

DesignCon 2020

Self-Evolution Cascade Deep
Learning Model for SerDes
Adaptive Equalization

Bowen Li, Xilinx Inc.
bli@xilinx.com

Brandon Jiao, Xilinx Inc.
bjiao@xilinx.com

Chih-Hsun Chou, Xilinx Inc.
chihhsun@xilinx.com

Romi Mayder, Xilinx Inc.
romim@xilinx.com

Paul Franzon, North Carolina State University
paulf@ncsu.edu

Geoffrey Zhang, Xilinx Inc.
geoff.zhang@xilinx.com

2

Abstract

The IBIS Algorithmic Modeling Interface (IBIS-AMI) has become the de-facto methodology to

model SerDes behavior for end-to-end high speed serial link simulations. Meanwhile, machine

learning (ML) techniques can facilitate the computer to learn a black-box system. This paper

proposes the Self-Evolution Cascade Deep Learning (SCDL) model to show a parallel approach

to modeling effectively adaptive SerDes behavior. Specifically, the proposed self-guide learning

methodology uses its own failure experiences to optimize its future solution search according

to the prediction of the receiver equalization adaptation trend. After basic introduction of SCDL

model, the paper shows examples whose results are highly correlated with the IBIS-AMI

simulations, while achieving simulation time reduction of orders of magnitudes.

Authors Biography

Bowen Li is a Ph.D. student at North Carolina State University. His research topic is "High-speed

Receiver Behavioral Modeling using Machine Learning". During his Ph.D., he interned in Hewlett

Packard Enterprise and Samsung. He has over 5 years of experience with machine learning. He

is a software engineer intern at Xilinx.

Brandon Jiao received his Ph.D. in 2005 in the field of electromagnetic field and microwave

technology from Beijing University of Posts and Telecommunications. He joined Xilinx in 2014

and is currently the Senior Staff Transceiver engineer. Prior to joining Xilinx Brandon worked for

Intel and Nortel. His current interest is SI/PI methodology in transceiver and RF applications.

Chih-Hsun Chou received the M.S. degrees in computer engineering from the University of

Louisiana, Lafayette and Ph.D. degree in electrical engineering from the Department of

Electrical and Computer Engineering, University of California at Riverside. He is currently

working in Xilinx. His current research interests include system level design and architecture

with a specific focus on PCIe acceleration platform for machine learning and SmartNIC.

3

Romi Mayder is currently the Senior Director of Technical Marketing Department at Xilinx, Inc.

Prior to joining Xilinx, Mr. Mayder worked as a consultant specializing in silicon die level signal

and power integrity. He also consulted in the field of design and fabrication of advanced

package technologies, including stacked silicon interconnect. Mr. Mayder has been employed

by two companies in the Test and Measurement industry, Agilent Technologies and Anritsu

(Wiltron) Company, where he specialized in microwave and millimeter wave microelectronic

circuit design and fabrication. Mr. Mayder received his Bachelor of Science degree in Electrical

Engineering and Computer Science from the University of California at Berkeley in 1992. Mr.

Mayder has published 25 patent applications in the fields of signal and power integrity as well

as semiconductor process technologies.

Paul Franzon is currently the Cirrus Logic Distinguished Professor of Electrical and Computer

Engineering at North Carolina State University. He earned his Ph.D. from the University of

Adelaide, Adelaide, Australia in 1988. He has also worked at AT&T Bell Laboratories, DSTO

Australia, Australia Telecom and three companies he cofounded, Communica, LightSpin

Technologies and Polymer Braille Inc. His current interests center on building microsystems

(systems constructed of silicon chips, both analog and digital, and silicon micomachined

components) for applications in computing, communications, sensors, robotics, and signal

processing.

Geoff Zhang received his Ph.D. in 1997 in microwave engineering and signal processing from

Iowa State University, Ames, Iowa. He joined Xilinx Inc. in June, 2013. Geoff is currently a

Distinguished Engineer and Supervisor of Transceiver Architecture and Modeling Team, under

SerDes Technology Group. Prior to joining Xilinx Geoff has employment experiences with

HiSilicon, Huawei Technologies, LSI, Agere Systems, Lucent Technologies, and Texas

Instruments. His current interest is in transceiver architecture modeling and system level end-

to-end simulation, both electrical and optical.

4

1. Introduction

With the receiver adaptation algorithm, a robust serial link can be built regardless of the transceiver

setting and channel characteristics. The adaptively adjusted gain control, CTLE peaking, and DFE

coefficients automate the tasks that had previously been manual for the designer [1]. Due to the

intellectual property (IP) of the SerDes vendors, customers don’t have transparent knowledge about the

circuit design. On the other hand, customers do need a fast and accurate simulator to evaluate their

channels. As a result, a simulation model is usually provided from the vendors. While being effective on

the real system, complex adaptation process makes it difficult to come up with a behavioral model for

the simulation. Much effort has been made to develop the behavior model in the industry. IBIS-AMI

modeling is currently the most commonly used approach to emulate receiver adaptation process.

While having high correlation to the real circuit behavior, the problem for the IBIS-AMI modeling is its

simulation speed. Normally, engineers need to wait half an hour or even longer to see the results for the

adaptation simulation, because the adaptation process requires transient state information. Moreover,

designing an IBIS-AMI model needs detailed information about the circuit design data over PVT to

improve model accuracy. Combining with the fact that silicon venders provide product as well as the

associated IBIS-AMI model to the customer, the IBIS-AMI model development can become the

bottleneck for a design release.

In this paper, we propose a machine learning based framework to skip the long model design process.

We develop a general modeling mechanism for the adaptation algorithm in the high-speed receiver

leveraging machine learning techniques. Our model autonomously figures out the dependency/mutual

information inside the system during the training process. The trained model not only provides highly

correlated predictions, but also produces the result in the order of magnitude of seconds, thus the

machine learning based technique can speed up the simulation compared with the conventional IBIS-

AMI modeling approach.

