
XAPP1232 (v1.0) March 3, 2016 www.xilinx.com 1

Summary
This application note describes a solution for bitstream identification that is accessible to the
FPGA user design. Instructions are provided for Vivado® Design Suite write_bitstream and for
access to the identification information using Vivado tools.

Introduction
Tracking bitstreams is useful for many applications, for example, identifying versions of a
particular design or having serial numbers to more complex situations such as tracking design
optimization implementation runs. It is possible to embed any form of static code into the
design, allowing limitless possibilities for the size or format of the version data. However, this
results in the need to recompile parts if not all of the entire design, which is tedious at best and
has its limitations. The USR_ACCESS register, present in all 7 series and UltraScale™ FPGAs,
provides the ability to embed version information into a 32-bit fabric-accessible register at the
bitstream generation phase, allowing you the best balance of flexibility with minimal impact to
the design and implementation time.

USR_ACCESS Primitive
The FPGA configuration logic includes a readable and writable 32-bit register called
USR_ACCESS, that is also directly accessible from the user design. The primitive names for the
USR_ACCESS registers are USR_ACCESSE2 in both 7 series and UltraScale devices (see Figure 1).
All further references to the primitives in this document are simplified as USR_ACCESS. This
component provides direct FPGA logic access to the 32-bit value stored by the FPGA bitstream.
For purposes of this document, the USR_ACCESS is considered a static value, although it can be
changed through the configuration interface, JTAG, or the internal configuration access port
(ICAP). The DATAVALID output port toggles when the USR_ACCESS register is updated from the
configuration interface. CFGCLK reflects the configuration clock. This dynamic writing
functionality is outside the scope of this application note. More information on writing to this

Application Note: 7 Series and UltraScale FPGA Families

XAPP1232 (v1.0) March 3, 2016

Bitstream Identification with USR_ACCESS
using the Vivado Design Suite
Author: Kyle Wilkinson

http://www.xilinx.com

Write_Bitstream Property for USR_ACCESS

XAPP1232 (v1.0) March 3, 2016 www.xilinx.com 2

register dynamically can be found by searching for the register AXSS in the respective FPGA
family's configuration user guide:

° UltraScale Architecture Configuration User Guide (UG570) [Ref 1]

° 7 Series FPGAs Configuration User Guide (UG470) [Ref 2].

Timestamp
The USR_ACCESS register can be configured with a 32-bit user-specified value or automatically
loaded by the bitstream generation command (write_bitstream) with a timestamp. The
user-specified value can be used for revision, design tracking, or serial number type
applications. The timestamp feature is useful when several implementation runs have been
performed, thereby changing design optimization values, but the source design itself is
unchanged. The timestamp value can then be compared to the timestamp for the bitstream file
to correlate the design in the device to one of the many possible sources. The timestamp
feature is not easily implemented by changing the source code. Implementing the USR_ACCESS
method provides a more accurate timestamp.

Write_Bitstream Property for USR_ACCESS
The command usage feature is implemented using the following Tcl command during the
Generate Bitstream process (write_bitstream).

set_property BITSTREAM.CONFIG.USR_ACCESS NONE|0x<8-digit hex>|TIMESTAMP
[current_design]

When no value or NONE is entered for this option, the behavior is to do nothing to this register,
which defaults to all 0s:

NONE - DEFAULT

X-Ref Target - Figure 1

Figure 1: Schematic of USR_ACCESS Component

X1232_01_030515

http://www.xilinx.com

Vivado Tools Flow

XAPP1232 (v1.0) March 3, 2016 www.xilinx.com 3

When an 8-character hexadecimal value is detected, this value is entered into the USR_ACCESS
register:

0xXXXXXXXX

When the keyword TIMESTAMP is entered as the value:

TIMESTAMP

write_bitstream inserts the current timestamp into the 32-bit USR_ACCESS register in this
format:

ddddd_MMMM_yyyyyy_hhhhh_mmmmmm_ssssss
(bit 31) ……………………………………………………… (bit 0)

Where:

ddddd = 5 bits to represent 31 days in a month

MMMM = 4 bits to represent 12 months in a year

yyyyyy = 6 bits to represent 0 to 63 (to note year 2000 to 2063)

hhhhh = 5 bits to represent 24 hours in a day

mmmmmm = 6 bits to represent 60 minutes in an hour

ssssss = 6 bits to represent 60 seconds in a minute

When using the TIMESTAMP value, the minute and second values might not correspond directly
with the timestamp on the file. This occurs because the timestamp value is determined near the
beginning of the bitstream generation process, but the operating system file timestamp is at
the end of the file creation process. Therefore, depending on the speed of the machine and the
complexity of the operations required for write_bitstream, these values might not match exactly
with the file timestamp. Similarly, the same can occur if file generation is started close to the
end of the hour or day.

Vivado Tools Flow
There are a couple of different ways to implement the USR_ACCESS feature using the Vivado
tools. The recommended way to set the USR_ACCESS register is to add it to the Xilinx Design
Constraints (XDC) file before running Synthesis and Implementation, similar to an I/O location
(LOC) or IOSTANDARD constraint. Alternatively, this option can also be entered using the GUI,
under the Edit Device Properties process. To access the options using the Vivado integrated
design environment (IDE) or GUI:

1. Open a Synthesized Design or Implemented Design.

2. Under the Tools menu, select Edit Device Properties.

3. Select Configuration.

http://www.xilinx.com

Vivado Tools Flow

XAPP1232 (v1.0) March 3, 2016 www.xilinx.com 4

4. Enter an 8-digit hex value as shown in Figure 2 in the User Access field.

5. Replace the text abcd0123 with TIMESTAMP if the TIMESTAMP feature is desired.

Note: Not entering this option defaults to NONE, which leaves this register with all 0s.

