7 Netlist Example Design
#
STEP#1: Create Netlist Project, add EDIF sources, and add constraints
#
create_project -force project_K7_netlist ./Tutorial_Created_Data/
project_K7_netlist/ -part xc7k70tfbg676-2
Property required to define Netlist project
set_property design_mode GateLvl [current_fileset]
add_files {./Sources/netlist/top.edif}
import_files -force
import_files -fileset constrs_1 -force ./Sources/top_full.xdc

#
STEP#2: Configure and Implementation, write bitstream, and generate
reports
#
launch_runs impl_1
wait_on_run impl_1
launch_runs impl_1 -to_step write_bitstream
wait_on_run impl_1
open_run impl_1
report_timing_summary -delay_type min_max -report_unconstrained -
check_timing_verbose \
-max_paths 10 -input_pins -file ./Tutorial_Created_Data/project_K7_netlist/
imp_timing.rpt
report_power -file ./Tutorial_Created_Data/project_K7_netlist/imp_power.rpt
#
STEP#3: Start IDE for design analysis
#
start_gui

Chapter 3: Using Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=73

Chapter 4

Using Non-Project Mode
This chapter highlights the differences between Non-Project Mode and Project Mode. To fully
understand Non-Project Mode in the Vivado® Design Suite, you should be familiar with Project
Mode as described in Using Project Mode.

In Non-Project Mode, you use Tcl commands to compile a design through the entire flow. In this
mode, an in-memory project is created to let the Vivado® tools manage various properties of a
design, but the project file is not written to disk, and the project status is not preserved.

TIP: An in-memory project is also generated in Non-Project Mode for the Vivado tool to use. However, it is
not preserved as part of the design.

Tcl commands provide the flexibility and power to set up and run your designs and perform
analysis and debugging. Tcl commands can be run in batch mode, from the Vivado Design Suite
Tcl shell, or through the Vivado IDE Tcl Console. Non-Project Mode enables you to have full
control over each design flow step, but you must manually manage source files, reports, and
intermediate results known as design checkpoints. You can generate a variety of reports, perform
DRCs, and write design checkpoints at any stage of the implementation process.

Unlike Project Mode, Non-Project Mode does not include features such as runs infrastructure,
source file management, or design state reporting. Each time a source file is updated, you must
rerun the design manually. Default reports and intermediate files are not created automatically in
this mode. However, you can create a wide variety of reports and design checkpoints as needed
using Tcl commands. In addition, you can still access the GUI-based design analysis and
constraints assignment features of the Vivado IDE. You can open either the current design in
memory or any saved design checkpoint in the Vivado IDE.

When you launch the Vivado IDE in Non-Project Mode, the Vivado IDE does not include Project
Mode features such as the Flow Navigator, Project Summary, or Vivado IP catalog. In Non-
Project Mode, you cannot access or modify synthesis or implementation runs in the Vivado IDE.
However, if the design source files reside in their original locations, you can cross probe to design
objects in the different windows of the Vivado IDE. For example, you can select design objects
and then use the Go To Instantiation, Go To Definition, or Go To Source commands to open the
associated RTL source file and highlight the appropriate line.

IMPORTANT! Some of the features of Project Mode, such as source file and run results management,
saving design and tool configuration, design status, and IP integration, are not available in Non-Project
Mode.

Chapter 4: Using Non-Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=74

You must write reports or design checkpoints to save the in-memory design as it progresses. The
design checkpoint (DCP) refers to a file that is an exact representation of the in-memory design.
You can save a design checkpoint after each step in the design flow, such as post synthesis, post
optimization, post placement. The DCP file can be read back into the Vivado Design Suite to
restore the design to the state captured in the checkpoint file.

You can also open a DCP in the Vivado IDE to perform interactive constraints assignment and
design analysis. Because you are viewing the active design in memory, any changes are
automatically passed forward in the flow. You can also save updates to new constraint files or
design checkpoints for future runs.

While most Non-Project Mode features are also available in Project Mode, some Project Mode
features are not available in Non-Project Mode. These features include source file and run results
management, saving design and tool configuration, design status, and IP integration. On the
other hand, you can use Non-Project mode to skip certain processes, thereby reducing the
memory footprint of the design, and saving disk space related to projects.

Related Information

Using Project Mode

Non-Project Mode Advantages
Non-Project Mode enables you to have full control over each design flow step. You can take
advantage of a compile-style design flow.

In this mode, you manage your design manually, including:

• Manage HDL Source files, constraints, and IP

• Manage dependencies

• Generate and store synthesis and implementation results

The Vivado Design Suite includes an entire suite of Vivado Tcl commands to create, configure,
implement, analyze, and manage designs as well as IP. In Non-Project Mode, you can use Tcl
commands to do the following:

• Compile a design through the entire flow

• Analyze the design and generate reports

Chapter 4: Using Non-Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=75

Reading Design Sources
When using Non-Project Mode, the various design sources are read into the in-memory design
for processing by the implementation tools. Each type of Vivado Design Suite source file has a
read_* Tcl command to read the files, such as read_verilog, read_vhdl, read_ip,
read_edif, or read_xdc. Sources must be read each time the Tcl script or interactive flow is
started.

TIP: Because there is no project structure to add the files or import the files into, you should not use the
add_files  or import_files Tcl commands to add files to a non-project based design.

