
XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 1

© Copyright 2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.

Summary Vivado® IP Integrator is a next-generation high-level graphical design tool that can be used to
integrate various IP blocks. Occasionally, logic adapters, sometimes referred to as glue logic or
shims, are required for integrating IP blocks with other IP blocks, or with interconnect logic. Two
methods are presented to ease the task of creating these shims: Vivado High-Level Synthesis
(HLS) and the AXI4 peripheral creation feature. An example design is included, to illustrate
these methods.

The reference designs used in this application note can be downloaded from:

https://secure.xilinx.com/webreg/clickthrough.do?cid=359071

Introduction The AXI4 integration methodology described here is applicable to many designs, but a specific
example design is presented to illustrate these methods. The example design is an
autonomous (no microprocessor interaction required) system for generating a sine-wave data
pattern for the digital-to-analog (DAC). The data is then used as input data for the analog
mixed-signal (AMS) evaluation card (AMS101) [Ref 1]. The Zynq®-7000 All Programmable
SoC ZC702 Evaluation Kit [Ref 2] is the target hardware platform. The block diagram for the
example design is shown in Figure 1.

An SPI bus is used as the communications link between the Zynq-7000 AP SoC on the ZC702
evaluation kit and the AMS evaluation card. A pushbutton interface is included to support
dynamically increasing or decreasing the DDS frequency.

The AMS board features an Analog Devices AD5065 DAC [Ref 9]. The maximum SPI clock for
the AD5065 is 50 MHz. An SPI clock frequency of 37.5 MHz is used in the design. The AD5065
requires a 2 s wait time between DAC data updates; this wait time must be accounted for in
the design. Each SPI access to the AD5065 is 32 bits, which takes approximately 0.850 s at
the chosen clock rate. A 3 s DAC update rate was chosen for this design, based on the above
(2 + 0.850 + margin = 3). Thus, the supported DAC sample rate is 333 KS/s.

Application Note: Vivado IP Integrator

XAPP1204 (v1.0) June 18, 2014

Methods for Integrating AXI4-based IP Using
Vivado IP Integrator
Author: Christopher Stillo, Duncan Mackay, Mike Mitchell

X-Ref Target - Figure 1

Figure 1: Example Design Block Diagram

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=359071

Implementation

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 2

At the center of this system is the Direct Digital Synthesizer (DDS) block, which generates sine
wave data using a lookup table scheme. The DDS Configuration block configures the DDS at
initialization (reset deassert), de-bounces the pushbutton inputs, and streams out a new word
when a button push is detected. The DDS-to-SPI Shim block provides any data manipulation
required for the sine-wave data, as well as handling the configuration of the SPI I/F.

The Clock and Reset block creates a 150 MHz FPGA clock, synthesized from the ZC702
200 MHz onboard clock. This block also generates a reset for the FPGA logic.

This application note illustrates the process of implementing and integrating this example
design, using IP Integrator, System Generator, High-Level Synthesis (HLS), and the AXI4
Peripheral Creation wizard. As the design is fleshed out, an updated example block diagram is
presented.

Using Vivado HLS for creating logic shims eliminates the need for you to implement the details
of bus-level handshaking. With the HLS approach, you only need to describe (in C, C++, or
SystemC language) the required data and address for each bus transaction.

An alternate to the HLS approach for implementing AXI shims is the RTL-based AXI4
Peripheral Creation wizard. In some instances, as in the pushbutton de-bouncer required in this
design, RTL (synthesizable VHDL or Verilog) is a more appropriate choice for design entry.
Using this wizard gives you a head start on the AXI4 interface design by providing example
interface code and assistance with packaging the design for use in IP Integrator.

Implementation This section describes the steps for implementing and integrating the example design are now
described. The direct digital synthesizers (DDS), SPI I/F, and Clock and Reset blocks are fairly
straightforward to implement because their logic can be generated using ready-made Xilinx®
IP.