2. A general modeling mechanism

The biggest challenge for building receiver adaptation behavioral models is that a new model is needed

to be designed for each product. In the conventional IBIS-AMI model development, the knowledge to

the underlying circuit is required to build an efficient model as well as the details of the adaptation

algorithm. As each product is different, model details cannot be all included until the final design is

completed; this can lead to long design cycles. As a result, a general modeling mechanism is desired to

speed up the model development cycle. To decouple the need of circuit knowledge in the model design,

all the data we can acquire are the receiver input waveform and the receiver adaptation output codes.

With this limited information, the problem fits itself as a black-box problem: A system viewed in terms

of its inputs and outputs, without any knowledge of its internal workings. In recent years, machine

learning (ML) models are proven to be very effective for the black box problem. However, the required

training data grows as the complexity of the underlying black box system. Also, fine tuning or even

creating a specialized ML model is not necessarily easier than building the IBIS-AMI model.

5

To tackle these challenges, we build a general machine learning modeling framework to eliminate the

time-consuming model tuning step in the machine learning model. We develop a novel yet intuitive

mechanism to “self-evolve” through mixing low-level ML models and input data features. To the best of

our knowledge, we are the first to explore the feasibility and to have built the ML based adaptation

behavior model. In summary, our proposed general machine learning based modeling framework has

the following capabilities:

• Find useful information from the model inputs and mutual information during the training.

• Find data dependency during the training

• Leverage its own experience to correct its learning process.

• Explore natural laws by itself.

3. Deep learning model structure introduction

In this work, two deep learning models are used in the SCDL model library. In this section, a brief

introduction to the two deep learning models are presented.

Deep neural networks: Neural networks model is a technology to mimic the activity of the human brain.

It can learn a black-box system. A simple application of the neural networks to do the data analysis is

called Multi-Layer Perceptron (MLP). Compared with the MLP, deep neural networks (DNN) increases

the hierarchy of complexity and abstraction. Fig. 1 shows the DNN structure. Each layer applies a

nonlinear transformation onto its input and creates a statistical model as output from what it learned.

The input features are received by the input layer and passed onto the first hidden layer. Each neuron in

the hidden layers has weights and biases. Each neuron has an activation function which is used to

standardize the output from the neuron. The “Deep” in deep neural networks means there is more than

one hidden layer in DNN. The output layer returns the output data. Until the output has reached an

acceptable level of accuracy, training epochs will be continued.

In each layer of the DNN, the number of neurons can be obtained as {L} = (𝐿𝑖𝑛, 𝐿1, … , 𝐿ℎ, 𝐿𝑜𝑢𝑡), where

𝐿𝑖𝑛, 𝐿ℎ, 𝐿𝑜𝑢𝑡 are the number of neurons in the input layer, ℎ𝑡ℎ hidden layer, and the output layer,

respectively. The input of the ℎ𝑡ℎ hidden layer can be calculated by

Fig. 1. Deep Neural Networks structure.

6

{𝑧ℎ} = {𝑥ℎ−1}𝑊ℎ (1)

there 𝑊ℎ is a matrix which contains the weights between the output of the (ℎ − 1)𝑡ℎ layer and the

input of the ℎ𝑡ℎ layer. The output vector {𝑥ℎ} of the ℎ𝑡ℎ hidden layer is represented as

{𝑥ℎ} = 𝑓𝑎({𝑧
ℎ} + {𝑏ℎ}) (2)

where 𝑓𝑎 is the activation function. In this work, rectified Linear Unit (ReLU) [14] is used as the activation

function, which is obtained as

𝑓𝑎(𝑧) = max⁡(0, 𝑧) (3)

The output from the output layer is the prediction targets, {𝑦̂}. The stochastic gradient descent (SGD)

method [15] is used to minimize the cost function.

In this research, the Bayesian Optimization method is applied to select the best number of hidden layers

and neurons of deep neural networks, which will be introduced in later sections. The mean square error

between outputs and expected outputs is used as the cost function.

Long short-term memory: As a state-of-the-art deep learning architecture is designed for time-series

regression problem. RNN is widely used in forecasting such a problem [8]. The RNN aims to map the

input sequence x into outputs y. Each output in the sequence is calculated by the state of the previous

Recurrent Neural Networks (RNN) cell and current input.

Traditional RNN or Vanilla RNN (VRNN) structure faces a challenge. If the training length of RNN is

significantly long and non-truncated backpropagation is applied, due to a vanishing gradient or

exploding gradient, backpropagated errors will get smaller or larger layer by layer, which makes

backpropagation insignificant. To deal with the vanishing gradient or exploding gradient problems, the

LSTM model is proposed [9]. The LSTM cell structure is shown in 0. LSTM can create paths where the

gradient can flow for a long duration.

The core function of the LSTM is the cell state, which is the horizontal line, from Ct-1 to Ct, on the top of

Fig. 2. The cell state will go through the entire chain, with some linear interactions. The LSTM has the

capability to remove or add previous or new information to the cell state using gates. Gates are a way to

optionally let information through. They are composed out of a sigmoid neural networks layer and a

pointwise multiplication operation. An LSTM cell has three gates, namely input, output and forget, to

protect and control the cell state. The input gate will add new information selected from the current

Fig. 2. LSTM cell structure

7

input and previous sharing parameter vector into the current cell. The forget gate is to discard useless

information from the current memory cell. And the output gate decides new sharing parameter vector

from the current memory cell.

Mean square error (MSE) is used as the cost function during the DNN and LSTM model training process,

which is defined as

𝑀𝑆𝐸⁡ =
1

𝑚
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑚

𝑖=1

 (4)

where 𝑖 is the index of data. 𝑦𝑖 is the real target. 𝑦̂𝑖 is the model predicted value. 𝑚 is the number of

data points.