6. Click OK.

7. Click Generate Bitstream.

8. Select Save. XDC is updated. Rerun Synthesis and Implementation.

To confirm the write_bitstream property is correctly written, open the XDC file and search for
the USR_ACCESS property, for example:

set_property BITSTREAM.CONFIG.USR_ACCESS abcd0123 [current_design]
###
End
###

X-Ref Target - Figure 2

Figure 2: Edit Device Properties

X1232_02_030515

http://www.xilinx.com

Vivado Tools Flow

XAPP1232 (v1.0) March 3, 2016 www.xilinx.com 5

Ability to Read the USR_ACCESS Register with Vivado Tools
The Vivado Hardware Manager feature can read the USR_ACCESS register. The USR_ACCESS
register is part of the selected hw_device registers. After connecting to a valid hw_target, the
ability to verify the USR_ACCESS register is available. This allows you to confirm the register is
indeed written with the expected value or to confirm if the device is configured with the desired
BIT file. To verify the USR_ACCESS register is set correctly using the GUI, see Figure 3.

X-Ref Target - Figure 3

Figure 3: Hw_target Device Properties

X1232_03_031715

http://www.xilinx.com

Conclusion

XAPP1232 (v1.0) March 3, 2016 www.xilinx.com 6

To verify the USR_ACCESS register is set correctly using Tcl, use the get_property of device
REGISTER.USR_ACCESS:

get_property REGISTER.USR_ACCESS [lindex [get_hw_devices] 0]

See Figure 4.

Conclusion
The USR_ACCESS feature is a method to track bitstreams for revisioning, or to track bitstreams
with specific implementation runs without requiring changes to source code or requiring
reimplementation.

Appendix A: Instantiation Templates
The following instantiation templates are for 7 series devices. The port names are identical for
UltraScale devices.

• Artix®-7: USR_ACCESSE2

• Kintex®-7: USR_ACCESSE2

• Virtex®-7: USR_ACCESSE2

The VHDL instantiation template for 7 series devices is:

Library UNISIM;
use UNISIM.vcomponents.all;

USR_ACCESS_7series_inst : USR_ACCESSE2

port map (

X-Ref Target - Figure 4

Figure 4: Tcl get_property

X1232_04_031715

http://www.xilinx.com

Appendix B: Bitstream Composition

XAPP1232 (v1.0) March 3, 2016 www.xilinx.com 7

CFGCLK => CFGCLK, -- Not utilized in the static use case in this application note
DATA => DATA, -- 32-bit output Configuration Data output
DATAVALID => DATAVALID -- Not utilized in the static use case in this application note
);

Note: Instantiations are also available in the Vivado Language Templates.

The Verilog instantiation template for 7 series devices is:

USR_ACCESSE2 USR_ACCESS_7series_inst (
CFGCLK(CFGCLK), // Not utilized in the static use case in this application note
DATA(DATA), // 32-bit output Configuration Data output
DATAVALID(DATAVALID) // Not utilized in the static use case in this application note
);

Appendix B: Bitstream Composition
The USR_ACCESS register can be found in the bitstream by searching for the command:

Type 1, Write command, address 01101, 1 word

00110000000000011010000000000001 - 0x3001A001

The 32-bit value after that command is the USR_ACCESS register value. Details on the syntax to
read and write values through the configuration port can be found in the configuration details
chapter of the respective configuration user guide [Ref 1] or [Ref 2].

The following is an annotated section of a Kintex-7 device bitstream (in raw bit file [.rbt] format)
with a TIMESTAMP value.

00110000000000100010000000000001
00000000000000000000000000000000
00110000000000011010000000000001 • Type 1, write, address 01101, one word
01010101000111001111011001100001 • USR_ ACCESS value
00110000000000100110000000000001
00000000000000000000000000000000

The above example stores this TIMESTAMP value: REGISTER.USR_ACCESS:0x551cf661

Breaking down the 32-bit USR_ACCESS value results in a TIMESTAMP of 10/10/14 3:25:33 pm.

01010 1010 001110 01111 011001 100001

Where:

5 bits for day: 01010 = 10th day

4 bits for month: 1010 = 10th month

6 bits for year: 001110 = 14th year (2014)

5 bits for hour: 01111 = 15

6 bits for minute: 011001 = 25

6 bits for seconds: 100001 = 33

http://www.xilinx.com

References

XAPP1232 (v1.0) March 3, 2016 www.xilinx.com 8

References
1. UltraScale Architecture Configuration User Guide (UG570)

2. 7 Series FPGAs Configuration User Guide (UG470)

Revision History
The following table shows the revision history for this document.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL
WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in
contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to,
arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result
of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the
possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the
Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which
can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license
issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of
Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.
© Copyright 2016 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, , Zynq, and other designated brands included
herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective
owners.

Date Version Revision

03/03/2016 1.0 Initial Xilinx release.

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf

	Bitstream Identification with USR_ACCESS using the Vivado Design Suite
	Summary
	Introduction
	USR_ACCESS Primitive
	Timestamp

	Write_Bitstream Property for USR_ACCESS
	Vivado Tools Flow
	Ability to Read the USR_ACCESS Register with Vivado Tools

	Conclusion
	Appendix A: Instantiation Templates
	Appendix B: Bitstream Composition
	References
	Revision History
	Please Read: Important Legal Notices

