
Versal ACAP System
Software Developers Guide

UG1304 (v2021.2) October 27, 2021

See all versions
of this document

Xilinx is creating an environment where employees, customers, and
partners feel welcome and included. To that end, we’re removing non-
inclusive language from our products and related collateral. We’ve
launched an internal initiative to remove language that could exclude
people or reinforce historical biases, including terms embedded in our
software and IPs. You may still find examples of non-inclusive
language in our older products as we work to make these changes and
align with evolving industry standards. Follow this link for more
information.

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1304
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf

Revision History
The following table shows the revision history for this document.

Section Revision Summary
10/27/2021 Version 2021.2

Chapter 2: Programming View of Versal ACAP Updated Chapter 2: Programming View of Versal ACAP,
Hardware Overview, and RPU Configuration Options.

Chapter 7: Boot and Configuration Added a new section: Classic SoC Boot Flow.

Chapter 8: Platform Loader and Manager Updated PLM Interface (XilPLMI) and XilSecure sections.

Chapter 9: Security Added a new section: True Random Number Generator.
Updated Security Features and Black Key sections.

Chapter 10: Versal ACAP Platform Management Updated Versal ACAP Power Domains, Versal DFX
Management, Versal ACAP Platform Management Software
Architecture, and Event Management Framework sections.

06/16/2021 Version 2021.1

Chapter 6: Software Design Paradigms Updated the Asymmetric Multiprocessing section.

Chapter 7: Boot and Configuration Updated chapter.

Chapter 8: Platform Loader and Manager Updated PLM Major Error Codes, XilLoader/IPI CDO
Commands, and PLM Build Flags sections.

Chapter 10: Versal ACAP Platform Management Added Event Management Framework section.
Updated Implementing Power Management on a Processor
Unit, PM Features in Linux, Trusted Firmware-A, PS
Management Controller Firmware, and Relationship with
PLM sections.

Revision History

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=2

Table of Contents
Revision History...2

Chapter 1: Overview..6
Introduction to Versal ACAP...6
Navigating Content by Design Process.. 7
About This Guide... 8

Chapter 2: Programming View of Versal ACAP.. 10
Hardware Overview.. 11

Chapter 3: Development Tools.. 22
Vivado Design Suite.. 22
Vitis Software Platform... 23
PetaLinux Tools..27
Device Tree Generator..28
Open Source.. 29
Linux Software Development Using Yocto...30
QEMU..32
AI Engine Development Environment.. 35

Chapter 4: Software Stack... 38
Bare-Metal Software Stack... 38
Linux Software Stack...41
Third-Party Software Stack...44

Chapter 5: Software Development Flow.. 45
Bare-Metal Application Development in the Vitis Environment ...46
Linux Application Development Using PetaLinux Tools...47
Linux Application Development Using the Vitis Software Platform....................................48

Chapter 6: Software Design Paradigms... 51
Frameworks for Multiprocessor Development..51
Symmetric Multiprocessing... 52

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=3

Asymmetric Multiprocessing .. 54

Chapter 7: Boot and Configuration.. 59
Versal ACAP Boot Process.. 59
Boot Flow..64
Boot Device Modes... 68
Fallback Boot and MultiBoot..70
Programmable Device Image.. 73
Configuration Data Object... 73
Boot Image (PDI) Creation...74
Methods for Copying the PDI to a Primary Boot Device.. 76

Chapter 8: Platform Loader and Manager .. 77
PLM Boot and Configuration... 77
PLM Software Details.. 82
PLM Errors..86
PLM Event Logging... 94
PLM Interface (XilPLMI).. 101
XilLoader...104
XilPM... 110
XilSecure... 111
XilSEM... 111
PLM Usage... 112
Services Flow..114

Chapter 9: Security...115
Security Features...115
Asymmetric Hardware Root-of-Trust (A-HWRoT) (Authentication Required)................. 118
Encryption.. 119
True Random Number Generator...120

Chapter 10: Versal ACAP Platform Management......................................122
Versal ACAP Platform Management Overview.. 123
Versal ACAP Power Domains... 123
Versal DFX Management.. 126
Versal ACAP Platform Management Software Architecture.. 128
API Calls and Responses...130
Event Management Framework.. 154
XilPM Client Implementation Details.. 158

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=4

PM Features in Linux.. 161
Trusted Firmware-A.. 163
Power State Coordination Interface... 165
PS Management Controller Firmware.. 166
Relationship with PLM.. 167

Chapter 11: Target Development Platforms..169
Boards and Kits..169

Appendix A: Libraries... 171

Appendix B: Additional Resources and Legal Notices........................... 172
Xilinx Resources...172
Documentation Navigator and Design Hubs.. 172
References..172
Please Read: Important Legal Notices... 174

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=5

Chapter 1

Overview

Introduction to Versal ACAP
Versal® adaptive compute acceleration platforms (ACAPs) combine Scalar Engines, Adaptable
Engines, and Intelligent Engines with leading-edge memory and interfacing technologies to
deliver powerful heterogeneous acceleration for any application. Most importantly, Versal ACAP
hardware and software are targeted for programming and optimization by data scientists and
software and hardware developers. Versal ACAPs are enabled by a host of tools, software,
libraries, IP, middleware, and frameworks to enable all industry-standard design flows.

Built on the TSMC 7 nm FinFET process technology, the Versal portfolio is the first platform to
combine software programmability and domain-specific hardware acceleration with the
adaptability necessary to meet today's rapid pace of innovation. The portfolio includes six series
of devices uniquely architected to deliver scalability and AI inference capabilities for a host of
applications across different markets—from cloud—to networking—to wireless communications—
to edge computing and endpoints.

The Versal architecture combines different engine types with a wealth of connectivity and
communication capability and a network on chip (NoC) to enable seamless memory-mapped
access to the full height and width of the device. Intelligent Engines are SIMD VLIW AI Engines
for adaptive inference and advanced signal processing compute, and DSP Engines for fixed point,
floating point, and complex MAC operations. Adaptable Engines are a combination of
programmable logic blocks and memory, architected for high-compute density. Scalar Engines,
including Arm® Cortex®-A72 and Cortex-R5F processors, allow for intensive compute tasks.

The Versal AI Edge series focuses on AI performance per watt for real-time systems in automated
drive, predictive factory and healthcare systems, multi-mission payloads in aerospace & defense,
and a breadth of other applications. More than just AI, the Versal AI Edge series accelerates the
whole application from sensor to AI to real-time control, all with the highest levels of safety and
security to meet critical standards such as ISO26262 and IEC 61508.

Chapter 1: Overview

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=6

The Versal AI Core series delivers breakthrough AI inference acceleration with AI Engines that
deliver over 100x greater compute performance than current server-class of CPUs. This series is
designed for a breadth of applications, including cloud for dynamic workloads and network for
massive bandwidth, all while delivering advanced safety and security features. AI and data
scientists, as well as software and hardware developers, can all take advantage of the high-
compute density to accelerate the performance of any application.

The Versal Prime series is the foundation and the mid-range of the Versal platform, serving the
broadest range of uses across multiple markets. These applications include 100G to 200G
networking equipment, network and storage acceleration in the Data Center, communications
test equipment, broadcast, and aerospace & defense. The series integrates mainstream 58G
transceivers and optimized I/O and DDR connectivity, achieving low-latency acceleration and
performance across diverse workloads.

The Versal Premium series provides breakthrough heterogeneous integration, very high-
performance compute, connectivity, and security in an adaptable platform with a minimized
power and area footprint. The series is designed to exceed the demands of high-bandwidth,
compute-intensive applications in wired communications, data center, test & measurement, and
other applications. Versal Premium series ACAPs include 112G PAM4 transceivers and integrated
blocks for 600G Ethernet, 600G Interlaken, PCI Express® Gen5, and high-speed cryptography.

The Versal architecture documentation suite is available at: https://www.xilinx.com/versal.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal® ACAP design process Design
Hubs can be found on the Xilinx.com website. This document covers the following design
processes:

• System and Solution Planning: Identifying the components, performance, I/O, and data
transfer requirements at a system level. Includes application mapping for the solution to PS,
PL, and AI Engine.

• Chapter 5: Software Development Flow

• Chapter 6: Software Design Paradigms

• Chapter 7: Boot and Configuration

• Chapter 8: Platform Loader and Manager

• Chapter 9: Security

• Chapter 10: Versal ACAP Platform Management

• Chapter 11: Target Development Platforms

Chapter 1: Overview

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 7Send Feedback

https://www.xilinx.com/versal
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=7

• Embedded Software Development: Creating the software platform from the hardware
platform and developing the application code using the embedded CPU. Also covers XRT and
Graph APIs.

• Chapter 5: Software Development Flow

• Chapter 3: Development Tools

• Chapter 4: Software Stack

• Chapter 6: Software Design Paradigms

About This Guide
This guide focuses on the Versal ACAP system software development environment, and is the
first document that software developers should read. This document includes the following:

• Chapter 2: Programming View of Versal ACAP: Provides an overview of system software, and
relevant aspects of the Versal ACAP hardware.

• Chapter 3: Development Tools: Describes the available Xilinx tools and flows for programming
the Versal device.

• Chapter 4: Software Stack: Provides an overview of the various software stacks available for
the Versal devices.

• Chapter 5: Software Development Flow: Explains the bare-metal software development for
the real-time processing unit (RPU) and the application processing unit (APU) using the Vitis™
IDE, as well as Linux software development for the APU using PetaLinux and Vitis tools.

• Chapter 6: Software Design Paradigms: Describes the Xilinx Versal device architecture that
supports heterogeneous multiprocessor engines for different tasks.

• Chapter 7: Boot and Configuration: Presents the type of boot modes that Versal ACAP
supports, along with an overview of the boot and configuration process for both secure and
non-secure boot modes.

• Chapter 8: Platform Loader and Manager: Explains the role of the platform loader and
manager (PLM) that runs on the platform processing unit (PPU) in the platform management
controller (PMC). The PLM performs boot and configuration of the Versal ACAP, and then
continuously monitors services after the initial boot and configuration of the Versal device.

• Chapter 9: Security: Details the Versal device features that you can leverage to address
security during boot time and run time of an application.

• Chapter 10: Versal ACAP Platform Management: Describes the role of the platform
management in managing resources, such as power, clock, reset, and pins optimally.

Chapter 1: Overview

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=8

• Chapter 11: Target Development Platforms: Describes the boards and kits available for Versal
ACAP.

• Appendix A: Libraries: Details the libraries and APIs available for Versal ACAP.

Chapter 1: Overview

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=9

Chapter 2

Programming View of Versal ACAP
Versal® ACAPs include five types of programmable processors. Each type of processor provides
different computation capabilities to meet different requirements of the overall system:

• Arm® Cortex®-A72 dual-core processor in the processor system (PS): Typically used for
control-plane applications, operating systems, communications interfaces, and lower level or
complex computations.

• Arm Cortex-R5F dual-core processor in the PS: Typically used for applications requiring safety
and determinism.

• MicroBlaze™ processors in the programmable logic (PL): (Optional) Typically used for data
manipulation and transport, non-vector-based computation, and interfacing to the PS and
other components on Versal ACAP.

• ROM control unit (RCU) and PMC processing unit (PPU) in the PMC: Typically used for
executing the PLM firmware.

• AI Engines: Typically used for compute-intensive functions in vector implementations.

The PMC processor is responsible for boot, configuration, partial-reconfiguration, and life cycle
management tasks such as security. For more information about PMC management of boot and
partial reconfiguration, see Chapter 7: Boot and Configuration.

This chapter briefly discusses:

• PS with dual-core Cortex-A72 and dual-core Cortex-R5F processors

• MicroBlaze processor in the PL

• Linux and bare-metal software stacks used with the processors

• Boot and configuration information

• Additional features relevant to a software engineer

For details about additional features such as the PMC, DDR memory bus width, number of DDR
memory controllers, interconnect for CCIX and PCIe (CPM), and PCI Express®, see the Versal
Architecture and Product Data Sheet: Overview (DS950). The Versal ACAP Technical Reference
Manual (AM011) includes details on PMC/PS-centric content with a hardware architecture
section that includes links to documents that describe other integrated hardware and peripherals
including the CPM, DDRMC, AI Engine, PL, and more.

Chapter 2: Programming View of Versal ACAP

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 10Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=10

Hardware Overview
This section provides an overview of the Versal ACAP hardware view components.

Figure 1: Device-level Interconnect Architecture

PMC
Platform Management

Controller
RCU BootROM Code

and PPU PLM
Firmware

HBMHBMHBM

APU
Application Processing Unit

Arm Cortex-A72
with System MMU and Cache Coherent

Interconnect

RPU
Real-time Processing Unit

Arm Cortex-R5F
HDIO

100G MR
Ethernet

to FPD SMMU & CCI

to FPD SMMU & CCI

x16, GTY, GTYP

PCIe Lanes
HSDP Aurora

GTs

DDR Memory
Controller

PS

AI Engine

NPI

LVCMOS

ACE
ACE_LITE
ACP
AXI4

AXI4

AXI4

AXI4

CFICFRAMEs

Stream

CHI

Transceivers

NoC

CPM
PCIe with DMA and Cache

Coherency Interconnect

Options: CPM4, CPM5

DSP Engine

CLB

UltraRAM
Block RAM

Clocking

PL

PL

600G DR
Ethernet

600G
Interlaken

400G
Cypto

Dedicated

OCM

CPM L2 cache

MIO pins

MIO pins

Control, Interface, and
Processing System

Configured by CIPS Wizard

TCMs

PPU RAM

PMC RAM
Programming interfaces (SoC)

Programming interfaces (PL)

PL
SPD
FPD
LPD
PMC
PL or LPD

Power Domains

Device Option

XRAM
Device Option

APU L2 cacheFPD

LPD

Device Options

PL PCIe

PSM
Firmware

128-bit
Stream
I/O

Interconnect
Source

Video
Decoder Unit

XPIO

Stacked MemoryHBM
Interface HBM

X24257-092721

Chapter 2: Programming View of Versal ACAP

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=11

Note: For more detailed information about the Versal ACAP hardware, refer to the Versal ACAP Technical
Reference Manual (AM011).

Key Hardware Components

The following list describes the largest hardware view components:

• AI Engine: The AI Engine contains a scalar unit, a vector unit, load units, and a memory
interface. The scalar unit contains a 32-bit scalar RISC processor with register files for general
purpose, pointer, configuration, and backup registers, and a 32x32-bit scalar multiplier. The AI
Engine also supports non-linear functions including sine/cosine, squareroot, and inverse-
squareroot. Three address generator units (AGUs) are available: two dedicated as load units,
and one dedicated as a store unit. The vector unit contains a 512-bit vector fixed-point /
integer unit. Devices with AI Engines contain a single-precision floating point vector unit.
Devices with an AIE-ML contain a fixed-point vector unit also used for Bfloat16 and FP32
support. The vector units in both the AI Engine and AIE-ML support concurrent operation on
multiple vector lanes.

Within each AI Engine is a dedicated, single-port, 16 KB program memory 128-bit wide and
1k deep. The program memory supports instruction compression and has ECC protection and
reporting.

• APU: The application processing unit (APU) consists of Cortex-A72 processor cores, L1/L2
caches, and related functionality. The Cortex-A72 cores and caches are part of Arm MPCore
IP.

Versal ACAP uses a dual-core Cortex-A72 processor system with 1 MB L2 cache. The Cortex-
A72 cores implement Armv8 64-bit architecture. The Cortex-A72 MPCore does not have
integrated generic interrupt controller (GIC), so an external GIC IP is used. For more
information, refer to "APU Processor Features" in Versal ACAP Technical Reference Manual
(AM011).

• AXI Interconnect: The advanced eXtensible interface (AXI) interconnect connects one or more
memory mapped AXI master devices to one or more memory mapped peripheral devices. The
AXI interfaces conform to the AMBA® AXI version 4 specifications from Arm, including the
AXI4-Lite control register interface subset.

• CPM: The interconnect for cache coherent interconnect for accelerators (CCIX) and PCIe®

(CPM) module is the primary PCIe interface for the processing system. There are two
integrated blocks for PCIe in the CPM, supporting up to Gen4 x16. You can configure both of
the integrated blocks for PCIe as an endpoint. Furthermore, you can configure each integrated
block as a root port that contains direct memory access (DMA) controller. The CPM CCIX
functionality allows a PL accelerator to act as a CCIX compliant accelerator.

Chapter 2: Programming View of Versal ACAP

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 12Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=12

• PL: The programmable logic (PL) is a scalable structure that includes adaptable engines and
intelligent engines that can be used to construct accelerators, processors, or almost any other
complex functionality. It is configured using the Vivado® tools. The architect determines the
components to be available in the PL design. For example, the MicroBlaze processor is an IP
core, so you can optionally add MicroBlaze processors to the design. For more information on
the PL, see MicroBlaze Processor Reference Guide (UG984).

• PMC: The platform management controller (PMC) handles device management control
functions such as device reset sequencing, initialization, boot, configuration, security, power
management, dynamic function eXchange (DFX), health-monitoring, and error management.
You can boot the device in either secure or non-secure mode. For more information, refer to
"Platform Management Controller" in Versal ACAP Technical Reference Manual (AM011).

• NoC Interconnect: The NoC is the main interconnect and contains a vertical component
(VNoC) and a horizontal component (HNoC).

• HNoC is integrated in the horizontal super row/region (HSR). The HSR includes blocks such
as XPIO, hard DDR memory controller, PLL, HBM, and AI Engine.

• VNoC integration includes the global-clk-column. In SSI technology, VNoCs are connected
across super logic region (SLR) boundaries. Microbumps and buffers for this reside in the
Thin-HNoC. Configuration data between SSI technology master and slaves travels over the
NoC.

• RPU: The real-time processing unit (RPU) is a dual-core Cortex-R5F processor, based on the
Armv7-R architecture with a floating point unit, which can run as either two independent
cores or in a lock-step configuration. For more information, refer to Platform Management in
Versal ACAP Technical Reference Manual (AM011).

• System Memory Management Unit: The system memory management unit (SMMU) supports
memory virtualization for peripherals. The main functions of the SMMU include logical
memory protection by performing address translation, transaction security state control, as
well as blocking peripherals if configured to do so.

These functions are performed with a combination of the seven translation buffer units (TBU
0 to 6). Four of these are in the path of incoming AXI interfaces outside of the FPD to the CCI.
The translation and protection tables that are cached in the TBU are updated by the SMMU
translation control unit (TCU).

For more information on the SMMU, see Chapter 43 in the Versal ACAP Technical Reference
Manual (AM011).

• Cache Coherent Interconnect: The cache coherent interconnect (CCI) is based on the Arm
CCI-500 with its snoop filter (SF) table feature. It provides tight memory coherency between
the APU L2 cache and a PL system cache using the ACE interface protocol to support multiple
heterogeneous processing environments. It is part of the FPD interconnect.

For more information on the CCI, see Chapter 44 in the Versal ACAP Technical Reference
Manual (AM011).

Chapter 2: Programming View of Versal ACAP

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 13Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=13

Additional Hardware Components

• Peripheral Controllers: The Input/Output peripherals are present in low power domain (LPD)
and PMC domain (PPD). The flash memory controllers (FMC) are located in PMC. Their I/O
signals are routed to device pins via the PMC MIO multiplexer.

For more information, refer to the I/O Peripherals and FMC sections in Versal ACAP Technical
Reference Manual (AM011).

• Interconnects and Buses: Versal ACAP has following additional interconnects and buses:

• NPI: The NoC programming interface, a 32-bit programming interface to the NoC and
several attached units.

