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The purpose of a Power Distribution Network (PDN) is to
provide power to electrical devices in a system. Each device
in a system not only has its own power requirements for its
internal operation, but also a requirement for the input
voltage fluctuation of that power rail. For Xilinx Kintex™-7
and Virtex®-7 FPGAs, the analog power rails have an input
voltage fluctuation requirement of not more than 10 mV
peak-to-peak from the 10 kHz to the 80 MHz frequency
range. The self- generated voltage fluctuation on the power
rails is a function of frequency and can be described by
Ohm's Law: Voltage (frequency) = Current (frequency) *
Self-Impedance (frequency).

Thus, if the user determines the self-impedance (frequency)
and knows the current (frequency) of the PDN, then the
voltage (frequency) can be determined. The self-impedance
(frequency) can easily be determined by simulating the
frequency domain self-impedance profile of the PDN and
is, thus, the subject of this white paper.

White Paper: Kintex-7 and Virtex-7 FPGAs

WP411 (v1.0) January 30, 2012

Simulating FPGA Power Integrity 
Using S-Parameter Models

By:  Hany Fahmy and Colin Warwick of Agilent Technologies, Inc.
and Jack Carrel, Ray Anderson, Harry Fu, and Romi Mayder of Xilinx, Inc.

http://www.xilinx.com


2 www.xilinx.com WP411 (v1.0) January 30, 2012

Overview

Overview
Before simulating the frequency domain self-impedance profiles of a PDN, it is 
important to establish expectations for the simulation results. To do this, an 
understanding of the fundamental concepts must be attained:
• Series-Resonance Circuit and Impedance Minimums 
• Parallel-Resonance Circuit and Impedance Maximums 
• Frequency Components of Electrical Signals 
• S-Parameter Model vs. Lumped RLC Model for Decoupling Capacitors 

Series-Resonance Circuit and Impedance Minimums
A series-resonant circuit is defined by a capacitor (C) and inductor (L) that are 
connected in series. When the XC (capacitive reactance) and XL (inductive reactance) 
are equal in magnitude and opposite in phase, the current is at maximum. This 
condition gives rise to an impedance minimum. The frequency at which this equality 
occurs is called the series-resonant frequency and is described by Equation 1: 

 Equation 1

A common series-resonant circuit is formed by the capacitance (C) and the parasitic 
inductance (L) of a given capacitor mounted on a printed circuit board. Figure 1 shows 
the schematic circuit representation while Figure 2 shows the frequency domain 
impedance profile.
X-Ref Target - Figure 1

Figure 1: Series-Resonant Components of a PCB-Mounted Capacitor

X-Ref Target - Figure 2

Figure 2: Frequency-Domain Impedance Profile of PCB-Mounted Capacitor
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Parallel-Resonance Circuit and Impedance Maximums
A parallel anti-resonant circuit is defined by a capacitor (C) and inductor (L) that are 
connected in parallel. When the XC (capacitive reactance) and XL (inductive reactance) 
are equal in magnitude and opposite in phase, the reactive branch currents are also 
equal in magnitude and opposite in phase. This gives rise to a minimum total current 
and thus, a maximum total impedance is created. The frequency at which this 
condition occurs is called the parallel anti-resonant frequency and is described by 
Equation 2:

Equation 2

A common parallel anti-resonant circuit is one formed by the die capacitance and 
package inductance. Figure 3 shows a schematic circuit representation while Figure 4 
shows the frequency domain impedance profile.
X-Ref Target - Figure 3

Figure 3: Parallel Anti-Resonant Components of Die and Package Properties

X-Ref Target - Figure 4

Figure 4: Frequency-Domain Impedance Profile of Die and Package Properties
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Frequency Components of Electrical Signals
The frequency domain current profile of VCCO(f) is shown in Figure 5 and Figure 6 as 
simulated at the BGA power balls of the Xilinx Virtex-7 XC7VX485T FPGA in the 
FFG1761 pin package. 

