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Behavioral Modeling and Timing Constraints 

Introduction 

Behavioral modeling was introduced in Lab 1 as one of three widely used modeling styles.  Additional 
capabilities with respect to testbenches were further introduced in Lab 4. However, there more constructs 
available in this modeling style which are particularly useful for complex sequential digital circuits design.  
Sequential circuits require clocking, and with clocking there is always a frequency or speed involved at 
which the circuit can be run.  The expected speed can be communicated to the tools through specific 
timing constraints via the .xdc file. In this lab you will learn more language constructs and timing 
constraints concepts.  Please refer to the Vivado tutorial on how to use the Vivado tool for creating 
projects and verifying digital circuits. 

Objectives  

After completing this lab, you will be able to: 
• Use various language constructs using behavioral modeling  

• Communicate timing expectations through timing constraints  

Behavioral Modeling  Part 1 

As mentioned in previous labs, the primary mechanism through which the behavior of a design can be 
modeled is via the process statement. The process statement is used in testbenches and behavioral 

code to describe the functionality of the circuit.   The process statement must have a begin and end 

process to denote the beginning and end of the procedural statement(s).  

A procedural statement is one of: 
procedural_assignment (blocking or non-blocking) 
conditional_statement 
case_statement 
loop_statement 
wait_statement 
event_trigger 
sequential_block 
task (user or system) 

When multiple procedural statements are enclosed between begin … end, they execute sequentially. 
Since a process statement executes continuously, they are typically controlled using either delay control 
or event control mechanisms. Here is an example of a delay controlled procedural statement: 

process begin 

   wait for 5 ns; CLK <= not(CLK); 

end process; 

In the above example, the statement will execute after every 5 units of time  
(nanoseconds) specified in the VHDL code, inverting the signal value every time it executes, thus 
generating a clock of 10 ns period. This is considered a delay control, meaning the time delay between 
the statement encountered and actually executed is 5 time units. VHDL supports delays in the form of the 
wait for statement. When the wait for statement is inserted between two statements, it forces the test 

bench to wait for a specified period of time before executing the next statement. Note that this delay 
control statement is not synthesizable. 
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process begin 

target <= ‘1’; 

wait for 20 ns; 

target <= ‘0’; 

end process; 

Below is the example that illustrates the effect of the inter-statement delay:   

 
process begin 

wait for 5 ns; SIG1 <= 3; 

wait for 4 ns; SIG1 <= 7; 

wait for 2 ns; SIG1 <= 4; 

end process; 

The SIG1 signal will get the value of 3 at 5 ns, value of 7 at 9 ns, and value of 4 at 11 ns. 

 
signal test : std_logic; 

process(test) begin 

wait for 5 ns; 

CLK <= not(CLK); 

end process; 

The above process statement will execute only when there is a change in value (an event) on a signal 
test.  The change in value defined in the std_logic type  will trigger the block.  When the event occurs, the 
logical value of CLK will be flipped after 5 ns. 

 
signal test : std_logic; 

process(test) begin 

 if rising_edge(test) then 

wait for 5 ns; 

    CLK <= not(CLK); 

end if; 

end process; 

The above process statement will execute only when there is a rising edge change in value on a signal 
test.  When the event occurs, the logical value of CLK will be flipped after 5 ns.  Such events are called 
edge-triggered events.  In contrast to edge-triggered events, there can be another type of event called a 
level-sensitive event control. 

wait until (SUM > 22) 

   SUM <= 0; 

wait until (DATA_READY = ‘1’) 

   DATA <= BUS; 

In the above examples, SUM is assigned 0 only when SUM is greater than 22, and DATA is assigned 
whatever the value is on BUS when DATA_READY is asserted. 

