
SDAccel Environment User
Guide

UG1023 (v2017.1) June 20, 2017

Revision History

The following table shows the revision history for this document.

Date Version Revision

06/20/17 2017.1 • Revised and reorganized Kernel Optimization Support chapter.
• New section for OpenCL Installable Client Drive (ICD) Loader.
• New Getting Started with Examples chapter.
• New XP Parameters table in Commpliation Flow chapter.
• Revised xocc Options table in Compilation chatper.
• Updates to accommodate 2017.1 SDx software release.

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

2

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=2
www.xilinx.com

Table of Contents
Introduction

Understanding the OpenCL Platform and Memory Model

OpenCL Platform Model ..6

OpenCL Devices and FPGAs ..8

OpenCL Memory Model ...9

OpenCL Installable Client Driver Loader..12

Recommended Libraries ...12

Kernel Language Support

Expressing a Kernel in RTL ..14

Expressing a Kernel in OpenCL C ...26

Expressing a Kernel in C/C++ ..26

Compilation Flow

Xilinx OpenCL Compiler ..29

Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc).....................................32

Getting Started with Examples

Installed Examples..45

GitHub Examples..46

Estimating Performance

Generating the System Performance Estimate Report...48

Analyzing the Performance Estimate Report...48

Application Profiling in the SDAccel Environment

Kernel Synthesis Report..53

Profiling Summary Report ..55

Application Timeline ..62

Device Hardware Transaction View...65

Detailed Kernel Trace ...71

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

3

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=3
www.xilinx.com

Debugging Applications in the SDAccel Environment

Preparing the Host Application for Debug...73

Preparing Kernel Code for Debug in CPU Emulation Flow..73

Launching GDB Standalone ..74

Application Debug..75

Kernel Debug ...76

SDAccel Environment Supported Devices

OpenCL Built-In Functions Support in the SDAccel Environment

xbinst Command Reference

Xilinx Board Swiss Army Knife Utility

xbsak Commands and Options ...93

Using the Runtime Initialization File

Converting Tcl Compilation Flow to XOCC

SDAccel System Info Checker Utility

Launching System Info Checker Utility .. 106

Board Installations

Installing the Alpha Data ADM-PCIE-KU3 Card .. 108

Installing the Alpha Data ADM-PCIE-7V3 Card .. 117

Installing the Alpha Data ADM-PCIE-8K5 Card... 126

Installing the Xilinx XIL-ACCEL-RD-KU115 Card.. 134

Additional Resources and Legal Notices

References ... 144

Please Read: Important Legal Notices... 145

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

4

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=4
www.xilinx.com

Introduction
Software is at the foundation of application specification and development. Whether the end
application is targeted towards entertainment, gaming, or medicine, most products available
today began as a software model or prototype that needed to be accelerated and executed on a
hardware device. From this starting point, the software engineer is tasked with determining the
execution device to get a solution to market and to achieve the highest possible degree of
acceleration possible.

One traditional approach to accomplish this task has been to rely on processor clock frequency
scaling. On its own, this approach has entered a state of diminishing returns, which has in turn
led to the development of multi-core and heterogeneous computing devices. These
architectures provide the software engineer with the possibility to more effectively trade-off
performance and power for different form factors and computational loads. The one challenge
in using these new computing architectures is the programming model of each device. At a
fundamental level, all multi-core and heterogeneous computing devices require that the
programmer rethink the problem to be solved in terms of explicit parallelism.

Recognizing the programming challenge of multi-core and heterogeneous compute devices, the
Khronos Group industry consortium has developed the OpenCL™ programming standard. The
OpenCL specification for multi-core and heterogeneous compute devices defines a single
consistent programming model and system level abstraction for all hardware devices that
support the standard. For a software engineer this means a single programming model to learn
what can be directly used on devices from multiple vendors.

As specified by the OpenCL standard, any code that complies with the OpenCL specification is
functionally portable and will execute on any computing device that supports the standard.
Therefore, any code change is for performance optimization. The degree to which an OpenCL
program needs to be modified for performance depends on the quality of the starting source
code and the execution environment for the application.

Xilinx is an active member of the Khronos Group, collaborating on the OpenCL specification, and
supports the compilation of OpenCL programs for Xilinx® FPGAs. The Xilinx SDAccel™
development environment is used for compiling OpenCL programs to execute on a Xilinx FPGA.

There are some differences between compiling a program for execution in an FPGA and a CPU/
GPU environment. The following chapters in this guide describe how to use the SDAccel
development environment to compile an OpenCL program for a Xilinx FPGA. This book is
intended to document the features and usages of the SDAccel development environment. It is
assumed that the user already has a working knowledge of OpenCL API. Though it includes
some high level OpenCL concepts, it is not intended as an exhaustive technical guide on the
OpenCL API. For more information on the OpenCL API, see the OpenCL specification available
from the Khronos Group, and the OpenCL API introductory videos available on the Xilinx
website.

Chapter 1

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

5

https://www.khronos.org
http://www.khronos.org
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=5
www.xilinx.com

Understanding the OpenCL Platform and
Memory Model

The OpenCL™ standard describes all hardware compute resources capable of executing OpenCL
applications using a common abstraction for defining a platform and the memory hierarchy. The
platform is a logical abstraction model for the hardware executing the OpenCL application code.
This model, which is common to all vendors implementing this standard, provides the
application programmer with a unified view from which to analyze and understand how an
application is mapped into hardware. Understanding how these concepts translate into physical
implementations on the FPGA is necessary for application optimization.

This chapter provides a review of the OpenCL platform model and its extensions to FPGAs. It
explains the mapping of the OpenCL platform and memory model into an SDAccel™
development environment-generated implementation.

OpenCL Platform Model

The OpenCL™ platform model defines the logical representation of all hardware capable of
executing an OpenCL program. At the most fundamental level all platforms are defined by the
grouping of a processor and one or more devices. The host processor, which runs the OS for the
system, is also responsible for the general bookkeeping and task launch duties associated with
the execution of parallel programs such as OpenCL applications. The device is the element in the
system on which the kernels of the application are executed. The device is further divided into a
set of compute units. The number of compute units depends on the target hardware for a
specific application. A compute unit is defined as the element in the hardware device onto which
a work group of a kernel is executed. This device is responsible for executing the operations of
the assigned work group to completion. In accordance to the OpenCL standard division of work
groups into work items, a compute unit is further subdivided into processing elements. A
processing element is the data path in the compute unit, which is responsible for executing the
operations of one work item. A conceptual view of this model is shown in the following figure.

Chapter 2

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

6

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=6
www.xilinx.com

Figure 1: OpenCL Platform Model

Host

CPU

Device

Built-in
Kernel

Compute
Unit

Compute
Unit

Compute
Unit

P
E

P
E

P
E

P
E

P
E

P
E

X14980-090315

An OpenCL platform always starts with a host processor. For the case of platforms created with
Xilinx® devices, the host processor is an x86 or Power8 based processor communicating to the
devices using a PCIe™ solution. The host processor has the following responsibilities:

• Manage the operating system and enable drivers for all devices.
• Execute the application host program.
• Set up all global memory buffers and manage data transfer between the host and the

device.
• Monitor the status of all compute units in the system.

In all OpenCL platforms, the host processor tasks are executed using a common set of API
functions. The implementation of the OpenCL API functions is provided by the hardware vendor
and is referred to as the runtime library.

The OpenCL runtime library, which is provided by the hardware vendor, is the logical layer in a
platform that is responsible for translating user commands described by the OpenCL API into
hardware specific commands for a given device. For example, when the application programmer
allocates a memory buffer using the clCreateBuffer API call, it is the responsibility of the
runtime library to keep track of where the allocated buffer physically resides in the system, and
of the mechanism required for buffer access. It is important for the application programmer to
keep in mind that the OpenCL API is portable across vendors, but the runtime library provided
by a vendor is not. Therefore, OpenCL applications have to be linked at compile time with the
runtime library that is paired with the target execution device.

The other component of a platform is the device. A device in the context of an OpenCL API is
the physical collection of hardware resources onto which the application kernels are executed. A
platform must have at least one device available for the execution of kernels. Also, per the
OpenCL platform model, all devices in a platform do not have to be of identical type.

Chapter 2: Understanding the OpenCL Platform and Memory Model

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

7

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=7
www.xilinx.com

OpenCL Devices and FPGAs

In the context of CPU and GPU devices, the attributes of a device are fixed and the programmer
has very little influence on what the device looks like. On the other hand, this characteristic of
CPU/GPU systems makes it relatively easy to obtain an off-the-shelf board. The one major
limitation of this style of device is that there is no direct connection between system I/O and the
OpenCL™ kernels. All transactions of data are through memory-based transfers.

An OpenCL device for an FPGA is not limited by the constraints of a CPU/GPU device. By taking
advantage of the fact that the FPGA starts off as a blank computational canvas, the user can
decide the level of device customization that is appropriate to support a single application or a
class of applications. In determining the level of customization in a device, the programmer
needs to keep in mind that kernel compute units are not placed in isolation within the FPGA
fabric.

FPGAs capable of supporting OpenCL programs consist of the following:

• Connection to the host processor
• I/O peripherals
• Memory controllers
• Interconnect
• Kernel region

The creation of FPGAs requires FPGA design knowledge and is beyond the scope of capabilities
for the SDAccel™ development environment. Devices for the SDAccel environment are created
using the Xilinx Vivado® Design Suite for FPGA designers. The SDAccel environment provides
pre-defined devices and allows users to augment the tool with third party created devices. A
methodology guide describing how to create a device for the SDAccel development
environment is available upon request from Xilinx.

The devices available in the SDAccel environment are for Virtex®-7, Kintex®-7, and UltraScale™
FPGAs. These devices are available in a PCIe form factor. The PCIe form factor for Virtex-7,
Kintex-7, and UltraScale devices assumes that the host processor is an x86 or Power8 based
processor and that the FPGA is used for the implementation of compute units.

Using a PCIe Reference Device

The PCIe™ base device has a distributed memory architecture, which is also found in GPU
accelerated compute devices. This means that the host and the kernels access data from
separate physical memory domains. Therefore, the developer has to be aware that passing
buffers between the host and a device triggers memory data copies between the physical
memories of the host and the device. The data transfer time must be accounted for when
determining the best optimization strategy for a given application. A representative example of
this type of device is shown in the following figure.

Chapter 2: Understanding the OpenCL Platform and Memory Model

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

8

http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html#docsdownload
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=8
www.xilinx.com

Figure 2: PCIe Base Device

FPGA Co-processing Card

PC

CPU
Memory

FPGA Device

Infrastructure
IP

OpenCL
 Kernel

OpenCL
 Kernel

OpenCL
 Kernel

OpenCL
 Kernel

Memory

PCI
Express

X14981-050516

The main characteristics of devices with a PCIe form factor are as follows:

• The x86 or Power8 processor in the PC is the host processor for the OpenCL™ application.
• The infrastructure IP provided as part of the device is needed for communication to the

host over the PCIe core and to access the DDR memories on the board.
• Connecting OpenCL kernels to IP other than infrastructure IP or blocks generated by the

SDAccel™ development environment is not supported.
• Kernels work on data in the DDR memory attached to the FPGA.

OpenCL Memory Model

The OpenCL™ API defines the memory model to be used by all applications that comply with
the standard. This hierarchical representation of memory is common across all vendors and can
be applied to any OpenCL application. The vendor is responsible for defining how the OpenCL
memory model maps to specific hardware. The OpenCL memory model is shown overlaid onto
the OpenCL device model in the following figure.

Chapter 2: Understanding the OpenCL Platform and Memory Model

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

9

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=9
www.xilinx.com

Figure 3: OpenCL Memory Model

Host

CPU

Device

Built-in
Kernel

Compute
Unit

Compute
Unit

Compute
Unit

P
E

P
E

P
E

P
E

P
E

P
E

Host Memory

Global Memory +
Constant Memory

Local Memory

Private Memory

X14982-090315

The memory hierarchy defined in the OpenCL specification has the following levels:

• Host Memory
• Global Memory
• Constant Global Memory
• Local Memory
• Private Memory

Host Memory

The host memory is defined as the region of system memory that is only visible and accessible
to the host processor. The host processor has full control of this memory space and can read
and write from this space without any restrictions. Kernels cannot access data located in this
space. Any data needed by a kernel must be transferred into global memory so that it is
accessible by a compute unit.

Chapter 2: Understanding the OpenCL Platform and Memory Model

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

10

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=10
www.xilinx.com

Global Memory

The global memory is defined as the region of system memory that is accessible to both the
OpenCL™ host and device. The host is responsible for the allocation and deallocation of buffers
in this memory space. There is a handshake between host and device over control of the data
stored in this memory. The host processor transfers data from the host memory space into the
global memory space. Then, when a kernel is launched to process the data, the host loses access
rights to the buffer in global memory. The device takes over and is capable of reading and
writing from the global memory until the kernel execution is complete. Upon completion of the
operations associated with a kernel, the device turns control of the global memory buffer back
to the host processor. Once it has regained control of a buffer, the host processor can read and
write data to the buffer, transfer data back to the host memory, and deallocate the buffer.

Constant Global Memory

Constant global memory is defined as the region of system memory that is accessible with read
and write access for the OpenCL™ host and with read-only access for the OpenCL device. As the
name implies, the typical use for this memory is to transfer constant data needed by kernel
computation from the host to the device.

Local Memory

Local memory is defined as the region of system memory that is only accessible to the OpenCL™
device. The host processor has no visibility and no control on the operations that occur in this
memory space. This memory space allows read and write operations by the work items within
the same compute unit. This level of memory is typically used to store and transfer data that
must be shared by multiple work items.

Private Memory

Private memory is the region of system memory that is only accessible by a processing element
within an OpenCL™ device. This memory space can be read from and written to by a single work
item.

For devices using an FPGA, the physical mapping of the OpenCL memory model is the following:

• Host memory is any memory connected to the host processor only.
• Global and constant memories are any memory that is connected to the FPGA. These are

usually memory chips that are physically connected to the FPGA. The host processor has
access to these memory banks through infrastructure in the FPGA base device.

• Local memory is memory inside of the FPGA. This memory is typically implemented using
block RAM elements in the FPGA fabric.

• Private memory is memory inside of the FPGA. This memory is typically implemented using
registers in the FPGA fabric in order to minimize latency to the compute data path in the
processing element.

Chapter 2: Understanding the OpenCL Platform and Memory Model

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

11

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=11
www.xilinx.com

OpenCL Installable Client Driver Loader

SDAccel™ supports the OpenCL™ ICD extension (cl_khr_icd). The OpenCL ICD Loader Library
allows multiple implementations of OpenCL to co-exist on the same system. Applications may
choose a platform from the list of installed platforms and hence dispatch OpenCL API calls to
the correct underlying implementation.

Xilinx® does not provide the OpenCL ICD library and the following should be used to install the
library on your preferred system:

On Ubuntu ICD the library is packaged with the distribution, install the following packages:

• ocl-icd-libopencl1
• opencl-headers
• ocl-icd-opencl-dev

For RHEL/CentOS 7.X use EPEL 7, install the following packages:

• ocl-icd
• ocl-icd-devel
• opencl-headers

For RHEL/CentOS 6.X the following procedure may be used:

1. Install prerequisites.

linux> yum install libICE libSM libXext libpng libXrender
fontconfig numactl redhat-lsb-core

2. Install the OpenCL SDK RPMs.

linux> rpm -i /proj/picasso/centos/OpenCL-RPMS/*.rpm

3. Install xilinx.icd.

linux> cat <<EOF > /etc/OpenCL/vendors/xilinx.icd
linux> libxilinxopencl.so
linux> EOF

Recommended Libraries

Xilinx recommends that you install the following libraries on your operating system.

• Independent JPEG Group's JPEG runtime library (version 6.2)
• %sudo apt-get install libjpeg62 libjpeg62-dev

Chapter 2: Understanding the OpenCL Platform and Memory Model

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

12

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=12
www.xilinx.com

Xilinx recommends the following packages should be installed on CentOS 7.x

• PNG reference library.
• %sudo yum install libpng12
• The Linux Standards Base (LSB) library. The redhat-lsb package provides utilities needed for

LSB Compliant Applications.
• %sudo yum install redhat-lsb
• The libtiff3 package, an older version of libtiff library for manipulating TIFF (Tagged

Image File Format) image format files.
• %sudo yum install redhat-lsb

Chapter 2: Understanding the OpenCL Platform and Memory Model

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

13

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=13
www.xilinx.com

Kernel Language Support
The SDAccel™ environment supports kernels expressed in OpenCL™ C, C/C++ and RTL (Verilog
or VHDL). You can use different kernel types in the same application.

Expressing a Kernel in RTL

A kernel can be implemented in RTL and developed using the Vivado® IDE tool suite. RTL
kernels offer potentially higher performance with lower area and power, but require
development using RTL coding, tools, and verification methodologies. Existing RTL based IP and
algorithms can be wrapped and migrated to the SDAccel™ framework enabling those HDL
based algorithms to be callable by the runtime and application program. RTL kernels must use
the correct interfaces, protocols, and packaging to be recognized by the SDAccel tool flow and
runtime library. The following section describes how to implement RTL kernels.

RTL kernels should be written, designed, and tested using the recommendations in the UltraFast
Design Methodology Guide for the Vivado Design Suite, (UG949).

Interface Requirements

The following signals and interfaces are required on the top level of an RTL block.

• Clock.
• Active Low reset.
• 1 or more AXI4 memory mapped (MM) master interfaces for global memory. All AXI MM

master interfaces must have 64-bit addresses.

◦ You are responsible for partitioning global memory spaces. Each partition in the global
memory becomes a kernel argument. The memory offset for each partition must be set
by a control register programmable via the AXI4 MM Slave Lite interface.

• One and only one AXI4 MM slave lite I/F for control interface. The AXI Lite interface name
must be S_AXI_CONTROL.

◦ Offset 0 of the AXI4 MM slave lite must have the following signals:

▪ Bit 0: start signal - The kernel starts processing data when this bit is set.
▪ Bit 1: done signal - The kernel asserts this signal when the processing is done.
▪ Bit 2: idle signal - The kernel asserts this signal when it is not processing any data.

• One or more AXI4-Stream interfaces for streaming data between kernels.

Chapter 3

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

14

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;ug949-vivado-design-methodology.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=14
www.xilinx.com

Programming Paradigm

Software Function Model

RTL kernels are modeled in software as functions with a void return value similar to the software
interface model used in HLS based kernels. This means that RTL kernels can only be passed
scalers for input arguments and memory pointer addresses for data to be exchanged with the
host application.

In the host application, the RTL kernel can be invoked in a similar manner as HLS kernels with a
function signature such as:

void mmult(int *a, int *b, int *output)

void mmult(unsigned int length, int *a, int *b, int *output)

If the underlying logic requires a different control or software model then logic shall be added
to fit this shape.

Interface Requirements for Integration Into the Platform

The RTL kernel integrates into a platform using a slave AXI4-Lite interface for control register
access (to pass kernel arguments and to start/stop the kernel). The RTL kernel can also have
AXI4 master interfaces to talk to memory.

The following signals and interfaces are required on the top level of an RTL block.

• Primary clock input port named ap_clk.

◦ This clock is used by the AXI interfaces of the kernel.
◦ There can be a secondary optional clock input named ap_clk_2.

• Primary active low reset input port named ap_rst_n.

◦ This signal should be internally pipelined to improve timing.
◦ This signal is driven by a synchronous reset in the ap_clk clock domain.

• There can be a secondary optional active low reset input ap_rst_n_2.

◦ This signal should be internally pipelined to improve timing.
◦ This signal is driven by a synchronous reset in the ap_clk_2 clock domain.

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

15

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=15
www.xilinx.com

• One and only one AXI4-Lite slave control interface.

◦ Offset 0 of the AXI4-Lite slave interface must have the following signals:

▪ Bit 0: start signal - The kernel starts processing data when this bit is set.
▪ Bit 1: done signal - The kernel asserts this signal when the processing is done. This

bit is clear on read.
▪ Bit 2: idle signal - The kernel asserts this signal when it is not processing any data.

The transition from low to high should occur synchronously with assertion of done
signal.

◦ The host typically writes to 0x00000001 to the offset 0 control register which sets Bit 0,
clears Bits 1 and 2, and polls on reading done signal until it is a "1".

• 0 or more AXI4 memory mapped (MM) master interfaces for global memory.

◦ All AXI4 MM master interfaces must have 64-bit addresses.
◦ The kernel developer is responsible for partitioning global memory spaces. Each

partition in the global memory becomes a kernel argument. The memory offset for
each partition must be set by a control register programmable via the AXI4-Lite Slave
interface.

◦ AXI4 masters must not use Wrap or Fixed burst types, and must not use narrow (sub-
size) bursts meaning AxSIZE should match the width of the AXI data bus.

• 0 or more AXI4-Stream interfaces for streaming data between kernels. AXI4-Stream
interfaces can only be used to connect between kernels.

◦ Interfaces must have TDATA, TREADY, and TVALID.
◦ The TDATA width should match the width of the other kernel to be connected to.

• A kernel must have at least one AXI4 MM interface or at least one AXI4-Stream Interface

Any user logic or RTL code that does not conform to the requirements above, must be wrapped
or bridged to satisfy these requirements.

