
Soft-Decision FEC Integrated
Block v1.1

LogiCORE IP Product Guide
Vivado Design Suite

PG256 (v1.1) October 19, 2022

Xilinx is creating an environment where employees,
customers, and partners feel welcome and included. To that
end, we’re removing non-inclusive language from our
products and related collateral. We’ve launched an internal
initiative to remove language that could exclude people or
reinforce historical biases, including terms embedded in our
software and IPs. You may still find examples of non-
inclusive language in our older products as we work to make
these changes and align with evolving industry standards.
Follow this link for more information.

https://www.xilinx.com
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf

Table of Contents
Chapter 1: IP Facts... 4

Features..4
IP Facts..7

Chapter 2: Overview..8
Applications..8
Licensing and Ordering.. 8

Chapter 3: Product Specification... 10
Modes of Operation.. 11
Standards... 12
Performance.. 12
Port Descriptions...13
Register Space... 17
AXI4-Stream Interface Definition.. 33

Chapter 4: Designing with the Core... 50
Clocking.. 50
Resets..50
5G New Radio Block Length...51
Interrupt... 52
Interface FIFOs.. 53
Interface Dependencies... 53
Parameter Management.. 55
LDPC Code Support...55
LDPC Code Memory Error Detection and Correction... 65
Interface Protocols..66
Throughput Limits of Interfaces... 67

Chapter 5: Design Flow Steps...69
Customizing and Generating the Core...69
Constraining the Core...81

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=2

Simulation.. 82
Synthesis and Implementation..82

Chapter 6: C Model... 85
Unpacking and Model Contents..85
Installation... 87
C Model Interface..87
MATLAB Interface..93

Chapter 7: Example Design... 95
Simulation-Only Example Design..95
Processor-Based Example Design...96

Appendix A: Upgrading... 103

Appendix B: Debugging...104
Finding Help on Xilinx.com.. 104
Debug Tools... 105
Simulation Debug..106
Hardware Debug... 108
Interface Debug.. 108

Appendix C: SD-FEC Low-Level Bare-Metal Driver....................................110
Overview...110
Data Structures..111
User API.. 113
Interrupt Handling.. 117
Examples.. 117

Appendix D: Additional Resources and Legal Notices........................... 120
Xilinx Resources...120
Documentation Navigator and Design Hubs.. 120
References..120
Revision History...121
Please Read: Important Legal Notices... 122

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=3

Chapter 1

IP Facts
The Soft-Decision Forward Error Correction (SD-FEC) Integrated Block supports Low Density
Parity Check (LDPC) decoding and encoding and turbo code decoding. The LDPC codes used are
highly configurable, and the specific code used can be specified on a codeword-by-codeword
basis. The SD-FEC Integrated Block IP core is extremely flexible, allowing many unique custom
LDPC codes to be used.

Features
The SD-FEC core is a highly flexible soft-decision FEC decoder and LDPC encoder offering the
following features:

• Function configurable between either:

○ LDPC decode or encode of customer-specified Quasi-cyclic (QC) codes, including standard
and custom, or

○ Turbo decode of codes used by LTE

• Peak throughput of the order:

○ 1.78 Gb/s turbo decode @ 6 iterations

○ 2.84 Gb/s for LDPC decode @ 8 iterations

○ 19.82 Gb/s for LDPC encode

• Scalable implementation

○ Multiple instantiations on a device (see Placement Location Guidelines for SD-FEC IP Core)

• High bandwidth AXI4-Stream interfaces

Note: Throughput depends on the codes and how they are mixed and the actual clock frequency on the
device. See Clocking for further details.

Related Information

Placement Location Guidelines for SD-FEC IP Core
Clocking

Chapter 1: IP Facts

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=4

LDPC Decoding/Encoding
• Highly configurable codes

○ A range of quasi-cyclic codes can be configured over an AXI4-Lite interface

○ Code parameter memory can be shared across up to 128 codes

○ Codes can be selected on a block-by-block basis

○ Encoder can re-use suitable decoder codes

• Normalized min-sum decoding algorithm

○ Normalization factor programmable (from 0.0625 to 1 in steps of 0.0625) for layers

• Number of iterations between 1 and 63

○ Specified for each block using the AXI4-Stream control interface

• Early termination

○ Specified for each block to be none, one, or both of the following:

- Parity check passes

- No change in hard information or parity bits since last iteration

• Soft or hard outputs

○ Specified for each block to include information and optional parity

○ 6-bit soft log-likelihood ratio (LLR) input (8-bit interface, two fractional bits, with external
saturation before input to symmetric range -7.75 to +7.75 assumed) and 8-bit output

• In- or out-of-order execution of blocks, with user specified ID field to identify blocks

• Encoder and decoder variants, with optional support for improved throughput when sub-
matrix size is small

• Optional final parity check to update parity pass/fail for final output

• Optional initialization of codes from device configuration, avoiding download using AXI4-Lite
interface

○ Support logic for 5G NR provides code generation and download to SD-FEC internal
memory during run-time and initialization

○ Support logic for non-5G provides code generation and download to SD-FEC internal
memory during initialization

Turbo Decoding
• Max, Max Scale (scale factor is programmable as a multiple of 0.0625), or Max Star

Chapter 1: IP Facts

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=5

• Number of iterations between 1 and 63

○ Specified for each block using the AXI4-Stream control interface

• Early termination

○ Specified for each block to be none, one, or both of the following:

- No change in hard decision since last iteration

- CRC pass

• Soft or hard outputs

○ Specified for each block to include systematic and optionally parity 0 and parity 1

○ 8-bit soft LLR on input and output (8-bit interface, two fractional bits, with external
saturation before input to symmetric range -31.75 to +31.75 is assumed)

Interfaces
• Separate clocks on each interface to ease integration

• Wide data interfaces on input and output with configurable support for 1, 2, or 4 lanes

• Ability to specify number of inputs and outputs on each lane on either a block-by-block basis,
or transfer basis

• Separate inputs to specify control parameters and receive status output on a block-by-block
basis

Chapter 1: IP Facts

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=6

IP Facts
LogiCORE IP Facts Table

Core Specifics

Supported Device Family1 Zynq® UltraScale+™ RFSoC

Supported User Interfaces AXI4-Lite, AXI4-Stream

Resources Performance and Resource Utilization web page

Provided with Core

Design Files Encrypted RTL

Example Design IP integrator Block Diagram

Test Bench Verilog

Constraints File Xilinx® Design Constraints (XDC)

Simulation Model System Verilog SecureIP model
C numerical model

Supported S/W Driver2 Standalone
Linux

Tested Design Flows3

Design Entry Vivado® Design Suite

Simulation For supported simulators, see the Xilinx Design Tools: Release Notes Guide

Synthesis Vivado

Support

Release Notes and Known Issues Master Answer Record: 70720

All Vivado IP Change Logs Master Vivado IP Change Logs: 72775

Xilinx Support web page

Notes:
1. For a complete list of supported devices, see the Vivado IP catalog.
2. Standalone driver details can be found in <Install Directory>/Vitis/2020.2/data/embeddedsw/XilinxProcessorIPLib/

drivers/.
• Linux: Linux OS and driver support information is available from the Linux SD-FEC Driver page.

3. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide.

Chapter 1: IP Facts

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 7Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=sd-fec.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2022.2;t=vivado+release+notes
https://www.xilinx.com/support/answers/70720.html
https://www.xilinx.com/support/answers/72775.html
https://www.xilinx.com/support
http://www.wiki.xilinx.com/SDFEC+Driver
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2022.2;t=vivado+release+notes
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=7

Chapter 2

Overview
Forward Error Correction (FEC) codes such as Low Density Parity Check (LDPC) and turbo codes
provide a means to control errors in data transmissions over unreliable or noisy communication
channels. The SD-FEC Integrated Block provides an optimized block for soft-decision decoding of
these codes. Fixed turbo codes, as used by LTE, are supported directly, whereas custom and
standardized LDPC codes are supported through the ability to specify the parity check matrix
through an AXI4-Lite bus or using the optional programmable logic (PL)-based support logic.

Applications
The SD-FEC Integrated Block is intended for use in applications requiring LTE turbo decoding or
LDPC encode/decode using QC-based codes, such as 5G wireless, DOCSIS 3.1 cable modems,
backhaul, and any other applications employing custom QC codes such as backhaul.

• 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR;
Multiplexing and channel coding (Release 15) (3GPP Std TS 38.212 V15.0.0)

• Data-Over-Cable Service Interface Specifications DOCSIS 3.1, Physical Layer Specification
(DOCSIS 3.1)

Related Information

LDPC Code Overview

Licensing and Ordering
This Xilinx® LogiCORE™ IP module is provided at no additional cost with the Xilinx Vivado®

Design Suite under the terms of the Xilinx End User License.

Registration is required to obtain the license.

Information about other Xilinx® LogiCORE™ IP modules is available at the Xilinx Intellectual
Property page. For information about pricing and availability of other Xilinx LogiCORE IP modules
and tools, contact your local Xilinx sales representative.

Chapter 2: Overview

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 8Send Feedback

https://www.3gpp.org/dynareport/38212.htm
https://apps.cablelabs.com/specification/CM-SP-PHYv3.1
https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/about/contact.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=8

France Telecom, for itself and certain other parties, claims certain intellectual property rights
covering Turbo Codes technology, and has decided to license these rights under a licensing
program called the Turbo Codes Licensing Program. Supply of this IP core does not convey a
license nor imply any right to use any Turbo Codes patents owned by France Telecom, TDF or
GET. Contact France Telecom for information about its Turbo Codes Licensing Program at the
following address: France Telecom R&D, VAT/TURBOCODES, 38, rue du Général Leclerc, 92794
Issy Moulineaux, Cedex 9, France.

Chapter 2: Overview

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=9

Chapter 3

Product Specification
A block diagram of the SD-FEC Integrated Block is shown in the following figure, which includes
the high speed clock (667 MHz) domain and the Clock Domain Crossing (CDC) blocks. Optional
Support logic is provided around the SD-FEC block to configure it; for 5G NR the optional logic
provides support for both initialization and run-time configuration and for non-5G NR it provides
support for initialization only. The optional support logic is generated using the Vivado®

Integrated Design Environment. The optional support logic and SD-FEC block are referred to as
the SD-FEC core.

Figure 1: SD-FEC Core Interfaces

Optional Support Logic
SD-FEC Block

CDC

CDC

CDC

AXI MM
Interface

I/P
Interface

LDPC Decoder/
Encoder

Configurable
Shared Memory

Sub-system
I/P

Buffer
Working

Memories
O/P

Buffer

Turbo Decoder

CDC

CDC

CDC

CTRL
32b/40b 32b

DIN_ WORDS
32b 8b

DIN
512b 128b

32b

8b

128b

O/P
Interface

STATUS

DOUT_ WORDS

DOUT

32b/40b

32b

512b

CDC

32b AXI4-Lite Slave

AXI4-Lite
Parameter Bus

(PARAM)

Turbo/LDPC Mode
Interfaces On/Off
LDPC Code Description

Up to 16 LLRs per
cycle @ 667 MHz

For Turbo up to 12 LLRs
per cycle @ 667 MHz

High Speed Clock Domain

CDC

CDC
1x, 2x, 4x Width
Conversion & Clock
Domain crossing

Clock Domain Crossing

AXI4-Stream (per sample)
AXI4-Stream (per block)
AXI4-Lite
Internal Memory Bus
(arrow shows direction of
data flow)

Key:

Parameters

X17336-112718

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=10

The SD-FEC core provides:

• Turbo Decode for LTE

• LDPC decode for a wide range of user-defined codes

• LDPC encode for a wide range of user-defined codes

The core uses AXI4 interfaces. A single AXI4-Lite memory mapped bus is used for parameters,
such as LDPC code definitions, that persist for more than one block, and AXI4-Stream interfaces
are used to provide data on a sample-by-sample basis (for example, DIN), or block-by-block basis
(for example, CTRL). These interfaces provide handshake signals in addition to data. Further
details are given in the AXI4-Stream Interface section. Data input and output buffers provide
some scope to overlap input and output with encoder/decoder operation.

As shown in the previous figure, the internals of the SD-FEC core operate off a high speed clock,
whereas the interfaces have their own clocks for ease of integration. Clock Domain Crossing
(CDC) is provided on all interfaces and the data interfaces include width conversion to maintain
high bandwidth with lower interface clock frequency. Specifically, the high speed clock domain
has a 128-bit data interface capable of carrying up to 16 8-bit LLRs per clock cycle of the core,
but the block has a 512-bit data interface, which allows up to four 128-bit samples to be time
division multiplexed onto the core interface. This number can be configured to 1, 2, or 4 (using
the AXI4-Lite interface), and if configured to 4, for example, it allows the interface clock rate to
be reduced by a factor of four relative to the core clock while maintaining maximum bandwidth.

Note: DIN_WORDS and DOUT_WORDS have a more advanced mode of operation, where the number of
elements is specified for each transfer over DIN or DOUT. This is supported by width conversion.

Related Information

AXI4-Stream Interface

Modes of Operation
The SD-FEC IP core operates in two modes, 5G New Radio (NR) and non-5G NR.

5G New Radio
In 5G NR mode, the SD-FEC IP core support logic internally handles the run-time configuration
of the LDPC code and shared LDPC code parameters. On receiving a particular code definition
through the AXI4-Stream control interface, the support logic generates LDPC code and shared
LDPC code parameters for the given LDPC code and then downloads them to the SD-FEC
internal memory. In this mode, do not write LDPC code and shared LDPC code parameters using
the AXI4-Lite interface because any writes makes the behavior unpredictable.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=11

Note: For this mode, ensure that both the CTRL (bit-0 and STATUS (bit-3) bits in the AXIS_ENABLE register
are set to 1. Writing any other value to the CTRL (bit-0) makes the behavior unpredictable.

Non-5G New Radio
This is further classified into initialized and run-time configured modes.

Run-time Configured Non-5G New Radio Mode

In this mode the core is configured at run-time using the AXI4-Lite parameter interface and the
AXI4-Stream control interface for either turbo decode or LDPC encode or decode.

Initialized Non-5G New Radio Mode

In this mode the core support logic generates initialization and configuration parameters at start
up from the options set in the Vivado® IDE for either turbo decode or LDPC encode or decode.
In this mode and for LDPC, do not write LDPC code and shared LDPC code parameters using the
AXI4-Lite parameter interface because any write can overwrite the initialized codes and make
the behavior unpredictable.

Standards
• Turbo decode required by the LTE standard is defined in:

○ 3rd Generation Partnership Project; Technical Specification Group Radio Access Network;
Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release
15) (3GPP Std TS 36.212 V15.0.1)

• LDPC codes required for the following standards are provided by the core:

○ IEEE Standard for Information technology - Local and Metropolitan area Network Standards
(IEEE Std 802.11)

○ Data-Over-Cable Service Interface Specifications DOCSIS 3.1, Physical Layer Specification
(DOCSIS 3.1)

○ 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR;
Multiplexing and channel coding (Release 15) (3GPP Std TS 38.212 V15.0.0)

Performance
For details on the clock frequency supported by a device and resource utilization, visit the
Performance and Resource Utilization web page.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 12Send Feedback

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2426
https://standards.ieee.org/findstds/standard/802.11-2012.html
https://apps.cablelabs.com/specification/CM-SP-PHYv3.1
https://www.3gpp.org/dynareport/38212.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=sd-fec.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=12

Throughput and Latency
To view the throughput and latency figures for 5G New Radio, WiFi 802.11ac, and DOCSIS 3.1,
for LDPC encoding and decoding, and the figures for turbo decoding, visit the Throughput and
Latency web page.

Related Information

LDPC Block Interleaving

BER Performance
To view the BER plots for 5G New Radio, WiFi 802.11ac, DOCSIS 3.1, for LDPC encoding and
decoding, and the BER plots for turbo decoding, visit the BER Performance web page.

Port Descriptions
The following tables shows the core pinout.

Global Core Ports
Table 1: Global Core Ports

Signal I/O Clock
Domain Description

reset_n I None Master asynchronous reset

core_clk I core_clk Main processing clock for processing core

interrupt1 O s_axi_aclk Indicates error conditions. Behavior controlled by interrupt
control registers.

Notes:
1. The interrupt pin is present if the S_AXI parameter interface is not set to Initialized or any interrupt source is enabled.

Data Input Ports (DIN)
The data input bus (DIN) is an AXI4-Stream slave interface. The data input bus uses the
s_axis_din_aclk clock.

Table 2: Data Input Ports

Port I/O
s_axis_din_aclk I

s_axis_din_tvalid I

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 13Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+pl;d=sd-fec-throughput-latency.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+pl;d=sd-fec-throughput-latency.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+pl;d=sd-fec-ber-plots.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=13

Table 2: Data Input Ports (cont'd)

Port I/O
s_axis_din_tready O

s_axis_din_tlast I

s_axis_din_tdata[128*(LANE_NUM_IN)1] I

Notes:
1. LANE_NUM_IN is the number of lanes configured using AXIS_WIDTH.DIN.

Related Information

Data Input (DIN)
Throughput Limits of Interfaces

Data Input Control Ports (DIN_WORDS)
The data input control bus (DIN_WORDS) controls the number of words on the data input bus
(DIN). It is an AXI4-Stream slave interface. The data input control bus uses the
s_axis_din_words_aclk clock. Ports associated with DIN_WORDS interface are present if
DIN_Interface is set to Unconfigured, or DIN_Interface is set to Pre-Configured and
DIN_Words_Configuration is set to Per_Block or Per_Transaction (that is, the interface is not
Fixed).

Table 3: Data Input Control Ports

Port I/O
s_axis_din_words_aclk I

s_axis_din_words_tvalid I

s_axis_din_words_tready O

s_axis_din_words_tlast I

s_axis_din_words_tdata[8*(LANE_NUM_IN)12] I

Notes:
1. Width is 8 bits when word configuration is Per Block.
2. LANE_NUM_IN is the number of lanes configured using AXIS_WIDTH.DIN.

Related Information

Data Input Control (DIN_WORDS)

Data Output Ports (DOUT)
The data output bus (DOUT) is an AXI4-Stream master interface. The data output bus uses the
m_axis_dout_aclk clock.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=14

Table 4: Data Output Ports

Port I/O
m_axis_dout_aclk I

m_axis_dout_tvalid O

m_axis_dout_tready I

m_axis_dout_tlast O

m_axis_dout_tdata[128*(LANE_NUM_OUT)1] O

Notes:
1. LANE_NUM_OUT is the number of lanes configured using AXIS_WIDTH.DOUT.

Related Information

Data Output (DOUT)
Throughput Limits of Interfaces

Data Output Control Ports (DOUT_WORDS)
The data output control port bus (DOUT_WORDS) controls the number of words on the data
output bus. It is an AXI4-Stream slave interface. The data output control port bus uses the
s_axis_dout_words_aclk clock. Ports associated with the DOUT_WORDS interface are
present if DOUT_Interface is set to Unconfigured, or DOUT_Interface is set to Pre-Configured
and DOUT_Words_Configuration is set to Per_Block or Per_Transaction (that is, the interface is
not Fixed).

Table 5: Data Output Control Ports

Port I/O
s_axis_dout_words_aclk I

s_axis_dout_words_tvalid I

s_axis_dout_words_tready O

s_axis_dout_words_tlast I

s_axis_dout_words_tdata[8*(LANE_NUM_OUT)12] I

Notes:
1. Width is 8 bits when word configuration is Per Block.
2. LANE_NUM_OUT is the number of lanes configured using AXIS_WIDTH.DOUT.

Related Information

Data Output Control (DOUT_WORDS)

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=15

Control Input Ports (CTRL)
The control input bus (CTRL) is an AXI4-Stream slave interface. The control input bus uses the
s_axis_ctrl_aclk clock. The control input provides information specific to each block. Its
definition depends on whether 5G NR standard support is selected in the Vivado® IDE.

Table 6: Control Input Ports

Port I/O
s_axis_ctrl_aclk I

s_axis_ctrl_tvalid I

s_axis_ctrl_tready O

s_axis_ctrl_tdata[32/40]1 I

Notes:
1. 40 bits if Standard is set to 5G, otherwise 32 bits.

Related Information

Control Input (CTRL)

Status Output Ports (STATUS)
The status output bus (STATUS) is an AXI4-Stream master interface. The status output bus uses
the m_axis_status_aclk clock. The status output provides information specific to each
block. Its definition depends on whether 5G NR standard support is selected in the Vivado® IDE.

Table 7: Status Output Ports

Port I/O
m_axis_status_aclk I

m_axis_status_tvalid O

m_axis_status_tready I

m_axis_status_tdata[32/40]1 O

Notes:
1. 40 bits if Standard is set to 5G, otherwise 32 bits.

Related Information

Status Output (STATUS)

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=16

Parameter Ports (PARAM)
The parameter bus is an AXI4-Lite memory-mapped slave interface. The parameter bus uses the
s_axi_aclk clock. The AXI4-Lite interface is present when Parameter_Interface is not set to
Initialized.

The parameter bus allows two outstanding transactions on the write interface, and one
outstanding transaction on the read interface. The higher number of outstanding transactions on
the write interface improves the write download throughput, allowing an LDPC code to be
updated more quickly.

Table 8: Parameter Ports

Port I/O
s_axi_aclk I

s_axi_awaddr[17:0] I

s_axi_awvalid I

s_axi_awready O

s_axi_wdata[31:0] I

s_axi_wvalid I

s_axi_wready O

s_axi_bready I

s_axi_bvalid O

s_axi_araddr[17:0] I

s_axi_arvalid I

s_axi_arready O

s_axi_rready I

s_axi_rdata[31:0] O

s_axi_rvalid O

Register Space
IMPORTANT! Registers should be programmed through a device driver (this generates correct values from
simple definitions of LDPC codes). The driver is provided by Xilinx.

The register map consists of the following types of parameters:

• Core Parameters (common to all codes)

• Turbo Code Parameters

• LDPC Code Parameters (per code)

• Shared LDPC Code Parameters

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=17

All registers start on 32-bit word aligned addresses. The two LSBs of the read and write
addresses are assumed to be zero. Register read write access restrictions are summarized in the
following sections. Further details of how code parameters might be managed are provided under
Parameter Management.

Table 9: Register Space

Address (Hex) Register Name
Core Parameters

0x00 AXI_WR_PROTECT Register

0x04 CODE_WR_PROTECT Register

0x08 ACTIVE Register

0x0C AXIS_WIDTH Register

0x10 AXIS_ENABLE Register

0x14 FEC_CODE Register

0x18 ORDER Register

0x1C Interrupt Status Register (ISR)

0x20 Interrupt Enable Register (IER)

0x24 Interrupt Disable Register (IDR)

0x28 Interrupt Mask Register (IMR)

0x2C ECC Interrupt Status Register

0x30 ECC Interrupt Enable Register

0x34 ECC Interrupt Disable Register

0x38 ECC Interrupt Mask Register

0x3C BYPASS Register

Turbo Code Parameters

0x100 Turbo Code Register

LDPC Code Parameters

0x2000+CODE*0x10 REG0 Register

0x2004+CODE*0x10 REG1 Register

0x2008+CODE*0x10 REG2 Register

0x200C+CODE*0x10 REG3 Register

Shared LDPC Code Parameters

0x10000–0x103FC SC_TABLE Register

0x18000–0x18FFC LA_TABLE Register

0x20000–0x27FFC QC_TABLE Register

Related Information

Parameter Management

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=18

Core Parameters
Readable core parameters can be read at any time when the core is out of reset.

Note: Any restrictions regarding when a core parameter can be written, are provided as table notes in the
relevant parameter tables.

AXI_WR_PROTECT Register (0x00)

Table 10: AXI_WR_PROTECT Register

Bit Default
Value Access Type Description

0 0 R/W Prevents write to all other registers.
0: Write allowed
1: Write protected

Notes:
1. For 5G mode to function properly, this register must be set to 0: Write allowed (if not already set by the Vivado® IDE)

before the first CTRL word is applied.

CODE_WR_PROTECT Register (0x04)

Table 11: CODE_WR_PROTECT Register

Bit Default
Value Access Type Description

0 0 R/W Prevents write to turbo code and LDPC code registers and shared
LDPC code tables. Both CODE_WR_PROTECT and AXI_WR_PROTECT
must be 0 to enable writes.

0: Write allowed
1: Write protected

Notes:
1. For 5G mode to function properly, this register must be set to 0: Write allowed (if not already set by the Vivado® IDE)

before the first CTRL word is applied.