4. Proposed modeling architecture

In this work, we propose a modeling mechanism, named Self-Evolution Cascade Deep Learning (SCDL),

to deal with general black-box problems in SerDes link. The proposed modeling architecture is shown in

Fig. 3. There are three main blocks: Modeling, Scoreboard, and Mutual information library. In the rest of

this section, we will discuss theses blocks and their interaction in detail.

Modeling: the input to our framework is the receiver input waveform (raw data) and will be sent to the

modeling block. There, the raw data are pre-processed for feature selection (data pre-processing block),

where important features are extracted from the data pattern, such as the low-frequency and high-

frequency signal amplitude and slices based on UI information provided in the product specification. The

extracted features are then sent to the model library for ML model training.

In the model library, there are multiple machine learning model types, such as deep neural networks

(DNN) and long short-term memory (LSTM). These models will be chosen by the scoreboard to perform

the ML training. Once the ML model is trained and validated, the testing accuracy will be passed to the

scoreboard. In our design, the modeling block will do the separated target modeling, which means that

it will create one model for each target.

Fig. 3. Self-evolution Cascade Deep Learning architecture

8

Scoreboard: The scoreboard controls the prediction flow of the SCDL system. It selects useful

information from the pre-processed data and mutual information during the training. Based on the data,

proper ML model types are chosen to do the training. At the beginning of the flow, all ML model will be

used independently. During the training phase, we use model self-configuration techniques, to be

discussed in the next section, to optimize the ML model hyperparameters. After the training and

prediction process is done, the scoreboard will gather the model architecture of all successfully

predicted targets, whose prediction accuracies are higher than the pre-defined accuracy threshold. For

the successful targets, scoreboard will try to optimize the ML training process by reducing the input

feature sets and kick off the modeling flow until the minimum feature sets that satisfies the prediction

accuracy threshold is found. The SCDL model will decide whether to keep input information according to

the model performance. For instance, if the model accuracy drops more than 5% when one input data is

removed, it proves that the removed input information is important, and the SCDL model will keep it.

On the other hand, if the model accuracy remains the same or increases when one input data is

removed, that input data should be ignored during the model training. The final feature sets and model

architecture will be stored and treated as “experience learned”. Also, the targets will be stored in the

mutual information library.

On the other hand, for the targets that failed the accuracy threshold, scoreboard will start the

“evolution” flow. Scoreboard will use the stored experiences (feature sets and ML model), plus the

targets stored in the mutual information library to train and predict the failing targets. The purpose is to

explore possible dependency between targets. Similarly, if the newly trained model satisfies the

threshold, it will then enter the optimization phase described previously. However, if the threshold is

still not met, we will then use all the features and mutual information there exist for training and

prediction with each ML model independently. The reason behind this is that the target we want to

model could have very different behavior than what we had successfully learned. We need to start from

scratch with the added mutual information. If this still failed, the same feature sets will be used with all

ML models working in combination. This provides the strongest modeling capability it can have.

The SCDL model will stop its training in two scenarios. The first is that it successfully finishes the training

and provides high-precision predictions regarding the pre-set accuracy requirements set by a human.

The second scenario is when it tries all the models and training iterations and finds the performance

cannot be improved under the current circumstances, it will stop and generate a report. The auto-

generated report includes some information of the bad prediction cases. Those bad prediction cases

may be some corner cases that should not be considered. This information can help users to improve

the data quality.

After the training and reducing the input data for each model, the SCDL model could figure out what

type of model and data are used to predict each target. This backtracking process can let human learn

the model prediction flow and the laws that the SCDL model finds itself, which can provide guidance in

future modeling mechanism design.

In this work, the SCDL model shows a parallel approach to modeling adaptive SerDes behavior

effectively, illustrated in Fig. 4. Specifically, the proposed self-guided learning methodology uses its own

experiences to optimize its future solution search according to the prediction of the receiver

equalization adaptation codes. The proposed model should provide fast and high-precision predictions

9

under various PCB channels with different transmitter settings. Due to its self-training process, the

design process of the SCDL model is usually much faster than the IBIS-AMI model.

5. Model self-configuration

The use of machine learning algorithms frequently involves careful tuning of learning parameters and

model hyperparameters. Unfortunately, this machine learning model tuning requires lots of expert

experience or even brute force search. Therefore, a great appeal for automatic approaches, called the

Bayesian Optimization (BayesOpt), is proposed [16], which can optimize the performance of the

machine learning model. In this work, the BayesOpt is used to optimize the model configuration.

Generally, our goal is to find a global maximum/minimum of an unknown objective function 𝑓

𝜃∗ =
𝑎𝑟𝑔𝑚𝑎𝑥⁡𝑓(𝜃)

𝜃 ∈ 𝒳
 (5)

where 𝒳 ⊆ ℝ𝐷𝒳 is the design space or data space. 𝐷𝒳 is the dimensionality of the parameter space.

Furthermore, it is assumed that the unknown objective function 𝑓 has can be evaluated at any arbitrary

query point 𝜃 in the data space. This evaluation produces outputs 𝑦 ∈ ℝ such that 𝔼[y|𝑓(θ)] = 𝑓(θ).

Hence, we can only observe the function 𝑓 through unbiased noisy point-wise observations y. In this

setting, we consider a sequential search algorithm which, at iteration n, selects a location θn+1 at which

to query function 𝑓 and observe yn+1. After N queries, the algorithm makes a final recommendation θN,

which is the best estimate.

BayesOpt proposes a prior belief over the possible objective functions and improves this model

according to data observed via Bayesian posterior updating. Equipped with this probabilistic model,

BayesOpt can sequentially induce acquisition functions Υn:⁡⁡𝒳 ⟼ ℝ that use the uncertainty in the

posterior to guide the exploration. Intuitively, the acquisition function evaluates the candidate points for

the next evaluation of 𝑓; therefore, θn+1 is selected by maximizing Υn, where the index n indicates the

implicit dependence on the currently available data.