Managing Source Files
In Non-Project Mode, you manage source files manually by reading the files into the in-memory
design in a specific order. This gives you full control over how to manage the files and where files
are located. Sources can be read from any network accessible location. Sources with read-only
permissions are processed accordingly.

Working with a Revision Control System
Many design teams use source management systems to store various design configurations and
revisions. There are multiple commercially available systems, such as Revision Control System
(RCS), Concurrent Versions System (CVS), Subversion (SVN), ClearCase, Perforce, Git, BitKeeper,
and many others. The Vivado tools can interact with all such systems. The Vivado Design Suite
uses and produces files throughout the design flow that you may want to manage under revision
control.

Working with revision control software is simple when using the Non-Project mode. The designer
checks out the needed source files into a local directory structure. The sources are then
instantiated into a top-level design to create the design. New source files might also need to be
created and read into the design using various read_* Tcl commands. The design files are
passed to the Vivado synthesis and implementation tools. However, the source files remain in
their original locations. The checked-out sources can be modified interactively, or with Tcl
commands during the design session using appropriate code editors. Source files are then
checked back into the source control system as needed. Design results, such as design
checkpoints, analysis reports, and bitstream files, can also be checked in for revision
management. For more information on working with revision control software, see Chapter 5:
Source Management and Revision Control Recommendations.

VIDEO: For information on best practices when using revision control systems with the Vivado tools, see
the Vivado Design Suite QuickTake Video: Using Vivado Design Suite with Revision Control.

Chapter 4: Using Non-Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 76Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-design-suite-revision-control.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=76

Using Third-Party Synthesized Netlists
The Vivado Design Suite supports implementation of synthesized netlists, such as when using a
third-party synthesis tool. The external synthesis tool generates a Verilog or EDIF netlist and a
constraints file, if applicable. These netlists can be used standalone or mixed with RTL files in
either Project Mode or Non-Project Mode.

Working with IP and IP Subsystems
In Non-Project Mode, output products must be generated for the IP or block designs prior to
launching the top-level synthesis. You can configure IP to use RTL sources and constraints, or use
the OOC netlist from a synthesized design checkpoint as the source in the top-level design. The
default behavior is to generate an OOC design checkpoint for each IP.

In Non-Project Mode, you can add IP to your design using any of the following methods:

• IP generated using the Vivado IP catalog (.xci format or .xcix format for core container)

If the out-of-context design checkpoint file exists in the IP directory, it is used for
implementation and a black box is inserted for synthesis. If a design checkpoint file does not
exist in the IP directory, the RTL and constraints sources are used for global synthesis and
implementation.

• Use Tcl commands to configure and generate the IP or block design.

Using Tcl ensures that the IP is configured, generated, and synthesized with each run.

IMPORTANT! When using IP in Project Mode or Non-Project Mode, always use the XCI file not the DCP
file. This ensures that IP output products are used consistently during all stages of the design flow. If the IP
was synthesized out-of-context and already has an associated DCP file, the DCP file is automatically used
and the IP is not re-synthesized. For more information, see this link in the Vivado Design Suite User Guide:
Designing with IP (UG896).

For more information, see this link in the Vivado Design Suite User Guide: Designing with IP
(UG896), or this link in the Vivado Design Suite User Guide: Designing IP Subsystems Using IP
Integrator (UG994).

Chapter 4: Using Non-Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 77Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf;a=xGeneratingOutputProducts
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf;a=TclCommandsForCommonIPOperations
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf;a=xUsingIPIntegratorInNonProjectMode
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=77

Running Logic Simulation
The Vivado simulator, integrated with the Vivado IDE, allows you to simulate the design, and
view signals in the waveform viewer, and examine and debug the design as needed. The Vivado
simulator is a fully integrated mixed-mode simulator with analog waveform display capabilities.
Using the Vivado simulator, you can perform behavioral and structural simulation of designs and
full timing simulation of implemented designs.

You can also use third-party simulators to write the Verilog, VHDL netlists, and SDF format files
from the open design. You can launch the Mentor Graphics ModelSim and Questa simulators
from the Vivado IDE. For more information, see this link in the Vivado Design Suite User Guide:
Logic Simulation (UG900).

Running Logic Synthesis and Implementation
In Non-Project Mode, each implementation step is launched with a configurable Tcl command,
and the design is compiled in memory. The implementation steps must be run in a specific order,
as shown in the Non-Project Mode Tcl Script Example. Optionally, you can run steps such as
power_opt_design or phys_opt_design as needed. Instead of run strategies, which are
only supported in Project Mode, you can use various commands to control the tool behavior. For
more information, see the Vivado Design Suite User Guide: Implementation (UG904).

It is important to write design checkpoints after critical design steps for design analysis and
constraints definition. With the exception of generating a bitstream, design checkpoints are not
intended to be used as starting points to continue the design process. They are merely snapshots
of the design for analysis and constraint definition.

TIP: After each design step, you can launch the Vivado IDE to enable interactive graphical design analysis
and constraints definition on the active design, as described in Performing Design Analysis Using the
Vivado IDE.