DDS Compiler

For DDS implementation, the Xilinx DDS compiler [Ref 3] provides a solution. The DDS
compiler is available in the Vivado IP catalog, in IP Integrator, and in System Generator. For the
example design, the System Generator DDS compiler was chosen to leverage the Mathworks
simulation environment for functional verification and to illustrate the integration path between
Xilinx System Generator and IP Integrator. The implemented System Generator model for this
design is shown in Figure 2.

X-Ref Target - Figure 2

Figure 2: DDS System Generator Model

http://www.xilinx.com

Implementation

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 3

Once the System Generator model has been simulated with satisfactory results, the model is
ready for integration. For a detailed example of how to include a System Generator design as
a module in an IP Integrator design, see UG948, Lab 9 [Ref 4].

Note: The DDS block will generate 150 MS/s data, based on the 150 MHz core clock provided.

AXI Quad SPI

The AXI Quad SPI core [Ref 5] is a logical choice to act as the SPI I/F for handling
communication with the SPI port of the AD5065 DAC. The Analog Mixed Signal (AMS)
Targeted Reference Design (TRD) [Ref 6] provides an example of using this core for that
purpose.

For the clock and reset blocks, the IP Integrator Clocking wizard [Ref 7] and the Processor
System Reset [Ref 8] blocks can fill the needs.

Note: A processor is not required to use the Processor System Reset block.

Based on the these choices, you now have a partially implemented design, shown in Figure 3.
The remainder of the section details the implementation of the remaining blocks. There are no
ready-made IP blocks to perform the DDS configuration and DDS-to-SPI shim functions, so
custom logic is required.

DDS Configuration Block

First consider the DDS Configuration block. The DDS core features an AXI4-Stream slave input
for configuration. You can use this configuration port to dynamically change the frequency of
the DDS core. As mentioned earlier, it is best to control the frequency using push-buttons. You
can create an IP block with pushbutton inputs and an AXI-Stream master output to implement
the DDS configuration function. An RTL-based design is chosen, as RTL is a good fit for
implementing the desired de-bouncing of the pushbutton inputs. The AXI4 Peripheral Creation
wizard is the tool of choice for generation of an RTL template for blocks containing AXI
interfaces.

Figure 4 shows the dds_config_v1_0 IP Integrator block after it has been added to the IP
Integrator block diagram. The config_register_value[31:0] input port specifies the starting value
of the frequency configuration data. The config_register_delta[31:0] port specifies the value
that is added/subtracted from the frequency configuration data each time a button push is
detected. The incr_freq_pb and decr_freq_pb are from the pushbutton inputs. The M00_AXIS

X-Ref Target - Figure 3

Figure 3: Partially Implemented Example Design

http://www.xilinx.com

Implementation

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 4

port is the AXI stream used to configure the DDS IP. The incr_freq_det and decr_freq_det are
outputs of the debouncer and are for debug only.

The example design with DDS configuration added is shown in Figure 5.

DDS-to-SPI Shim Block

The last remaining block to implement is the DDS-to-SPI shim. The requirements for the
DDS-to-SPI shim block as are follows:

X-Ref Target - Figure 4

Figure 4: dds_config_v1_0 IPI Block

X-Ref Target - Figure 5

Figure 5: Example Design with DDS Configuration Added

http://www.xilinx.com

Implementation

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 5

• Configure the Quad SPI core. The AXI Quad SPI uses an AXI slave interface for both
configuration and data, so this block must “virtually multiplex” the configuration and
sine-wave data sources.

• The register settings are based on the C-code included in the Analog Mixed Signal (AMS)
Targeted Reference Design (TRD) [Ref 6]. The configuration data is sent following the
de-assertion of reset.

• Decimate the DDS data. The decimation is necessary because the DDS generates data at
a 150 MS/s rate, and the maximum data rate that the DAC can accept, based on the
chosen 3 s update rate, is 333 KS/s. This decimation could be handled by the System
Generator module but is performed in the HLS shim for illustrative purposes.