6. Data generation

Fig. 4. Traditional IBIS-AMI model vs SCDL model in the receiver adaptation simulation

10

For the receiver adaptation system, the inputs are the receiver input waveform, while the outputs are

the receiver adaptation codes. We prepared multiple input data pattern, namely pseudorandom binary

sequence (PRBS), single bit response (SBR), long pulse response (LPR), as shown in Fig. 5. PRBS data can

provide intersymbol interference (ISI) and channel loss information. SBR data can show channel loss

information. The LPR would provide DC gain information. The aim of providing all kinds of data pattern

is to prepare all the information for the SCDL model to predict the receiver adaptation system. For each

data case measurement, we collect the receiver input waveform and the adaptation codes as the SCDL

model inputs and outputs, as shown in Fig. 6. The receiver used in this work has 18 adaptation codes.

In this work, 700 cases are measured from the transceiver. Those cases are collected over multiple

industry channels. By tuning the TX de-emphasis settings, we can generate several cases over one

channel. Among all the TX settings, low, medium and high swing cases are selected because they can

cover under-equalized, properly-equalized, and over-equalized cases. The data are measured under

different channel cases and various TX de-emphasis settings. Those case scenarios are summarized in

Table 1.

The data are divided into three groups. 500 data cases from 11 channels are set as the training dataset.

50 data cases from 2 channels are set as the validation data. The rest 176 data from 2 channels are set

as testing data. Those 6 testing channel cases are hidden from the model training process. The targets

are collected from the receiver adaptation codes after the adaptation process is done.

Fig. 6. Data collection process

TX Channel
RX

adaptation

CTLE, DFE codes
(adaptation codes)

SCDL model

Table 1. Training and testing data configuration

Parameters Configurations

Data rate 25.78 Gpbs

Channel insertion loss Low, medium, high

TX de-emphasis Low, medium, high swing

Fig. 5. Various data patterns

11

7. Performance metric

As for the data generation, receiver codes are collected after the adaptation process is done. To get a

single value as the model prediction target, the receiver code values are collected at the last simulation

bit, as shown in Fig. 7. However, even after the adaptation process, the receiver equalization codes are

still dithering.

Since the model target should be a single value, not a range, during the model training, the mean values

after the adaptation are used as the model target, which is the target code value in Fig. 7. During the

model prediction, a target range, which can be calculated as [target – threshold, target + threshold], is

set for each receiver code. The threshold is set according to the normal fluctuation range of each code

after the adaptation. Different code has a different threshold. If the predicted value lies in the target

range, it’s a correct prediction. The prediction accuracy can be calculated as:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛⁡𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑛

𝑚
× 100% (6)

where 𝑛 is the number of cases that the predicted value is in the target range. 𝑚 is the number of all the

testing cases. At the model testing process, the prediction accuracy is calculated, which can describe the

model performance.

8. Predict the receiver adaptation codes using the SCDL model

Fig. 8. Gives the detailed flow chart of our SCDL framework. In this section, we will describe how SCDL

framework works in detail. At first, all the raw inputs are sent to the data pre-processing block for

feature extraction, where the important features are measured from the data pattern, such as the low-

frequency, high-frequency signal amplitude and slices of receiver waveform. The extracted feature will

Fig. 7. Adaptation process for the receiver code.

12

be sent to the scoreboard as the base data set. As a design choice out SCDL will start from using simple

ML model (DNN). This choice provides shorter learning time overall during our experiment. The

scoreboard will send the data set that fit DNN to different models to predict each receiver adaptation

code target. After the training process, the scoreboard will exam each prediction result and score the

results that exceed the accuracy threshold. The prediction results from the initial feature data set with

high scores are saved and do the modeling again. In this work, the receiver has 18 adaptation codes,

which labeled target 1 – 18. While each target code going through independent training, the

experiences and prediction results are stored and shared.

The goal of SCDL is to select only useful information from the initial feature data set. To do that, it will

go through two different phases: feature expansion and feature contraction. When the prediction

accuracy is below threshold, SCDL will try to include more features if available in the feature expansion

phase. On the other hand, there are times that the too many features will hurt the accuracy, thus

feature contraction phase will try to cut down the input feature.

In our experiments, the SCDL model figures out that using the PRBS data will not only significantly

increase the model training time and model complexity, but also produce low prediction accuracies for

all the codes, in the range of 20% - 30%. On the other hand, using the SBR and LPR features, the

scoreboard can find reasonable model structure and the prediction accuracies can be improved, which

are from 40% - 60%. In that case, the SCDL model saves the PRBS data for further study and only uses

SBR and LPR data as model inputs. The reason why the prediction accuracies are low using the PRBS

data is because the PRBS data contains lots of redundant information, which would mislead the machine

learning model. On the other hand, simple data pattern, such as SBR and LPR, can provide the model

concise and useful information, for example high-frequency or low frequency loss.

Next, the SCDL model uses DNN model to predict all the receiver adaptation codes with the measured

features from the SBR and LPR data, including high-frequency signal amplitude, low-frequency signal

amplitude, high to low transition time, and amplitude at each UI information after the SBR main cursor.

During the DNN model training, the BayesOpt is applied. After the training, the DNN model can provide

Fig. 8. SCDL flow chart.

RAW DATA Feature extraction

Feature/Model pairing

ML model
for target 1

ML model
for target N

∙∙∙∙

self-configself-config

Target tracked ?

Feature
expansion

No

Mutual
information

library

Feature
contraction

Yes

MAX feature set
reached?

No

MIN feature set
reached?

scoreboard

Yes

No

Scoreboard
Update

Data pre-processing

Model training/prediction Self evolving

Yes

13

high-precision predictions for target 1 – 3, while other targets show low correlations with the real code

values.