SDAccel Tool Flow for RTL Kernels

There are three steps to packaging an RTL block as an RTL kernel for SDAccel™ applications:

1. Package the RTL block as Vivado® IP.
2. Create a kernel description XML file.
3. Package the RTL kernel into a Xilinx Object (XO) file.

A fully packaged RTL Kernel is delivered as an XO file which has a file extension of .xo. This file
is a container encapsulating the Vivado IP object (including source files) and kernel XML file. The
XO file can be compiled into the platform and run in hardware, or hardware emulation flows.

Packaging RTL block as a Vivado IP

RTL Kernels must be packaged as a Vivado® IP suitable for use in IP Integrator. See Vivado
Design Suite User Guide: Creating and Packaging Custom IP (UG1118) for details on IP packaging
in Vivado.

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

16

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=16
www.xilinx.com

The following interface packaging is required for the RTL Kernel:

• The AXI4-Lite interface name must be packaged as S_AXI_CONTROL, but the underlying AXI
ports can be named differently.

• The AXI4 MM interfaces must be packaged as AXI4 master endpoints with 64 bit address
support.

◦ Xilinx strongly recommends that AXI4 MM interfaces be packaged with AXI meta data
HAS_BURST=0 and SUPPORTS_NARROW_BURST=0. These properties can be set in an IP
level bd.tcl file. This indicates wrap and fixed burst type is not used and narrow (sub-
size burst) is not used.

• ap_clk and ap_clk_2 must be packaged as clock interfaces.
• ap_rst_n and ap_rst_n_2 must be packaged as active low reset interfaces.
• ap_clk must be packaged to be associated with all AXI4-Lite, AXI4 MM, and AXI4-Stream

interfaces.

To test if the RTL kernel is packaged correctly for IP Integrator, try to instantiate the packaged
kernel in IP Integrator. In the GUI it should show up as having interfaces for clock, reset,
AXI4-Lite slave, AXI4 MM master, and AXI4-Slave only. No other ports should be present in the
canvas view. The properties of the AXI interface can be viewed by selecting the interface on the
canvas. Then in the Block Interface Properties window, select the Properties tab and expand
the CONFIG table entry. If an interface is to be read-only or write-only then the unused AXI
channels can be removed and the READ_WRITE_MODE will be set to read-only or write-only.

Create Kernel Description XML File

A kernel description XML file needs to be manually created for the RTL IP to be used as an RTL
kernel in SDAccel environment. The following is an example of the kernel XML file:

<?xml version="1.0" encoding="UTF-8"?>
<root versionMajor="1" versionMinor="0">
<kernel name="input_stage" language="ip"
vlnv="xilinx.com:hls:input_stage:1.0" attributes=""
preferredWorkGroupSizeMultiple="0" workGroupSize="1">
<ports>
<port name="M_AXI_GMEM" mode="master" range="0x3FFFFFFF" dataWidth="32"
portType="addressable" base="0x0"/>
<port name="S_AXI_CONTROL" mode="slave" range="0x1000" dataWidth="32"
portType="addressable" base="0x0"/>
<port name="AXIS_P0" mode="write_only" dataWidth="32" portType="stream"/>
</ports>
<args>
<arg name="input" addressQualifier="1" id="0" port="M_AXI_GMEM"
size="0x4" offset="0x10" hostOffset="0x0" hostSize="0x4" type="int*" />
<arg name="__xcl_gv_p0" addressQualifier="4" id="" port="AXIS_P0"
size="0x4" offset="0x18" hostOffset="0x0" hostSize="0x4" type=""
memSize="0x800"/>
</args>
</kernel>
<pipe name="xcl_pipe_p0" width="0x4" depth="0x200" linkage="internal"/>
<connection srcInst="input_stage" srcPort="p0" dstInst="xcl_pipe_p0"

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

17

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=17
www.xilinx.com

dstPort="S_AXIS"/>
</root>

The following table describes the format of the kernel XML in detail:

Table 1: Kernel XML Format

Tag Attribute Description
versionMajor Set to 1 for the current release of SDAccel<root>
versionMinor Set to 0 for the current release of SDAccel
name Kernel name
language Always set it to "ip" for RTL kernels

vlnv Must match the vendor, library, name, and version
attributes in the component.xml of an IP. For
example, If component.xml has the following tags:

<spirit:vendor>xilinx.com</spirit:vendor>

<spirit:library>hls</spirit:library>

<spirit:name>test_sincos</spirit:name>

<spirit:version>1.0</spirit:version>

the vlnv attribute in kernel XML will need to be set
to:

xilinx.com:hls:test_sincos:1.0

attributes Reserved. Set it to empty string.
prefreredWorkGroupSizeMultiple Reserved. Set it to 0.

<kernel>

workGroupSize Reserved. Set it to 1.
name Port name. At least an AXI4 master port and an

AXI4-Lite slave port are required. AXI stream port
can be optionally specified to stream data
between kernels. The AXI4-Lite interface name
must be S_AXI_CONTROL.

mode • For AXI-4master port, set it to "master".
• For AXI-4 slave port, set it to "slave".
• For AXI Stream master port, set it to

"write_only".
• For AXI Stream slave port, set it "read_only".

range The range of the address space for the port.

<port>

dataWidth The width of the data that goes through the port,
default is 32 bits.

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

18

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=18
www.xilinx.com

Tag Attribute Description
portType Indicate whether or not the port is addressable or

streaming.

• For AXI4 master and slave ports, set it to
"addressable".

• For AXI4-Stream ports, set it to "stream".

base For AXI4 master and slave ports, set to "0x0". This
tag is not applicable to AXI4-Stream ports.

name Kernel argument name.
addressQualifier Valid values:

0: Scalar kernel input argument
1: global memory
2: local memory
3: constant memory
4: pipe

id Only applicable for AXI4 master and slave ports.
The ID needs to be sequential. It is used to
determine the order of kernel arguments.

Not applicable for AXI4-Stream ports.

port Indicates the port that the arg is connected to.
size Size of the argument. The default is 4 bytes.
offset Indicates the register memory address.
type The C data type for the argument. E.g. int*, float*
hostOffset Reserved. Set to 0x0.
hostSize Size of the argument. The default is 4 bytes.

<arg>

memSize Not applicable to AXI-4 master and slave ports.

For AXI4-Stream ports, memSize sets the depth of
the FIFO created for the AXI stream ports.

The following tags specify additional information for AXI4-Stream ports. They are not applicable to
AXI4 master or slave ports.

For each pipe in the compute unit, the compiler inserts a FIFO for buffering the data.
The pipe tag describes configuration of the FIFO.
name This specifies the name for the FIFO inserted for

the AXI4-Stream port. This name must be unique
among all pipes used in the same compute unit.

width This specifies the width of FIFO in bytes. For
example, 0x4 for 32-bit FIFO.

depth This specifies the depth of the FIFO in number of
words.

<pipe>

linkage Always set to "internal".

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

19

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=19
www.xilinx.com

Tag Attribute Description
The connection tag describes the actual connection in hardware either from the
kernel to the FIFO inserted for the PIPE or from the FIFO to the kernel.
srcInst Specifies the source instance of the connection.
srcPort Specifies the port on the source instance for the

connection.
dstInst Specifies the destination instance of the

connection.

<connection>

dstPort Specifies the port on the destination instance of
the connection.

Package RTL Kernel into Xilinx Object File

The final step is to package the RTL IP and the kernel XML together into a Xilinx object file (.xo)
so it can be used by the SDAccel compiler. The following is the command example in Vivado
2017.1_sda. The final RTL kernel is in the test.xo file.

package_xo -xo_path test.xo -kernel_name test_sincos -kernel_xml
kernel.xml -ip_directory ./ip/

RTL Kernel Wizard

The RTL Kernel Wizard walks you through the process of specifying your desired software
function model and interface model for their RTL Kernel. The RTL Kernel Wizard generates an
example project design and a set of scripts to build that example design into an XO file. This
example design can then serve as a framework for the user to integrate new or existing RTL
code into. The example project is a normal Vivado® project with sample RTL that conforms to
the interface requirements of RTL Kernels. The provided scripts package the RTL into a Vivado IP
with the necessary interface definitions and meta data. A kernel.xml file is also generated to
match the software function prototype and behavior specified in the wizard. The benefit of the
wizard is that allowable selections serve to guide yuo to understand the supported features of
an RTL kernel.

Launching RTL Kernel Wizard

The RTL Kernel Wizard can be launched with two different methods: from the SDx™
Development Environment or from the Vivado® IDE. The SDx Development Environment
provides a more seemless experience, but IP management is limited. The Vivado IDE is
recommended if multiple kernels are going to be generated and allows for better re-entrant
workflows.

Launching the RTL Kernel Wizard from the SDx Development Environment:

1. Launch SDx Development Environment.

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

20

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=20
www.xilinx.com

2. Create Project (SDAccel Product Type).
3. Click Xilinx > Create RTL Kernel....

Launching the RTL Kernel Wizard from Vivado IDE:

1. Create a new Vivado project choosing the same device as exists on the platform you intend to
target. If you do not know your target device, choose the default part.

2. Go to the IP catalog by clicking on the IP Catalog button.
3. Type wizard in the IP Catalog search box.
4. Double-click SDx Kernel Wizard to launch the wizard.

NOTE: Use Vivado from the SDx install so the tool versions are the same.

RTL Kernel Wizard Settings

The wizard is organized into pages that break down the process of creating a kernel into smaller
steps. To navigate between pages, use the Next and Back buttons. To finalize the kernel and
build a project based on the wizards inputs, click the OK button. Each of the following sections
describes each page and its input options.

Welcome to SDx Kernel Wizard

This page gives an abbreviated version of the workflow and the steps for following the wizard.

RTL Kernel Wizard General Settings

Kernel Identification

• Kernel name -The kernel name. This will be the name of the IP, top level module name,
kernel, and C function call. Igt should be unique. Must conform to C and Verilog identifier
naming rules. It must also conform to Vivado® IP Integrator naming rules, which prohibits
underscores except when placed in between alphanumeric characters.

• Kernel vendor - The name of the vendor. Used in the VLNV.

• Kernel library - The name of the library. Used in the VLNV. Must conform to same identifier
rules Kernel name.

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

21

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=21
www.xilinx.com

Clocking Options

Number of clocks - Sets the number of clocks used by the Kernel. Every kernel has a primary
clock called ap_clk that all input/output ports on the kernel are synchronous to. When Number
of clocks is set to 2, a secondary clock and related reset are provided to be used by the kernel
internally. The secondary clock and reset are called ap_clk_2 and ap_rst_n_2, respectively. This
secondary clock supports independent frequency scaling and is independent from the primary
clock. The secondary clock is useful if the kernel clock needs to run at a faster/slower rate than
the AXI4 interface, which must be clocked on the primary clock. When designing with multiple
clocks, proper clock domain crossing techniques must be used to ensure data integrity across all
clock frequency scenarios.

Scalars Arguments

Scalar arguments are used to pass control type of information to the kernels. Scalar arguments
can not be read back from the host. For each argument that is specified a corresponding control
register is created to facilitate passing the argument from software to hardware.

• Number of scalar kernel input arguments - Specifies the number of scalar input
arguments to pass to the kernel. For each of the number specified, a table row is generated
that allows customization of the argument name and argument type. There is no required
minimum number of scalars and the maximum is limited to 16.

Scalar Input Argument Definition

• Argument name - The argument name is used in the generated Verilog control register
module as an output signal. Each argument is assigned an ID value. This ID value is used to
access the argument from the host software. The ID value assignments can be found on the
summary page of this wizard. To ensure maximum compatibility, the argument name
follows the same identifier rules as the Kernel name.

• Argument type - Specifies the the data type of the argument. This will affect the width of
the control register in the generated Verilog module. The data types available are limited to
the ones specified by the OpenCL version 2.0 specification. Data types that represent a bit
width greater than 32 bits will require two write operations to the control registers.

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

22

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=22
www.xilinx.com

Global Memory

Global memory is accessed by the kernel through AXI4 master interfaces. Each AXI4 interface
operates independently of each other. Each AXI4 interface may be connected to one or more
memory controllers to off chip memory such as DDR4. Global memory is primarily used to pass
large data sets to and from the kernel from the host. It can also be used to pass data between
kernels. See the Memory Performance Optimizations for AXI4 Interface section for
recommendations on how to design these interfaces for optimal performance. For each
interface, example AXI master logic is generated in the RTL kernel to provide a starting point
and can be discarded if not used.

• Number of AXI master interfaces - Specifies the number of AXI master interfaces present
on the Kernel. A maximum of 16 interfaces may be specified. For each interface, an interface
name, data width, and number of associated arguments can be customized. Each interface
contains all read/write channels.

AXI Master Definition (table columns)

Interface Name - Specifies the name of the interface. To ensure maximum compatibility, the
argument name follows the same identifier rules as the Kernel name.

Width (bytes) - Specifies the data width of the AXI data channels. It is recommended this is
matched to the native data width of the memory controller AXI4 slave interface. The memory
controller slave interface is typically 64 bytes (512 bits) wide.

Number of Arguments - Specifies the number of arguments to associate with this interface.
Each argument represents a data pointer to global memory that the kernel can access.

Argument Definition

Interface - Specifies the name of the AXI Interface that the corresponding columns in the
current row are associated to. This value is not directly modifiable, it is copied from the interface
name defined in the previous table.

Argument name - The argument name is used in the generated Verilog control register module
as an output signal. Each argument is assigned an ID value. This ID value is used to access the
argument from the host software. The ID value assignments can be found on the summary page
of this wizard. To ensure maximum compatibility, the argument name follows the same identifier
rules as the Kernel name.

Summary

This page gives a summary of the VLNV, software function prototype and hardware control
registers created from options selected in the previous pages. The function prototype conveys
what a kernel call would like if it was a C function. See the host code generated example of how
to set the kernel arguments for the kernel call. The register map shows the relationship between
host software ID, argument name, hardware register offset, type, and associated interface.
Review this page to for correctness before proceeding to generating the kernel.

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

23

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=23
www.xilinx.com

Finalizing and Generating the Kernel from the RTL Wizard

If the RTL Kernel Wizard was launched from SDx™, after clicking OK, the example Vivado®
project opens.

If the RTL Kernel Wizard was launched from Vivado, after clicking OK do the following:

1. When the Generate Output Products window appears, select Global synthesis options and
click Generate, then OK.

2. Right-click on the .xci file in the Design Sources View, and select Open IP Example
Design....

3. In the open example design window, select an output directory (or accept default) and click
OK.

4. This opens a new Vivado® project with the example design in it. You can now close the
current Vivado project that the RTL Kernel Wizard was invoked from.

XO Generation Scripts and Generated Files

In the example design project, review the HDL files in the design sources view and review the
generated kernel.xml file.

To package the RTL code as a Vivado® IP and generate the XO:

1. In the Vivado IDE, click the Generate RTL Kernel button located at the top of the screen.
Alternatively, in the Tcl Console, type source imports/package_kernel.tcl and review the
Tcl Console log files. Notice that a package kernel XO file is now created in the sdx_imports
directory along with host file called main.c.

2. The generated XO file and main.c host code can be imported into SDx or used with xocc to
run the hardware emulation or HW (system) workflows.. Note that host code needs to be
written to invoke the kernel.

After running and reviewing the example, the user can modify the design to add their own RTL
code and adapt it to the top level module definition of the example project. After any RTL
changes use the Vivado tools to test synthesis and run DRCs. Each time the source code is
changed, rerun the package_kernel.tcl script.

Designing RTL Recommendations

Memory Performance Optimizations for AXI4 Interface

The AXI4 MM interfaces typically connect to DDR memory controllers in the platform. For
optimal frequency and resource usage it is recommended that one interface is used per memory
controller. For best performance from the memory controller, the following is the recommended
AXI interface behavior:

1. Use an AXI data width that matches the native memory controller AXI data width, typically 512
bits.

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

24

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=24
www.xilinx.com

2. Do not use WRAP, FIXED, or sub-sized bursts.
3. Use burst transfer as large as possible (up to 4KByte AXI4 protocol limit).
4. Avoid use of de-asserted write strobes. De-asserted write strobes can cause ECC logic in the

DDR memory controller to perform read-modify-write operations.
5. Use pipelined AXI transactions
6. Avoid using threads if an AXI interface is only connected to one DDR controller.
7. Avoid generating write address commands if the kernel does not have the ability to deliver

the full write transaction (non-blocking write requests).
8. Avoid generating read address commands if the kernel does not have the capacity to accept

all the read data without backpressure (non-blocking read requests).
9. If a read-only or write-only interfaces are desired, then the ports of the unused channels can

be commented out in the top level RTL file before the project is packaged into a kernel.
10. Using multiple threads can cause larger resource requirements in the infrastructure IP

between the kernel and the memory controllers.

Quality of Results Considerations

The following recommendations help improve results for timing and area:

1. Pipeline all reset inputs and internally distribute resets avoiding high fanout nets.
2. Reset only essential control logic FFs.
3. Consider registering input and output signals to the extent possible.
4. Understand the size of the kernel relative to the capacity of the target platforms to ensure fit,

especially if multiple kernels will be instantiated.
5. Recognize platforms that use Stack Silicon Interconnect (SSI) Technology. These devices have

multiple dice and any logic that must cross between them should be Flip Flop (FF) to FF
timing paths.

Debug and Verification Considerations

1. RTL kernels should be verified in their own test bench using advanced verification techniques
including Verification components, randomization, and protocol checkers. The AXI Verification
IP (AXI VIP) is available in the Vivado® IP catalog and can help with verification of AXI
interfaces. The RTL kernel example designs contain an AXI VIP based test bench with sample
stimulus files.

2. The hardware emulation flow should not be used for functional verification because it does
not accurately represent the range of possible protocol signalling conditions that real AXI
traffic in hardware may incur. Hardware emulation should be used to test the host code
software integration or to view the interaction between multiple kernels.

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

25

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=25
www.xilinx.com

Using RTL Kernels

RTL kernels can be created in an SDAccel™ application by using the commands below. Note the
type for create_kernel command is ip and the file name for kernel source is the .xo file
generated from the Package RTL Kernel step. RTL kernels are not supported in CPU emulation
flow. They are supported in hardware emulation flow and build system flow.

create_kernel test_sincos -type ip add_files -kernel
[get_kernels test_sincos] "test.xo"

Expressing a Kernel in OpenCL C

The SDAccel™ environment supports the OpenCL™ language constructs and built in functions
from the OpenCL 1.0 embedded profile. The following is an example of an OpenCL kernel for
matrix multiplication that can be compiled with the SDAccel environment.

__kernel __attribute__ ((reqd_work_group_size(16,16,1)))
void mult(__global int* a, __global int* b, __global int* output)
{

int r = get_local_id(0);
int c = get_local_id(1);
int rank = get_local_size(0);
int running = 0;
for(int index = 0; index < 16; index++){

int aIndex = r*rank + index;
int bIndex = index*rank + c;
running += a[aIndex] * b[bIndex];

}
output[r*rank + c] = running;
return;

}

IMPORTANT: Standard C libraries such as math.h can not be used in OpenCL C kernel. Use OpenCL built-in
C functions instead.

Expressing a Kernel in C/C++

The kernel for matrix multiplication can be expressed in C/C++ code that can be synthesized by
the Vivado® HLS tool. For kernels captured in this way, the SDAccel™ development
environment supports all of the optimization techniques available in Vivado HLS. The only thing
that the user has to keep in mind is that expressing kernels in this way requires compliance with
a specific function signature style.

void mmult(int *a, int *b, int *output)
{

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

26

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=26
www.xilinx.com

#pragma HLS INTERFACE m_axi port=a offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=b offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=output offset=slave bundle=gmem
#pragma HLS INTERFACE s_axilite port=a bundle=control
#pragma HLS INTERFACE s_axilite port=b bundle=control
#pragma HLS INTERFACE s_axilite port=output bundle=control
#pragma HLS INTERFACE s_axilite port=return bundle=control

const int rank = 16;
int running = 0;
int bufa[256];
int bufb[256];
int bufc[256];
memcpy(bufa, (int *) a, 256*4);
memcpy(bufb, (int *) b, 256*4);

for (unsigned int c=0;c<rank;c++){
for (unsigned int r=0;r<rank;r++){

running=0;
for (int index=0; index<rank; index++) {

#pragma HLS pipeline
int aIndex = r*rank + index;
int bIndex = index*rank + c;
running += bufa[aIndex] * bufb[bIndex];

}
bufc[r*rank + c] = running;

}
}

memcpy((int *) output, bufc, 256*4);
return;

}

The preceding code example is the matrix multiplication kernel expressed in C/C++ for Vivado
HLS. The first thing to notice about this code is the function signature.

void mmult(int *a, int *b, int *output)

This function signature is almost identical to the signature of the kernel expressed in OpenCL C.
It is important to keep in mind that by default, kernels captured in C/C++ for HLS do not have
any inherent assumptions on the physical interfaces that will be used to transport the function
parameter data. HLS uses pragmas embedded in the code to direct the compiler as to which
physical interface to generate for a function port. For the function to be treated as a valid
OpenCL kernel, the ports on the C/C++ function must be reflected on the memory and control
interface pragmas for HLS.