In RTL VHDL code, the assignment operator “<=” used is called non-blocking. The statement that uses 
the non-blocking operator does not block the execution; however the assignment is scheduled to occur in 
the future. When the non-blocking assignment is executed, the right-hand side expression is evaluated at 
that time and its value is scheduled to be assigned to the left-hand side target and the execution 
continues with the next statement. The non-blocking statements are widely used for content transfer 
across multiple registers (often in parallel) when a desired clock event occurs. 
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1-1. Write a testbench using delays to produce the following waveform.   

So far we have seen constructs which allow generation of stimulus unconditionally.  However, many times 
we like to have different stimulus generation upon certain conditions. VHDL provides control altering 
statements such as if, if … else, and if … elsif.  All variations of the if statement need to 

end with an end if. The general syntax of an if statement is: 

if (condition-1) then 

   procedural_statement 
[ elsif (condition-2) then 

   procedural_statement ] 
[ else  
   procedural_statement ] 

end if; 

 

A begin…end block is not necessary for if statements. Any statements between if, if … else, 

and if … elsif are considered to be part of the block    

It is possible to have nested if statements. In such case, the else part is associated to the closest if 

part.  For example, below, the else part is associated to the if (RESET) condition, 

 
if (CLK = ‘1’) then 

  if (RESET = ‘1’) then 

      Q <= 0; 

  else  

      Q <= D;  

 end if; 

end if; 

 
The if statement is commonly used to create a priority structure, giving higher priority to the condition 
listed first.    

1-2. Write a behavioral model to design a 1-bit 4-to-1 mux using the if-else-if 
statement.  Develop a testbench to verify the design.   

Another widely used statement is a case statement. The case statement is generally used when we 

want to create a parallel structure (unlike priority). Case statements are commonly used in creating finite 
state machines. The syntax of the case statement is: 

 
case [ case_expression] is 

    when case_item_expression => procedural_statement; 

    … 

    … 

    when others => procedural_statement; 

end case; 
 
The case_expression is evaluated first (whenever there is an event on it), and the value is matched with 
the case_item_expr in the order they are listed.  When the match occurs, the corresponding 
procedural_statement is executed. Like the if statement, multiple procedural statements are enclosed 
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between “=>” and the next “when” statement, no begin … end blocks are needed. The others case 
covers all values that are not covered by any of the case_item_expr. 

1-3. Design a gray code generator using the case statement.  The design will 
take a 4-bit BCD input through SW3-SW0 and will output the corresponding 
gray code value on the four LEDS, LED3-LED0, provided that the enable 
input on SW4 is TRUE.  If the enable input is FALSE or the input is not BCD 
then LED3-LED0 should all be turned ON and LED4 should also be turned 
ON. Look at the Project Summary report and make sure that no latches or 
registers resources are used. 

VHDL testbenches also support various loop statements to do the same function a number of times.  The 
supported loop statements are: 

 
basic loop 
while loop 

for loop 

The basic loop statement is used when the procedural statement(s) need to be executed continuously. 
Some kind of timing control must be used within the procedural statement if a periodic output is desired.  
For example, to generate a clock of 20 units period, the following code can be used: 

 
signal CLK : std_logic := ‘0’; 

process begin  

  loop 

wait 10 ns; 

     CLK <= not(CLK); 

  end loop; 

 end process; 
 
Notice you need an end loop statement to terminate the loop.  
 
The while loop statement’s procedural statement(s) are executed until certain conditions become false. 

 
while (COUNT < COUNT_LIMIT) loop 

   SUM <= SUM +5; 

end loop; 

The for loop statement is used when the procedural statement(s) need to be executed for a specified 

number of times.  An index variable is used which can be initialized to any desired value, it can be further 
updated by whatever value is required, and a condition can be given to terminate the loop statement.  
The loop index variable is normally defined as an integer type.  Here is an example of the loop statement. 
 

signal K : integer := ‘0’; 

for K in 0 to 15 loop 

   SUM <= SUM + K; 

end loop; 

 

1-4. Write a model of a counter which counts in the sequence mentioned below. 
The counter should use behavioral modeling and a case statement.  
Develop a testbench to test it.  The testbench should display the counter 
output in the simulator console output.  Simulate using the clock period of 
10 units for 200 ns. 000, 001, 011, 101, 111, 010, (repeat 000). The counter 
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will have an enable signal (SW2), a reset signal (SW1), and a clock signal 
(SW15). The output of the counter will be on LED2-LED0.   

set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets { clk }]; 

Add the above code to the XDC file and set the clock as SW15.  

