
Lab Workbook Modeling Registers and Counters

 www.xilinx.com/university Nexys3 6-1
 xup@xilinx.com
 © copyright 2013 Xilinx

Modeling Registers and Counters

Introduction

When several flip-flops are grouped together, with a common clock, to hold related information the resulting
circuit is called a register. Just like flip-flops, registers may also have other control signals. You will
understand the behavior of a register with additional control signals. Counters are widely used sequential
circuits. In this lab you will model several ways of modeling registers and counters. Please refer to the
PlanAhead tutorial on how to use the PlanAhead tool for creating projects and verifying digital circuits.

Objectives

After completing this lab, you will be able to:

• Model various types of registers
• Model various types of counters

Registers Part 1

In a computer system, related information is often stored at the same time. A register stores bits of
information in such a way that systems can write to or read out all the bits simultaneously. Examples of
registers include data, address, control, and status. Simple registers will have separate data input and
output pins but clocked with the same clock source. A simple register model is shown below.

module Register (input [3:0] D, input Clk, output reg [3:0] Q);

 always @(posedge Clk)

 Q <= D;

endmodule

Notice that this is similar to a simple D Flip-flop with multiple data port.

The simple register will work where the information needs to be registered every clock cycle. However,
there are situations where the register content should be updated only when certain condition occurs. For
example, a status register in a computer system gets updated only when certain instructions are executed.
In such case, a register clocking should be controlled using a control signal. Such registers will have a
clock enable pin. A model of such register is given below.

module Register_with_synch_load_behavior(input [3:0] D, input Clk, input load,

output reg [3:0] Q);

 always @(posedge Clk)

 if (load)

 Q <= D;

endmodule

Another desired behavior of registers is to reset the content when certain condition occurs. A simple
model of a register with synchronous reset and load (reset has a higher priority over load) is shown below

module Register_with_synch_reset_load_behavior(input [3:0] D, input Clk,

input reset, input load, output reg [3:0] Q);

 always @(posedge Clk)

 if (reset)

 begin

 Q <= 4'b0;

 end else if (load)

 begin

 Q <= D;

 end

endmodule

Modeling Registers and Counters Lab Workbook

Nexys3 6-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

1-1. Model a 4-bit register with synchronous reset and load using the model
provided above. Develop a testbench and simulate the design. Assign Clk
to SW0, D input to SW4-SW1, reset to SW5, load to SW6, and output Q to
LED3-LED0. Verify the design in hardware.

1-1-1. Open PlanAhead and create a blank project called lab6_1_1.

1-1-2. Create and add the Verilog module that will model the 4-bit register with synchronous reset and
load. Use the code provided in the above example.

1-1-3. Develop a testbench and simulate the design. Analyze the output.

1-1-4. Synthesize the design.

1-1-5. Create and add the UCF file, assigning Clk to SW0, D input to SW4-SW1, reset to SW5, load to
SW6, and Q to LED3-LED0.

1-1-6. Implement the design.

Look at the Project Summary and note that 1 BUFG and 11 IOs are used.

If you open map report file, you will notice that there are 4 IOB registers are used.

1-1-7. Generate the bitstream, download it into the Nexys3 board, and verify the functionality.

In some situations, it is necessary to set the register to a pre-defined value. For such a case, another
control signal, called set, is used. Typically, in such registers, reset will have a higher priority over set, and
set will have a higher priority over load control signal.

1-2. Model a 4-bit register with synchronous reset, set, and load signals.
Assign Clk to SW0, D input to SW4-SW1, reset to SW5, set to SW6, load to
SW7, and output Q to LED3-LED0. Verify the design in hardware.

1-2-1. Open PlanAhead and create a blank project called lab6_1_2.

1-2-2. Create and add the Verilog module that will model the 4-bit register with synchronous reset, set,
and load control signals.

1-2-3. Synthesize the design.

1-2-4. Create and add UCF file, assigning Clk to SW0, D input to SW4-SW1, reset to SW5, set to SW6,
load to SW7, and Q to LED3-LED0.

1-2-5. Implement the design.

Look at the Project Summary and note the resources used. Understand the result.