The memory interface specification is

#pragma HLS INTERFACE m_axi port=<variable name> offset=slave
bundle=<interface name>

A separate AXI4 master interface in the name of M_AXI_<interface name> is created for each
unique bundle. For example, if bundle is set to bank0, the name for the AXI4 interface is set to
M_AXI_BANK0. This interface name is required for some advanced options like map_connect to
make particular physical connections in the FPGA design.

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

27

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=27
www.xilinx.com

The control interface specification is

#pragma HLS INTERFACE s_axilite port=<variable name> bundle=<interface name>

Detailed information on how these pragmas are used is available in the Vivado Design Suite User
Guide: High-Level Synthesis (UG902).

IMPORTANT: Global variables in HLS C/C++ kernels are not supported.

NOTE: C++ arbitrary precision data types can be used for global memory pointers on a kernel. They are not
supported for scalar kernel inputs that are passed by value.

Chapter 3: Kernel Language Support

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

28

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=28
www.xilinx.com

Compilation Flow
The Xilinx® SDAccel™ development environment is used for creating and compiling OpenCL™
applications onto a Xilinx® FPGA. This tool suite provides a software development environment
for algorithm development and emulation on x86 based workstations, as well as deployment
mechanisms for Xilinx FPGAs.

The compilation of OpenCL applications into binaries for execution on an FPGA does not
assume nor require FPGA design knowledge. A basic understanding of the capabilities of an
FPGA is necessary during application optimization in order to maximize performance. The
SDAccel environment handles the low-level details of program compilation and optimization
during the generation of application specific compute units for an FPGA fabric. Therefore, using
the SDAccel environment to compile an OpenCL program does not place any additional
requirements on the user beyond what is expected for compilation towards a CPU or GPU
target.

An OpenCL program can be compiled using standalone command line compilers(xcpp for host
code and xocc for kernels) in the SDAccel development environments. The compilation flow is
described in detail in this chapter.

IMPORTANT: Starting with the SDAccel 2016.3 release, Tcl-based access is no longer supported. Direct
command line access via XOCC (and MakeFile) is the main entry point to use SDAccel services. You must
convert all Tcl scripts to the MakeFile based setup which will call XOCC directly or the scripts will no longer
function. Refer to examples in the SDAccel installation on usages of Makefile/XOCC for compiling SDAccel
applications. See Converting Tcl Compilation Flow to XOCC for more information.

Xilinx OpenCL Compiler

Creating the Xilinx OpenCL Compute Unit Binary Container

The main difference between targeting an OpenCL™ application to a CPU/GPU and targeting an
FPGA is the source of the compiled kernel. Both CPUs and GPUs have a fixed computing
architecture onto which the kernel code is mapped by a compiler. Therefore, OpenCL programs
targeted for either kind of device invokes just-in-time compilation of kernel source files from the
host code. The API for invoking just-in-time kernel compilation is as follows:

clCreateProgramWithSource(…)

IMPORTANT: ClCreateProgramWithSource function is not supported for kernels targeting FPGA.

Chapter 4

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

29

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=29
www.xilinx.com

In contrast to a CPU or a GPU, an FPGA can be thought of as a blank computing canvas onto
which a compiler generates an optimized computing architecture for each kernel in the system.
This inherent flexibility of the FPGA allows the developer to explore different kernel
optimizations and compute unit combinations that are beyond what is possible with a fixed
architecture. The only drawback to this flexibility is that the generation of a kernel specific
optimized compute architecture takes a longer time than what is acceptable for just-in-time
compilation. The OpenCL standard addresses this fundamental difference between devices by
allowing for an offline compilation flow. This allows the user to generate libraries of kernels that
can be loaded and executed by the host program. The OpenCL APIs for supporting kernels
generated in an offline compilation flow are as follows:

// An offline binary container may be loaded with
clCreateProgramWithBinary()
cl_program p = clCreateProgramWithBinary(binary1);
clBuildProgram(p);

// Use the program and run kernels...

// Release the binary before the next call to clCreateProgramWithBinary()
clReleaseProgram(p);

// A second binary may then be loaded
p = clCreateProgramWithBinary(binary2);
clBuildProgram(p);

// Use the program and run kernels...

clReleaseProgram(p);

The SDAccel™ development environment uses an offline compilation flow to generate kernel
binaries. To maximize efficiency in the host program and allow the simultaneous instantiation of
kernels that cooperate in the computation of a portion of an application, Xilinx has defined the
Xilinx® OpenCL Compute Unit Binary format .xclbin. The xclbin file is a binary library of
kernel compute units that will be loaded together into an OpenCL context for a specific device.
This format can hold either programming files for the FPGA fabric or shared libraries for the
processor. It also contains library descriptive metadata, which is used by the Xilinx OpenCL
runtime library during program execution.

The library metadata included in the xclbin file is automatically generated by the SDAccel
environment and does not require user intervention. This data is composed of compute unit
descriptive information that is automatically generated during compute unit synthesis and used
by the runtime to understand the contents of an xclbin file.

The xclbin file is created using the SDx IDE. See SDAccel Environment Tutorial: Introduction
(UG1021) or the Xilinx OpenCL Compiler (xocc) command line utility discussed in this chapter. It
provides a mechanism for command line users to compile their kernels, which is ideal for
compiling host applications and kernels using a makefile.

The first step in building any system is to select an acceleration device suppported by Xilinx and
third-party platform providers.

xocc --platform <arg> <input_file>

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

30

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1021-sdaccel-intro-tutorial.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=30
www.xilinx.com

A complete list of supported devices is included in the SDx Environments Release Notes,
Installation, and Licensing Guide, (UG1238).

Building the System

Compilation of an application for execution on a Xilinx™ enabled OpenCL™ device through the
SDAccel™ development environment is performed by selecting the target. This step goes
beyond compilation of host and kernel code and is also responsible for the generation of
custom compute units for all of the binary containers in the solution.

The following is the command for this step in the flow:

xocc --target sw_emu|hw_emu|hw ...

The recommended flow is:

1. Perform software emulation (sw_emu) to confirm the functionality.
2. Perform hardware emulation (hw_emu) to create custom hardware and review the

performance of the kernel.
3. Perform a build of the hardware (hw) system to implement the custom hardware.

The compilation method used in each step is dependent on the user selected kernel execution
target. The xocc --target option invokes different flows for kernels targeted at a processor
and kernels targeted at the FPGA fabric.

Using CPU Emulation

In the context of the SDAccel™ development environment, application emulation on a CPU is
the same as the iterative development process that is typical of CPU/GPU programming. In this
type of development style, a programmer continuously compiles and runs an application as it is
being developed.

The main goal of CPU emulation is to ensure functional correctness and to partition the
application into kernels. Although partitioning and optimizing an application into kernels is
integral to OpenCL™ development, performance is not the main goal at this stage of application
development in the SDAccel environment.

For CPU-based emulation, both the host code and the kernel code are compiled to run on an
x86 processor. The programmer model of iterative algorithm refinement through fast compile
and run loops is preserved with speeds that are the same as a CPU compile and run cycle.

Using Hardware Emulation

The SDAccel™ development environment generates at least one custom compute unit for each
kernel in an application. This means that while the CPU emulation flow is a good measure of
functional correctness, it does not guarantee correctness on the FPGA execution target. Before
deployment, the application programmer should also check that the custom compute units
generated by the tool are producing the correct results.

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

31

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1238-sdx-rnil.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=31
www.xilinx.com

The SDAccel environment has a hardware emulation flow, which enables the programmer to
check the correctness of the logic generated for the custom compute units. This emulation flow
invokes the hardware simulator in the SDAccel environment to test the functionality of the logic
that will be executed on the FPGA compute fabric.

Using the Build Flow for Compute Units Targeting the FPGA Fabric

The SDAccel™ development environment generates custom logic for every compute unit in the
binary container. Therefore, it is normal for this build step to run for a longer period of time than
the other steps in the SDAccel application compilation flow.

The steps in compiling compute units targeting the FPGA fabric are as follows:

1. Generate a custom compute unit for a specific kernel.
2. Instantiate the compute units in the OpenCL™ binary container.
3. Connect the compute units to memory and infrastructure elements of the target device.
4. Generate the FPGA programming file.

The generation of custom compute units for any given kernel code uses the production proven
capabilities of the Xilinx® Vivado® High-Level Synthesis (HLS) tool, which is the compute unit
generator in the SDAccel environment. Based on the characteristics of the target device in the
solution, the SDAccel environment invokes the compute unit compiler to generate custom logic
that maximizes performance while at the same time minimizing compute resource consumption
on the FPGA fabric. Automatic optimization of a compute unit for maximum performance is not
possible for all coding styles without additional user input to the compiler. Kernel Optimization
discusses the additional user input that can be provided to the SDAccel environment to optimize
the implementation of kernel operations into a custom compute unit.

After all compute units have been generated, these units are connected to the infrastructure
elements provided by the target device in the solution. The infrastructure elements in a device
are all of the memory, control, and I/O data planes which the device developer has defined to
support an OpenCL application. The SDAccel environment combines the custom compute units
and the base device infrastructure to generate an FPGA binary which is used to program the
Xilinx device during application execution.

IMPORTANT: The SDAccel environment always generates a valid FPGA hardware design, but does not
generate an optimal allocation of the available bandwidth in the control and memory data planes. The user
can manually optimize the data bandwidth usage by selecting connection points into the memory and
control data planes per compute unit.

Compiling Your OpenCL Kernel Using the Xilinx
OpenCL Compiler (xocc)

The Xilinx® OpenCL™ Compiler (xocc) is a standalone command line utility for compiling an
OpenCL kernel supporting all flows in the SDAccel™ environment. It provides a mechanism for
command line users to compile their kernels, which is ideal for compiling host applications and
kernels using a makefile.

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

32

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=32
www.xilinx.com

Following are details of xocc command line format and options.

Syntax:

xocc [options] <input_file>

Table 2: XOCC Options

Option Valid Values Description

--platform <arg> Supported acceleration
platforms by Xilinx and third-
party board partners

Required

Set target Xilinx device. See SDx
Environments Release Notes,
Installation, and Licensing Guide
(UG1238) for all supported
devices.

--list_xdevices N/A Lists the supported devices.

--target <arg> [sw_emu | hw_emu | hw] Specify a compile target.

• sw_emu: CPU emulation
• hw_emu: Hardware

emulation
• hw: Hardware

Default: hw

NOTE: Without the -c or -l option,
xocc is run in build mode, an
.xclbin file is generated.

--compile N/A Optional

Run xocc in compile mode,
generate .xo file.

--link N/A Optional

Run xocc in link mode, link .xo
input files, generate .xclbin file.

--kernel <arg> Kernel to be compiled from
the input .cl or .c/.cpp
kernel source code

Required for C/C++ kernels

Optional for OpenCL kernels

Compile/build only the specified
kernel from the input file. Only
one -k option is allowed per
command.

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

33

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1238-sdx-rnil.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=33
www.xilinx.com

Option Valid Values Description

NOTE: When an OpenCL kernel is
compiled without the -k option, all
the kernels in the input file are
compiled.

--output <arg> File name with .xo or
.xclbin extension
depending on mode

Optional

Set output file name.

Default:

a.xo for compile mode

a.xclbin for link and build
mode

--version N/A Prints the version and build
information.

--help N/A Print help.

--define <arg> Valid macro name and
definition pair

<name>=<definition>

Predefine name as a macro with
definition. This option is passed
to the openCL preprocessor.

--include <arg> Directory name that includes
required header files

Add the directory to the list of
directories to be searched for
header files. This option is
passed to the SDAccel compiler
preprocessor.

--kernel_frequency Frequency (MHz) of the
kernel.

Sets a user defined clock
frequency in MHz for a the
kernel overriding a default value
from the DSA.

--nk <arg> <kernel_name>:
<compute_units>

(for example, foo:2)

N/A in compile mode

Optional in link mode

Instantiate the specified number
of compute units for the given
kernel in the .xclbin file.

Default: One compute unit per
kernel.

--pk <arg> [kernel_name|all] :
[none|stream|pipe|memory]

Optional

Set a stall profile type for the
given kernel(s)

Default: none

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

34

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=34
www.xilinx.com

Option Valid Values Description

--max_memory_ports
<arg>

[all | <kernel_name>] Optional

Set the maximum memory port
property for all kernels or a given
kernel.

--
memory_port_data_width
<arg>

[all |
<kernel_name>]:<width>

Set the specified memory port
data width for all kernels or a
given kernel. Valid width values
are 32, 64, 128, 256, and 512.

--optimize<arg> Valid optimization levels: 0,
1, 2, 3, s, quick

example: --optimize2

These options control the default
optimizations performed by the
Vivado® hardware synthesis
engine.

NOTE: Familiarity with the Vivado
tool suite is recommended in order to
make the most use of these settings.

• 0: Default optimization.
Reduce compilation time
and make debugging
produce the expected
results.

• 1: Optimize to reduce power
consumption. This takes
more time to compile the
design.

• 2: Optimize to increase
kernel speed. This option
increases both compilation
time and the performance of
the generated code.

• 3: This is the highest level of
optimization. This option
provides the highest level
performance in the
generated code, but
compilation time may
increase considerably.

• s: Optimize for size. This
reduces the logic resources
for the kernel

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

35

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=35
www.xilinx.com

Option Valid Values Description

• quick: Quick compilation for
fast run time. This may result
in reduced performance and
a greater use of resources in
the hardware
implementation.

--xp Refer to the following table,
XP Parameters.

Specify detailed parameter and
property settings in the Vivado
tool suite used to implement the
FPGA hardware.

NOTE: Familiarity with the Vivado
tool suite is recommended in order to
make the most use of these
parameters.

--debug N/A Generate code for debugging.
--log N/A Creates a log for in the current

working directory.

--message-rules <arg> Message rule file name Optional -

Specify a message rule file with
message controlling rules. See
Using the Message Rule File
chapter for more details.

--report <arg> Generate [estimate | system]
reports

Generate a report type specified
by <arg>.

estimate: Generate estimate
report in
report_estimate.xtxt

system: Generate the estimate
report and detailed hardware
reports in report directory

--save-temps N/A Save intermediate files/
directories created during the
compilation and build process.

--report_dir <arg> Directory Specify a report directory. If the -
-report option is specified, the
default is to generate all reports
in the current working directory
(cwd).

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

36

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=36
www.xilinx.com

Option Valid Values Description

--log_dir <arg> Directory Specify a log directory. If the --
log option is specified, the
default is to generate the log file
in the current working directory
(cwd).

--temp_dir <arg> Directory Specify a log directory. If the --
save-temps option is specified,
the default is to create the
temporary compilation and build
files in the current working
directory (cwd).

--export_script N/A This option allows detailed
control of the Vivado tool suite
used to implement the FPGA
hardware.

NOTE: Familiarity with the Vivado
tool suite is recommended in order to
make the most use of the Tcl file
generated by this option.

Generates the Tcl script used to
execute Vivado HLS
<kernel_name>.tcl but halts
before Vivado HLS starts. The
expectation is for the script to be
modified and used with the --
custom_script option.

Not supported for –t sw_emu
with OpenCL kernels.

--custom_script <kernel_name>:<path to
kernel Tcl file>

Intended for use with the
<kernel_name>.tcl file
generated with option
–export_script.

This option allows you to
customize the Tcl file used to
create the kernel and execute
using the customize version of
the script.

--jobs <arg> Number of parallel jobs Optional

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

37

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=37
www.xilinx.com

Option Valid Values Description

This option allows detailed
control of the Vivado tool suite
used to implement the FPGA
hardware.

NOTE: Familiarity with the Vivado
tool suite is recommended in order to
make the most use of the Tcl file
generated by this option.

Specify the number of parallel
jobs to be passed to the Vivado
tool suite for implementation.
Increasing the number of jobs
allows the hardware
implementation step to spawn
more parallel processes and
complete faster.

--lsf <arg> bsub command line to pass
to LSF cluster

NOTE: This argument is
required.

Optional

Use IBM Platform Load Sharing
Facility (LSF) for Vivado
implementation.

input file OpenCL or C/C++ kernel
source file

Compile kernels into a .xo or
.xclbin file depending on the
xocc mode.

IMPORTANT: All examples in the SDAccel installation use Makefile to compile OpenCL applications with gcc
and xocc commands, which can be used as references for compiling user applications using xocc.

XP Parameters

Use the --xp switch to specify parameter values in SDAccel™. These parameters allow fine grain
control over the hardware generated by SDAccel and the hardware emulation process.

IMPORTANT: Familiarity with the Vivado™ tool suite is recommended in order to make the most use of
these parameters.

Parameters are specified as parm:<parameter>=<value>. For example:

xocc –xp param:compiler.enableDSAIntegrityCheck=true
–xp param:prop:kernel.foo.kernel_flags="-std=c++0x"

The –xp command option may be specified multiple times in a single xocc invocation, or the
value(s) may be specified in a xocc.ini file with each option specified on a separate line
(without --xp switch).

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

38

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=38
www.xilinx.com

param:prop:solution.device_repo_paths=../dsa
param:compiler.preserveHlsOutput=1

Upon invocation, xocc first looks for an xocc.ini file in the $HOME/.Xilinx/sdx directory. If
the file does not exist there, xocc will then look for it in the current working directory. If the
same --xp parameter value is specified in both the command line and xocc.ini file, the
command line value will be used.

The following table lists the –xp parameters and their values.

Table 3: XP Parameters

Parameter Name Type Default
Value

Description

param:compiler.
enableDSAIntegrityCheck

Boolean False Enables the DSA Integrity Check.

If this value is set to True, and
SDAccel™ detects a DSA which has
been modified outside the of the
Vivado® tool suite SDAccel halts
operation.

param:compiler.
errorOnHoldViolation

Boolean True Error out if there is hold violation.

param:compiler.
maxComputeUnits

Int -1 The maximum compute units allowed in
the system. Any positive value will
overwrite the numComputeUnits
setting in the DSA.

param:hw_em.debugLevel String OFF The debug level of the simulator.
Option OFF is used for optimized run
times, BATCH is for batch runs and GUI
for use in GUI-mode

param:hw_em.
enableProtocolChecker

Boolean False Enables the AXI protocol checker during
HW emulation. This is used to confirm
the accuracy of any AXI interfaces in the
design.

param:compiler.
interfaceLatency

Int -1 This option specifies the expected
latency on the kernel AXI bus, the
number of clock cycles from when bus
access is requested until it is granted.

param:compiler.
xclDataflowFifoDepth

Int -1 Specifies the depth of FIFOs used in
kernel dataflow region.

param:compiler.
interfaceWrOutstanding

Int
Range

0 Specifies how many outstanding writes
to buffer are on the kernel AXI
interface. Values are 1 through 256.

param:compiler.
interfaceRdOutstanding

Int
Range

0 Specifies how many outstanding reads
to buffer are on the kernel AXI
interface. Values are 1 through 256.

param:compiler.
interfaceWrBurstLen

Int
Range

0 Specifies the expected length of AXI
write bursts on the kernel AXI interface.

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

39

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=39
www.xilinx.com

Parameter Name Type Default
Value

Description

This is used with option
compiler.interfaceWrOutstanding to
determine the hardware buffer sizes.
Values are 1 through 256.

param:compiler.
interfaceRdBurstLen

Int
Range

0 Specifies the expected length of AXI
read bursts on the kernel AXI interface.
This is used with option
compiler.interfaceRdOutstanding to
determine the hardware buffer sizes.
Values are 1 through 256.

misc:map_connect=<type>.
kernel.<kernael_name>.
<kernel_AXI_interface>.core.
OCL_REGION_0.<dest_port>

String <empty> Used to map AXI interfaces from a
kernel to DDR memory banks.

• <type> is add or remove.

• <kernel_name> is the name of the
kernel.

• <dest_port> is DDR memory bank
M00_AXI, M01_AXI, M02_AXI or
M03_AXI.

prop:kernel.<kernel_name>.
kernel_flags

String <empty> Sets specific compile flags on kernel
<kernelk_name>. e.g.

prop:solution.
device_repo_path

String <empty> Specifies the path to the DSA
repository.

prop:solution.hls_pre_tcl String <empty> Specifies the path to a Vivado HLS Tcl
file, which is executed before the C
code is synthesized. This allows Vivado
HLS configuration settings to be
applied prior to synthesis.

prop:solution.hls_post_tcl String <empty> Specifies the path to a Vivado HLS Tcl
file, which is executed after the C code
is synthesized.

prop:solution.
kernel_compiler_margin

Float 12.5%
of the
kernel
clock
period.

The clock margin in ns for the kernel.
This value is substracted from the
kernel clock period prior to synthesis to
provide some margin for P&R delays.

vivado_prop:<object_type>.
<object_name>.<prop_name>

Various Various This allows you to specify any property
used in the Vivado hardware
compilation flow.

Object_type is run|fileset|file|project

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

40

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=40
www.xilinx.com

Parameter Name Type Default
Value

Description

The object_name and prop_name
values are described in Vivado Design
Suite Properties Reference Guide,
(UG912)

Examples:

vivado_prop:run.impl_1.
{STEPS.PLACE_DESIGN.ARGS.MORE
OPTIONS}={-fanout_opt}

vivado_prop:fileset.
current.top=foo

NOTE: For object_type file, current is not
supported

NOTE: For object type run the special value
of __KERNEL__ can be used to specify run
optimization settings for ALL kernels, instead
of having to specify them one by one

Running Software and Hardware Emulation in XOCC Flow

In the XOCC/Makefile flow, users manage compilation and execution of host code and kernels
outside the Xilinx® SDAccel™ development environment. Follow the steps below to run
software and hardware emulation:

1. Create the emulation configuration file.

For software or hardware emmulation, the runtime library needs to know what devices and
how many to emulate. This information is provided to the runtime library by an emulation
configuration file. SDAccel provides a utility, emconfigutil to automate creation of the
emulation configuration file. The following are details of the emconfigutil command line
format and options:

Option Valid Values Description
--xdevice Target device Required: Set target device. Check Appendix B for all

supported devices

--nd Any positive
integer

Optional: Number of devices. Default is 1.