ACTIVE Register (0x08)

Table 12: ACTIVE Register

Bit Default
Value Access Type Description

0 0 RO Activity of the decoder.
0: No outstanding blocks in the core
1: The core is working on a block

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=19

AXIS_WIDTH Register (0x0C)

Table 13: AXIS_WIDTH Register

Bit Default
Value Access Type Description

5 0 R/W DOUT_WORDS
0: The DOUT_WORDS input is block based. Only one value is input
per block on DOUT_WORDS, and this specifies the number of
LLRs in each 128-bit lane for a complete block (for example, a
value of 16 on DOUT_WORDS indicates that all 128 bits of each
lane of DOUT should be used).
1: The DOUT_WORDS input is supplied for each AXI transaction
on DOUT. For every AXI transaction on DOUT there must be a
corresponding transaction on DOUT_WORDS. If DOUT_WIDTH is
set to use multiple lanes, then DOUT_WORDS must provide a
value for each 128-bit lane as given in the table in LLR Output
Words (DOUT_WORDS).

4:3 0 R/W DOUT: Width conversion applied to DOUT and DOUT_WORDS data
0: 1x128b
1: 2x128b
2: 4x128b
3: Reserved

2 0 R/W DIN_WORDS
0: The DIN_WORDS input is block based. Only one value is input
per block on DIN_WORDS, and this specifies the number of LLRs
in each 128-bit lane for a complete block (for example, a value of
16 on DIN_WORDS indicates that all 128 bits of each lane of DIN
should be used).
1: The DIN_WORDS input is supplied for each AXI transaction on
DIN. For every AXI transaction on DIN there must be a
corresponding transaction on DIN_WORDS. If DIN_WIDTH is set
to use multiple lanes, then DIN_WORDS must provide a value for
each 128-bit lane as given in the table in Data Input Control AXI4-
Stream Slave (DIN_WORDS).

1:0 0 R/W DIN: Width conversion applied to DIN and DIN_WORDS data
0: 128b
1: 2x128b
2: 4x128b
3: Reserved

Notes:
1. This register should only be changed after reset when the interfaces are disabled.

Related Information

Data Output Control (DOUT_WORDS)
Data Input Control (DIN_WORDS)

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=20

AXIS_ENABLE Register (0x10)

Table 14: AXIS_ENABLE Register

Bit Default
Value Access Type Description

5 0 R/W DOUT_WORDS: Deasserts ready out and valid internally on
DOUT_WORDS to disable input.

0: Disabled
1: Enabled

4 0 R/W DOUT: Deasserts valid out and ready internally on DOUT to disable
output.

0: Disabled
1: Enabled

3 0 R/W STATUS1: Deasserts valid out and ready internally on STATUS to
disable output.

0: Disabled
1: Enabled

2 0 R/W DIN_WORDS: Deasserts ready out and valid internally on
DIN_WORDS to disable input.

0: Disabled
1: Enabled

1 0 R/W DIN: Deasserts ready out and valid internally on DIN to disable input.
0: Disabled
1: Enabled

0 0 R/W CTRL2: Deasserts ready out and valid internally on CTRL to disable
input.

0: Disabled
1: Enabled

Notes:
1. For 5G mode to function properly, STATUS must be set to Enabled (if not already set by the Vivado® IDE) before the

first CTRL word is applied.
2. For 5G mode to function properly, CTRL must be set to Enabled (if not already set by the Vivado IDE) before the first

CTRL word is applied.

FEC_CODE Register (0x14)

Table 15: FEC_CODE Register

Bit Default
Value Access Type Description

0 0 R/W FEC code to be used
0: Turbo code
1: LDPC code

Notes:
1. This register should only be changed when the core is not active (ACTIVE is 0).

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=21

ORDER Register (0x18)

Table 16: ORDER Register

Bit Default
Value Access Type Description

0 0 R/W Specifies whether the order of blocks can change from input to
output

0: Maintain order
1: Out-of-order

Notes:
1. This register should only be changed when the core is not active (ACTIVE is 0).

Interrupt Status Register (ISR) (0x1C)

Table 17: Interrupt Status Register

Bit1 Default
Value Access Type Description

5 0 R/W DOUT_WORDS tlast unexpected

4 0 R/W DOUT_WORDS tlast missing

3 0 R/W DIN_WORDS tlast unexpected

2 0 R/W DIN_WORDS tlast missing

1 0 R/W DIN tlast unexpected

0 0 R/W DIN tlast missing

Notes:
1. Write 1 to respective bit to clear.
2. This register reflects the raw interrupt status and is not masked by the IMR.

Interrupt Enable Register (IER) (0x20)

Table 18: Interrupt Enable Register

Bit1 Default
Value Access Type Description

5 0 WO DOUT_WORDS tlast unexpected

4 0 WO DOUT_WORDS tlast missing

3 0 WO DIN_WORDS tlast unexpected

2 0 WO DIN_WORDS tlast missing

1 0 WO DIN tlast unexpected

0 0 WO DIN tlast missing

Notes:
1. Read 0. Write 1 to respective bit to enable interrupt (respective bit of IMR is set to 0). Write 0 ignored.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=22

Interrupt Disable Register (IDR) (0x24)

Table 19: Interrupt Disable Register

Bit1 Default
Value Access Type Description

5 0 WO DOUT_WORDS tlast unexpected

4 0 WO DOUT_WORDS tlast missing

3 0 WO DIN_WORDS tlast unexpected

2 0 WO DIN_WORDS tlast missing

1 0 WO DIN tlast unexpected

0 0 WO DIN tlast missing

Notes:
1. Read 0. Write 1 to respective bit to disable interrupt (respective bit of IMR is set to 1). Write 0 ignored.

Interrupt Mask Register (IMR) (0x28)

Table 20: Interrupt Mask Register

Bit Default
Value Access Type Description

5 1 RO DOUT_WORDS tlast unexpected

4 1 RO DOUT_WORDS tlast missing

3 1 RO DIN_WORDS tlast unexpected

2 1 RO DIN_WORDS tlast missing

1 1 RO DIN tlast unexpected

0 1 RO DIN tlast missing

Notes:
1. If mask bit is set, then interrupt is masked, that is, it does not cause the interrupt pin to go High.

ECC Interrupt Status Register (0x2C)

Table 21: ECC Interrupt Status Register

Bit1 Default
Value Access Type Description2

29 0 R/W LDPC REF NM_NMQC Table ECC two-bit error (5G NR mode)/ LDPC
CODE REG ECC two-bit error (Initialized non-5G mode)3,4

28 0 R/W LDPC REF QC Table ECC two-bit error3,4

27 0 R/W LDPC REF LA Table ECC two-bit error3,4

26 0 R/W LDPC REF SC Table ECC two-bit error3,4

25 0 R/W LDPC REF NM_NMQC Table ECC event (5G NR mode)/ LDPC CODE
REG ECC event (Initialized non-5G mode)3,5

24 0 R/W LDPC REF QC Table ECC event3

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=23

Table 21: ECC Interrupt Status Register (cont'd)

Bit1 Default
Value Access Type Description2

23 0 R/W LDPC REF LA Table ECC event3

22 0 R/W LDPC REF SC Table ECC event3

21 0 R/W LDPC final parity calc memory ECC two-bit error4

20 0 R/W LDPC QC_TABLE memory 3 ECC two-bit error4

19 0 R/W LDPC QC_TABLE memory 2 ECC two-bit error4

18 0 R/W LDPC QC_TABLE memory 1 ECC two-bit error4

17 0 R/W LDPC QC_TABLE memory 0 ECC two-bit error4

16 0 R/W LDPC LA_TABLE memory ECC two-bit error4

15 0 R/W LDPC SC_TABLE memory ECC two-bit error4

14 0 R/W LDPC code REG3 memory ECC two-bit error4

13 0 R/W LDPC code REG2 memory ECC two-bit error4

12 0 R/W LDPC code REG1 memory ECC two-bit error4

11 0 R/W LDPC code REG0 memory ECC two-bit error4

10 0 R/W LDPC final parity calc memory ECC event5

9 0 R/W LDPC QC_TABLE memory 3 ECC event

8 0 R/W LDPC QC_TABLE memory 2 ECC event

7 0 R/W LDPC QC_TABLE memory 1 ECC event

6 0 R/W LDPC QC_TABLE memory 0 ECC event

5 0 R/W LDPC LA_TABLE memory ECC event

4 0 R/W LDPC SC_TABLE memory ECC event

3 0 R/W LDPC code REG3 memory ECC event

2 0 R/W LDPC code REG2 memory ECC event

1 0 R/W LDPC code REG1 memory ECC event

0 0 R/W LDPC code REG0 memory ECC event

Notes:
1. Write 1 to respective bit to clear.
2. This register reflects the raw interrupt status and is not masked by the IMR.
3. These memories exist in the SD-FEC support logic in 5G NR and initialized non-5G modes.
4. The ECC two-bit error register is set when two errors are detected in a word read from the respective memory. It can

also be set when the number of errors in a word is greater than two—however, this is not guaranteed. Uncorrected
multi-bit errors can result in incorrect core behavior.

5. An ECC event is when one or more errors have been detected in a word read from the respective memory. If present
without an ECC two-bit error then only a single error has been detected, which has been corrected.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=24

ECC Interrupt Enable Register (0x30)

Table 22: ECC Interrupt Enable Register

Bit1 Default
Value Access Type Description

29 0 WO LDPC REF NM_NMQC Table ECC two-bit error (5G NR mode)/ LDPC
CODE REG ECC two-bit error (Initialized non-5G mode)2,3

28 0 WO LDPC REF QC Table ECC two-bit error2,3

27 0 WO LDPC REF LA Table ECC two-bit error2,3

26 0 WO LDPC REF SC Table ECC two-bit error2,3

25 0 WO LDPC REF NM_NMQC Table ECC event (5G NR mode)/ LDPC CODE
REG ECC event (Initialized non-5G mode)2,3

24 0 WO LDPC REF QC Table ECC event2

23 0 WO LDPC REF LA Table ECC event2

22 0 WO LDPC REF SC Table ECC event2

21 0 WO LDPC final parity calc memory ECC two-bit error3

20 0 WO LDPC QC_TABLE memory 3 ECC two-bit error3

19 0 WO LDPC QC_TABLE memory 2 ECC two-bit error3

18 0 WO LDPC QC_TABLE memory 1 ECC two-bit error3

17 0 WO LDPC QC_TABLE memory 0 ECC two-bit error3

16 0 WO LDPC LA_TABLE memory ECC two-bit error3

15 0 WO LDPC SC_TABLE memory ECC two-bit error3

14 0 WO LDPC code REG3 memory ECC two-bit error3

13 0 WO LDPC code REG2 memory ECC two-bit error3

12 0 WO LDPC code REG1 memory ECC two-bit error3

11 0 WO LDPC code REG0 memory ECC two-bit error3

10 0 WO LDPC final parity calc memory ECC event4

9 0 WO LDPC QC_TABLE memory 3 ECC event

8 0 WO LDPC QC_TABLE memory 2 ECC event

7 0 WO LDPC QC_TABLE memory 1 ECC event

6 0 WO LDPC QC_TABLE memory 0 ECC event

5 0 WO LDPC LA_TABLE memory ECC event

4 0 WO LDPC SC_TABLE memory ECC event

3 0 WO LDPC code REG3 memory ECC event

2 0 WO LDPC code REG2 memory ECC event

1 0 WO LDPC code REG1 memory ECC event

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=25

Table 22: ECC Interrupt Enable Register (cont'd)

Bit1 Default
Value Access Type Description

0 0 WO LDPC code REG0 memory ECC event

Notes:
1. Read 0. Write 1 to respective bit to enable interrupt (respective bit of ECC Interrupt Mask register is set to 0). Write 0

ignored.
2. These memories exist in the SD-FEC support logic in 5G NR and initialized non-5G modes.
3. The ECC two-bit error register is set when two errors are detected in a word read from the respective memory. It can

also be set when the number of errors in a word is greater than two—however, this is not guaranteed. Uncorrected
multi-bit errors can result in incorrect core behavior. A core reset is recommended, followed by re-programming of
the LDPC code parameters.

4. An ECC event is when one or more errors have been detected in a word read from the respective memory. If present
without an ECC two-bit error then only a single error has been detected, which has been corrected. To avoid this
potentially becoming an uncorrectable two-bit error at a later time the memory contents should be refreshed.

ECC Interrupt Disable Register (0x34)

Table 23: ECC Interrupt Disable Register

Bit1 Default
Value Access Type Description

29 0 WO LDPC REF NM_NMQC Table ECC two-bit error (5G NR mode)/ LDPC
CODE REG ECC two-bit error (Initialized non-5G mode)2,3

28 0 WO LDPC REF QC Table ECC two-bit error2,3

27 0 WO LDPC REF LA Table ECC two-bit error2,3

26 0 WO LDPC REF SC Table ECC two-bit error2,3

25 0 WO LDPC REF NM_NMQC Table ECC event (5G NR mode)/ LDPC CODE
REG ECC event (Initialized non-5G mode)2,4

24 0 WO LDPC REF QC Table ECC event2

23 0 WO LDPC REF LA Table ECC event2

22 0 WO LDPC REF SC Table ECC event2

21 0 WO LDPC final parity calc memory ECC two-bit error3

20 0 WO LDPC QC_TABLE memory 3 ECC two-bit error3

19 0 WO LDPC QC_TABLE memory 2 ECC two-bit error3

18 0 WO LDPC QC_TABLE memory 1 ECC two-bit error3

17 0 WO LDPC QC_TABLE memory 0 ECC two-bit error3

16 0 WO LDPC LA_TABLE memory ECC two-bit error3

15 0 WO LDPC SC_TABLE memory ECC two-bit error3

14 0 WO LDPC code REG3 memory ECC two-bit error3

13 0 WO LDPC code REG2 memory ECC two-bit error3

12 0 WO LDPC code REG1 memory ECC two-bit error3

11 0 WO LDPC code REG0 memory ECC two-bit error3

10 0 WO LDPC final parity calc memory ECC event4

9 0 WO LDPC QC_TABLE memory 3 ECC event

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=26

Table 23: ECC Interrupt Disable Register (cont'd)

Bit1 Default
Value Access Type Description

8 0 WO LDPC QC_TABLE memory 2 ECC event

7 0 WO LDPC QC_TABLE memory 1 ECC event

6 0 WO LDPC QC_TABLE memory 0 ECC event

5 0 WO LDPC LA_TABLE memory ECC event

4 0 WO LDPC SC_TABLE memory ECC event

3 0 WO LDPC code REG3 memory ECC event

2 0 WO LDPC code REG2 memory ECC event

1 0 WO LDPC code REG1 memory ECC event

0 0 WO LDPC code REG0 memory ECC event

Notes:
1. Read 0. Write 1 to respective bit to disable interrupt (respective bit of ECC Interrupt Mask register is set to 1). Write 0

ignored.
2. These memories exist in the SD-FEC support logic in 5G NR and initialized non-5G modes.
3. The ECC two-bit error register is set when two errors are detected in a word read from the respective memory. It can

also be set when the number of errors in a word is greater than two—however, this is not guaranteed. Uncorrected
multi-bit errors can result in incorrect core behavior. A core reset is recommended, followed by re-programming of
the LDPC code parameters.

4. An ECC event is when one or more errors have been detected in a word read from the respective memory. If present
without an ECC two-bit error then only a single error has been detected, which has been corrected. To avoid this
potentially becoming an uncorrectable two-bit error at a later time the memory contents should be refreshed.

ECC Interrupt Mask Register (0x38)

Table 24: ECC Interrupt Mask Register

Bit1 Default
Value Access Type Description

29 0 RO LDPC REF NM_NMQC Table ECC two-bit error (5G NR mode)/ LDPC
CODE REG ECC two-bit error (Initialized non-5G mode)2,3

28 0 RO LDPC REF QC Table ECC two-bit error2,3

27 0 RO LDPC REF LA Table ECC two-bit error2,3

26 0 RO LDPC REF SC Table ECC two-bit error2,3

25 0 RO LDPC REF NM_NMQC Table ECC event (5G NR mode)/ LDPC CODE
REG ECC event (Initialized non-5G mode)2,4

24 0 RO LDPC REF QC Table ECC event2

23 0 RO LDPC REF LA Table ECC event2

22 0 RO LDPC REF SC Table ECC event2

21 1 RO LDPC final parity calc memory ECC two-bit error3

20 1 RO LDPC QC_TABLE memory 3 ECC two-bit error3

19 1 RO LDPC QC_TABLE memory 2 ECC two-bit error3

18 1 RO LDPC QC_TABLE memory 1 ECC two-bit error3

17 1 RO LDPC QC_TABLE memory 0 ECC two-bit error3

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=27

Table 24: ECC Interrupt Mask Register (cont'd)

Bit1 Default
Value Access Type Description

16 1 RO LDPC LA_TABLE memory ECC two-bit error3

15 1 RO LDPC SC_TABLE memory ECC two-bit error3

14 1 RO LDPC code REG3 memory ECC two-bit error3

13 1 RO LDPC code REG2 memory ECC two-bit error3

12 1 RO LDPC code REG1 memory ECC two-bit error3

11 1 RO LDPC code REG0 memory ECC two-bit error3

10 1 RO LDPC final parity calc memory ECC event4

9 1 RO LDPC QC_TABLE memory 3 ECC event

8 1 RO LDPC QC_TABLE memory 2 ECC event

7 1 RO LDPC QC_TABLE memory 1 ECC event

6 1 RO LDPC QC_TABLE memory 0 ECC event

5 1 RO LDPC LA_TABLE memory ECC event

4 1 RO LDPC SC_TABLE memory ECC event

3 1 RO LDPC code REG3 memory ECC event

2 1 RO LDPC code REG2 memory ECC event

1 1 RO LDPC code REG1 memory ECC event

0 1 RO LDPC code REG0 memory ECC event

Notes:
1. If mask bit is set, then interrupt is masked, that is, it does not cause the interrupt pin to go High.
2. These memories exist in the SD-FEC support logic in 5G NR and initialized non-5G modes.
3. The ECC two-bit error register is set when two errors are detected in a word read from the respective memory. It can

also be set when the number of errors in a word is greater than two—however, this is not guaranteed. Uncorrected
multi-bit errors can result in incorrect core behavior. A core reset is recommended, followed by re-programming of
the LDPC code parameters.

4. An ECC event is when one or more errors have been detected in a word read from the respective memory. If present
without an ECC two-bit error then only a single error has been detected, which has been corrected. To avoid this
potentially becoming an uncorrectable two-bit error at a later time the memory contents should be refreshed.

BYPASS Register (0x3C)

Table 25: BYPASS Register

Bit Default
Value Access Type Description

0 0 R/W Perform function with given number of iterations (early termination
not supported, so associated termination bits must be set to zero in
CTRL input while BYPASS is set), but output is same as input (minus
tail bits for turbo decode) accounting for any soft to hard conversion.
Parity pass/CRC flag is based on input values:

0: Normal operation
1: Output same as input

Notes:
1. This register should only be changed when the core is not active (ACTIVE is 0).

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=28

Turbo Code Parameters Register (0x100)
If the core is out of reset, turbo code parameters can be read at any time. Turbo code parameters
should only be updated when the core is not active (ACTIVE is 0).

Table 26: Turbo Code Register

Bit Default
Value Access Type Description

11:8 0xC R/W SCALE_FACTOR
0: Scale=1
1-15: Scale = 0.0625*SCALE_FACTOR

0 0 R/W ALG: Turbo Decode Algorithm
0: Max_scale
1: Max star

LDPC Code Parameters
IMPORTANT! Do not update the LDPC code parameters in 5G mode.

The LDPC code parameters can be written at any time; however registers should not be written
that are associated with a code which is being processed by the engine (otherwise the behavior is
unpredictable, and lockup might result, requiring a reset). The LDPC code parameters can only be
read while the core is not active (ACTIVE=0); otherwise 0 is returned. Settings for the LDPC code
parameters and shared tables are provided in the Vivado® IDE core configuration for a particular
code definition. These registers must be provided for each code where the code register is
derived using CODE, which takes a value 0 to 127. The code definition to be used is supplied for
a block through the CTRL interface.

REG0 Register (0x2000+CODE*0x10)

Table 27: REG0 Register

Bit Access Type Description
30:16 R/W K: Number of information bits.

2 ≤ K ≤ 32766, multiples of P. Also K ≤ 256 × P.

15:0 R/W N: Number of codeword bits.
4 ≤ N ≤ 32768 multiples of P. Also N ≤ 256 × P and N>K.

Notes:
1. See Non-5G Control Interface Definition for LDPC Decode and Encode for CODE definition.
2. Setting invalid parameter values results in an interrupt and otherwise undefined behavior, requiring a reset to

recover.
3. The default value is undefined.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=29

Related Information

Non-5G NR Control Interface Definition for LDPC Decode
Non-5G NR Control Interface Definition for LDPC Encode

REG1 Register (0x2004+CODE*0x10)

Table 28: REG1 Register

Bit Access Type Description
19:11 R/W NM: Specifies internal soft-data memory requirements of codeword. Parameter

set by the Vivado® IDE for the given code definition.

10 R/W NO_PACKING: Determines whether multiple QC operations should be performed
in the same clock cycle.

0: Pack multiple QC operations when P allows.
1: Do not pack multiple QC operations. If Packing is not enabled in the Vivado
IDE, then NO_PACKING is internally overridden to be 1.

9:0 R/W P: Size of sub-matrix
Range: 2 ≤ P ≤ 512

Notes:
1. See Non-5G Control Interface Definition for LDPC Decode and Encode for CODE definition.
2. Setting invalid parameter values results in incorrect operation, requiring a reset to recover.
3. The default value is undefined.

Related Information

Non-5G NR Control Interface Definition for LDPC Decode
Non-5G NR Control Interface Definition for LDPC Encode

REG2 Register (0x2008+CODE*0x10)

Table 29: REG2 Register

Bit Access Type Description
23:24 R/W MAX_SCHEDULE: Maximum number of blocks that can be interleaved by the

LDPC encoder or decoder while code is active.
Range: 0 ≤ MAX_SCHEDULE ≤ 3.
0 = Default scheduling behavior.

See LDPC Block Interleaving for details.

22 R/W NO_FINAL_PARITY_CHECK: For decode, a parity check can be performed on the
result when the specified maximum iterations is reached to establish if the final
iteration resulted in a pass or fail. Adds some latency to the status output (data
output can be obtained as soon as decode completed).

0: Perform final parity check
1: Do not perform final parity check. If the output parity check is disabled in
the Vivado® IDE, then NO_FINAL_PARITY_CHECK is internally overridden to be
0.

21 R/W SPECIAL_QC: Required when circulant weight is greater than 1 in a decode
operation. Parameter set by the Vivado IDE for the given code definition.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=30

Table 29: REG2 Register (cont'd)

Bit Access Type Description
20 R/W NORM_TYPE: Normalization required

0: Normalize by 1
1: Row normalization

See LDPC Code Support for details.

19:9 R/W NMQC: Specifies internal soft-data memory requirements of codeword.
Parameter set by the Vivado IDE for the given code definition.

8:0 R/W NLAYERS: Number of layers in code
Range: 1 ≤ NLAYERS ≤ 256

Notes:
1. See Non-5G Control Interface Definition for LDPC Decode and Encode for CODE definition.
2. Setting invalid parameter values results in incorrect operation, requiring a reset to recover.
3. The default value is undefined.

Related Information

LDPC Code Support
Non-5G NR Control Interface Definition for LDPC Decode
Non-5G NR Control Interface Definition for LDPC Encode
LDPC Block Interleaving

REG3 Register (0x200C+CODE*0x10)

Table 30: REG3 Register

Bit Access Type Description
26:16 R/W QC_OFF: QC_TABLE entry offset. QC_TABLE offset address= QC_OFF*16.

15:8 R/W LA_OFF: LA_TABLE entry offset. LA_TABLE offset address= LA_OFF*16.

7:0 R/W SC_OFF: SC_TABLE entry offset. SC_TABLE offset byte address = SC_OFF*4.

Notes:
1. See Non-5G Control Interface Definition for LDPC Decode and Encode for CODE definition.
2. Setting invalid parameter values results in incorrect operation, requiring a reset to recover.
3. The default value is undefined.