For more information, refer to Versal ACAP Programmable Network on Chip and Integrated
Memory Controller LogiCORE IP Product Guide (PG313).

• APB: The advanced peripheral bus (APB) is a 32-bit single-word read/write programming
interface. This bus is used to access control registers in the functional units, i.e., subsystem
units. These control registers are used to program the functional units. The APB switch is
used as the interconnect switch in the following four areas:
• PMC
• LPD
• FPD
• CPM

• CFI: The configuration frame interface (CFI) transports PL and integrated hardware
configuration information contained in the boot image from the PMC to its destination
within the Versal device. CFI provides a dedicated high-bandwidth 128-bit bus to PL for
configuration and readback. For more information, refer to the Programming Interfaces
chapter in Versal ACAP Technical Reference Manual (AM011).

• System Watchdog Timer: The system watchdog (SWDT) timer is used to detect and recover
from various malfunctions. The watchdog timer can be used to prevent system lockup (when
the software becomes trapped in a deadlock). For more information, refer to "System
Watchdog Timer" in Versal ACAP Technical Reference Manual (AM011).

• Clocks: Versal ACAP has the following clocks:

• PMC and PS clocks

• CPM clocks

• NoC, AI Engine, and DDR memory controller clocks

• PL clocks: The PL includes its own clock arrays that are programmed when blocks are
instantiated. The PL also includes programmable clock modules that can be driven by
clocks from input pins and other sources.

For more information, see the Versal ACAP Clocking Resources Architecture Manual (AM003)
and Versal ACAP Technical Reference Manual (AM011).

Chapter 2: Programming View of Versal ACAP

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 14Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am003-versal-clocking-resources.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=14

• Memory: Versal device has following list of memories:

• DDR memory: Up to 4096 GB of RAM is supported. This DDR memory is external to the
device.

• On-chip memory (OCM) in the PS: This memory is 256 KB in size, and is accessible to the
RPU and APU processors via the LPD OCM interconnect switch.

• Accelerator RAM: The 4 MB accelerator RAM (XRAM) is available in some Versal® AI Core
series. The XRAM is divided into four separate memory banks with four system interfaces:
an AXI port from the LPD PS and three PL AXI ports.

The XRAM supports simultaneous access by each port to its associated bank. It also allows
full cross-bank access from any port to any bank. For details please refer to XRAM Memory
chapter in the Versal ACAP Technical Reference Manual (AM011).

• Tightly coupled memory (TCM) in the RPU: This memory is 256 KB and is mainly used by
the RPU but can be accessed by the APU.

• Battery-backed RAM (BBRAM): This memory can store the advanced encryption standard
(AES) 256-bit key.

• eFUSE: Contains user memory to store multiple keys and security configuration settings.

• Reset: Versal ACAP has several layers of resets with overlapping effects. The highest-level
resets are generally aligned with power domains, then power island resets, and finally the
individual functional unit resets. In some cases, functional units have local resets that affects
part of the block. The reset hierarchy:

• Subsystem resets (power domains)

• Power-island resets

• Functional unit (block) resets

• Partial resets of a block (some cases)

For more information, refer to the "Resets" chapter in Versal ACAP Technical Reference Manual
(AM011).

• Virtualization: The Versal device includes the following hardware components for
virtualization:

• CPU virtualization

• Memory virtualization

For more information, refer to "Memory Virtualization" in Versal ACAP Technical Reference
Manual (AM011).

• Security and Safety: The Versal device has the following security management and safety
features:

Chapter 2: Programming View of Versal ACAP

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 15Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=15

• Secure key storage and management

• Tamper monitoring and response

• User access to Xilinx hardware cryptographic accelerators

• Xilinx memory protection unit (XMPU) and Xilinx peripheral protection unit (XPPU)
provides hardware-enforced isolation.

• TrustZone

For more information, refer to "Platform Management Controller" in Versal ACAP Technical
Reference Manual (AM011), Chapter 9: Security, and Versal ACAP Security Manual (UG1508).
This manual requires an active NDA to download from the Design Security Lounge.

For XMPU and XPPU, refer to "Memory Protection" in Versal ACAP Technical Reference Manual
(AM011).

Processing System
The processing system (PS) has the following components:

• Dual-core Arm Cortex-A72 processor

• Dual 32-bit Cortex-R5F processor cores based on the Arm® v7-R architecture.

• 256 KB on-chip memory (OCM) with error correction code (ECC)

• Arm CoreSight™ debug and trace (DAP) with TMC, STM, ATM, and APM

• System memory management unit (SMMU)

• Cache coherent interconnect

• One universal serial bus (USB) 2.0

• PCIe RP/EP in CPM (device dependent)

• Two gigabit Ethernet MAC with TSN support

• Eight channel general purpose DMA unit in LPD

• Performance I/O

• Two controller area network-flexible data rates (CAN-FD), two serial peripheral interfaces
(SPI), two I2C, and two UART controllers

• PS management controller (PSM), only for use in LPD

Note: The PS has access to shared external DDR memory.

Chapter 2: Programming View of Versal ACAP

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 16Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=16

Application Processing Unit

The application processing unit (APU) consists of an Arm Cortex-A72 processor, L1/L2 caches,
and related functionality. The Cortex-A72 cores and caches are part of the Arm processor
MPCore IP, with integrated L1 and L2 caches.

The Versal device uses a dual-core Cortex-A72 with 1 MB L2 cache.

The Cortex-A72 cores implement Armv8 64-bit architecture. The Cortex-A72 MPCore processor
does not have an integrated generic interrupt controller (GIC), so an external GIC IP is used.

The APU includes the following features:

• Dual-core Cortex-A72 core class with 1 MB L2 with error correction code (ECC). The L1
caches include I-cache of 48 KB in size and for I-cache and D-cache of 32 KB in size. L1
caches include error correction code (ECC).

• GIC-500 interrupt controller

• Per core power-gating support

• TrustZone support

Real-Time Processing Unit

The Versal ACAP APU provides improved performance at an improved safety level. However, for
real-time applications which require a higher level of safety (e.g., ASIL-C/SIL3), reliability, and
determinism, real-time processing unit (RPU) is used with a lockstep processor subsystem.

The RPU architecture specification consists of RPU cores, TCMs, and on-chip memory. The
following list describes the main RPU features.

• Dual 32-bit Cortex-R5F cores based on Arm v7-R architecture and supports lock-step or split
mode options

• 128 KB TCM per Cortex-R5F processor in split mode.

• Option to combine 256 KB of TCM in lock-step mode.

• 256 KB of on-chip memory with error correction code (ECC) accessible by both the RPU and
the APU.

• 32 KB L1 instruction cache with error correction code (ECC) or parity and 32 KB L1 data
cache with error correction code (ECC)

• Generic interrupt controller (GIC) to support GIC architecture

• Per lock-step power-gating support

• TCM and OCM power-gating

• TrustZone aware

Chapter 2: Programming View of Versal ACAP

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=17

Tightly Coupled Memory Interface

The per-core TCM can be configured for the following modes:

• Split, performance mode: While running the RPU in split mode, each core can only access 128
KB of TCM.

• Lock-step, safety mode: While running in the lock-step mode, the RPU has access to the
entire 256 KB of TCM.

RPU Configuration Options

The following table and figure describe the four configuration options of the RPU.

Table 1: RPU Configuration Options

Configuration Option Description Core Running
Option 1: Split mode High-performance mode.

In this configuration, both real-time
cores work independently, each using
separate TCMs.

RPU core 0 and RPU core 1

Option 2: Split mode, only one core
used

High-performance mode.
In this configuration, RPU core 0 can be
held in reset, while RPU core 1 runs
independently using all 256 KB of TCM.

RPU core 1 only

Option 3: Lock-step mode Safety mode.

Note: The lock-step mode is typically
used for safety-critical deterministic
applications.

In this configuration, both cores run in
parallel with each other, with
integrated comparator logic. The RPU
core 0 is the master, and RPU core 1 is
the checker.
The TCM is combined to give RPU core
0 a larger TCM.
Each core executes the same code. The
inputs and outputs of the two cores are
compared. If they do not match, then
the comparator detects the error.
While two cores are used, the
performance is of one core.

RPU core 0 only

Option 4: None RPU is not used. None

Notes:
1. RPU core 0 TCM is the tightly coupled memory associated with Cortex-R5F core 0 core in split mode; RPU core 1 TCM

is the tightly-coupled memory associated with the RPU_0 core in split mode.
2. RPU core 1 TCM is located slightly farther from the cores than RPU core 0 TCM, so there might be a slightly longer

delay when cores access RPU core 1 TCM versus RPU core 0 TCM.

RPU cores can use the system watchdog timer (SWDT) to monitor functionality and check
performance, through a periodic write to a timer register.

Chapter 2: Programming View of Versal ACAP

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=18

Figure 2: RPU Configuration Options

OPTION 4

RPU TCM
128 KB

NOT USED

RPU TCM
128 KB

NOT USED

RPU

NOT USED

RPU

NOT USED

Load

Load

Store

Store

OPTION 1

RPU TCM
128 KB

RPU TCM
128 KB

RPU

RPU

Load

Load

Store

Store

OPTION 2

RPU TCM
128 KB

RPU TCM
128 KB

RPU

NOT USED

RPU

Load

Load

Store

Store

OPTION 3

RPU TCM
256 KB

RPU

RPU

Co
m

pa
ris

on
 a

nd
 S

yn
c.

 L
og

ic

Load

Store

Load

Store

X22497-041719

The following figure shows the resource sharing when the RPU cores are configured in lock-step
mode.

Chapter 2: Programming View of Versal ACAP

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=19

Figure 3: RPU Cortex-R5F Processor Lock-step Mode

TCMs Associated
with CPU1

TCM A

TCM B

TCMs Associated
with CPU0

TCM A

TCM B Shim
Shim

GIC

Cortex-R5F
CPU0

Cortex-R5F
CPU1

Caches Associated
with CPU0

D-Cache

I-Cache

Comparison and Synchronization Logic

X15295-050919

Programmable Logic
You can use the Vivado IP integrator to configure the Versal ACAP programmable logic (PL). The
PL is flexible, and the configuration uses building blocks or integrated components to create a
customized design.

The PL is a complex structure that includes integrated and instantiated hardware accelerators,
controllers, memories, and miscellaneous functional units.

• Integrated functional units include a multi-gigabit Ethernet MAC.

• Building blocks are used to instantiate functional units, and connect the integrated units to
the interconnect and I/O structures. Building blocks include DSP, block RAM, UltraRAM, and
clocking structures.

• Instantiated functional units are built using the PL integrated building blocks and could
include:

• Interconnects: AXI, NoC interconnect

• Platform control components: PS configuration and reset

• Digital functional units: Adders, counters, floating point unit (FPU), and video

• Radio frequency-oriented (RF) functional units: RF usage functional units, long term
evolution (LTE), and radio

MicroBlaze Processors in the Programmable Logic

Optionally, architects can add MicroBlaze processors into the PL design. These MicroBlaze
processors can run a variety of software, including Linux, bare-metal applications, FreeRTOS, or
other custom software.

Chapter 2: Programming View of Versal ACAP

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=20

The PL instantiated MicroBlaze processors can include a system cache that can be attached to
the APU through the L2-cache via the CCI.

Chapter 2: Programming View of Versal ACAP

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=21

Chapter 3

Development Tools
This chapter focuses on Xilinx® tools and flows that are available for programming Versal® ACAP.
It also provides a brief description about the available open source tools that you can use for
open source development on different processors of Versal ACAP.

A comprehensive set of tools for developing and debugging software applications on the Versal
device includes:

• Hardware IDE

• Software IDE

• Compiler toolchain

• Debug and trace tools

• Simulators (for example, Quick Emulator (QEMU))

• Models and virtual prototyping tools (for example, emulation board platforms)

The following sections provide a summary of the available Xilinx development tools.

Vivado Design Suite
The Xilinx Vivado® Design Suite contains tools that are encapsulated in the Vivado IDE. The IDE
provides an intuitive GUI with powerful features.

The tools deliver a SoC-strength, IP- and system-centric, development environment built
exclusively by Xilinx to address the productivity bottlenecks in system-level integration and
implementation.

All commands and command options in the Vivado Design Suite use the native tool command
language (Tcl) format, which can run on both, the Vivado IDE or the Vivado Design Suite Tcl shell.
Analysis and constraint assignment is enabled throughout the design process. For example, you
can run timing or power estimations after synthesis, placement, or routing. As the database is
accessible through Tcl, changes to constraints, design configuration, or tool settings happen in
real time, often without forcing re-implementation.

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=22

The Vivado IDE uses a concept of opening designs in memory. Opening a design loads the design
(an ASCII file defining the components and their connections) at that particular stage of the
design flow, assigns the constraints to the design, and then applies the design to the target
device. This provides the ability to visualize and interact with the design at each design stage.

You can improve design performance and ease of use through the features delivered by the
Vivado Design Suite, including:

• The control, interfaces, and processing system IP (CIPS) configuration within IP integrator with
graphical user interfaces to let you create and modify the CIPS within the IP integrator block
design.

• Register transfer level (RTL) design in VHDL, Verilog, and SystemVerilog

• Quick integration and configuration of IP cores from the Xilinx IP catalog to create block
designs through the Vivado IP integrator

• Vivado synthesis

• C-based sources in C, C++, and SystemC

• Vivado implementation for place and route

• Vivado serial I/O and logic analyzer for debugging

• Vivado power analysis

• Synopsys design constraints (SDC)-based Xilinx design constraints (XDC) for timing
constraints entry

• Static timing analysis

• Flexible floorplanning

• Detailed placement and routing modification

• Vivado Tcl Store, which you can use to add to and modify the capabilities in the Vivado tool

You can download the Vivado Design Suite from Vivado Design Suite – ML Editions.

Vitis Software Platform
Versal ACAP designs are enabled by the Vitis™ tools, libraries, and IP. The Vitis IDE lets you
program, run, and debug the different elements of a Versal ACAP AI Engine application, which
can include AI Engine kernels and graphs, PL, high-level synthesis (HLS) IP, RTL IP, and PS
applications. For detailed information on the Vitis IDE tool flow, refer to Chapter 4: Design Flow in
Versal ACAP Design Guide (UG1273).

The Vitis software platform supports the following flows for software development:

• Accelerated Flow

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 23Send Feedback

https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1273-versal-acap-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=23

• Embedded Flow

Accelerated Flow
For acceleration, the Vitis development environment lets you build a software application using
the OpenCL™ or the open source Xilinx Runtime (XRT) native API to run the hardware kernels on
accelerator cards, such as the Xilinx Alveo™ Data Center accelerator cards. The Vitis core
development kit also supports running the software application on a Linux-embedded processor
platform such as Versal ACAP.

For the embedded processor platform, the Vitis execution model also uses the OpenCL™ API and
the Linux-based XRT to schedule the hardware kernels and control data movement.

The Vitis tools support the Alveo PCIe-based cards, as well as the ZCU102 Base, ZCU102 Base
with dynamic function eXchange (DFX), ZCU104 base, ZC702 base, ZC706 base embedded
processor platforms, and the Versal ACAP VCK190 base and VMK180 base boards.

In addition to these off-the-shelf platforms, the Vitis tools support custom platforms.

The Vitis development environment supports application development for both data center and
embedded processor platforms, allowing you to migrate data center applications to embedded
platforms. The Vitis tool includes the v++ compiler for the hardware kernel on all platforms, the
g++ compiler for compiling the application to run on an x86 host, and Arm® compiler for cross-
compiling the application to run on the embedded processor of a Xilinx device.

Note: The v++ compiler has two options: compile (that is v++ -c to Vitis HLS), system linking (v++ -l),
and packaging (-p).

For more information, see the Vitis Unified Software Platform Documentation: Application
Acceleration Development (UG1393).

Embedded Flow
Based on the open source Eclipse platform, the Vitis development environment provides a
complete environment for creating software applications that are targeted for Xilinx embedded
processors. The environment includes a GNU-based compiler toolchain, C/C++ development
toolkit (CDT), JTAG debugger, flash programmer, middleware libraries, bare-metal BSPs, and
drivers for Xilinx IP. The development environment also includes a robust IDE for C/C++ bare-
metal and Linux application development and debugging.

The development environment lets you create software applications using a unified set of Xilinx
tools for the Arm Cortex®-A72 and Cortex®-R5F processors, as well as the Xilinx MicroBlaze™
processors. The environment provides the following methods to create applications:

• Bare-metal and FreeRTOS applications for MicroBlaze processors

• Bare-metal, Linux, and FreeRTOS applications for APU

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 24Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1393-vitis-application-acceleration
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=24

• Bare-metal and FreeRTOS applications for RPU

• User customization of PLM, which is primarily used to boot Versal ACAP

• Library examples are provided with Vitis (ready to load sources and build), as follows:

○ OpenCV

○ OpenAMP RPC

○ FreeRTOS “HelloWorld”

○ LWIP

○ Performance tests (Dhrystone, memory tests, and peripheral tests)

○ Cryptographic hardware engine access

○ eFUSE and BBRAM programming

○ PLM

After a hardware design is created in the Vivado IDE, you can export a block design along with
hardware design and bitstream files to the Vitis tool export directory directly from the Vivado
project navigator.

All processes necessary to successfully complete this export process are run automatically. The
Vitis tool process exports the following files to the Vitis tool directory:

• .xpr: Vivado project file

• .pdi: Contains PLM file (plm.elf), PSM firmware (psm_fw.elf) and all design specific
CDO files (pmc_data.cdo, lpd_data.cdo, *.rcdo, *.rnpi, ai_engine_data.cdo (if
AI Engine is used), and fpd_data.cdo)

• .xsa: Xilinx Support Archive for the design.

The Vitis environment can also generate programmable device image (PDI) for secure and non-
secure boot for the following processors:

• Arm Cortex-A72

• Arm Cortex-R5F

• MicroBlaze

The Vitis environment supports Linux application development and debugging.

For more information, see Vitis Embedded Software Development Flow Documentation (UG1400).

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 25Send Feedback

https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/iwr1574143923490.html
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1400-vitis-embedded
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=25

Vitis Tools
The Vitis development environment provides the following tools for use in Xilinx embedded
software development:

• Xilinx System Debugger (XSDB): Provides a command line interface to the Xilinx hw_server.
The hw_server is the backend tool, that provides device/processor level debug capabilities
to front-end tools such as XSDB, and the Vitis IDE. XSDB also provides various low-level
debugging features not directly available in the Vitis development environment.

• Flash programmer: Used for programming the software application images into external flash
devices including QSPI, OSPI, or eMMC.

• Linker script generator: Used for mapping your bare-metal/FreeRTOS application elf sections
across the hardware memory space.

• GNU compiler tool suite: Includes tools such as the GNU compiler collection (GCC), AS, LD,
and binutils that are used for compilation on all Xilinx processors.

• Bootgen: Used for generating the boot image known as the PDI.

• Performance analysis tools: Includes GPROF, TCF Profiler, and OProfile.

• Debug/download tools: Includes GNU debugger (GDB), XSDB, and flash writer.

• Simulator: QEMU

• Xilinx software command-line tool (XSCT): Xilinx Software Command-line Tool (XSCT) is an
interactive and scriptable command-line interface to the Vitis IDE. As with other Xilinx tools,
the scripting language for XSCT is based on the tools command language (Tcl). The tools helps
to abstract away and group most of the common functions into logical wizards that even the
novice can use.

However, scriptability of a tool is also essential for providing the flexibility to extend what is
done with that tool. It is particularly useful when developing regression tests that will be run
nightly or running a set of commands that are used often by the developer.