• Bridge an AXI4-Stream slave (DDS output) to an AXI4-Lite master (SPI Input).

• Convert bipolar DDS data to the DAC unipolar data format.

• Construct the DAC data word format by shifting the data from the input stream and adding
the control code. The format of the data word is shown in the AD5065 DAC Specification.
[Ref 9].

You can use Vivado HLS to create this IP Block. Creating an HLS function involves coding a C,
C++, or SystemC module. C++ has been chosen for this example. The coding constructs for
inferring various types of AXI4 ports are detailed in Vivado Design Suite User Guide High-Level
Synthesis (UG902) [Ref 10] in the Interface Synthesis section.

Source Code

The source code for the HLS function is shown below.

The functionality is primarily described by the code in the switch statement. In addition, some
internal counters and state variables are defined. These use data types defined in the header
file spi_axi_merge.h which is included at the start of the code. Details on these data types
can be found in the example design.

In addition to the functionality, the code contains several pragmas to direct Vivado HLS
optimizations. In summary:

• The INTERFACE pragmas specify the I/O protocols for the design.

• Some ports are specified to have no I/O protocol (simply be data ports).

• The interface for variable m is specified to have an AXI-Master.

• The interface for variable data_i is specified to be an AXI-Stream.

• The PIPELINE pragma ensure the design is pipelined and can accept a new input before
the previous input has been output.

• The RESET pragma specifies that specific static variables be connect to the reset port
(this is not the default).

Full details on these optimizations are available in the Vivado Design Suite User Guide
High-Level Synthesis (UG902) [Ref 10].

//
// spi_axi_merge.c
//
// This HLS function generates AXI-4 master transactions to initialize and
// feed data to Xilinx IP core Quad SPI via its AXI-4-Lite port. See PG153
// for info on the core.
//
// The SPI port for this application is connected to AD5065 DAC on AMS Eval.
Board.
// After initializing the SPI core, this function reads an input AXI data
stream, formats

http://www.xilinx.com

Implementation

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 6

// the data word for use by AD5065 on AMS Eval. Board. and sends the
formatted
// data word to the SPI core.

#include "spi_axi_merge.h"

void spi_axi_merge (volatile DT *m, STREAM_DT data_i[N],
unsigned short decimation_factor, unsigned short *sample_count_out) {

#pragma HLS PIPELINE II=1 enable_flush

// Define the RTL interfaces
#pragma HLS interface ap_stable port=sample_count_out
#pragma HLS interface ap_stable port=decimation_factor
#pragma HLS interface ap_ctrl_none port=return
#pragma HLS interface m_axi port=m

// AXI4-Stream slave interface
#pragma HLS interface axis port=data_i

STREAM_DT ddfs_data_bipolar;
DT ddfs_data_unipolar;
DT ddfs_data_unipolar_fmt;

static unsigned short sample_count = 1;
#pragma HLS RESET variable=sample_count
static unsigned char state = 0;
#pragma HLS RESET variable=state

switch (state)
{
case 0: // SPI Control Register setup
*(m+SPICR_OFFSET) = 0x4 | 0x8 | 0x2; // Master, CPOL, SPE
state++;
break;

case 1: // SPI Slave select Register setup (active low)
*(m+SPISSR_OFFSET) = 0xFFFE;
state++;
break;

default: // read DDFS stream and decimate to meet DAC SPI bandwidth limit
ddfs_data_bipolar = data_i[0];
// convert bipolar DDFS output to unipolar for DAC
ddfs_data_unipolar = ddfs_data_bipolar + 32768;
// shift by 4 for DAC SPI format
ddfs_data_unipolar_fmt = ddfs_data_unipolar << 4;

if (sample_count < decimation_factor) {
sample_count++;

} else {
sample_count = 1;
*(m+SPIDTR_OFFSET) = (0x03000000 | ddfs_data_unipolar_fmt); // format

input stream for DAC: write to channel A
}

break;
} // end switch

*sample_count_out = sample_count;

} // end of function

http://www.xilinx.com

Reference Design or Sample Application

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 7

Note: The DDS-to-SPI shim requires an AXI protocol converter to convert the spi_axi_merge block
AXI4-Full Master interface to an AXI4-Lite interface, to interface with the Quad SPI core. HLS does not
currently support an AXI4-Lite master interface.