After target accuracy is met, the SCDL will go into feature contraction phase and try to reduce the ML

model complexity by reducing the model inputs one by one. If the model accuracy drops more than 5%

when one input feature is removed, it proves that the removed input information is important, and the

SCDL model will keep it. On the contrary, if the model accuracy remains the same or increases when one

input data is removed, that input data should be ignored in the future model training. After the input

reduction process, the scoreboard finds that two measured features from the SBR and LPR data will

influence the target 1 – 3 prediction performance the most. With these two features, the ML model

complexity drop significantly, the training time is shortened, and the model performance is much

improved. Hence, these two features are selected as the DNN model inputs to predict target 1 – 3. At

this point, all the predicted target 1 – 3 will be saved in the MIL for the future prediction. The successful

experience is saved for future modeling.

During the optimization process for target 1 – 3, the SCDL also record that target 4 and target 5 show

better prediction accuracies. To further improve the prediction accuracy, SCDL will add mutual

information from the MIL, which has been successfully predicted target values, as a new feature set to

predict target 4 and 5. After training, the prediction accuracies for target 4 and 5 are much improved.

Again, the scoreboard will do feature contraction to reduce the modeling flow complexity. After that,

the scoreboard updates the successful experience.

For the rest of targets, the previous features can not provide high-precision accuracies, the scoreboard

switches to use the LSTM model to predict the target 6 – 18. Since the input LSTM model should be

time-series data, the SBR and LPR data are sent to the LSTM model separately to predict the target 6 –

18. After training, the LSTM model shows better performance using the SBR data than the LPR data. Out

of all targets, target 6 and target 7 show better performance than others, with the accuracies are above

70 %. The scoreboard focuses on performance improvement for these two targets until the prediction

accuracies meet the pre-set accuracy requirements. At first, target 6 and target 7 are predicted using

two individual LSTM models. The sliced SBR data are the LSTM model inputs. For example, the first,

second, third UI data after the SBR main cursor are sent to one LSTM model sequentially to predict one

target. After modeling, the scoreboard selects sliced SBR data, which shows the best prediction

accuracy, to predict the current target. To further improve the prediction accuracy, the scoreboard uses

mutual information from the MIL, which are predicted target 1 – 5. However, these feature can not be

applied to LSTM model. As a result, a DNN model in added in cascade with LSTM model to boost the

prediction accuracy of each target. One LSTM model is used to predict the initial target 6 using the sliced

SBR data. After that, the initially predicted target 6 will be sent to an individual DNN model, along with

previously predicted target 1 – 5, to predict final target 6. In this way, the prediction accuracy of the

target 6 is much improved, which are around 88%. Next, feature contraction reduces the inputs of the

DNN model. After input reduction, the prediction accuracy of the target 6 is above 90%. Then the target

6 is saved into the MIL. The scoreboard saves this successful experience for future modeling. The same

logic applies to the target 7 - 18.

After self-evolution learning process, all the predicted targets show high correlations with the real code

values. In that case, the SCDL modeling process is finished and provide detailed information about its

14

prediction process using the backtracking method. One thing to notice is that we also set a counter to

count how many tries a target is been through. After going through too many tries (exceeding a pre-

determined threshold), it will stop and ask for more data and/or more ML models.

9. Self-evolution ability

The self-evolution ability can be proved by three scenarios:

1) it can use mutual information during the modeling process and provide better predictions.

2) it can optimize the prediction flow when the accuracy requirement is strict.

3) It can find data dependency during the model optimization process

In this section, we will demonstrate these abilities in detail.

9.1. Use mutual information

When lower accuracy requirements are set for each target, the first prediction flow chart is shown in Fig.

9. For the first three targets, the scoreboard chooses to use two measured features from the SBR and

LPR data and three DNN models separately for each target. The successfully predicted targets are sent

to the MIL for future prediction.

As for the rest of the targets, the scoreboard uses two DNN models to predict target 4 and 5. The inputs

of each DNN model are 2 measured features from the SBR and LPR data and mutual information from

MIL. Similarly, the successfully predicted targets are sent to the MIL for future prediction.

For the target 6 – 18, the SCDL tries the DNN model at the first time, but the model prediction

accuracies are below pre-set accuracies. The scoreboard then switches the model type, which is the

LSTM model. The inputs of the LSTM model would be the sliced SBR data. After training, the prediction

Fig. 9. The first prediction flow

15

accuracies meet the requirements. Hence, the SCDL model successfully finishes the training and

provides reasonable predictions regarding the accuracy requirements set by users.

During the modeling process, the SCDL model can use mutual information to learn failed-predicted

targets, which is the first self-teaching/ self-evolution scenario.

9.2. Optimize the prediction flow

As mentioned previously, the SCDL model will stop its training if it successfully meets the pre-set

accuracy requirements. If the users increase the accuracy requirements, would the SCDL model optimize

the prediction flow to provide better predictions? In the next experiment, higher accuracy requirement

for each target is set in the SCDL model. After its self-training, the optimized prediction flow is shown in

Fig. 10. The prediction flows of the target 1 – 5 are the same as the first prediction flow.

For the rest of the targets, the SCDL finds a new way to construct models. The sliced SBR data are fed

into two individual LSTM models and cascade another DNN model to predict the to predict target 6 - 7.

The inputs of the DNN model are the LSTM model prediction results and mutual information from the

MIL. As for the target 8 - 18 predictions, the scoreboard use only mutual information with single DNN

model for each target. The DNN input reduction can help model to improve the performance and find

data dependency among the targets. After the self-evolution process of the SCDL model, the prediction

accuracies increase more than 20 % on average across targets.

9.3. Find data dependency

After the SCDL model finishes its modeling process the SCDL model will enter feature contraction phase

and try to reduce the input information for each model to speed up the overall training and data

generation process. During the feature contraction process, the scoreboard selects important mutual

Fig. 10. Prediction flow optimization

16

information from the MIL, which are critical to the model performance. If one previously predicted

target (mutual information) is removed from the model input and the prediction accuracy drops

significantly, it means that feature is important to the current model prediction. Hence, the scoreboard

will keep that mutual information and try to remove another feature from MIL. After the feature

contraction process, the scoreboard can find data dependency among inputs and all the targets. Table 2

shows the final prediction flow and the data dependencies. Target means the model predicted outputs.