Related Information

Non-5G NR Control Interface Definition for LDPC Decode
Non-5G NR Control Interface Definition for LDPC Encode

Shared LDPC Code Parameters
IMPORTANT! Do not update the shared LDPC code parameters in 5G mode.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=31

The SC_TABLE, the LA_TABLE, and the QC_TABLE registers are shared between LDPC codes.
The offset pointers defined under the per-code parameters provide the start address of the
required LDPC code information. The number of entries in the table required by a code depends
on the other per-code parameters. The table addresses wrap (that is, a code can start at the top
of a table and continue at the start address of each table).

Shared LDPC code parameters not in use by a code can be written. Writing to parameters in use
can lead to unpredictable behavior, such as lock-up, requiring a reset to recover. The shared
LDPC code parameters can only be read while the core is inactive (ACTIVE=0), otherwise 0 is
returned.

SC_TABLE Register (0x10000-0x103FC)

The following table shows the normalization factors for the LDPC code.

Table 31: SC_TABLE Register

Bit Access Type Description
15:0 R/W Four packed 4-bit scale factors - one per layer.

See LDPC Code Support for details.

Notes:
1. Read only possible while core is inactive (ACTIVE=0).
2. The default value is undefined.

Related Information

LDPC Code Support

LA_TABLE Register (0x18000-0x18FFC)

The following table shows the parameters relating to each layer of the code.

Table 32: LA_TABLE Register

Bit Access Type Description
15:8 R/W Number of cycles to wait at start of layer to enforce data dependences.

Parameter set by the Vivado® IDE for the given code definition.

7 R/W Employed when circulant weight is greater than 1 in a decode operation.
Parameter set by the Vivado IDE for the given code definition.

6:0 R/W Number of cycles per layer minus 1. Parameter set by the Vivado IDE for the
given code definition. Depends upon packing factor (and so associated PSIZE).

Notes:
1. Read only possible while core is inactive (ACTIVE=0).
2. The default value is undefined.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=32

QC_TABLE Register (0x20000–0x27FFC)

The following table shows the table of parameters holding the LDPC circulants for a base matrix.

Table 33: QC_TABLE Register

Bit Access
Type Description

18:18 R/W Flag to indicate that operation applies to parity bits (used by encoder)

17:17 R/W Flag to indicate first use of associated column

PSIZE > 128 Bit PSIZE ≤ 128 (Provided NO_PACKING is 0)

16:8 R/W Rotation 16 Indicates a no-operation when packed.

15 If encode: last operation in layer.If decode: last
circulant in sub-matrix. (only used when SPECIAL_QC
is 1)

14:8 Rotation

7:0 R/W Column of base matrix

Notes:
1. Read only possible while core is inactive (ACTIVE=0).
2. The default value is undefined.

AXI4-Stream Interface Definition
Soft Value Representation for DIN and DOUT
For both turbo and LDPC decode, the soft value log-likelihood ratio is defined as:

As a consequence, negative LLR values are interpreted as hard binary value 0. Positive values
(and 0) are interpreted as hard binary value 1.

Data Input (DIN)
• The DIN data input stream consists of four 128-bit lanes. The number of lanes used depends

upon the setting of the AXIS_WIDTH.DIN parameter.

• Either bytes of soft value LLR (decode operation), or bytes of hard bits (encode operation) are
transferred over DIN.

• Blocks are transferred over one or more cycles, starting with the least significant LLRs or hard
bits.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=33

• The number of bytes (LLRs or hard bits) transferred over DIN on each cycle is given by the
DIN_WORDS input. See Data Input Control AXI4-Stream Slave (DIN_WORDS) for details on
how DIN_WORDS is used.

For example, if a symbol demapper is generating a number of LLR values associated with a
particular level of modulation, it is possible to adjust the input to accommodate this. By
ensuring that each lane is controlled similarly, it allows parallel symbol demappers to be
accommodated by each lane.

• Data words are transferred in the least significant bytes of each DIN lane. For example, if
DIN_WORDS specifies that two bytes are transferred in lane 0, then these bytes are llr(0) and
llr(1) (bits 7:0 and 15:8).

• Each transfer can only contain one block; a block must complete before the next can start.
This might require the final transfer of a block to have one or more of the higher lane sizes set
to 0 or one of the lane values to be reduced. The core enforces this internally, overriding the
DIN_WORDS input to ensure that the block completes, so that the next block input can start
on lane 0 of the next AXI4-Stream transaction.

Related Information

Data Input Control (DIN_WORDS)

Soft Value Input for LDPC and Turbo Decode

If the operation is decode, the information on the DIN input stream is soft value LLRs as
described in the following table.

Note: The LLR input for LDPC decode is assumed to be externally symmetrically saturated to 6 bits (not 8
bits as for turbo decode). If this is not done, there might be significant performance degradation. For
further details on scaling in LDPC decode see Normalization.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=34

Table 34: Soft Value LLR Input AXI4-Stream Slave (DIN) Interface Definition

Bit Width for Each
AXIS_WIDTH.DIN Setting Field Bits Context Range1 Description
2 (4x) 1 (2x) 0 (1x)
512b 256b 128b llr(0) 7:0 TURBO -31.75 to 31.75 Systematic LLR, two fractional

bits, externally saturated to
given range.

LDPC -7.75 to 7.75 LLR, two fractional bits,
externally saturated to given
range.

llr(1) 15:8 TURBO -31.75 to 31.75 Parity LLR, two fractional bits.

LDPC -7.75 to 7.75 LLR, two fractional bits,
externally saturated to given
range.

llr(2) 23:16 TURBO -31.75 to 31.75 Parity Interleaved LLR, two
fractional bits.

LDPC -7.75 to 7.75 LLR, two fractional bits,
externally saturated to given
range.

llr(3) 31:24 TURBO -31.75 to 31.75 Systematic LLR, two fractional
bits.

LDPC -7.75 to 7.75 LLR, two fractional bits,
externally saturated to given
range.

llr(4) 39:32 TURBO -31.75 to 31.75 Parity LLR, two fractional bits.

LDPC -7.75 to 7.75 LLR, two fractional bits,
externally saturated to given
range.

llr(5) 47:40 TURBO -31.75 to 31.75 Parity Interleaved LLR, two
fractional bits.

LDPC -7.75 to 7.75 LLR, two fractional bits,
externally saturated to given
range.

...

llr(15) 127:120

Unused llr(16) 135:128

llr(31) 255:248

Unused llr(32) 263:256

llr(63) 511:504

Notes:
1. The LLR range depends on the scaling applied to the LLR prior to input. This range can be tuned to provide improved

performance within the system, and two fractional bits should be viewed simply as the default. See Normalization for
more information on scaling when performing LDPC Decode.

Related Information

Normalization

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=35

Example Soft Value Mapping for LDPC Decode Input

The following table provides an example for the case of LDPC decoder of how a 5-bit integer
range of input is mapped to the soft value (that is, no fractional bits). Note that inputs that are
out of range have been saturated (symmetrically).

Table 35: Example Soft Value Mapping for LDPC Decode Input

Original
Value

Original 5-bit Twos
Complement Integer

Representation
DIN

Value DIN input Comment

+15.0 01111 +7.75 00011111 Sign extended and saturated

...

+8.0 01000 +7.75 00011111 Sign extended and saturated

+7.0 00111 +7.0 00011100 Sign extended

+6.0 00110 +6.0 00011000 Sign extended

...

0.0 00000 0.0 00000000 Sign extended

...

-6.0 11010 -6.0 11101000 Sign extended

-7.0 11001 -7.0 11100100 Sign extended

-8.0 11000 -7.75 11100001 Sign extended and saturated
(symmetrically)

...

-15.0 10001 -7.75 11100001 Sign extended and saturated
(symmetrically)

Note that values in the previous table assume a direct mapping without scaling. Better
performance might be achieved by scaling the input by a value less than 1 to reduce or
completely avoid saturation. System simulations should be performed to determine the best use
of input range for a particular code, channel and symbol mapping. Also, adjustment of the
normalization factor might improve performance (where 0.75 is a good starting point).

When LLR input is for turbo decode, then LLRs for Systematic, Parity and Parity Interleaved are
provided interleaved for the K inputs, followed by 12 tail bits as shown in the following table.

Table 36: Turbo Decode LLR Tail Bits

Item Value
0 Systematic LLR (0)

1 Parity LLR (0)

2 Parity Interleaved LLR (0)

... ...

3K-3 Systematic LLR (K-1)

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=36

Table 36: Turbo Decode LLR Tail Bits (cont'd)

Item Value
3K-2 Parity LLR (K-1)

3K-1 Parity Interleaved LLR (K-1)

3K Systematic (K)

3K+1 Parity LLR LLR (K)

3K+2 Systematic LLR (K+1)

3K+3 Parity LLR (K+1)

3K+4 Systematic LLR (K+2)

3K+5 Parity LLR (K+2)

3K+6 Systematic Interleaved LLR (K)

3K+7 Parity Interleaved LLR (K)

3K+8 Systematic Interleaved LLR (K+1)

3K+9 Parity Interleaved LLR (K+1)

3K+10 Systematic Interleaved LLR (K+2)

3K+11 Parity Interleaved LLR (K+2)

Hard Input for LDPC Encode

When encoding, only hard data is input. This is provided in bytes, with up to 64 bytes transferred
per cycle depending on the setting of the AXIS_WIDTH.DIN parameter.

Table 37: LLR Input AXI4-Stream Slave (DIN) Interface Definition for Hard Bits

Bit Width for Each
AXIS_WIDTH.DIN Setting Field Bits Description

4x 2x 1x
512b 256b 128b hbyte(0) 7:0 Bits m(7:0) to be encoded

...

hbyte(15) 127:120 Bits m(127:120) to be encoded

Unused hbyte(31:16) 255:128 Bits m(255:128) to be encoded

Unused hbyte(63:32) 511:256 Bits m(511:256) to be encoded

Only the information bits (which consists of K bits) must be provided. To aid integration, the
TLAST input for this interface should be driven with a 1 for the last transfer of a block. This input
is not used for synchronization of the input, but it is checked and an interrupt is available to
signal inconsistencies.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=37

Data Input Control (DIN_WORDS)
If the AXIS_WIDTH register setting for DIN_WORDS is 0, then the DIN_WORDS input takes one
value per block, and this specifies the number of LLR values transferred in all lanes of the DIN
input (there is only one value that applies to all lanes). If the AXIS_WIDTH register setting for
each transfer is 1, then the number of bytes transferred per cycle on DIN is specified by
DIN_WORDS. To aid integration, the TLAST input for this interface should be driven with a 1 for
the last transfer of a block. This input is not used to synchronize the input, but it is checked and
an interrupt is available to signal inconsistencies.

Note: If DIN_WORDS is 0, then there is only one transfer per block and so it is expected that TLAST is
driven High on each transfer on this stream.

If the data input interface is configured for soft input (that is, a decode operation is being
performed), then the LLR input words (DIN_WORDS) stream specifies the number of LLR values in
the respective lane of input.

If DIN is configured for hard input (that is, an LDPC encode operation is being performed), then
DIN_WORDS specifies the number of bytes of hard bits transferred per cycle. In both cases, data
bytes in DIN lanes are always in the least significant bytes of the DIN lane, for example, if two
bytes of soft or hard bits are provided in lane 0, they are in bits 7:0 and 15:8.

DIN_WORDS is internally overridden to ensure that multiple blocks do not straddle a transaction
on DIN, and the final transaction is shortened, if necessary, by reducing the bytes transferred. For
example, if the AXIS_WIDTH.DIN_WORDS setting is 0, such that a single value is used over the
whole block, if the block is not a multiple of the DIN_WORDS value, then the last transfer is
reduced to match the actual block size. Similarly, if four lanes are in use, and DIN_WORDS is 8, 4,
2, 1 on the respective lanes 0 to 3, and there are 13 words remaining, then 8 and 4 words are
transferred on lanes 0 and 1, and one word on lane 2 and zero words on lane 3. As such it is
possible to keep DIN_WORDS constant over a block even if the block length is not a multiple of
DIN_WORDS.

Table 38: LLR Input AXI4-Stream Slave (DIN_WORDS) Interface Definition

AXIS_WIDTH.
DIN_WORDS

Setting

Bit Width for Each
AXIS_WIDTH.DIN Setting Field Bits Range Description
4x 2x 1x

0 8b 8b 8b words 7:0 0-16 Number of input data
words in din(127...0)

Unused Number of input data
words in din(255...128)

Unused Number of input data
words in din(383...256)

Number of input data
words in din(511...384)

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=38

Table 38: LLR Input AXI4-Stream Slave (DIN_WORDS) Interface Definition (cont'd)

AXIS_WIDTH.
DIN_WORDS

Setting

Bit Width for Each
AXIS_WIDTH.DIN Setting Field Bits Range Description
4x 2x 1x

1 32b 16b 8b words(0) 7:0 0-16 Number of input data
words in din(127...0)

Unused words (1) 15:8 0-16 Number of input data
words in din(255...128)

Unused words (2) 23:16 0-16 Number of input data
words in din(383...256)

words (3) 31:24 0-16 Number of input data
words in din(511...384)

Related Information

AXIS_WIDTH Register (0x0C)

Data Output (DOUT)
• The DOUT data output stream consists of four 128-bit lanes. The number of lanes depends on

the setting of the AXIS_WIDTH.DOUT parameter.

• When decoding, either bytes of LLR or bytes of hard bits are transferred over DOUT,
depending on the hard_op setting in the input to CTRL for the associated block. When
encoding, only hard data is transferred over DOUT, and there is no hard_op setting in the input
CTRL.

• Blocks are transferred over one or more cycles, starting with the least significant LLR or hard
bits first.

• The number of bytes transferred over DOUT on each cycle is given by the DOUT_WORDS input
stream. See LLR Output Words (DOUT_WORDS) for details on how DOUT_WORDS is used.

• Data bytes are transferred in the least significant bytes of each DOUT lane. For example, if
DOUT_WORDS specifies two bytes are transferred in lane 0, then these bytes are in llr(0) and
llr(1) (in bits 7:0 and 15:8).

• Each transfer can only contain one block; one block must complete before the next block can
start. For multi-lane transfers, this might require the final transfer to have one or more of the
higher lanes size set to zero or one of the lane values to be reduced. The core enforces this
internally on output so that blocks start on lane 0 of the next AXI4-Stream transaction.

Related Information

Data Output Control (DOUT_WORDS)

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=39

Soft Output for LDPC and Turbo Decode

Table 39: LLR Output AXI4-Stream Master (DOUT) TDATA Interface Definition

Bit Width for Each
AXIS_WIDTH.DOUT

Setting Field Bits Context Range Description

2 (4x) 1 (2x) 0 (1x)
512b 256b 128b llr(0) 7:0 TURBO -31.75 to 31.75 Systematic LLR, two fractional

bits

LDPC -31.75 to 31.75 LLR, two fractional bits

llr(1) 15:8 TURBO -31.75 to 31.75 Parity LLR, two fractional bits

LDPC -31.75 to 31.75 LLR, two fractional bits

llr(2) 23:16 TURBO -31.75 to 31.75 Parity Interleaved LLR, two
fractional bits

LDPC -31.75 to 31.75 LLR, two fractional bits

...

llr(15) 127:120

Unused llr(16) 135:128

llr(31) 255:248

Unused llr(32) 263:256

llr(63) 511:504

Hard Output for LDPC and Turbo Decode and LDPC Encode

When the hard_op bit is 1 then only hard bits are output. This is provided in bytes, with up to 64
bytes transferred per cycle dependent on the setting of AXIS_WIDTH.DOUT parameter as
summarized in the following table.

Table 40: LLR Output AXI4-Stream Slave (DOUT) Interface Definition Configured for
Hard Bits

Bit Width for Each AXIS_WIDTH.DOUT
Setting Field Bits Description

4x 2x 1x
512b 256b 128b hbyte(0) 7:0 Bits m(7:0)

...

hbyte(15) 127:120 Bits m(127:120)

Unused hbyte(31:16) 255:128 Bits m(255:128)

Unused hbyte(63:32) 511:256 Bits m(511:256)

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=40

Data Output Control (DOUT_WORDS)
If the AXIS_WIDTH parameter setting for the DOUT_WORDS field is 0, then the DOUT_WORDS
input takes one value per block, and this specifies the number of LLR values transferred on all
lanes of DOUT.

If the AXIS_WIDTH parameter setting for DOUT_WORDS field is 1, then the number of bytes
transferred per cycle on DOUT is specified on a transfer-by-transfer basis by DOUT_WORDS. To aid
integration the TLAST input for this interface should be driven with a 1 for the last transfer of a
block. This input is not used to synchronize output, but it is checked and an interrupt is available
to signal inconsistencies.

Note: If DOUT_WORDS is 0, then there is only one transfer per block and so it is expected that TLAST is
driven High on each transfer on this stream.

If the data interface is configured for soft output (that is, a decode operation is being performed
and hard_op is 0), then the DOUT_WORDS stream specifies the number of LLR values in the
respective lane of output.

If DOUT is configured for hard output, then DOUT_WORDS specifies the number of bytes of hard
output transferred per cycle (only multiples of 8 bits can be specified). In both cases, data words
in DOUT lanes are always in the least significant bytes of the DOUT lane, for example, if two words
are provided in lane 0, they are in bits 7:0 and 15:8.

DOUT_WORDS is internally overridden to ensure that multiple blocks do not straddle a transaction
on DOUT (the final transaction is shortened, if necessary, in the same way as for DIN_WORDS as
described in Data Input Control AXI4-Stream Slave (DIN_WORDS)). As such it is possible to keep
DOUT_WORDS constant over a block even if the block length is not a multiple of DOUT_WORDS.

If operating out-of-order, with AXIS_WIDTH.DOUT_WORDS = 1, and mixed block lengths, then
the STATUS output can be used to determine the number of outputs, to set TLAST (if used). The
STATUS output can also be used to set DOUT_WORDS if it is being changed on a block-by-block
basis. If TLAST is not being used, then TLAST interrupts can be masked on this interface to avoid
unnecessary interrupts (see Interrupt Mask Register).

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=41

Table 41: LLR Output Words AXI4-Stream Slave (DOUT_WORDS) Interface Definition

AXIS_WIDTH.
DOUT_WORDS

Setting

Bit Width for Each
AXIS_WIDTH.DOUT Setting Field Bits Range Description

4x 2x 1x
0 8b 8b 8b words 7:0 0-16 Number of output data

words in dout(127...0)

Unused Number of output data
words in dout(255...128)

Unused Number of output data
words in dout(383...256)

Number of output data
words in dout(511...384)

1 32b 16b 8b words(0) 7:0 0-16 Number of output data
words in dout(127...0)

Unused words (1) 15:8 0-16 Number of output data
words in dout(255...128)

Unused words (2) 23:16 0-16 Number of output data
words in dout(383...256)

words (3) 31:24 0-16 Number of output data
words in dout(511...384)

Related Information

Data Input Control (DIN_WORDS)
Interrupt Mask Register (IMR) (0x28)

Control Input (CTRL)

5G NR Control Interface Definition for LDPC Decode

When the 5G NR standard is supported the control data interface is 40 bits with the fields shown
in the following table for LDPC decode.

Table 42: 5G NR Control Interface Definition for LDPC Decode

Field Bits Range Description
max_schedule 39:38 0 to 3 Maximum number of blocks that can be interleaved by the LDPC

decoder while processing this block. See LDPC Block Interleaving
for details.
0 = Default scheduling behavior.

mb 37:32 4 to 46 Number of parity bits as a multiple of Z (Z*mb), thereby controlling
code rate

id 31:24 0 to 255 External block identifier to be passed through to status output

max_iterations 23:18 1 to 63 Maximum number of iterations

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=42

Table 42: 5G NR Control Interface Definition for LDPC Decode (cont'd)

Field Bits Range Description
term_on_no_change 17 0 to 1 0: Do not terminate early if there is no change in hard bits for the

whole block (information and parity) between iterations.
1: Terminate early if there is no change in hard bits for the whole
block (information and parity) between iterations.

term_on_pass 16 0 to 1 0: Do not terminate early on passing parity check
1: Terminate early on passing parity check

include_parity_op 15 0 to 1 0: Output systematic values only
1: Output systematic values and parity

hard_op 14 0 to 1 0: Soft output
1: Hard output

13 - Reserved

sc_idx 12:9 0 to 15 Normalization value to use on block.

bg 8:6 0 to 4 Base graph

z_set 5:3 0 to 7 Base graph cyclic shift set

z_j 2:0 0 to 7 Lifting factor (Z) j component1

Notes:
1. The lifting factor is given by Z=a*2z_j where a is defined in Lifting Factor Component (a).

Related Information

LDPC Block Interleaving
Base Graph (bg)
Lifting Factor Component (a)

Base Graph (bg)

Table 43: Base Graph (bg) Definition

bg Description Kb Supported mb Supported Z
0 Base graph 1 22 4 ≤ mb ≤ 46 2 ≤ Z ≤ 384

1 Base graph 2 with number of information bit
columns

10 4 ≤ mb ≤ 42 2 ≤ Z ≤ 384

2 Base graph 2 with number of information bit
columns

9 4 ≤ mb ≤ 42 2 ≤ Z ≤ 128

3 Base graph 2 with number of information bit
columns

8 4 ≤ mb ≤ 42 2 ≤ Z ≤ 128

4 Base graph 2 with number of information bit
columns

6 4 ≤ mb ≤ 42 2 ≤ Z ≤ 128

Notes:
1. Kb, mb, and Z values outside the given range are illegal and if applied to the core while in 5G mode, the behavior is

undefined.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=43

Lifting Factor Component (a)

Table 44: Lifting Factor Component (a) Definition

z_set (=Set Index iLS)1 a
0 2

1 3

2 5

3 7

4 9

5 11

6 13

7 15

Notes:
1. As defined in the 5G New Radio standard.

5G NR Control Interface Definition for LDPC Encode

When the 5G NR standard is supported the control data interface is 40 bits with the fields shown
in the following table for LDPC encode.

Table 45: 5G NR Control Interface Definition for LDPC Encode

Field Bits Range Description
max_schedule 39:38 0 to 3 Maximum number of blocks that can be interleaved by the LDPC

encoder while processing this block.
0 = Default scheduling behavior.
See LDPC Block Interleaving for details.

mb 37:32 4 to 46 Number of parity bits as a multiple of Z (Z*mb), thereby controlling
code rate.

id 31:24 0 to 255 External block identifier to be passed through to status output.

23:9 - Reserved

bg 8:6 0 to 4 Base graph

z_set 5:3 0 to 7 Base graph cyclic shift set

z_j 2:0 0 to 7 Lifting factor (Z) j component1

Notes:
1. The lifting factor is given by Z=a*2z_j where a is defined in Lifting Factor Component (a).

Related Information

LDPC Block Interleaving
Base Graph (bg)
Lifting Factor Component (a)

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=44

Non-5G NR Control Interface Definition for LDPC Decode

When the supported standard is not 5G NR the control data interface is 32 bits with the fields
shown in the following table for LDPC decode.

Table 46: Non-5G NR Control Interface Definition for LDPC Decode

Field Bits Range Description
id 31:24 0 to 255 External block identifier to be passed through to status output

max_iterations 23:18 1 to 63 Maximum number of iterations

term_on_no_change 17 0 or 1 0: Do not terminate early if there is no change in hard bits for the
whole block (information and parity) between iterations
1: Terminate early if there is no change in hard bits for the whole
block (information and parity) between iterations

term_on_pass 16 0 or 1 0: Do not terminate early on passing parity check
1: Terminate early on passing parity check

include_parity_op 15 0 to 1 0: Output systematic values only
1: Output systematic values and parity

hard_op 14 0 to 1 0: Soft output
1: Hard output

- 13:7 - Reserved

code 6:0 0 to 127 Code number (CODE) used to specify which set of LDPC code
parameters are to be used on the block

Non-5G NR Control Interface Definition for LDPC Encode

When the supported standard is not 5G NR the control data interface is 32 bits with the fields
shown in the following table for LDPC encode.