You can run XSCT commands interactively or script the commands for automation. XSCT
supports the following actions:

• Create hardware, domains, platform projects, system projects, and application projects

• Manage repositories

• Set toolchain preferences

• Configure and build domains/BSPs and applications

• Download and run applications on hardware targets

• Create and flash boot images by running Bootgen and program_flash tools

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=26

This reference content is intended to provide the information you need to develop scripts for
software development and debug targeting Xilinx processors.

For more information, refer to Xilinx Software Command-Line Tool in the Vitis Embedded Software
Development Flow Documentation (UG1400).

The Vitis tool provides a separate perspective for each task to ease the software development
process. Perspectives available for C/C++ developers are as follows:

• Design perspective views: View, create and build the software C/C++projects. By default, it
consists of an editor area and other views, such as Vitis projects, C/C++ projects to show the
software projects present in the workspace, a navigation console, properties, tasks, make
targets, outline, and search.

• Debug view: Helps debug software applications. You can customize the open source
applications from the debug perspective and integrate with the Vitis environments.

• Remote system explorer: Connect and work with a variety of remote systems, for example,
running Linux on a Versal device.

PetaLinux Tools
PetaLinux offers tools to customize, build, and deploy embedded Linux solutions on Xilinx
processing systems. Tailored to accelerate design productivity for SoC devices, the solution
works with the Xilinx hardware design tools to facilitate the development of open source Linux
systems for Versal devices.

PetaLinux tools include the following:

• Build tools, such as GNU, petalinux-build, and make to build the kernel images and the
application software.

• Debug tools, such as GNU debugger (GDB), petalinux-boot, and Oprofile for profiling. The
following partial list shows the supported PetaLinux toolchain:

• GNU gcc/g++ toolchain: Xilinx Arm GNU tools.

• petalinux-build: Used to build software image files.

• Make: Make build for compiling the applications.

• GDB: GDB tools for debugging.

• petalinux-package: Used to create the boot image.

• petalinux-boot: Used to boot Linux.

• QEMU: Emulator platform for the Versal device.

• Oprofile: Used for profiling.

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 27Send Feedback

https://docs.xilinx.com/access/sources/dita/topic?ft:locale=en-US&dita:id=jed1590410655455
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=27

The following figure shows the PetaLinux tool flow.

Figure 4: PetaLinux Tool-Based Flow

Petalinux Tools

Build Tools

Debug and Profile Tools

GNU Petalinux-Build

Yocto Make

GDB Petalinux-Boot

QEMU OProfile

X23441-112719

For more information, refer to the following:

• PetaLinux Tools Documentation: Reference Guide (UG1144)
• https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux on the Xilinx Wiki.

Device Tree Generator
The device tree (DT) data structure consists of nodes with properties that describe a hardware
device. The Linux kernel uses the device tree to support a wide range of hardware configurations.

It is also possible to have various combinations of peripheral logic, each using a different
configuration. For all the different combinations, the device tree generator (DTG) generates
the .dts/.dtsi device tree files.

The following is a list of the dts/dtsi files generated by the device tree generator:

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 28Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1144-petalinux-tools-reference-guide.pdf
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=28

• pl.dtsi: Contains all the memory mapped peripheral logic (PL) IPs.

• pcw.dtsi: Contains the dynamic properties for the PS IPs.

• system-top.dts: Contains the memory, boot arguments, and command line parameters.

• versal.dtsi: Contains the PS-specific and CPU information.

• versal-clk.dtsi: Contains the clocks and power domain information for PS peripherals.
For more information, see https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842279/
Build+Device+Tree+Blob on the Xilinx Wiki.

Open Source
The Arm GNU open source Linaro GCC toolchain is adopted for the Xilinx software development
platform. The GNU tools for Linux hosts are available as part of the Vitis environment. This
section details the open source GNU tools and Linux tools available for the processing clusters in
Versal ACAPs.

Xilinx Arm GNU Tools
The following Xilinx Arm GNU tools are available for compiling software for the APU, the RPU,
and the embedded MicroBlaze processors:

• arm-linux-gnueabihf-gcc: Used for compiling Armv8 C code into 32-bit Linux
applications with hard floating point instructions.

• arm-linux-gnueabihf-g++: Used for compiling Armv8 C++ code into 32-bit Linux
applications.

• aarch64-linux-gnu-gcc: Used for compiling Armv8 C code into 64-bit Linux applications.

• aarch64-linux-gnu-g++: Used for compiling Armv8 C++ code into 64-bit Linux
applications.

• aarch64-none-elf-gcc: Used for compiling Armv8 C code into 64-bit RTOS and bare-
metal applications.

• aarch64-none-elf-g++: Used for compiling Armv8 C++ code into 64-bit RTOS and bare-
metal applications.

• armr5-none-eabi-gcc: Used for compiling Armv7 C code into 32-bit RTOS and bare-
metal applications.

• armr5-none-eabi-g++: Used for compiling Armv7 C++ code into 32-bit RTOS and bare-
metal applications.

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 29Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842279/Build+Device+Tree+Blob
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842279/Build+Device+Tree+Blob
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=29

• microblaze-xilinx-elf-gcc: Used for compiling MicroBlaze™ C code.

• microblaze-xilinx-elf-g++: Used for compiling MicroBlaze™ C++ code.

Note: All GNU compilers are packaged with their associated assembler, linker, etc.

Linux Software Development Using Yocto
Xilinx distributes open source, meta-xilinx Yocto/OpenEmbedded recipes on https://github.com/
Xilinx, so you can work with in-house Yocto build systems to configure, build, and deploy Linux
for Versal devices.

The meta-xilinx layer also provides a number of BSPs for Xilinx reference boards and vendor
boards, such as ZC702, ZCU102, Ultra96, Zedboard, VCK190, and VMK180.

The meta-xilinx layer is compatible with Yocto/OpenEmbedded, adding recipes for various
components. For more information, see https://git.yoctoproject.org/cgit/cgit.cgi/meta-xilinx/.

You can develop Linux software on the Arm Cortex-A72 processor using open source Linux tools.
This section explains the Linux Yocto tools and its project development environment.

The following table lists the Yocto distribution.

Table 2: Yocto Distribution

Distribution Type Name Description
Yocto Build System Bitbake Generic task execution engine that

allows shell and Python tasks to be run
efficiently, and in parallel, while
working within complex inter-task
dependency constraints.

Yocto Profile and Trace Packages Perf Profiling and tracing tool that comes
bundled with the Linux Kernel.

Ftrace Refers to the ftrace function tracer but
encompasses a number of related
tracers along with the infrastructure
used by all the related tracers.

Oprofile System-wide profiler that runs on the
target system as a command-line
application.

Sysprof System-wide profiler that consists of a
single window with three panes, and
buttons, which allow you to start, stop,
and view the profile from one place.

Blktrace A tool for tracing and reporting low-
level disk I/O.

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 30Send Feedback

https://github.com/Xilinx
https://github.com/Xilinx
https://git.yoctoproject.org/cgit/cgit.cgi/meta-xilinx/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=30

Yocto Project Development Environment
The Yocto Project development environment allows Linux software to be developed for Versal
ACAP through Yocto recipes distributed on https://github.com/Xilinx. You can use components
from the Yocto project to design, develop, and build an open source-based Linux software stack.

The following figure shows the complete Yocto project development environment. The Yocto
project has wide range of tools which can be configured to download the latest Xilinx kernel and
build with some enhancements made locally in the form of local projects.

You can also change the build and hardware configuration through BSP.

Yocto combines a rich compiler and quality analyzing tools to build and test images. After the
images pass the quality tests and package feeds required for Vitis tool generation are received,
the Yocto distribution launches Vitis environment for application development.

The important features of the Yocto project are as follows:

• Provides a recent Linux kernel along with a set of system commands and libraries suitable for
the embedded environment.

• Makes available system components such as X11, GTK+, Qt, Clutter, and SDL (among others),
so you can create a rich user experience on devices that have display hardware. For devices
that do not have a display or where you want to use alternative UI frameworks, these
components do not need to be installed.

• Creates a focused and stable core compatible with the OpenEmbedded project to easily and
reliably build and develop Linux software.

• Supports a wide range of hardware and device emulation through the QEMU.

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 31Send Feedback

https://github.com/Xilinx
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=31

Figure 5: Yocto Project Development Environment

User Configuration

Metadata
(.bb+patches)

Machine(BSP)
Configuration

Policy Configuration

Source
Fetching

Patch
Application

Configuration /
Compile /

Autoreconf as
needed

Output
Analysis for

package
splitting plus

Package
relationships

.rpm
Generation

.deb
Generation

.ipk
Generation

QA
Tests

image
Generation

Images
Application

Development
(Vitis)

Package Feeds

Source Mirror(s)

Upstream
Project

Releases

Local
Projects

SCMs
(optional)

Upstream Source
Metadata/Inputs
Build System

Output Packages
Process steps (Tasks)
Output Image Data

Vitis
Generation

X14841-062420

You can download the Yocto tools and the Yocto Project development environment from the
https://www.yoctoproject.org/software-overview/downloads/.

For more information about Xilinx-supported Yocto features, see Yocto Features in PetaLinux
Tools Documentation: Reference Guide (UG1144) and the https://xilinx-wiki.atlassian.net/wiki/
spaces/A/pages/18841883/Yocto on the Xilinx Wiki.

QEMU
QEMU is a fast functional and instruction accurate emulator that can be installed on both Linux
and Windows hosts. The Xilinx QEMU features a large number of the same peripheral models as
Xilinx silicon and can even inject real data from the host into emulation (for example, Ethernet,
UART, storage, CAN-FD, etc.) to stimulate your applications. Xilinx has provided QEMU as a
development platform for many generations including Versal ACAP, Zynq UltraScale+ MPSoC,
Zynq-7000, and MicroBlaze processors.

The Xilinx QEMU is already integrated in Vitis, PetaLinux, and Yocto in every Xilinx release. For
the most up to date development branch, you can download Xilinx QEMU, build and install from
source.

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 32Send Feedback

https://www.yoctoproject.org/software-overview/downloads/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug1144-petalinux-tools-reference-guide.pdf
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=32

To use this emulation platform you must be familiar with:

• Device architecture

• GNU debugger (GDB) for remote debugging

• Generation of guest software applications using Yocto, Xilinx PetaLinux and Vitis tools

• Linux device trees

This document focuses on the list of features supported for the emulation of Versal ACAP in
Xilinx QEMU. The purpose of this section is to familiarize software application developers,
system software developers, system hardware designers, and validation/verification designers
with the basic information to use and debug software with QEMU.

QEMU Model for Versal ACAP

The Xilinx Versal ACAP QEMU model supports the following resources:

• Central Processing Units (CPUs)

○ Application Processing Unit (APU): 2 x Arm Cortex-A72 processor.

○ Real-time Processing Unit (RPU): 2 x Arm Cortex-R5F processor.

• PS management controller (PSM): 1 x MicroBlaze processor

• Platform Management Controller (PMC)

○ Platform processing unit (PPU) 0 (MicroBlaze processor)

○ Platform processing unit (PPU) 1 (MicroBlaze processor)

• Memory

○ On-chip memory (OCM)

○ Tightly coupled memory (TCM)

○ DDR memory

○ Accelerator RAM (XRAM)

• Security Modules

○ Device Key Storage

- Battery Backed Random Access Memory (BBRAM)

- eFUSE (Electronic Fuse)

- Physical Unclonable Function (PUF - API only)

○ Crypto Primitives

- Advanced Encryption Standard - Galois/Counter Mode (AES-GCM)

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=33

- Secure Hash Algorithm 3 (SHA-3)

- RSA-4096

- Elliptic Curve Digital Signature Algorithm (ECDSA)

• Peripheral and Controllers

○ 2 x Serial Peripheral Interface (SPI)

○ Octal SPI (OSPI)

- OSPI DMA

○ 2 x SD

○ eMMC

○ 2 x CANFD

○ 2 x UART

○ 3 x Inter-Integrated Circuit (I2C)

- 2 in PS

- 1 in PMC

○ 2 x Gigabit Ethernet

○ 4 x triple timer counter (TTC)

○ Inter-processor interrupt (IPI)

○ Xilinx Memory Protection Unit (XMPU)

○ Xilinx Peripheral Protection Unit (XPPU)

○ System Memory Management Unit (SMMU)

○ General interrupt controller (GIC) v3

○ Direct memory access (DMAs)

○ Real-Time Clock (RTC)

○ USB (host-mode only)

○ System monitor (SYSMON) support

Using the QEMU

For more information on using the QEMU, see the Xilinx Quick Emulator User Guide: QEMU.

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 34Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/821395464/QEMU+User+Documentation
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=34

AI Engine Development Environment
The Versal AI Core series delivers breakthrough AI inference acceleration with AI Engines that
deliver over 100x greater compute performance than current server-class of CPUs. This series is
designed for a breadth of applications, including cloud for dynamic workloads and network for
massive bandwidth, all while delivering advanced safety and security features. AI and data
scientists, as well as software and hardware developers, can all take advantage of the high
compute density to accelerate the performance of any application. Given the AI Engine's
advanced signal processing compute capability, it is well-suited for highly optimized wireless
applications such as radio, 5G, backhaul, and other high-performance DSP applications.

AI Engines are an array of very-long instruction word (VLIW) processors with single instruction
multiple data (SIMD) vector units that are highly optimized for compute-intensive applications,
specifically digital signal processing (DSP), 5G wireless applications, and artificial intelligence (AI)
technology such as machine learning (ML).

AI Engines are hardened blocks that provide multiple levels of parallelism including instruction-
level and data-level parallelism. Instruction-level parallelism includes a scalar operation, up to two
moves, two vector reads (loads), one vector write (store), and one vector instruction that can be
executed—in total, a 7-way VLIW instruction per clock cycle. Data-level parallelism is achieved
via vector-level operations where multiple sets of data can be operated on a per-clock-cycle
basis. Each AI Engine contains both a vector and scalar processor, dedicated program memory,
local 32 KB data memory, access to local memory in any of three neighboring directions. It also
has access to DMA engines and AXI4 interconnect switches to communicate via streams to other
AI Engines or to the programmable logic (PL) or the DMA. Refer to the Versal ACAP AI Engine
Architecture Manual (AM009) for specific details on the AI Engine array and interfaces.

Xilinx® provides device drivers and libraries for user applications to access the Versal® AI
Engines. See Versal ACAP AI Engine Programming Environment User Guide (UG1076) to learn how
to use the Xilinx® AI Engine program environment. The Vitis IDE lets you compile, simulate, and
debug the different elements of a Versal ACAP AI Engine application. For detailed information on
the Vitis IDE tool flow, refer to Versal ACAP Design Guide (UG1273). For detailed information on
the Vitis AL Engine Tools and Flows, refer to Versal ACAP AI Engine Programming Environment User
Guide (UG1076).

The following sections describe the software stack of the AI Engine.

AI Engine Software Development Flow
The AI Engine application comprises kernels that run on the AI Engine tiles, and a control
application that runs on the CPU. The following figure shows the flow of the AI Engine control
application and ELFs generation.

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 35Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=latest;d=yii1603912637443.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1273-versal-acap-design.pdf
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/yii1603912637443.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=35

Figure 6: AI Engine Software Development Flow

ps_application>.cpp <kernel>.cc

Vitis (AI Engine Compiler)

AIE ElF filesaie_control.cpp

GCC Cross Compiler Vitis CDO Generator

AIE CDO Init

Vitis Bootgen

xclbin containing AIE CDOs
and ELFs

Application Binary

X25138-041421

You define the <graph>.cpp and <kernels>.cpp. The AI Engine compiler takes these inputs
to generate aie_control.cpp, which runs on either the APU or RPU to configure and monitor
the AI Engine and the ELF files that run on the AI Engine tiles.

AI Engine Runtime Stack
Your PS applications can call system libraries to access AI Engine registers and load the kernel
ELF files.

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=36

• Bare-Metal: Your application can use the cardano_api.a library to access AI Engine
registers. The cardano_api.a library calls aie_control and the AI Engine driver, to
access the AI Engine register and device memory.

Figure 7: AI Engine Bare-Metal Runtime Stack

IO Backends

User Application

Cardano_lib

AIE Device

Core
Control

Stream
Switch

Perf
Counter Timer Locks

Timer Events DMAs Trace Block data
write/Read

CDO Linux I/O
BasicMode

Baremetal
(Direct) Simulator

X25140-022221

• Linux: On Linux, an application can use AI Engine driver APIs or XRT APIs to interact with the
AI Engine.

Figure 8: AI Engine Linux Runtime Stack

IO Backends

User Application

XRT_User_Lib/Cardano_lib

Core
Control

Stream
Switch

Perf
Counter Timer Locks

Timer Events DMAs Trace Block data
write/Read

CDO Linux I/O
BasicMode

Baremetal
(Direct) Simulator

AI engine Partition

I/O requests Errors Partiton

AIE device

Partitions
Management

Error
backtracking

& triage

User
space

Kernel
space

X25139-022221

Chapter 3: Development Tools

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=37

Chapter 4

Software Stack
This chapter provides an overview of the bare-metal, Linux, and FreeRTOS software stacks
available for the Versal® devices. Many third-party software stacks can also be used on Versal
devices. For more information, refer to Embedded Software & Ecosystem page.

For more information about various software development tools used with the device, see
Chapter 3: Development Tools.

For more information about bare-metal and Linux software application development, see Chapter
5: Software Development Flow.

Bare-Metal Software Stack
Xilinx® provides a bare-metal software stack as part of the Vitis™ tools. The standalone software
includes a simple, single-threaded environment that provides project domains such as standard
input/output, and access to processor hardware features. The included board support packages
(BSPs) and included libraries can be configured to provide the necessary functionality with the
least overhead. You can locate the standalone drivers at the following path:

<Xilinx Installation Directory>\Vitis\<version>\data\embeddedsw
\XilinxProcessorIPLib\drivers

You can locate libraries in the following path:

<Xilinx Installation Directory>\Vitis\<version>\data\embeddedsw\lib
\sw_services

The following figure illustrates the bare-metal software stack in the APU.

Chapter 4: Software Stack

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 38Send Feedback

https://www.xilinx.com/products/design-tools/embedded-software.html#ecosystem
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=38

Figure 9: Bare-Metal Software Development Stack

X23437-060721

User Applications

Versal ACAP Hardware

LwIP 211 XilSecure

XilSEM

XilFPGA XilPUF

TRNG ZDMA
drivers

Ethernet
Driver

USB
Driver

SD card
Driver

Flash
Drivers

SPI, I2C,
UART

Drivers

SYSMON
Drivers

Libraries

Standalone
Drivers

XilNVM XilPM

XilFFS

BSP

XilSkey

Note: The software stack of libraries and drivers layer for bare-metal in the RPU is same in the APU.

The bare-metal stack key components include:

• Software drivers for peripherals including core routines needed for using the Arm® Cortex®-
A72, and the Cortex-R5F processors in the PS, and MicroBlaze™ processors in the PL.

• Bare-metal drivers for PS peripherals and optional PL peripherals.

• Standard C libraries: libc and libm, based on the open source Newlib library, ported to the
Cortex-A72, Cortex-R5F, and the MicroBlaze processors.

• Embedded Libraries:

• LwIP 211: Describes the SDK port of the third party networking library, Light Weight IP
(lwIP) for embedded processors.

• XilFFS: XilFFS is a generic FAT file system that is primarily added for use with SD/eMMC
driver. The file system is open source and a glue layer is implemented to link it to the SD/
eMMC driver.

• XilSecure: Provides APIs to access secure hardware on the Zynq® UltraScale+™ MPSoCs.