Model type means which model type is used to predict the current target. Data dependency means

which data are selected to predict the current target. Those data dependencies can provide users some

useful information found by the SCDL model. People can use the data dependency to design modeling

flow in the future.

10. An example of target 6 prediction evolution process

The prediction accuracy improvement process of the target 6 is shown in Fig. 11. The pre-set accuracy

threshold is 95%.

Table 2. Data dependency found by the SCDL model

Target Model type Data dependency

Target 1 DNN High-frequency and low-frequency signal amplitude

Target 2 DNN High-frequency and low-frequency signal amplitude

Target 3 DNN High-frequency and low-frequency signal amplitude

Target 4 LSTM + DNN
High-frequency and low-frequency signal amplitude, sum of the

SBR amplitude data, target 1-3

Target 5 LSTM + DNN
High-frequency and low-frequency signal amplitude, sum of the

SBR amplitude data, target 1-3

Target 6 LSTM + DNN Sliced SBR data, target 3-5

Target 7 DNN Target 3-6

Target 8 DNN Target 3-7

Target 9 DNN Target 3-8

Target 10 DNN Target 3-9

Target 11 DNN Target 3-10

Target 12 DNN Target 3-11

Target 13 DNN Target 3-12

Target 14 DNN Target 3-13

Target 15 DNN Target 3-14

Target 16 DNN Target 3-15

Target 17 DNN Target 3-16

Target 18 DNN Target 3-17

17

At the beginning, the SCDL model uses the raw data to predict all the targets. The first trial is to use a

DNN model to predict target 6. The inputs of the DNN model are high-frequency signal amplitude, low-

frequency signal amplitude, the sum of the sliced SBR amplitude after the main cursor based on

experience learned from previous targets. After training, the prediction accuracy is low as shown in the

Phase I of Fig. 11. Next, SCDL will enter feature expansion stage. Since the SCDL model does the parallel

modeling, target 1-5 prediction accuracies meet the pre-set accuracy thresholds and saved into the MIL.

The mutual information from the MIL and previous learned features will then be used with the DNN

model to predict the target 6 again. After training, the prediction accuracy is still below the pre-set

accuracy threshold, as shown in Phase II of Fig. 11. Similarly, SCDL will do feature expansion again and

include sliced SBR data. As a result, the LSTM model will be used in conjunction with the DNN model to

predict target 6. The prediction accuracy is much improved, but still not good enough, which is

illustrated in Phase III of Fig. 11. Finally, after trying with all possible input and still miss the accuracy

threshold, the SCDL will enter feature contraction phase try to eliminate feature that hurts the

performance. The input features are removed one by one until the accuracy meets the pre-set

requirements, illustrated in Phase IV of Fig. 11. The SCDL model will save the successfully predicted

target 6 into the MIL.

11. Self-evolution prediction results

The data are collected from the Xilinx UltraScale+ GTY transceiver [1] [2]. The receiver has total 18

adaptation codes. In this section, the self-evolution prediction results of the SCDL model are presented.

176 testing data are collected under 2 different channels and various TX de-emphasis settings.

After the SCDL model self-evolution, some of the prediction results for the target adaptation codes are

illustrated in Fig. 12 and Fig. 13, respectively. X axis is the case index number, while Y axis is the code

value. Because each code is varying during the adaptation process, a red box is used for each case,

Fig. 11. Target 6 prediction accuracy improvement process

40%

50%

60%

70%

80%

90%

100%

Phase I Phase II Phase III Phase IV

ML model: DNN
Input: learned features

ML model: DNN
Input: learned features
+ mutual information

ML model: LSTM+DNN
Input: learned features
+ mutual information +
sliced SBR data

ML model: LSTM+DNN
Input: sliced SBR data +
mutual information

Feature
expansion

Feature
expansion

Feature
contraction

18

which can represent a target range for each case. The black star sign is the model prediction value. Most

of the predicted code values lie in the target ranges. We can see that the prediction results of our SCDL

framework fall nicely into the target range, showing high correlations with the real codes.

Fig. 12. Prediction results of target 1 - 3 using the SCDL model

Target 1 prediciton results

0 20 40 60 80 100 120 140 160

Case Index

0

5

10

15

20

25

30

T
a
rg

e
t
1

 c
o

d
e

 v
a

lu
e

Code Range

Prediction

Target 2 prediciton results

0 20 40 60 80 100 120 140 160

Case Index

0

5

10

15

20

25

30

T
a
rg

e
t
2

 c
o

d
e

 v
a

lu
e Code Range

Prediction

Target 3 prediciton results

0 20 40 60 80 100 120 140 160

Case Index

0

5

10

15

20

25

30

T
a
rg

e
t
3

 c
o

d
e

 v
a

lu
e

Code Range

Prediction

Target 4 prediciton results

0 20 40 60 80 100 120 140 160

Case Index

0

10

20

30

40

50

60

70

80

90

100

T
a
rg

e
t
4

 c
o

d
e

 v
a

lu
e

Code Range

Prediction

19

Fig. 13. Prediction results of target 4 - 8 using the SCDL model.

Table 3 shows the accuracy data for all 18 targets. In this table, we give two numbers: First attempt

accuracy and Evolved accuracy. The first attempt accuracy is the accuracy at the first run of using SCDL,

where no knowledge is learned. On the other hand, the Evolved accuracy is the final output from SCDL.