--od Valid directory Optional: Output directory, emconfig.json file
must be in the same directory as the host
executable.

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

41

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug912-vivado-properties.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=41
www.xilinx.com

Option Valid Values Description

--xp Valid Xilinx
parameters and
properties

Optional: Specify additional parameters and
properties. For example:

--xp
prop:solution.device_repo_paths=my_dsa_path

Sets the search path for the device specified in --
xdevice option.

-h NA Print help messages

The emconfigutil command creates the configuration file emconfig.json in the output
directory.

The emconfig.json file must be in the same directory as the host executable.

The following example creates a configuration file targeting two xilinx:adm-
pcie-7v3:1ddr:3.0 devices.

$emconfigutil --xdevice xilinx:adm-pcie-7v3:1ddr:3.0 --nd 2

2. Set XILINX_SDX environment variable

The XILINX_SDX environment needs to be set and pointed to the SDAccel installation path
for the emulation to work. Below are examples assuming SDAccel is installed in /opt/
Xilinx/SDx/2017.1

C Shell:

setenv XILINX_SDX /opt/Xilinx/SDx/2017.1

Bash:

export XILINX_SDX=/opt/Xilinx/SDx/2017.1

3. Set emulation mode

Setting XCL_EMULATION_MODE environment variable to 1 or true changes the application
execution to emulation mode so that the runtime looks for the file emconfig.json in the
same directory as the host executable and reads in the target configuration for the emulation
runs.

C Shell:

setenv XCL_EMULATION_MODE true

Bash:

export XCL_EMULATION_MODE=true

Setting the XCL_EMULATION_MODE environment variable to 0 or false, or unsetting it will
turn off the emulation mode.

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

42

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=42
www.xilinx.com

4. Run CPU and hardware emulation

With the configuration file emconfig.json and XCL_EMULATION_MODE set to true, execute
the host application with proper arguments to run CPU and hardware emulation:

$./host.exe kernel.xclbin

Running Application on FPGA

Use the following steps to run an application on an FPGA with host executable and kernel
binaries compiled in the XOCC flow.

1. Source the setup.sh (Bash) or setup.csh (Csh/Tcsh) script file generated by the xbinst
utility. See Board Installation chapter for more details.

2. Run the application: $./host.exe kernel.xclbin

Using the Message Rule File

XOCC executes various Xilinx tools during kernel compilation. These tools generate many
messages that provide compilation status to the users. These messages may or may not be
relevant to all users depending on users’ focus and design phases. A Message Rule file can be
used to better manage these messages. It provides commands to promote important messages
to the terminal or suppress unimportant ones. This will help users better understand the kernel
compilation result and explore ways to optimize the kernel.

The Message Rule file (.mrf) is a text file consisting of comments and supported commands.
Only one command is allowed on each line.

Comment

Any line with “#” as the first non-whitespace character is a comment.

Supported Commands

By default, xocc recursively scans the entire working directory and promotes all error messages
to the xocc output. The promote and suppress commands below provide more control on the
xocc output.

promote

This command indicates that matching messages should be promoted to the xocc output.

suppress

This command indicates that matching messages should be suppressed or filtered from the xocc
output. Note that errors can not be suppressed.

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

43

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=43
www.xilinx.com

Command Options

The Message Rule file can have multiple promote and suppress commands. Each command can
have one and only one of the options below. The options are case sensitive.

• -id [message_id]

All messages matching the specified message ID are promoted or suppressed. The message
ID is in format of nnn-mmm. As an example, the following is a warning message from HLS.
The message ID in this case is 204-68.

WARNING: [XOCC 204-68] Unable to enforce a carried dependence
constraint (II = 1, distance = 1, offset = 1)
between bus request on port 'gmem'
(/matrix_multiply_cl_kernel/mmult1.cl:57) and bus request on port
'gmem'-severity [severity_level]

• -severity [severity_level]

The following are valid values for the severity level. All messages matching the specified
severity level will be promoted or suppressed.

◦ info
◦ warning
◦ critical_warning

Precedence of Message Rules

suppress rules take precedence over promote rules. If the same message ID or severity level is
passed to both promote and suppress commands in the Message Rule file, the matching
messages are suppressed and not displayed.

Example of Message Rule File

The following is an example of a valid message rule file:

promote all warning, critical warning
promote -severity warning
promote -severity critical_warning
suppress the critical warning message with id 19-2342
suppress -id 19-2342

Chapter 4: Compilation Flow

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

44

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=44
www.xilinx.com

Getting Started with Examples
All Xilinx SDx™ Environments are provided with examples designs:

• To help you quickly get started.
• To demonstrate useful coding styles.
• To highlight important optimization techniques.

Example designs are provided with the tool installation and additional examples may be
downloaded from the Xilinx® GitHub repository.

Installed Examples

The installed examples are provided through the Create SDx™ Project wizard. Select Create SDx
Project from the SDx Development Environment Welcome page to open the new project
wizard. After selecting your hardware platform and software platform, the final page of the
wizard lists the available templates.

NOTE: Not all available platforms have an installed example.

You may select examples from the Templates page, as shown below.

Chapter 5

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

45

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=45
www.xilinx.com

Figure 4: Templates Page

After selecting Finish, the example is copied into the local workspace and can be used.

GitHub Examples

The GitHub examples may be accessed from the menu Xilinx > Open SDx Example Store.
When the SDx Example Store dialog box opens it lists all the available examples and indicates
if the examples are already installed or not.

The SDx Examples folder lists all installed examples and shows they are already installed.

Chapter 5: Getting Started with Examples

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

46

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=46
www.xilinx.com

Figure 5: SDx Examples Folder

The SDx Example Store dialog also lists the GitHub exmaples provided for specific SDx
Environments. For example, the SDAccel folder lists all GitHub examples for the SDAccel
Environment.

Figure 6: SDx Examples for SDAccel

The GitHub examples also indicate if they are installed or not. Use the Refresh button to ensure
you have the latest update from the repository. Click Install to download and install the
example design.

Once the example design has been installed, it may be accessed during new project creation in
the same manner as the installed examples.

Chapter 5: Getting Started with Examples

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

47

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=47
www.xilinx.com

Estimating Performance
The generation of FPGA programming files is the step in the SDAccel™ development
environment with the longest execution time. It is also the step in which the execution time is
most affected by the target hardware device and the number of compute units placed on the
FPGA fabric. Therefore, it is essential for the application programmer to have a quicker way to
understand the performance of the application before running it on the target device so they
can spend more time iterating and optimizng their applications instead of waiting for the FPGA
programming file to be generated.

Generating the System Performance Estimate Report

The system performance estimate in the SDAccel™ development environment takes into
account the target hardware device and each compute unit in the application. Although an exact
performance metric can only be measured on the target device, the estimation report in the
SDAccel environment provides an accurate representation of the expected behavior. The
command below generates the system performance estimate report system_estimate.xtxt
for all kernels in kernel.cl:

xocc -c -t hw_emu --platform xilinx:adm-pcie-7v3:1ddr:3.0 --report estimate
kernel.cl

Analyzing the Performance Estimate Report

The performance estimate report generated by the xocc -report estimate option provides
information on every binary container in the application, as well as every compute unit in the
design. The structure of the report is:

• Target device information
• Summary of every kernel in the application
• Detailed information on every binary container in the solution

The following example report file represents the information that is generated for the estimate
report.

Design Name: _xocc_compile_kernel_bin.dir
Target Device: xilinx:adm-pcie-ku3:2ddr-xpr:3.3
Target Clock: 200MHz

Chapter 6

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

48

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=48
www.xilinx.com

Total number of kernels: 1

Kernel Summary
Kernel Name Type Target OpenCL Library Compute Units
------------- ---- ------------------ -------------- -------------
smithwaterman clc fpga0:OCL_REGION_0 xcl_xocc 1

--
OpenCL Binary: xcl_xocc
Kernels mapped to: clc_region

Timing Information (MHz)
Compute Unit Kernel Name Module Name Target Frequency
--------------- ------------- ------------- ----------------
smithwaterman_1 smithwaterman smithwaterman 200

Estimated Frequency

202.020203

Latency Information (clock cycles)
Compute Unit Kernel Name Module Name Start Interval
--------------- ------------- ------------- --------------
smithwaterman_1 smithwaterman smithwaterman 29468

Best Case Avg Case Worst Case
--------- -------- ----------
29467 29467 29467

Area Information
Compute Unit Kernel Name Module Name FF LUT DSP BRAM
--------------- ------------- ------------- ---- ---- --- ----
smithwaterman_1 smithwaterman smithwaterman 2925 4304 1 10

Design and Target Device Summary

All design estimate reports begin with an application summary and information about the target
hardware. Device information is provided by the following section of the report:

Design Name: _xocc_compile_kernel_bin.dir
Target Device: xilinx:adm-pcie-ku3:2ddr-xpr:3.3
Target Clock: 200MHz
Total number of kernels: 1

For the design summary, the only information you provide is the design name and the selection
of the target device. The other information provided in this section is the target board and the
clock frequency.

Chapter 6: Estimating Performance

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

49

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=49
www.xilinx.com

The target board is the name of the board that runs the application compiled by the SDAccel™
development environment. The clock frequency defines how fast the logic runs for compute
units mapped to the FPGA fabric. Both of these parameters are fixed by the device developer.
These parameters cannot be modified from within the SDAccel environment.

Kernel Summary

The kernel summary section lists all of the kernels defined for the current SDAccel™ solution.
Following is an example kernel summary:

Kernel Summary
Kernel Name Type Target OpenCL Library Compute Units
------------- ---- ------------------ -------------- -------------
smithwaterman clc fpga0:OCL_REGION_0 xcl_xocc 1

Along with the kernel name, the summary provides the execution target and the OpenCL™
binary container where the compute unit of the kernel is stored. Also, because there is a
difference in compilation and optimization methodology for OpenCL C and C/C++ source files,
the type of kernel source file is specified.

The kernel summary section is the last summary information in the report. From here, detailed
information on each compute unit binary container is presented.

Timing Information

The detail section for each binary container begins with the execution target of all compute
units. It also provides timing information for every compute unit. As a general rule, an estimated
frequency that is higher than that of the device target means that the compute unit will run in
hardware. If the estimated frequency is below the target frequency, the kernel code for the
compute unit needs to be further optimized for the compute unit to run correctly on the FPGA
fabric. Following is an example of this information:

OpenCL Binary: xcl_xocc
Kernels mapped to: clc_region

Timing Information (MHz)
Compute Unit Kernel Name Module Name Target Frequency
--------------- ------------- ------------- ----------------
smithwaterman_1 smithwaterman smithwaterman 200

Estimated Frequency

202.020203

The importance of the timing information is the difference between the target and the
estimated frequencies. As stated in Understanding the OpenCL Platform and Memory Model,
compute units are not placed in isolation into the FPGA fabric. Compute units are placed as part
of a valid FPGA design that can include other components defined by the device developer to
support a class of applications.

Chapter 6: Estimating Performance

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

50

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=50
www.xilinx.com

Because the compute unit custom logic is generated one kernel at a time, an estimated
frequency that is higher than the device target provides confidence to the developer using the
SDAccel™ environment that there will not be any problems during the creation of the FPGA
programming files.

Latency Information

The latency information presents the execution profile of each compute unit in the binary
container. When analyzing this data, it is important to keep in mind that all values are measured
from the compute unit boundary through the custom logic. In-system latencies associated with
data transfers to global memory are not reported as part of these values. Also, the latency
numbers reported are only for compute units targeted at the FPGA fabric. Following is an
example of the latency report:

Latency Information (clock cycles)
Compute Unit Kernel Name Module Name Start Interval Best Case
--------------- ------------- ------------- -------------- ---------
smithwaterman_1 smithwaterman smithwaterman 29468 29467

Avg Case Worst Case
-------- ----------
29467 29467

The latency report is divided into the following fields:

• Start interval
• Best case latency
• Average case latency

The start interval defines the amount of time that has to pass between invocations of a compute
unit for a given kernel. This number sets the limit as to how fast the runtime can issue
application ND range data tiles to a compute unit.

The best and average case latency numbers refer to how much time it takes the compute unit to
generate the results of one ND range data tile for the kernel. For cases where the kernel does
not have data dependent computation loops, the latency values will be the same. Data
dependent execution of loops introduces data specific latency variation that is captured by the
latency report.

The interval or latency numbers will be reported as "undef" for kernels with one or more
conditions listed below:

• Do not have an explicit reqd_work_group_size(x,y,z)
• Have loops with variable bounds

Chapter 6: Estimating Performance

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

51

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=51
www.xilinx.com

Area Information

Although the FPGA can be thought of as a blank computational canvas, there are a limited
number of fundamental building blocks available in each FPGA. These fundamental blocks (FF,
LUT, DSP, block RAM) are used by the SDAccel™ development environment to generate the
custom logic for each compute unit in the design. The number of each fundamental resource
needed to implement the custom logic in a compute unit determines how many compute units
can be simultaneously loaded into the FPGA fabric. Following is an example of the area
information reported for a compute unit:

Area Information
Compute Unit Kernel Name Module Name FF LUT DSP BRAM
--------------- ------------- ------------- ---- ---- --- ----
smithwaterman_1 smithwaterman smithwaterman 2925 4304 1 10

Chapter 6: Estimating Performance

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

52

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=52
www.xilinx.com

Application Profiling in the SDAccel
Environment

The SDAccel™ Environment generates various reports on the kernel resource and performance
during compilation. It also collects profiling data during application execution in emulation
mode, and on the FPGA acceleration card. The reports and profiling data provide you with
information on performance bottlenecks in the application, and optimization techniques that
can be used to improve performance. This chapter describes how to generate the reports and
collect, display, and interpret profiling results in the SDAccel Environment.

Kernel Synthesis Report

After compiling a kernel on SDx GUI, the HLS (High Level Synthesis) report is presented to the
user under the binary container in the Reports window. The HLS report includes lots of details
about the performance and logic usage of the custom-generated hardware logic from user
kernel code. These details provide advanced users many insights into the kernel compilation
results to guide kernel optimization.

Figure 7: Reports Window

Chapter 7

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

53

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=53
www.xilinx.com

The HLS Report window consists of six views for various aspects of the kernel synthesis result.
Each view can be accessed by clicking on the tab for the view at the bottom of the HLS Report
window as shown in the Figure below.

Figure 8: HLS Report Window

Synthesis View

The Synthesis View shows the general information, estimated timing and latency summary and
details, estimated utilization summary and details, and interface summary.

Performance View

The Performance View shows how the operations in the selected block are scheduled into clock
cycles.

Resource View

The Resource View shows the control state of the operations in the selected hierarchy.

Performance Profile View

The Performance Profile View provides details on the performance of the selected hierarchy.

Resource Profile View

The Resource Profile View shows the resources used in the selected hierarchy.

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

54

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=54
www.xilinx.com

Dataflow View

The Dataflow View is available for kernels using DATAFLOW directive or attribute. It shows the
structure of the design and how data are passed from one task to the next.

Profiling Summary Report

The SDAccel runtime automatically collects profiling data on host applications. After the
application finishes execution, the profile summary is saved in HTML, .csv, and Google Protocol
Buffer formats in the solution report directory or working directory. These reports can be
reviewed in a web browser, spreadsheet viewer, or the integrated Profile Summary Viewer in
SDAccel. The profile reports are generated in both SDAccel GUI and XOCC/Makefile flows.

If you review the Profile Summary, Profile Rule Checks (PRC) are also provided to help interpret
profiling results and suggest areas for performance improvements. These PRCs operate on the
results in the profile summary .csv file and are reported in the Google Protocol Buffer file.

GUI Flow

When you compile and execute an application from SDx™ environment, the profile summary is
automatically generated and placed in the Reports window. Double-click the report to open it.

Figure 9: Profiling in SDAccel GUI Flow

XOCC/Makefile Flow

XOCC/Makefile users execute applications standalone outside the SDx™ environment. The
following profile summary reports are generated in the directory where the application is
executed:

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

55

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=55
www.xilinx.com

<working_directory>/sdaccel_profile_summary.html
<working_directory>/sdaccel_profile_summary.csv

The .csv file needs to be manually converted to Google Protocol Buffer format (.xprf) before
the profiling result can be viewed in the integrated Profile Summary Viewer. The following is a
command line example that generates an .xprf file from the .csv input file:

$sda2protobuf sdaccel_profile_summary.csv

Displaying the Profile Summary

Use the following methods to display the profile summary.

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

56

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=56
www.xilinx.com

Web Browser

The HTML profile summary can be displayed in a Web Browser. The following figure shows the
profiling result from a system run on the FPGA.

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

57

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=57
www.xilinx.com

Profile Summary Viewer

Use the integrated “Profile Summary Viewer” to display profile summary generated from the
SDAccel GUI or XOCC/Makefile flow.

For SDAccel GUI users, double click Profile Summary in the Reports window to open the
Application Timeline window.

For XOCC/Makefile users, follow these steps to open the profile summary in the Profile
Summary Viewer:

1. Start SDAccel GUI by running the sdx command:

$sdx

2. Choose the default workspace when prompted.

3. Select File→Open File, browse to and then open the .xprf file created by the sda2protobuf
command from data generated during an emulation or system run.

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

58

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=58
www.xilinx.com

Below is a snapshot of the Profile Summary window that displays OpenCL API calls, kernel
executions, data transfers, and profile rule checks (PRCs).

Figure 13: Profile Summary Window

Profile Summary Descriptions

The profile summary includes a number of useful statistics for your OpenCL application. This can
provide you with a general idea of the functional bottlenecks in your application. The profile
summary consists of the following tables:

• OpenCL API Calls - This table displays the profile data for all OpenCL host API function
calls executed in the host application.

• Kernel Execution - This table displays the profile data for all kernel functions scheduled
and executed.

• Compute Unit Utilization - This table displays the profile data for all compute units on the
FPGA.

◦ Data Transfer: Host and Global Memory - This table displays the profile data for all
read and write transfers between the host and device memory via PCIe® link.

◦ Number of Transfers: Number of host data transfers (Note: May contain printf
transfers)

◦ Transfer Rate (MB/s): (Total Bytes Sent)/(Total Time in uSec)
◦ Average Bandwidth Utilization (%): Transfer Rate / (Max. Transfer Rate) where Max.

Transfer Rate = 5.0 GBps
◦ Average Size (KB): (Total KB sent) / (number of transfers)
◦ Total Time (ms): Total Time (ms)

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

59

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=59
www.xilinx.com

• Data Transfer: Kernels and Global Memory - This table displays the profile data for all
read and write transfers between the FPGA and device memory.

◦ Number of Transfers: Number of transactions monitored on device (Note: May
contain printf transfers)

◦ Transfer Rate (MB/s): (Total Bytes Sent) / (Device Execution Time)

where Total Bytes Sent is sum of bytes across all transactions

◦ Device Execution Time = End of last kernel execution - Start of first kernel execution
◦ Average Bandwidth Utilization (%): (Transfer Rate) / (Max. Transfer Rate)

where Max. Transfer Rate = 0.6 * 10.7 GBps = 6.4 GBps

◦ Average Size (KB): (Total KB sent) / (number of transactions)
◦ Average Time (ms): (Total latency of all transaction) / (number of transactions)

• Top Data Transfer: Kernels and Global Memory - This table displays the profile data for
top data transfers between FPGA and device memory.

◦ Average Bytes per Transfer: (Total Read Bytes + Total Write Bytes) /(Total Read
Transactions + Total Write Transactions)

◦ Transfer Efficiency (%): (Average Bytes per Transfer) / min(4K, (Memory Bit Width/8 *
256))

AXI4 specification limits the max burst length to 256 and max burst size to 4K bytes.

◦ Transfer Rate (MB/s): (Total Data Transfer) / (Device Execution Time)
◦ Average Bandwidth Utilization (%): (Transfer Rate) / (0.6 * Max. Theoretical Rate)

Profile Rule Checks

Profile Rule Checks (PRCs) are integrated with the Profile Summary Viewer and interpret
profiling results so users know exactly where to focus on to improve the performance of a
kernel. PRCs highlight certain profile results, inform users known issues, and provide
improvement recommendations. PRCs work for both hardware emulation and system runs on
the FPGA.

The PRC analyses are displayed in a tabular format with the following columns:

Rule

The Rule column displays the rule name. The following are the current rule set:

• Kernel Data Transfer

◦ Average Read Size (KB)
◦ Average Write Size (KB)
◦ Read Bandwidth (%)
◦ Write Bandwidth (%)
◦ Read Amount - Minimum (MB)
◦ Read Amount - Maximum (MB)

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

60

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=60
www.xilinx.com

• Host Data Transfer

◦ Average Read Size (KB)
◦ Average Write Size (KB)

• Resource Usage

◦ Compute Unit Calls - Minimum
◦ Compute Unit Calls - Maximum
◦ Compute Unit Utilization (%)
◦ Kernel Utilization (%)
◦ Device Utilization (ms)

Threshold Value

The Threshold Value column displays the values used by the PRCs to determine whether or not
a rule is met. The threshold values are collected from many applications that follow good design
and coding practices in the SDAccel development environment.