The fully implemented example design is shown in Figure 6.

Reference
Design or
Sample
Application

The accompanying ZIP file for this application note contains the files for the implemented
example design, which targets the ZC702 Evaluation Kit and AMS101 evaluation card. The
reference design is available at: https://secure.xilinx.com/webreg/clickthrough.do?cid=359071

Table 1 shows the reference design matrix.

X-Ref Target - Figure 6

Figure 6: Fully Implemented Example Design

Table 1: Reference Design Matrix

Parameter Description

General

Developer name Christopher Stillo

Target devices (stepping level, ES, production,
speed grades) Zynq-7000 AP SoC (specifically ZC702)

Source code provided Yes

Source code format VHDL/Verilog; HLS; SysGen

Design uses code/IP from existing Xilinx
application note/reference designs or
third-party sources.

N/A

Simulation

Functional simulation performed Yes

Timing simulation performed Simulation not supported

Test bench used for functional and timing
simulations Yes

Test bench format Verilog

Simulator software/version Vivado Simulator 2014.1

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=359071
https://secure.xilinx.com/webreg/clickthrough.do?cid=359071

Reference Design or Sample Application

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 8

The top-level of the design is captured in an IP Integrator block diagram. The block diagram is
shown in the Figure 7. The steps outlined below describe the method for re-generating the
example design.

1. Generate three IP cores as follows:

a. Appendix A details a step-by-step process for creating the DDS Configuration AXI4
Peripheral. An example of the completed IP for this block is located in the
./vivado/ip_repo directory. The resulting IP is found in the
./axi_peripheral/dds_config_1.0 directory.

b. To generate the System Generator DDS IP, go to the ./SysGen/dds.slx model in
MATLAB® Simulink® R2013a. Once the model is open, double-click the System
Generator token and click Generate. The resulting IP is found in the
./SysGen/dds_netlist/ip directory.

c. To generate the HLS spi_axi_merge IP, go to the ./HLS directory and launch Vivado
HLS in interactive mode. Once at the Vivado HLS command prompt, source the
spi_axi_merge Tcl script. The resulting IP is found in the
./HLS/spi_axi_merge_prj/solution1/impl/ip directory.

SPICE/IBIS simulations N/A

Implementation

Synthesis software tools/version Vivado Design Suite 2014.1

Implementation software tools/versions used Vivado Design Suite 2014.1

Static timing analysis performed? Yes (passing timing with Vivado implementation
tools)

Hardware Verification

Hardware verified? Yes

Hardware platform used for verification ZC702 Evaluation Kit

Table 1: Reference Design Matrix (Cont’d)

Parameter Description

X-Ref Target - Figure 7

Figure 7: Fully Implemented Example Design in IPI

http://www.xilinx.com

Reference Design or Sample Application

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 9

2. Create the Vivado Design Suite project. To generate the project and IP Integrator block
diagram:

a. Open Vivado Design Suite 2014.1.

b. From the Tcl console, change the directory to ./vivado.

c. Source the ./tcl/create_and_sim.tcl script.

This script performs the following tasks:

• Creates a Vivado Design Suite project targeting the ZC702 Evaluation Kit.

• Adds the IP repositories for the three IP blocks generated above to the Vivado Design
Suite project.

• Creates the IP Integrator block diagram and HDL wrapper file (by calling the
dac_stim_bd.tcl script).

• Adds test bench files.

• Compiles and runs the design for Vivado simulation.

The test bench contains an SPI bus slave model (spi_slave.v) which models the SPI
interface of the DAC on the AMS Evaluation Card. This model contains a register 'data_reg'
which represents the value of the data word passed to the DAC. Tracing the value of
data_reg in simulation approximates the DAC action which occurs in hardware.