Lab Workbook Modeling Registers and Counters

 www.xilinx.com/university Nexys3 6-3
 xup@xilinx.com
 © copyright 2013 Xilinx

1-2-6. Generate the bitstream, download it into the Nexys3 board, and verify the functionality.

The above registers are categorized as parallel registers. There are another kind of registers called shift
registers. A shift register is a register in which binary data can be stored and then shifted left or right when
the control signal is asserted. Shift registers can further be sub-categorized into parallel load serial out,
serial load parallel out, or serial load serial out shift registers. They may or may not have reset signals.

In Xilinx FPGA, LUT can be used as a serial shift register with one bit input and one bit output using one
LUT as SRL32 providing efficient design (instead of cascading up to 32 flip-flops) provided the code is
written properly. It may or may not have enable signal. When the enable signal is asserted, the internal
content gets shifted by one bit position and a new bit value is shifted in. Here is a model for a simple one-
bit serial shift in and shift out register without enable signal. It is modeled to shift for 32 clock cycles
before the shifted bit brought out. This model can be used to implement a delay line.

module simple_one_bit_serial_shift_register_behavior(input Clk, input ShiftIn,

output ShiftOut);

 reg [31:0] shift_reg;

 always @(posedge Clk)

 shift_reg <= {shift_reg[30:0], ShiftIn};

 assign ShiftOut = shift_reg[31];

endmodule

The above model can be modified if we want to implement a delay line less than 32 clocks. Here is the
model for the delay line of 3 clocks.

module delay_line3_behavior(input Clk, input ShiftIn, output ShiftOut);

 reg [2:0] shift_reg;

 always @(posedge Clk)

 shift_reg <= {shift_reg[1:0], ShiftIn};

 assign ShiftOut = shift_reg[2];

endmodule

1-3. Model a 1-bit delay line shift register using the above code. Develop a
testbench and simulate the design using the stimuli provided below.
Assign Clk to SW0, ShiftIn to SW1, and output ShiftOut to LED0. Verify the
design in hardware.

1-3-1. Open PlanAhead and create a blank project called lab6_1_3.

1-3-2. Create and add the Verilog module that will model the 1-bit delay line shift register using the
provided code.

1-3-3. Develop a testbench and simulate the design.

1-3-4. Synthesize the design.

1-3-5. Create and add the UCF file, assigning Clk to SW0, ShiftIn to SW1, and ShiftOut to LED0.

Modeling Registers and Counters Lab Workbook

Nexys3 6-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

1-3-6. Implement the design.

Look at the Project Summary and note the resources used. Understand the result.

1-3-7. Generate the bitstream, download it into the Nexys3 board, and verify the functionality.

The following code models a four-bit parallel in shift left register with load and shift enable signal..

module Parallel_in_serial_out_load_enable_behavior(input Clk, input ShiftIn,

input [3:0] ParallelIn, input load, input ShiftEn, output ShiftOut, output

[3:0] RegContent);

 reg [3:0] shift_reg;

always @(posedge Clk)

 if(load)

 shift_reg <= ParallelIn;

 else if (ShiftEn)

 shift_reg <= {shift_reg[2:0], ShiftIn};

 assign ShiftOut = shift_reg[3];

 assign RegContent = shift_reg;

endmodule

1-4. Model a 4-bit parallel in left shift register using the above code. Develop a
testbench and simulate the design using the stimuli provided below.
Assign Clk to SW0, ParallelIn to SW4-SW1, load to SW5, ShiftEn to SW6,
ShiftIn to SW7, RegContent to LED3-LED0, and ShiftOut to LED7. Verify the
design in hardware.

1-4-1. Open PlanAhead and create a blank project called lab6_1_4.

1-4-2. Create and add the Verilog module that will model the 4-bit parallel in left shift register using the
provided code.

1-4-3. Develop a testbench and simulate the design.

1-4-4. Synthesize the design.

1-4-5. Create and add the UCF file, assigning Clk to SW0, ParallelIn to SW4-SW1, load to SW5, ShiftEn
to SW6, ShiftIn to SW7, RegContent to LED3-LED0, and ShiftOut to LED7.

