
Lab Workbook Counters, Timers and Real-Time Clock

 www.xilinx.com/university Artix-7 9-1
 xup@xilinx.com
 © copyright 2015 Xilinx

Counters, Timers and Real-Time Clock

Introduction

In the previous lab, you learned how the Architectural Wizard can be used to generate a desired clock
frequency and how the IP Catalog can be used to generate various cores including counters. These two
functional circuits are fundamental circuits used in creating timers and real-time clocks. In this lab, you will
generate several kinds of counters, timers, and real-time clocks. Please refer to the Vivado tutorial on
how to use the Vivado tool for creating projects and verifying digital circuits.

Objectives

After completing this lab, you will be able to:

• Define a parameterized model
• Model counters using behavioral modeling

• Design counters using the IP Catalog

• Compare and contrast the counters developed using the behavioral modeling and the IP Catalog
• Design timer circuits using the cores and using additional circuits modeled in HDL

• Create a real-time clock

Parameter and defparam Statements Part 1

The Verilog HDL language supports model parameterization, i.e. write a model in HDL and reuse the
same model number of times by passing different parameter values (typically widths and delays). Use
the parameter construct to define a parameterize-able model. There are two ways to change the values:

(i) during the instantiation of the module (shown in the example below), and (ii) using a defparam

statement. Here is an example of defining a width as a parameter with a default value of 4.

parameter WIDTH = 4;

The parameter (WIDTH) must be defined before it can be used in the model. Here is an example, in
Verilog-2001 standard, of a dataflow model of reduction-or functionality.

module reduction_or #(parameter WIDTH = 4)(input ain[WIDTH-1:0], output

result);

assign result = |ain;

endmodule

module test_reduction_or_tb;

reg [3:0] ain1;

reg [6:0] ain2;

reg [9:0] ain3;

wire result1, result2, result3;

reduction_or U1 (ain1, result1); // use default value of 4

reduction_or #(7) U2 (ain2, result2); // use value of 7

reduction_or #(10) U3 (in3, result3); // use value of 10

endmodule

Note that the parameter WIDTH is defined before it is used. In case of multiple parameter definitions, the
values listed during instantiation maps to the order in which the parameters are defined. In Verilog-2001
standard, all parameters values must be defined, even when some of the values are default values, in
case of multiple parameters.

For example,

Counters, Timers and Real-Time Clock Lab Workbook

Artix-7 9-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

module FA;

parameter AND_DELAY=2, XOR_DELAY=3;

… //gate-level model which uses AND_DELAY and XOR_DEALY in the gate instantiations

endmodule

module FA2BIT(ports listing);

FA #(4,5) f1(ports connections); // AND_DELAY will be 4 and XOR_DELAY will be 5

FA #(1,2) f2(ports conenctions); // AND_DELAY will be 1 and XOR_DELAY will be 2

endmodule

The defparam statement can also be used to change the parameters value from a higher level module

by referencing the module instantiation. For example,

module TOP;

 defparam fa2.f1.AND_DELAY=4, fa2.f1.XOR_DELAY=5, fa2.f2.AND_DELAY=1,

fa2.f2.XOR_DELAY=2;

 FA2BIT fa2(ports connections);

endmodule

The parameter definition can be in the same file where it is used or in a separate file (like a header file in
C programming language) and the header file could be included in the model using the `include
directive. For example,

Let us define the following parameter in a file called header.v
parameter WIDTH = 4;

Then to use it in a file where reduction_or and test_reduction_or_tb modules are defined, use the
following line at the beginning of the file.
`include header.v // you can add a full path to the file if it is located

in some other directory path

1-1. Design a carry-look-ahead adder similar to that you designed in Part 4-1 of
Lab 2 but using gate-level modeling. Define 2 units delay for each kind of
gate that you use in the full-adder circuit using the parameter statements.
When creating hierarchical models, use 1 unit delay for inverters, 3 units
delay for and and or gates, and 4 units delay for xor gates. Use the module
instance parameter value assignment statement method. Develop a
testbench to verify the functionality and to see the delays propagated
through the hierarchy. Do not implement the design.