Actual Value

The Actual Value column displays the values in the profiling report from the hardware
emulation or system run. This value is compared against the threshold value to see if the rule is
met.

Conclusion

The Conclusion column displays the current status of the rule check: Met or Not Met.

Details

The Details column provides additional explanation on the current rule.

Guidance

The Guidance column provides recommendations on ways to improve the kernel in order to
meet the current rule. Clicking the text brings up a popup window with tips and code snippets
that you can apply to your kernel.

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

61

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=61
www.xilinx.com

Application Timeline

Application Timeline collects and displays host and device events on a common timeline to help
you understand and visualize the overall health and performance of your systems. These events
include:

• OpenCL API calls from the host code.
• Device trace data including AXI transaction start/stop, kernel start/stop, etc.

Collecting Timeline and Device Trace Data

Timeline and device trace data are not collected by default because the runtime needs to
periodically unload the trace data from the FPGA, which can add additional time to the overall
application execution. However, the device data are collected with dedicated hardware inside
the FPGA, so the data collection does not affect kernel functionality on the FPGA. The following
sections describe setups required to enable time and device data collection.

Turning on device profiling is intrusive and can negatively affect overall performance. This
feature should be used for system performance debugging only.

GUI Flow for Collecting Timeline and Device Trace Data

Timeline and device trace data collection is part of run configuration for an SDAccel™ project
created from the SDAccel integrated environment. Follow the steps below to enable it:

1. Click the down arrow next to the debug or run button and then select Run Configurations to
open the Run Configurations window.

2. On the Run Configurations window, click the Profile tab and check both the Generate
Timeline Report and the Collect Device Data checkboxes.

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

62

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=62
www.xilinx.com

You can have multiple run configurations for the same project and the profile settings need to
be changed for each run configuration.

XOCC/Makefile Flow for Collecting Timeline and Device Trace Data

Follow the instructions below to enable timeline and device trace data collection in the XOCC/
Makefile flow:

1. Turn on debug code generation during kernel compilation.

xocc --debug

2. Create an sdaccel.ini file in the same directory as the host executable with the contents
below:

[Debug]
timeline_trace=true
device_profile=true

3. Execute hardware emulation or system run as normal. The timeline reports are generated after
the application completes.

sdaccel_timeline_trace.csv
sdaccel_timeline_trace.html

4. Convert the CSV report to the Application Timeline format using the "sda2wdb" utility before
it can be opened and displayed on SDAccel GUI..

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

63

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=63
www.xilinx.com

sda2wdb sdaccel_timeline_trace.csv

This command creates the following two files in the current working directory:

sdaccel_timeline_trace.wcfg
sdaccel_timeline_trace.wdb

Displaying Timeline and Device Trace Data

For SDx™ Development Environmet users, double-click Application Timeline in the Reports
window to open the Application Timeline window.

Figure 14: Reports Window

For XOCC/Makefile users, follow the steps below to open the timeline report to visualize host
and device events during application execution.

1. Start the SDx environment IDE by running the command:

$sdx

2. Choose a workspace when prompted.
3. Select File→Open File, browse to the .wdb file generated during hardware emulation or

system run, and open it.

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

64

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=64
www.xilinx.com

Below is a snapshot of the Application Timeline window that displays host and device events
on a common Timeline. This information helps you to understand details of application
execution and identify potential areas for improvements.

Figure 15: Application Timeline Window

Device Hardware Transaction View

SDAccel™ Environment can generate a Device Hardware Transaction View when running
hardware emulation. It displays in-depth details on the emulation results at system level,
compute unit (CU) level, and at function level. The details include data transfers between the
kernel and global memory, data flow via inter-kernel pipes as well as data flow via intra-kernel
pipes. They provide many insights into the performance bottleneck from the system level down
to individual function call to help developers optimize their applications.

Collecting Data for Device Hardware Transaction View

Hardware Transaction View data are not collected by default because it requires the runtime to
generate simulation waveform during hardware emulation, which consumes more time and disk
space. The following sections describe setups required to enable data collection for the Device
Hardware Transaction view.

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

65

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=65
www.xilinx.com

GUI Flow for Collecting Hardware Transaction Data

Follow the steps below to enable Hardware Transaction data collection:

1. Open Project Settings window and check Kernel debug checkbox.

Figure 16: Project Settings Window

2. Click the down arrow next to the debug or run button and then select Run Configurations to
open the Run Configurations window.

Figure 17: Run Configurations

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

66

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=66
www.xilinx.com

3. On the Run Configurations window, click the Main tab and check the Use RTL waveform
for kernel debugging checkbox. Launch live waveform can be optionally checked to bring
up the Simulation window to view the waveform while the hardware emulation is running.

Figure 18: Run Configurations, Main Tab

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

67

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=67
www.xilinx.com

4. On the Run Configurations window, click the Profile tab and check both the Generate
Timeline Report and the Collect Device Data checkboxes.

Figure 19: Run Configurations, Profile Tab

You can have multiple run configurations for the same project and the profile settings need to
be changed for each run configuration.

XOCC/Makefile Flow for Collecting Hardware Transaction Data

Follow the instructions below to enable hardware transaction data collection in the XOCC/
Makefile flow:

1. Turn on debug code generation during kernel compilation.

xocc -g

2. Create an sdaccel.ini file in the same directory as the host executable with the contents
below:

[Debug]
timeline_trace=true
device_profile=true
[Emulation]
launch_waveform=batch

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

68

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=68
www.xilinx.com

3. Execute hardware emulation. The hardware transaction data will be collected in file
<hardware_platform>.-<deice_id>-<xclbin_name>>.wdb. For example, the hardware
transaction data file below is generated after running hardware emulation with vadd.xclbin
targeting xilinx:adm-pcie-ku3:2ddr platform:

xilinx:adm-pcie-ku3:2ddr:3.3-0-vadd.wdb

Displaying Device Hardware Transaction View

For SDx™ GUI users, double-click Device 1 HW Transaction View in the Reports window to
open the Device Hardware Transaction view window.

Figure 20: Reports Window

For XOCC/Makefile users, follow the steps below to open the Hardware Transaction View:

1. Start the SDx GUI by running the command:

$sdxls

2. Choose a workspace when prompted.
3. Select File->Open File, browse to the .wdb file generated during hardware emulation.

Below is a snapshot of the Device Hardware Transaction view for the median filter example:

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

69

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=69
www.xilinx.com

Figure 21: Devide Hardware Transaction View

The Device Hardware Transaction View is organized hierarchically for easy navigation. Below are
the hierarchy tree and descriptions:

Device xilinx:adm-pcie-ku3:2ddr:3.3: target device name. This device has
two memory channels.

Binary Container binary_container_1: binary container name
Kernel Data Transfer: data transfers for all kernels

m_axi: data transfers on memory channel 0
Read
Write

m_axi1: data transfers on memory channel 1
Read
Write

Kernel <kernel> <local_size>: kernel name in the binary container
Compute Unit: <cu1> : compute unit name

CU Stalls: stall information on the compute unit
Data Transfers: data transfers on the compute unit

Read
Write

User Functions: user functions in the CU
<func1>: user function name

Function Stalls: stall information on the function
Function I/O: data transfers on the function

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

70

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=70
www.xilinx.com

Detailed Kernel Trace

SDAccel Environment can generate a detailed kernel trace view when running hardware
emulation. It displays in-depth details on the emulation results at system level, compute unit
(CU) level, and at function level. The details include data transfers between the kernel and global
memory, data flow via inter-kernel pipes as well as data flow via intra-kernel pipes. They provide
many insights into the performance bottleneck from the system level down to individual
function call to help developers optimize their applications.

Below is a snapshot of the detailed kernel trace view from running hardware emulation of the
median filter example.

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

71

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=71
www.xilinx.com

The detailed kernel trace view is organized hierarchically for easy navigation. Below is the
hierarchy tree and descriptions:

Device xilinx:adm-pcie-ku3:2ddr:3.3: target device name. This device has
two memory channels.

Binary Container binary_container_1: binary container name
Kernel Data Transfer: data transfers for all kernels

m_axi: data transfers on memory channel 0
Read
Write

m_axi1: data transfers on memory channel 0
Read
Write

Kernel <kernel> <local_size>: kernel name in the binary container
Compute Unit: <cu1> : compute unit name

CU Stalls: stall information on the compute unit
Data Transfers: data transfers on the compute unit

Read
Write

User Functions: user functions in the CU
<func1>: user function name

Function Stalls: stall information on the function
Function I/O: data transfers on the function

Chapter 7: Application Profiling in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

72

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=72
www.xilinx.com

Debugging Applications in the SDAccel
Environment

The SDAccel™ Environment provides Application level debug features which allow the host
code, the kernel code, and the interactions between them to be debugged. There are three
steps to debugging applications::

1. Prepare the Host Code for Debug.
2. Prepare Kernel Code for Debug.
3. Launch GDB Standalone to Debug.

The SDAccel Environment supports host program debugging in all flows and kernel debugging
in the CPU emulation flow with integrated gdb.

Preparing the Host Application for Debug

The host program needs to be compiled with debugging information generated in the
executable by adding the --debug option to the gcc command line option.

gcc --debug ...

Preparing Kernel Code for Debug in CPU Emulation
Flow

Kernel code can be debugged together with the host program in the CPU emulation flow.
Debugging information needs to be generated first in the binary container by passing the --
debug option to the xocc command line option before it can be debugged.

xocc -g -t sw_emu ...

Chapter 8

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

73

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=73
www.xilinx.com

Launching GDB Standalone

You can launch GBD standalone to debug the applicaiton if the host program and kernel were
built with debug information (built with the --debug flag).

Below are the instructions:

1. Set up your SDAccel Environment by following instructions in the SDx Environments Release
Notes, Installation, and Licensing Guide (UG1238).

2. Set up your SDAccel Environment by following instructions in the ../../ug1238-sdx-rnil-
HELP.ditamap.

3. Launch GDB on the host program as in the following example:

gdb --args host.exe test.xclbin

Recommended Debug Flow

The debug flow for Applications may be summarised as:

1. Perform Software Emulation

Verify both the host and kernel code are functionally correct by running software or CPU
emulation. It is recommended to iterate in software emulation, which takes little compile time
and executes quickly, until the application is functioning correctly in all modes of operation.

2. Perform Hardware Emulation

Verify the host code and the kernel hardware implementation is correct by running Hardware
emulation on a small data set. Hardware Emulation performs detailed verification using an
accurate model of the hardware. The execution time for hardware emulation takes more time
than software emulation and Xilinx recommends that you use small data sets. It is also in this
stage that you may optionally modify the kernel code to improve performance. Iterate in
Hardware emulation until the functionality is correct and the estimated performance is
sufficient.

3. Verify that host code and kernel hardware implementation is correct on board with System
flow.

This confirms the kernel executes correctly on the FPGA hardware.

In addition to providing debug at different levels of abstraction the SDAccel Environment
provides Application Debug features, which allow debug to be performed in the interaction of
the compiled host and kernel code, no matter what level of abstraction.

If running CPU emulation or Hardware emulation from the command line, the following
environment variables must be set:

Chapter 8: Debugging Applications in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

74

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1238-sdx-rnil.pdf
C:/Working%20Directory/kellaghe_XCOKELLAGHE33_4069/kellaghe_XCOKELLAGHE33_4069/SDx-combined-files/temp/pdf-css/oxygen_dita_temp/ug1238-sdx-rnil-HELP.ditamap
C:/Working%20Directory/kellaghe_XCOKELLAGHE33_4069/kellaghe_XCOKELLAGHE33_4069/SDx-combined-files/temp/pdf-css/oxygen_dita_temp/ug1238-sdx-rnil-HELP.ditamap
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=74
www.xilinx.com

Environment Variable Value

XCL_EMULATION_MODE true

XILINX_SDACCEL Path to the installed SDx

XILINX_OPENCL Path to the installed SDx (same as ${XILINX_SDX})

LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${XILINX_SDX}/lib/
lnx64.o:${XILINX_SDX}/runtime/lib/x86_64

Application Debug

The Application Debug feature in the SDAccel™ Environment provides tools to debug the
OpenCL™ application running in all modes (Software Emulation, Hardware Emulation, or
Hardware). It is referrred to as Application Debug because it mainly deals with debugging on the
host side inlcuding the associated OpenCL APIs and is in contrast to pure Kernel Debug which
involves debugging OpenCL kernels (ie. the accelerated portion).

Application Debug introduces new GDB commands, provided by Xilinx, that give visibility into
the host application and into the OpenCL runtime data structures (cl_command_queue,
cl_event, and cl_mem):

• xprint queue <cl_command_queue>
• xprint event <cl_event>
• xprint mem <cl_mem>

The GDB command allows the interaction between the host code and the kernel, which is
managed through the OpenCL APIs, to be analyzed during Debug.

To be able to debug the host application, it must be compiled with the --debug switch (it is not
necessary to have a debug runtime library). To use the commands, the application debug
feature must be enabled at run time using an attribute in the sdaccel.ini file. Create an
sdaccel.ini file in the same directory as your host executable and include the following lines.

[Debug]
app_debug=true

The GDB commands may then be accessed by sourcing a python script in the GDB console that
loads the Application Debug commands into the GDB:

gdb> source ${XILINX_SDACCEL}/scripts/appdebug.py)

Chapter 8: Debugging Applications in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

75

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=75
www.xilinx.com

The flow for Application Debug is:

1. Compile the OpenCL application (Host and Kernel) code using the --debug debug flag.
2. Launch the application in gdb/ddd and source the appdebug script. This imports the new Xilinx

commands into the GDB that you can use to print the contents of OpenCL objects, namely
command_queue, cl_events, and cl_mem.

a. If the problem you are seeing is a hang, then the host application is likely waiting for the
command queue to finish or waiting on an event list.

b. Printing the command queue using xprint commands can tell you what events are
unfinished and you can analyze the dependencies between the events.

3. You can step through the code under GDB and examine the OpenCL objects to verify that
their contents are indeed as expected at any point in the code, similar to the way one debugs
c/c++ code.

Kernel Debug

Kernels may be debugged using the printf() command in all three flows. Each flow also
provides unique features and debug opportunities.

Using printf() to Debug Kernels

The SDAccel™ development environment supports OpenCL™ printf() kernel built-in function
in all development flows: CPU emulation, hardware emulation, and running kernel in actual
hardware.

IMPORTANT: printf() is not supported in C/C++ kernels.

Below is a kernel example of using printf() and the output when the kernel is executed with
global size of 8:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void hello_world(__global int *a)
{

int idx = get_global_id(0);

printf("Hello world from work item %d\n", idx);
a[idx] = idx;

}

Output is as follows:

Hello world from work item 0
Hello world from work item 1
Hello world from work item 2
Hello world from work item 3
Hello world from work item 4

Chapter 8: Debugging Applications in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

76

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=76
www.xilinx.com

Hello world from work item 5
Hello world from work item 6
Hello world from work item 7

IMPORTANT: printf() messages are buffered in the global memory and unloaded when kernel execution
is completed. If printf() is used in multiple kernels, there is no guarantee that the order the messages from
each kernel will be displayed on the host terminal.

Software Emulation Kernel Debug

To better mimic the hardware being emulated, software emulation kernels are spawned off as
separate processes. If you are using GDB to debug the host code, breakpoints set on kernel lines
will not be hit as the kernel code is not run within that process. To support the concurrent
debugging of the host code as well as the kernel code, the SDAccel™ Environment provides a
mechanism to attach to spawned kernels through the use of sdx_server.

In a Linux terminal, set up your environment to run emulation executables by setting all
environment variables what is specified in the Emulation Environment table.

Before launching your host code, you must start the sdx_server with the appropriate options.
In a separate Linux terminal, run the following command:

${XILINX_SDX}/Vivado/bin/sdx_server --sdx-url

After the sdx_server has started, run your host code as normal in a different Linux terminal. At
this point, the sdx_server should specify a gdb listener port on standard out. Keep track of
the number specified by the sdx_server as the gdb listener port is what will be used by
GDB to debug the kernel process. When the gdb listener port is output, the spawned kernel
process has attached to the sdx_server and is waiting for commands from you. To control this
process, you must start a new instance of GDB and connect to the sdx_server.

IMPORTANT: If the sdx_server is running, then all spawned processes compiled for debug will connect and
wait for control from you. If no GDB ever attaches or provides commands, the kernel code appears to hang.

In a third terminal, run the following command:

${XILINX_SDX}/lnx64/tools/gdb/gdb-7.9.1/bin/gdb

At the GDB prompt, run the following commands:

${XILINX_SDX}/data/emulation/cpu_em/generic_pcie/model/genericpciemodel

target remote :XXX

Where XXX is the number specified by the sdx server as the gdb listener port.

Once these two commands are executed, you can set breakpoints on your kernels as needed,
run thecontinue command, and debug your kernel code. When the all kernel invocations have
finished, the host code should continue, and the connection will be dropped.

Chapter 8: Debugging Applications in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

77

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=77
www.xilinx.com

When debugging CPU emulation kernels in the SDAccel Environment, these steps are handled
automatically and the kernel process is automatically attached, providing multiple contexts to
debug both the host code and kernel code simultaneously.

HW Emulation Kernel Debug Waveforms

Hardware Emulation can be used to analyze the performance of your system before compiling
and running on a board. SDx™ provides two features that can enhance this performance
analysis:

• Waveform Debug: A live simulation waveform is provided to show the details of kernel
operations and data transfers.

• Data Mining: The simulation results are mined for critical results and shown in the profile
summary under a Kernel Internals tab

Steps to Run:

1. Compile your host code.
2. Compile your kernels for Hardware emulation using the --debug option.
3. Create an sdaccel.ini file in the same directory of your host executable.

a. Use batch mode for data mining or use the SDx Environment for waveform debug + data
mining.

b. Add the following to the sdaccel.ini file:

[Emulation]
launch_waveform = <batch | gui>

4. View the results in the Waveform Viewer.
5. If you would like to view the results in the SDx Environment,

a. Convert your files to compatible formats:

• sda2protobuf: sdaccel_profile_summary.csv, sdaccel_profile_summary.xprf,
sdaccel_profile_kernels.csv

• sda2wdb: sdaccel_timeline_trace.csv
b. In the SDx Environment, select File > Import and navigate to the .xprf and .wdb files

created above.

6. If you would like to view the waveform database after a run is over, run the following
command:

xsim --gui <device>-<design>.wdb

Chapter 8: Debugging Applications in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

78

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=78
www.xilinx.com

For a given device and binary container, there exists the following hierarchy in a waveform
debug view:

• Kernel Data Transfer: This section shows AXI transfers at the OCL masters to the DDR. Data
transfers from all compute units funnel through these interfaces. Note that these interfaces
may be a different bit width than the compute units. If so, then the burst lengths would be
different (e.g., a burst of sixteen 32-bit words at a compute unit would be a burst of one
512-bit word at the OCL master).

• Kernel <kernel name> <workgroup size> Compute Unit <CU name>:

◦ CU Stalls (%): This section shows a summary of stalls for the entire compute unit (CU). A
bus of all lowest-level stall signals is created, and the bus is represented in the
waveform as a percentage (%) of those signals that are active at any point in time.

◦ Loop Pipeline Activity: This section shows the top-level loop pipeline signals for a CU.
This section is only populated for flat CUs.

◦ Data Transfers: This section shows the data transfers for all AXI masters on the CU.

◦ User Functions: This section lists all of the functions within the hierarchy of the CU.

▪ Function: <function name>
▪ Function Stalls: This section lists the three stall signals within this function.
▪ Loop Pipeline Activity: This section shows the function-level loop pipeline signals

for a CU. The number of pipeline regions is dictated by Vivado® HLS and can
typically be identified as compute sections of loops.

▪ Function I/O: This section lists the I/O for the function. These I/O are of protocol
m_axi, ap_fifo, ap_memory, or ap_none.

Chapter 8: Debugging Applications in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

79

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=79
www.xilinx.com

SDAccel Environment Supported Devices
SDAccel™ solutions are compiled against a target device. A device is the combination of board
and infrastructure components on which the kernels of an application is executed. Applications
compiled against a target device can only be executed on the board associated with the target
device. Devices can be provided by SDAccel ecosystem partners, FPGA design teams, and Xilinx.
Contact your Xilinx representative for more information about adding third-party devices in the
SDAccel environment.

Refer to the SDx Environments Release Notes, Installation, and Licensing Guide (UG1238) for the
most up-to-date list of supported devices.

Appendix A

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

80

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1238-sdx-rnil.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=80
www.xilinx.com

OpenCL Built-In Functions Support in the
SDAccel Environment

The OpenCL™ C programming language provides a rich set of built-in functions for scalar and
vector operations. Many of these functions are similar to the function names provided in
common C libraries but they support scalar and vector argument types. The SDAccel™
development environment is OpenCL 1.0 embedded profile compliant. The following tables
show descriptions of built-in functions in OpenCL 1.0 embedded profile and their support status
in the SDAccel environment.