Table 47: Non-5G NR Control Interface Definition for LDPC Encode

Field Bits Range Description
id 31:24 0 to 255 External block identifier to be passed through to status output

23:7 - Reserved

code 6:0 0 to 127 Code number (CODE) used to specify which set of LDPC code
parameters are to be used on the block

Control Interface Definition for Turbo Decode

Table 48: Control Interface Definition for Turbo Decode

Field Bits Range Description
id 31:24 0 to 255 External block identifier to be passed through to status output

max_iterations 23:18 1 to 63 Maximum number of iterations

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=45

Table 48: Control Interface Definition for Turbo Decode (cont'd)

Field Bits Range Description
term_on_no_change 17 0 or 1 0: Do not terminate early if there is no change in the hard

systematic bits for the block between iterations
1: Terminate early if there is no change in the hard systematic bits
between iterations

term_on_pass 16 0 or 1 0: Do not terminate early if CRC passes
1: Terminate early if CRC passes

include_parity_op 15 0 to 1 0: Output systematic values only
1: Output systematic values and parity

hard_op 14 0 to 1 0: Soft output
1: Hard output

crc_type 13 0 to 1 0: CRC24B
1: CRC24A
These CRC types are defined in 3GPP TS 38.212 V15.0.0 Multiplexing
and channel coding

code_block_size 12:0 40 to 6144 Turbo code block size (K); encoded block size N=3*K+12

Status Output (STATUS)

5G NR Status Interface Definition for LDPC Decode

When the 5G NR standard is supported the status data interface is 40 bits with the fields shown
in the following tables for LDPC decode.

Table 49: 5G NR Status Interface Definition for LDPC Decode

Field Bits Range Description
39:38 - Reserved

mb 37:32 4 to 46 Number of parity bits as a multiple of Z (Z*mb), thereby controlling
code rate.

id 31:24 0 to 255 External block identifier supplied through control input

dec_iter 23:18 1 to 63 Number of iterations taken to decode output (either successfully or
unsuccessfully)

term_no_change 17 0 to 1 0: Did not terminate early due to no change in hard bits for the
whole block (information and parity) between iterations.
1: Terminated early as no change in hard bits for the whole block
(information and parity) between iterations.

term_pass 16 0 to 1 0: Did not terminate due to passing parity check
1: Terminated early due to passing parity check

pass 15 0 to 1 0: Parity check did not pass
1: Parity check passed

hard_op 14 0 to 1 0: Soft output
1: Hard output

op 13 0 Decode operation (fixed value)

12:9 - Reserved

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=46

Table 49: 5G NR Status Interface Definition for LDPC Decode (cont'd)

Field Bits Range Description
bg 8:6 0 to 4 Base graph

z_set 5:3 0 to 7 Base graph cyclic shift set

z_j 2:0 0 to 7 Lifting factor (Z) j component1

Notes:
1. The lifting factor is given by Z=a*2z_j where a is defined in Lifting Factor Component (a).

Related Information

Base Graph (bg)
Lifting Factor Component (a)

5G NR Status Interface Definition for LDPC Encode

When the supported standard is 5G NR the status data interface is 40 bits with the fields shown
in the following table for LDPC encode.

Table 50: 5G NR Status Interface Definition for LDPC Encode

Field Bits Range Description
39:38 - Reserved

mb 37:32 4 to 46 Number of parity bits as a multiple of Z (Z*mb), thereby controlling
code rate

id 31:24 0 to 255 External block identifier supplied through input

23:15 - Reserved

hard_op 14 1 Hard output (fixed value)

op 13 1 Encode operation (fixed value)

12:9 - Reserved

bg 8:6 0 to 4 Base graph

z_set 5:3 0 to 7 Base graph cyclic shift set

z_j 2:0 0 to 7 Lifting factor (Z) j component1

Notes:
1. The lifting factor is given by Z=a*2z_j where a is defined in Lifting Factor Component (a).

Related Information

Base Graph (bg)
Lifting Factor Component (a)

Non-5G NR Status Interface Definition for LDPC Decode

When the supported standard is not 5G NR the status data interface is 32 bits with the fields
shown in the following table for LDPC decode.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=47

Table 51: Non-5G NR Status Interface Definition for LDPC Decode

Field Bits Range Description
id 31:24 0 to 255 External block identifier supplied through control input.

dec_iter 23:18 1 to 63 Number of iterations taken to decode output (either successfully or
unsuccessfully)

term_no_change 17 0 to 1 0: Did not terminate early due to no change in hard bits for the
whole block (information and parity) between iterations.
1: Terminated early as no change in hard bits for the whole block
(information and parity) between iterations.

term_pass 16 0 to 1 0: Did not terminate due to passing parity check.
1: Terminated early due to passing parity check.

pass 15 0 to 1 0: Parity check did not pass.
1: Parity check passed.

hard_op 14 0 to 1 0: Soft output
1: Hard output

op 13 0 Decode operation (fixed value)

12:7 - Reserved

code 6:0 0 to 127 Code number (CODE) specifying the LDPC code parameters used
to decode the block

Non-5G NR Status Interface Definition for LDPC Encode

When the supported standard is not 5G NR the status data interface is 32 bits with the fields
shown in the following table for LDPC encode.

Table 52: Non-5G NR Status Interface Definition for LDPC Encode

Field Bits Range Description
id 31:24 0 to 255 External block identifier supplied through control input.

23:15 - Reserved

hard_op 14 1 Hard output (fixed value).

op 13 1 Encode operation (fixed value).

12:7 - Reserved

code 6:0 0 to 127 Code number (CODE) specifying the LDPC code parameters used to
encode the block.

Status Interface Definition for Turbo Decode

Table 53: Status Interface Definition for Turbo Decode

Field Bits Range Description
id 31:24 0 to 255 External block identifier supplied though control input.

dec_iter 23:18 1 to 63 Number of iterations taken to decode output (either successfully or
unsuccessfully).

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=48

Table 53: Status Interface Definition for Turbo Decode (cont'd)

Field Bits Range Description
term_no_change 17 0 to 1 0: Did not terminate early due to no change in the hard systematic

bits between iterations.
1: Terminated early due to no change in the hard systematic bits
between iterations.

term_pass 16 0 to 1 0: Did not terminate early due to passing CRC.
1: Terminated early due to passing CRC check.

pass 15 0 to 1 0: CRC check did not pass.
1: CRC check passed.

hard_op 14 0 to 1 0: Soft output.
1: Hard output.

crc_type 13 0 to 1 0: Code block
1: Transport block

code_block_size 12:0 40 to 6144 Turbo code block size (K). Encoded block size N=3*K+12.

Chapter 3: Product Specification

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=49

Chapter 4

Designing with the Core
This chapter includes guidelines and additional information to facilitate designing with the core.

Clocking
The SD-FEC Integrated Block operates from a separate clock to the programmable logic (PL),
allowing the core to run at higher frequency.

Each interface has its own clock and clock domain crossing circuits to enable transfer of data
over the interface. Certain interfaces also have width conversion to allow data bandwidth to be
maintained with lower interface clock frequency. See the Zynq UltraScale+ RFSoC Data Sheet:
Overview (DS889) for the maximum frequency of core and interface clocks. Lower frequencies
can be used.

If the throughput and latency are limited by processing within the core, rather than by input/
output, then the throughput is proportional to the core clock frequency. As such, if the core clock
rate is reduced over the maximum value, there is a proportional reduction in throughput and an
increase in latency relative to the maximum achievable. For example, if a 650 MHz clock is used
rather than a 667 MHz clock, then the throughput at 650 MHz relative to the peak at 667 MHz
is 650/667=0.975 times the peak throughput. Therefore, if the peak throughput at 667 MHz is
1 Gb/s, then the throughput at 650 MHz is 0.975 Gb/s.

Resets
A single active-Low reset signal, reset_n, is used to reset the core and its interfaces. Reset is
applied asynchronously, and internal synchronizers ensure that the reset is deasserted
synchronously in each domain. A reset is required after power-up.The application of reset causes
the core parameter and the turbo core parameter registers to take their reset value (LDPC and
Shared LDPC code parameters are undefined). In-flight blocks are discarded, and the core
becomes inactive, with the interfaces synchronously entering their disabled state (AXIS_ENABLE
is zero).

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 50Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds889-zynq-usp-rfsoc-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=50

The core comes out of reset with the AXI4-Stream interfaces disabled, allowing the interface
width to be changed and code parameters to be written over the AXI4-Lite interface before
operation begins. The final write can enable the interfaces to commence operation.

When the 5G NR standard is selected in the Vivado IDE, additional PL resources are used. The
additional logic, which includes multiple clock domains and associated crossing logic, necessitates
that reset_n be asserted for an extended number of clock cycles to ensure the block is fully
reset. reset_n should be asserted for a minimum of:

3 x Ts_axi_aclk + 3 x max(Ts_axis_status,Ts_axis_ctrl)

Where Tclock is the period for the associated clock.

This is a suggested minimum, but because of the uncertainty associated with the clock domain
crossings a further extension to the reset_n period may be required.

Related Information

Core Parameters
Turbo Code Parameters Register (0x100)

5G New Radio Block Length
In 5G New Radio (NR) mode, the output of the encoder contains all information and parity bits,
and the first 2*Z information bits that are punctured should be removed from the start of the
output block (where Z is the lifting factor, which is equivalent to the LDPC encoder/decoder
parameter, PSIZE). Similarly, for the decoder, all information and parity bits should be input to the
decoder, and 2*Z punctured input bits should be provided with 0 soft value (log-likelihood ratio)
at the start of the block, followed by the remaining information and parity bits.

In addition, zero padding should be appended to the end of the information bits to obtain
codewords with valid numbers of information bits prior to encoding. For base graph 1, the valid
number of information bits is 22*Z bits and for base graph 2, either 10*Z, 9*Z, 8*Z or 6*Z bits
according to the variant selected. Similarly, for decoding, the appended bits should take a soft
value for the binary value 0, that is, 0xE1, assuming symmetric saturation to six bits, as discussed
in Data Input AXI4-Stream Slave (DIN).

Also, in the decoder, output parity check is disabled for 5G NR codes, because information
correctness is established by a CRC performed externally to the decoder (see Output Parity
Check (OPC)). Note that parity pass can still be used for early termination.

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=51

Interrupt
A single interrupt output signal indicates a number of error conditions. These conditions are
defined by the Interrupt and ECC Interrupt Registers. Error conditions include:

• tlast missing on master interfaces: This is where a tlast input is not asserted on the last
transfer relating to a block.

• tlast unexpected: This is when a tlast input is asserted unexpectedly (on all but the last
transfer in a block).

These conditions are described further in the AXI4-Stream Interface section. If these errors
occur, then the SD-FEC core and connected circuits must be reset to resynchronize block
transfer. A reset of the SD-FEC core causes the core parameter registers to be reset (which
includes disabling of the interfaces) and these registers have to be reloaded (incurring a small
number of cycles).

• Errors detected in ECC protected memory when a word is read through the AXI4-Lite
interface, or by the LDPC decoder, when the latter is active. Both correctable single bit errors
and uncorrectable two-bit errors are flagged (the latter might also include situations where
there are more than two errors, but only detection of two-bit errors is guaranteed).

Related Information

AXI4-Stream Interface

Summary of Interrupt Responses
Potential interrupt responses are summarized in the following table.

Table 54: Error Detection/Correction and Reporting

Mode
PL Initialization Logic SD-FEC

ECC 1-Bit (If
Enabled) ECC 2-Bit ECC 1-bit (If

Enabled) ECC 2-Bit Tlast Errors

Initialized retain I/F (LDPC code
initialization and AXI4-Lite
interface present)

Inspect ECC
ISR, bits 22 to
29 - Ignore or
reconfigure PL

Inspect ECC
ISR, bits 26 to

29 - reconfigure
PL

Inspect ECC
ISR, bits 0 to 21

- Ignore or
reset

Inspect ECC
ISR, bits 11 to

21 - Reset

Inspect ISR -
Reset

Initialized (LDPC code initialized
and AXI4-Lite interface not
present)

Reconfigure PL Reconfigure PL Reconfigure PL Reconfigure PL Reconfigure PL

Runtime Configured (LDPC code
not initialized and AXI4-Lite
interface present)

N/A N/A Inspect ECC
ISR, bits 0 to 21

- Ignore or
reprogram
codes when

inactive

Inspect ECC
ISR, bits 11 to
21 - Reset and

reprogram
codes

Inspect ISR -
Reset and
reprogram

codes

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=52

Interface FIFOs
All interfaces on the SD-FEC Integrated Block have clock-domain-crossing (CDC) FIFOs. The
FIFO depths are given in the following table. While the inner core enforces the DIN/
DOUT_WORDS dependencies, the FIFOs can fill such that a number of transfers up to the FIFO
depth can occur into DIN before being blocked by a lack of transfers on DIN_WORDS. In
particular, this should be noted if interfaces are being disabled for some reason, the data in the
FIFOs is still processed.

Table 55: Depth of Interface CDC FIFOs

Channel
FIFO Depth (For Given Interface Width Setting)

1 Lane 2 Lanes 4 Lanes
DIN, DIN_WORDS, DOUT,
DOUT_WORDS

25 transfers 13 transfers 7 transfers

CTRL, STATUS 13 transfers in 5G mode, 6 transfers otherwise

Interface Dependencies
Each block is input through the data input interface (DIN) over a number of cycles. The amount
of data transferred on each cycle is set by a separate data stream (DIN_WORDS) where a value is
given per transaction on DIN. If this does not need to be changed, then there is an option to tie
this off in the Vivado® IDE. The output is generated in a similar way on the DOUT output stream,
and similarly, the amount of data transferred is specified on the input data stream, DOUT_WORDS.
If the number of words is fixed, then the core optional support logic ties this input off.

For each data block, a single input is required on the control (CTRL) input stream, specifying key
block specific parameters, such as block size. One control word (transaction) is required for each
data block, and data input stalls until the relevant control word is available. When decoded (or
encoded in the case of LDPC), the output data is provided on DOUT along with a status word on
the status (STATUS) output interface.

All AXI4-Stream interfaces contain valid and ready handshakes for flow control. Blocking
either output (by deasserting ready) ultimately stops decoding and, when the input buffer is full,
prevents further input. The following figure summarizes the data dependencies of the SD-FEC
core. This shows that data input on DIN is dependent on CTRL and DIN_WORDS, and output on
DOUT is dependent on DOUT_WORDS. However, note that there exists latency (in cycles) between
the input of the CTRL and the associated input of DIN_WORDS and DIN input being accepted.
The latency is dependent on the mode in which the SD-FEC core operates. In 5G mode, if the
code is not already downloaded, latency in cycles is shown in the Download Latency table. The
cycles are taken by the support logic in generating and downloading code parameters to the SD-

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=53

FEC core internal memory; however, if the code parameters already reside in the SD-FEC core,
the number of cycles is small and the exact amount varies depending on the clock speed
difference between s_axi_aclk and s_axis_ctrl_aclk. In other modes when the code
parameters are to be downloaded externally, CTRL is applied after the code download is
complete. In these modes, the latency between CTRL and the associated DIN/DIN_WORDS is a
small number of cycles.

Likewise, there are a small number of cycles of latency between DIN_WORDS and DIN. If the
latency on DIN is to be minimized then the input of CTRL and DIN_WORDS should be provided in
advance. Similarly, on the output, DOUT_WORDS (if required) should be driven as soon as possible
to avoid any latency on DOUT. Also, as shown in the following figure, there are shallow buffers on
the interfaces that allow a small amount of data to be input on DIN and DOUT_WORDS before
associated block control is provided on CTRL. This data is not processed by the SD-FEC core
until the latter is available. Further implications of these buffers are:DIN input can start at the
same time as CTRL and DIN_WORDS are applied, and several CTRL and DIN_WORDS
transactions can be input in advance of their associated DIN packets.

When using the SD-FEC core, one simple approach to maximize throughput is to apply all inputs
as quickly as the AXI4-Stream interface handshake allows, and to accept output as soon as it is
ready. Alternatively, if throughput is to be controlled, then only the CTRL input can be regulated
to the correct data block throughput rate while the other interfaces operate as previously
described - that is, they are regulated by the SD-FEC core itself.

Figure 2: Overview of SD-FEC Core Interface Dependencies

CTRL

DIN

DIN_WORDS

STATUS

DOUT

DOUT_WORDS

DIN input is dependent on availability
of CTRL and DIN_WORDS

DOUT output is dependent on internal decoder
output and DOUT_WORDS

STATUS is dependent upon internal decoder output.
The order of STATUS & DOUT availability will vary
depending on IP configuration, codeblock
characteristics, and system timing. For example,
DOUT may be available before STATUS, and
similarly STATUS may be available before DOUT; no
specific order should be assumed.

Time

Decoder/encoder
Latency

First-in-to-first-out latency

X17337-011921

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=54

Parameter Management
Parameters should be carefully managed due to the wide variety of modes that are supported by
the SD-FEC core. For 5G NR and initialized non-5G, the support logic takes control of the shared
LDPC code parameters; therefore these parameters must not be, under any circumstances,
written from the exposed AXI4-Lite interface provided. For 5G NR, the support logic also
assumes that the AXI_WR_PROTECT and CODE_WR_PROTECT registers are writeable and
CTRL and STATUS interfaces are enabled in the AXI_ENABLE register. If the interfaces are
disabled after the first CTRL data is applied, the behavior is unpredictable. All other interfaces are
disabled after reset and should be enabled prior to using the core.

In all other modes, all SD-FEC core interfaces are disabled from reset. This allows the opportunity
to configure parameters (such as LDPC codes) prior to the interfaces being enabled.
WR_PROTECT can then be enabled to prevent registers being changed during operation. If it is
necessary to change codes during operation, it is recommended that an external circuit be used
to prevent changing of codes that are in use, as the behavior of the core in this circumstance is
undefined.

It is also possible to stop operation of the decoder by disabling the CTRL interface, and
monitoring the ACTIVE register. Codes can then be changed without any risk of them being used.
When code download is complete, the CTRL interface can be re-enabled.

IMPORTANT! Codes in use should not be updated. If codes in use are modified, the results are
unpredictable.

LDPC Code Support
5G NR Standard
When the 5G NR standard is selected in the Vivado® IDE, the SD-FEC Integrated Block is
initialized with 5G NR base graphs. Code download over the AXI4-Lite interface is not required.
However, the interface is still available to allow core parameters to be updated.

The code to be adopted for a particular block is provided through the CTRL interface on a block
by block basis. This selection is made using four parameters: z_j, z_set, bg and mb. The bg
parameter specifies the base graph 1 or 2. The lifting factor, Z, is specified using z_j and z_set,
and the code rate is specified using mb. This latter parameter is the number of layers of the base
matrix used, and specifies the number of parity bits mb*Z. The maximum number of information
bits is 22*Z for base graph 1, and for base graph 2 is 10*Z according to the base graph selection.
The rate is then:

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=55

Note that the first two Z information bits are not transmitted, so the code rate is actually as
follows:

These rates do not include any padding that might be required to increase the information block
size to 22*Z, or 10*Z for base graphs 1 and 2 respectively.

LDPC Code Overview
LDPC codes are programmable through an AXI4-Lite interface. A class of Quasi-Cyclic (QC)
codes are supported. The following figure elaborates the code parameterization and the
following table summarizes the flexibility.

Figure 3: LDPC Quasi-Cyclic (QC) Code Structure

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
1

1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0

1
1
1

1

1

1
1

1

1

1
1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1
1
1

1
1

1
1

1
1
1

1

1
1

1
1

1

1
1

1
1

1
1

1

1
1
1

1

1

1

1

1

1

1
1

1

1

Information
K/P

Parity
(N-K)/P

N/P

Sub-
Matrix:

Rotation

One or more
superimposed identity

matrices (circulant
weight W)

P = size of sub-
matrix

Layers

1's in column of H matrix = variable node
degree for column* (for example, dv=4).

1's in row of H matrix check node degree
for layer*(for example, dc = 9).

Code base
matrix:

X17333-120518

The checknode degree (DC) and variable node degree (DV) are counts of the number of 1s in
each row and column respectively of the H matrix. For the respective base matrix, if sub-matrices
have circulant weight greater than one, then DC and DV are counts of the total number of
circulants in a layer or column respectively.

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=56

Table 56: LDPC Code Flexibility

Parameter Range Comment
Number of codes 128 codes Programmable (concurrently with

operation to allow run-time code
update).

Code base matrix definition in terms of
circulants (QC)

8,192 entries over all codes Arbitrary apportionment over codes.
Sufficient for 32 codes with P=128,
N=8,192 and DV=4 (entries per
code=DV*N/P=256).

Check node degree, DC 2 ≤ DC ≤ 128 Programmable per layer of code.

Variable node degree, DV 1 ≤ DV Programmable per code (set
indirectly).

Number of layers, NLAYERS 1 ≤ NLAYERS ≤ 256 Programmable per code.

Sub-matrix size, P 2 ≤ P ≤ 512 Programmable per code.

Circulant weight, W W ≤ 4 Programmable per sub-matrix.
Further constraints are imposed on
codes by the Vivado® IDE when W>1 or
when configured as an encoder.

Code-word length, N1 4 ≤ N ≤ 32768 and N ≤ 256 × P and N>K Programmable per code, multiple of P.

Parity length, N-K 2 ≤ N-K ≤ 327661 and N-K ≤ 256 × P Programmable per code, multiple of P
(range derived from min(P) and
max(N)-min(P)).

Notes:
1. Codeword length N, and number of parity bits N-K, might be further limited when P is not a multiple of 128 and for

other combinations of parameters (for example, when W>1). The Vivado IDE should be used to check that a code is
supported.

The underlying hardware can process 128 elements of each circulant in one clock cycle.
Therefore when P>128, each circulant is processed over MV = ceil(P/128) cycles (MV=1,2,3 or
4). When P≤64, the underlying hardware can process multiple circulants in a single cycle subject
to memory access conflicts associated with the code. The code limits, in particular, maximum DC,
depend on packing. The Vivado Integrated Design Environment (IDE) automatically performs
packing where possible, and checks the legality of a custom code definition. The SD-FEC C
model also does this.

IMPORTANT! It is recommended these checks be performed early in any code design process.

The following constraints are imposed by internal memory limitations:

• DC × MV ≤ 256

• NLAYERS × MV ≤ 256

• sum(DC) × MV ≤ 1024 for decode

• sum(DC) ≤ 2044 for encode

• (N ⁄ PSIZE) × MV ≤ 256 for encode

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=57

A normalized min-sum algorithm is used, and the normalization factor applied on each layer can
be specified along with the other code parameters using the LDPC code definition file.

Related Information

Customizing and Generating the Core
LDPC Code Definition File
LDPC Decoder Support for W>1
LDPC Encoding

LDPC Decoding

LDPC Decoder Support for W>1

Decoder support for W>1 is only available for codes with P ≤ 128. When any code has W>1, all
codes that can be scheduled with it are limited to DC/PF×MV ≤ 64, irrespective of whether or
not they employ W>1.

PF is the packing factor employed when PSIZE < 128 (in which case MV is always 1). PF is the
number of submatrices executed per cycle and can take values 1, 2 or 4 depending on PSIZE. So
providing it is not disabled by NO_PACKING, the limit on DC becomes:

PSIZE ≤ 32 allows PF=4 and DC ≤ 256

PSIZE ≤ 64 allows PF=2 and DC ≤ 128

PSIZE ≤ 128 allows PF=1 and DCxMV ≤ 64

When packing is employed, DC must accommodate any padding that is required.

The memory footprint of the code is increased by the number of circulants when W>1. This
reduces the block size N that can be supported. For example, if PSIZE = 128, and a code has two
circulants in three sub-matrices, the effective block size becomes N + 3*128.

Both the Vivado® IDE and the C Model generate the necessary sequence of operations for a
particular code, and ensure that these constraints are met. This check should be performed early
in the design process to ensure that a code is supported.

Related Information

C Model

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=58

Normalization

The LDPC Decoder implements a normalized min-sum algorithm whereby the contributions of
each layer to the soft output are normalized by a scale factor. In 5G mode, the normalization
factor can be specified per block on the sc_idx field of CTRL. In non-5G NR mode, the scale
factor can be specified for each layer of a code using the SC_TABLE register. A default scaling
factor of 0.75 is set by the Vivado® IDE; however, the optimum scaling factor depends on the
LDPC code, and this should be established within the context of the system. This is particularly
important for low-rate codes with high variable-node degrees.

It is assumed that the LLR input has been symmetrically saturated to 6 bits as summarized in the
Soft Value Input table (link below). If this is not done, there can be significant performance
degradation. In this table, it is also suggested that the LLR is scaled to two fractional bits.
However, LLR scaling is critical to performance and should be tuned within the context of the
system to achieve optimal performance.