Related Information

Non-Project Mode Tcl Script Example
Performing Design Analysis Using the Vivado IDE

Chapter 4: Using Non-Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 78Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug900-vivado-logic-simulation.pdf;a=xUsingThirdPartySimulators
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=78

Generating Reports
With the exception of the vivado.log and vivado.jou reports, reports must be generated
manually with a Tcl command. You can generate various reports at any point in the design
process. For more information, see the Vivado Design Suite Tcl Command Reference Guide (UG835)
or Vivado Design Suite User Guide: Implementation (UG904).

Using Design Checkpoints
Design checkpoints enable you to take a snapshot of your design in its current state. The current
netlist, constraints, and implementation results are stored in the design checkpoint. Using design
checkpoints, you can:

• Restore your design if needed

• Perform design analysis

• Define constraints

• Proceed with the design flow

You can write design checkpoints at different points in the flow. It is important to write design
checkpoints after critical design steps for design analysis and constraints definition. You can read
design checkpoints to restore the design, which might be helpful for debugging issues. The
design checkpoint represents a full save of the design in its current implementation state. You
can run the design through the remainder of the flow using Tcl commands. However, you cannot
add new sources to the design.

Note: You can also use the write_checkpoint <file_name>.dcp and read_checkpoint
<file_name>.dcp Tcl commands to write and read design checkpoints. To view a checkpoint in the
Vivado IDE, use the open_checkpoint <file_name>.dcp Tcl command. For more information, see
the Vivado Design Suite Tcl Command Reference Guide (UG835).

Performing Design Analysis Using the Vivado
IDE

In Non-Project Mode, you can launch the Vivado IDE after any design step to enable interactive
graphical design analysis and constraints definition on the active design.

Chapter 4: Using Non-Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 79Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=79

Opening the Vivado IDE From the Active Design
When working in Non-Project Mode, use the following commands to open and close the Vivado
IDE on the active design in memory:

• start_gui opens the Vivado IDE with the active design in memory.

• stop_gui closes the Vivado IDE and returns to the Vivado Design Suite Tcl shell.

CAUTION! If you exit the Vivado Design Suite from the GUI, the Vivado Design Suite Tcl shell closes and
does not save the design in memory. To return to the Vivado Design Suite Tcl shell with the active design
intact, use the stop_gui  Tcl command rather than the exit command.

After each stage of the design process, you can open the Vivado IDE to analyze and operate on
the current design in memory (shown in the following figure). In Non-Project Mode, some of the
project features are not available in the Vivado IDE, such as the Flow Navigator, Project
Summary, source file access and management, and runs. However, many of the analysis and
constraint modification features are available in the Tools menu.

IMPORTANT! Be aware that any changes made in the Vivado IDE are made to the active design in
memory and are automatically applied to downstream tools.

Figure 25: Opening Vivado IDE with the Active Design

Chapter 4: Using Non-Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=80

Saving Design Changes to the Active Design

Because you are actively editing the design in memory, changes are automatically passed to
downstream tools for the remainder of the Vivado IDE Tcl session. This enables you to reflect the
changes in the active design and to save the changes for future attempts. Select File → Export → 
Export Constraints to save constraints changes for future use. You can use this command to
write a new constraints file or override your original file.

Note: When you export constraints, the write_xdc Tcl command is run. For more information, see the
Vivado Design Suite Tcl Command Reference Guide (UG835).

Opening Design Checkpoints in the Vivado IDE

You can use the Vivado IDE to analyze designs saved as design checkpoints. You can run a design
in Non-Project Mode using Tcl commands (synth_design, opt_design,
power_opt_design, place_design, phys_opt_design, and route_design), store the
design at any stage, and read it in a Vivado IDE session. You can start with a routed design,
analyze timing, adjust placement to address timing problems, and save your work for later, even if
the design is not fully routed. The Vivado IDE view banner displays the open design checkpoint
name.

Saving Design Changes to Design Checkpoints

You can open, analyze, and save design checkpoints. You can also save changes to a new design
checkpoint:

• Select File → Checkpoint → Save to save changes made to the current design checkpoint.

• Select File → Checkpoint → Write to save the current state of the design checkpoint to a new
design checkpoint.

Using Non-Project Mode Tcl Commands
The following table shows the basic Non-Project Mode Tcl commands. When using Non-Project
Mode, the design is compiled using read_verilog, read_vhdl, read_edif, read_ip,
read_bd, and read_xdc type commands. The sources are ordered for compilation and passed
to synthesis. For information on using the Vivado Design Suite Tcl shell or using batch Tcl scripts,
see Working with Tcl.

Note: This document is not a complete reference for the available Tcl commands. Instead, see the Vivado
Design Suite Tcl Command Reference Guide (UG835) and Vivado Design Suite User Guide: Using Tcl Scripting
(UG894).

Chapter 4: Using Non-Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 81Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=81

Table 4: Basic Non-Project Mode Tcl Commands

Command Description
read_edif Imports an EDIF or NGC netlist file into the Design Source fileset of the current project.

read_verilog Reads the Verilog (.v) and System Verilog (.sv) source files for the Non-Project Mode session.

read_vhdl Reads the VHDL (.vhd or .vhdl) source files for the Non-Project Mode session.

read_ip Reads existing IP (.xci or .xco) project files for the Non-Project Mode session. For Vivado IP
(.xci), the design checkpoint (.dcp) synthesized netlist is used to implement the IP if the netlist
is in the IP directory. If not, the IP RTL sources are used for synthesis with the rest of the top-level
design. The .ngc netlist is used from the .xco IP project.