In the example, the simulation is running a memory interface at 1.866 Gb/s with a 
PRBS15 data pattern. The power spectral density of VCCO(t) is wide-banded, 
extending from 10 MHz up to the 10 GHz. As the data traffic pattern and activity 
change, the simulations demonstrate that the dominant frequency components of the 
power spectral density also change. Therefore, the simulations show that PDN noise is 
a wide-band phenomenon; PDN simulations must, therefore, be run over a wide-band 
frequency range.

X-Ref Target - Figure 5

Figure 5: Memory Interface Simulation Activity Patterns
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Because the power spectral density is of a wide band, the frequency domain 
self-impedance profile must be simulated over a wide range. Below 1 kHz, the voltage 
regulator module (VRM) dominates the frequency domain self-impedance profile. 
Above 10 GHz, the on-die capacitance dominates the impedance profile. Thus, Xilinx 
recommends running the simulations from 1 kHz to 10 GHz.

S-Parameter Model vs. Lumped RLC Model for Decoupling Capacitors
As a comparison between using lumped RLC circuits and S-parameters to run PDN 
simulations, the decoupling capacitors portion of the PDN circuit is examined first.

In this simulation, an attempt is made to curve-fit an S-parameter model for common 
X5R capacitors in the following EIA case sizes: 0201, 0402, 0603, 0805, 1206, and 1610. 
After matching the capacitive reactance and the series-resonant frequency given in 
Equation 1,the percentage error of the inductive reactance at 100 MHz is measured.

These simulations are done at room temperature (25°C) with no applied DC bias. 
Figure 7 through Figure 9 show the circuit schematic representations. Figure 10 and 
Figure 11 show the simulation results.

X-Ref Target - Figure 6

Figure 6: Simulation Test Setup
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X-Ref Target - Figure 7

Figure 7: Decoupling Capacitors Simulation, Schematic Representation 1

X-Ref Target - Figure 8

Figure 8: Decoupling Capacitors Simulation, Schematic Representation 2

X-Ref Target - Figure 9

Figure 9: Decoupling Capacitors Simulation, Schematic Representation 3
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X-Ref Target - Figure 10

Figure 10: Simulation Results (EIA Case Sizes 0201 / 0603 / 1206)

X-Ref Target - Figure 11

Figure 11: Simulation Results (EIA Case Sizes 0402 / 0805 / 1210)
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A summary of the data is shown below in Table 1:

It is known that the typical capacitor manufacturer specifies the capacitance of a 
capacitor with zero DC bias and 0.5 Vrms AC voltage, while the s-parameter models 
are typically measured with a 0 dbm AC signal.

In S-Parameter Models for Decoupling Capacitors section, the various methods for 
generating the S-parameter model of a capacitor are examined.

S-Parameter Models for Decoupling Capacitors
At first glance, the measurement of the capacitor's PDN impedance profile (the 
impedance with respect to frequency) seems to be a simple task, but several subtle 
details are required to ensure the measured data is accurate.

The frequency domain measurement is usually accomplished by utilizing a Vector 
Network Analyzer (VNA). The obvious method is to probe the PDN making an S11 
measurement, and then convert the measured s-parameters to impedance by means of 
the Equation 3 relationship:

Equation 3

An impedance measurement using this method, however, has inherent inaccuracies 
due to the fact that the instrument typically has a 50Ω input impedance and the PDN 
has a very low impedance (typically in the milliohm range). The accuracy of the 
measured VNA data inherently has errors because the typical uncertainty of S11 
(when rho, the reflection coefficient, is near 1) can be in the 1%–2% range. 

This equates to an impedance uncertainty in the 0.3Ω-to-0.4Ω range. If PDN 
impedances in the milliohm range are being measured, it quickly becomes obvious 
that the desired impedance measurement is lost in the measurement uncertainty. 

A second factor to consider is that the inductive parasitics of the probing arrangement 
can easily exceed the value of the DUT inductance. There is no easy way to back out 
the probe parasitics from the measured data. 