• XilSkey: Provides a programming mechanism for user-defined eFUSE bits and for
programming the KEY into battery-backed RAM (BBRAM) of Zynq-7000 SoC, provides
programming mechanisms for eFUSE bits of UltraScale devices.

• XilPM: The Zynq UltraScale+ MPSoC and Versal ACAP power management framework is a
set of power management options, based upon an implementation of the extensible energy
management interface (EEMI).

• XilFPGA: Provides an interface to the Linux or bare-metal users for configuring the PL over
PCAP from PS. The library is designed for Zynq UltraScale+ MPSoC and Versal ACAP to
run on top of Xilinx standalone BSPs.

Chapter 4: Software Stack

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=39

• XilSEM: The Xilinx Soft Error Mitigation (XilSEM) library is a pre-configured, pre-verified
solution to detect and optionally correct soft errors in Configuration Memory of Versal
ACAPs.

• Additional middleware libraries that provide networking, file system, and encryption support.

• Application examples include test applications.

The C Standard Library (libc)
The libc library contains standard functions that C programs can use. The following header files
are included in the libc library:

• alloca.h: Allocates space in the stack.

• assert.h: Diagnostics code

• ctype.h: Character operations

• errno.h: System errors.

• inttypes.h: Integer type conversions

• math.h: Mathematics

• setjmp.h: Non-local go to code

• stdint.h: Standard integer types

• stdio.h: Standard I/O facilities

• stdlib.h: General utilities functions

• time.h: Time function

The C Standard Library Mathematical Functions
(libm)
The following table lists the libm mathematical C modules.

Table 3: libm Modules by Function Types and Listing

Function Type Supported Functions
Algebraic cbrt, hypot, sqrt

Elementary transcendental asin, acos, atan, atan2, asinh, acosh, atanh, exp, expm1,
pow, log, log1p, log10, sin, cos, tan, sinh, cosh, tanh

Higher transcendentals j0, j1, jn, y0, y1, yn, erf, erfc, gamma, lgamma, and
gamma_ramma_r

Integral rounding eil, floor, rint

Chapter 4: Software Stack

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=40

Table 3: libm Modules by Function Types and Listing (cont'd)

Function Type Supported Functions
IEEE standard recommended copysign, fmod, ilogb, nextafter, remainder, scalbn, and

fabs

IEEE classification isnan

Floating point logb, scalb, significand

User-defined error handling routine matherr

Standalone BSP
Standalone BSP is a simple, low-level software layer. This layer provides access to basic processor
features, such as caches, interrupts and exceptions and the basic features of a hosted
environment, such as standard input and output, profiling, abort, and exit.

The following libraries are a small number of those available with standalone BSP:

• Xilinx fat file system (XilFFS) library

• XilMailbox library

• Xilinx Power Management (XilPM)

• Xilinx Soft Error Mitigation (XilSEM) library

• Lightweight IP (lwIP)

For more information on the available libraries, refer to Appendix A: Libraries and OS and Libraries
Document Collection (UG643).

Linux Software Stack
Note: The Arm AArch64 architecture is common between the Zynq UltraScale+ MPSoC APU and the
Versal ACAP APU. The existing architectural reference nomenclature "ZynqMP" found the Linux source
also applies to Versal devices.

The Linux OS supports the Versal device. Xilinx provides open source drivers for all peripherals in
the PS, and key peripherals in the PL. The following figure illustrates the full software stack in the
APU, including Linux and an optional hypervisor.

Chapter 4: Software Stack

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 41Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=41

Figure 10: Linux Software Development Stack

0

PLM

Applications

Middleware Stack
(Ex: Graphics, File system)

System Software
 (Ex: Hypervisor, OpenAMP,

U-Boot)

TF-A

Software Stack

OS Kernel

Drivers

PSM Firmware

PL CFI

X23439-051321

Xilinx offers two tools to build and deploy custom Linux distributions for Versal devices:
PetaLinux tools and the open source collaboration project, Yocto project. For more information,
refer to https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841996/Linux on the Xilinx Wiki.

• PetaLinux tools: The PetaLinux tools offer a simplified commands set to quickly build
embedded Linux. The tools include a branch of the Linux source tree, U-Boot as well as Yocto-
based tools to make it easy to build complete Linux images, including the kernel, the root file
system, device tree, and applications for Xilinx devices. The PetaLinux tools work with the all
the same open source Linux components described immediately below. More information
about using PetaLinux to build custom distributions can be found on the PetaLinux Tools page
and https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842475/PetaLinux+Yocto+Tips
on the Xilinx Wiki.

Chapter 4: Software Stack

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 42Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841996/Linux
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842475/PetaLinux+Yocto+Tips
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=42

• Yocto Project: The Yocto Project can be used by more experienced users to highly customize
embedded Linux for their boards. For those interested in the Yocto Project, the Xilinx Wiki has
several articles and information pertaining Yocto for building Linux on Xilinx devices. The
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto on the Xilinx Wiki is a
great place to start. Yocto board support packages are also available from the main Yocto tree.

You can leverage the Linux software stack for the Versal device in multiple ways.

• Open Source Linux and U-Boot: Xilinx offers release-specific prebuilt images for the Versal
ACAP kits, VMK180 and VCK190 that can be found on the Versal ACAP Boards, Kits, and
Modules page. The Linux Kernel sources including drivers, board configurations, and U-Boot
updates for Versal devices are available from the https://github.com/Xilinx/linux-xlnx/, as well
as, from the main Linux kernel and U-Boot repositories. For more information, refer to https://
xilinx-wiki.atlassian.net/wiki/spaces/A/pages/115048462/Release+Notes+for+Open+Source
+Components on the Xilinx Wiki.

• Commercial Linux Distributions: Along with open source Linux offerings, Xilinx works with
several third-parties to offer other Linux solutions. Some commercial distributions also include
support for the Versal devices, and they include advanced tools for Linux configuration,
optimization, and debug. For more information, refer to the Embedded Software & Ecosystem
page.

FreeRTOS Software Stack
In a simpler RTOS, the RTOS itself is like a library that is linked together with the application and
RTOS running in the same domain. In a more advanced RTOS, an optional process mode (e.g.,
VxWorks real-time processes, Nucleus Process Model, and QNX processes) is available with the
same decoupling of applications and kernels as Linux. Xilinx provides a FreeRTOS BSP as a part
of the Vitis software platform. The FreeRTOS BSP provides you a simple, multi-threading
environment with basic features such as, standard input/output and access to processor
hardware features. The BSP and the included libraries are highly configurable to provide you the
necessary functionality with the least overhead. The FreeRTOS software stack is similar to the
bare-metal software stack, except that it contains the FreeRTOS library. Xilinx device drivers
included with the standalone libraries can typically be used within FreeRTOS provided that only a
single thread requires access to the device.

IMPORTANT! Xilinx bare-metal drivers are not aware of OS. They do not provide any support for mutexes
to protect critical sections, and they do not provide any mechanism for semaphores for use during
synchronization. While using the driver API with FreeRTOS kernel, you must take care of this aspect.

The following figure illustrates the FreeRTOS software stack for the RPU.

Chapter 4: Software Stack

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 43Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto
https://www.xilinx.com/products/boards-and-kits/device-family/nav-versal-acap.html
https://www.xilinx.com/products/boards-and-kits/device-family/nav-versal-acap.html
https://github.com/Xilinx/linux-xlnx/
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/115048462/Release+Notes+for+Open+Source+Components
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/115048462/Release+Notes+for+Open+Source+Components
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/115048462/Release+Notes+for+Open+Source+Components
https://www.xilinx.com/products/design-tools/embedded-software.html#ecosystem
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=43

Figure 11: FreeRTOS Software Stack

X16911-061521

User Applications

LwIP 211 XilFPGA XilMailbox XilFFSlibxil.a

OSPI
Driver

ZDMA
Drivers

Ethernet
Driver

USB
Driver

SD card
Driver

Flash
Drivers

(QSPI, OSPI)

SPI, I2C,
UART
Drivers

SYSMON
Drivers

Libraries

Drivers

XilSecure XilNVM XilPM OpenAmp

Arm Cortex-R5F Core 0 RPU Arm Cortex-R5F Core 1

PCDMA
Driver

XilSkey

Note: The FreeRTOS software stack for the APU is same as that for the RPU except that the libraries
support both 32-bit and 64-bit operation on the APU.

Third-Party Software Stack
Many other embedded software solutions are also available from the Xilinx partner ecosystem.
For more information, refer to:

• Embedded Software & Ecosystem page
• Xilinx Third Party-Tools page
• https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842463/3rd+Party+Operating
+Systems on the Xilinx Wiki

Chapter 4: Software Stack

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 44Send Feedback

https://www.xilinx.com/products/design-tools/software-zone/embedded-computing.html
https://www.xilinx.com/support/answer-navigation/design-tools/third-party-tools.html
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842463/3rd+Party+Operating+Systems
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842463/3rd+Party+Operating+Systems
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=44

Chapter 5

Software Development Flow
This chapter explains the bare-metal software development for the RPU and APU using the
Vitis™ IDE as well as Linux software development for the APU using PetaLinux tools.

The following figure shows the basic software development flow.

Figure 12: Software Development Flow

petalinux-create

petalinux-config

petalinux-build

petalinux-boot
Hardware or Emulator

PetaLinux Tools

XSA Exported

Vivado Tool

Create/Identify
Workspace

Define Platform

Application Development

Download to Hardware or
Emulator

Vitis Tool

petalinux-package Software Debug

Board

.elfLinux distro

X24151-070920

For more information, refer to Vitis Embedded Software Development Flow Documentation
(UG1400)

Chapter 5: Software Development Flow

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 45Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2021.2%20English&url=ug1400-vitis-embedded
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=45

Bare-Metal Application Development in the
Vitis Environment

The following figure shows the bare-metal application development flow.

Figure 13: Bare-Metal Application Development Flow

Invoke Vitis

Create Board
Support Package

Create Application
Project

Improvements in
Software ApplicationProfiling

Performance
met?

Download Hardware
Bitstream to FPGA

Debug

Functionality
achieved?

Create Boot
Image

Open/Create
Vitis Workspace

Program
To Boot device

Yes Yes

No No

Hardware
Specification
Files (XSA)

Build Application
Project

X14817-112420

Chapter 5: Software Development Flow

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=46

Linux Application Development Using
PetaLinux Tools

The software development flow in the PetaLinux tools environment involves many stages. The
following figure shows the primary stages within the PetaLinux tools application development
flow.

Figure 14: High-Level PetaLinux Tool-Based Software Development Flow

Export Hardware

Select OR Create
Hardware Platform

Boot

· Configure FPGA
· Download image

Build

· Kernel
· File image system

Configure

· Kernel
· Applications
· System settings

petalinux-create

petalinux-config

petalinux-build

petalinux-boot

petalinux-package
(OPTIONAL)

X24150-062420

The "Create Linux Images Using the PetaLinux" section in the Xilinx Embedded Design Tutorials:
Versal Adaptive Compute Acceleration Platform (UG1305) shows you how to configure and build
the Linux OS platform for Arm® Cortex®-A72 core-based APU on a Versal device, using the
PetaLinux tools, along with the board-specific BSP.

For more information, refer to the Creating A New Project, Configure and Build the Project, and
Boot and Packing the Project sections in PetaLinux Tools Documentation: Reference Guide
(UG1144).

Chapter 5: Software Development Flow

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 47Send Feedback

https://xilinx.github.io/Embedded-Design-Tutorials/master/docs/Introduction/Versal-EDT/README.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=47

Linux Application Development Using the
Vitis Software Platform

The Vitis integrated design environment (IDE) facilitates the development of Linux user
applications. This section provides an overview of the Linux application development flow from
the Vitis tool.

The following figure illustrates the typical steps involved to develop Linux user applications using
the Vitis platform.

Note: These steps work only when the Vitis platform is built with the Linux domain being available.

Chapter 5: Software Development Flow

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=48

Figure 15: Develop Linux User Applications

Invoke Vitis

Create a Linux application
project

Build the Linux application
project

Software Application
DevelopmentProfiling

Performance met?

Download Hardware PDI

Debug

Functionality
achieved?

Open / Create
Vitis workspace

Adding an Application to
Linux file system

Yes Yes

No No

Boot Linux & set up target
connection

X23504-112719

Chapter 5: Software Development Flow

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=49

To complete the Linux application development flow from the Vitis tool which includes creating a
software application, creating and building a sample project application, and debugging the
application, see the Xilinx Embedded Design Tutorials: Versal Adaptive Compute Acceleration
Platform (UG1305).

• For additional information on the Linux kernel and boot sequence, see Chapter 3:
Development Tools.

• For more information, refer to Creating and Adding Customs Modules in PetaLinux Tools
Documentation: Reference Guide (UG1144).

Chapter 5: Software Development Flow

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 50Send Feedback

https://xilinx.github.io/Embedded-Design-Tutorials/master/docs/Introduction/Versal-EDT/README.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=50

Chapter 6

Software Design Paradigms
The Versal® device architecture supports heterogeneous multiprocessor engines targeted at
different tasks. The main approaches for developing software to target these processors are by
using the following:

• Frameworks for Multiprocessor Development: Describes the frameworks available for
development on the Versal device.

• Symmetric Multiprocessing: Using SMP with PetaLinux is the most simple flow for developing
an SMP design with a Linux operating system for the Versal device.

• Asymmetric Multiprocessing : AMP is a powerful mode to use multiple processor engines
with precise control over what runs on each processor. Unlike SMP, there are many different
ways to use AMP. This section describes two ways of using AMP with varying levels of
complexity.

Frameworks for Multiprocessor Development
Xilinx® provides multiple frameworks to facilitate application development on Versal ACAP as
follows:

• Hypervisor Framework: Xilinx supports the Xen hypervisor, a critical item needed to support
virtualization on the Versal ACAP. For details, refer to Use of Hypervisors.

• Security Framework: The Versal device supports authentication, encryption, and other
cryptographic features as a part of the security framework. To understand more about the
security framework, see the Chapter 9: Security chapter.

• TrustZone Framework: TrustZone technology allows and maintains isolation between secure
and non-secure hardware and software within the same system.

Xilinx provides TrustZone support through the TF-A to maintain isolation between secure and
non-secure worlds. If implementing a trusted execution environment (TEE) on a Versal device,
TF-A is one of the major components of a TEE. See this whitepaper for an overview of a TEE
architecture.

• Multiprocessor Communication Framework: Xilinx provides the OpenAMP framework for the
Versal device to allow communication between the different processing units.

Chapter 6: Software Design Paradigms

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 51Send Feedback

https://www.xilinx.com/support/documentation/white_papers/wp516-security-apps.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=51

• Power Management Framework: The power management framework allows software
components running across different processing units to communicate with the power
management unit.

Symmetric Multiprocessing
SMP enables the use of multiple processors through a single operating system instance. The
operating system handles most of the complexity of managing multiple processors, caches,
peripheral interrupts, and load balancing.

The APU in the Versal devices contains two homogeneous cache coherent Arm Cortex®-A72
processors that support SMP mode of operation using an OS, such as Linux or VxWorks®. Xilinx
and its partners provide numerous operating systems that make it easy to leverage SMP in the
APU. The following figure shows an example of Linux SMP with multiple applications running on
a single OS.

Figure 16: Example SMP Using Linux

APU

Arm
Cortex-A72

Arm
Cortex-A72

Linux Kernel in SMP

Application n

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

Application 1

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

X23442-112719

This might not be the best mode of operation when there are hard, real-time requirements
because it ignores Linux application core affinity, which must be available to developers with the
existing Xilinx software.

Chapter 6: Software Design Paradigms

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=52

Execution Domain and Images
A domain is a separate execution environment with its own address space and potentially
attached devices. On a simple CPU, such as a minimal MicroBlaze™ processor without a memory
management unit (MMU), there is only one domain. On more advanced CPUs, such as the APU,
there are multiple domains, isolated by exception levels 0-3 (EL0-3) and some of those can have
a segmented secure domain (SEL0-1) as shown in the following figure.

Figure 17: Segmented Secure Domains on the APU

The following table shows examples of what can run in the various domains on an APU.

Table 4: Domain Examples

Domain Non-Secure Secure (TrustZone)
EL0 Linux process/application

RTOS application process model
Secure or trusted application

EL1 Linux kernel
RTOS kernel

Secure OS such as OP-TEE

EL2 Optional hypervisor (Xen), U-Boot Not supported

EL3 TF-A

Chapter 6: Software Design Paradigms

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=53

For CPU-like execution engines (APUs, RPUs, MicroBlaze processors, AI Engine, and etc.) an
image is the compiled program that runs in a domain. Typically, the standard ELF format is used,
but in some cases, it is converted to more compact formats such as a PDI.

The term, image, is also used for the “code/logic” running in the PL/FPGA. The PL image or
bitstream is an overloaded term as it refers both to configuration information (e.g., initiating a
device) as well as the customer code translated to PL fabric configuration.

The images are loaded into their domains in a few different ways:

• During Boot:

• A PDI file in QSPI, SD, eMMC, SMAP, or OSPI

○ BootROM handles loading the PLM, while the PLM will handle loading the rest of
images. Additionally, U-Boot will handle loading a hypervisor, if used, as well as an OS,
such as Linux.

• A JTAG debugger can place an image into memory.

• During Run Time:

• An operating system can load an image from a filesystem (rootfs, remote filesystem, SD
card, etc.):

○ Another process (fork/exec)

○ Another CPU (through OpenAMP)

• A hypervisor can load another virtual machine (VM) and its associated set of software.

• An advanced RTOS with access to a filesystem can load images.

• The PLM can load an image dynamically during restart or at the request of a client.

Most of the time, an image is loaded into a domain and while the data in the image changes, the
code does not change until the end of the lifecycle. There are exceptions to this, most notably
when Linux dynamically loads a driver as a kernel module, when a DFX region is loaded into the
PL, or when a firmware update occurs.

An application can have multiple images attached to it. These multi-image applications are used
for example when a regular Linux process is using an accelerator that needs to be loaded at the
same time.

Asymmetric Multiprocessing
Note: Xilinx does not support unsupervised AMP on the APU.

Chapter 6: Software Design Paradigms

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=54

AMP uses multiple processors with precise control over what runs on each processor. Unlike
SMP, there are different ways to use AMP. This section describes two ways of using AMP with
varying levels of complexity.

In AMP, a software developer must decide what code has to run on each processor before
compiling and creating a boot image. This includes both the APU and RPU processor clusters. For
example, using AMP with the Arm Cortex-R5F processors (SMP is not supported) in the RPU
enables developers to meet highly demanding, hard real-time requirements.

You can develop applications independently and program those applications to communicate
with each other using inter-processing communication (IPC) options.

You can also apply this AMP method to applications running on the MicroBlaze processors in PL
or even in the APU. The following diagram shows an AMP example with applications running on
the RPU and the PL without any communication to each other.

Figure 18: AMP Example Using Bare-metal Applications Running in the RPU and PL

MicroBlaze

Bare-metal
Application

Bare-metal
Application

Bare-metal
Application

RPU PL

Arm
Cortex-R5F

Arm
Cortex-R5F

MicroBlaze

MicroBlaze

X23443-052421

OpenAMP
Xilinx participates in OpenAMP, which is an open source project that provides support for APU
and RPU communication. This communication path provides essential features that allow usage
of the entire Versal ACAP. For example, using OpenAMP, the APU can load and unload the RPU
software, and reset the RPU as needed.

The OpenAMP framework provides software components that enable development of software
applications for AMP systems. The framework provides the following key capabilities:

• Provides lifecycle management and inter processor communication capabilities for
management of remote compute resources and their associated software contexts.

• Provides a standalone library usable with RTOS and bare-metal software environments.