Note: The .xco file is no longer supported in UltraScale device designs.

read_checkpoint Loads a design checkpoint into the in-memory design.

read_xdc Reads the .sdc or .xdc format constraints source files for the Non-Project Mode session.

read_bd Reads existing IP Integrator block designs (.bd) for the Non-Project session.

set_param
set_property

Used for multiple purposes. For example, it can be used to define design configuration, tool
settings, and so forth.

link_design Compiles the design for synthesis if netlist sources are used for the session.

synth_design Launches Vivado synthesis with the design top module name and target part as arguments.

opt_design Performs high-level design optimization.

power_opt_design Performs intelligent clock gating to reduce overall system power. This is an optional step.

place_design Places the design.

phys_opt_design Performs physical logic optimization to improve timing or routability. This is an optional step.

route_design Routes the design.

report_* Runs a variety of standard reports, which can be run at different stages of the design process.

write_bitstream Generates a bitstream file and runs DRCs.

write_checkpoint Saves the design at any point in the flow. A design checkpoint consists of the netlist and
constraints with any optimizations at that point in the flow as well as implementation results.

start_gui
stop_gui

Opens or closes the Vivado IDE with the current design in memory.

Related Information

Working with Tcl

Non-Project Mode Tcl Script Example
The following example shows a Tcl script for the BFT sample design included with the Vivado
Design Suite. This example shows how to use the design checkpoints for saving the database
state at various stages of the flow and how to manually generate various reports. This example
script, run_bft_kintex7_project.tcl, is available in the Vivado Design Suite installation
at:

<install_dir>/Vivado/2020.2/examples/Vivado_Tutorial

Chapter 4: Using Non-Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 82Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xread_edif
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xread_verilog
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xread_vhdl
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xread_ip
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xread_checkpoint
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xread_xdc
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xread_bd
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xset_param
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xset_property
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xlink_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xsynth_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xopt_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xpower_opt_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xplace_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xphys_opt_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xroute_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xreport_cdc
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xwrite_bitstream
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xwrite_checkpoint
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xstart_gu
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xstop_gui
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=82

You can source the script from the Vivado Tcl shell, or the Tcl Console inside of the Vivado IDE.

run_bft_kintex7_batch.tcl
bft sample design
A Vivado script that demonstrates a very simple RTL-to-bitstream non-
project batch flow
#
NOTE: typical usage would be "vivado -mode tcl -source
run_bft_kintex7_batch.tcl"
#
STEP#0: define output directory area.
#
set outputDir ./Tutorial_Created_Data/bft_output
file mkdir $outputDir
#
STEP#1: setup design sources and constraints
#
read_vhdl -library bftLib [glob ./Sources/hdl/bftLib/*.vhdl]
read_vhdl ./Sources/hdl/bft.vhdl
read_verilog [glob ./Sources/hdl/*.v]
read_xdc ./Sources/bft_full_kintex7.xdc
#
STEP#2: run synthesis, report utilization and timing estimates, write
checkpoint design
#
synth_design -top bft -part xc7k70tfbg484-2
write_checkpoint -force $outputDir/post_synth
report_timing_summary -file $outputDir/post_synth_timing_summary.rpt
report_power -file $outputDir/post_synth_power.rpt
#
STEP#3: run placement and logic optimzation, report utilization and
timing estimates, write checkpoint design
#
opt_design
place_design
phys_opt_design
write_checkpoint -force $outputDir/post_place
report_timing_summary -file $outputDir/post_place_timing_summary.rpt
#
STEP#4: run router, report actual utilization and timing, write
checkpoint design, run drc, write verilog and xdc out
#
route_design
write_checkpoint -force $outputDir/post_route
report_timing_summary -file $outputDir/post_route_timing_summary.rpt
report_timing -sort_by group -max_paths 100 -path_type summary -file
$outputDir/post_route_timing.rpt
report_clock_utilization -file $outputDir/clock_util.rpt
report_utilization -file $outputDir/post_route_util.rpt
report_power -file $outputDir/post_route_power.rpt
report_drc -file $outputDir/post_imp_drc.rpt
write_verilog -force $outputDir/bft_impl_netlist.v
write_xdc -no_fixed_only -force $outputDir/bft_impl.xdc
#
STEP#5: generate a bitstream

write_bitstream -force $outputDir/bft.bit

Chapter 4: Using Non-Project Mode

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=83

Chapter 5

Source Management and Revision
Control Recommendations

Interfacing with Revision Control Systems
The methodologies for source management and revision control can vary depending on user and
company preference, as well as the software used to manage revision control. This section
describes some of the fundamental methodology choices that design teams need to make to
manage their active design projects. Specific recommendations on using the Vivado® Design
Suite with revision control systems are provided later in this section. Throughout this section, the
term manage refers to the process of checking source versions in and out using a revision control
system.

Vivado generates many intermediate files as it compiles a design. This chapter defines the
minimum set of files necessary to recreate the design. In some cases, you might want to keep
intermediate files to improve compile time or simplify their analysis. You can always optionally
manage additional files.