Fortunately, an S21 measurement is a good alternative to an S11 measurement to 
determine the PDN impedance. In this method, it is found that Zdut = 25(S21). With 
this measurement technique, the solder of the decoupling capacitor is included in the 
measurement. By utilizing the S21 measurement, the impedance uncertainty is 
reduced into the 10s-of-milliohms range. In addition, the probe parasitics are in series 
with 50Ω as opposed to being in series with the DUT impedance, which reduces their 
effects to near negligible levels. For a more complete discussion of this topic, see 
Accuracy Improvements of PDN Impedance Measurements in the Low to Middle Frequency 

Table 1: Summary of Result Data, Decoupling Capacitors Simulation

Size Capacitance (µF) Impedance Magnitude @ 100 MHz
Series-Resonant 

FrequencyEIA 
Code S-Parameter Data 

Sheet % Error S-Parameter RLC 
Model % Error

1210 60 100 66.7 0.209 0.751 259.3 600 KHz

1206 50 100 100.0 0.255 0.845 231.4 700 KHz

805 14 22 57.1 0.18 0.501 178.3 1.5 MHz

603 14 22 57.1 0.178 0.501 181.5 1.5 MHz

402 3.7 4.7 27.0 0.15 0.313 108.7 3.5 MHz

201 0.69 1 44.9 0.129 0.198 53.5 10 MHz

Zdut 50
1 S11+
1 S11–
------------------=
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Range presented at DesignCon 2010 by Istvan Novak of SUN Microsystems and 
Yasuhiro Mori and Mike Resso of Agilent Technologies 
(http://www.home.agilent.com/upload/cmc_upload/All/DC10_ID2696_Novak-M
ori-Resso.pdf).

RLC Models for Decoupling Capacitor
Decoupling capacitors are often characterized by vendors by means of three 
parameters: R (resistance), L (inductance), and C (capacitance). The C parameter is the 
decap's intrinsic capacitance; the L is its intrinsic inductance; and the R is the ESR of 
the decoupling capacitor. When this simple RLC model for a decoupling capacitor is 
utilized in a simulation along with a good PDN model, the mounting inductance and 
spreading inductance associated with the package or PCB combines with the decap's 
intrinsic inductance to effectively model the loop inductance. This loop inductance 
plus the package inductance resonates with the die capacitance to form a parallel 
anti-resonant circuit with a unique impedance profile.

Series RLC models of decoupling capacitors are easy to understand, and they simulate 
quickly as both frequency domain and transient simulations with a minimum of 
issues. As noted previously, the RLC values for the model can come from a vendor's 
data sheet; alternatively, they can be derived from measured s-parameter data by 
fitting the values of a simple series RLC circuit to the response of the s-parameters. In 
some cases, particularly at low frequencies, the simple series RLC circuit works 
adequately. However, when it is required to determine the impedance profile of a 
PDN accurately over a wide bandwidth of DC to several gigahertz, things usually do 
not work out so simply. 

Two main issues make simple series RLC models inadequate for accurate PDN 
simulations. Due to the stacked layers of the decoupling capacitor construction, there 
is distributed inductance and resistance in the Z axis of the plate stack. This causes the 
L parameter of the series RLC representation to be frequency dependent. In most 
simulators, there is no frequency-dependent L element. First, a reasonably accurate 
series RLC model can be constructed at either low frequencies or high frequencies, but 
cannot model both simultaneously. Second, while a complex multi-element model can 
be constructed to more accurately model the frequency-dependent L effect, such 
models are very difficult to design and manage. 

Therefore, rather than use a simple series RLC circuit that is known to be inaccurate 
over a wide bandwidth, or attempt to synthesize a more complex multi-element 
model, the simulation work done at Xilinx suggests that it is much easier and more 
accurate to utilize a measured wideband s-parameter decoupling capacitor model 
when simulating PDNs.