• Compatibility with upstream Linux remoteproc and RPMsg components

The OpenAMP supports the following configurations:

Chapter 6: Software Design Paradigms

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=55

• Linux master/generic (bare-metal) remote

• Generic (bare-metal) master/Linux remote

• Generic (bare-metal) master/generic (bare-metal) remote

Proxy infrastructure and supplied demos showcase the ability of proxy on master to handle
printf, scanf, open, close, read, and write calls from bare-metal based remote contexts.

For more advanced features, such as enhanced system management or higher level
communications APIs, you might find helpful content within the OpenAMP community project,
whose software targets Xilinx SoCs and others.

The OpenAMP framework provides mechanisms to do the following:

• Load and unload firmware

• Communicate between applications using a standard API

The following diagram shows an example of an OpenAMP architecture on a Versal device.

In this case, Linux applications running on the APU communicate with RPU through RPMsg
protocol. Linux applications can load and unload applications on RPU with Remoteproc
framework. This allows developers to load various dedicated algorithms to the RPU processing
engines as needed with very deterministic performance. Notice that this architecture uses a
mixture of SMP and AMP modes.

Figure 19: Example with SMP and AMP Using OpenAMP Framework

APU

Arm
Cortex-A72

Arm
Cortex-A72

Linux Kernel in SMP mode RTOS
Kernel

Baremetal
Application

Application 1

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

RPU

Arm
Cortex-R5F

Arm
Cortex-R5F

PL

MicroBlaze

MicroBlaze

RTOS
Kernel

Baremetal
Application

Baremetal
Application

Application n

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

RPMsg

Open AMP
(APIs for loading/ Unloading
firmware, Message Passing)

RPMsg

X23479-052421

For more information, see https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841718/
OpenAMP on the Xilinx Wiki.

Chapter 6: Software Design Paradigms

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 56Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841718/OpenAMP
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841718/OpenAMP
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=56

Virtualization with Hypervisor
Versal devices have hardware virtualization extensions on the Arm Cortex-A72 processors, Arm
GIC-500 interrupt controller, and Arm System MMU (SMMU) that enables the use of hypervisors
and enables greater hypervisor performance.

The following figure shows an example hypervisor architecture running on a Versal device. In this
example, the hypervisor runs an SMP-capabable OS, such as Linux, an RTOS, or a bare-metal
application.

Figure 20: Example Hypervisor Architecture

Xen Hypervisor

APU

Arm
Cortex-A72

Arm
Cortex-A72

Dom0
Linux Application

DomU
Bare-Metal Application

Front-End Driver

Device DriverDevice Driver

X23480-071020

The addition of a hypervisor introduces a layer of software that can add design complexity to
low-level system functions, such as peripheral and accelerators access. Xilinx recommends that
developers initiate efforts early into these aspects of system architecture and implementation.

Use of Hypervisors
Xilinx distributes a port for the Xen open source hypervisor for the Versal device. The Xen
hypervisor provides the ability to run multiple operating systems on the same computing
platform. Xen hypervisor, which runs directly on the hardware, is responsible for managing the
CPU, memory, and interrupts. You can run multiple operating systems on the hypervisor, which
are called domains, virtual machines (VMs), or a guest OS.

Chapter 6: Software Design Paradigms

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=57

The Xen hypervisor provides the ability to concurrently run multiple operating systems and their
standard applications with relative ease. It also makes it possible to give a guest OS direct access
to specific peripherals. However, Xen does not provide a generic method to do so; peripheral-
specific configurations are required.

The Xen hypervisor controls one domain, which is domain 0, and one or more guest domains. The
control domain has special privileges including:

• Capability to access the hardware directly.

• Ability to handle access to the I/O functions of the system.

• Interaction with other virtual machines.

• Dynamic programming, such as adding a new FPGA block at run time in domain0 using device
tree overlay.

The control domain also exposes a control interface to the outside world, through which the
system is controlled. Each guest domain runs its own OS and application. Guest domains are
completely isolated from the hardware.

Running multiple operating systems using Xen hypervisor involves setting up the host OS and
adding one or more guest OS. For more information the Xen hypervisor, refer to https://xilinx-
wiki.atlassian.net/wiki/spaces/A/pages/18842530/XEN+Hypervisor on the Xilinx Wiki.

Xen hypervisor is available as a selectable component within the PetaLinux tools; alternatively,
you can download Xen hypervisor from Xilinx GIT. With Linux and Xen software that is made
available by Xilinx, it is possible to build custom Linux guest configurations. Guest OS other than
Linux require additional software and effort from third-parties. For more information, see the
PetaLinux Tools page.

In addition to the Xen hypervisor, other hypervisors are available through various Xilinx
ecosystem partners. Visit the Embedded Software page for further details.

Chapter 6: Software Design Paradigms

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 58Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842530/XEN+Hypervisor
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842530/XEN+Hypervisor
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/products/design-tools/embedded-software.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=58

Chapter 7

Boot and Configuration
This chapter provides an overview of the boot and configuration process for Versal® ACAP. This
includes the boot device options, different stages of software involved in booting the platform
and configuring different components.

The platform management controller (PMC) is responsible for boot and configuration and other
post-boot tasks. A boot image, the programmable device image (PDI) is used to boot and
configure Versal ACAP. A PDI contains platform loader and manager (PLM) executable, images,
and configuration data. The PDI can be loaded from a boot device, such as an SD card, eMMC,
OSPI, or QSPI, or it can be loaded through JTAG or SelectMAP. The BootROM starts the boot
process and loads the PLM software that takes care of loading images and configuring the system
based on images or configuration data in PDI.

Note: For hardware-related information, see the Versal ACAP Technical Reference Manual (AM011).

Versal ACAP Boot Process
The boot process is divided into four phases that are independent of the selected boot mode:

• Phase 1: Pre-Boot (Power-up and Reset)

• Phase 2: Boot Setup (Initialization and boot header processing)

• Phase 3: Load Platform (Boot image processing and configuration)

• Phase 4: Post-Boot (Platform management and monitoring services)

Note: Phase 1 and 2 are part of the BootROM stage.

The following sections provide a simplified overview the four phases.

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 59Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=59

Phase 1: Pre-Boot
Figure 21: Phase 1: Pre-Boot (Power-up and Reset)

Versal ACAP

PMC

RCU

PPU0
Executes BootROM

Boot
Mode
Selection
Pins

Boot Mode
Register

ROM
Contains BootROM

that cannot be
modified

1

2

3

X22201-050119

• 1: The pre-boot phase is initiated when the PMC senses the PMC power and the external
POR_B pin is released.

• 2: PMC reads the boot mode pins and stores the value in the boot mode register.

• 3: PMC sends the reset signal to the RCU.

Note: All other processors and controller units remain in the reset state.

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=60

Phase 2: Boot Setup
Figure 22: Phase 2: Boot Setup

Boot Device
Example PDI

PLM

CFI Data
“Adaptable Engine Binary”

U-Boot

Unified Linux Image

Applications

Boot Header

Versal ACAP

7. Execute
PLM code

PMC

PPU

PPU RAM
PLM is copied here and

executed to load the
rest of the PDI (i.e.,
configures PL and

loads applications to
memory for PS use)

PPU0
Executes PLM

RCU

ROM
Contains BootROM

that cannot be
modified

PPU0
Executes BootROM

Boot Mode
Register

6 5

4

Boot
Mode
Selection
Pins

7

8

CDO

X22200-071020

• 4: The RCU begins to execute the BootROM from the RCU ROM.

• 5: The BootROM reads the boot mode register to select the boot device.

• 6: The BootROM reads the PDI boot header in the boot device and validates it.

• If the boot header is valid, the BootROM configures boot parameters based on the boot
header data and then continues the boot process.

• If the boot header is not valid, then the normal boot process changes to the fallback boot
process.

• 7: The BootROM releases the reset to the PPU, and loads the PLM from the PDI into the PPU
RAM and validates it. After validation, the PPU is woken up (at this point, the PLM software
starts executing, refer to point 9 in Phase 3: Boot and Configuration sequence by PLM
(Platform Loader).

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=61

• 8: The BootROM executable enters a sleep state. The BootROM executable continues to run
until the next power-on-reset (POR) or system reset, and is responsible for post-boot platform
tasks.

Related Information

Phase 4: Post-Boot

Phase 3: Boot and Configuration sequence by PLM
(Platform Loader)

Figure 23: Phase 3: Load Platform

Boot Device
Example PDI

PLM

CFI Data
“Adaptable Engine

Binary”

U-Boot

Unified Linux Image

Applications

Boot Header

CDO

Versal ACAP

7. Execute
PLM code

PMC

PPU

PPU RAM
PLM is copied here

and executed to load
the rest of the PDI (i.e.,

configures PL and
loads applications to
memory for PS use)

PPU0
Executes PLM

RCU

ROM
Contains BootROM

that cannot be
modified

PPU0
Executes BootROM

Programmable Logic

Internal M
em

ory

Boot Mode
Selection
Pins

Boot Mode
Register

PMC RAM
Can be used by

BootROM or
PLM to store

data

DDR

10

11a

11b

9

X22197-070620

• 9: The PPU begins to execute the PLM from the PPU RAM.

• 10: The PLM reads and processes the PDI components.

• 11: The PLM configures other parts of the Versal device using the PDI contents.

• 11a: The PLM applies the configuration data to the following Versal ACAP components:

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=62

• PMC, PS blocks (CDO files)

○ Multiplexed I/Os (MIOs), clocks, resets, and etc.

• NoC initialization and NPI components (NPI file)

○ DDR memory controller, NoC, GT, XPIPE, I/Os, clocking, and other NPI components

○ Adaptable Engine (PL) data (CFI file)

○ AI Engine configuration (AI Engine CDO)

Note: The PMC triggers the scan clear of the individual programming control/status registers.

• 11b: The PLM loads the applications and data for the Arm® Cortex®-A72 and Cortex®-R5F
processors to various memories specified by the ELF file. These memories include on-board
DDR memory and internal memories, such as OCM and TCM.

Phase 4: Post-Boot
For a secondary boot device, the PLM performs the following tasks:

1. Determines the specified secondary boot device from a field in the PDI meta header.

2. Uses the specified secondary boot device to load the specified PDI image.

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=63

Figure 24: Phase 4: Post-Boot

Versal ACAP

7. Execute
PLM code

PMC

PPU

PPU RAM
RAM contains the PLM

executable

PPU0
Executes PLM

RCU

ROM
Contains BootROM

that cannot be
modified

PPU0
Executes BootROM

PL

Internal M
em

ory

Boot
Mode
Selection
Pins

Boot Mode
Register

PMC RAM
Can be used by

BootROM or PLM
to store data

DDR

12

X22089-071020

• 12: The PLM continues to run until the next POR or system reset, and is responsible for post-
boot platform management tasks. Post-boot services include DFX reconfiguration, power
management, subsystem restart, error management, and safety and security services.

Boot Flow
For system start-up, Versal ACAP must successfully initialize, boot, and configure from a
supported boot source. There are two boot flows in the Versal ACAP architecture: secure and
non-secure.

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=64

The following section describes the example boot sequences in which you can bring up various
processors and execute the required boot tasks.

Non-Secure Boot Flow
The following figure illustrates an example boot and configuration sequence and shows how the
PLM loads the major partition components of the Versal ACAP software stack.

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=65

Figure 25: Example Standard Boot Flow Processing Engines and Memory Sources

Linux
APU

RPU

AI Engine

TCM

AI Engine
PMEM

PMC
PL
LPD
FPD
SPD
BPD

Power Domains Memory Source

Internal Memory
External DDR

PL CRAM

PSM SoftwarePSM PSM RAM

Trusted Firmware-A

AI Engine
Software

DDR

OCM

NoC, DDR, NPI Elements Configured
NPI

RegistersNPI

Note: All arrows indicate a loading and hand-off sequence except
for U-Boot, which is handed off by the Trusted Firmware-A (TF-A).

BootROM Tamper Monitoring and Response

Release
PMC
Reset

Time

Platform Loader and Manager PPU RAM

PMC RAM

Power Valid/
POR_B Release

PMC Hardware
(Phase 1: Pre-boot)

PMC RCU
(Phase 2: Boot Setup)

PMC PPU
(Phase 3: Load
Platform and
Phase 4: Post-boot)

LPD
CDO

NPI
CDO

FPD
CDO

RCU ROM
BootROM
Load PLM,
PMC CDO

PMC
CDO

U-Boot

X23595-101221

RPU Software

PL CFI

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=66

In non-secure boot mode, the BootROM loads the PLM into the PPU RAM and releases the PPU
to begin PLM execution. The PLM continues loading of the images from the PDI. In the above
boot flow example, the PLM initializes LPD, FPD and DDR memory through CDO files. As a part
of LPD image, PLM loads and starts PSM Firmware. PLM loads PL CFI through RCDO file. PLM
loads TF-A, U-Boot and starts TF-A (EL3-S) on APU. TF-A starts U-Boot (EL2-NS). U-Boot then
loads Linux and hand-off to it. PLM can also load and start RPU and AI Engine images.

Note: In symmetric multi-processing (SMP) mode, the operating system manages the multiple Cortex-A72
processors.

Secure Boot Flow
For information on the secure boot flow, refer to:

• Chapter 9: Security

• Versal ACAP Technical Reference Manual (AM011)

PDI Content Integrity and Support for Secure Boot

The PDI content integrity is verified using checksums. Depending on the use case, executables
and data objects in the PDI can be encrypted, authenticated, or both. For the artifacts to create
the PDI, see Boot Image (PDI) Creation.

Note: In the boot process description, the term validates includes checksum verification and authentication
as needed.

Classic SoC Boot Flow
The classic SoC boot is a solution that enables you to boot the processors in the scalar engines of
the Versal ACAP and access the DDR memory before the programmable logic (PL) in the
adaptable engines is configured. This allows DDR-based software like Linux or U-Boot to boot
first followed by the PL,which can be configured later, if required, using any primary or secondary
boot devices or through a DDR image store. The classic SoC boot feature is intended to treat the
Versal ACAP boot sequences similar to the boot sequences for Zynq® UltraScale+™ MPSoCs.
This solution is built using a dynamic function eXchange (DFX) flow through the Vivado IP
integrator, which includes automatic floorplan generation and flow-specific design rule checks
(DRCs). The entire PL is dynamic and can be completely reloaded while any operating system and
DDR memory access remains active. A DFX flow is necessary when loading the PL after the
initial PDI image load. The classic SoC boot is incompatible with the use of the CPM, including
the PCIe controller and DMA features, and dynamic reconfiguration of sub-regions of the PL is
not yet supported. For more details see the Versal ACAP Design Guide (UG1273). For information
on DFX, see the Vivado Design Suite User Guide: Dynamic Function eXchange (UG909).

For more information on the classic SoC boot, including design requirements and a tutorial walk-
through, see the classic SoC boot tutorial.

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 67Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1273-versal-acap-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug909-vivado-partial-reconfiguration.pdf
https://github.com/Xilinx/Vivado-Design-Tutorials/tree/master/Device_Architecture_Tutorials/Versal/Boot_and_Config/Classic_SoC_Boot
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=67

Boot Device Modes
The following tables show the boot device choices for primary boot, and the boot device modes.
For additional information, see the Versal ACAP Technical Reference Manual (AM011).

Table 5: Primary Boot Devices

Boot Mode Mode[3.0] Pin
Setting

Data Bus
Width Secure Boot Fallback Boot

and MultiBoot
Search Offset

Limit
eMMC1 (4.51) 0110 x1, x4, x8 yes yes 8191 FAT files

JTAG 0000 x1 no no N/A

Octal SPI single or
dual-stacked 5

1000 x8 yes yes 8 Gb

Quad SPI24 single
or dual-stacked5

0001 x1, x2, x4 yes yes 128 Mb

Quad SPI24 dual-
parallel

0001 x8 yes yes 256 Mb

Quad SPI32 single
or dual-stacked5

0010 x1, x2, x4 yes yes 4 Gb

Quad SPI32 dual-
parallel

0010 x8 yes yes 8 Gb

SD0 (3.0) 0011 x4 yes yes 8191 FAT files

SD1 (2.0) 0101 x4 yes yes 8191 FAT files

SD1 (3.0) 1110 x4 yes yes 8191 FAT files

SelectMAP 1010 x8, x16, x32 yes no N/A

Notes:
1. Execute in place (XIP) is not supported by Versal ACAP.
2. The legacy mode Linear Quad SPI (LQSPI) is not supported by Versal ACAP.
3. The "search offset limit" is used when the BootROM executable is searching the boot device for a PDI with a boot

header and a PLM. This is used for fallback boot and MultiBoot.
4. JTAG and SelectMAP are slave boot modes. All other devices in this list are master boot modes.
5. For dual-stacked QSPI, only the first flash device can be accessed during the bootROM stage.

When selecting a boot device to implement in a board design, it is important to consider the
post-boot use of shared multiplexed I/O pins and the voltage requirements of each boot mode.
For more information, refer to the Platform Management Controller chapter in the Versal ACAP
Technical Reference Manual (AM011).

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 68Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=68

Secondary Boot Process and Device Choices
The boot process can also involve an optional secondary boot device. In this case, the boot
process starts with a PLM and other initial images loaded from a primary boot device. The rest of
the images are then loaded from a secondary boot device which is configured by a PLM. The
secondary boot device contains a PDI that includes images and configuration data that needs to
be loaded from the secondary boot device. This secondary boot device does not contain a PLM
or a boot header. At POR/system reset, the boot process starts with the primary boot. This
process is the same as in the primary boot process:

• BootROM:

• Reads boot mode register to determine the primary boot device

• Loads the PLM from the specified primary boot device into the PPU RAM

• Releases the PPU to execute the PLM

Note: The secondary boot process occurs if a secondary boot device is specified in a field in the PDI
meta header.

• PLM:

• Determines the specified secondary boot device from a field in PDI meta header

• Uses the specified secondary boot device to load the remainder of the PDI content

Note: The secondary boot device cannot be the same as the primary boot device.

The secondary boot devices include:

• eMMC0, eMMC1

Note: There are two controllers (eMMC0 and eMMC1). Each controller allows two different sets of MIO
to be assigned or an EMIO option. Primary boot on the first slot (eMMC0) is not supported. The second
slot (eMMC1) cannot be used because it conflicts with the QSPI MIO pins. The first slot eMMC1
(MIO26-36) can be used for secondary boot.

• Ethernet

Note: When Ethernet is used as a secondary boot device, Versal ACAP is first booted up to U-Boot
using the primary boot device. U-Boot can then use Ethernet to complete the boot process.

• OSPI

• PCIe® interface
1. First, the PLM is loaded from the primary boot device into the PPU RAM.
2. Then, the PLM runs and initializes the Cache Coherent Interconnect for Accelerators

(CCIX) PCIe Gen4 Module (CPM) block in PCIe Endpoint (EP) mode.
3. Finally, the PCIe host, as a secondary boot device, loads the rest of the images.

Note: PCIe interface is supported only as secondary boot device.

• QSPI

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=69

• SD0, SD1

• USB

The secondary PDI is downloaded using dfu_util to a fixed DDR memory address
(0x50000000). The dfu_util is an open source utility available for Windows and Linux. The
PLM then processes the PDI.

To indicate USB as a secondary boot mode, specify usb as the boot_device attribute in the BIF
file.

• SelectMAP (SMAP)

Use smap as the boot device attribute for SelectMAP as secondary boot mode in the BIF file.