Revision Control Philosophy from 2020.2
Onwards

In 2020.2, significant improvements are made to the Vivado project directory structure to
improve the ability to interact with the revision control systems. For new projects created in
2020.2, an additional project directory called project.gen is automatically created in the
project directory. This directory stores all output products created by the IP and Block Diagram
(BD). The result of this change is that the project.srcs directory contains only the sources
used to create the design. Moving forward we can endorse a flow with the following behavior:

1. Create the project and add all the sources to the project

2. Manage project.xpr file

3. Manage project.srcs directory

Chapter 5: Source Management and Revision Control Recommendations

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=84

4. Test your methodology. Revision control holds good depending on how well you test and
maintain your methodology. Ideally, to ensure no files are missed and the design rebuilds
completely from design sources using a script, the design would be regressed at a regular
cadence. By rebuilding the design regularly, any issues with the revision control methodology
can be caught and addressed in a timely manner.

The project can be re-created by restoring the project.srcs directory and project.xpr file.
Opening the project.xpr file and proceeding with synthesis and implementation flows.
Separating the output IP and BD output products from the project.srcs directory.

Revision Control Philosophy Pre 2020.2
The overall philosophy for revision controlling a design is to recreate the design from its sources
using a Tcl script. The following steps outline how this is achieved:

1. Use a scripted flow for revision control. Scripted flows enable repeatability, the design can be
recreated by sourcing the Tcl script.

2. Keep source files external to the project. Ideally, the source files are kept outside of the
Vivado build directory. This helps to ensure separation of the source files and the tool
generated files.

3. Revision control the source repository. All sources should be managed by the revision control
system. It is important to note that when Vivado is using the source files, they should be
writable.

4. Generate a script to recreate the design. Non-project flows are, by definition, scripted flows
because the design is compiled strictly using Tcl commands. You would manually create this
Tcl script. A project flow can be driven from the Vivado IDE or via a project based Tcl script.
The recommendation is to use Tcl commands to recreate a project flow.

5. Revision control the script. Once the script is created, it is important to manage this file as a
source too. As the design changes, this script is updated accordingly to accommodate new
sources or to capture new design configurations. It is important that this script is managed
like any other design source.

6. Test your methodology. Revision control holds good depending on how well you test and
maintain your methodology. Ideally, to ensure no files are missed and the design rebuilds
completely from design sources using a script, the design would be regressed at a regular
cadence. By rebuilding the design regularly, any issues with the revision control methodology
can be caught and addressed in a timely manner.

The subsequent sections of this chapter describe how this revision control philosophy should be
applied to the scripted project flows. Non-project flow users should be aware of exactly which
files are sources and which files are generated by the flow. They are also, rebuilding the design
from scratch on each design iteration.

Chapter 5: Source Management and Revision Control Recommendations

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=85

Generating a Script to Recreate a Design
For a project flow, a script to recreate your design can be generated manually or by using the
write_project_tcl command. The advantages of manually creating this script is that it
remains short and well organized, but it could potentially miss some project settings and fail to
recreate the complete design. Alternatively, the write_project_tcl script is robust in
ensuring all files are captured appropriately. But its versatility results in a more complicated and
more verbose script. Regardless of how this script is generated, it must be maintained as the
design evolves.

Revision Controlling Projects with Only RTL Sources
An example of revision controlling an entirely RTL based design is shown in the following figure.
In this case, there is a defined repository where all the RTL sources reside along with the script to
rebuild the design. The script references the sources and rebuilds the design into your
workspace. Sourcing the script from the workspace directory reproduce the complete design.

Figure 26: Example of Revision Controlling

Revision Controlling Xilinx IP
The Xilinx IP repository resides in the Vivado install area. For each IP there is a component.xml
file that contains the VLNV of the IP and all the user customizable parameters for the IP. The
parametrized RTL and associated IP constraints also reside in the IP repository. When you
customize an IP, an XCI file is generated that contains the user desired parameters for the IP.
When you generate the output products for an IP, the RTL and associated constraints are copied

Chapter 5: Source Management and Revision Control Recommendations

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=86

from the IP repository to the project directory and customized using the parameters specified in
the XCI file. Thus, for a given version of Vivado, because the IP repo resides in the install area, an
XCI file is the only file necessary to recreate the design. In this case, the XCI file should be
managed by the revision control system and referenced in the script used to regenerate the
design.

Note: Projects created prior to 2020.2, the IP output products are written to the project.srcs directory
where the XCI file is residing. In order to facilitate a clear delineation between project sources and output
products, for any new projects created using 2020.2, a project.gen directory is automatically created in
parallel to the project.srcs directory. All IP output products are written to the project.gen
directory.

Managing Custom IP Repositories
When you package a custom IP and share it among several projects, you should use a custom IP
repository. In this case, the project used to create and package the custom IP should be revision
controlled following the methodology specified in this chapter. The packaged IP with the
component.xml file should reside in a custom revision controlled IP repository managed by
you. The project that uses the IP should contain a pointer to your custom IP repository and an
XCI file with the desired customizations applied to the IP. The script to recreate the project
should set the IP repository to the custom IP repository path and add the XCI file as a source to
the project. When the project is recreated, similar to a project with Xilinx IP, Vivado would copy
the RTL and constraints from your custom IP repository to your local project directory and
applies the parameters from the XCI file. The XCI files along with your custom IP repository are
sufficient to regenerate the complete project.