Work-Item Functions

Function Description Supported
get_global_size Number of global work items Yes
get_global_id Global work item ID value Yes
get_local_size Number of local work items Yes
get_local_id Local work item ID Yes
get_num_groups Number of work groups Yes
get_group_id Work group ID Yes
get_work_dim Number of dimensions in use Yes

Math Functions

Function Description Supported
acos Arc Cosine function Yes
acosh Inverse Hyperbolic Cosine function Yes
acospi acox(x)/PI Yes
asin Arc Cosine function Yes
asinh Inverse Hyperbolic Cosine function Yes
asinpi Computes acos (x) / pi Yes
atan Arc Tangent function Yes
atan2(y, x) Arc Tangent of y / x Yes
atanh Hyperbolic Arc Tangent function Yes

Appendix B

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

81

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=81
www.xilinx.com

Function Description Supported
atanpi Computes atan (x) / pi Yes
atan2pi Computes atan2 (y, x) / pi Yes
cbrt Compute cube-root Yes
ceil Round to integral value using the round to +ve infinity

rounding mode.
Yes

copysign(x, y) Returns x with its sign changed to match the sign of y. Yes

cos Cosine function Yes
cosh Hyperbolic Cosine function Yes
cospi Computes cos (x * pi) Yes
erf The error function encountered in integrating the normal

distribution
Yes

erfc Complementary Error function Yes
exp base- e exponential of x Yes
exp2 Exponential base 2 function Yes
exp10 Exponential base 10 function Yes
expm1 exp(x) - 1.0 Yes
fabs Absolute value of a floating-point number Yes
fdim(x, y) x - y if x > y, +0 if x is less than or equal to y. Yes
floor Round to integral value using the round to -ve

infinityrounding mode.
Yes

fma(a, b, c) Returns the correctly rounded floating-point representation of
the sum of c with the infinitely precise product of a and b.
Rounding of intermediate products shall not occur. Edge case
behavior is per the IEEE 754-2008 standard.

Yes

fmax(x, y)

fmax(x, float y)

Returns y if x is less than y, otherwise it returns x. If one
argument is a NaN, fmax() returns the other argument. If both
arguments are NaNs, fmax() returns a NaN

Yes

fmin(x, y)
fmin(x, float y)

Returns y if y less than x, otherwise it returns x. If one
argument is a NaN, fmax() returns the other argument. If both
arguments are NaNs, fmax() returns a NaN.

Yes

fmod Modulus. Returns x - y * trunc (x/y) Yes
fract Returns fmin(x - floor(x), 0x1.fffffep-1f). floor(x) is returned in

iptr
Yes

frexp Extract mantissa and exponent from x. For each component
the mantissa returned is a float with magnitude in the interval
[1/2, 1) or 0. Each component of x equals mantissa returned *
2exp.

Yes

Appendix B: OpenCL Built-In Functions Support in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

82

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=82
www.xilinx.com

Function Description Supported
hypot Computes the value of the square root of x2 + y2 without

undue overflow or underflow.
Yes

ilogb Returns the exponent as an integer value. Yes
ldexp Multiply x by 2 to the power n. Yes
lgamma Returns the natural logarithm of the absolute value of the

gamma function. The sign of the gamma function is returned
in the signp argument of lgamma_r.

Yes

lgamma_r Returns the natural logarithm of the absolute value of the
gamma function. The sign of the gamma function is returned
in the signp argument of lgamma_r.

Yes

log Computes natural logarithm. Yes
log2 Computes a base 2 logarithm Yes
log10 Computes a base 10 logarithm Yes
log1p loge(1.0+x) Yes
logb Computes the exponent of x, which is the integral part of logr

|x|.
Yes

mad Approximates a * b + c. Whether or how the product of a * b is
rounded and how supernormal or subnormal intermediate
products are handled is not defined. mad is intended to be
used where speed is preferred over accuracy30

Yes

modf Decompose a floating-point number. The modf function
breaks the argument x into integral and fractional parts, each
of which has the same sign as the argument. It stores the
integral part in the object pointed to by iptr.

Yes

nan Returns a quiet NaN. The nancode may be placed in the
significand of the resulting NaN.

Yes

nextafter Next representable floating-point value following x in the
direction of y

Yes

pow Computes x to the power of y Yes
pown Computes x to the power of y, where y is an integer. Yes
powr Computes x to the power of y, where x is greater than or equal

to 0.
Yes

remainder Computes the value r such that r = x - n*y, where n is the
integer nearest the exact value of x/y. If there are two integers
closest to x/y, n shall be the even one. If r is zero, it is given the
same sign as x.

Yes

remquo Floating point remainder and quotient function. Yes
rint Round to integral value (using round to nearest even rounding

mode) in floating-point format.
Yes

rootn Compute x to the power 1/y. Yes
round Return the integral value nearest to x rounding halfway cases

away from zero, regardless of the current rounding direction.
Yes

rsqrt Inverse Square Root Yes
sin Computes the sine Yes

Appendix B: OpenCL Built-In Functions Support in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

83

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=83
www.xilinx.com

Function Description Supported
sincos Computes sine and cosine of x. The computed sine is the

return value and computed cosine is returned in cosval.
Yes

sinh Computes the hyperbolic sine Yes
sinpi Computes sin (pi * x). Yes
sqrt Computes square root. Yes
tan Computes the tangent. Yes
tanh Computes hyperbolic tangent. Yes
tanpi Computes tan(pi * x). Yes
tgamma Computes the gamma. Yes
trunc Round to integral value using the round to zero rounding

mode.
Yes

half_cos Computes cosine. x must be in the range -216... +216. This
function is implemented with a minimum of 10-bits of
accuracy

Yes

half_divide Computes x / y. This function is implemented with a minimum
of 10-bits of accuracy

Yes

half_exp Computes the base- e exponential of x. implemented with a
minimum of 10-bits of accuracy

Yes

half_exp2 The base- 2 exponential of x. implemented with a minimum of
10-bits of accuracy

Yes

half_exp10 The base- 10 exponential of x. implemented with a minimum
of 10-bits of accuracy

Yes

half_log Natural logarithm. implemented with a minimum of 10-bits of
accuracy

Yes

half_log10 Base 10 logarithm. implemented with a minimum of 10-bits of
accuracy

Yes

half_log2 Base 2 logarithm. implemented with a minimum of 10-bits of
accuracy

Yes

half_powr x to the power of y, where x is greater than or equal to 0. Yes
half_recip Reciprocal. Implemented with a minimum of 10-bits of

accuracy
Yes

half_rsqrt Inverse Square Root. Implemented with a minimum of 10-bits
of accuracy

Yes

half_sin Computes sine. x must be in the range -2^16... +2^16.
implemented with a minimum of 10-bits of accuracy

Yes

half_sqrt Inverse Square Root. Implemented with a minimum of 10-bits
of accuracy

Yes

half_tan The Tangent. Implemented with a minimum of 10-bits of
accuracy

Yes

native_ cos Computes cosine over an implementation-defined range. The
maximum error is implementation-defined.

Yes

native_ divide Computes x / y over an implementation-defined range. The
maximum error is implementation-defined

Yes

Appendix B: OpenCL Built-In Functions Support in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

84

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=84
www.xilinx.com

Function Description Supported
native_ exp Computes the base- e exponential of x over an

implementation-defined range. The maximum error is
implementation-defined.

Yes

native_ exp2 Computes the base- 2 exponential of x over an
implementation-defined range. The maximum error is
implementation-defined.

No

native_exp10 Computes the base- 10 exponential of x over an
implementation-defined range. The maximum error is
implementation-defined.

No

native_ log Computes natural logarithm over an implementation-defined
range. The maximum error is implementation-defined.

Yes

native_ log10 Computes a base 10 logarithm over an implementation-
defined range. The maximum error is implementation-defined.

No

native_ log2 Computes a base 2 logarithm over an implementation-defined
range.

No

native_ powr Computes x to the power of y, where x is greater than or equal
to 0. The range of x and y are implementation-defined. The
maximum error is implementation-defined.

No

native_ recip Computes reciprocal over an implementation-defined range.
The maximum error is implementation-defined.

No

native_ rsqrt Computes inverse square root over an implementation-
defined range. The maximum error is implementation-defined.

No

native_ sin Computes sine over an implementation-defined range. The
maximum error is implementation-defined.

Yes

native_ sqrt Computes inverse square root over an implementation-
defined range. The maximum error is implementation-defined.

No

native_ tan Computes tangent over an implementation-defined range. The
maximum error is implementation-defined

Yes

Integer Functions

Function Description Supported
abs |x| Yes
abs-diff |x-y| without modulo overflow Yes
add_sat x+y and saturate result Yes
hadd (x+y) >> 1 without modulo overflow Yes
rhadd (x+y+1) >> 1. The intermediate sum does not modulo overflow. Yes
clz Number of leading 0-bits in x Yes
mad_hi mul_hi(a,b)+c Yes
mad24 (Fast integer function.) Multiply 24-bit integer then add the 32-bit

result to 32-bit integer
Yes

mad_sat a*b+c and saturate the result Yes

Appendix B: OpenCL Built-In Functions Support in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

85

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=85
www.xilinx.com

Function Description Supported
max The greater of x or y Yes
min The lessor of x or y Yes
mul_hi High half of the product of x and y Yes
mul24 (Fast integer function.) Multiply 24-bit integer values a and b Yes
rotate result[indx]=v[indx]<<i[indx] Yes
sub_sat x - y and saturate the result Yes
upsample result[i] = ((gentype)hi[i] << 8|16|32) | lo[i] Yes

Common Functions

Function Description Supported
clamp Clamp x to range given by min, max Yes
degrees radians to degrees Yes
max Maximum of x and y Yes
min Minimum of x and y Yes
mix Linear blend of x and y Yes
radians degrees to radians Yes
sign Sign of x Yes
smoothstep Step and interpolate Yes
step 0.0 if x < edge, else 1.0 Yes

Geometric Functions

Function Description Supported
clamp Clamp x to range given by min, max Yes
degrees radians to degrees Yes
cross Cross product Yes
dot Dot product only float, double, half data types Yes
dstance Vector distance Yes
length Vector length Yes
normalize Normal vector length 1 Yes
fast_distance Vector distance Yes
fast_length Vector length Yes
fast_normalize Normal vector length 1 Yes

Appendix B: OpenCL Built-In Functions Support in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

86

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=86
www.xilinx.com

Relational Functions

Function Description Supported
isequal Compare of x == y. Yes
isnotequal Compare of x != y. Yes
isgreater Compare of x > y. Yes
isgreaterequal Compare of x >= y. Yes
isless Compare of x < y. Yes
islessequal Compare of x <= y. Yes
islessgreater Compare of (x < y) || (x > y). Yes
isfinite Test for finite value. Yes
isinf Test for +ve or -ve infinity. Yes
isnan Test for a NaN. Yes
isnormal Test for a normal value. Yes
isordered Test if arguments are ordered. Yes
isunordered Test if arguments are unordered. Yes
signbit Test for sign bit. Yes
any 1 if MSB in any component of x is set; else 0. Yes
all 1 if MSB in all components of x is set; else 0. Yes
bitselect Each bit of result is corresponding bit of a if corresponding bit

of c is 0.
Yes

select For each component of a vector type, result[i] = if MSB of c[i] is
set ? b[i] : a[i] For scalar type, result = c ? b : a.

Yes

Vector Data Load and Store Functions

Function Description Supported
vloadn Read vectors from a pointer to memory. Yes
vstoren Write a vector to a pointer to memory. Yes
vload_half Read a half float from a pointer to memory. Yes
vload_halfn Read a half float vector from a pointer to memory. Yes
vstore_half Convert float to half and write to a pointer to memory. Yes
vstore_halfn Convert float vector to half vector and write to a pointer to

memory.
Yes

vloada_halfn Read half float vector from a pointer to memory. Yes
vstorea_halfn Convert float vector to half vector and write to a pointer to

memory.
Yes

Appendix B: OpenCL Built-In Functions Support in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

87

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=87
www.xilinx.com

Synchronization Functions

Function Description Supported
barrier All work-items in a work-group executing the kernel on a processor

must execute this function before any are allowed to continue
execution beyond the barrier.

Yes

Explicit Memory Fence Functions

Function Description Supported
mem_fence Orders loads and stores of a work-item executing a kernel Yes
read_mem_fence Read memory barrier that orders only loads Yes
write_mem_fence Write memory barrier that orders only stores Yes

Async Copies from Global to Local Memory, Local to
Global Memory Functions

Function Description Supported
async_work_group_copy Must be encountered by all work-items in a

workgroup executing the kernel with the same
argument values; otherwise the results are undefined.

Yes

wait_group_events Wait for events that identify the
async_work_group_copy operations to complete.

Yes

prefetch Prefetch bytes into the global cache. No

PIPE Functions

Function Description Supported
read_pipe Read packet from pipe Yes
write_pipe Write packet to pipe Yes
reserve_read_pipe Reserve entries for reading from pipe No
reserve_write_pipe Reserve entries for writing to pipe No
commit_read_pipe Indicates that all reads associated with a

reservation are completed
No

commit_write_pipe Indicates that all writes associated with a
reservation are completed

No

is_valid_reserve_id Test for a valid reservation ID No

Appendix B: OpenCL Built-In Functions Support in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

88

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=88
www.xilinx.com

Function Description Supported
work_group_reserve_read_pipe Reserve entries for reading from pipe No
work_group_reserve_write_pipe Reserve entries for writing to pipe No
work_group_commit_read_pipe Indicates that all reads associated with a

reservation are completed
No

work_group_commit_write_pipe Indicates that all writes associated with a
reservation are completed

No

get_pipe_num_packets Returns the number of available entries in the
pipe

Yes

get_pipe_max_packets Returns the maximum number of packets
specified when pipe was created

Yes

Pipe Functions enabled by the cl_khr_subgroups
extension

Function Description Supported
sub_group_reserve_read_pipe Reserve entries for reading from a pipe No
sub_group_reserve_write_pipe Reserve entries for writing to a pipe No
sub_group_commit_read_pipe Indicates that all reads associated with a

reservation are completed
No

sub_group_commit_write_pipe Indicates that all writes associated with a
reservation are completed

No

OpenCL 2.0 Image Objects
Table 4: OpenCL 2.0 Image Options

Function Description Supported
clCreateImage Create an image object for a 1D image, 1D

image buffer, 1D image array, 2D image, 2D
image array or 3D image.

Yes

clGetSupportedImageFormats Get the list of image formats supported by an
OpenCL implementation when the Context,
Image type (1D, 2D, or 3D image, 1D image
buffer, 1D or 2D image array) and Image object
allocation information of the image memory
object is specified.

Yes

clEnqueueReadImage Enqueue commands to read from an image or
image array object to host memory.

Yes

clEnqueueWriteImage Enqueue commands to write to an image or
image array object from host memory.

Yes

Appendix B: OpenCL Built-In Functions Support in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

89

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=89
www.xilinx.com

Function Description Supported
clEnqueueFillImage Enqueues a command to fill an image object

with a specified color.
No

clEnqueueCopyImageToBuffer Enqueues a command to copy an image object
to a buffer object.

No

clEnqueueMapImage Enqueues a command to map a region in an
image object into the host address space and
returns a pointer to this mapped region.

No

clGetImageInfo Obtain information specific to an image object
created with clCreateImage. To get information
that is common to all memory objects, use the
clGetMemObjectInfo function.

Yes

Appendix B: OpenCL Built-In Functions Support in the SDAccel Environment

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

90

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=90
www.xilinx.com

xbinst Command Reference
The FPGA acceleration card plugged into the host machine needs to have the associated Linux
kernel driver, firmware and runtime libraries installed before it can be used for running user
applications. SDAccel™ provides a Xilinx board installation utility, xbinst to generate all
necessary files for the platform support package for the FPGA card. It also generates an
installation script to compile and install the driver, firmware and runtime libraries.

The xbinst utility requires superuser privileges on the host machine to run. The supported
options are listed below:

Table 5: xbinst Options

Short
Option

Long Option Valid Values Description

-h --help NA Print Usage Message

-f <arg> --platform <arg> Supported platform from
SDAccel installation or the
full path to platform
definition file for custom
platforms

Required.

All installed platforms are
listed in the SDx Release
Notes, Installation, and
Licensing Guide (UG1238).

-d <arg> --destination <arg> Valid path on the file system. Required destination
directory for driver and
firmware for the specified
platform

Follow the instructions below to install the driver and firmware for the FPGA card on the host
machine. The ADM-PCIE-7V3 DSA is used as an example. Replace it with the DSA for the actual
card plugged into the system.

All commands need to be run with superuser privileges.

1. Create a board installation directory.

$sudo mkdir 7v3_dsa

Appendix C

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

91

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1238-sdx-rnil.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=91
www.xilinx.com

2. Run xbinst to generate all necessary files.

$ sudo xbinst -f xilinx:adm-pcie-7v3:1ddr:3.0 -d 7v3_dsa
****** xbinst v2017.1_sdx

**** Copyright 1986-2017 Xilinx, Inc. All Rights Reserved.

INFO: [XBINST 60-267] Packaging for PCIe...
INFO: [XBINST 60-268] Packaging for PCIe...COMPLETE
INFO: [XBINST 60-667] xbinst has successfully created a board
installation directory
at /opt/dsa/7v3_dsa

If you installed a custom platform, the full path to the platform package file needs to be
provided to the xbinst command as shown in the following example:

$ sudo xbinst -f /platform/repo/vendor_board_name_version.xpfm -d
custom_platform

3. Install the driver, firmware, and runtime libraries.

$cd 7v3_dsa/xbinst/pkg/pcie/
$ sudo ./install.sh

This will do the following:

• Compile and install Linux kernel device drivers.
• Install the firmware files to the Linux firmware area.
• Generate a setup.sh (Bash) or setup.csh (for csh/tcsh) to set up the runtime

environment. Users must source the setup script before running any application on the
target FPGA card.

Appendix C: xbinst Command Reference

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

92

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=92
www.xilinx.com

Xilinx Board Swiss Army Knife Utility
Xilinx Board Swiss Army Knife (xbsak) utility is a standalone command line utility that can
perform the following board administration and debug tasks independent of SDAccel runtime
library:

• Board administration tasks:

◦ Flash PROM.
◦ Reboot boards without rebooting the host.
◦ Reset hung boards.
◦ Query board status, sensors and PCIe AER registers.

• Debug operations:

◦ Download SDAccel binary (.xclbin) to FPGA.
◦ DMA test for PCIe bandwidth.
◦ Show status of compute units.

The xbsak utility is automatically added to your path by using the setup.csh file created by the
xbinst utility. For example:

$XILINX_SDX/bin/xbinst -f xilinx:adm-pcie-7v3:1ddr:3.0 -d .
cd xbinst
source setup.csh
xbsak -help

xbsak Commands and Options

The following are xbsak command line format, and details of commands and options.

Syntax:
xbsak <command> [options]

Commands and Options

• help - Print help messages.

Appendix D

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

93

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=93
www.xilinx.com

• list - List all supported devices installed on the server in the format of [device_id] :
device_name.

The following is an example output where the device ID is 0 and the device name is
xilinx:xil-accel-rd-ku115:4ddr-xpr:3.3.

[0] xilinx:xil-accel-rd-ku115:4ddr-xpr:3.3

• query [-d device_id] [-r region_id]

Query the specified device and programmable region on the device to get detailed status
information.

◦ -d device_id - Specify the target device. Optional. Default=0 if not specified.

◦ -r region_id - Specify the target region. Optional. Default=0 if not specified.

• boot [-d device_id]
• clock [-d device_id] [-r region_id] -f clock1_freq [-g clock2_freq]

Set frequencies of clocks driving the computing units.

◦ -d device_id - Specify the target device. Optional. Default=0 if not specified.

◦ -r region_id - Specify the target region. Optional. Default=0 if not specified.

◦ -f clock1_freq - Specify clock frequency in MHz for the first clock. Required. All
platforms have this clock.

◦ -g clock2_freq - Specify clock frequency in MHz for the second clock. Optional: Some
platforms have this clock to support IP based kernels.

• dmatest [-d device_id] [-b blocksize]

Test throughput of data transfer between the host machine and global memory on the
device.

◦ -d device_id - Specify the target device. Optional. Default=0 if not specified.

◦ -b blocksize - Specify the test block size in KB. Optional: Default=65536 or 64MB if
not specified. The block size can be specified in both decimal or hexadecimal formats.
e.g. Both -b 1024 and -b 0x400 set the block size to 1024KB or 1MB.

Appendix D: Xilinx Board Swiss Army Knife Utility

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

94

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=94
www.xilinx.com

• flash [-d device_id] -m primary_mcs [-n secondary_mcs]

Program PROMs on the device with specified configuration files.

◦ -d device_id- Specify the target device. Optional. Default=0 if not specified.

◦ -m primary_mcs - Specify the primary configuration file. Required. All platforms have
at least one PROM.

◦ -n secondary_mcs - Specify the secondary configuration file. Optional. Some platform
have two PROMs and the secondary configuration file is required for the second
PROM.