Secondary Boot Combinations

• Any non-SD eMMC primary boot and SD/eMMC as secondary boot mode

• eMMC boot partition 1/2 as primary boot and eMMC user area as secondary boot

• eMMC boot partition 1, boot partition 2, and user area as primary boot modes

Boot Process for Primary Boot Device
The boot process can be based on a primary boot device such as SD, eMMC, QSPI, OSPI, or on a
slave interface such as JTAG or SelectMAP. At POR or system reset, the boot process starts with
the primary boot:

• BootROM

○ Reads the boot mode register to determine the primary boot device

○ Loads the PLM from the specified primary boot device into the PPU RAM

○ Releases the PPU to execute the PLM

• PLM: Loads remainder of PDI content (Images and partitions) from the primary boot device.

Fallback Boot and MultiBoot
Fallback boot allows the Versal ACAP to automatically boot a different PDI than the initial PDI on
the same primary boot device, if the first PDI fails to boot. If an error occurs during the PDI boot
sequence, the PLM increments the MultiBoot register by 1 and resets (SRST) the device so that
the BootROM can find the next good image.

An error during boot PDI load can occur due to various reasons. Some examples for PLM errors
include:

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=70

• PDI header fields are not valid

• Copy from boot device has failed.

• Unavailability of power while loading corresponding power domain CDOs (LPD, FPD, NPD,
PL, etc.).

• Checksum or decryption or authentication failure while loading partitions, if enabled.

• Command failures (such as DDR memory calibration mask_poll command time out) during
CDO processing.

Note: The PLM does not perform any reset (SRST) in the JTAG boot mode for any errors to enable
debugging of the system.

MultiBoot allows the Versal ACAP to boot from a different boot PDI other than the initial PDI.
You can specify the boot PDI to be used for booting in this case. The PLM provides a command
for user applications to update the multiboot value during run-time. For more information, see
the XilLoader/IPI CDO Commands.

To use fallback boot or MultiBoot, store multiple PDIs in the same primary boot device within the
search limit for the device. For information, see the Primary Boot Devices table in Boot Device
Modes.

Boot Mode Search Limits
The BootROM has a search limit to locate the device image boot header for every boot mode.
The following table lists the boot image search limits for each mode.

Table 6: Boot Mode Search Limits

Boot Mode Search Offset Limit
OSPI (single, dual-stacked) 8 Gb

QSPI24 (dual-parallel) 256 Mb

QSPI24 (single, dual-stacked) 128 Mb

QSPI32 (dual-parallel) 8 Gb

QSPI32 (single, dual-stacked) 4 Gb

SD0 (3.0), SD1 (2.0), SD1 (3.0), or eMMC1 8191 FAT files (default)

8191 FAT files (default) eMMC device size

Note: For smaller devices, the BootROM wraps around to zero and continues again till it reaches the stated
search offset size.

Note: When using OSPI or QSPI dual-stacked mode, the BootROM can only access the lower QSPI or OSPI
addressable flash memory space for boot. After boot, the PLM can access the upper QSPI or OSPI for
additional image storage.

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=71

Octal-SPI and Quad-SPI Boot Devices
The BootROM executable supports fallback boot and MultiBoot on Octal-SPI and Quad-SPI boot
devices. The BootROM searches QSPI and OSPI devices in 32k offsets, for example, if the
multiboot register value is two, then it starts the image search from offset 0x10000 (2 *
32k).

SD/eMMC Boot Devices
The BootROM executable supports fallback boot and MultiBoot on SD card and eMMC flash
devices. The SD card or eMMC flash must be partitioned so that the first partition is a FAT
16/32 file system. Bootgen is used to create PDI files with the names: boot.bin,
boot0001.bin, boot0002.bin, etc.

Except for the PMC_MULTI_BOOT value ‘0,’ the PMC_MULTI_BOOT value is concatenated with
first the string boot, then PMC_MULTI_BOOT, then .bin to create the specified PDI file name.
For example, if PMC_MULTI_BOOT= 2, then the PDI file name is boot0002.bin. For command
line users, the PDI file names are specified on the Bootgen command line. The PDI files are then
copied to the FAT16/32 file system on the boot device. The search limit specified for the device
corresponds to the maximum number in the file name, for example boot8190.bin. Here, there
are 8191 files starting with boot.bin and ending with boot8190.bin. Therefore, the search
limit is 8190.

Figure 26: SD and eMMC FAT16/32 Files for Fallback Boot and MultiBoot

boot.bin
boot0001.bin
boot0002.bin
Etc.

FAT32 File System

X21941-030719

SD/eMMC RAW Boot Mode

A RAW partition is any partition on the eMMC that is not formatted. BootROM and PLM
supports SD/eMMC in RAW format in addition to the existing file system mode support.

The BootROM searches for the boot image and finds it on the file system or in RAW. After the
image is found, the BootROM updates the Multiboot register with the image information. The
PLM continues the boot from the file system or RAW with the information from the MultiBoot
register.

The MultiBoot register contains information such as whether the image is from the file system or
RAW, image file number or the offset.

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=72

Programmable Device Image
The boot image for the Versal ACAP is called a PDI, which is a Xilinx file format processed by the
PLM as part of the Versal ACAP boot process or partial configuration process. The PDI data is
specific to the design requirements. The Versal ACAP boot image typically involves binaries used
to boot and configure the platform, these binaries can include: bootloader, firmware, hardware
configuration data, OS and user applications. Examples include adaptable engine (PL)
configuration file, PLM image, TF-A, U-Boot, Linux kernels, rootfs, device tree, and standalone or
RTOS applications.

A PDI file is a collection of images, where an image consists of one or more partitions. A partition
can include:

• CDO file consisting of a list of commands executed in sequence

• Loadable data (for example, APU/RPU ELFs or data)

There can be different PDI files based on the use case.

• PDI for Versal ACAP Start-up: Occurs during the power-on reset (POR) and SRST. This PDI
contains the following information needed to boot, configure, and manage a Versal ACAP:

• A boot header

• A PLM subsystem

• Additional subsystem images and image partitions which are used to configure a specific
subsystem or engine. These can also include necessary CDO. Some of these images can
also be part of another PDI that is targeted for secondary boot.

• PDI for Subsystem Restart or DFX: Occurs in some power management, warm restart, PL
reconfiguration, and DFX scenarios.

This type of PDI contains the images or partitions needed to reconfigure parts or subsystems
of the Versal ACAP, and does not contain the boot header, PLM, and the PMC.CDO.

Note: The RCU executes the BootROM that loads the PLM into the PPU RAM. The BootROM then
releases the PPU from reset and executes the PLM.

Configuration Data Object
Configuration data object (CDO) files are intended to pass the configuration information
generated from tools to the platform loader and manager (PLM). Non-secure and secure PDI load
support from Linux is supported using the FPGA manager. During the PDI load sequence, the
PLM passes information from CDOs (CDO commands) to various components to configure the
system.

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=73

Configuration can be generated as multiple CDO files, and each CDO file is included as a
partition in the programmable device image (PDI) file. The CDO is a list of commands and is
meant to include pre-load or pre-boot requirements for any subsystem.

Adaptable Engine (PL) configuration data, which is generated as a raw file (CFI file), is passed as
an input to Bootgen. Bootgen includes this configuration data as a partition in the PDI, and
creates a PDI image.

Boot Image (PDI) Creation
The Xilinx boot image generation tool, Bootgen is essential in creating an image file (PDI) used to
boot and configure Versal ACAP. Bootgen creates the boot image (PDI for Versal ACAP) by
building the required boot header, appending tables that describe the images and partitions, and
processing the input data files (ELF files, PL configuration data, and other binary files) to
partitions. Bootgen has specific features to assign specific destination memory addresses or
imposing alignment requirements for each partition. Bootgen also supports the encryption,
authentication, and calculation of checksums on each partition.

An input file (*.bif) known as the boot image format (BIF) file serves as the input for Bootgen.

For detailed information on building a boot image, see the Bootgen User Guide (UG1283).

For Versal ACAP, the Vivado tool flow generates a PDI using Bootgen in the backend. This PDI
contains hardware-specific user configuration data, Adaptable Configuration data, NPI Data, and
a PLM. Typically, the PDI is outputted from the Vivado tools and then exported to software tools,
such as the Vitis software platform or PetaLinux. These tools either reuse the PDI components or
input the PDI, additional software executables, or images to create a larger PDI. The Vitis tool
PDI contains a PLM (optionally modified), the configuration data generated by Vivado tools, and
typically contain applications that run on the APU and/or RPU cores.

Bootgen is essential in creating an image file (PDI) to boot and reconfigure Versal ACAP. Bootgen
places all of these binary images and generates a bootable image in a specific format that the
PLM can interpret while loading the image.

The PDI created in the Vivado tool will contain the following images or configuration data:

• Boot header (part of PDI, based on BIF attributes)

• PLM (platform-independent)

• PMC CDO

• Meta headers

• LPD CDO (based on CIPS configuration)

• PSM (subject to CIPS configuration)

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 74Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=74

• CFI data

• NPI data

• FPD CDO (based on CIPS configuration)

Some data files or images, like LPD/FPD CDO, and PSM might not be required for PL only flow,
and may not be created for some use-cases like PL only, which involves limited CIPS
configuration for PMC and I/O.

Extending the PDI generated by the Vivado Design Suite

Example files from the Vitis tool that can be input to Bootgen:

• PLM

Note: Bootgen supports the replacement of the PLM and PSM ELF files from the Vivado-generated PDI.
This is only if these need to be modified for specific needs. Most use cases should work with the
default PLM and PSM ELFs from the Vivado tool. The PLM Boot and Configuration section discusses
the files used by each subsystem and lists the general requirements for loading that subsystem.

• Arm Cortex-A72/Cortex-R5F applications

• AI Engine configuration (DMAs, etc.)

• AI Engine ELFs

• U-Boot

Bootgen uses the following types of input to create the PDI:

• PDI generated from the Vivado tools.

• Other files from the Vitis tools, which includes an optionally modified PLM. The custom PLM
replaces the default PLM. However, for most cases the default PLM can be used as is.

• Optionally, a user-created boot image format (BIF) file, which provides Bootgen with the
instructions needed to create a Vitis tool PDI. If required (in few rare use-cases), Vivado
generated BIF can be reused to create/update an updated PDI in case some Vivado-generated
file is updated.

Software Developer Control of PDI File Creation via
BIF File
A Xilinx boot image format (BIF) file is used to specify the subsystem images in the PDI and the
subsystem image partitions. Each separate file within a subsystem image is stored in one of the
subsystem image partitions. The BIF file is a data file in ASCII format. The BIF file tells Bootgen
how to create the PDI by processing each of the input files.

Note: The PLM is processed by the BootROM, so it is not formatted as a subsystem image or partition.

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=75

If required, you can modify the Vivado-generated BIF and run Bootgen using the command line
flow to create an updated PDI. You can optionally write your own BIF file and specify the Vivado
generated PDI along with other input files to extend the PDI. In the Vitis IDE, you can use a
wizard to specify the required inputs for the BIF file, and then use the Vitis IDE to create the BIF
file and run Bootgen to create the PDI.

Note: The Bootgen wizard is not fully implemented for Versal ACAPs. Currently, the wizard only supports
PS and AI Engine partitions without any security features such as encryption, authentication, etc.

Methods for Copying the PDI to a Primary
Boot Device

For system configurations that use a master boot mode, the PDI file must be copied to the boot
device. The following methods can be used to copy the PDI file to the master boot mode device:

• Vivado tool hardware device manager

• Vitis tool program flash utility

• Removable devices, such as an SD card, can be programmed separately, and then added to the
board.

• Socketed and soldered devices, such as QSPI, can be off-board programmed, and then put
onto the board.

Note: When the PDI is copied to the boot device via the Vivado tools hardware device manager or the Vitis
tool program flash utility, a cable is connected from the host PC to the PMC JTAG port, and the master
boot device is programmed via the JTAG interface. JTAG can also be used to boot Versal ACAP to U-Boot,
and then U-Boot can be used to program the master boot device.

Chapter 7: Boot and Configuration

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=76

Chapter 8

Platform Loader and Manager
The platform loader and manager (PLM) runs on the platform processing unit (PPU) in the
platform management controller (PMC). It performs boot and configuration of the Versal device,
and then continuously provides services after the initial boot and configuration.

There is an area of PMC RAM called real-time configuration area (RTCA), which is defined with a
set of registers at a fixed block of PMC RAM. The register definitions are included in the Versal
ACAP Register Reference (AM012).

During the initial boot, the BootROM decodes the programmable device image (PDI) and loads
the PLM into the PPU RAM. The PPU PLM processes the PDI to boot up the entire system by
loading the partitions present in the PDI. The PLM supports the loading of partial PDIs during run
time. See Versal ACAP Technical Reference Manual (AM011) for more information.

PLM Boot and Configuration
BootROM, PLM Handoff State
The BootROM loads the PLM into the PPU RAM from the boot device and is responsible for
releasing the PPU from reset to start the PLM execution.

The PLM ELF is loaded to the PPU RAM. The PMC RAM is used to hold the PMC CDO data file.

The state of the system at BootROM handoff is as follows:

• The PPU is in the sleep state after the reset release, in case of the JTAG boot mode.

• The PPU RAM and PMC RAM are initialized with error code correction (ECC).

• The JTAG IDCODE instruction is always available regardless of the boot mode. Except the
JTAG IDCODE instruction, all other JTAG instructions can be disabled when you program the
required eFUSEs. If the eFUSEs are not programmed and a secure boot occurs, then only the
base JTAG instructions are supported. When the AUTH_JTAG enable instruction is sent in a
secure boot mode, the full set of JTAG instructions (base +extended) can be enabled.

• The boot device is taken out of reset and initialized.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 77Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+versal
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=77

PLM Subsystem
PLM and PMC CDO together constitute the PLM subsystem. PMC CDO contains the details of
the device topology, subsystem details, and PMC configuration data.

Table 7: Components of the PLM Subsystem

File Contents
PLM ELF PLM ELF File

PMC CDO PMC CDO file
• Device topology subsystem details
• PMC Configuration: Register writes/polls for MIO, clocks,

resets

The BootROM loads the PLM ELF and PMC CDO files to the PPU RAM and PMC RAM,
respectively.

After the BootROM handoff to the PLM, the PLM performs the following tasks:

• Initializes the PPU and register interrupts.

• Initializes the modules to register the CDO/IPI commands and handlers.

• Configures the PMC CDO file.

○ Device topology with PMC CDO commands to registers the nodes.

○ General/platform management calls to initialize the PMC and LPD MIO, clocks, etc.

- PMC initialization for clocks, MIOs, resets.

LPD Configuration
LPD configuration contains configuration data that is required to initialize the LPD peripherals
and clocks.

Table 8: LPD Configuration

File Contents
LPD CDO • PS LPD PM init mode commands (SC, LBIST, BISR,

MBIST)
• LPD configuration: Register writes/polls

PSM ELF PSM ELF file

After initializing the PMC CDO:

• The PLM re-initializes the boot device and loads the LPD CDO file from the boot device.

○ Configures the LPD CDO file.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=78

○ Initiates the Scan Clear, BISRs, MBIST as required for LPD.

○ XilPM releases resets and powers up the nodes based on the CDO requirements.

• The PLM loads the PSM ELF file and waits until initialization is complete.

Before loading the LPD configuration, ensure that PMC.CDO is configured.

PL Configuration
In Versal ACAP, the Adaptable Engine integrated into the PL is configured using CDO files such
as rCDO and rNPI. PL CDO mainly contains CFrame data along with PL and NoC power domain
initialization commands. NPI contains configuration data related to the NPI blocks. NPI blocks
include NoC elements (NMU, NSU, NPS, NCRB), DDR memory controller, XPHY, XPIO, GTY,
MMCMs, etc.).

The NPI data is generated by the Vivado tool for the various NPI blocks. The NPI blocks that are
present in Versal ACAP include NoC, DDR memory controller, XPHY, XPIO, GTY, MMCMs, etc.
Before loading the PL configuration, ensure that PMC is configured.

The following table describes the content of the files, and is useful for debugging

Table 9: PL Configuration

File Contents
PL CDO <.rcdo> • PM init node command (Scan Clear, BISR, MBIST) for

NoC domain
• The PM init node commands for scan clear, house

cleaning, BISR of PL domain
• Register writes to configure CFU for CRC, compression

etc
• DMA Keyhole Xfer commands to load CFI data
• Register writes/polls to CFU
• If NPI not present:

○ Global Signals (GMC_B, GRESTORE, GHIGH_B..):
Register writes/polls

• Global Signals (GWE, EOS, EN_GLOb): Register writes/
polls

NPI CDO <.rnpi> NPI data
• NPI data load: DMA Writes/register writes
• If CFI present:

○ Global Signals (GMC_B, GRESTORE, GHIGH_B..:)
Register writes/polls

• NPI Sequence: Register writes/polls
• If CFI present:

○ Global Signals (GWE, EOS, EN_GLOb): Register
writes/polls

• Isolation and PL reset commands

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=79

FPD Configuration
FPD CDO contains FPD configuration data with PM FPD initialization commands and FPD
peripheral initialization data.

Note: PSM ELF dependency is already provided with LPD.

Table 10: FPD Configuration

File Contents
FPD CDO • PS FPD PM init node commands (SC, BISR, MBIST)

• FPD configuration: Register writes/polls

Before loading the FPD CDO, ensure that the PMC and LPD are configured.

DFX Configuration
Dynamic Function eXchange (DFX) configuration enables one or more sub-regions of the device
to be independently reprogrammed with new configuration data while all remaining regions
(static or reconfigurable) remain active and unaffected. The DFX PDI can come either from PCIe,
DDR memory, or the primary boot device. For loading the DFX PDIs, the XilLoader CDO
commands can be used using the IPI interface. XilFPGA provides the required APIs to load DFx
PDIs from Cortex-A72 or Cortex-R5F.

CPM Configuration
CPM CDO contains CPM configuration data with register initialization commands for the CPM.

Table 11: CPM Configuration

File Contents
CPM CDO CPM configuration data with register initialization

commands for the CPM

Before loading the CPM CDO, ensure that the PMC, LPD, and required PL configuration are
completed. PL configuration should contain XPIPE, GT, NoC, and in many cases CFRAME
configuration data.

Processor Subsystem Configuration
The APU and RPU come under the processor-based subsystems. For all processor-based
subsystems, ELF files and/or CDOs are present as a part of the image. Processor details are read
from image headers and the processor is initialized using XilPM commands.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=80

The configuration consists of the following files.

Table 12: Processor Subsystem Configuration

File Contents
PSM/RPU/APU CDO files • (Optional) Set of PM commands with nodes and

requirements

PSM/RPU/APU ELF files • Cortex-R5F processor applications: Bare- metal/RTOS
• Cortex-A72 processor applications: TF-A/U-Boot/Linux/

Bare-metal

• For loading Cortex-R5F processor applications, ensure that the LPD configuration is
completed.

• For loading Cortex-A72 processor applications, ensure that the FPD configuration is
completed.

• For loading Cortex-R5F/Cortex-A72 using DDR memory, ensure that the PL (NPI with DDR
configuration) configuration is completed.

• For loading Cortex-R5F/Cortex-A72 processor applications to the DDR memory, enable the
NoC path from the PMC to the DDR memory in the design.

AI Engine Configuration
The AI Engine configuration consists of the following files.

Table 13: AI Engine Configuration

File Contents
AI Engine NPI CDO AI Engine Global Configuration using NPI

• PLL configuration
• AI Engine scan clear and memory clear using PM

initialization node commands

AI Engine ELF AI Engine tile program and data memory

AI Engine CDO AI Engine array configuration
• Program memory configuration
• Data memory configuration
• DMA, locks, stream switch configuration
• AI Engine register module configuration

Before loading the AI Engine NPI CDO, ensure that PLM, LPD and PL (with NoC configuration in
the NPI file) are completed. Also, enable the NoC path from the PMC to the AI Engine in the
design for PLM to clear the AI Engine data memories.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=81

PLM Software Details
This section explains PLM responsibilities, architecture, and execution details.