Revision Controlling Block Diagrams
Block diagrams (BD) can contain instances of IPs from Xilinx repositories, IPs from custom IP
repositories, references to RTL, or block design containers (references to other BDs). When a BD
is validated, the customization of a single IP can affect how connected IPs are customized. The
process of applying parameters from one IP to connected IP is coined parameter propagation and
occurs when the BD is validated. To revision control a BD, the entire BD directory in the
project.srcs should be managed by the revision control system. The directory contains the
BD file, the XCI files for the IP post-parameter propagation and some meta data files.

Note: Projects created prior to 2020.2, the BD output products are written to the project.srcs
directory where the BD file is residing. In order to help facilitate a clear delineation between project
sources and output products, for any new projects created using 2020.2, a project.gen directory is
automatically be created in parallel to the project.srcs directory. All BD output products are written to
the project.gen directory. In turn, this significantly reduces the size of the BD directory from previous
Vivado releases.

Chapter 5: Source Management and Revision Control Recommendations

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=87

In the case of block design containers, there is a BD directory in the project.srcs directory
for each BD source in the design. If there are several instances of a block design container on a
parent BD, each instance of the block design container is generated in the project.gen
directory. Each block design container instance, even though derived from the same source BD,
can be unique due to parameter propagation. Therefore, the instances of the each block design
containers reside in the project.gen directory, but the source from which they are all derived
reside in the project.srcs directory. Any BD directories that reside in the project.srcs
directory should be fully revision controlled.

Note: Projects created in 2020.2, IP and BD output products are no longer written to the project.srcs
directory. The project.srcs directory should contain the bare minimum number of sources necessary
to recreate the project with the exception of files that are referenced from directories external to the
project. The cleanup of the project.srcs directory should tremendously improve the delimitation
between files that are necessary to be revision controlled and tool generated files.

Note: To view the differences between two versions of a block diagram, see Vivado Design Suite User Guide:
Designing IP Subsystems using IP Integrator (UG994) to learn more about the diffbd (check spelling) utility.

Other Files to Revision Control
The project manages many other types of files required to rebuild a design. Following are a few
examples:

• XDC files containing design constraints

• Simulation test benches

• HLS IP

• Pre/post Tcl hook scripts used for synthesis or implementation

• Incremental compile DCPs

• ELF files

These files reside in the project.srcs directory or the project.util directory. It is
important to manage these files to accurately reproduce your design. Routinely rebuilding your
designs from your revision control system should help you catch any of these files that you could
inadvertently miss in your build script.

Output Files to Optionally Revision Control
Following is a list of additional files you may consider revision controlling:

Chapter 5: Source Management and Revision Control Recommendations

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 88Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=88

• Simulation scripts for third-party simulators generated by export_simulation. Because
these are typically hand-off files between design and verification, you might want to snapshot
them at different stages of the design process.

• XSA files. These are hardware hand-off files between Vivado and Vitis™ software platform.

• Bitsteams/PDIs.

• LTX files for hardware debug

• Intermediate DCP files created during the flow

• IP output products. These are usually considered output products, but if you do not want to
upgrade an IP when migrating between Vivado releases, then you must manage the output
files. Vivado only provides one version of each IP per release. If the IP you are using is
updated between Vivado releases then there are only two choices:

○ Upgrade the IP to the latest version in the latest Vivado release. This may cause you to
change your design to accommodate IP RTL changes.

○ Revision control the output products of the IP. The IP will be locked in the newer version of
Vivado because you will not be able to re-customize the IP. But, this allows you to carry the
IP forward to a future release because you are essentially capturing all the RTL sources for
the IP

Archiving Designs
The archive_design command can compress your entire project into a zip file. This command
has several options for storing sources and to run results. Essentially, the entire project is copied
locally in the memory and then zipped into a file on the disk while leaving the original project
intact. This command also copies any remote source into the archive.

This feature is useful for sending your design description to another person or to store as a self
contained entity. You might also need to send your version of vivado_init.tcl if you are
using this file to set specific parameters or variables that affect the design. For more information,
see the following resources:

• Vivado Design Suite User Guide: System-Level Design Entry (UG895)

• Vivado Design Suite QuickTake Video: Creating Different Types of Projects

• Vivado Design Suite QuickTake Video: Managing Sources with Projects

Chapter 5: Source Management and Revision Control Recommendations

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 89Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/creating-different-types-of-projects.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/managing-sources-with-projects.htm
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=89

Managing Hardware Manager Projects and
Sources

Project .bit file and .ltx files are the primary output files required for using the Vivado Design
Suite Debug and Programming features in Vivado hardware manager. Xilinx recommends you
manage these files under revision control if you want to use this project in Vivado Lab Edition.

When Using Vivado Design Suite Projects
The project_name.hw directory in your Vivado Design Suite project stores information about
custom dashboards, trigger, capture conditions, waveform configuration files etc created as part
of using the Debug and Programming in the Vivado hardware manager. Xilinx recommends you
manage the project_name.hw directory in your Vivado Design Suite project under revision
control. This also helps if you want to hand off this project to be used in Vivado Lab Edition.

Managing Vivado Lab Edition Sources
Xilinx recommends you manage the project directory that was created for the project in Vivado
Lab Edition under revision control. The hw_* directories in the Lab Edition project directory
stores information about custom dashboards, trigger, capture conditions, waveform configuration
files, etc., in the Vivado hardware manager as part of using the Debug and Programming.
The .lpr file in the Lab Edition project directory is the project file that you need to manage
under revision control. The entire project can be recreated by opening this project file, provided
that the hw_* directory are at their original locations.