IMPORTANT:

The flash programming function requires certain hardware features in the platform to work, so it only
works with devices already programmed with the supported firmware:

Board Platform Firmware
ADM-PCIE-7V3 xilinx:adm-pcie-7v3:1ddr:3.0 or newer

ADM-PCIE-KU3 ◦ xilinx:adm-pcie-ku3:2ddr-xpr:3.3 or newer
◦ xilinx:adm-pcie-ku3:2ddr:3.3 or newer
◦ xilinx:adm-pcie-ku3:1ddr:3.3 or newer

XIL-ACCEL-RD-KU115 xilinx:xil-accel-rd-ku115:4ddr-xpr:3.2 or newer

• program [-d device_id] [-r region_id] -p xclbin

Download the OpenCL binary to the programmable region on the device.

◦ -d device_id - Specify the target device. Optional. Default=0 if not specified.

◦ -r region_id - Specify the target region. Optional. Default=0 if not specified.

◦ -p xclbin - Specify the OpenCL binary file. Required.

• reset [-d device_id] [-r region_id]

Reset the programmable region on the device. All running compute units in the region will
be stopped and reset.

◦ -d device_id - Specify the target device. Optional. Default=0 if not specified.

◦ -r region_id - Specify the target region. Optional. Default=0 if not specified.

Appendix D: Xilinx Board Swiss Army Knife Utility

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

95

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=95
www.xilinx.com

• status [--apm | --lapc]

Displays the status of any AXI Performance Monitor (apm) or Lightweight AXI Protocol
Checkers (lapc) that are available in the base platform.

◦ --apm - Returns the value of the AXI Performance Monitor (apm) counters. This option
is only applicable if one or more AXI Performance Monitors are available in the base
platform.

◦ --lapc - Returns the values of the violations codes detected by the Lightweight AXI
Protocol Checkers (lapc). This option is only applicable if one or more Lightweight AXI
Protocol Checkers are available in the base platform.

• - scan

Scans the system and displays any Xilinx PCIe devices, associated drivers and pertinent
system information.

Appendix D: Xilinx Board Swiss Army Knife Utility

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

96

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=96
www.xilinx.com

Using the Runtime Initialization File
SDAccel™ runtime library uses various parameters to control debug, profiling, and message
logging during host application and kernel execution in CPU emulation, hardware emulation,
and system run on the acceleration board. These control parameters are specified in a runtime
initialization file.

For command line users, the runtime initialization file needs to be created manually. The file
must be named sdaccel.ini and saved in the same directory as the host executable.

For SDx GUI users, the project manager creates sdaccel.ini file automatically based on users
run configuration and saves it next to the host executable.

The runtime library will check if sdaccel.ini exists in the same directory as the host executable
and automatically read the parameters from the file during start-up if it finds it.

Runtime Initialization File Format

The runtime initialization file is a text file with groups of keys and their values. Any line
beginning with semicolon (;) or hash (#) is a comment. The group names, keys, and key values
are all case sensitive.

The following is a simple example that turns on profile timeline trace and sends the runtime log
messages to console.

#Start of Debug group
[Debug]
timeline_trace = true

#Start of Runtime group
[Runtime]
runtime_log = console

The following table lists all supported groups, keys, valid key values and short descriptions on
the function of the keys.

Key Valid Values Descriptions
[Debug] Group

Appendix E

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

97

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=97
www.xilinx.com

Key Valid Values Descriptions

debug [true|false] Enable or disable kernel debug.

• true: enable
• false: disable
• Default: false

profile [true|false] Enable or disable OpenCL code
profiling.

• true: enable
• false: disable
• Default: true

timeline_trace [true|false] Enable or disable profile timeline trace

• true: enable
• false: disable
• Default: false

device_profile [true|false] Enable or disable device profiling.

• true: enable
• false: disable
• Default: false

[Runtime] Group

api_checks [true|false] Enable or disable OpenCL API checks.

• true: enable
• false: disable
• Default: true

runtime_log null console
syslog filename

Specify where the runtime logs are
printed

• null: Do not print any logs.
• console: Print logs to stdout
• syslog: Print logs to Linux syslog
• filename: Print logs to the

specified file. e.g.
runtime_log=my_run.log

• Default: null

Appendix E: Using the Runtime Initialization File

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

98

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=98
www.xilinx.com

Key Valid Values Descriptions

polling_throttle An integer Specify the time interval in
microseconds that the runtime library
polls the device status.

• Default: 0

[Emulation] Group

aliveness_message_interval Any integer Specify the interval in seconds that
aliveness messages need to be printed

• Default 300

print_infos_in_console [true|false] Controls the printing of emulation info
messages to users console. Emulation
info messages are always logged into a
file called emulation_debug.log

• true = print in users console
• false = don't print in users console
• Default: true

print_warnings_in_console [true|false] Controls the printing emulation
warning messages to users console.
Emulation warning messages are
always logged into a file called
emulation_debug.log.

• true = print in users console
• false = do not print in users

console
• Default: true

print_errors_in_console [true|false] Controls printing emulation error
messages in users console. Emulation
error messages are always logged into
file called emulation_debug.log.

• true = print in users console
• false = don't print in users console
• Default: true

Appendix E: Using the Runtime Initialization File

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

99

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=99
www.xilinx.com

Key Valid Values Descriptions

enable_oob [true|false] Enable or disable diagnostics of out of
bound access during emulation. A
warning is reported if there is any out
of bound access.

• true: enable
• false: disable
• Default: false

launch_waveform [off|batch|gui] Specify how the waveform is saved and
displayed during emulation.

• off: Do not launch simulator
waveform GUI, and do not save
wdb file

• batch: Do not launch simulator
waveform GUI, but save wdb file

• gui: Launch simulator waveform
GUI, and save wdb file

• Default: off

NOTE: The kernel needs to be compiled with
debug enabled (xocc -g) for the waveform
to be saved and displayed in the simulator
GUI.

Appendix E: Using the Runtime Initialization File

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

100

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=100
www.xilinx.com

Converting Tcl Compilation Flow to XOCC
Starting with the 2016.3 release of SDAccel™, Tcl based compilation flow is no longer be
supported. Direct command line access via XOCC (and MakeFile) is the main entry point to use
SDAccel services. This appendix provides guidance on how to convert Tcl based compilation
script to XOCC based command line options. All examples in the SDAccel installation use
Makefile/XCOCC for compilation and can be used as additional reference.

The following sections list Tcl commands and their equivalent XOCC options. All XOCC options
need to be provided to the XCOCC command in a single command line.

Solution

• Tcl

create_solution -name example_alpha -dir . -force

• XOCC

XOCC does not require a solution to be explicitly created.

Host Code Management and Compilation

• Tcl

add_files "test-cl.c"

• XOCC

In XOCC flow, the host code is managed by the user and compiled with xcpp command line
or Makefile to generate host executable.

xcpp -g -Wall -DFPGA_DEVICE -I/opt/SDx/2017.1/runtime/include/1_2 -c
test-cl.cpp -o test-cl.o
xcpp -L/opt/SDx/2017.1/runtime/lib/x86_64 -lxilinxopencl -llmx6.0
-lstdc++ test-cl.o -o mmult_ex

Appendix F

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

101

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=101
www.xilinx.com

Device

• Tcl

add_device -vbnv xilinx:adm-pcie-7v3:1ddr:3.0
set_property device_repo_paths /path/to/custom_dsa [current_solution]

• XOCC

--platform xilinx:adm-pcie-7v3:1ddr:3.0
--xp prop:solution.device_repo_paths=/path/to/custom_dsa

Kernel Definition

• Tcl

create_kernel mmult -type clc
add_files -kernel [get_kernels mmult] "mmult1.cl"

• XOCC

--kernel mmult mmul1.cl

Setting Kernel Compile Flags

• Tcl

set_property kernel_flags "-DUSE2DDR=1" [get_kernels mmult]

• XOCC

-DUSE2DDR=1

Binary Container Definition

• Tcl

create_opencl_binary bin_mmult
set_property region "OCL_REGION_0" [get_opencl_binary bin_mmult]
create_compute_unit -opencl_binary [get_opencl_binary bin_mmult]
-kernel [get_kernels mmult] -name k1
create_compute_unit -opencl_binary [get_opencl_binary bin_mmult]
-kernel [get_kernels mmult] -name k2

Appendix F: Converting Tcl Compilation Flow to XOCC

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

102

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=102
www.xilinx.com

• XOCC

--output bin_mmult.xclbin --nk mmult:2:k1.k2

Compile for CPU Emulation

• Tcl

compile_emulation -flow cpu -opencl_binary [get_opencl_binary bin_mmult]

• XOCC

--target sw_emu

Compile for Hardware Emulation

• Tcl

compile_emulation -flow hardware -opencl_binary [get_opencl_binary
bin_mmult]

• XOCC

--target hw_emu

Run CPU and Hardware emulation Emulation

• Tcl

run_emulation -flow cpu -args "bin_mmult.xclbin"
run_emulation -flow hardware -args "bin_mmult.xclbin"

• XOCC

Refer to Running Software and Hardware Emulation in XOCC Flow for details.

Build System

• Tcl

build_system

Appendix F: Converting Tcl Compilation Flow to XOCC

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

103

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=103
www.xilinx.com

• XOCC

--target hw

Report Estimate

• Tcl

report_estimate

• XOCC

--report estimate

Package System

• Tcl

package_system

• XOCC

XOCC does not have an equivalent option for package_system. Packaging of libraries and
drivers for deployment is provided by another command, xbinst. Below is a simple
command line example.

Refer to the SDx Environments Release Notes, Installation, and Licensing Guide (UG1238).

xbinst -f xilinx:adm-pcie-7v3:1ddr:3.0 -d 7v3

Appendix F: Converting Tcl Compilation Flow to XOCC

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

104

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1238-sdx-rnil.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=104
www.xilinx.com

Putting All Together

• Tcl

create_solution -name example_alpha -dir . -force
add_device -vbnv xilinx:adm-pcie-7v3:1ddr:3.0

create_kernel mmult -type clc
add_files -kernel [get_kernels mmult] "mmult1.cl"
set_property kernel_flags "-DUSE2DDR=1" [get_kernels mmult]

create_opencl_binary bin_mmult
set_property region "OCL_REGION_0" [get_opencl_binary bin_mmult]
create_compute_unit -opencl_binary [get_opencl_binary bin_mmult]
-kernel [get_kernels mmult] -name k1
create_compute_unit -opencl_binary [get_opencl_binary bin_mmult]
-kernel [get_kernels mmult] -name k2

compile_emulation -flow cpu -opencl_binary [get_opencl_binary bin_mmult]
run_emulation -flow cpu -args "bin_mmult.xclbin"

compile_emulation -flow hardware -opencl_binary [get_opencl_binary
bin_mmult]
run_emulation -flow cpu -args "bin_mmult.xclbin"

build_system

• XOCC

The following is the equivalent XOCC command line options of the Tcl commands above for
compilation of CPU emulation. Change --target sw_emu to --target hw_emu for
compilation for hardware emulation or --target hw for compilation for system run.

xocc --target sw_emu --platform xilinx:adm-pcie-7v3:1ddr:3.0 \
-DUSE2DDR=1 \
--output bin_mmult.xclbin --nk mmutl:2:k1.k2
--kernel mmult mmul1.c

Appendix F: Converting Tcl Compilation Flow to XOCC

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

105

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=105
www.xilinx.com

SDAccel System Info Checker Utility
The SDAccel™ System Info Checker utility (sdxsyschk) performs analysis of system and
hardware setup on the PCIe® acceleration cards that are supported by the Xilinx® SDAccel
integrated environment.

When you launch the utility, it compiles and generates an informative status report. It also
provides some basic debug and troubleshooting capabilities by issuing messages describing any
problems.

The following is a list of analyses the utility performs:

• System and Environment Diagnosis
• Python Version Check
• Linux OS System Check
• 64-bit Architecture Check
• Environment Variables Check
• Motherboard System Info
• PCIe Diagnosis
• Xilinx PCIe Device Check
• Device Link Speed Check
• Root Port Speed Check
• Xilinx Kernel Driver Check
• Xilinx DSA-Device Matching Check

Launching System Info Checker Utility

The following requirements must be met before running the Info Checker Utility:

• You MUST have SDAccel™ installed and environment set up to run SDAccel tools.
• You MUST have superuser privileges (sudo or root access).
• You MUST have lspci package installed either under the /sbin or /usr/bin directory and

the path to the lspci command added to your PATH environment variable.

Run the following command to launch the utility to query the system and get detailed PCIe®
platform diagnosis.

$sudo sdxsyschk

Appendix G

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

106

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=106
www.xilinx.com

The following are a few examples showing how the System Info Checker Utility can be
used.

• To query the system and basic platform detection status:

$sdxsyschk

• To query the system and detailed PCIe platform diagnosis:

$sudo sdxsyschk

• To query detailed analysis with verbose (optional) outputs:

• $sudo sdxsyschk -v

• To query status and redirect the output to a text file specified with an argument:

$sudo sdxsyschk > <path_and_file_name>

• To query basic system status plus environment variables information.

This must to run without sudo access.

$sdxsyschk -e

Appendix G: SDAccel System Info Checker Utility

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

107

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=107
www.xilinx.com

Board Installations
SDAccel™ applications are executed in hardware using one of the supported FPGA cards or
boards listed below. You may develop and run applications on a single host computer, or you
may develop applications on one host computer and run applications on another host
computer. In all cases, if the application is to be executed on hardware, a board must be
installed on the host computer and SDAccel must be installed on the host computer.

The procedure for installing a hardware board on a host computer is provided here and includes
instructions for using the xbinst board installation utility and the Vivado® Design Suite to install
the board. The xbinst utility, the Vivado Design Suite, and any required cable drivers are
included when SDAccel is installed on the host computer.

Follow the installation instructions appropriate for your the acceleration card:

• Installing the Alpha Data ADM-PCIE-KU3 Card
• Installing the Alpha Data ADM-PCIE-7V3 Card
• Installing the Alpha Data ADM-PCIE-8K5 Card
• Installing the Xilinx XIL-ACCEL-RD-KU115 Card

Installing the Alpha Data ADM-PCIE-KU3 Card

The ADM-PCIE-KU3 card is a high-performance reconfigurable computing card for data center
applications. It features:

• Kintex® UltraScale™ XCKU060T-2FFVA1156E FPGA
• 16 GB of DDR3 memory

Appendix H

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

108

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=108
www.xilinx.com

Figure 22: ADM-PCIE-KU3/KU060E card

X15147-101415

Step 1: Prepare Board Installation Files

1. SDAccel™ provides a utility, xbinst, that generates firmware and driver files for the target
board plugged into the host computer. Run the commands below to prepare files for ADM-
PCIE-KU3 card installation. See xbinst Command Reference for more details on the xbinst
utility.

All commands must be run with root or sudo privilege.

$sudo mkdir ku3_dsa
$ sudo xbinst -f xilinx:adm-pcie-ku3:2ddr:3.3 -d ku3_dsa
****** xbinst v2017.1
**** Copyright 1986-2017 Xilinx, Inc. All Rights Reserved.

INFO: [XBINST 60-267] Packaging for PCIe...
INFO: [XBINST 60-268] Packaging for PCIe...COMPLETE
INFO: [XBINST 60-667] xbinst has successfully created a board installation
directory

at /opt/dsa/ku3_dsa

Make a note of the board installation directory. This procedure uses /opt/dsa/ku3_dsa as an
example in this chapter.

Copy the following file path to the programming computer:

/opt/dsa/ku3_dsa/xbinst/pkg/pcie/firmware/xilinx_adm-pcie-ku3_2ddr_3_3.mcs

Make a note of the file location on the programming computer as it will be required for
programming the configuration memory in a later step.

Step 2: Setting up the Card and Computer

1. Make sure the host computer is completely turned off.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

109

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=109
www.xilinx.com

2. Locate DIP switch SW1 on the back side of the board near the center of top edge and set it as
shown here:

2
3

4
1

O
n

O
ff

Pin 1

X15146-101415

3. Install the ADM-PCIE-KU3 card into an open PCIe® slot in the host computer.

NOTE: Follow host computer manufacturer recommendations to ensure proper mounting and adequate
cooling.

4. Turn on the host computer.

Step 3: Programming the Base Platform

All applications compiled by the SDAccel™ compiler for the Alpha Data card are compiled
against a specific device. A device is a combination of interfaces and infrastructure components
on the card, which are required for proper execution of the user program. The base device
program or firmware is different for all devices. This program must be loaded onto the FPGA
before the user application is loaded. To program the firmware program do the following:

1. Connect the Alpha Data ADM-PCIE-KU3 card to the programming computer with an
installation of Vivado® Design Suite as shown here:

Wally

Programming Computer

JTAG
Connector

Card Installed in Host Computer

USB cable standard-A plug to
standard B plug

X15148-101415

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

110

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=110
www.xilinx.com

2. On the programming computer, start the Vivado Design Suite then on the Welcome page,
select Open Hardware Manager.

3. Select Open a New Hardware Target.

4. Click Next in the Open Hardware Target window.

5. Select Local server in the Connect to field and click Next.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

111

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=111
www.xilinx.com

6. In the Open New Hardware Target window, select xilinx_tcf and click Next.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

112

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=112
www.xilinx.com

7. In the Open Hardware Target Summary window, click Finish.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

113

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=113
www.xilinx.com

8. Right-click your FPGA (xku060_0), and select Add Configuration Memory Device.

9. Select mt28gu01gaax1e-bpi-x16 as the configuration memory.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

114

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=114
www.xilinx.com

10. Click OK to program the configuration memory.

11. In the Programming Configuration Memory Device window, go to the Configuration File
entry box, browse to and select the MCS file (xilinx_adm-pcie-ku3_1ddr_3_0.mcs) that you
copied to the programming computer in Step 1. Verify all other settings as shown in the
Program Configuration Memory Device window. Click OK to start programming the
configuration memory.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

115

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=115
www.xilinx.com

12. After the memory has been configured, right-click the FPGA (xku060_0) and select Boot from
Configuration Memory Device

The Tcl console displays Done pin status: HIGH after the FPGA device is booted
successfully.

13. Reboot the host computer.

NOTE: Programming of the device firmware is required only once per device support archive (dsa). All
applications targeting the same dsa can share a single programming instance of the card firmware.

Step 4: Installing Driver for the Card

You must install proper drivers for the card before you can use it to run SDAccel™ applications.
Follow the instructions below to install the required drivers.

Change to the board installation directory generated in Step 1 and run installation script:

$cd /opt/dsa/ku3_dsa/xbinst/pkg/pcie
$sudo ./install.sh

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

116

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=116
www.xilinx.com

This will do the following.

• Compile and install Linux kernel device drivers.
• Install the firmware to the Linux firmware area.
• Generate a setup.sh (Bash) or setup.csh (for csh/tcsh) to set up the runtime environment.

You must source the setup script before running any application on the target FPGA card.
• Install Xilinx OpenCL Installable Client Driver (ICD) to /etc/OpenCL/vendors. The OpenCL

ICD) allows multiple implementations of OpenCL to co-exist on the same system. It allows
applications to choose a platform from the list of installed platforms and dispatches
OpenCL API calls to the underlying implementation.

Installing the Alpha Data ADM-PCIE-7V3 Card

The ADM-PCIE-7V3 card is a high-performance reconfigurable computing card for data center
applications. It features:

• A Virtex®-7 XC7VX690T-2FFG1157C FPGA
• 16 GB of DDR3 memory

Figure 23: ADM-PCIE-7V3 card

X15029-091415

Step 1: Prepare Board Installation Files

SDAccel� provides a utility, xbinst, that generates firmware and driver files for the target board
plugged into the host computer. Run the commands below to prepare files for ADM-PCIE-7V3
card installation. See xbinst Command Reference for more details on xbinst utility.

All commands need to be run with root or sudo privilege.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

117

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=117
www.xilinx.com

$sudo mkdir 7v3_dsa
$ sudo xbinst -f xilinx:adm-pcie-7v3:1ddr:3.0 -d 7v3_dsa
****** xbinst v2017.1
**** Copyright 1986-2017 Xilinx, Inc. All Rights Reserved.

INFO: [XBINST 60-267] Packaging for PCIe...
INFO: [XBINST 60-268] Packaging for PCIe...COMPLETE
INFO: [XBINST 60-667] xbinst has successfully created a board installation
directory

at /opt/dsa/7v3_dsa

Make a note of the board installation directory. This procedure uses /opt/dsa/7v3_dsa in this
chapter.

Copy the following file path to the programming computer:

/opt/dsa/7v3_dsa/xbinst/pkg/pcie/firmware/xilinx_adm-pcie-7v3_1ddr_3_0.mcs

Make a note the file location on the programming computer as it will be required for
programming the configuration memory in later step.

Step 2. Setting Up the Card and Computer

1. Make sure the host computer is completely turned off.
2. Locate DIP switch SW1 on the back side of the board near the center of top edge and set it as

shown here:

2 3 41

On

Off

P
in

 1

X15008-100615

3. Install the ADM-PCIE-7V3 card into an open PCIe slot in the host computer.

NOTE: Follow host computer manufacturer recommendations to ensure proper mounting and adequate
cooling.