Related Information

SC_TABLE Register (0x10000-0x103FC)
Soft Value Input for LDPC and Turbo Decode

Output Parity Check (OPC)

The decoder implements an on-line parity check to allow early termination (if enabled). There is
also an option in the Vivado® IDE, Include Output Parity Check, to implement a final parity check
block, separately to the decoder. When enabled in the Vivado IDE, this determines whether the
output produced on the final iteration passes the parity check when early termination does not
occur or is not enabled (otherwise the value is that calculated by the on-line circuit for the
previous iteration). Where possible, the check is performed in parallel with data output over
DOUT, otherwise it is only the status output that is delayed until the updated pass flag is
available. This takes a similar amount of time to one iteration of the decoder.

The OPC only supports codes where the total number of base matrix entries including any
padding for packing (sum(packed(DC))) is less than or equal to 1024; OPC is automatically
disabled by the core if an unsupported code is specified. This condition is also reported by the
Vivado IDE. For large blocks it can also reduce peak throughput (although this is somewhat
mitigated when smaller blocks are mixed with large blocks). . Also, for codes with a large number
of circulants per iteration, the maximum number of blocks interleaved can be reduced, increasing
stall cycles and reducing throughput. The number of effective circulants can be increased by
packing. To avoid throughput reduction, the final parity check can be turned off by setting
NO_FINAL_PARITY_CHECK to 1. If information bit correctness is established using CRC, the

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=59

final parity has limited value, and the final parity check is not required. Note that early
termination using a passing parity check can still be performed when the final parity check is
disabled. For the 5G NR standard, the OPC is disabled because information bit correctness is
established by a CRC check on the output of the decoder (parity pass can still be used for early
termination).

LDPC Encoding
The LDPC encode is performed using a parity check matrix. The encoder supports matrices with
lower triangular parity portion where the diagonal has a circulant weight of 1. It also supports a
set of constrained matrices which have a double diagonal as employed by WiFi codes (IEEE
Standard for Information technology - Local and Metropolitan area Network Standards (IEEE Std
802.11)), and matrices that are a mix of double diagonal parity followed by a single diagonal as
adopted by 5G wireless (3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; NR; Multiplexing and channel coding (Release 15) (3GPP Std TS 38.212 V15.0.0)).

Examples of supported matrices are shown in the following figures. The base matrix elements in
dark gray contain single circulants and have zero rotation. The patterned region of the matrix can
contain multiple circulants in each sub-matrix and arbitrary rotation values.

Figure 4: Parity Check Matrix with Single Diagonal

X19562-120618

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 60Send Feedback

https://standards.ieee.org/findstds/standard/802.11-2012.html
https://standards.ieee.org/findstds/standard/802.11-2012.html
https://www.3gpp.org/dynareport/38212.htm
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=60

Figure 5: Parity Check Matrix with Double Diagonal

X19563-120618

Figure 6: Parity Check Matrix for 5G Wireless Graph 1

0

1 0

00

0

0

0

0

0

1

X19564-120618

A lower triangular matrix, as shown in the first figure, has a first layer containing a single circulant
in the first parity column, with each new layer adding only one new circulant to the parity part of
the matrix in the adjacent column. Additional circulants can be included in both the information
and parity parts of the layer, but must be to the left of the new parity circulant. For such a matrix,
it is possible to calculate parity by processing the layers from first layer to last, solving the parity
check equation for the single unknown parity column.

When the matrix is double diagonal, as shown in the second figure, the first layer contains two
parity circulants in the first two parity columns, and the following layers contain another two
parity circulants offset to the right by 1. For such a matrix, there are two unknown parity columns
in the first layer, and a direct solution is not possible. However, in many cases it is possible to
transform the double diagonal matrix into a single diagonal matrix by adding rows to eliminate
additional parity columns. For example, adding the last row of the second figure to the second
last row results in the cancellation of the unwanted right-most circulant in the second-last row.

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=61

Then, this resulting second-last row can be added to the third-last row, to cancel the unwanted
right-most circulant, and likewise this process repeated up the rows, to finally obtain the matrix
of the first figure. This matrix is then suitable for encode. The main drawback of this method is
that it can lead to additional operations in the information portion and under the triangular part
of the parity portion, when row combinations have different rotations and so do not cancel.

While the above method is more generally applicable, for a range of double diagonal matrices it is
possible to implement a matrix with fewer operations. This exploits the property of the matrix
that the sum of all the layers in the parity check matrix gives a check equation containing only
the first parity column. That is when all the circulants in each column of the parity part of the
check matrix are summed, then that sum is 0 for all but the first row where it is a single circulant.
This new check equation can be used to solve for the first parity bit, and the existing check
equations (layers of the parity check matrix) providing solutions for the remaining parity bits.

For example, the third figure shows a portion of the 5G wireless graph 1 parity check matrix.
Only the parity portion is shown in detail. In particular, the circulant rotation is shown as a
number in the sub-matrix. The first four layers can be summed to provide an equation for the
first parity bit. That is, the sum of the parity column consists of the modulo 2 addition of three
circulants with rotation 1,0 and 1. The two circulants with rotation 1 cancel leaving a circulant
with rotation 0. The other columns contain two circulants with rotation 0 and, likewise, they
cancel, leaving only the circulant in first parity column.

The third figure also shows a mix of double diagonal and diagonal matrices. When the first parity
column has been derived, the remaining parity can be calculated as each new layer is only adding
one new column of parity.

Double diagonal matrices, with the property described, are supported directly by the Vivado®

IDE. A further optimization is applied in the solution implemented that reuses layer products, and
as a consequence the additional operations over-and-above that of the parity check matrix are
relatively small.

LDPC Peak Throughput
Note: The encoder calculation is the same as the decoder calculation with Niter set to 1.

Throughput is code-specific and depends on a number of factors including data dependences in the code.
However, peak throughput of the LDPC decoder (measured for information bits at the output) for P = 128,
is given by:

Peak Throughput = 128
avg(DV)N iter

 × Rate × f core_clk

• fcore_clk is the core clock frequency.

• Niter is the number of iterations performed.

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=62

• avg(DV) is the average variable node degree of the code (total number of circulants in the
parity check matrix divided by the number of columns; in effect, the number of circulants per
bit of the codeword).

The factor of 128 in the given equation is associated with the level of parallelism implemented in
the SD-FEC core (128 check-node and variable node processors are implemented).

The given throughput equation assumes no data dependencies arising from the code, and that P
is a multiple of 128. If P is not a multiple of 128, then there is under-utilization of the decoder

processing resources, and throughput degrades by a factor of P/(128×MV) where .

For example, if P = 360, then

360
128 ×MV = 360

128 ×3 = 360
384

Therefore actual throughput = peak throughput × 360/384.

Input, decoding, and output are pipelined, and for small blocks there is sufficient memory to hold
multiple blocks. When there is sufficient memory available, the core interleaves multiple blocks
during encode/decode to hide data dependencies.

For codes where W>1, operations are added for each circulant in a sub-matrix where W>1, and
consequently throughput is reduced. (For example, for one codeword with two sub-matrices
containing two circulants each, four additional operations are required). There are also further
data dependencies which might require greater codeword interleaving to hide (where memory
allows). Throughput might also be limited for large block sizes, because the opportunity to
overlap decoding with I/O is reduced by memory limitations.

LDPC Block Interleaving

An LDPC code might contain inter-layer dependencies that can restrict the decoder (and
encoder) from achieving peak throughput. These dependencies manifest as clock cycles where
the decoder is idle. To hide the idle cycles, the decoder interleaves code blocks.

The interleaving algorithm determines whether to interleave another block based on observing
idle clock cycles. This is qualified by there being sufficient memory to hold another code block,
and the max_schedule parameter. The algorithm does not schedule a further block if the resulting
number of interleaved blocks exceeds the max_schedule value. If no idle cycles are observed, no
further blocks are interleaved.

The max_schedule parameter range is 0 to 3. When set to 0 (the default), the decoder might
schedule up to a maximum of four blocks. The max_schedule value used by the scheduling
algorithm is the lowest non-zero value defined for the active LDPC codes (that is, the LDPC
codes associated with the blocks currently "in flight").

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=63

An increase in latency can be a consequence of filling all the idle cycles. Setting a lower
max_schedule value provides a mechanism to limit interleaving with a potential reduction in
latency as a result, but this depends on the characteristics of the LDPC code.

Reuse of LDPC Code Base Matrices
It is possible to reuse a single base matrix to support different code rates and codeword sizes in
the following ways:

1. Change the sub-matrix size to support different codeword sizes at the same rate. For each
code, specify a different PSIZE, N, and K (as defined in REG0 to REG2), while keeping the
offset parameters in the shared code definition tables (that is, SC_OFF, LA_OFF and QC_OFF
in REG3) the same.

2. Reuse only a portion of the base matrix to support different codeword sizes and rates, but
with the same K. If the base matrix takes the form shown in the following figure (more
specifically, the column of the rightmost non-zero sub-matrix increases monotonically with
layer), it is possible to reduce the number of columns in the base matrix by reducing the
number of layers, NLAYERS, and N in the code definition while keeping the offset parameters
in the shared code definition tables (that is, SC_OFF, LA_OFF and QC_OFF) the same. The
rate increases as the number of parity bits and codeword size is reduced.

Figure 7: Changing Number of Columns in Base Matrix by Adjusting NLAYERS

K

N

R=1/2

R=3/4

0 (no entry in
QC table for this

empty region)

Rate increases as
number of layers

(NLAYERS) is
reduced. K stays the

same, N reduces.

This region of base
matrix results in

entries in QC_TABLE

X19308-120618

For method 1, if PSIZE ≤ 64, then packing is performed (unless the NO_PACKING field is set in
the code definition register). In this case, the QC_TABLE entries are different. As such, for
support of all PSIZE, at least three sets of QC_TABLEs are required (that is, one for PSIZE ≤ 32,
one for 32 < PSIZE ≤ 64, and one for PSIZE > 64). Furthermore, a method to reduce the rotation
to be less than PSIZE is required, although this might be done from the largest value using a
suitable reduction operation, for example, modulo(ROTATION, PSIZE).

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=64

If this operation results in differences between the rotation values for the two codes, then a
separate set of entries is required in the QC_TABLE. For example, if the PSIZE for two codes was
33 and 64, and the rotation value was 48, then, because 48 is greater than 33, there would need
to be a reduced value specified for PSIZE = 33 and, as a consequence, the QC_TABLE entries for
each code would need to be defined separately. If all the rotation values were less than 33, then
only one set of entries would need to be defined in the QC_TABLE for both codes.

For method 2, the stall parameters (in LA_TABLE) might change with the number of layers.
Analysis of the changes can be performed by passing the code with different numbers of layers
through the core API to generate the instruction tables. The amount of variation depends upon
the code, but it is likely that the number of variants can be significantly reduced to less than one
LA_TABLE per codeword size. It might also be possible to further reduce the number of tables by
setting the stall values to be the maximum of those generated by the API. That is, it is safe to use
a STALL value larger than that provided by the API, although this might have implications on
throughput.

With either method, it is necessary to provide code parameters (that is, REG0-3) for each code
variant. There are 128 register sets available to support this. The shared code parameters
SC_TABLE, LA_TABLE, QC_TABLE can be apportioned as necessary between unique codes, and
combined in an arbitrary fashion by the code parameters for a particular code definition. If these
are to be rewritten, then it might be appropriate to sub-divide the tables into a number of equal
size partitions to allow each partition to be written independently.

Methods 1 and 2 can be combined to obtain greater flexibility.

Related Information

LDPC Runtime Configuration

LDPC Code Memory Error Detection and
Correction

LDPC code parameters, REF, and shared tables are stored in memories with Error Correction
Code (ECC). This memory has the ability to detect two errors, and correct one error. For each
memory, two error flags are generated and made available through the interrupt service register
in order to monitor errors:

• ECC error: normally 0, set when one or more errors have been detected in a word read from
the respective memory.

• ECC two-bit error: normally 0, set when 2 errors are detected in a word read from the
respective memory. It might also be set when the number of errors in a word is greater than 2;
however, this is not guaranteed.

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=65

Interface Protocols
AXI4-Stream Interface
The AXI4-Stream interface is a point to point link where the transmitter is known as a master,
and the receiver a slave. For further details on AXI4-Stream interfaces see the AMBA AXI4-Stream
Protocol Specification (ARM IHI 0051A) and the Vivado Design Suite: AXI Reference Guide
(UG1037).

Basic Handshake

The following figure shows the transfer of data in an AXI4-Stream channel. The tvalid signal is
driven by the source (master) side of the channel and tready is driven by the destination (slave)
side. The tvalid signal indicates that the values in the payload fields (tdata and tlast) are
valid. The tready signal indicates that the slave is ready to accept data. When both tvalid and
tready are asserted in the same clock cycle, a transfer occurs.

The order of tvalid or tready going High or Low is not important; data is only transferred
when both tvalid and tready are High.

Figure 8: Data Transfer in an AXI4-Stream Channel

Use of TLAST

The core always produces tlast signals on all output channels; however the sizes of input
packets are always either fixed or given explicitly using associated control information. Hence the
tlast on input channels is actually redundant; requiring a source to provide a suitable tlast
could hinder interoperability. Therefore the core has been specifically designed to ignore tlast
inputs for packet delineation and use internal knowledge of packet size instead. In all such cases,

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 66Send Feedback

https://developer.arm.com/documentation/ihi0051/a/
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=66

the core also produces two event signals, one to indicate tlast was unexpectedly asserted (tlast
unexpected events) and one to indicate tlast was unexpectedly deasserted (tlast missing
events). In all situations the core continues to operate as if tlast was correctly applied, and the
events can be interpreted as required. For further details of tlast handling in Xilinx® IP see the
Vivado Design Suite: AXI Reference Guide (UG1037).

Note: When a packet consists of a single transfer of data, tlast is redundant and should be tied off to 1.

AXI4-Lite Interface
For details on AXI4-Lite interfaces see the AMBA AXI and ACE Protocol Specification (ARM
IHI0022E) and the Vivado Design Suite: AXI Reference Guide (UG1037).

Throughput Limits of Interfaces
While the data interfaces support wide transfer widths, internally the throughput of the input
and output interfaces is limited to a maximum of:

• Turbo decode: 12 LLRs @f(core_clk)

• LDPC decode: 16 LLRs or 16 hard bytes @f(core_clk)

• LDPC encode: 16 hard bytes @f(core_clk)

Turbo Decoder Interface Throughput Limit

For turbo decode, the internal interface throughput limit is 12 LLRs per core_clk cycle,
consisting of four sets of three 8-bit values (systematic, parity, parity interleaved). If parity is not
required at the output, then the limit is four systematic LLR values per core_clk cycle. If hard
output is required, then the limit is still four systematic values per core_clk cycle, but the four
values are now hard bits.

LDPC Decoder Interface Throughput Limit

For the decoder, if the LDPC sub-matrix size, P, is not a multiple of 16, then not all internal
transfers into internal input memory are 16 LLRs. Transfers are in groups of P, and the final
transfer in a group is mod(P, 16), and the average I/O throughput is reduced to:

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 67Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
https://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=67

For example, if P=27, then the peak I/O B/W is:

LDPC Encoder Interface Throughput Limit

For the encoder, transfers are at most 16 bytes, or 128 bits. If P<128 then at most P bits are
transferred between interface and memory per cycle and the average I/O throughput becomes:

For example, if P=360, then peak hard bits I/O B/W is:

These limits provide lower limits on increased throughput possible with small numbers of
iterations.

Chapter 4: Designing with the Core

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=68

Chapter 5

Design Flow Steps
This section describes customizing and generating the core, constraining the core, and the
simulation, synthesis, and implementation steps that are specific to this IP core. More detailed
information about the standard Vivado® design flows and the IP integrator can be found in the
following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

• Vivado Design Suite User Guide: Designing with IP (UG896)

• Vivado Design Suite User Guide: Getting Started (UG910)

• Vivado Design Suite User Guide: Logic Simulation (UG900)

Customizing and Generating the Core
This section includes information about using Xilinx® tools to customize and generate the core in
the Vivado® Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the Vivado Design
Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) for detailed information. IP
integrator might auto-compute certain configuration values when validating or generating the
design. To check whether the values do change, see the description of the parameter in this
chapter. To view the parameter value, run the validate_bd_design command in the Tcl
console.

You can customize the IP for use in your design by specifying values for the various parameters
associated with the IP core using the following steps:

1. Select the IP from the IP catalog.

2. Double-click the selected IP or select the Customize IP command from the toolbar or right-
click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) and the Vivado
Design Suite User Guide: Getting Started (UG910).

The SD-FEC core configuration screen in the Vivado IDE comprises four configuration tabs and
four information tabs.

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 69Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug994-vivado-ip-subsystems
https://docs.xilinx.com/access/sources/dita/map?url=ug896-vivado-ip
https://docs.xilinx.com/access/sources/dita/map?url=ug910-vivado-getting-started
https://docs.xilinx.com/access/sources/dita/map?url=ug900-vivado-logic-simulation
https://docs.xilinx.com/access/sources/dita/map?url=ug994-vivado-ip-subsystems
https://docs.xilinx.com/access/sources/dita/map?url=ug896-vivado-ip
https://docs.xilinx.com/access/sources/dita/map?url=ug910-vivado-getting-started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=69

IP Symbol Tab
The IP Symbol tab shows the core pinout.

Interface Summary Tab
This tab displays the field types, widths and positions of the core AXI4-Stream interfaces.

LDPC Code Analysis Tab
This tab displays any messages generated while processing the specified LDPC codes, for
example, decoder/encoder compatibility and warnings of any default values being used.

LDPC Table Usage Tab
When the core is configured for LDPC decode or encode, this tab reports the total usage of the
shared LDPC code parameters for the specified LDPC codes. In addition, it reports the relative
usage for each code.

Related Information

Shared LDPC Code Parameters

Function Tab
This tab is used to specify the FEC mode and configuration.

Note: A single IP instance can only be configured for turbo decode or LDPC operation. When configured
for LDPC encode, the control stream operation bit is fixed to encode.

Related Information

Control Input Ports (CTRL)

Configuration

Standard: Specifies the supported standards:

• 5G: 3rd Generation Partnership Project; Technical Specification Group Radio Access Network;
Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 15)
(3GPP Std TS 36.212 V15.0.1)

• LTE: 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR;
Multiplexing and channel coding (Release 15) (3GPP Std TS 38.212 V15.0.0)

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 70Send Feedback

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2426
https://www.3gpp.org/dynareport/38212.htm
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=70

• WiFi 802.11: IEEE Standard for Information technology - Local and Metropolitan area Network
Standards (IEEE Std 802.11)

• DOCSIS 3.1: Data-Over-Cable Service Interface Specifications DOCSIS 3.1, Physical Layer
Specification (DOCSIS 3.1)

• Custom: Custom LDPC code definition

Turbo Decode Code Parameters

• Turbo Decode: Selects turbo decode FEC mode.

• Algorithm: Specifies which turbo decode algorithm to use:

• MAX Scale: Max Log-Map algorithm with extrinsic scaling. When scaling is set to 1 this is
equivalent to the Max Log-Map algorithm.

• MAX Star: Log-Map algorithm.

• Scale: Specifies the extrinsic scaling to apply when the Max Scale algorithm has been selected.
The scale is defined as 0.0625-1, in increments of 0.0625. The default value is 0.75.

LDPC Decode Code Parameters

• LDPC Decode: Selects LDPC decode FEC mode.

• Support W>1: Specifies whether codes with W>1 are supported. This results in additional
checks on all codes being run on the decoder.

• Code Definition: LDPC code definition file. This is a YAML file (http://yaml.org) which specifies
the custom LDPC code definitions for use with the IP instance.

IMPORTANT! The code definition file must have a .txt extension.

• Enable Overrides: Enables the following parameter overrides:

• No Final Parity Check: Disables the output parity check logic. Increases throughput for
large codes.

• Scale: Layer scaling factor. The core uses a default of 0.75 if undefined in the YAML file.
The scale is defined as 0.0625-1, in increments of 0.0625. The default value is 0.75.

• Max. Schedule: Sets the maximum code block interleaving. See LDPC Block Interleaving for
details.

Note: Overrides are not available when the 5G standard has been selected.

Note: Values set in the Vivado® IDE override those defined in the specified YAML file or standard.

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 71Send Feedback

https://standards.ieee.org/findstds/standard/802.11-2012.html
https://apps.cablelabs.com/specification/CM-SP-PHYv3.1
http://yaml.org
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=71

Related Information

LDPC Block Interleaving
LDPC Decoder Support for W>1
LDPC Code Definition File
Output Parity Check (OPC)
REG2 Register (0x2008+CODE*0x10)

LDPC Encode Code Parameters
Note: Some LDPC codes suitable for decode are not suitable for encode - errors are reported, detailing any
incompatibilities. See the LDPC Encoding section.

• LDPC Encode: Selects LDPC encode FEC mode. This selection is compatible with LDPC
decode.

• Code Definition: LDPC code definition file. This is a YAML file (http://yaml.org) which specifies
the custom LDPC code definitions for use with the IP instance.

IMPORTANT! The code definition file must have a .txt extension.

Related Information

LDPC Encoding
LDPC Code Definition File

Interface Tab
This tab is used to configure the interface settings.

S_AXI

• Interface: Specifies the S_AXI parameter interface configuration.

• Runtime-Configured: the S_AXI parameter interface is exposed and the core and LDPC
parameters must be configured by an external source. The IP core generates configuration
parameters which are written to a file and also exported to the standalone driver in the
Vitis™ software platform.

• Initialized retain I/F: The code parameters are automatically initialized at device
configuration or after reset. Initialization values for the core parameter can also be
specified using the corresponding core configuration screen parameters.

• Initialized: The S_AXI parameter interface is removed from the IP core and the Enable I/Fs
core parameter is set.

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 72Send Feedback

http://yaml.org
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=72

• Core Parameters: Specifies initialization values for the following core parameters when
Interface is set to Initialized retain I/F or Initialized.

• Enable I/Fs: Set all interfaces enable bits in the AXIS_ENABLE register.

• Out of Order: Sets the out of order bit in the ORDER register.

• Interrupts: Clears all bits of the Interrupt Mask register, thereby enabling interrupts.

• ECC Interrupts: None, Both, or Multi-bit Only.

• Both: All bits of the ECC Interrupt Mask register are cleared, enabling all ECC interrupts.

• Multi-bit Only: Only the two-bit ECC error bits are cleared, enabling only the two-bit
ECC interrupts.

• Bypass: Sets the BYPASS register.

• AXI WR Protect: Sets the AXI_WR_PROTECT register.

• Code WR Protect: Sets the CORE_WR_PROTECT register.

Related Information

LDPC Runtime Configuration
Register Space

DIN

See Data Interfaces for full details of the interface configuration options. These options configure
the AXIS_WIDTH register.

• Interface: Specifies the DIN and DIN_WORDS interface configuration. When Unconfigured, the
full interfaces are exposed as detailed in Port Descriptions. When Pre-configured, the
interface is simplified as per the Vivado® IDE settings.

• Lanes: Specifies the number of DIN lanes exposed on the IP instance (1, 2 or 4).

• Words configuration: Specifies the DIN_WORDS configuration: Fixed, Per Block, or Per
Transaction.

When Fixed, the DIN_WORDS AXI4-Stream interface is removed from the IP instance and is
driven with the specified number of words.

When Per Block or Per Transaction is selected, the DIN_WORDS interface is present:

• Per Block: Configures the IP instance to expect a single DIN_WORDS value per input code
block.

• Per Transaction: Configures the IP instance to expect one DIN_WORDS value per input
transaction on the DIN interface.

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=73

• Number of words: Specifies the fixed number of words that is expected on the DIN interface
for every transaction. This is used when the words configuration is set to Fixed.

Related Information

AXI4-Stream Interface Definition
AXIS_WIDTH Register (0x0C)
Port Descriptions

DOUT

• Interface: Specifies the DOUT and DOUT_WORDS interface configuration. When Unconfigured,
the full interfaces are exposed as detailed in Port Descriptions. When Pre-configured, the
interface is simplified as per the Vivado® IDE settings.

• Lanes: Specifies the number of DOUT lanes exposed on the IP instance (1, 2, or 4).

• Words configuration: Specifies if the DOUT_WORDS configuration: Fixed, Per Block, or Per
Transaction.

When Fixed, the DOUT_WORDS AXI4-Stream interface is removed from the IP instance and is
driven with the specified number of words. The DOUT AXI4-Stream interface transmits with
the specified number of words.

When Per Block or Per Transaction is selected, the DOUT_WORDS AXI4-Stream interface is
present:

• Per Block configures the IP instance to expect a single DOUT_WORDS value per output code
block.