Chapter 5: Source Management and Revision Control Recommendations

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=90

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Appendix A: Additional Resources and Legal Notices

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 91Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=91

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

1. Model Composer User Guide (UG1262)

2. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

3. UltraScale Architecture-Based FPGAs Memory IP LogiCORE IP Product Guide (PG150)

4. AXI BFM Cores LogiCORE IP Product Guide (PG129)

5. Reference System: Kintex-7 MicroBlaze System Simulation Using IP Integrator (XAPP1180)

6. Vivado Design Suite Tcl Command Reference Guide (UG835)

7. Vivado Design Suite Tutorial: High-Level Synthesis (UG871)

8. Vivado Design Suite Tutorial: Design Flows Overview (UG888)

9. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

10. Vivado Design Suite User Guide: Using Tcl Scripting (UG894)

11. Vivado Design Suite User Guide: System-Level Design Entry (UG895)

12. Vivado Design Suite User Guide: Designing with IP (UG896)

13. Vivado Design Suite User Guide: Model-Based DSP Design Using System Generator (UG897)

14. Vivado Design Suite User Guide: Embedded Processor Hardware Design (UG898)

15. Vivado Design Suite User Guide: I/O and Clock Planning (UG899)

16. Vivado Design Suite User Guide: Logic Simulation (UG900)

17. Vivado Design Suite User Guide: Synthesis (UG901)

18. Vivado Design Suite User Guide: Using Constraints (UG903)

19. Vivado Design Suite User Guide: Implementation (UG904)

20. Vivado Design Suite User Guide: Hierarchical Design (UG905)

21. Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)

22. Vivado Design Suite User Guide: Programming and Debugging (UG908)

23. Vivado Design Suite User Guide: Dynamic Function eXchange (UG909)

24. Vivado Design Suite User Guide: Getting Started (UG910)

25. ISE to Vivado Design Suite Migration Guide (UG911)

26. Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940)

Appendix A: Additional Resources and Legal Notices

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 92Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1262-model-composer-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ultrascale_memory_ip;v=latest;d=pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=cdn_axi_bfm;v=latest;d=pg129-cdn-axi-bfm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1180.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug888-vivado-design-flows-overview-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug897-vivado-sysgen-user.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug898-vivado-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=92

27. Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947)

28. UltraFast Design Methodology Guide for Xilinx FPGAs and SoCs (UG949)

29. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

30. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

31. UltraFast Embedded Design Methodology Guide (UG1046)

32. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

33. Vivado Design Suite Tutorial: Creating, Packaging Custom IP (UG1119)

34. Vivado Design Suite Documentation

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more about
the concepts presented in this document. Use these links to explore related training resources:

1. Designing FPGAs Using the Vivado Design Suite 1 Training Course

2. Designing FPGAs Using the Vivado Design Suite 2 Training Course

3. Vivado Design Suite QuickTake Video: Vivado Design Flows Overview

4. Vivado Design Suite QuickTake Video: Getting Started with the Vivado IDE

5. Vivado Design Suite QuickTake Video: Targeting Zynq Devices Using Vivado IP Integrator

6. Vivado Design Suite QuickTake Video: Partial Reconfiguration in Vivado Design Suite

7. Vivado Design Suite QuickTake Video: Simulating with Cadence IES in Vivado

8. Vivado Design Suite QuickTake Video: Simulating with Synopsys VCS in Vivado

9. Vivado Design Suite QuickTake Video: I/O Planning Overview

10. Vivado Design Suite QuickTake Video: Using Vivado Design Suite with Revision Control

11. Vivado Design Suite QuickTake Video: Creating Different Types of Projects

12. Vivado Design Suite QuickTake Video: Managing Sources with Projects

13. Vivado Design Suite QuickTake Video: Managing Vivado IP Version Upgrades

14. Vivado Design Suite QuickTake Video Tutorials

Appendix A: Additional Resources and Legal Notices

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 93Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;t=vivado+install+guide
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug1119-vivado-creating-packaging-ip-tutorial.pdf
https://www.xilinx.com/products/design-tools/vivado.html?resultsTablePreSelect=xlnxdocumenttypes:SeeAll#documentation
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=hardware/vivado-design-flows-overview.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/getting-started-with-the-vivado-ide.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/targeting-zynq-using-vivado-ip-integrator.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/partial-reconfiguration-in-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/simulating-with-cadence-ies-in-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/simulating-with-synopsys-vcs-in-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/i-and-o-planning-overview.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-design-suite-revision-control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/creating-different-types-of-projects.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/managing-sources-with-projects.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/managing-vivado-ip-version-upgrades.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=93

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2012-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective
owners.