1-2. Modify the carry-look-ahead adder of 1-1 using the defparam statements,
changing the values of the delays from the testbench. Perform the
behavioral modeling simulation and observe the delays propagated
through the hierarchy. Do not implement the design.

Lab Workbook Counters, Timers and Real-Time Clock

 www.xilinx.com/university Artix-7 9-3
 xup@xilinx.com
 © copyright 2015 Xilinx

Counters and Used Resources Part 2

Counters are fundamental circuits used in measuring events. They may be classified as simple free-
running binary up counting, up/down counting, modulo-k counting, Johnson counting, gray-code counting,
and special sequence counting. In a given design or set of designs, designer use counters of different
widths a number of times. The parameter and defparam statements covered in Part 1 are used to obtain
different widths.

Counters normally use adder and subtractor circuits which can be implemented in the Xilinx FPGA either
using LUTs and/or FFs, or DSP48 slices. You can control the type of resources to be used by using the
synthesis attribute, called USE_DSP48 with a value of “yes” or “no”, in the Verilog code. USE_DSP48
instructs the synthesis tool how to deal with synthesis arithmetic structures. By default, mults, mult-add,
mult-sub, mult-accumulate type structures go into DSP48 blocks. Adders, subtractors, and accumulators
can also go into these blocks but by default, are implemented with the fabric instead of with DSP48
blocks. The USE_DSP48 attribute overrides the default behavior and force these structures into DSP48
blocks. The attribute can be placed in the RTL on signals and modules.

For example,
(* use_dsp48 = "yes" *) // will force the use of DSP48 even on adders

module updown_ctr_behavior(

 input clk,

...

endmodule

(* use_dsp48 = "no" *) // will force not to use the DSP48 even on mults

module matrixmul_behavior(

 input clk,

...

endmodule

2-1. Design an 8-Bit up/down counter using behavioral modeling. Your model
should define COUNT_SIZE as a parameter and use it in the model. The
counter will use the on-board 100 MHz clock source. Use the clocking
wizard to generate a 5 MHz clock, dividing it further by a clock divider to
generate a periodic one second signal. Define the synthesis attribute to not
to use the DSP48 slices. Use the BTNU button as reset to the circuit, SW0
as enable, SW1 as the Up/Dn (1=Up, 0=Dn), and LED7 to LED0 to output the
counter output. Go through the design flow, generate the bitstream, and
download it into the Basys3 or the Nexys4 DDR board. Verify the
functionality. Fill out the following information after reviewing the Project
Summary tab.

1. Number of BUFG/BUFGCTRL _______________

Number of Slice LUTs used: _______________

Number of FF used: _______________

Number of DSP48E1 slices used: _______________

Number of IOs used: _______________

2-2. Use the 8-Bit up/down counter design from 2-1. Set the synthesis attribute
to force the use of the DSP48 slices. Use the BTNU button as reset to the
circuit, SW0 as enable, SW1 as the Up/Dn (1=Up, 0=Dn), and LED7 to LED0
to output the counter output. Go through the design flow, generate the
bitstream, and download it into the Basys3 or the Nexys4 DDR board.

Counters, Timers and Real-Time Clock Lab Workbook

Artix-7 9-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Verify the functionality. Fill out the following information after reviewing
the Project Summary tab.

2. Number of BUFG/BUFGCTRL _______________

Number of Slice LUTs used: _______________

Number of FF used: _______________

Number of DSP48E1 slices used: _______________

Number of IOs used: _______________

2-3. Design an 8-Bit up/down counter using the 8-Bit core generated using the
IP Catalog. When generating the core, set the setting to use the fabric
resource. Use the clocking wizard to generate a 5 MHz clock from the on-
board 100 MHz clock source, dividing it further by a clock divider to
generate a periodic one second signal. Use the BTNU button as reset to the
circuit, SW0 as enable, SW1 as the Up/Dn (1=Up, 0=Dn), and LED7 to LED0
to output the counter output. Go through the design flow, generate the
bitstream, and download it into the Basys3 or the Nexys4 DDR board.
Verify the functionality. Fill out the following information after reviewing
the Project Summary tab.