• Per Transaction configures the IP instance to expect one DOUT_WORDS value per output
transaction on the DOUT AXI4-Stream interface.

• Number of words: Specifies the fixed number of words that is expected on the DOUT interface
for every transaction. This is used when the words configuration is set to Fixed.

Related Information

Port Descriptions

Runtime Loading Tab
This tab is used to set the runtime activity. The physical and throughput utilization values are
used to determine the power estimate for the IP instance by defining the expected runtime
activity. The physical utilization value is automatically calculated using the characteristics of the
specified code(s).

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=74

• Physical Utilization: Defines the utilization of SD-FEC functional blocks. The parameter value
is calculated automatically based on the specified code configuration.

• Throughput Utilization: Specifies activity in terms of instance throughput as a percentage of
maximum throughput for the code configurations in use. For example, the maximum
throughput of the DOCSIS v3.1 medium code is 1.57 Gb/s but if the block is operated at 1
Gb/s the activity figure can be reduced to ~64%. Note, the maximum throughput when
different codes are interleaved can be higher or lower than the throughput of the individual
codes.

Note: The following runtime loading parameters have been deprecated and are no longer available unless
you are upgrading from a previous revision of the IP where these parameters had been set to non-default
values.

• Percentage Loading: Automatic or Manual. When Automatic, the appropriate Percentage
Loading parameter is updated based on the Throughput Utilization parameter and the specific
turbo or LDPC code parameters. When Manual is selected, the following percentage loading
parameters can be modified:

• Turbo Decoder Percentage Loading: Percentage of maximum activity loading for this IP
instance when configured for turbo decode.

• LDPC Decoder Percentage Loading: Percentage of maximum activity loading for this IP
instance when configured for LDPC decode.

• LDPC Encode Percentage Loading: Percentage of maximum activity loading for this IP
instance when configured for LDPC encode only.

Example Design Tab
This tab is used to set the example design parameters.

The core always generates the default simulation-only example test bench example design. A
processor-based example design can also be selected; this is included in the example design
along with the default example test bench.

• Generate processor-based example design: Select the generation of the processor based
example design in the example design project.

• Processor-based example design type: Select MicroBlaze™ or Zynq® UltraScale+™ RFSoC.

• Selecting MicroBlaze enables simulation of the full processor-based example design.

• Selecting Zynq UltraScale+ RFSoC creates an example design using the Processor Sub-
System (PS).

Example design generation also builds an example processor application.

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=75

• Include Encoder instance: When selected the generated example design also includes an
instance of the LDPC Encoder/Decoder IP core configured for encode. This option is only
available when LDPC Encode or Decode has been selected and the core is able to determine a
LDPC code definition compatible with the LDPC encoder.

• Build Vitis Project: Optionally attempt to create and build the example processor application
during example design generation. This step requires the Xilinx® Software Command-Line Tool
(XSCT) to be available. The generated ELF is imported into the example design and associated
with the MicroBlaze processor, enabling simulation of the example design.

User Parameters
The following table shows the relationship between the fields in the Vivado® IDE and the User
Parameters (which can be viewed in the Tcl Console).

Table 57: Vivado IDE Parameter to User Parameter Relationship

Vivado IDE Parameter/Value1 User Parameter/Value1 Default Value
Function: Configuration

Standard Standard LTE

Function: Turbo Decode Code parameters

Algorithm Turbo_Decode_Algorithm MaxScale

Scale
 [1.0, 0.0625:0.0625:0.9375]

Turbo_Decode_Scale
 [0, 1:1:15]

12

Function: LDPC Decode Code Parameters

LDPC Decode LDPC_Decode False

Support W>1 Enable_Wgt1 False

Code Definition LDPC_Decode_Code_Definition no_file_loaded

Enable LDPC_Decode_Overrides False

No Final Parity Check LDPC_Decode_No_OPC False

Scale
 [1.0, 0.0625:0.0625:0.9375]

LDPC_Decode_Scale
 [0, 1:1:15]

12

Max. Schedule LDPC_Decode_Max_Schedule 0

Function: LDPC Encode Code Parameters

LDPC Encode LDPC_Encode False

Code Definition LDPC_Encode_Code_Definition no_file_loaded

Interface: S_AXI

Interface Parameter_Interface Runtime-Configured

Enable I/Fs Enable_IFs False

Out of Order Out_of_Order False

Interrupts Interrupts False

ECC Interrupts ECC_Interrupts None

Bypass Bypass False

AXI WR Protect AXI_WR_Protect False

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=76

Table 57: Vivado IDE Parameter to User Parameter Relationship (cont'd)

Vivado IDE Parameter/Value1 User Parameter/Value1 Default Value
CODE WR Protect Code_WR_Protect False

Interface: DIN

Interface DIN_Interface Pre-Configured

Lanes DIN_Lanes 1

Words configuration DIN_Words_Configuration Fixed

Number of words DIN_Words 16

Interface: DOUT

Interface DOUT_Interface Pre-Configured

Lanes DOUT_Lanes 1

Words configuration DOUT_Words_Configuration Fixed

Number of words DOUT_Words 16

Runtime Loading

Physical Utilization Physical_Utilization 100

Throughput Utilization Activity 100

Percentage Loading Percentage_Loading Automatic

Turbo Decoder Percentage Loading TD_PERCENT_LOAD 100

LDPC Decoder Percentage Loading LD_PERCENT_LOAD 0

LDPC Encoder Percentage Loading LE_PERCENT_LOAD 0

Example Design

Generate processor-based example design Include_PS_Example_Design False

Include Encoder instance Include_Encode False

Build Vitis Project Build_SDK_Project False

Notes:
1. Parameter values are listed in the table where the Vivado IDE parameter value differs from the user parameter value.

Such values are shown in this table as indented below the associated parameter.

LDPC Code Definition File
The core uses a YAML file (http://yaml.org/) to specify the parity check matrix. See LDPC Code
Support for details of the parity check matrix structure. The Vivado® IDE translates the code
definition file into values for programming the LDPC code parameters and shared code
parameters.

The code parameters are defined using YAML key value pairs. The definition file contains a single
code definition or multiple code definitions. For a single code the parameter keys can be placed
directly at the top-level. For multiple codes, each set of code parameters are placed under a
unique top-level identifier key. For example, in Decoder Example, repeat the code definition
block, but change the top-level identifier key from my_code1: to something else, and update
the code definition.

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 77Send Feedback

http://yaml.org/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=77

IMPORTANT! The definition file must have a .txt  extension.

Table 58: LDPC Code Definition Parameters

Parameter Field/
Key Name Required Support Values/

Range Notes

n Yes 4 to 32768 Block size.

k Yes 2 to 32766 Information bits.

p Yes 2 to 512 Sub-matrix size.

normalization No none, row Normalization type:
none: Normalization factor of 1
row: Variable node to check node message scaling.
When undefined, a default scaling of 0.75 is applied.

scale No 0 to 15 Normalization factor = scale * 0.0625.
When set to 0, normalization factor is 1. Scale can be
defined as a list; one per base matrix row.

enable_wgt1 No true, false Indicates code definition contains circulant weight
greater than 1.

no_packing No true, false Disable the packing of QC operations, irrespective of
sub-matrix size.

encode No true, false Indicates the code is only used for encode. In
particular, the stall calculation is relaxed, and the
circulant weight limits are specific to encode.

no_final_parity No true, false Disables the output parity check for the code.

max_schedule No 0 to 3 Maximum number of blocks that can be interleaved
by the LDPC encoder or decoder while code is active.
For default scheduling behavior, omit field or set to 0.
See LDPC Block Interleaving for details.

sm_array Yes Base matrix definition.
List of row, column, and shift (rotation) values.

sm_array[x].row Yes Integer value specifying the row of the occupied sub-
matrix.

sm_array[x].col Yes Integer value specifying the column of the occupied
sub-matrix.

sm_array[x].shift Yes Integer value specifying the rotation (shift) of the
occupied sub-matrix.
When W>1, multiple rotations can be specified using
a list. Alternatively, additional sm_array entries can
be included with the same row and column.

Related Information

LDPC Block Interleaving
LDPC Code Support
LDPC Code Parameters
Shared LDPC Code Parameters
Decoder Example

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=78

Decoder Example

my_code1:
 n: 128
 k: 104
 p: 8
 scale: [11,11,11]
 sm_array:
 - {row: 0, col: 0, shift: [1,6]} # defines multiple rotations (for W>1
codes)
 - {row: 0, col: 2, shift: 5}
 - {row: 0, col: 6, shift: 4}
 - {row: 0, col: 7, shift: 3}
 - {row: 0, col: 11, shift: 2}
 - {row: 0, col: 12, shift: 1}
 - {row: 0, col: 14, shift: 0}
 - {row: 0, col: 15, shift: 7}
 - {row: 1, col: 0, shift: 6}
 - {row: 1, col: 1, shift: 7}
 - {row: 1, col: 5, shift: 0}
 - {row: 1, col: 7, shift: 1}
 - {row: 1, col: 9, shift: 2}
 - {row: 1, col: 11, shift: 3}
 - {row: 1, col: 15, shift: 4}
 - {row: 2, col: 0, shift: 0}
 - {row: 2, col: 3, shift: 1}
 - {row: 2, col: 4, shift: 2}
 - {row: 2, col: 8, shift: 3}
 - {row: 2, col: 9, shift: 4}
 - {row: 2, col: 10, shift: 5}
 - {row: 2, col: 13, shift: 6}

Encoder Example

my_enc_code1:
 encode: true
 k: 280
 n: 448
 p: 56
 sm_array:
 - {row: 0, col: 0, shift: [1,6]} # defines multiple rotations (for W>1
codes)
 - {row: 0, col: 2, shift: 34}
 - {row: 0, col: 3, shift: 7}
 - {row: 0, col: 4, shift: 46}
 - {row: 0, col: 5, shift: 10}
 - {row: 1, col: 0, shift: 2}
 - {row: 1, col: 1, shift: 23}
 - {row: 1, col: 2, shift: 0}
 - {row: 1, col: 3, shift: 51}
 - {row: 1, col: 5, shift: 49}
 - {row: 1, col: 6, shift: 20}
 - {row: 2, col: 0, shift: 19}
 - {row: 2, col: 1, shift: 18}
 - {row: 2, col: 2, shift: 52}
 - {row: 2, col: 4, shift: 37}
 - {row: 2, col: 6, shift: 34}
 - {row: 2, col: 7, shift: 39}

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=79

Output Generation
For details, see the Vivado Design Suite User Guide: Designing with IP (UG896).

LDPC Runtime Configuration

The Vivado® IDE provides two methods to generate the code configuration parameters, either
during IP core generation or through a Tcl interface. The latter is particularly useful when it is
necessary to generate a wide range of codes, because it allows the parameter configuration to be
analyzed, thereby establishing commonalities and minimizing the amount of parameter storage
required. It can also be used to verify that any custom parameter generation method is
generating the correct parameters for a particular code requirement.

IP Core Generation

The AXI4-Lite transactions required to configure the SD-FEC core at run-time are produced
during IP generation. The options set in the Vivado IDE are imported by the standalone software
driver and are also written to a command file for use with a programmable logic based controller;
<ipinst>_trans.log. The IP Sources window displays all the generated output products for
an IP core. The default output product directory for an IP core is in the project directory,
<project_name>.srcs/sources_1/ip/<ipinst_name>. The command file is text and
contains a list of address and data pairs in hexadecimal.

Tcl Interface

An additional Tcl script, <project_name>.srcs/sources_1/ip/<ipinst_name>/
scripts/gen_ldpc_code_params.tcl is output during IP core generation which contains a
helper function, gen_ldpc_code_params, which can be used to process the LDPC code
definition file independent of the Vivado IDE. To make the function available in the Vivado Tcl
shell, enter the following command:

source <project_name>.srcs/sources_1/ip/<ipinst_name>/scripts/
gen_ldpc_code_params.tcl

The function requires a single argument of a code definition file and returns a Tcl dict structure
containing the configuration parameters for the LDPC code parameters and the shared LDPC
code parameters for each of the LDPC codes defined in the file.

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 80Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug896-vivado-ip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=80

The Tcl dict consists of a top-level key per code defined in the code definition file below which
all the corresponding parameters are defined. The dict structure can be queried to obtain the
configuration parameters for each code, for example:

set params [gen_ldpc_code_params <my_code_definition_file>]
set all_code_ids [dict keys $params]
set all_param_names [dict keys [dict get $params <my_code_id1>]]
set n [dict get $params <my_code_id1> n]
set k [dict get $params <my_code_id1> k]
set qc_table [dict get $params <my_code_id1> qc_table]

Related Information

LDPC Code Definition File
LDPC Code Parameters
Shared LDPC Code Parameters

Constraining the Core
This section contains information about constraining the core in the Vivado® Design Suite.

Required Constraints

The Vivado IDE implementation currently does not support automatic timing-driven placement
for SD-FEC instances. To achieve optimal timing results, the instances must be placed manually:

set_property LOC FE_X<x>Y<y> [get_cells */<ipinst_name>/inst/FE_I]

Note: Combinations of SD-FEC instances are restricted according to LDPC or turbo mode. See Placement
Location Guidelines for SD-FEC IP Core for further guidelines and placement locations when using
multiple instances of the SD-FEC.

Device, Package, and Speed Grade Selections

The core can be implemented in Zynq UltraScale+ RFSoC devices as detailed in the Zynq
UltraScale+ RFSoC Data Sheet: Overview (DS889).

Clock Frequencies

See the Zynq UltraScale+ RFSoC Data Sheet: Overview (DS889).

Clock Management

This section is not applicable for this IP core.

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 81Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds889-zynq-usp-rfsoc-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds889-zynq-usp-rfsoc-overview.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=81

Clock Placement

This section is not applicable for this IP core.

Banking

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

Simulation
For comprehensive information about Vivado® simulation components, as well as information
about using supported third-party tools, see the Vivado Design Suite User Guide: Logic Simulation
(UG900).

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide: Designing
with IP (UG896).

Placement Location Guidelines for SD-FEC IP Core
All SD-FEC instances must be placed using an XDC constraint. See Required Constraints for more
information. Certain placement and use guidelines are dependent on the selected SD-FEC mode.
The following table shows placement options for configurations of turbo, LDPC encoder, and
LDPC decoder instances; the LDPC encoder instances have no placement restrictions but the
turbo and LDPC decoder placement guidelines must be followed.

The following SD-FEC configurations are supported:

• A maximum of four turbo mode SD-FEC instances can be used simultaneously.

• A maximum of eight SD-FEC instances can be used simultaneously, with up to six performing
LDPC decode.

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 82Send Feedback

https://docs.xilinx.com/access/sources/dita/map?url=ug900-vivado-logic-simulation
https://docs.xilinx.com/access/sources/dita/map?url=ug896-vivado-ip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=82

• A mixed mode of turbo decode and LDPC decode and encode is also supported up to a
maximum of four SD-FEC instances. The placement guidelines for this configuration are the
same as for turbo mode in the following table.

The Vivado® design tools issue an error if the combinations in the following table are not
followed. See the device diagram in the following figure for reference to the SD-FEC block
locations.

Table 59: Placement Guidelines

Turbo Mode1
LDPC Mode1

FMAX (MHz)
Decoder2 Encoder

-2 Speed Grades (Vnom Only)

X0Y7, X0Y5, X0Y3, X0Y1 None None 667

X0Y7, X0Y6, X0Y1, X0Y0

None X0Y7, X0Y6, X0Y5, X0Y2, X0Y1,
X0Y0

X0Y4, X0Y3 667

None

None X0Y7, X0Y6, X0Y5, X0Y4, X0Y3,
X0Y2, X0Y1, X0Y0

-1 Speed Grades (Vnom Only)

X0Y7, X0Y5, X0Y3, X0Y1 None None 667

X0Y7, X0Y6, X0Y1, X0Y0

None X0Y7, X0Y6, X0Y5, X0Y2, X0Y1,
X0Y0

X0Y4, X0Y3 625

None

None X0Y7, X0Y6, X0Y5, X0Y4, X0Y3,
X0Y2, X0Y1, X0Y0

All Speed Grades

X0Y7, X0Y5, X0Y3, X0Y1 None None 667

X0Y7, X0Y6, X0Y1, X0Y0

None X0Y7, X0Y6, X0Y1, X0Y0 X0Y5, X0Y2 667

X0Y7, X0Y5, X0Y3 X0Y1 None

None X0Y7, X0Y6, X0Y5, X0Y2, X0Y1,
X0Y0

Notes:
1. Subsets of these configurations are also allowed; for example, four LDPC decoders and four LDPC encoders is a valid

setting, provided that the LDPC decoders are always placed in the specified decoder sites.
2. LDPC encoders can be placed in any valid LDPC decoder site.

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=83

Figure 9: SD-FEC Locations in the SD-FEC Column

X0Y7
X0Y6
X0Y5
X0Y4
X0Y3
X0Y2
X0Y1
X0Y0

X19907-120618

Chapter 5: Design Flow Steps

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=84

Chapter 6

C Model
This chapter details the C Model provided with the core.

The bit accurate C model is a self-contained, linkable, shared library that models the functionality
of the SD-FEC core with finite precision. The model consists of a set of C functions that reside in
a shared library. The model is bit accurate but not cycle-accurate; it does not model the core
latency or its interface signals. Example C code is provided to demonstrate how these functions
form the interface to the C model.

The C model has been tested on Linux using GCC 4.4.7 and 4.8.0, and on Windows using Visual
Studio 2012 and MinGW GCC 4.9.0. MATLAB® R2013a has been used.

Note: The shared object and DLL are statically linked with libstdc++, ensuring it has access to the
correct version.

Unpacking and Model Contents
The following tables show the zip file contents for both Linux and Windows C Models.

Table 60: Linux 64 Zip File Contents

File Description
Standard Header Files

sd_fec_v1_1_bitacc_cmodel.h Header file defining the C model API

xip_common_bitacc_cmodel.h Header file defining standard Xilinx® C model types and macros

Shared Objects

libIp_sd_fec_v1_1_bitacc_cmodel.so Model shared object library

MATLAB Wrapper

sd_fec_v1_1_bitacc_mex.cpp MATLAB® MEX function source

gen_ldpc_spec.m Non-class wrapper functions.

gen_parity_check_mat.m

@sd_fec_v1_1_bitacc MATLAB MEX function class directory

Compilation and Smoke Tests

run_bitacc_cmodel.c Example program for calling the C model

make_run_bitacc_cmodel.csh Compilation script for example C program

Chapter 6: C Model

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=85

Table 60: Linux 64 Zip File Contents (cont'd)

File Description
make_sd_fec_v1_1_bitacc_mex.m MATLAB MEX function compilation script

run_sd_fec_v1_1_bitacc_mex.m MATLAB MEX function example script

Data Files

test.mat MATLAB MAT file containing example LDPC parity check matrix.

test.yml Example LDPC parity check matrix specification file, as required by
model.

Table 61: Windows NT64 Zip File Contents

File Description
Standard Header Files

sd_fec_v1_1_bitacc_cmodel.h Header file defining the C model API

xip_common_bitacc_cmodel.h Header file defining standard Xilinx® C model types and
macros

DLL and Lib Objects

libIp_sd_fec_v1_1_bitacc_cmodel.dll Model DLL

libIp_sd_fec_v1_1_bitacc_cmodel.lib Model .lib file for compiling

MATLAB Wrapper

sd_fec_v1_1_bitacc_mex.cpp MATLAB® MEX function source

gen_ldpc_spec.m Non-class wrapper functions.

gen_parity_check_mat.m

@sd_fec_v1_1_bitacc MATLAB MEX function class directory

Compilation and Smoke Tests

run_bitacc_cmodel.c Example program for calling the C model

make_run_bitacc_cmodel.bat Compilation script for example C program

make_sd_fec_v1_1_bitacc_mex.m MATLAB MEX function compilation script

run_sd_fec_v1_1_bitacc_mex.m MATLAB MEX function example script

Data Files

test.mat MATLAB MAT file containing example LDPC parity check
matrix.

test.yml Example LDPC parity check matrix specification file, as
required by model.

Chapter 6: C Model

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=86

Installation
Linux
• Unpack the contents of the zip file.
• Ensure that the directory where the libIp_sd_fec_v1_1_bitacc_cmodel.so file

resides is included in the path of the environment variable LD_LIBRARY_PATH.

Windows
• Unpack the contents of the zip file.

• Ensure that the directory where the libIp_sd_fec_v1_1_bitacc_cmodel.dll file
resides is:
○ included in the path of the environment variable PATH or
○ the directory in which the executable that calls the C model is run.

C Model Interface
The Application Programming Interface (API) of the C model is defined in the header file
sd_fec_v1_1_bitacc_cmodel.h. The interface consists of a specification file, data
structures, and functions as described in the following sections.

An example C file, run_bitacc_cmodel.c, is included with the C libraries. This file
demonstrates how to call the C model. The run_bitacc_cmodel.c and
run_sd_fec_v1_1_bitacc_mex.m contain example code for the LDPC encoder and decoder
and turbo decoder to show the basic operation of the C model.

LDPC Parity Check Matrix Specification File
The LDPC code definition is captured using a YAML format text file. The C model API and
MATLAB interface provide helper functions to convert from a parity check matrix to a YAML
specification file and back.

The zip file contains an annotated example, test.yml, of the LDPC parity check matrix
specification file. See LDPC Code Definition File for details of the file format.

Note: The C model can only accept one code definition per YAML file. The core generates individual YAML
files for each code of supported standards, when selected.

Chapter 6: C Model

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=87

Related Information

LDPC Code Definition File

Constants
The following table contains a list of useful constants that have been defined to allow parameters
to be set to legal values.

Table 62: C Model Constants

Name Value
Error Codes

XIP_STATUS_OK 0

XIP_STATUS_ERROR 1

FEC Type

XIP_SD_FEC_v1_1_PARAM_FEC_LDPC 1

XIP_SD_FEC_v1_1_PARAM_FEC_TURBO 0

Turbo Algorithm Type

XIP_SD_FEC_v1_1_PARAM_TURBO_ALG_MAX 0

XIP_SD_FEC_v1_1_PARAM_TURBO_ALG_MAXSTAR 1

Standard

XIP_SD_FEC_v1_1_STANDARD_OTHER 0

XIP_SD_FEC_v1_1_STANDARD_5G_DECODE 1

XIP_SD_FEC_v1_1_STANDARD_5G_ENCODE 2

XIP_SD_FEC_v1_1_STANDARD_WIFI_802_11_DECODE 3

XIP_SD_FEC_v1_1_STANDARD_WIFI_802_11_ENCODE 4

XIP_SD_FEC_v1_1_STANDARD_DOCSIS_3_1_DECODE 5

XIP_SD_FEC_v1_1_STANDARD_DOCSIS_3_1_ENCODE 6

Operation Type

XIP_SD_FEC_v1_1_CTRL_DECODE 0

XIP_SD_FEC_v1_1_CTRL_ENCODE 1

Types and Structures
Table 63: C Model Types and Structures

Name Description
General Types

typedef double xip_real Scalar type alias

typedef unsigned integer xip_uint Integer type alias

typedef unsigned char xip_bit Bit type alias

Chapter 6: C Model

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=88

Table 63: C Model Types and Structures (cont'd)

Name Description
Handler Function Signatures

typedef void (*xip_msg_handler)(void* handle, int error,
const char* msg)

Interface to a message handler function

Structures

typedef struct xip_sd_fec_v1_1_config Model configuration structure, includes:
• name: String identifier for model instance.
• fec: FEC code to be used, see model constants.
• standard: Specifies standard to implement, see model

constants.
• ip_quant_mode: Specifies input quantization;

• 0 = Quantize and saturate to recommended decoder
LLR limits

• 1 = Quantize and wrap at input width limits as per
hardware

typedef struct xip_sd_fec_v1_1_imp xip_sd_fec_v1_1 Handle type to refer to an instance of the model

typedef xip_uint xip_sd_fec_v1_1_ldpc_sc_table See SC_TABLE register (link below) for field details.

typedef struct xip_sd_fec_v1_1_ldpc_la_table See LA_TABLE register (link below) for field details.

typedef struct xip_sd_fec_v1_1_ldpc_qc_table See QC_TABLE register (link below) for field details.

typedef struct xip_sd_fec_v1_1_ldpc_parameters See LDPC Code Parameters (link below).

typedef struct xip_sd_fec_v1_1_td_parameters See Turbo Code Parameters (link below) for field details.

typedef struct xip_sd_fec_v1_1_ctrl_packet See CTRL bus port bit definitions (link below) for field details

typedef struct xip_sd_fec_v1_1_stat_packet See STATUS bus port bit definitions (link below) for field
details

Array Types

typedef struct xip_array_real Dynamic array, used for soft value input/output

typedef struct xip_array_bit Dynamic array, used for hard output

Related Information

SC_TABLE Register (0x10000-0x103FC)
LA_TABLE Register (0x18000-0x18FFC)
QC_TABLE Register (0x20000–0x27FFC)
LDPC Code Parameters
Control Input Ports (CTRL)
Status Output Ports (STATUS)

Dynamic Arrays
The C model represents input and output data using multi-dimensional dynamic arrays. The
xip_array_<type> structure is used to specify a multi-dimensional dynamic array containing
elements of type xip_<type>. Several utility functions are provided that allow creation,
allocation and destruction of array instances.