Appendix A: Additional Resources and Legal Notices

UG892 (v2020.2) February 12, 2021 www.xilinx.com
Design Flows Overview 94Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG892&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=94

	Vivado Design Suite User Guide
	Revision History
	Table of Contents
	Ch. 1: Vivado System-Level Design Flows
	Industry Standards-Based Design
	Design Flows
	RTL-to-Bitstream Design Flow
	RTL Design
	IP Design and System-Level Design Integration
	IP Subsystem Design
	I/O and Clock Planning
	Xilinx Platform Board Support
	Synthesis
	Design Analysis and Simulation
	Placement and Routing
	Hardware Debug and Validation

	Alternate RTL-to-Bitstream Design Flows
	Accelerated Kernel Flows
	Embedded Processor Design
	Model-Based Design Using Model Composer
	Model-Based DSP Design Using Xilinx System Generator
	High-Level Synthesis C-Based Design
	Dynamic Function Exchange Design
	Hierarchical Design

	Ch. 2: Understanding Use Models
	Vivado Design Suite Use Models
	Working with the Vivado Integrated Design Environment (IDE)
	Launching the Vivado IDE on Windows
	Launching the Vivado IDE from the Command Line on Windows or Linux
	Launching the Vivado IDE from the Vivado Design Suite Tcl Shell

	Working with Tcl
	Launching the Vivado Design Suite Tcl Shell
	Launching the Vivado Tools Using a Batch Tcl Script
	Using the Vivado IDE with a Tcl Flow
	Using Xilinx XHub Stores
	Xilinx Tcl Apps
	Board Files
	Example Design

	Understanding Project Mode and Non-Project Mode
	Project Mode
	Non-Project Mode
	Feature Differences
	Command Differences

	Using Third-Party Design Software Tools
	Running Logic Synthesis
	Running Logic Simulation

	Interfacing with PCB Designers

	Ch. 3: Using Project Mode
	Project Mode Advantages
	Creating Projects
	Different Types of Projects
	Managing Source Files in Project Mode
	Using Remote, Read-Only Sources
	Archiving Projects
	Creating a Tcl Script to Recreate the Project
	Working with a Revision Control System

	Understanding the Flow Navigator
	Performing System-Level Design Entry
	Automated Hierarchical Source File Compilation and Management
	RTL Development
	RTL Elaboration and Analysis
	Timing Constraint Development and Verification

	Working with IP
	Configuring IP
	Generating IP Output Products
	Using IP Core Containers

	Out-of-Context Design Flow
	IP Constraints
	Validating the IP
	Using Memory IP
	Packaging Custom IP and IP Subsystems
	Upgrading IP

	Creating IP Subsystems with IP Integrator
	Building IP Subsystems
	Block Design Containers
	Referencing RTL Modules in Block Designs
	Designer Assistance
	Using the Platform Board Flow

	Validating IP Subsystems
	Generating Block Design Output Products
	Integrating the Block Design into a Top-Level Design

	Logic Simulation
	Simulation Flow Overview
	Compiling Simulation Libraries
	Simulation Time Resolution
	Functional Simulation Early in the Design Flow
	Using Structural Netlists for Simulation
	Timing Simulation

	Simulation Flow
	Integrated Simulation
	Batch Simulation

	Running Logic Synthesis and Implementation
	Logic Synthesis
	Implementation
	Configuring Synthesis and Implementation Runs
	Creating and Managing Runs
	Managing Runs with the Design Runs Window
	Resetting Runs
	Launching Runs on Remote Clusters

	Performing Implementation with Incremental Compile
	Implementing Engineering Change Orders (ECOs)

	Viewing Log Files, Messages, Reports, and Properties
	Viewing Log Files
	Viewing Messages
	Viewing Reports
	Viewing or Editing Device Properties

	Opening Designs to Perform Design Analysis and Constraints Definition
	Opening an Elaborated RTL Design
	Opening a Synthesized Design
	Opening an Implemented Design
	Updating Out-of-Date Designs
	Using View Layouts to Perform Design Tasks
	Saving Design Changes
	Saving Changes to Original XDC Constraint Files
	Saving Changes to a New Constraint Set

	Closing Designs
	Analyzing Implementation Results
	Running Timing Analysis
	Running Reports: DRC, Power, Utilization Analysis

	Device Programming, Hardware Verification, and Debugging
	Implementing Engineering Changes (ECOs) for Debugging

	Using Project Mode Tcl Commands
	Project Mode Tcl Script Examples
	RTL Project Tcl Script
	Netlist Project Tcl Script

	Ch. 4: Using Non-Project Mode
	Non-Project Mode Advantages
	Reading Design Sources
	Managing Source Files
	Working with a Revision Control System
	Using Third-Party Synthesized Netlists

	Working with IP and IP Subsystems
	Running Logic Simulation
	Running Logic Synthesis and Implementation
	Generating Reports
	Using Design Checkpoints
	Performing Design Analysis Using the Vivado IDE
	Opening the Vivado IDE From the Active Design
	Saving Design Changes to the Active Design
	Opening Design Checkpoints in the Vivado IDE
	Saving Design Changes to Design Checkpoints

	Using Non-Project Mode Tcl Commands
	Non-Project Mode Tcl Script Example

	Ch. 5: Source Management and Revision Control Recommendations
	Interfacing with Revision Control Systems
	Revision Control Philosophy from 2020.2 Onwards
	Revision Control Philosophy Pre 2020.2
	Generating a Script to Recreate a Design
	Revision Controlling Projects with Only RTL Sources
	Revision Controlling Xilinx IP
	Managing Custom IP Repositories
	Revision Controlling Block Diagrams

	Other Files to Revision Control
	Output Files to Optionally Revision Control
	Archiving Designs

	Managing Hardware Manager Projects and Sources
	When Using Vivado Design Suite Projects
	Managing Vivado Lab Edition Sources

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