Note: Ceramic decoupling capacitor models are strongly voltage dependent. Therefore, it is 
important to obtain the s-parameter model from the capacitor manufacturer that has been 
measured at the operating voltage of interest—for both DC and AC voltages.

http://www.xilinx.com
http://www.home.agilent.com/upload/cmc_upload/All/DC10_ID2696_Novak-Mori-Resso.pdf
http://www.home.agilent.com/upload/cmc_upload/All/DC10_ID2696_Novak-Mori-Resso.pdf
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Running the PDN Simulations with the Agilent ADS 2011.10

Running the PDN Simulations with the Agilent ADS 2011.10
To simulate the frequency domain self-impedance profile of a Power Distribution 
Network, Xilinx recommends using the Agilent ADS 2011 software bundle. This 
software bundle provides the high-speed-digital (HSD) designer with a wide range of 
tools. Every aspect of the power integrity problem requires a specific technique for 
solving it. For example, PDN analysis requires the following: 

1. True frequency-domain simulation of the PDN parallel anti-resonances and series 
resonances with solid S-parameter handling and assurance of “Passivity and 
Causality” 

2. Patented convolution (Kramers-Kronig) to bring frequency-domain models 
(measurement-based models and EM-based models) into the time domain (eye 
diagrams, BER contours, and jitter decomposition) 

3. Using an extraction technique, such as Method-of-Moment, which has excellent 
accuracy from DC to GHz range

PDN Simulation Example 
In this simulation example, the simulation performed is the PDN of the MGTAVCC 
and MGTAVTT analog power rails for the Xilinx 7 series XC7VX485T FPGA in the 
FFG1761 pin package. 

Two cases are simulated here. Case 1 uses the PCB capacitors listed in Table 2, which 
are similar to the recommended PCB caps for the Xilinx Virtex-6 devices.

Case 2 uses the PCB capacitors described in Table 3. 

Figure 12 is the schematic for both cases (1) and (2) listed above for the MGTAVCC and 
MGTAVTT power rails. For case 2 (with no PCB capacitors), there is still one bulk 
capacitor mounted on the PCB specified by the manufacturer of the voltage regulator 
module. 

Table 2: Case 1 Capacitors

QTY per Group Capacitance 
(µF)MGTAVCC MGTAVTT MGTVCCAUX

4 4 2 0.022

4 4 0 0.47

2 2 1 1

2 2 1 4.7

Table 3: Case 2 Capacitors

QTY per Group Capacitance 
(µF)MGTAVCC MGTAVTT MGTVCCAUX

0 0 0 0.022

0 0 0 0.47

0 0 0 1

0 0 0 4.7

http://www.xilinx.com
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X-Ref Target - Figure 12

Figure 12: Power Rails Simulation Schematic Representation
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Figure 13 show the simulations results.

Figure 14 shows the complete simulation time using a typical laptop computer 
running the Windows-7 64-bit operating system is only 11.68 seconds!

Because the simulation results for both cases result in almost identical frequency 
domain self-impedance profiles for the MGTAVCC and MGTAVTT power rails, and 
because the MGTVCCAUX power rail has an internal low drop out regulator 
integrated on the die, similar performance between the two cases should be expected. 
As a simple reference, the impedance profiles were simulated on a competitive device 
with 0 PCB capacitors beyond the 1 bulk PCB capacitor typically required by the 
voltage regulator manufacturer. Profiles representing the VCCH_GXBL0, 
VCCT_GXBL0, and VCCR_GXBL0 power rails were run.

X-Ref Target - Figure 13

Figure 13: Power Rails Simulation Results
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X-Ref Target - Figure 14

Figure 14: Complete Simulation Time, Windows-7 64-bit OS
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As can easily be seen in the PDN profiles of a typical competitive device, the analog 
rails would have a peak impedance of well over 2Ω if the PCB caps were removed!