Target 5 prediciton results

0 20 40 60 80 100 120 140 160

Case Index

0

10

20

30

40

50

60

70

T
a
rg

e
t
5

 c
o

d
e

 v
a

lu
e

Code Range

Prediction

Target 6 prediciton results

0 20 40 60 80 100 120 140 160

Case Index

0

10

20

30

40

50

60

70

T
a
rg

e
t
6

 c
o

d
e

 v
a

lu
e

Code Range

Prediction

Target 7 prediciton results

0 20 40 60 80 100 120 140 160

Case Index

0

5

10

15

20

25

30

T
a
rg

e
t
7

 c
o

d
e

 v
a

lu
e

Code Range

Prediction

Target 8 prediciton results

0 20 40 60 80 100 120 140 160

Case Index

0

5

10

15

20

25

30

T
a
rg

e
t
8

 c
o

d
e

 v
a

lu
e

Code Range

Prediction

20

We can see that in the first attempt with all feature extracted from raw data, only the first three targets

can be predicted. After self-evolution of the SCDL model, the prediction accuracies are much improved

by the self-teaching process. The accuracies of all codes exceeding our predefined threshold (90%), and

achieved 98.9% accuracy in average across all targets.

12. Prediction explanation using the circuit structure

So far, we’ve shown that our SCDL framework can effectively predict the receiver adaptation codes. Yet

this is not the full potential of SCDL. In this section, we will discuss the capability of SCDL to learn the

circuit structure through self-evolution.

In this work, we use Xilinx UltraScale+ GTY transceiver [1] [2] as our experiment platform. In the

transceiver, an equalization technique is used to attenuate the low-frequency component of the signal

while boosting the high-frequency component. CTLE at the receiver end is one of the most popular

linear equalization techniques, illustrated in Fig. 14 [1]. CTLE is used to attenuate the low-frequency

component of the signal while boosting the high-frequency component. The CTLE has 3 stages, namely

KH, KL, and AGC.

Table 3. Model performance improvement by the self-evolution of the SCDL model

Target
First

attempt
accuracy

Evolved
accuracy

Targets
First

attempt
accuracy

Evolved
accuracy

Target 1 100% 100% Target 10 63.6% 98.9%

Target 2 98.86% 98.86% Target 11 61.9% 100%

Target 3 98.9% 98.9% Target 12 62.2% 96.0%

Target 4 86.4% 100% Target 13 71.9% 100%

Target 5 71.0% 98.9% Target 14 72.8% 97.2%

Target 6 51.1% 97.7% Target 15 78.4% 100%

Target 7 52.4% 97.7% Target 16 79.2% 100%

Target 8 60.2% 97.2% Target 17 81.3% 100%

Target 9 58.0% 100% Target 18 80.2% 100%

Fig. 14. Three-Stage CTLE in the UltraScale+ Transceiver

21

DFE is a proven technique to mitigate inter-symbol interference (ISI) without amplifying noise. It works

by directly removing the ISI from previous bits, allowing the current bit to be correctly sampled. The DFE

starts with a “decision slicer” to determine whether the current symbol is high or low. The resulting

symbol goes through unit delays and multiplies with the tap weights. The weighted delayed signals are

added together and then subtracted from the input analog signals, as shown in Fig. 15 [1]. If the tap

weights are well selected to cancel the ISI at each following symbol, the result of this feedback loop is

able to compensate for as many taps of ISI as the DFE has. In the Xilinx UltraScale+ transceiver, the DFE

has 15 taps. The CTLE codes and DFE taps are adaptive in the transceiver. Hence, the 3 CTLE adaptation

codes and 15 DFE taps are the model prediction targets.

With the background of the transceiver, we can relate the prediction target to the adaptation code.

Table 4 shows the corresponding receiver code of each target label. In this work, the CTLE has 3 stages,

namely high-frequency gain (KH), low-frequency gain (KL), and automatic gain control (AGC). The

receiver DFE has 15 taps.

Fig. 15. DFE Block in the UltraScale+ Transceiver

Table 4. Target label mapping for the receiver adaptation code

Target label Receiver code Target label Receiver code Target label Receiver code

Target 1 CTLE AGC Target 7 DFE Tap4 Target 13 DFE Tap10

Target 2 CTLE KL Target 8 DFE Tap5 Target 14 DFE Tap11

Target 3 CTLE KH Target 9 DFE Tap6 Target 15 DFE Tap12

Target 4 DFE Tap1 Target 10 DFE Tap7 Target 16 DFE Tap13

Target 5 DFE Tap2 Target 11 DFE Tap8 Target 17 DFE Tap14

Target 6 DFE Tap3 Target 12 DFE Tap9 Target 18 DFE Tap15

22

According to the prediction flow in Fig. 10, three CTLE adaptation codes have high correlations with the

high-frequency and low-frequency signal amplitude measured from the SBR and LPR data. This can be

explained by the CTLE function. As mentioned previously, the CTLE equalization technique is used to

attenuate the low-frequency component of the signal while boosting the high-frequency component.

The SBR and LPR can provide high-frequency loss and low-frequency gain respectively. With that

information, the DNN model would predict the CTLE adaptation codes accurately.

From the DFE prediction flow in Fig. 10, the first three DFE taps have high correlations with the sliced

SBR data. The DFE would remove the ISI from previous bits by subtracting the sum of the weighted

delayed signals from the input analog signals. The tap values are directly related to the information after

the main cursor of the SBR. In the circuit, the DFE tap values are influenced by the previous DFE taps,

because of the correlations among the DFE shift registers. This can explain why the SCDL model chooses

to use the DFE tap 1 – 3 to predict the DFE tap 4 – 15. Moreover, from the self-evolution process in Fig. 9

and Fig. 10, if the accuracy requirements become strict, the SCDL model will also add CTLE adaptation

codes to predict the DFE tap 1. This phenomenon is reasonable because there are interactions among

the CTLE and DFE adaptation process. Higher gains in the CTLE can lead to lower values in the DFE taps.

On the contrary, lower gains in the CTLE can lead to higher DFE tap values. To get better prediction

results, the SCDL model found the interactions among the CTLE adaptation codes and the DFE tap values

by itself.

From this work, the SCDL model generates a cascaded deep learning model structure to predict the

complex receiver adaptation progress. It can be proven that the proposed SCDL model has the capability

to find natural laws during its self-teaching and self-evolution process. This can provide a human useful

guidance when exploring a new black-box problem.