Chapter 6: C Model

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=89

For each array type, the DECLARE_XIP_ARRAY(<type>) macro can be used to declare the
structure and utility function prototypes. The C model header already contains declarations for
the xip_array_real and xip_array_bit array types used by the SD-FEC C model.

Dynamic Array Structure

The xip_array_<type> structure is used to specify a multi-dimensional array of data with
type <type>. The content is summarized in the following table.

Table 64: C Model Dynamic Array Structure

Field Name Type Description
data xip_<type>* Pointer to array of data

data_size size_t Current number of elements in the data array

data_capacity size_t Max number of elements in the data array

dim size_t* Pointer to dimension array

dim_size size_t Current number of elements in the dimension array, dim

dim_capacity size_t Max number of elements in dim array

owner unsigned int Ownership control. A value of 0 indicates that the structure and associated memory
(for the data and dim fields) is allocated and owned by the xip_array_<type>_*
functions, in which case the model can automatically resize arrays as required. Any
other value indicates that the memory is owned by the user, and the model must
report an error if an array is of insufficient capacity.

Dynamic Array Functions

CreateArray

xip_array_<type>*
xip_array_<type>_create();

This function allocates and initializes an empty array for holding values of type <type>. The
function returns a pointer to the created structure, or null if the structure cannot be created. The
structure fields are all initialized to zero indicating an empty array, with ownership associated
with the xip_array_<type>_* functions.

Reserve Data Memory

xip_status
xip_array_<type>_reserve_data(
xip_array_<type>* p,
size_t max_nels
);

Chapter 6: C Model

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=90

This function ensures that array p has sufficient space to store up to max_nels elements of
data. If the current data_capacity is insufficient and the current owner is zero, the function
attempts to allocate or reallocate space to meet the request. The function returns
XIP_STATUS_OK if the array capacity is now sufficient or XIP_STATUS_ERROR if memory
could not be allocated.

Note: This function does not change the data or dimensions held within the array in any way; the contents
of the array after calling the function are equivalent to the contents before calling the function, even if
memory is reallocated. Also, this function never reduces memory allocation; use
xip_array_<type>_destroy to release memory.

Reserve Dimension Memory

xip_status
xip_array_<type>_reserve_dim(
xip_array_<type>* p,
size_t max_nels
);

This function ensures that array p has sufficient space to store up to max_ndims dimensions. If
the current dim_capacity is insufficient and the current owner is zero, the function attempts to
allocate or reallocate space to meet the request. The function returns XIP_STATUS_OK if the
array capacity is now sufficient or XIP_STATUS_ERROR if memory could not be allocated.

Note: This function does not change the data or dimensions held within the array in any way; the contents
of the array after calling the function are equivalent to the contents before calling the function, even if
memory is reallocated. Also, this function never reduces memory allocation; use
xip_array_<type>_destroy to release memory.

Destroy Array

xip_array_<type>*
xip_array_<type>_destroy(
xip_array_<type>* p
);

This function attempts to release all memory associated with array p. If the owner field is zero,
the function releases the memory associated with data, dim and p, and returns null indicating
success. If owner is non-zero the function returns p, indicating failure.

Functions
Details of the C model functions are provided in the sd_fec_v1_1bitacc_cmodel.h header
file. The following table summarizes the C model functions.

Table 65: C Model Functions

Name Description
xip_sd_fec_v1_1_get_version Get version of C model library

Chapter 6: C Model

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=91

Table 65: C Model Functions (cont'd)

Name Description
xip_sd_fec_v1_1_create Create a new instance of the model

xip_sd_fec_v1_1_reset Reset an instance of the model

xip_sd_fec_v1_1_set_config_params Set/change configuration parameters

xip_sd_fec_v1_1_gen_ldpc_spec Generate LDPC specification file from parity check matrix (H).

xip_sd_fec_v1_1_gen_parity_check_mat Generate parity check matrix (H) from LDPC specification file.

xip_sd_fec_v1_1_gen_ldpc_params Generate LDPC parameters from code specification.

xip_sd_fec_v1_1_add_ldpc_params Add an LDPC code to an instance of the model.

xip_sd_fec_v1_1_get_num_ldpc_codes Returns the number of LDPC codes added to the model instance.

xip_sd_fec_v1_1_get_ldpc_params Returns the LDPC parameters for the specified control packet.

xip_sd_fec_v1_1_set_turbo_params Set turbo parameters on an instance of the model.

xip_sd_fec_v1_1_process Process a code word/block.

Compiling
Compilation of user code requires access to the sd_fec_v1_1_bitacc_cmodel.h and
xip_common_bitacc_cmodel.h header files. The header files should be copied to a location
where they are available to the compiler. Depending on the location chosen, the 'include' search
path of the compiler might need to be modified.

The sd_fec_v1_1_bitacc_cmodel.h header file includes the
xip_common_bitacc_cmodel.h header file, so this does not need to be explicitly included in
source code that uses the C model.

Linking
To use the C model, the user executable must be linked against the correct libraries for the target
platform.

Linux

The executable must be linked against the following shared object library:

libIp_sd_fec_v1_1_bitacc_cmodel.so

Using GCC, linking is typically achieved by adding the following command line options:

-L. -Wl,-rpath,. -lIp_sd_fec_v1_1_bitacc_cmodel

This assumes the shared object libraries are in the current directory. If this is not the case, the -L.
option should be changed to specify the library search path to use.

Chapter 6: C Model

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=92

Using GCC, the provided example program run_bitacc_cmodel.c can be compiled and linked
using the following command:

gcc -x c++ -I. -L. -lIp_sd_fec_v1_1_bitacc_cmodel -Wl,-rpath,. -o
run_bitacc_cmodel
run_bitacc_cmodel.c

An example compilation script, make_run_bitacc_cmodel.csh, is included in the zip file.

Windows

The executable must be linked against the following dynamic link library:

libIp_sd_fec_v1_1_bitacc_cmodel.dll

Depending on the compiler, the import libraries might also be required:

libIp_sd_fec_v1_1_bitacc_cmodel.lib

Using Microsoft Visual Studio, linking is typically achieved by adding the import libraries to the
Additional Dependencies entry under the Linker section of Project Properties.

An example compilation script, make_run_bitacc_cmodel.bat, is included in the zip file.

Example
The run_bitacc_cmodel.c file contains example code to show the basic operation of the C
model.

MATLAB Interface
A MEX function and MATLAB® software class are provided to simplify the integration with
MATLAB. The MEX function provides a low-level wrapper around the underlying C model, while
the class file provides a convenient interface to the MEX function.

Compiling
Source code for a MATLAB® MEX function is provided. This can be compiled in MATLAB by
changing to the directory that contains the code and running the
make_sd_fec_v1_1_bitacc_mex.m script.

Chapter 6: C Model

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=93

Installation
To use the MEX function, the compiled MEX function must be present on the MATLAB® search
path. This can be achieved in either of two ways:

1. Add the directory where the compiled MEX function is located to the MATLAB search path
(see the MATLAB addpath function).

or

2. Copy the files to a location already on the MATLAB search path.

As with all uses of the C model the correct C model libraries also need to be present on the
platform library search path (PATH or LD_LIBRARY_PATH).

MATLAB Non-Class Interface
The following table defines the non-class functions provided by the MATLAB® interface (the
functions do not require a model instance object). These directly expose corresponding C model
API functions.

Details of the function arguments can be found using the MATLAB help command.

Table 66: C Model MATLAB Non-Class Functions

Name Description
gen_ldpc_spec Generate LDPC specification file from parity check matrix (H).

gen_parity_check_mat Generate parity check matrix (H) from LDPC specification file.

MATLAB Class Interface
The @sd_fec_v1_1_bitacc class handles the create/destroy semantics on the C model. The
class provides objects for each of the data, configuration and control structures, defined for the C
model and described in Types and Structures.

Details of the function arguments can be found using the MATLAB® help command.

Table 67: C Model MATLAB Class Function

Name Description
get_version Get version of library

reset Resets the model

set_config_params Set/change configuration parameters

add_ldpc_params Add an LDPC code to an instance of the model.

set_turbo_params Set turbo parameters on an instance of the model.

process Process a code word/block.

Chapter 6: C Model

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=94

Chapter 7

Example Design
There are two example designs available. By default, the SD-FEC core generates a simulation-
only example design, containing the IP instance and an example test bench. The default example
design should not be used for synthesis/implementation as it contains only the IP instance. An
optional processor (PS)-based example design can be selected during IP customization; see
Example Design Tab for more information. The PS example design can be used to generate a
bitstream. When generated, to open the example design, right-click on the IP instance in the
project manager and select Open Example Design.

Related Information

Example Design Tab

Simulation-Only Example Design
The IP example test bench <component_name>_tb, instantiates the IP instance and drives
each AXI4-Stream interface with stimulus. When the AXI4-Lite parameter interface is exposed,
this is programmed with the configuration specified for the IP instance.

The interface traffic is supplied to the test bench using two transaction logs (one each for the
AXI4-Stream interfaces, and the AXI4-Lite parameter interfaces). The transaction logs are output
during example design generation and contain stimulus specific to the IP instance. They are
added to the example design project. AXI4-Stream transaction logs can also be produced using
the C Model example application, allowing further stimulus to be defined. The transaction logs
contain traffic for one block per LDPC code, defined during customization, up to a maximum of
three blocks. The order corresponds to the order in which the codes are defined during
customization. See the link below for code enumeration.

Chapter 7: Example Design

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=95

Figure 10: Example Test Bench

Core Instance – DUT

AXI4-Lite
Transaction

Log

AXI4-Stream
Transaction

Log

S_AXI

S_AXIS_CTRL

S_AXIS_DIN_WORDS

S_AXIS_DOUT_WORDS

S_AXIS_DIN

AXI4-Stream
Sink

M_AXIS_STATUS

M_AXIS_DOUT

AXI4-Lite
Source

AXI4-Stream
Source

AXI4-Stream
Source

AXI4-Stream
Source

AXI4-Stream
Source

AXI4-Stream
Sink

<component_name>_tb

X19011-110218

Related Information

C Model
LDPC Code Analysis Tab

Processor-Based Example Design
The Processor Subsystem (PS)-based example design builds a demonstration system
implementing a bit error rate (BER) tester, including the capability to measure throughput and
latency. An example processor application is also generated, and (optionally) compiled, which sets
up and controls the BER test and demonstrates how to configure the SD-FEC IP core using the
low-level bare-metal driver.

Related Information

SD-FEC Low-Level Bare-Metal Driver

Chapter 7: Example Design

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=96

Hardware
Figure 11: Block Diagram

Processor

Monitor

Data Source

Monitor

Source Data
FIFO

SD-FEC
Encoder

Encoded
Data FIFO

Modulation
and Channel

Demodulation

SD-FEC
Decoder

Statistics

Monitor

Monitor

Error Data FIFO

X20568-120618

Overview
The system implements an AWGN (Additive White Gaussian Noise) channel supporting BPSK,
QPSK, QAM-16, and QAM-64 modulation. It includes an optional encoder IP instance and
additional monitoring blocks to measure the throughput and latency of both the encoder and
decoder IP instances.

The design uses three clocks; the processor clock (100 MHz), the system clock (300 MHz), and
SD-FEC IP clock (667 MHz).

Chapter 7: Example Design

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=97

• Data Source: Random data and control packet generation. Produces 128-bits of source data
per output transaction at the system clock rate.

• Source Data FIFO: Buffers source data (K-bits) to be consumed by the Statistics block, 16k x
128-bits.

• Encoded Data FIFO: Buffers encoded data (N-bits) prior to modulation, 32k x 96-bits.

• Modulation & Channel: Implements QAM modulation and the AWGN channel. The block
accepts encoded hard bits at 96-bits per input transaction at the system clock rate. It outputs
4 x I/Q symbols at the system clock rate, giving a maximum channel throughput of 4 x 6-bits
(QAM-64) x 300 MHz = 7.2 Gb/s.

• Demodulation: Implements a Log-likelihood Ratio (LLR) demodulator. It also outputs hard bits
used to determine the channel error.

• Statistics: Calculates the channel & uncorrected bit & block error rates plus a decoder
iteration count.

• Monitor: Monitors the AXI4-Stream data interfaces logging a time stamp for the first and last
codeblock of a group. The monitor blocks uses the output of a shared counter for the time
stamp values.

The Monitor blocks allow the system to measure the throughput and latency of the encoder and
decoder IP instances. It should be noted that the encoder typically has a much higher throughput
than the decoder. The encoded data FIFO allows some buffering of encoded data but if this
becomes full the encoder IP is throttled. Therefore, to measure the throughput of the encoder
the number of codeblocks run through the system should be limited such the encoded data FIFO
does not fill.

Parameters
The hardware design supports the configuration parameters in the following table. These are set
by the example application.

Table 68: Example Design Parameters

Parameter Description
Non-5G NR Control

Code Selects the LDPC code ID to be used or the turbo decode block size

5G Control1

z_j Lifting factor

z_set Base graph cyclic shift set

bg Base graph

mb Number of parity bits

sc_idx Scale factor index, only available when the Normalized Min-Sum algorithm has been specified.

Chapter 7: Example Design

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=98

Table 68: Example Design Parameters (cont'd)

Parameter Description
Common Control

max_iter Specifies the maximum decode iterations

term_on_pass Specifies that decode should terminate on parity pass.

BER

num_blocks Specifies the number of codeblocks to run through the data path.

snr Specifies the AWGN signal-to-noise ratio (SNR), -12dB to 16dB quantized to Fix17_11.

mod_type Modulation type:
0 = BPSK
1 = QPSK
2 = QAM16
3 = QAM64

zero_data Specifies that the source data should be all zeros, rather than randomized data. Note, when the
encoder instance has not been included in the design it always uses zero data.

skip_channel Specifies that no channel noise should be applied.

Notes:
1. See Control Input Bus Ports for more details.

Related Information

Control Input Ports (CTRL)

Example Design Statistics
The statistics in the following table are captured by the design.

Table 69: Example Design Statistics

Statistics Description
Statistics block

raw_berr Channel bit error count

raw_blerr Channel block error count

cor_berr Uncorrected bit error count after decode

cor_blerr Uncorrected block error count after decode

iter_cnt Decode iteration count

Monitor Blocks1

first Time stamp (counter value) of the last transaction (tlast = 1) of the first code block run through the
system

last Time stamp (counter value) of the last transaction (tlast = 1) of the last code block run through the
system

Chapter 7: Example Design

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=99

Table 69: Example Design Statistics (cont'd)

Statistics Description
stalled The number of system clock cycles when the downstream IP has deasserted tready causing the

upstream IP to be throttled, that is, tvalid is High and tready is Low.

Notes:
1. Duplicated for each instance; encoder I/P, encoder O/P, decoder I/P, and decoder O/P.

Software
The example processor application is used to set up and control the BER test hardware and
demonstrates how to configure the SD-FEC IP instance(s) using the low-level bare-metal driver.

The application files are output to the sw directory within the example design project. A Tcl script
to generate the example application Vitis workspace project is also output during example design
generation, and placed in the project root directory. This can be optionally run during example
design generation by selecting the Build Vitis Project option of the Example Design tab of the
Vivado® IDE. The script can be run manually using the Xilinx® software command line tool,
xsct:

xsct -no-ini build_ps_example_app.tcl

When the design is built using a MicroBlaze™ processor, the generated application binary file
(ELF file) can be imported into the example design project and used to simulate the whole
system. The following Vivado Tcl commands import the generated ELF file into the example
design project:

add_files -norecurse <ipinst>_ex.vitis/example_app/Release/example_app.elf
add_files -fileset sim_1 -norecurse <ipinst>_ex.vitis/example_app/Release/
example_app.elf
set_property SCOPED_TO_REF ps_example [get_files -all-of_objects
[get_fileset sources_1]
<ipinst>_ex.vitis/example_app/Release/example_app.elf]
set_property SCOPED_TO_CELLS { microblaze_ps } [get_files -all-of_objects
[get_fileset
sources_1] <ipinst>.vitis/example_app/Release/example_app.elf]
set_property SCOPED_TO_REF ps_example [get_files -all-of_objects
[get_fileset sim_1]
<ipinst>_ex.vitis/example_app/Release/example_app.elf]
set_property SCOPED_TO_CELLS { microblaze_ps } [get_files -all-of_objects
[get_fileset
sim_1] <ipinst>_ex.vitis/example_app/Release/example_app.elf]

Note that if the Build Vitis Project option has been selected, these steps are done as part of the
example design generation, and Vitis software platform workspaces are generated under
<project_name>.vitis.

Related Information

SD-FEC Low-Level Bare-Metal Driver

Chapter 7: Example Design

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=100

Application Summary

Figure 12: Application Flow Chart

Start

Initialize All Devices

Set Static Tester and Encoder/
Decoder Parameters

Parameters
Changed?

Update Encoder and Decoder
Parameters

Update Tester Parameters

Start Tester

Test
Complete?

Fetch and Output Results

Interactive
Mode?

Get New
Parameters

Finish
No

Yes

Yes

No

No

Yes

X20497-110218

Chapter 7: Example Design

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=101

The flow chart in the previous figure shows the basic application behavior. The detail of the
application varies depending on the configuration specified for the SD-FEC IP core and example
design. By default the application has the NO_IO macro defined which disables interactive
functionality. The macro should be removed to enable the stdin and stdout functionality.

The Vitis software platform workspace is configured to use the MicroBlaze™ Debug Module or
CoreSight™ Debug for stdin and stdout as the hardware design does not include a separate
UART device or enable the PS UART.

When the interactive functionality is enabled all the design parameters, defined in the example
design parameters table, can be updated using the UART terminal. A basic menu system is
implemented where the parameters can be updated and repeated tests run.

Related Information

Parameters

Chapter 7: Example Design

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=102

Appendix A

Upgrading
This appendix is not applicable for the first release of the core.

Appendix A: Upgrading

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=103

Appendix B

Debugging
This appendix includes details about resources available on the Xilinx® support website and
debugging tools.

Finding Help on Xilinx.com
To help in the design and debug process when using the core, the Xilinx Support web page
contains key resources such as product documentation, release notes, answer records,
information about known issues, and links for obtaining further product support. The Xilinx
Community Forums are also available where members can learn, participate, share, and ask
questions about Xilinx solutions.

Documentation
This product guide is the main document associated with the core. This guide, along with
documentation related to all products that aid in the design process, can be found on the Xilinx
Support web page or by using the Xilinx® Documentation Navigator. Download the Xilinx
Documentation Navigator from the Downloads page. For more information about this tool and
the features available, open the online help after installation.

Answer Records
Answer Records include information about commonly encountered problems, helpful information
on how to resolve these problems, and any known issues with a Xilinx product. Answer Records
are created and maintained daily ensuring that users have access to the most accurate
information available.

Answer Records for this core can be located by using the Search Support box on the main Xilinx
support web page. To maximize your search results, use keywords such as:

• Product name

• Tool message(s)

• Summary of the issue encountered

Appendix B: Debugging

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 104Send Feedback

https://www.xilinx.com/support.html
https://forums.xilinx.com/
https://forums.xilinx.com/
https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=104

A filter search is available after results are returned to further target the results.

Master Answer Record for the Core

AR 70720

Technical Support
Xilinx provides technical support on the Xilinx Community Forums for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.

• Customize the solution beyond that allowed in the product documentation.

• Change any section of the design labeled DO NOT MODIFY.

To ask questions, navigate to the Xilinx Community Forums.

Debug Tools
There are many tools available to address SD-FEC Integrated Block design issues. It is important
to know which tools are useful for debugging various situations.

Vivado Design Suite Debug Feature
The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly into
your design. The debug feature also allows you to set trigger conditions to capture application
and integrated block port signals in hardware. Captured signals can then be analyzed. This
feature in the Vivado IDE is used for logic debugging and validation of a design running in Xilinx®

devices.

The Vivado logic analyzer is used to interact with the logic debug LogiCORE IP cores, including:

• ILA 2.0 (and later versions)

• VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908).

Appendix B: Debugging

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 105Send Feedback

http://www.xilinx.com/support/answers/70720.html
https://forums.xilinx.com/
https://forums.xilinx.com/
https://docs.xilinx.com/access/sources/dita/map?url=ug908-vivado-programming-debugging
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=105

Simulation Debug
The simulation debug flow for Mentor Graphics Questa Advanced Simulator is illustrated in the
following figure. A similar approach can be used with other simulators.

Appendix B: Debugging

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=106

Figure 13: Example Design Debug Flow Chart

Questa Advanced Simulator
Simulation Debug

Check for the latest supported
versions of Questa Advanced Simulator in the

Release Notes Guide.
Is this version being used?

Update to this version.

If using VHDL, do you have a
mixed-mode simulation license.

Obtain a mixed-mode simulation
license.

No

No

Does simulating the Example Design
give the expected output?

See the Example Design section for
further details.

Yes

Do you get errors referring to failing
to access the library?

Compile and map the proper
libraries.

Yes

Yes

Yes

No

No

Confirm core interfaces are being exercised.
Example Testbench:
 - Check Simulation log for corresponding packet

transmitted and packet received reports.
 - Check transaction logs have been loaded and correspond

to the core instance being tested.
Processor Example Design:
 - Confirm selected processor is MicroBlaze. The Zynq

UltraScale+ RFSoC processor cannot be simulated.
 - Confirm Example Application ELF has been imported to the

Vivado project and associated with the MicroBlaze
instance. The mb_bootloop_le.elf does not exercise the
example design.

SecureIP models are used to
simulate the core.
To use these models, a Verilog
LRM-IEEE 1364-2005 encryption-
compliant simulator is required.

A Verilog license is required to
simulate with the SecureIP
models.
If the user design uses VHDL, a
mixed-mode simulation license is
required.

The core example design reports
“Test completed successfully” if
the simulation is successful.

If the libraries are not compiled
and mapped correctly, it will cause
errors such as:
#** Error: (vopt-19) Failed to
access library ‘secureip’ at
“secureip”.
No such file or directory
(errno = ENOENT)

X19281-101019

Appendix B: Debugging

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=107

Hardware Debug
Hardware issues can range from link bring-up to problems seen after hours of testing. This
section provides debug steps for common issues. The Vivado® debug feature is a valuable
resource to use in hardware debug. The signal names mentioned in the following individual
sections can be probed using the debug feature for debugging the specific problems.

General Checks
By default, the SD-FEC core generates a simulation-only example design, containing the IP
instance and an example test bench. The default example design should not be used for
synthesis/implementation because it contains only the core instance.

• Ensure that all the timing constraints for the core were properly incorporated from the
example design and that all constraints were met during implementation.

• Does it work in post-place and route timing simulation? If problems are seen in hardware but
not in timing simulation, this could indicate a PCB issue. Ensure that all clock sources are
active and clean.

• If using MMCMs in the design, ensure that all MMCMs have obtained lock by monitoring the
locked port.

The core supports a BYPASS capability. This performs the same operation (so takes the same
number of cycles, but without changing data between input and output).

Interface Debug
AXI4-Lite Interfaces
Write to one of the registers, (for example, Core Parameters register AXI_WR_PROTECT) and
read back a value.

Read from a register that does not have all 0s as a default to verify that the interface is
functional. Output s_axi_arready asserts when the read address is valid, and output
s_axi_rvalid asserts when the read data/response is valid. If the interface is unresponsive,
ensure that the following conditions are met:

• The s_axi_aclk and core_clk inputs are connected and toggling.

• The core is not in reset; reset_n is active-Low.

• If the simulation has been run, verify in simulation and/or a debug feature capture that the
waveform is correct for accessing the AXI4-Lite interface.