Transmitter Hardware Measurements
Figure 15 through Figure 18 contain a series of eye diagrams at 10.3125 Gb/s using the 
QPLL and 6.25 Gb/s using the CPLL with PRBS15 data pattern measured on the 
Agilent Infiniium DCA-J Wide-Bandwidth Oscilloscope. This Agilent 86100C with the 
86108A precision waveform analyzer has been selected to make these hardware 
measurements because of the following key attributes:

1. High bandwidth, low noise, and ultra-low residual jitter

2. Simple one connection “triggerless” operation

3. PLL characterization including loop BW/jitter transfer

4. Integrated hardware clock recover with adjustable loop BW/Peaking—exceeds 
industry standards

Figure 15 shows the eye diagram and associated jitter decomposition when using the 
CPLL running at 6.25 Gb/s for case 1.

Figure 16 shows the eye diagram and associated jitter decomposition when using the 
CPLL running at 6.25 Gb/s for case 2 (no PCB caps).

X-Ref Target - Figure 15

Figure 15: Case 1 Eye Diagram, 6.25 Gb/s
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Figure 17 shows the eye diagram and associated jitter decomposition when using the 
QPLL running at 10.3125 Gb/s for case 1.

Figure 18 shows the eye diagram and associated jitter decomposition when using the 
QPLL running at 10.3125 Gb/s for case 2 (no PCB caps).

X-Ref Target - Figure 16

Figure 16: Case 2 Eye Diagram, 6.25 Gb/s
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X-Ref Target - Figure 17

Figure 17: Case 1 Eye Diagram, 10.3125 Gb/s
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As seen in the scope screenshots in Figure 15 through Figure 18, the total jitter is both 
cases 1 and 2 is within the measurement tolerance of the setup. Thus, hardware 
measurements have confirmed the simulation results showing that 0 PCB caps are 
required for proper operation of the transmitter.

Receiver Measurements
Table 4 is a summary of the receiver hardware measurements based on a loopback test 
using eyescan. The data recorded in Table 4 is the voltage amplitude noise with all 
transceivers in the package running asynchronously. As shown by the data, the 
voltage amplitude noise is the same or less after all the PCB caps have been removed 
when using either the CPLL or the QPLL.

Figure 19 is a summary of the receiver's jitter tolerance analysis with all transceivers in 
the package running asynchronously for both cases 1 and 2. 

As shown by the data, the jitter tolerance is the same or less after all the PCB caps have 
been removed. The jitter tolerance analysis was done at 10-12 BER threshold and a data 
rate of 10.3125 Gb/s.

X-Ref Target - Figure 18

Figure 18: Case 2 Eye Diagram, 10.3125 Gb/s
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Table 4: Comparison of Voltage Amplitude Noise with/without Decoupling Caps

PLL CPLL QPLL

Bit Rate 6.25 Gb/s 10.3125 Gb/s

MGTAVCC All Caps No Caps All Caps No Caps

MGTAVTT All Caps No Caps All Caps No Caps

MGTVCCAUX All Caps No Caps All Caps No Caps

% Full Scale 3.6% 3.3% 5.0% 4.5%
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Summary

Summary
PDN simulations, confirmed by hardware measurements, have shown that no PCB 
caps beyond that recommended by the voltage regulator manufacturer are required 
for the MGTAVTT, MGTAVCC, and MGTVCCAUX power rails for proper operation 
of the transceivers in Xilinx's Kintex-7 and Virtex-7 devices. 

While the PCB capacitors are not needed for proper operation of the transceivers, 
however, proper filtering can be required on the PCB to achieve the input voltage 
ripple noise specification of 10 mV peak-to-peak (10 kHz to 80 MHz) when measured 
at the BGA ball of the package.

Currently, Xilinx has several Agilent ADS Power Integrity Design Kits available for 
7 series FPGAs that support all device power supplies (digital and analog). Contact 
your local Xilinx field application engineer to obtain these Agilent ADS Design Kits.

To obtain a 30-day free license of Agilent ADS2011, please visit the following link:

https://software.business.agilent.com/TrialLicense/TrialLicenseRequest.aspx?Prod
Num=W2200F-1U1-TRL

X-Ref Target - Figure 19

Figure 19: Comparison of Jitter Tolerance with/without Decoupling Caps
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