A snapshot of the simulation output is shown in the Figure 8. The SPI bus signals are
shown, as well as the value of the data_reg. Note the sine-wave shaped output of the
data_reg signal. When the simulation run completes, make sure to apply Zoom Fit to the
waveform, so that you can see the sine wave.

3. Creating a bitfile and testing it on the ZC702 platform is the final step in the implementation
of the example design. In the Vivado project created above, you call the Generate
Bitstream step to create the bitfile, and you use the Hardware Manager to program the
ZC702 FPGA bitfile.

X-Ref Target - Figure 8

Figure 8: Simulation Waveforms

http://www.xilinx.com

Reference Design or Sample Application

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 10

Table 2 illustrates the relevant ZC702 buttons, switches and LEDs.

For normal operation of the example design, set reset switches to their inactive states (U12:1 =
OFF and U12:2 = ON).

For hardware validation of the example design, probe the DAC output of the AMS101
evaluation card pin J5-1 with an oscilloscope, as shown in the Figure 9. Once you can see the

Table 2: ZC702 Evaluation Kit Pins, Buttons, and Switches

FPGA Pin Name
ZC702

Reference
Designator

Component Type Example Design Function

GPIO_DIP_SW0 U12:1 DIP switch System reset (active-High)

GPIO_DIP_SW1 U12:2 DIP switch MMCM reset (active-Low)

GPIO_SW_N SW5 Pushbutton switch Frequency Increase

GPIO_SW_P SW7 Pushbutton switch Frequency Decrease

PMOD1_0 DS19 User LED MMCM locked (active-High)

PMOD1_1 DS20 User LED System reset active (active-Low)

PMOD1_2 DS21 User LED Toggles when Frequency
Decrease button push detected

PMOD1_3 DS22 User LED Toggles when Frequency Increase
button push detected

http://www.xilinx.com

Reference Design or Sample Application

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 11

output sine wave on the oscilloscope, you can make small adjustments to the frequency. Press
the SW5 button to increase the frequency or press the SW7 button to decrease it.

X-Ref Target - Figure 9

Figure 9: Probing DAC Output on AMS Evaluation Card

http://www.xilinx.com

Conclusion

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 12

The DAC output on the oscilloscope is shown in Figure 10.

Conclusion The application note describes the integration of AXI-based IP from Vivado HLS, System
Generator, and AXI Peripheral Creation wizard. The methods outlined for generation of the
example design demonstrate how you can use Vivado IP Integrator to integrate IP from many
different sources. The Vivado System Generator, HLS, and AXI Peripheral Creation wizard
provide turnkey methods for creating IP with AXI interfaces, and the ease of connecting these
various AXI interfaces with IP Integrator provides a significant productivity boost versus
hand-coding these connections in RTL.

X-Ref Target - Figure 10

Figure 10: AMS Evaluation Card DAC Output on Oscilloscope

http://www.xilinx.com

Appendix A: AXI4 Peripheral Creation Wizard Example

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 13

Appendix A:
AXI4 Peripheral
Creation Wizard
Example

The following example shows how to create an AXI4 Peripheral.

1. Open the AXI4 Peripheral Creation wizard from the Vivado > Tools > Create and Package
IP menu. Figure 11 shows the first wizard screen.