Appendix B: Debugging

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=108

AXI4-Stream Interfaces
• Check that all the interface clocks have been connected and are toggling, and that the core is

not held in reset (that is, reset_n is Low).

• Ensure interfaces are enabled (using the AXIS_ENABLE register).

• If s_axis_din_tready output is Low ensure that a CTRL input and a DIN_WORDS input
have been applied, and that the interfaces have been enabled over the AXI4-Lite parameter
interface.

• If there is no output from DOUT (that is, s_axis_dout_tvalid is permanently Low) after a
full block has been input on CTRL, DIN_WORDS and DIN, check that an input has been applied
over the DOUT_WORDS interface.

• Check that the AXI4-Stream waveforms are being followed.

• Check core configuration.

Related Information

AXIS_ENABLE Register (0x10)
AXI4-Stream Interface

Appendix B: Debugging

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=109

Appendix C

SD-FEC Low-Level Bare-Metal Driver

Overview
The bare-metal API for the SD-FEC Integrated Block is described in this appendix. The driver is
composed of the following files:

• API Interface

• ○ xsdfec.c: The user interface API is implemented in this file.

○ xsdfec.h: The user interface API prototypes are provided in this file. The file provides
prototypes of the driver instance structure and all other structures used across the API.

○ xsdfec_sinit.c: Device initialization functions.

• Hardware register map

○ xsdfec_hw.h: Definitions for the hardware register maps and field masks are provided in
this file.

• Device configuration

○ x<ipinst_name>_turbo_params.h: Header file defining device/IP instance specific
turbo decode configuration parameters derived from the hardware build. This file is only
generated when an IP instance has been configured for turbo decode.

○ x<ipinst_name>_<code_id>_params.h: Header file defining device/IP instance-
specific LDPC configuration parameters derived from the hardware build; one header per
specified LDPC code. This file is only generated when an IP instance has been configured
for LDPC decode or encode.

Initialization and Configuration
The XSdFec_Config structure is used by the driver to configure the mode and interface
parameters defined for the device. The configuration structure is created by the tool-chain based
on hardware build properties.

The driver instance can be initialized in one of the following ways:

• XSdFecInitialize(InstancePtr, DeviceId) - The driver looks up its own configuration structure
created by the tool-chain, based on an ID provided by the tool-chain.

Appendix C: SD-FEC Low-Level Bare-Metal Driver

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=110

• XSdFecCfgInitialize(InstancePtr, CfgPtr) - Uses a configuration structure provided by the
caller.

One, or more, device-specific headers are produced during the generation of the board support
package providing further configuration parameters.

When the device is configured for turbo decode the header,
x<ipinst_name>_turbo_params.h, contains an xsd_fec_turbo_parameters structure
populated to match the corresponding Vivado® IDE configuration.

When the device is configured for LDPC, a header, per LDPC code specified on the
corresponding Vivado® IDE, is generated: x<ipinst_name >_<code_id>_params.h. Each
header defines an xsd_fec_ldpc_parameters structure populated with the configuration
data required for the corresponding LDPC code.

IMPORTANT! When the IP core has been configured to support the 5G NR standard, header files are not
generated because the IP core directly supports the 5G NR codes.

The device-specific parameters can then be used to configure each SD-FEC device to match the
hardware build.

Data Structures
All the data structures used by the driver are defined in the xsdfec.h file.

struct XSdFec_Config
Device configuration information

u16 DeviceId // Device ID
UINTPTR BaseAddress // Device base address
u32 Standard // Device standard
u32 Initialization[4] // Device initialization

struct XSdFec
Device state information

UINTPTR BaseAddress // Device base address
u32 IsReady // Indicates IsReady following initialization
u32 Standard // Device standard
u32 SCOffset[128] // SC table offset lookup for each LDPC code ID, updated by
XSdFecAddLdpcParams
u32 LAOffset[128] // LA table offset lookup for each LDPC code ID, updated by
XSdFecAddLdpcParams
u32 QCOffset[128] // QC table offset lookup for each LDPC code ID, updated by
XSdFecAddLdpcParams

Appendix C: SD-FEC Low-Level Bare-Metal Driver

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=111

struct XSdFecLdpcParameters
LDPC parameters. See link below for full details.

u32 N // Number of codeword bits
u32 K // Number of information bits
u32 Psize // Size of sub-matrix
u32 NLayers // Number of layers in code
u32 NQC // Number of entries in the QC table
u32 NMQC // Specifies soft-data memory requirements
u32 NM // Specifies soft-data memory requirements
u32 NormType // Normalization type
u32 NoPacking // QC operation packing
u32 NoFinalParity // Skip final parity
u32 MaxSchedule // Scheduling control parameter
u32* SCTable // Pointer to scale table array
u32* LDTable // Pointer to layer table array
u32* QCTable // Pointer to QC table array

Related Information

LDPC Code Parameters

struct XSdFecTurboParameters
Turbo decode parameters. See Turbo Code Parameters for full details.

u8 Alg // Turbo algorithm
u16 Scale // Turbo scale factor

Related Information

Turbo Code Parameters Register (0x100)

struct XSdFecInterruptClass
Interrupt classification and recovery action

u8 Intf // Triggered due to interface or control error (ISR
u8 ECCSBit // Triggered due to single-bit ECC error (ECC_ISR)
u8 ECCMBit // Triggered due to two-bit ECC error (ECC_ISR)
u8 RstReq // Device requires reset
u8 ReprogReq // Device requires LDPC codes reprogrammed
u8 ReCfgReq // FPGA requires reprogrammed

Appendix C: SD-FEC Low-Level Bare-Metal Driver

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=112

User API
The user API is implemented in the source file xsdfec.c. The prototypes for these are provided
in header file xsdfec.h.

XSdFecInitialize
Function Prototype

int XSdFecInitialize(XSdFec *InstancePtr, u16 DeviceId);

Arguments

• XSdFec *InstancePtr: Pointer to device instance state structure.

• u16 DeviceId: ID of device to be initialized.

Description

Initializes the specified SD-FEC device and populates the device state structure. Combines
XSdFecLookupConfig and XSdFecCfgInitialize.

Return Value

XST_SUCCESS

XST_FAILURE

XSdFecLookupConfig
Function Prototype

XSdFec_Config* XSdFecLookupConfig(u16 DeviceId);

Arguments

• u16 DeviceId: ID of device to look up.

Description

Returns the device configuration structure for the specified device.

Return Value

Pointer to device configuration.

Appendix C: SD-FEC Low-Level Bare-Metal Driver

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=113

XSdFecCfgInitialize
Function Prototype

int XSdFecCfgInitialize(XSdFec *InstancePtr, XSdFec_Config *ConfigPtr);

Arguments

• XSdFec *InstancePtr: Pointer to device instance state structure.

• XSdFec_Config *ConfigPtr: Pointer to device configuration structure.

Description

Initializes the SD-FEC device specified by the supplied configuration structure and populates the
device state structure.

Return Value

XST_SUCCESS

XST_FAILURE

XSdFecSetTurboParams
Function Prototype

void XSdFecSetTurboParams(XSdFec *InstancePtr, const XSdFecTurboParameters*
ParamsPtr);

Arguments

• XSdFec *InstancePtr: Pointer to device instance state structure.

• XSdFecTurboParameters* ParamsPtr: Pointer to turbo parameter structure.

Description

Sets turbo decode parameters on the specified device instance.

Return Value

N/A

Appendix C: SD-FEC Low-Level Bare-Metal Driver

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=114

XSdFecAddLdpcParams
Function Prototype

void XSdFecAddLdpcParams(XSdFec * InstancePtr, u32 CodeId, u32 SCOffset,
u32 LAOffset, u32 QCOffset, const XSdFecLdpcParameters* ParamsPtr);

Arguments

• XSdFec * InstancePtr: Pointer to device instance state structure

• u32 CodeId: Code number to be used for the specified LDPC code

• u32 SCOffset: Scale table offset to use for specified LDPC code

• u32 LAOffset: LA table offset to use for specified LDPC code

• u32 QSCOffset: QC table offset to use for specified LDPC code

• XSdFecLdpcParameters* ParamsPtr: Pointer to LDPC code parameter structure

Description

Updates LDPC code parameter registers and share tables using the specified CodeId and offsets
with the specified parameters. The offsets arrays in the given XSdFec instance structure are
updated with the supplied offsets for specified CodeId.

IMPORTANT! When the device/IP has been configured to support the 5G NR standard the IP directly
supports the 5G NR codes and it is not necessary to add the codes at run-time. This function generates an
assertion if used on an instance configured to support the 5G NR standard.

Return Value

N/A

XSdFecShareTableSize
Function Prototype

void XSdFecShareTableSize(const XSdFecLdpcParameters* ParamsPtr, u32*
SCSizePtr, u32* LASizePtr, u32* QCSizePtr)

Arguments

• XSdFecLdpcParameters*: ParamsPtr: Pointer to parameters struct for the LDPC code being
queried

Appendix C: SD-FEC Low-Level Bare-Metal Driver

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=115

• u32* SCSizePtr: Pointer to variable to populate with the effective scale table size for the
specified LDPC code

• u32* LASizePtr: Pointer to variable to populate with the effective LA table size for the
specified LDPC code

• u32* QCSizePtr: Pointer to variable to populate with the effective QC table size for the
specified LDPC code

Description

Populates SCSizePtr, LASizePtr, and QCSizePtr variables with the effective table size occupied by
the specified LDPC code. These values can be used to increment the table offsets.

Return Value

N/A

XSdFecInterruptClassifier
Function Prototype

XSdFecInterruptClass XSdFecInterruptClassifier(XSdFec *InstancePtr)

Arguments

• XSdFec * InstancePtr: Pointer to device instance state structure.

Description

Queries interrupt status registers and classifies interrupt and reports recovery action.

Return Value

Interrupt class structure defining interrupt class and recover action.

Base API
Set and get functions are provided for all the individual registers and fields defined for the SD-
FEC IP. The XSdFecAddLdpcParams abstract the configuration of an SD-FEC device but the
main device control is done using the base API, for example, interface enablement and interrupt
configuration. See links below for full details.

Note that the field level set functions use read-modify-write.

The base API functions take the following form.

Appendix C: SD-FEC Low-Level Bare-Metal Driver

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=116

Function Prototype

void XSdFecSet_<register_name>(UINTPTR BaseAddress, u32 Data);
void XSdFecSet_<register_name>_<field_name>(UINTPTR BaseAddress, u32 Data);
u32 XSdFecGet_<register_name>(UINTPTR BaseAddress);
u32 XSdFecGet_<register_name>_<field_name>(UINTPTR BaseAddress);

Arguments

• XSdFec *InstancePtr: Pointer to device instance state structure.

• u32 data: Data to write to register or field.

Return Value

Value read from register or field.

Related Information

Register Space
Designing with the Core

Interrupt Handling
The SD-FEC low-level bare-metal driver does not implement any device-specific interrupt
handling functions but does provide a helper function, XSdFecInterruptClassifier, to
classify the interrupts when they have occurred and report the appropriate recovery action.

Generic interrupt handling routines should be used to service the interrupt(s) connected to the
SD-FEC device(s) which can then call the XSdFecInterruptClassifier function to
determine how to recover from the interrupt.

Examples
The processor-based example design output by the SD-FEC IP instance also includes an example
application demonstrating a basic use case of the software driver. The following example is an
extract from the example application.

Appendix C: SD-FEC Low-Level Bare-Metal Driver

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=117

Application
#include "xsd_fec_dec_docsis_short_params.h" // Extract include below
#include "xsd_fec_dec_docsis_medium_params.h"
#include "xsd_fec_dec_docsis_long_params.h"

const unsigned int NUM_LDPC_CODES = 3;
const XSdFecLdpcParameters* dec_codes[NUM_LDPC_CODES] = {
 &xsd_fec_dec_docsis_short_params,
 &xsd_fec_dec_docsis_medium_params,
 &xsd_fec_dec_docsis_long_params
};

int main() {

 // SD FEC instance
 XSdFec dec;

 // Initialize SD-FEC instance
 XSdFecInitialize(&dec, XPAR_SD_FEC_DEC_DEVICE_ID);

 // Add LDPC code parameters
 XSdFecAddLdpcParams(&dec,0,0,0,0,dec_codes[0]);

 // Set up SD-FEC core parameters
 XSdFecSet_CORE_ORDER(dec.BaseAddress,0); // In-order termination
 XSdFecSet_CORE_AXIS_ENABLE(dec.BaseAddress,63); // Enable all I/Fs

 return 0;

}

xsdfec_dec_docsis_short_params.h
xsdfec_dec_docsis_short_params.h

#ifndef XSDFEC_DEC_DOCSIS_SHORT_PARAMS_H
#define XSDFEC_DEC_DOCSIS_SHORT_PARAMS_H
#include "xsdfec.h"

const u32 xsd_fec_dec_docsis_short_sc_table_size = 2;
u32 xsd_fec_dec_docsis_short_sc_table[2] = {
 0x0000cccc,
 0x0000000c
};
const u32 xsd_fec_dec_docsis_short_la_table_size = 5;
u32 xsd_fec_dec_docsis_short_la_table[5] = {
 0x00001007,
 0x00001107,
 0x00001008,
 0x00001207,
 0x00001007
};
const u32 xsd_fec_dec_docsis_short_qc_table_size = 82;
u32 xsd_fec_dec_docsis_short_qc_table[82] = {
 0x00020500,
 0x00010000,
 0x00020c02,
 ...
 0x00040e12,

Appendix C: SD-FEC Low-Level Bare-Metal Driver

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=118

 0x00068113
};
XSdFecLdpcParameters xsd_fec_dec_docsis_short_params = {
 0x00000460, // N
 0x00000348, // K
 0x00000038, // P
 0x00000005, // NLayers
 0x00000052, // NQC
 0x0000002c, // NMQC
 0x0000000a, // NM
 0x00000001, // NormType
 0x00000000, // NoPacking
 0x00000000, // SpecialQC
 0x00000000, // NoFinalParity
 0x00000000, // MaxSchedule
 &xsd_fec_dec_docsis_short_sc_table[0],
 &xsd_fec_dec_docsis_short_la_table[0],
 &xsd_fec_dec_docsis_short_qc_table[0]
};

#endif

Appendix C: SD-FEC Low-Level Bare-Metal Driver

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=119

Appendix D

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix D: Additional Resources and Legal Notices

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 120Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=120

1. AMBA AXI and ACE Protocol Specification (ARM IHI0022E)

2. Zynq UltraScale+ RFSoC Data Sheet: Overview (DS889)

3. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

4. Vivado Design Suite User Guide: Designing with IP (UG896)

5. Vivado Design Suite User Guide: Getting Started (UG910)

6. Vivado Design Suite User Guide: Logic Simulation (UG900)

7. Vivado Design Suite User Guide: Programming and Debugging (UG908)

8. Vivado Design Suite User Guide: Implementation (UG904)

9. AMBA AXI4-Stream Protocol Specification (ARM IHI 0051A)

10. Vivado Design Suite: AXI Reference Guide (UG1037)

11. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR;
Multiplexing and channel coding (Release 15) (3GPP Std TS 38.212 V15.0.0)

12. Data-Over-Cable Service Interface Specifications DOCSIS 3.1, Physical Layer Specification
(DOCSIS 3.1)

13. IEEE Standard for Information technology - Local and Metropolitan area Network Standards (IEEE
Std 802.11)

14. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved
Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 15) (3GPP
Std TS 36.212 V15.0.1)

Revision History
The following table shows the revision history for this document.

Section Revision Summary
10/19/2022 Version 1.1

Interface Dependencies Added information about buffer implications and updated
Core Interface Dependencies figure.

02/04/2021 Version 1.1

Resets Added information about selecting the 5G NR Standard in
Vivado.

Interface Dependencies Updated text in Overview of SD-FEC Core Interface
Dependencies.

12/04/2019 Version 1.1

LDPC Block Interleaving Added details of LDPC block interleaving.

12/05/2018 Version 1.1

Throughput and Latency Removed tables and added link to Throughput and Latency
and BER plots on web.

Appendix D: Additional Resources and Legal Notices

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 121Send Feedback

https://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds889-zynq-usp-rfsoc-overview.pdf
https://docs.xilinx.com/access/sources/dita/map?url=ug994-vivado-ip-subsystems
https://docs.xilinx.com/access/sources/dita/map?url=ug896-vivado-ip
https://docs.xilinx.com/access/sources/dita/map?url=ug910-vivado-getting-started
https://docs.xilinx.com/access/sources/dita/map?url=ug900-vivado-logic-simulation
https://docs.xilinx.com/access/sources/dita/map?url=ug908-vivado-programming-debugging
https://docs.xilinx.com/access/sources/dita/map?url=ug904-vivado-implementation
https://developer.arm.com/documentation/ihi0051/a/
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.3gpp.org/dynareport/38212.htm
https://apps.cablelabs.com/specification/CM-SP-PHYv3.1
https://standards.ieee.org/findstds/standard/802.11-2012.html
https://standards.ieee.org/findstds/standard/802.11-2012.html
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2426
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2426
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=121

Section Revision Summary
BER Performance Removed plots and added link to BER plots on web.

04/30/2018 Version 1.1

Placement Location Guidelines for SD-FEC IP Core Placement guidelines updated.

Runtime Loading Tab Include Physical Utilization and deprecated parameters.

IP Facts Link to SD-FEC Linux driver added.

04/30/2018 Version 1.1

Updated document metadata. N/A

04/04/2018 Version 1.1

Initial release. N/A

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

Appendix D: Additional Resources and Legal Notices

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 122Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=122

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2018-2022 Advanced Micro Devices, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex,
Kria, Spartan, Versal, Vitis, Virtex, Vivado, Zynq, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in
the EU and other countries. MATLAB and Simulink are registered trademarks of The MathWorks,
Inc. All other trademarks are the property of their respective owners.

Appendix D: Additional Resources and Legal Notices

PG256 (v1.1) October 19, 2022 www.xilinx.com
SD-FEC Integrated Block 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG256&Title=Soft-Decision%20FEC%20Integrated%20Block%20v1.1&releaseVersion=1.1&docPage=123

	Soft-Decision FEC Integrated Block v1.1
	Table of Contents
	Ch. 1: IP Facts
	Features
	LDPC Decoding/Encoding
	Turbo Decoding
	Interfaces

	IP Facts

	Ch. 2: Overview
	Applications
	Licensing and Ordering

	Ch. 3: Product Specification
	Modes of Operation
	5G New Radio
	Non-5G New Radio

	Standards
	Performance
	Throughput and Latency
	BER Performance

	Port Descriptions
	Global Core Ports
	Data Input Ports (DIN)
	Data Input Control Ports (DIN_WORDS)
	Data Output Ports (DOUT)
	Data Output Control Ports (DOUT_WORDS)
	Control Input Ports (CTRL)
	Status Output Ports (STATUS)
	Parameter Ports (PARAM)

	Register Space
	Core Parameters
	AXI_WR_PROTECT Register (0x00)
	CODE_WR_PROTECT Register (0x04)
	ACTIVE Register (0x08)
	AXIS_WIDTH Register (0x0C)
	AXIS_ENABLE Register (0x10)
	FEC_CODE Register (0x14)
	ORDER Register (0x18)
	Interrupt Status Register (ISR) (0x1C)
	Interrupt Enable Register (IER) (0x20)
	Interrupt Disable Register (IDR) (0x24)
	Interrupt Mask Register (IMR) (0x28)
	ECC Interrupt Status Register (0x2C)
	ECC Interrupt Enable Register (0x30)
	ECC Interrupt Disable Register (0x34)
	ECC Interrupt Mask Register (0x38)
	BYPASS Register (0x3C)

	Turbo Code Parameters Register (0x100)
	LDPC Code Parameters
	REG0 Register (0x2000+CODE*0x10)
	REG1 Register (0x2004+CODE*0x10)
	REG2 Register (0x2008+CODE*0x10)
	REG3 Register (0x200C+CODE*0x10)

	Shared LDPC Code Parameters
	SC_TABLE Register (0x10000-0x103FC)
	LA_TABLE Register (0x18000-0x18FFC)
	QC_TABLE Register (0x20000–0x27FFC)

	AXI4-Stream Interface Definition
	Soft Value Representation for DIN and DOUT
	Data Input (DIN)
	Soft Value Input for LDPC and Turbo Decode
	Example Soft Value Mapping for LDPC Decode Input

	Hard Input for LDPC Encode

	Data Input Control (DIN_WORDS)
	Data Output (DOUT)
	Soft Output for LDPC and Turbo Decode
	Hard Output for LDPC and Turbo Decode and LDPC Encode

	Data Output Control (DOUT_WORDS)
	Control Input (CTRL)
	5G NR Control Interface Definition for LDPC Decode
	Base Graph (bg)
	Lifting Factor Component (a)

	5G NR Control Interface Definition for LDPC Encode
	Non-5G NR Control Interface Definition for LDPC Decode
	Non-5G NR Control Interface Definition for LDPC Encode
	Control Interface Definition for Turbo Decode

	Status Output (STATUS)
	5G NR Status Interface Definition for LDPC Decode
	5G NR Status Interface Definition for LDPC Encode
	Non-5G NR Status Interface Definition for LDPC Decode
	Non-5G NR Status Interface Definition for LDPC Encode
	Status Interface Definition for Turbo Decode

	Ch. 4: Designing with the Core
	Clocking
	Resets
	5G New Radio Block Length
	Interrupt
	Summary of Interrupt Responses

	Interface FIFOs
	Interface Dependencies
	Parameter Management
	LDPC Code Support
	5G NR Standard
	LDPC Code Overview
	LDPC Decoding
	LDPC Decoder Support for W>1
	Normalization
	Output Parity Check (OPC)

	LDPC Encoding
	LDPC Peak Throughput
	LDPC Block Interleaving

	Reuse of LDPC Code Base Matrices

	LDPC Code Memory Error Detection and Correction
	Interface Protocols
	AXI4-Stream Interface
	AXI4-Lite Interface

	Throughput Limits of Interfaces

	Ch. 5: Design Flow Steps
	Customizing and Generating the Core
	IP Symbol Tab
	Interface Summary Tab
	LDPC Code Analysis Tab
	LDPC Table Usage Tab
	Function Tab
	Configuration
	Turbo Decode Code Parameters
	LDPC Decode Code Parameters
	LDPC Encode Code Parameters

	Interface Tab
	S_AXI
	DIN
	DOUT

	Runtime Loading Tab
	Example Design Tab
	User Parameters
	LDPC Code Definition File
	Decoder Example
	Encoder Example

	Output Generation
	LDPC Runtime Configuration

	Constraining the Core
	Simulation
	Synthesis and Implementation
	Placement Location Guidelines for SD-FEC IP Core

	Ch. 6: C Model
	Unpacking and Model Contents
	Installation
	Linux
	Windows

	C Model Interface
	LDPC Parity Check Matrix Specification File
	Constants
	Types and Structures
	Dynamic Arrays
	Dynamic Array Structure
	Dynamic Array Functions
	CreateArray
	Reserve Data Memory
	Reserve Dimension Memory
	Destroy Array

	Functions
	Compiling
	Linking
	Example

	MATLAB Interface
	Compiling
	Installation
	MATLAB Non-Class Interface
	MATLAB Class Interface

	Ch. 7: Example Design
	Simulation-Only Example Design
	Processor-Based Example Design
	Hardware
	Overview
	Parameters
	Example Design Statistics
	Software
	Application Summary

	Appx. A: Upgrading
	Appx. B: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Master Answer Record for the Core

	Technical Support

	Debug Tools
	Vivado Design Suite Debug Feature

	Simulation Debug
	Hardware Debug
	General Checks

	Interface Debug
	AXI4-Lite Interfaces
	AXI4-Stream Interfaces

	Appx. C: SD-FEC Low-Level Bare-Metal Driver
	Overview
	Initialization and Configuration

	Data Structures
	struct XSdFec_Config
	struct XSdFec
	struct XSdFecLdpcParameters
	struct XSdFecTurboParameters
	struct XSdFecInterruptClass

	User API
	XSdFecInitialize
	XSdFecLookupConfig
	XSdFecCfgInitialize
	XSdFecSetTurboParams
	XSdFecAddLdpcParams
	XSdFecShareTableSize
	XSdFecInterruptClassifier
	Base API

	Interrupt Handling
	Examples
	Application
	xsdfec_dec_docsis_short_params.h

	Appx. D: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