3. Number of BUFG/BUFGCTRL _______________

Number of Slice LUTs used: _______________

Number of registers used: _______________

Number of DSP48E1 slices used: _______________

Number of IOs used: _______________

2-4. Use the 8-Bit up/down counter design from 2-3 but with the counter
regenerated to use the DSP48 slices. Use the BTNU button as reset to the
circuit, SW0 as enable, SW1 as the Up/Dn (1=Up, 0=Dn), and LED7 to LED0
to output the counter output. Go through the design flow, generate the
bitstream, and download it into the Basys3 or the Nexys4 DDR board.
Verify the functionality. Fill out the following information after reviewing
the Project Summary tab.

4. Number of BUFG/BUFGCTRL _______________

Number of Slice LUTs used: _______________

Number of registers used: _______________

Number of DSP48E1 slices used: _______________

Number of IOs used: _______________

Timers and Real-Time Clock Part 3

Timers and real-time clock are natural applications of counters. The timers include a stop-watch timer and
a lapse timer. The real-time clocks are used in a day to day life for keeping track of the time of the day.

3-1. Design a stop-watch timer using the IP Catalog to generate an appropriate
sized (precision) counter core with the desired input control signals to
measure a time up to five minutes at a resolution of one-tenth of a second.
Instantiate the core a number of required times and add the required
additional circuitry to display the time in M.SS.f format on the four 7-
segment displays. The design input will be a 100 MHz clock source, a reset
signal using the BTNU button, and an enable signal using SW0. When the

Lab Workbook Counters, Timers and Real-Time Clock

 www.xilinx.com/university Artix-7 9-5
 xup@xilinx.com
 © copyright 2015 Xilinx

enable signal is asserted (ON) the clock counts, when it is de-asserted
(OFF) the clock pauses. At any time if BTNU is pressed the clock resets to
the 0.00.0 value. Verify the design functionality in hardware using the
Basys3 or the Nexys4 DDR board.

3-2. Design a countdown timer using the behavioral modeling to model a
parameterized counter down counter with the desired input control signals
to show the count down time from a desired initial value set by the two
slide switches of the board at a second resolution. Display the time in
MM.SS format on the three 7-segment displays. The design input will be a
100 MHz clock source, a re-load signal using the BTNU button, an enable
signal using SW0, and SW7-SW6 as the starting value in number of whole
minutes. When the enable signal is asserted (ON) the clock counts, when it
is de-asserted (OFF) the clock pauses. When the BTNU is pressed the
timer loads to MM.00, where the value of MM is determined by the SW7-
SW6 settings (MM=00 will be ignored). Verify the design functionality in
hardware using the Basys3 or the Nexys4 DDR board.

3-3. Design a real-time clock using the IP Catalog to generate an appropriate
sized (precision) counter core with the desired input control signals.
Instantiate it two times and add the required circuit to display the time in
MM.SS format on the four 7-segment displays. The design input will be a
100 MHz clock source and a reset signal using the BTNU button. At any
time if BTNU is pressed the clock resets to 00.00. Verify the design
functionality in hardware using the Basys3 or the Nexys4 DDR board.

Conclusion

In this lab, you learned how to parameterize models so they can be used in subsequent designs. You
also designed and compared the resources usage of counters modeled behaviorally and using the IP
Catalog. You also designed clocking applications using the counters.

Answers

1. Number of BUFG/BUFGCTRL _____2________

Number of Slice LUTs used: _____25________

Number of FF used: _____32________

Number of DSP48E1 slices used: _____0_________

Number of IOs used: _____12__________

2. Number of BUFG/BUFGCTRL ______2________

Number of Slice LUTs used: ______22_______
Number of FF used: ______33_______

Number of DSP48E1 slices used: ______2________

Number of IOs used: ______12_______

3. Number of BUFG/BUFGCTRL _______2_______

Number of Slice LUTs used: ______27_______

Number of registers used: ______32_______

Number of DSP48E1 slices used: _______0_______

Number of IOs used: ______12_______

Counters, Timers and Real-Time Clock Lab Workbook

Artix-7 9-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2015 Xilinx

4. Number of BUFG/BUFGCTRL ______2________

Number of Slice LUTs used: ______18________

Number of registers used: ______24_______

Number of DSP48E1 slices used: ______1________

Number of IOs used: ______12_________