2Timing Constraints  Part 2 

In combinatorial logic design, delays through the circuits will depend on the number of logic levels, the 
fan-out (number of gate inputs a net drives) on each net, and the capacitive loading on the output nets.  
When such circuits are placed between flip-flops or registers, they affect the clock speeds at which 
sequential designs can be operated.  The synthesis and implementation tools will pack the design in LUT, 
flip-flops, and registers, as well as place them appropriately if the expected performance is communicated 
to them via timing constraints. Timing constraints can be categorized into global timing or path specific 
constraints.  The path specific constraints have higher priority over global timing constraints, and the 
components which are used in those specific paths are placed and routed first. 

The global timing constraints cover most of the design with very few lines of instructions.  In any pure 
combinatorial design, the path-to-path constraint is used to describe the delay the circuit can tolerate.  In 
sequential circuits, period, input delay, and output delay constraints are used.  

 

In the above figure, the paths which are covered between ADATA input and D port of FLOP1, BUS input 
and D port of FLOP4 can be constrained by a constraint called SET_INPUT_DELAY command. The 
set_input_delay command indicates how much time is spent between the Q output of a FF in the 
upstream device, the routing delay in the upstream device as well as the board delay. The tools will 
subtract that delay from the clock period of the clock signal listed in the command and will use the 
resulting delay to place and route the path between the input and the D input of FF.  It will also consider 
delay experienced by the clock arriving to the clock port of the destination FF (e.g. FLOP1 in the above 
diagram). The max and min qualifiers are used for the setup and hold checks. 

The paths between the port Q of FLOP3 and output OUT1, Q port of FLOP5 and OUT1, Q port of FLOP5 
and OUT2 can be constrained by SET_OUTPUT_DELAY command. Again, the delay mentioned 
indicates how much delay is spent in the board delay, routing delay and the setup delay of the FF in the 
downstream device. 

The paths between CDATA and OUT2 can be constrained by the SET_MAX_DELAY constraint.  

The paths between Q port of FLOP1 and D port of FLOP2, Q port of FLOP2 and D port of FLOP3, Q port 
of FLOP4 and D port of FLOP5 can be constrained by the period constraint. The period constraint is 
created using the create_clock command. The create_clock command may refer ot a pin of the FPGA 
design or may not refer any pins.  When the clock pin is not referred, a virtual clock will be created. When 
the pin is referred, the period parameter indicates rising to rising edge delay and waveform option 
indicates when the rising edge occurs and the second number indicates when the falling edge occurs.  
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The waveform option can be used to create clocks of non-50% duty cycle and/or phase delayed clock 
signal.  
 
create_clock –name CLK –period 10.0 –waveform (0 5.0) [get_ports CLK] 

set_input_delay –clock CLK –max 3.0 [all_inputs] 

set_input_delay –clock CLK –min 1.0 [all_inputs]  

set_output_delay –clock CLK 2.0 [all_outputs] 

set_max_delay 5.0 –from [get_ports CDATA] –to [get_ports OUT2] 

 
Note that the clock period is defined at 10 ns. This is applied throughout the example for consistency. 
Further details on the syntax of each constraint type can be found in UG903, the Vivado Using 
Constraints Guide. 

Conclusion  

In this lab you learned about various constructs available in behavioral modeling.  You also learned about 
blocking and non-blocking operators as well as concepts and the need of timing constraints.  Providing 
the timing constraints to the implementation tools the generated output can be made to meet the design’s 
timing specifications. 