1-4-6. Implement the design.

Look at the Project Summary and note the resources used. Understand the result.

1-4-7. Generate the bitstream, download it into the Nexys3 board, and verify the functionality.

Lab Workbook Modeling Registers and Counters

 www.xilinx.com/university Nexys3 6-5
 xup@xilinx.com
 © copyright 2013 Xilinx

1-5. Write a model for a 4-bit serial in parallel out shift register. Develop a
testbench and simulate the design. Assign Clk to SW0, ShiftEn to SW1,
ShiftIn to SW2, ParallelOut to LED3-LED0, and ShiftOut to LED7. Verify the
design in hardware.

Counters Part 2

Counters can be asynchronous or synchronous. Asynchronous counters count the number of events
solely using an event signal. Synchronous counters, on the other hand, use a common clock signal so
that when several flip-flops must change state, the state changes occur simultaneously.

A binary counter is a simple counter which counts values up when an enable signal is asserted and will
reset when the reset control signal is asserted. Of course, a clear signal will have a higher priority over
the enable signal. The following diagram shows such a counter. Note that clear is an asynchronous
negative logic signal whereas Enable is synchronous positive logic signal.

2-1. Design a 8-bit counter using T flip-flops, extending the above structure to
8-bits. Your design needs to be hierarchical, using a T flip-flop in
behavioral modeling, and rest either in dataflow or gate-level modeling.
Develop a testbench and validate the design. Assign Clock input to SW0,
Clear_n to SW1, Enable to SW2, and Q to LED7-LED0. Implement the
design and verify the functionality in hardware.

2-1-1. Open PlanAhead and create a blank project called lab6_2_1.

2-1-2. Create and add the Verilog module to provide the desired functionality.

2-1-3. Synthesize the design and view the schematic under the Synthesized Design process group.
Indicate what kind and how many resources are used.

2-1-4. Develop a testbench and validate the design.

2-1-5. Create and add the UCF file, assigning Clock input to SW0, Clear_n to SW1, Enable to SW2, and
Q to LED7-LED0.

2-1-6. Implement the design.

Modeling Registers and Counters Lab Workbook

Nexys3 6-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

2-1-7. Generate the bitstream, download it into the Nexys3 board, and verify the functionality.

Counters can also be implemented using D flip-flops since a T flip-flop can be constructed using a D flip-
flop as shown below.

2-2. Modify the 8-bit counter using D flip-flops. The design should be
hierarchical, defining D flip-flop in behavioral modeling, creating T flip-flop
from the D flip-flop, implementing additional functionality using dataflow
modeling. Assign Clock input to SW0, Clear_n to SW1, Enable to SW2, and
Q to LED7-LED0. Implement the design and verify the functionality in
hardware.

Other types of binary counters include (i) up, (ii) down, and (iii) up-down. Each one of them may have
count enable and reset as control signals. There may be situation where you may want to start the count
up/down from some non-zero value and stop when some other desired value is reached. Here is an
example of a 4-bit counter which starts with a value 10 and counts down to 0. When the count value 0 is
reached, it will re-initialize the count to 10. At any time, if the enable signal is negated, the counter
pauses counting until the signal is asserted back. It assumes that load signal is asserted to load the pre-
defined value before counting has begun.

 reg [3:0] count;

 wire cnt_done;

 assign cnt_done = ~| count;

 assign Q = count;

 always @(posedge Clock)

 if (Clear)

 count <= 0;

 else if (Enable)

 if (Load | cnt_done)

 count <= 4'b1010; // decimal 10

 else

 count <= count - 1;

2-3. Model a 4-bit up-counter with synchronous load, enable, and clear as given
in the code above. Develop a testbench (similar to the waveform shown
below) and verify the design works. Assign Clock input to SW0, Clear to
SW1, Enable to SW2, Load to SW3, and Q to LED3-LED0. Implement the
design and verify the functionality in hardware.

Conclusion

In this lab, you learned how various kinds of registers and counters work. You modeled and verified the
functionality of these components. These components are widely used in a processor system design.