4. Turn on the host computer.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

118

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=118
www.xilinx.com

Step 3: Programming the Base Platform

All applications compiled by the SDAccel� compiler for the Alpha Data card are compiled
against a specific device. A device is a combination of interfaces and infrastructure components
on the card, which are required for proper execution of the user program. The base device
program or firmware is different for all devices. This program must be loaded onto the FPGA
before the user application is loaded. To program the firmware program:

1. Connect the Alpha Data ADM-PCIE-7V3 card to the control computer having an installation of
Vivado® Design Suite as shown here:

Wally

Programming Computer

JTAG
Connector

Card Installed in Host Computer

USB cable standard-A plug to
standard B plug

X15033-091415

2. On the programming computer, Open Hardware Manager.

3. Select Open a New Hardware Target.

4. Click Next in the Open Hardware Target window.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

119

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=119
www.xilinx.com

5. Select Local server in the Connect to field and click Next.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

120

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=120
www.xilinx.com

6. In the Open New Hardware Target window, select xilinx_tcf and click Next.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

121

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=121
www.xilinx.com

7. In the Open Hardware Target Summary window, click Finish.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

122

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=122
www.xilinx.com

8. Right-click the FPGA (xc7vx690T_0) and select Add Configuration Memory Device.

9. Select mt28gu01gaax1e-bpi-x16 as the configuration memory.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

123

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=123
www.xilinx.com

10. Click OK to program the configuration memory.

11. In the Programming Configuration Memory Device window, go to the Configuration File
entry box, browse to, and select the MCS file (xilinx_adm-pcie-7v3_1ddr_3_0.mcs) that you
copied to the programming computer in Step 1. Verify all other settings as shown in the
Program Configuration Memory Device window. Click OK to start programming the
configuration memory.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

124

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=124
www.xilinx.com

12. After the memory has been configured, right-click the FPGA (xc7vx690T_0) and select Boot
From Configuration Device.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

125

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=125
www.xilinx.com

The Tcl console displays Done pin status: HIGH after the FPGA is booted successfully.

13. Reboot the host computer.

NOTE: Programming of the device firmware is required only once per device. All applications targeting
the same device can share a single programming instance of the card firmware.

Step 4: Installing Driver for the Card

You must install proper drivers for the card before you can use it to run SDAccel� applications.
Follow the instructions below to install the required drivers.

Change to the board installation directory generated in Step 1, and run installation script:

$cd /opt/dsa/7v3_dsa/xbinst/pkg/pcie
$ sudo ./install.sh

This will do the following:

• Compile and install Linux kernel device drivers.
• Install the firmware to the Linux firmware area.
• Generate a setup.sh (Bash) or setup.csh (for csh/tcsh) to set up the runtime environment.

Users must source the setup script before running any application on the target FPGA card.
• Install Xilinx OpenCL Installable Client Driver (ICD) to /etc/OpenCL/vendors. The OpenCL

ICD allows multiple implementations of OpenCL to co-exist on the same system. It allows
applications to choose a platform from the list of installed platforms and dispatches
OpenCL API calls to the underlying implementation.

Installing the Alpha Data ADM-PCIE-8K5 Card

The ADM-PCIE-8K5 card is a high-performance reconfigurable computing card for data center
applications. It features:

• A Kintex® UltraScale™ XCKU115-2 FLVA1517E FPGA
• 16 GB of DDR3 memory

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

126

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=126
www.xilinx.com

Figure 24: ADM-PCIE-8K5 Card

NOTE: The ADM-PCIE-8K5 is shipped with an optional blower. Xilinx highly recommends that you install the
blower on the card before proceeding to the next step.

Step 1: Prepare Board Installation Files

SDAccel� provides a utility, xbinst, that generates firmware and driver files for the target board
plugged into the host computer. Run the commands below to prepare files for ADM-PCIE-8K5
card installation. See xbinst Command Reference for more details on xbinst utility.

All commands need to be run with root or sudo privilege.

$ sudo xbinst -f xilinx:adm-pcie-8k5:2ddr:3.3 -d 8k5_dsa
****** xbinst v2017.1_sdx

**** Copyright 1986-2017 Xilinx, Inc. All Rights Reserved.

INFO: [XBINST 60-267] Packaging for PCIe...
INFO: [XBINST 60-268] Packaging for PCIe...COMPLETE
INFO: [XBINST 60-667] xbinst has successfully created a board installation

directory at /opt/dsa/8k5_dsa.

Make a note of the board installation directory. This procedure uses /opt/dsa/8k5_dsa in this
chapter.

Copy the following file path to the programming computer:

/opt/dsa/8k5_dsa/xbinst/pkg/pcie/firmware/ xilinx_adm-pcie-8k5_2ddr_3_3.mcs

Make a note the file location on the programming computer as it will be required for
programming the configuration memory in later step.

Step 2. Setting Up the Card and Computer

1. Make sure the host computer is completely turned off.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

127

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=127
www.xilinx.com

2. Locate DIP switch SW1 on the back side of the board near the side edge and set it as shown
here:

2
3

4
1

O
n

O
ff

Pin 1

X18241-111516

3. Install the ADM-PCIE-8K5 card into an open PCIe slot in the host computer.

NOTE: Follow host computer manufacturer recommendations to ensure proper mounting and adequate
cooling.

4. Turn on the host computer.

Step 3: Programming the Base Platform

All applications compiled by the SDAccel� compiler for the Alpha Data card are compiled
against a specific device. A device is a combination of interfaces and infrastructure components
on the card, which are required for proper execution of the user program. The base device
program or firmware is different for all devices. This program must be loaded onto the FPGA
before the user application is loaded. To program the firmware program:

1. Connect the Alpha Data ADM-PCIE-8K5 card to the control computer having an installation of
Vivado® Design Suite as shown here:

X18218-111116

2. On the programming computer, Open Hardware Manager.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

128

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=128
www.xilinx.com

3. Select Open a New Hardware Target.

4. Click Next in the Open Hardware Target window.

5. Select Local server in the Connect to field and click Next.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

129

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=129
www.xilinx.com

6. In the Open New Hardware Target window, select xilinx_tcf and click Next.

7. In the Open Hardware Target Summary window, click Finish.

8. Right-click the FPGA (kcku115_0) and select Add Configuration Memory Device.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

130

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=130
www.xilinx.com

9. Select mt28gu01gaax1e-bpi-x16 as the configuration memory.

10. Click OK to program the configuration memory.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

131

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=131
www.xilinx.com

11. In the Programming Configuration Memory Device window, go to the Configuration File
entry box, browse to, and select the MCS file (xilinx_adm-pcie-8k5_2ddr_3_3.mcs) that you
copied to the programming computer in Step 1. Verify all other settings as shown in the
Program Configuration Memory Device window. Click OK to start programming the
configuration memory.

12. After the memory has been configured, right-click the FPGA (xcku115_0) and select Boot
From Configuration Device.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

132

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=132
www.xilinx.com

The Tcl console displays Done pin status: HIGH after the FPGA is booted successfully.

13. Reboot the host computer.

NOTE: Programming of the device firmware is required only once per device. All applications targeting
the same device can share a single programming instance of the card firmware.

Step 4: Installing Driver for the Card

You must install proper drivers for the card before you can use it to run SDAccel� applications.
Follow the instructions below to install the required drivers.

Change to the board installation directory generated in Step 1, and run installation script:

$cd /opt/dsa/8K5_dsa/xbinst/pkg/pcie
$ sudo ./install.sh

This will do the following:

• Compile and install Linux kernel device drivers.
• Install the firmware to the Linux firmware area.
• Generate a setup.sh (Bash) or setup.csh (for csh/tcsh) to set up the runtime environment.

Users must source the setup script before running any application on the target FPGA card.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

133

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=133
www.xilinx.com

• Install Xilinx OpenCL Installable Client Driver (ICD) to /etc/OpenCL/vendors. The OpenCL
ICD allows multiple implementations of OpenCL to co-exist on the same system. It allows
applications to choose a platform from the list of installed platforms and dispatches
OpenCL API calls to the underlying implementation.

Installing the Xilinx XIL-ACCEL-RD-KU115 Card

The XIL-ACCEL-RD-KU115 card is a high-performance reconfigurable computing card for data
center applications. It features:

• Kintex® UltraScale� XCKU115-FLVB2104-2-E FPGA
• Four 4GB DDR4 banks (16GB total)

Figure 25: XIL-ACCEL-RD-KU115 Card

Step 1: Prepare Board Installation Files

SDAccel� provides a utility, xbinst, that generates firmware and driver files for the target board
plugged into the host computer. Run the commands below to prepare files for XIL-ACCEL-RD-
KU115 card installation. See xbinst Command Reference for more details on the xbinst utility.

All commands must be run with root or sudo privilege.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

134

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=134
www.xilinx.com

$sudo mkdir xil-accel-rd-ku115
$sudo xbinst -f xilinx:xil-accel-rd-ku115:4ddr-xpr:3.3 -d xil-accel-rd-ku115
****** xbinst v2017.1_sdx

**** Copyright 1986-2017 Xilinx, Inc. All Rights Reserved.

INFO: [XBINST 60-267] Packaging for PCIe...
INFO: [XBINST 60-268] Packaging for PCIe...COMPLETE
INFO: [XBINST 60-667] xbinst has successfully created a board installation
directory at /opt/xil-accel-rd-ku115.

Make a note of the board installation directory. This procedure uses /opt/xil-accel-rd-ku115
as an example in this chapter.

Copy the following files to the programming computer:

/opt/xil-accel-rd-ku115/xbinst/pkg/pcie/firmware/
xilinx_xil-accel-rd-ku115_4ddr-xpr_3_3_primary.mcs

/opt/xil-accel-rd-ku115/xbinst/pkg/pcie/firmware/
xilinx_xil-accel-rd-ku115_4ddr-xpr_3_3_secondary.mcs

Make a note of the file location on the programming computer as it will be required for
programming the configuration memory in a later step.

Step 2: Setting up the Card and Computer

1. Make sure the host computer is completely turned off.
2. Install the XIL-ACCEL-RD-KU115 card into an open PCIe slot in the host computer.

NOTE: Follow host computer manufacturer recommendations to ensure proper mounting and adequate
cooling.

3. Turn on the host computer.

Step 3: Programming the Base Platform

All applications compiled by the SDAccel™ compiler for the Alpha Data card are compiled
against a specific device. A device is a combination of interfaces and infrastructure components
on the card, which are required for proper execution of the user program. The base device
program or firmware is different for all devices. This program must be loaded onto the FPGA
before the user application is loaded. To program the firmware program:

1. Connect the Xilinx® XIL-ACCEL-RD-KU115 card to the programming computer with an
installation of Vivado® Design Suite as shown here:

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

135

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=135
www.xilinx.com

Wally

Programming Computer

JTAG
Connector

Card Installed in Host Computer

USB cable standard-A plug to
standard B plug

X16903-050516

2. On the programming computer, start the Vivado Design Suite then on the Welcome page,
select Open Hardware Manager.

3. Select Open a New Hardware Target.

4. Click Next in the Open Hardware Target window.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

136

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=136
www.xilinx.com

5. Select Local server in the Connect to field and click Next.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

137

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=137
www.xilinx.com

6. In the Open New Hardware Target window, select xilinx_tcf and click Next.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

138

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=138
www.xilinx.com

7. In the Open Hardware Target Summary window, click Finish.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

139

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=139
www.xilinx.com

8. Right-click your FPGA (xcku115_0), and select Add Configuration Memory Device.

9. Select mt25qu512-spi-x1_x2_x4_x8 as the configuration memory.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

140

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=140
www.xilinx.com

10. Click OK to program the configuration memory.

11. In the Programming Configuration Memory Device window, go to the Configuration File
entry box, browse to and select the MCS file (xilinx_xil-accel-rd-ku115_4ddr-
xpr_3_2_primary.mcs) that you copied to the programming computer in Step 1. Go to the
Configuration File 2 entry box, browse to and select the MCS file (xilinx_xil-accel-rd-
ku115_4ddr-xpr_3_3_secondary.mcs). Verify all other settings as shown in the Program
Configuration Memory Device window. Click OK to start programming the configuration
memory.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

141

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=141
www.xilinx.com

12. After the memory has been configured, right-click the FPGA (xcku115_0) and select Boot
From Configuration Device.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

142

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=142
www.xilinx.com

The Tcl console displays Done pin Status: HIGH after the FPGA is booted successfully.

13. Reboot the host computer.

NOTE: Programming of the device firmware is required only once per device support archive (dsa). All
applications targeting the same dsa can share a single programming instance of the card firmware.

Step 4: Installing Driver for the Card

You must install proper drivers for the card before you can use it to run SDAccel™ applications.
Follow the instructions below to install the required drivers.

Change to the board installation directory generated in Step 1 and run installation script:

$cd /opt/xil-accel-rd-ku115/xbinst/pkg/pcie
$sudo ./install.sh

This will do the following.

• Compile and install Linux kernel device drivers.
• Install the firmware to the Linux firmware area.
• Generate a setup.sh (Bash) or setup.csh (for csh/tcsh) to set up the runtime environment.

You must source the setup script before running any application on the target FPGA card.
• Install Xilinx OpenCL™ Installable Client Driver (ICD) to /etc/OpenCL/vendors. The OpenCL

ICD allows multiple implementations of OpenCL to co-exist on the same system. It allows
applications to choose a platform from the list of installed platforms and dispatches
OpenCL API calls to the underlying implementation.

Appendix H: Board Installations

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

143

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=143
www.xilinx.com

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips

References

1. SDx Environments Release Notes, Installation, and Licensing Guide (UG1238)
2. SDAccel Environment User Guide (UG1023)
3. SDAccel Environment Optimization Guide (UG1207)
4. SDAccel Environment Tutorial: Introduction (UG1021)
5. SDAccel Environment Platform Development Guide (UG1164)
6. SDAccel Development Environment web page
7. Vivado® Design Suite Documentation
8. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)
9. Vivado Design Suite User Guide: High level Synthesis (UG902)
10. UltraFast Design Methodology Guide for the Vivado Design Suite, (UG949)
11. Vivado Design Suite Properties Reference Guide, (UG912)
12. Khronos Group web page: Documentation for the OpenCL standard
13. Alpha Data web page: Documentation for the ADM-PCIE-7V3 Card
14. Pico Computing web page: Documentation for the M-505-K325T card and the EX400 Card

Appendix I

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

144

http://www.xilinx.com/support.html
http://www.xilinx.com/support.html
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1238-sdx-rnil.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1023-sdaccel-user-guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1207-sdaccel-optimization-guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1021-sdaccel-intro-tutorial.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1164-sdaccel-platform-development.pdf
http://xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;ug949-vivado-design-methodology.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.1;d=ug912-vivado-properties.pdf
http://www.khronos.org
http://www.alpha-data.com/
http://www.picocomputing.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=144
www.xilinx.com

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or
under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials),
including for any direct, indirect, special, incidental, or consequential loss or damage (including
loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action
brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors
contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe
or for use in any application requiring fail-safe performance; you assume sole risk and liability
for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which
can be viewed at www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED
FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT
CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A SAFETY CONCEPT OR
REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD
(“SAFETY DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS
THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES.
USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE
RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING
LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2017 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado,
Zynq, and other designated brands included herein are trademarks of Xilinx in the United States
and other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by
permission by Khronos. PCI, PCIe and PCI Express are trademarks of PCI-SIG and used under
license. All other trademarks are the property of their respective owners.

Appendix I: Additional Resources and Legal Notices

Send FeedbackSDAccel Environment User Guide
UG1023 (v2017.1) June 20, 2017 www.xilinx.com

145

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG1023&Title=SDAccel%20Environment%20User%20Guide&releaseVersion=2017.1&docPage=145
www.xilinx.com

	SDAccel Environment User Guide
	Table of Contents
	Introduction
	Understanding the OpenCL Platform and Memory Model
	OpenCL Platform Model
	OpenCL Devices and FPGAs
	Using a PCIe Reference Device

	OpenCL Memory Model
	Host Memory
	Global Memory
	Constant Global Memory
	Local Memory
	Private Memory

	OpenCL Installable Client Driver Loader
	Recommended Libraries

	Kernel Language Support
	Expressing a Kernel in RTL
	Interface Requirements
	Programming Paradigm
	Software Function Model
	Interface Requirements for Integration Into the Platform

	SDAccel Tool Flow for RTL Kernels
	Packaging RTL block as a Vivado IP
	Create Kernel Description XML File
	Package RTL Kernel into Xilinx Object File

	RTL Kernel Wizard
	Launching RTL Kernel Wizard

	RTL Kernel Wizard Settings
	Welcome to SDx Kernel Wizard
	RTL Kernel Wizard General Settings
	Kernel Identification
	Clocking Options

	Scalars Arguments
	Scalar Input Argument Definition

	Global Memory
	AXI Master Definition (table columns)
	Argument Definition

	Summary
	Finalizing and Generating the Kernel from the RTL Wizard
	XO Generation Scripts and Generated Files

	Designing RTL Recommendations
	Memory Performance Optimizations for AXI4 Interface
	Quality of Results Considerations
	Debug and Verification Considerations

	Using RTL Kernels

	Expressing a Kernel in OpenCL C
	Expressing a Kernel in C/C++

	Compilation Flow
	Xilinx OpenCL Compiler
	Creating the Xilinx OpenCL Compute Unit Binary Container
	Building the System
	Using CPU Emulation
	Using Hardware Emulation
	Using the Build Flow for Compute Units Targeting the FPGA Fabric

	Compiling Your OpenCL Kernel Using the Xilinx OpenCL Compiler (xocc)
	XP Parameters
	Running Software and Hardware Emulation in XOCC Flow
	Running Application on FPGA
	Using the Message Rule File
	Comment
	Supported Commands
	Command Options
	Precedence of Message Rules
	Example of Message Rule File

	Getting Started with Examples
	Installed Examples
	GitHub Examples

	Estimating Performance
	Generating the System Performance Estimate Report
	Analyzing the Performance Estimate Report
	Design and Target Device Summary
	Kernel Summary
	Timing Information
	Latency Information
	Area Information

	Application Profiling in the SDAccel Environment
	Kernel Synthesis Report
	Synthesis View
	Performance View
	Resource View
	Performance Profile View
	Resource Profile View
	Dataflow View

	Profiling Summary Report
	GUI Flow
	XOCC/Makefile Flow
	Displaying the Profile Summary
	Web Browser
	Profile Summary Viewer

	Profile Summary Descriptions
	Profile Rule Checks
	Rule
	Threshold Value
	Actual Value
	Conclusion
	Details
	Guidance

	Application Timeline
	Collecting Timeline and Device Trace Data
	GUI Flow for Collecting Timeline and Device Trace Data
	XOCC/Makefile Flow for Collecting Timeline and Device Trace Data

	Displaying Timeline and Device Trace Data

	Device Hardware Transaction View
	Collecting Data for Device Hardware Transaction View
	GUI Flow for Collecting Hardware Transaction Data
	XOCC/Makefile Flow for Collecting Hardware Transaction Data

	Displaying Device Hardware Transaction View

	Detailed Kernel Trace

	Debugging Applications in the SDAccel Environment
	Preparing the Host Application for Debug
	Preparing Kernel Code for Debug in CPU Emulation Flow
	Launching GDB Standalone
	Recommended Debug Flow

	Application Debug
	Kernel Debug
	Using printf() to Debug Kernels
	Software Emulation Kernel Debug
	HW Emulation Kernel Debug Waveforms

	SDAccel Environment Supported Devices
	OpenCL Built-In Functions Support in the SDAccel Environment
	Work-Item Functions
	Math Functions
	Integer Functions
	Common Functions
	Geometric Functions
	Relational Functions
	Vector Data Load and Store Functions
	Synchronization Functions
	Explicit Memory Fence Functions
	Async Copies from Global to Local Memory, Local to Global Memory Functions
	PIPE Functions
	Pipe Functions enabled by the cl_khr_subgroups extension
	OpenCL 2.0 Image Objects

	xbinst Command Reference
	Xilinx Board Swiss Army Knife Utility
	xbsak Commands and Options
	Commands and Options

	Using the Runtime Initialization File
	Runtime Initialization File Format

	Converting Tcl Compilation Flow to XOCC
	Solution
	Host Code Management and Compilation
	Device
	Kernel Definition
	Setting Kernel Compile Flags
	Binary Container Definition
	Compile for CPU Emulation
	Compile for Hardware Emulation
	Run CPU and Hardware emulation Emulation
	Build System
	Report Estimate
	Package System
	Putting All Together

	SDAccel System Info Checker Utility
	Launching System Info Checker Utility

	Board Installations
	Installing the Alpha Data ADM-PCIE-KU3 Card
	Step 1: Prepare Board Installation Files
	Step 2: Setting up the Card and Computer
	Step 3: Programming the Base Platform
	Step 4: Installing Driver for the Card

	Installing the Alpha Data ADM-PCIE-7V3 Card
	Step 1: Prepare Board Installation Files
	Step 2. Setting Up the Card and Computer
	Step 3: Programming the Base Platform
	Step 4: Installing Driver for the Card

	Installing the Alpha Data ADM-PCIE-8K5 Card
	Step 1: Prepare Board Installation Files
	Step 2. Setting Up the Card and Computer
	Step 3: Programming the Base Platform
	Step 4: Installing Driver for the Card

	Installing the Xilinx XIL-ACCEL-RD-KU115 Card
	Step 1: Prepare Board Installation Files
	Step 2: Setting up the Card and Computer
	Step 3: Programming the Base Platform
	Step 4: Installing Driver for the Card

	Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	References
	Please Read: Important Legal Notices
	AUTOMOTIVE APPLICATIONS DISCLAIMER