PLM Responsibilities
The PLM runs on the PMC PPU after the BootROM boots the hardware, and remains active
throughout the lifetime of the system, beginning from the BootROM post-boot.

The PLM performs the system initialization and the boot and configuration of the Versal ACAP
subsystems to include the APU, PL, and AI Engines. PLM handles authentication and decryption
for secure boot as discussed in Chapter 9: Security. The PLM also takes care of power
management, partial reconfiguration, error management, subsystem restart, and health
monitoring.

The PLM responsibilities include:

• Secure/non-secure boot

○ System initialization

○ Initialize NoC, configure NoC programming interface (NPI), DDR memory, and CPM

○ Configure AI Engines

○ Load PS images on the APU (Arm® Cortex-A72 processors) and the RPU (Cortex-R5F
processors)

• The platform management tasks include:

○ Dynamic Function eXchange (DFX)

○ Error management

○ Power management

○ Subsystem restart

○ Health monitoring

○ Soft error mitigation (SEM)

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=82

PLM Architecture
The PLM is designed with a modular subsystem-based configuration, and task-based services.
Each functionally distinct feature is designed as a module. The PLM application layer contains the
module initialization and start-up tasks. Depending on the modules selected in the configuration,
different modules are initialized. Modules can register event handlers, IPI handlers, CDO
commands, and scheduler events with the PLM interface layer.

The PLM reads the PDI from the boot device and configures the system with the payloads
present in the PDI. The following figure shows components that are part of the PLM ELF file.

Figure 27: PLM ELF Components

PLM

PLM Application

MB BSP, interrupts, timers

QSPI, OSPI, SD, IPI, DMA, CFU, CFRAME...

XilPLMI, XilPM, XilSecure, XilPDI
XilSEM (optional)

XilLoader (partially optional to exclude
unused drivers)

Application

Libraries

Drivers

BSP

X23875-042720

Note: For modularity and possible feature reuse by other system software modules, the following PLM
application modules are placed into separate libraries. Currently, these libraries are intended to be PLM
internal only. Thus, APIs from these libraries are not intended to be called directly from other software
layers outside of PLM.
• XilPLMI
• XilPDI
• XilLoader

The following table describes these components.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=83

Table 14: PLM ELF Components

Software Component Scope Libraries/Drivers Used
PLM Application • Start-up Events Registration

• Configuration to include modules
and debug levels

• Event scheduling with queues

All libraries listed in this table.

XilPLMI • PLM interface layer
• Provides interface for parsing CDO

files
• Provides an interface to register

handlers for section data
• Provides an interface to register IPI

events
• Provides an interface to register

interrupt events
• Provides an interface to provide

error responses, register error
handlers

• Provides interfaces to write and
read CFI data to and from PL
respectively

BSP, PMC DMA, IPI, IOMODULE

XilLoader • Responsible for loading boot PDI
and subsystem images

• Provides an interface for loading
subsystem images from PDI

• Interfaces with XilPLMI, XilSecure,
XilPM and flash drivers

SD/eMMC, QSPI, OSPI, USB, XilPLMI,
XilPM

XilPM Provides an interface to create and
manage subsystems, MIO, clocks,
power, and reset nodes settings.

XilPLMI

XilSecure • Interfaces with secure module
• Provides an interface to

authenticate and decrypt Xilinx
images

PMC DMA

XilSEM • Provides handlers for single event
upset (SEU) events in the
configuration RAM and NPI
registers

• Schedules handlers for SEU
detection scan operations

XilSecure, XilPLMI, CFRAME, CFU

PLM Software
The PLM application performs processor initialization, module initialization, and executes start-
up tasks.

• Processor Initialization: Includes initializing the stack and corresponding protections in
hardware, enabling required interrupts and exceptions.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=84

• Start-up Tasks: Start-up tasks include module initialization, executing PMC CDO, loading boot
PDI, and running user hooks at predetermined places.

• Modules: Consists of module initialization functions that are included in the PLM to register
the commands, interrupt handlers, and scheduler tasks with XilPLMI. The modules can:

• Register various commands using XilPLMI with the registered module ID. Commands can
be part of PDI, or can come from the IPI message.

• Schedule tasks with PLMI.

• Register interrupt handlers for any PLM interrupts.

• PLM Hooks: In the PLM application, hook functions are present in predefined places for you
to add your own code. Predefined user hooks are present at:

Table 15: PLM Hooks

Function Description
XPlm_HookBeforePlmCdo Executed before processing the PMC CDO file.

XPlm_HookAfterPlmCdo Executed after processing the PMC CDO file.

XPlm_HookAfterBootPdi Executed after loading the Boot PDI.

Note: The PLM hooks are meant to be used for small tasks that have to be handled during the boot
process.

• Exception Handling: The exception handler is invoked when an exception occurs in the PPU.
The handler logs the exceptions.

PLM Execution Flow

PLM execution is based on tasks. Initial start-up tasks are added to the PLM task queue after
initializing the processor and programmable interval timers (MB internal). Start-up tasks include
module initialization, executing PMC CDO, loading boot PDI and running user hooks at
predetermined places. Post start-up events, the PLM enters service mode, where it enters sleep
and waits for events. When woken up, the PLM enters the interrupt context, services the
interrupt, and goes back to task queue to check for any task. When the task queue is empty, it
goes to sleep.

The following sequence of events occur in the PLM:

1. Initialize processor, register interrupt handlers, enable interrupts

2. Execute start-up tasks

• Initialize modules

○ Initialize modules, such as XilPLMI, XilPM, and XilLoader

○ For every module: Register CDO commands and interrupt handlers

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=85

• Process the PMC CDO stored in the PMC RAM

• Load the rest of the images in the boot PDI

• Execute user hooks

3. Task dispatch loop (Wait for event)

• Execute any tasks added to the task queue

PLM Errors
When errors are detected during PDI load, the PLM writes the error code to the PLM error
register (PMC_GLOBAL.PMC_FW_ERR) and sets the NCR bit in the register. For any PPU MB
exceptions that occurred during boot PDI load or while processing any service request, the PLM
sets the NCR bit along with the error code in error register.

The default response for the PLM NCR bit is set to SRST. This can be changed to other actions
using error management commands as per your requirements. In JTAG boot mode, irrespective
of the response selected, the PLM will be in while loop for any error to facilitate debugging of the
system.

PLM error can be read from the PLM error register (PMC_GLBOAL.PMC_FW_ERR) or using the
JTAG error_status command. The error is logged in the following format.

Error code: 0xXXXXYYYY

• XXXX: Major error code. The PLM/XilLoader/XPLMI error codes are defined in
xplmi_status.h.

• YYYY: Minor error code. This is the Libraries/Drivers error code defined in each module.

PLM Major Error Codes
The following table lists the PLMI, PLM, XilLoader, and XilSecure major error codes. For debug
tips on PLM errors, see the PLM Wiki.

Table 16: PLM Major Error Codes

Value Description
0x0 XPLM_SUCCESS: Success.
0x1 XPLM_FAILURE: Used internally for small functions.
0x2 XPLMI_TASK_INPROGRESS: Used internally to indicate task is in progress.
0x100 XPLMI_ERR_DMA_LOOKUP: Error when DMA driver lookup fails.
0x101 XPLMI_ERR_DMA_CFG: Error when DMA driver configuration fails.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 86Send Feedback

https://xilinx-wiki.atlassian.net/wiki/display/A/Versal+Platform+Loader+and+Manager
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=86

Table 16: PLM Major Error Codes (cont'd)

Value Description
0x102 XPLMI_ERR_DMA_SELFTEST: Error when the DMA self test fails.

Error occurs when DMA is in reset and the PLM tries to initialize it.
0x103 XPLMI_ERR_IOMOD_INIT: Error when the I/O Module driver look up fails.
0x104 XPLMI_ERR_IOMOD_START: Error when I/O Module driver startup fails.
0x105 XPLMI_ERR_IOMOD_CONNECT: Error when I/O Module driver connection fails.
0x106 XPLMI_ERR_MODULE_MAX: Error when PLMI module is not registered.

Can occur when invalid CDO CMD is processed by XilPLMI
0x107 XPLMI_ERR_CMD_APIID: Error when valid module and unregistered CMD ID is processed by XilPLMI.
0x108 XPLMI_ERR_CMD_HANDLER_NULL: Error when no command handler is registered by module for CDO

CMD.
0x109 XPLMI_ERR_CMD_HANDLER: Error returned by the CDO CMD handler.

For error returned by the CMD, check the PLM minor code.
0x10A XPLMI_ERR_RESUME_HANDLER: Error returned by the CDO CMD resume handler.

For error returned by the CMD, check the PLM minor code.
0x10B XPLMI_ERR_CDO_HDR_ID: Error when valid CDO header ID is not present in CDO header.

Can happen when different partition type is processed as CDO.
0x10C XPLMI_ERR_CDO_CHECKSUM:: Error when CDO header checksum is wrong.

Can happen when CDO header is corrupted.
0x10D XPLMI_ERR_UART_DEV_PM_REQ: Error when XilPM request device for UART fails.

PM error code is present in PLM minor code.
0x10E XPLMI_ERR_UART_LOOKUP: Error when UART driver lookup fails.
0x10F XPLMI_ERR_UART_CFG: Error when UART driver configuration fails.
0x110 XPLMI_ERR_SSI_MASTER_SYNC: Error when SSI technology slave sync fails with master.
0x111 XPLMI_ERR_SSIT_SLAVE_SYNC: Error when SSI technology master times out waiting for slaves sync

point.
0x112 XPLMI_ERR_INVALID_LOG_LEVEL: Error when invalid log level is received in the logging command.
0x113 XPLMI_ERR_INVALID_LOG_BUF_ADDR: Error when invalid log buffer address is received in the logging

command.
0x114 XPLMI_ERR_INVALID_LOG_BUF_LEN: Error when invalid log buffer length is received in the logging

command.
0x115 XPLMI_ERR_IPI_CMD: Error when command execution through IPI is not supported.
0x116 XPLMI_ERR_REGISTER_IOMOD_HANDLER: Error when registering the I/O Module handler.
0x117 XPLMI_ERR_WDT_PERIODICITY: Invalid periodicity parameter for SetWDT command.
0x118 XPLMI_ERR_WDT_NODE_ID: Invalid node ID parameter for SetWDT command.
0x119 XPLMI_ERR_WDT_LPD_NOT_INITIALIZED: LPD MIO is used for WDT but LPD is not initialized
0x11A XPLMI_ERR_INVALID_INTR_ID_DISABLE: Invalid Interrupt ID used to disable interrupt.
0x11B XPLMI_ERR_INVALID_INTR_ID_CLEAR: Invalid Interrupt ID used to clear interrupt.
0x11C XPLMI_ERR_INVALID_INTR_ID_REGISTER: Invalid Interrupt ID used to register interrupt
0x11D XPLMI_ERR_DMA_XFER_WAIT: DMA transfer wait failed.
0x11E XPLMI_ERR_NON_BLOCK_DMA_WAIT_SRC: Non block DMA transfer wait failed in Src channel.
0x11F XPLMI_ERR_NON_BLOCK_DMA_WAIT_DEST: Non block DMA transfer wait failed in Dest channel

WaitForDone.
0x120 XPLMI_ERR_NON_BLOCK_SRC_DMA_WAIT: Non block Src DMA transfer wait failed.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=87

Table 16: PLM Major Error Codes (cont'd)

Value Description
0x121 XPLMI_ERR_NON_BLOCK_DEST_DMA_WAIT: Non block Dest DMA transfer wait failed.
0x122 XPLMI_ERR_DMA_XFER_WAIT_SRC: DMA Xfer failed in Src Channel wait for done.
0x123 XPLMI_ERR_DMA_XFER_WAIT_DEST: DMA Xfer failed in Dest Channel wait for done.
0x124 XPLMI_ERR_UART_MEMSET: Memset of UartPsv Instance failed.
0x125 XPLMI_ERR_MEMCPY_COPY_CMD: Error during memcpy of CdoCopyCmd.

0x126 XPLMI_ERR_MEMCPY_CMD_EXEC: Error during memcpy of CdoCmdExecute.

0x127 XPLMI_ERR_MEMCPY_IMAGE_INFO: Error during memcpy of XLoader_ImageInfo

0x128 XPLMI_ERR_UART_PSV_SET_BAUD_RATE: Error during setting XUartPsv_SetBaudRate to
XPLMI_UART_BAUD_RATE.

0x129 XPLMI_ERR_IO_MOD_INTR_NUM_REGISTER: Invalid I/O Module interrupt number used to register
interrupt handler.

0x12A XPLMI_ERR_IO_MOD_INTR_NUM_CLEAR: Invalid I/O Module interrupt number used to clear interrupt.
0x12B XPLMI_ERR_IO_MOD_INTR_NUM_DISABLE: Invalid I/O Module interrupt number used to disable

interrupt.
0x12C XPLMI_NPI_ERR: NPI errors.
0x12D XPLMI_IPI_CRC_MISMATCH_ERR: IPI CRC mismatch error.
0x12E XPLMI_IPI_READ_ERR: Error in processing IPI request. It could be due to invalid message length error

when CRC is enabled or invalid buffer address error from driver.
0x12F XPLMI_ERR_UNALIGNED_DMA_XFER: Error during DMA involving of unaligned SrcAddr, DestAddr or

number of words.
0x130 XPLMI_IPI_ACCESS_ERR: Access permissions failed for PLMI IPI command received.
0x131 XPLMI_ERR_TASK_EXISTS: Error when the task that is being added to scheduler already exists.
0x132 XPLMI_ERR_INVALID_TASK_TYPE: Error when invalid task type is used to add tasks in scheduler.
0x133 XPLMI_ERR_INVALID_TASK_PERIOD: Error when invalid task period is used to add tasks in scheduler.
0x200 XPLM_ERR_TASK_CREATE: Error when task create fails.

This can happen when maximum tasks are created..
0x201 XPLM_ERR_PM_MOD: Error initializing the PM module.
0x202 XPLM_ERR_LPD_MOD: Error initializing the LPD modules.
0x203 XPLM_ERR_EXCEPTION: Exception has occurred during PLM initialization.

EAR and ESR are printed on the UART console if enabled.
0x204 XPLM_ERR_NPLL_LOCK: Unable to lock NOC PLL for master SLR devices.
0x205 XPLM_ERR_STL_MOD: Error initializing the STL module.
0x206 XPLM_ERR_KEEP_ALIVE_TASK_CREATE: Error while creating the PSM keep alive task.
0x207 XPLM_ERR_KEEP_ALIVE_TASK_REMOVE: Error while removing the PSM keep alive task.
0x208 XPLM_ERR_PSM_NOT_ALIVE: PSM is not alive.
0x209 XPLM_ERR_IPI_SEND: Error while sending IPI.
0x300 XLOADER_UNSUPPORTED_BOOT_MODE: Error for unsupported boot mode.

This error occurs if invalid boot mode is selected or boot mode peripheral is not selected in the CIPS
wizard.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=88

Table 16: PLM Major Error Codes (cont'd)

Value Description
0x302 XLOADER_ERR_IMGHDR_TBL: Multiple conditions can cause this error:

• If image header table has the wrong checksum

• If PLM is unable to read the image header table

0x303 XLOADER_ERR_IMGHDR: Error if image header checksum fails.
0x304 XLOADER_ERR_PRTNHDR: Error if partition header checksum fails.
0x305 XLOADER_ERR_WAKEUP_A72_0: Error waking up the A72-0 during handoff.

Check the PLM minor code for the PM error code.
0x306 XLOADER_ERR_WAKEUP_A72_1: Error waking up the A72-1 during handoff.

Check the PLM minor code for the PM error code.
0x307 XLOADER_ERR_WAKEUP_R5_0: Error waking up the R5-0 during handoff.

Check the PLM minor code for the PM error code.
0x308 XLOADER_ERR_WAKEUP_R5_1: Error waking up the R5-1 during handoff.

Check the PLM minor code for PM error code.
0x309 XLOADER_ERR_WAKEUP_R5_L: Error waking up the R5-L during handoff.

Check the PLM minor code for the PM error code.
0x30A XLOADER_ERR_WAKEUP_PSM: Error waking up the PSM during handoff.

Check the PLM minor code for the PM error code.
0x30B XLOADER_ERR_PL_NOT_PWRUP: Error powering up the PL.
0x30C XLOADER_ERR_UNSUPPORTED_OSPI: Error due to unsupported OSPI flash.
0x30D XLOADER_ERR_UNSUPPORTED_OSPI_SIZE: Error due to unsupported OSPI flash size.
0x30E XLOADER_ERR_OSPI_INIT: Error when OSPI driver lookup fails.

This error occurs when OSPI is not selected in CIPS.
0x30F XLOADER_ERR_OSPI_CFG: Error when OSPI driver CFG fails.
0x310 XLOADER_ERR_OSPI_SEL_FLASH: Error when OSPI driver is unable to select flash.

Check minor code for the OSPI driver error code.
0x311 XLOADER_ERR_OSPI_READID: Error when OSPI ReadID fails.
0x312 XLOADER_ERR_OSPI_READ: Error when OSPI driver read fails.

Check minor code for the OSPI driver error code.
0x313 XLOADER_ERR_OSPI_4BMODE: Error when OSPI is unable to enter/exit 4B mode.
0x314 XLOADER_ERR_QSPI_READ_ID: Error when QSPI read fails.
0x315 XLOADER_ERR_UNSUPPORTED_QSPI: Error when QSPI flash is not supported.
0x316 XLOADER_ERR_QSPI_INIT: Error when QSPI driver look up or configuration fails.
0x317 XLOADER_ERR_QSPI_MANUAL_START: Error when QSPI driver manual start fails.
0x318 XLOADER_ERR_QSPI_PRESCALER_CLK: Error when QSPI driver Prescalar setting fails.
0x319 XLOADER_ERR_QSPI_CONNECTION: Error when invalid QSPI connection listed other than single, dual,

or stacked.
0x31A XLOADER_ERR_QSPI_READ: Error when QSPI driver read fails.
0x31B XLOADER_ERR_QSPI_LENGTH: Error when QSPI read length is greater than flash size.
0x31C XLOADER_ERR_SD_INIT: Error when SD mount fails.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=89

Table 16: PLM Major Error Codes (cont'd)

Value Description
0x31D XLOADER_ERR_SD_F_OPEN: Error when SD file open fails.

This can happen when file is not present or read from SD fails. File system error code is present in the
PLM minor code.

0x31E XLOADER_ERR_SD_F_LSEEK: Error when f_seek fails while reading from SD card.
0x31F XLOADER_ERR_SD_F_READ: Error while reading from SD card.
0x320 XLOADER_ERR_IMG_ID_NOT_FOUND: Error when Image ID is not found in subsystem while reloading

image.
0x321 XLOADER_ERR_TCM_ADDR_OUTOF_RANGE: Error while loading to TCM and if address is out of range.
0x322 XLOADER_ERR_CFRAME_LOOKUP: Error when CFRAME driver look up fails.
0x323 XLOADER_ERR_CFRAME_CFG: Error when CFRAME driver CFG fails.
0x324 XLOADER_ERR_UNSUPPORTED_SEC_BOOT_MODE: Error due to unsupported secondary boot mode.
0x325 XLOADER_ERR_SECURE_METAHDR: Error when meta header secure validations fail.
0X326 XLOADER_ERR_GEN_IDCODE: Error caused due to mismatch in IDCODEs.
0x327 XLOADER_ERR_USB_LOOKUP: Error when USB lookup fails.
0x328 XLOADER_ERR_USB_CFG: Error when USB configuration initialize fails.
0x329 XLOADER_ERR_USB_START: Error when USB fails to start.
0x32A XLOADER_ERR_DFU_DWNLD: Error when PDI fails to download.
0x32B XLOADER_ERR_DEFERRED_CDO_PROCESS: Error occurred while processing the mask_poll CDO

command but error is deferred till whole CDO processing is completed. For example, currently this
deferred bit is generated from Vivado for DDR memory calibration done status.