2. Choose Create new AXI4 Peripheral on the next screen, as shown in Figure 12.

X-Ref Target - Figure 11

Figure 11: AXI4 Peripheral Creation

X-Ref Target - Figure 12

Figure 12: AXI4 Peripheral Creation

http://www.xilinx.com

Appendix A: AXI4 Peripheral Creation Wizard Example

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 14

3. Peripheral details are shown in Figure 13.

4. Change the default interface shown to Master AXI-Stream interface, as shown in Figure 14.

X-Ref Target - Figure 13

Figure 13: IP Packager Data for AXI4 Peripheral Creation

X-Ref Target - Figure 14

Figure 14: Interface Configuration for AXI4 Peripheral Creation

http://www.xilinx.com

Appendix A: AXI4 Peripheral Creation Wizard Example

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 15

5. Select Edit IP and select Finish as shown in Figure 15.

6. Figure 16 shows the opened IP project for the created AXI4 peripheral. Note the Sources
window shows two created Verilog files: dds_config_v1_0.v, which is the top-level of
the IP, and dds_config_v1_0_M00_AXIS.v, which contains template logic for the
AXI-master stream. To accomplish the stated objectives for this block, edit
dds_config_v1_0.v to add in the pushbutton ports and de-bouncers, and edit
dds_config_v1_0_M00_AXIS.v to support sending a new data word on the stream
each time a button push is detected. The included example design contains the completed
Verilog files.

X-Ref Target - Figure 15

Figure 15: AXI4 Peripheral Creation

X-Ref Target - Figure 16

Figure 16: RTL Editing the AXI4 Peripheral

http://www.xilinx.com

References

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 16

7. After RTL editing is complete, package the design for use in IP Integrator. Since additional
ports have been added to the IP block, revisit the Package IP settings for the ports. Select
Merge changes from IP Ports Wizard to automatically update the ports list for the
packager. Figure 17 shows the IP Ports tab.

8. Now that the AXI4 peripheral is ready for packaging, select Review and Package to create
the IP block for IP Integrator. See Figure 18.

References This document uses the following references.

1. AMS101 Evaluation Card User Guide (UG886)

2. ZC702 Evaluation Board User Guide (UG850)

3. LogiCORE IP DDS Compiler v6.0 Product Guide for Vivado Design Suite (PG141)

4. Vivado Design Suite Tutorial Model-Based DSP Design using System Generator (UG948)

X-Ref Target - Figure 17

Figure 17: Updating the Packaged Ports List for the AXI4 Peripheral

X-Ref Target - Figure 18

Figure 18: Packaging the AXI4 Peripheral

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug948-vivado-sysgen-tutorial.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ams101/ug886-ams101-eval-card.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
http://www.xilinx.com/support/documentation/ip_documentation/dds_compiler/v6_0/pg141-dds-compiler.pdf

Revision History

XAPP1204 (v1.0) June 18, 2014 www.xilinx.com 17

5. LogiCORE IP AXI Quad SPI v3.1 Product Guide for Vivado Design Suite (PG153)

6. Analog Mixed Signal (AMS) Targeted Reference Design (RDF0277)

7. LogiCORE IP Clocking Wizard v5.1 Product Guide for Vivado Design Suite (PG065)

8. LogiCORE IP Processor System Reset Module v5.0 Product Guide for Vivado Design
Suite (PG164)

9. AD5065 DAC specification (Analog Devices)

10. Vivado Design Suite User Guide High-Level Synthesis (UG902)

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS
IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2)
Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the
Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Date Version Description of Revisions

06/18/2014 1.0 Initial Xilinx release.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/support/documentation/ip_documentation/axi_quad_spi/v3_2/pg153-axi-quad-spi.pdf
https://secure.xilinx.com/webreg/clickthrough.do?cid=352266&license=RefDesLicense&filename=rdf0277-ams101-zc702-trd-2013-3.zip&languageID=1
http://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v5_1/pg065-clk-wiz.pdf
http://www.xilinx.com/support/documentation/ip_documentation/proc_sys_reset/v5_0/pg164-proc-sys-reset.pdf
http://www.analog.com/en/digital-to-analog-converters/da-converters/ad5065/products/product.html

	Methods for Integrating AXI4-based IP Using Vivado IP Integrator
	Summary
	Introduction
	Implementation
	DDS Compiler
	AXI Quad SPI
	DDS Configuration Block
	DDS-to-SPI Shim Block
	Source Code

	Reference Design or Sample Application
	Conclusion
	AXI4 Peripheral Creation Wizard Example
	References
	Revision History
	Notice of Disclaimer