13. Simulation speed improvement: SCDL model vs. IBIS-AMI model

Fig. 16. Adaptation process using the SCDL model vs the IBIS-AMI model

0

20

40

60

80

100

0 300000 600000 900000 1200000 1500000 1800000

Co
d

e
V

al
u

e

Bit count

AGC KL KH DEF Tap 1 DEF Tap 2 DEF Tap 3 DEF Tap 4

Run time with SCDL model < 2 seconds

Run time with IBIS-AMI model > 360 seconds

23

Besides the high accuracy and the ability to catch the underlying circuit architecture, SCDL can also

generate the RX equalization adaptation codes in terms of seconds. Fig. 16 shows one example of an

adaptation process using the SCDL model vs the IBIS-AMI model simulation. For IBIS-AMI model, the

simulation needs to run for millions of bits until all of the codes converge, and this process takes

significant amount of simulated bits. With the use of SCDL model, we can bypass the bit-by-bit

simulation and give the accurate simulation output. With the SCDL model, the speed of the adaptation

process significantly improves from more than 360 seconds (using the IBIS-AMI model) to less than 2

seconds (using the SCDL model), which is around 18000% improvement in the speed.

14. Conclusions

High-speed SerDes equalization parameter auto-tuning, a.k.a. adaptation, is a complex process. A new

modeling mechanism, called Self-evolution Cascade Deep Learning (SCDL) model, is proposed and used

in the prediction of high-speed SerDes receiver equalization adaptations.

Table 5 summarize the evolution process for our SCDL framework. In this table, the leftmost column

gives all features, including mutual information library. The top row is the number of evolution that the

target is learned. The second row is the code name for each target. Each column represents the data

dependency for each target. The grey out cells mean that the data is not available for the target code,

and the green cells represent the existence of the dependency between data and target code. From this

table, we can clearly see that our SCDL framework explores and evolves through each evolution run.

During the training process, the SCDL model uses its own successful experiences to self-teach its future

solution search and provide information such as the dependency/independency among various

adaptation behaviors. Consequently, the SCDL model shows a low demand for training data to promote

its prediction accuracy. After the training process, the SCDL model successfully develops different

solutions with various pre-set accuracy tolerance with the same training data set. The SCDL model can

boost its performance by changing the prediction flow during the self-evolution progress. To test the

proposed model robustness, two different designs are illustrated. The SCDL model shows high-precision

prediction results for both designs. For the simulation speed, the SCDL model can provide 180 times

faster simulation than the state-of-the-art IBIS-AMI modeling approach.

In summary, our proposed modeling method achieves the following capabilities:

• Can leverage its own experience to correct its learning process.

• Can find useful information from the model inputs and mutual information during the training.

• Can explore the underlying circuit architecture.

• Can generate output code two order of magnitude faster than conventional method.

Our future work will focus on improving the model performance and test on other SerDes technologies.

24

Tab
le

 5
. SC

D
L e

vo
lu

tio
n

 track.

25

References

[1] B. Jiao, ‘Leveraging UltraScale Architecture Transceivers for High-Speed Serial I/O Connectivity’,
White Paper: UltraScale GTH/GTY Transceivers, 2015

[2] ‘UltraScale Architecture GTY Transceivers’, User Guide, 2017

[3] H. Zhang, F. Rao, T. Keulenaer, K. Ly, R. Pierco, G. Zhang, ‘IBIS-AMI Modeling and Simulation of Link
Systems using Duobinary Signaling’, DesignCon, 2017

[4] T. Lu, K. Wu, “Machine Learning Methods in High-Speed Channel Modeling”, DesignCon 2019.

[5] R. Trinchero, F. G. Canavero, ‘Modeling of eye diagram height in high-speed links via support
vector machine’, 2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI), 22-25 May 2014

[6] B. Li, P. Franzon, Y. Choi, C. Cheng, ‘Receiver Behavior Modeling based on System Identification’,
2018 IEEE 27th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS),
14-17 Oct. 2018

[7] B. Li, B. Jiao, M. Huang, R. Mayder, P. Franzon, ‘Improved System Identification Modeling for High-
speed Receiver’, 2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and
Systems (EPEPS), 6-9 Oct. 2019

[8] H. Shi, M. Xu, and R. Li, ‘Deep Learning for Household Load Forecasting – A Novel Pooling Deep
RNN’, IEEE Transactions on Smart Grid, Volume: PP, Issue: 99, 2017

[9] THESE ` N, ‘Long Short-Term Memory in Recurrent Neural Networks’, PhD Thesis, 2001

[10] J. Olden, Jackson, D.A., 2002. Illuminating the “black box”: understanding variable contributions in
artificial neural networks. Ecol. Model. 154, 135–150.

[11] Jasper Snoek, Hugo Larochelle, Ryan P. Adams, 'Practical Bayesian Optimization of Machine
Learning Algorithms', Neural Information Processing Systems Conference(NIPS), 2012

[12] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking the human out of the
loop: A review of Bayesian optimization,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175,
2016.

[13] J. Mocˇkus, “On Bayesian methods for seeking the extremum,” in Optimization Techniques IFIP
Technical Conference, 1975, pp. 400– 404.

[14] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in
Proceedings of the 27th International Conference on International Conference on Machine
Learning, ICML’10, (USA), pp. 807–814, Omnipress, 2010.

[15] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[16] J. Moˇckus, “Bayesian Approach to Global Optimization: Theory and Applications”. Kluwer Aca-
demic Publishers, 1989.

[17] Application Report, SLLA338–June 2013, “The Benefits of Using Linear Equalization in Backplane
and Cable Applications”, Texas Instruments.

[18] Yu Liao, Echo Ma, Jinhua Chen, Geoff Zhang, "25G Long Reach Cable Link System Equalization
Optimization", DesignCon 2016.