0x32C XLOADER_ERR_SD_LOOKUP: Error when SD look up fails.
0x32D XLOADER_ERR_SD_CFG: Error when SD configuration fails.
0x32E XLOADER_ERR_SD_CARD_INIT: Error when SD card init fails.
0x32F XLOADER_ERR_MMC_PART_CONFIG: Error when MMC switch to user area in raw boot mode fails.
0x330 XLOADER_ERR_SEM_STOP_SCAN: Error while stopping the XilSEM scan.
0x331 XLOADER_ERR_SEM_CFR_INIT: Error while starting the XilSEM scan.
0x332 XLOADER_ERR_DELAY_ATTRB: Error when both delay handoff and copy to image.
0x333 XLOADER_ERR_NUM_HANDOFF_CPUS: Error when number of CPUs exceed maximum count.
0x334 XLOADER_ERR_OSPI_CONN_MODE: Error when OSPI mode is not supported.
0x335 XLOADER_ERR_OSPI_SEL_FLASH_CS1: Error when OSPI driver is unable to select flash CS1. Check minor

code for OSPI driver error code.
0x336 XLOADER_ERR_OSPI_SDR_NON_PHY: Error when OSPI driver is unable to set the controller to SDR NON

PHY mode.
0x337 XLOADER_ERR_OSPI_COPY_OVERFLOW: Error when source address in OSPI copy exceeds flash size.
0x338 XLOADER_ERR_SD_F_CLOSE: Error on closure of file in SD filesystem modes.
0x339 XLOADER_ERR_SD_UMOUNT: Error on unmounting filesystem.
0x33A XLOADER_ERR_DMA_XFER: DMA transfer failed.
0x33B XLOADER_ERR_DMA_XFER_SD_RAW: DMA transfer failed in SD Raw.
0x33C XLOADER_ERR_CONFIG_SUBSYSTEM: Error while configuring subsystem.
0x33D XLOADER_ERR_COPY_TO_MEM: Error on copying image to DDR with the copy to memory attribute

enabled.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=90

Table 16: PLM Major Error Codes (cont'd)

Value Description
0x33E XLOADER_ERR_DELAY_LOAD: When the image has delay load attribute set and the boot source is

SMAP, SBI, PCIE or JTAG, the image is copied to PMC RAM to free it from the SBI buffers. Errors
occurred during such copies to PMC RAM is denoted using this error code.

0x33F XLOADER_ERR_ADD_TASK_SCHEDULER: Error while adding task to the scheduler.
0x340 XLOADER_ERR_SD_MAX_BOOT_FILES_LIMIT: Error code returned when search for bootable file crosses

the maximum limit.
0x341 XLOADER_ERR_UNSUPPORTED_QSPI_FLASH_SIZE: Error when QSPI flash size is not supported.
0x342 XLOADER_ERR_PM_DEV_PSM_PROC: Failed in XPM Request Device for PM_DEV_PSM_PROC.
0x343 XLOADER_ERR_PM_DEV_IOCTL_RPU0_SPLIT: Failed in XPM Device Ioctl for RPU0_0 in SPLIT mode.
0x344 XLOADER_ERR_PM_DEV_IOCTL_RPU1_SPLIT: Failed in XPM Device Ioctl forRPU0_1 in SPLIT mode.
0x345 XLOADER_ERR_PM_DEV_IOCTL_RPU0_LOCKSTEP: Failed to XPM Device Ioctl for RPU0_0 in LOCKSTEP

mode.
0x346 XLOADER_ERR_PM_DEV_IOCTL_RPU1_LOCKSTEP: Failed to XPM Device Ioctl for RPU0_1 in LOCKSTEP

mode.
0x347 XLOADER_ERR_PM_DEV_TCM_0_A: Failed to XPM Request Device for PM_DEV_TCM_0_A.
0x348 XLOADER_ERR_PM_DEV_TCM_0_B: Failed to XPM Request Device for PM_DEV_TCM_0_B.
0x349 XLOADER_ERR_PM_DEV_TCM_1_A: Failed to XPM Request Device for PM_DEV_TCM_1_A.
0x34A XLOADER_ERR_PM_DEV_TCM_1_B: Failed to XPM Request Device for PM_DEV_TCM_1_B.
0x34B XLOADER_ERR_PM_DEV_DDR_0: Failed to XPM Request Device for PM_DEV_DDR_0.
0x34C XLOADER_ERR_PM_DEV_QSPI: Failed to XPM Request Device for PM_DEV_QSPI.
0x34D XLOADER_ERR_PM_DEV_SDIO_0: Failed to XPM Request Device for PM_DEV_SDIO_0.
0x34E XLOADER_ERR_PM_DEV_SDIO_1: Failed to XPM Request Device for PM_DEV_SDIo_1.
0x34F XLOADER_ERR_PM_DEV_USB_0: Failed to XPM Request Device for PM_DEV_USB_0.
0x350 XLOADER_ERR_PM_DEV_OSPI: Failed to XPM Request Device for PM_DEV_OSPI.
0x351 XLOADER_ERR_DEV_NOT_DEFINED: Device ID of the image to be loaded is not defined.
0x352 XLOADER_ERR_PARENT_QUERY_VERIFY: Failed to Query Parent ID of an image while verifying its Image

UIDs.
0x353 XLOADER_ERR_INCOMPATIBLE_CHILD_IMAGE: Error while checking compatibility of an image with its

parent.
0x354 XLOADER_ERR_NO_VALID_PARENT_IMG_ENTRY: Error if No Valid Parent Image entry is found in the

ImageInfo table.
0x355 XLOADER_ERR_INVALIDATE_CHILD_IMG: Error while invalidating the Child Image entry
0x356 XLOADER_ERR_INVALID_PARENT_IMG_ID: Error when Invalid ParentImgID is obtained when queried

for parent ImgID.
0x357 XLOADER_ERR_IMAGE_INFO_TBL_OVERFLOW: Error when ImageInfo table overflows.
0x358 XLOADER_ERR_FUNCTION_ID_MISMATCH: Error when the function ID given while loading an image

from the DDR memory does not match with the ID stored in the image header.
0x359 XLOADER_ERR_MEMSET: Error during memset.
0x35A XLOADER_DDR_COPY_UNSUPPORTED_PARAMS: Error when source address, destination address, or

length params passed to XLoader_DdrCopy are not word aligned.

0x35B XLOADER_ERR_INIT_CDO: XPlmi_InitCdo failed.

0x35C XLOADER_ERR_INVALID_ELF_LOAD_ADDR: Error when the load address of the ELF is not valid.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=91

Table 16: PLM Major Error Codes (cont'd)

Value Description
0x35D XLOADER_ERR_UNSUPPORTED_MULTIBOOT_FLASH_TYPE: Error due to unsupported flash type used

with the update multiboot command.

0x35E XLOADER_ERR_UNSUPPORTED_MULTIBOOT_PDISRC: Error due to unsupported PdiSrc used with the
update multiboot command.

0x35F XLOADER_ERR_UNSUPPORTED_FILE_NUM: Error due to unsupported Filenum used to update the
multiboot register.

0x360 XLOADER_ERR_UNSUPPORTED_MULTIBOOT_OFFSET: Error when given multiboot offset is not valid
(not a multiple of 32K).

0x361 XLOADER_ERR_SECURE_NOT_ENABLED: Error as secure critical code is excluded and Secure boot is
attempted

0x362 XLOADER_ERR_UNSUPPORTED_SUBSYSTEM_PDISRC: Error when unsupported PdiSrc is used for
subsystem load.

0x363 XLOADER_ERR_PDI_LIST_FULL: Error when you are trying to add a new PdiAddr when the PdiList is full.
0x364 XLOADER_ERR_PDI_ADDR_EXISTS: Error when PdiAddr that is being added already exists in the PdiList.
0x365 XLOADER_ERR_PDI_LIST_EMPTY: Error when PdiList is empty and user is trying to remove a PdiAddr.
0x366 XLOADER_ERR_PDI_ADDR_NOT_FOUND: Error when the PdiAddr that is being tried to be removed

does not exist in the PdiList.
0x367 XLOADER_ERR_RELEASE_PM_DEV_DDR_0: Failed to XPM Release Device for PM_DEV_DDR_0.
0x368 XLOADER_ERR_REQUEST_BOOT_DEVICE: Failed to Request Boot Device.
0x369 XLOADER_ERR_RELEASE_BOOT_DEVICE: Failed to Release Boot Device.
0x600 XLOADER_ERR_INIT_GET_DMA: Failed to get DMA instance at time of initialization.
0x601 XLOADER_ERR_INIT_INVALID_CHECKSUM_TYPE: Only SHA3 checksum is supported.
0x602 XLOADER_ERR_INIT_CHECKSUM_COPY_FAIL: Failed when copying checksum from flash device.
0x603 XLOADER_ERR_INIT_AC_COPY_FAIL: Failed when copying AC from flash device.
0x604 XLOADER_ERR_INIT_CHECKSUM_INVLD_WITH_AUTHDEC: Failed as checksum was enabled with

authentication and encryption enabled.
0x605 XLOADER_ERR_DMA_TRANSFER: DMA transfer failed while copying.
0x606 XLOADER_ERR_IHT_AUTH_DISABLED: Authentication is not enabled for Image Header table.
0x607 XLOADER_ERR_IHT_GET_DMA: Failed to get DMA instance for IHT authentication.
0x608 XLOADER_ERR_IHT_COPY_FAIL: Failed when copying IHT AC from flash device.
0x609 XLOADER_ERR_IHT_HASH_CALC_FAIL: Failed to calculate hash for IHT authentication.
0x60A XLOADER_ERR_IHT_AUTH_FAIL: Failed to authenticate IHT.
0x60B XLOADER_ERR_HDR_COPY_FAIL: Failed when copying IH/PH from flash device.
0x60C XLOADER_ERR_HDR_AES_OP_FAIL: Failed due to AES init or Decrypt init or key selection failure.
0x60D XLOADER_ERR_HDR_DEC_FAIL: Failed to decrypt image header/partition.
0x60E XLOADER_ERR_HDR_AUTH_FAIL: Failed to authenticate image header/partition.
0x60F XLOADER_ERR_HDR_NOT_SECURE: Neither authentication nor encryption is enabled for image header/

partition.
0x610 XLOADER_ERR_HDR_GET_DMA: Failed to get DMA instance for image header/partition authentication/

decryption.
0x611 XLOADER_ERR_HDR_HASH_CALC_FAIL: Failed to calculate hash for image header/partition

authentication.
0x612 XLOADER_ERR_HDR_NOT_ENCRYPTED: Image header/partition header is not encrypted.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=92

Table 16: PLM Major Error Codes (cont'd)

Value Description
0x613 XLOADER_ERR_HDR_AUTH_DISABLED: Authentication disabled for image header/partition header.
0x614 XLOADER_ERR_SEC_IH_READ_VERIFY_FAIL: Failed to read image header and verify checksum.
0x615 XLOADER_ERR_SEC_PH_READ_VERIFY_FAIL: Failed to read partition header and verify checksum.
0x616 XLOADER_ERR_PRTN_HASH_CALC_FAIL: Hash calculation failed for partition authentication.
0x617 XLOADER_ERR_PRTN_AUTH_FAIL: Partition authentication failed.
0x618 XLOADER_ERR_PRTN_HASH_COMPARE_FAIL: Partition hash comparison failed.
0x619 XLOADER_ERR_PRTN_DECRYPT_FAIL: Partition decryption failed.
0x61A XLOADER_ERR_AHWROT_EFUSE_AUTH_COMPULSORY: PPK Programmed but eFUSE authentication is

disabled.
0x61B XLOADER_ERR_AHWROT_BH_AUTH_NOT_ALLOWED: PPK Programmed and BH authentication is

enabled.
0x61C XLOADER_ERR_AUTH_EN_PPK_HASH_ZERO: PPK not programmed and authentication is enabled.
0x61D XLOADER_ERR_SHWROT_ENC_COMPULSORY: Encryption is disabled.
0x61E XLOADER_ERR_KAT_FAILED: Known answer tests (KAT) failed.
0x61F XLOADER_ERR_DATA_COPY_FAIL: Data copy to internal memory failed.
0x620 XLOADER_ERR_METAHDR_LEN_OVERFLOW: Failed when total size is greater than Metahdr length.
0x621 XLOADER_ERR_AUTH_JTAG_EFUSE_AUTH_COMPULSORY: JTAG authentication failed when PPK not

programmed.
0x622 XLOADER_ERR_AUTH_JTAG_DISABLED: JTAG authentication disable efuse bit is set.
0x623 XLOADER_ERR_AUTH_JTAG_PPK_VERIFY_FAIL: JTAG authentication failed when verification of PPK.
0x624 XLOADER_ERR_AUTH_JTAG_SIGN_VERIFY_FAIL: JTAG authentication failed when verification of

signature failed.
0x625 XLOADER_ERR_AUTH_JTAG_EXCEED_ATTEMPTS: JTAG authentication failed more than once.
0x626 XLOADER_ERR_AUTH_JTAG_GET_DMA: Failed to get DMA instance for JTAG authentication.
0x627 XLOADER_ERR_AUTH_JTAG_HASH_CALCULATION_FAIL: Hash calculation failed before signature

verification.
0x628 XLOADER_ERR_AUTH_JTAG_DMA_XFR: Failed to get Auth JTAG data with DMA transfer.
0x629 XLOADER_ERR_MEMSET_SECURE_PTR: Error during memset for SecurePtr.
0x62A XLOADER_ERR_GLITCH_DETECTED: Error glitch detected.
0x62B XLOADER_ERR_AUTH_JTAG_SPK_REVOKED: Authentication failed when revoke id is programmed.
0x62C XLOADER_ERR_METAHDR_KEYSRC_MISMATCH: Metaheader Key Source does not match PLM Key

Source.
0x62D XLOADER_ERR_PRTN_ENC_ONLY_KEYSRC: Invalid key source when encryption only is enabled.
0x62E XLOADER_ERR_SECURE_NOT_ALLOWED: Error when state of boot is non secure.
0x62F XLOADER_ERR_HDR_AAD_UPDATE_FAIL: Updating IHT as AAD failed during secure header decryption.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=93

Table 16: PLM Major Error Codes (cont'd)

Value Description
0x2XYZ • 0x2 indicates failure in CDO command.

• X indicates command module.
○ 1 - PLM
○ 2 -PM
○ 3 - XilSEM
○ 7 - Loader
○ 8 - Error

• YZ indicate handler ID of the CDO command.

Exception Handling

The exception handler is invoked when an exception occurs in the PPU. This handler logs the
exception data and sets the firmware error bit in the Error Manager.

If an exception occurs before the boot PDI programming is complete, the PLM Error Manager
updates the PMC MultiBoot register and triggers a system reset (SRST). However, if an exception
occurs after the boot PDI programming is complete, then the PLM application runs in an infinite
while loop.

PLM Event Logging
Event logging is categorized into the following features:

• Logging of PLM terminal prints

• Logging of trace events

Logging PLM Terminal Prints
The PLM supports logging of PLM terminal prints to memory. This feature helps you easily debug
if the UART is not present. This logging is based on the log level that you enabled. Each print
message is logged with the PLM timestamp. The following are the features that are supported as
part of logging:

• Configure print log level: While building the PLM, you can decide the log level to use. Based
on the PLM, the ELF file is generated. The PLM provides the provision to change the log level
by sending the IPI command to it. The IPI command can reduce/expand the log level.

• Configure debug log buffer memory: By default, the log buffer is 16K in size in the PMC RAM,
and the PLM logs the prints to the PMC RAM memory. This feature allows changing the
debug log memory to a different memory location.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=94

• Retrieve debug log buffer: You can retrieve the logged prints to the memory of your choice.

• Retrieve debug log buffer information: You can retrieve information of PLM prints logging.

• Retrieve terminal prints: You can retrieve terminal prints with the following command: xsct
> plm log

Logging Trace Events
The PLM supports the logging of trace events to memory. This memory is different than the
memory used for logging the PLM prints. Currently, the PLM logs only PDI load trace events and
is timestamped. The following features are supported by the PLM as part of tracing:

• Configure trace log buffer memory: By default, the PLM logs the trace events to the PMC
RAM memory. This feature allows you to change the trace log memory to a different memory
location.

• Retrieve trace log buffer: Retrieve the logged trace events to a memory of your choice.

• Retrieve trace log buffer information: Retrieve information of trace events logging.

For examples of logging trace events, see Event Trace Log Command Examples.

Trace Events Log Format

Table 17: Trace Events Log Format

Structure
Trace event length including timestamp Trace ID

Time stamp in milliseconds

Time stamp in fraction

Payload

...

Currently, the PLM logs only the list of images that are loaded as part of trace events logging.

Table 18: Trace Event Table

Trace Event ID Trace Event Length Payload
XPLMI_TRACE_LOG_LOAD_IMAGE = 0x1 3 Image ID

Event Trace Log Command Examples

The following examples show the structure of the event trace logs.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=95

Example: Change the Log-Level to Debug Information

Structure
CMD - 0x020113 (Event logging command)

SubCmd - 0x1 (Sub command to change log level)

Arg1 - 0x4 (Change to Debug Info)

Example: Change Debug Log Buffer Address

The following command structure changes the log buffer address from 1M with a size of 512K.

Structure
CMD - 0x040113 (Event logging command)

SubCmd – 0x2 (Sub command to change log buffer address)

Arg1 - 0x0 (High Address)

Arg2 – 0x100000 (Low Address 1M)

Arg3 – 0x80000 (Size of log buffer 512K)

Example: Copy the Logged Data

Structure
CMD - 0x030113 (Event logging command)

SubCmd – 0x3 (Sub command to copy the log buffer to below specified address)

Arg1 - 0x0 (High Address)

Arg2 – 0x100000 (Low Address 1M)

Example: Get the Log Buffer Details

Structure
CMD - 0x010113 (Event logging command)

SubCmd – 0x7 (Sub command to get the event log buffer details)

Response Payload0: Command Status

Response Payload1: High Address

Response Payload2: Low Address

Response Payload3: Buffer offset till where the log is valid

Response Payload4: Log Buffer length

Response Payload5: Indicates that the log buffer is full

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=96

Event Logging IPI Command
Table 19: Event Logging Command

Structure
Reserved[31:24]=0 Length[23:16]=4 PLM=1 CMD_EVENT_LOGGING=19

Sub Command

Argument 1

Argument 2

Argument 3

The PLM supports logging PLM Terminal Prints and Trace Events to separate buffers. This
command configures the buffers for logging, and also retrieves buffer information.

Sub Command information is as follows:

• 1U: Use this sub command to configure the log level of the PLM terminal during run time. This
log level can be less than or equal to the log level set at compile time.

• Argument 1: Log Level. This argument can be one or a combination of the following
entities:

• 0x1U: Unconditional messages (DEBUG_PRINT_ALWAYS)

• 0x2U: General debug messages (DEBUG_GENERAL)

• 0x4U: More debug information (DEBUG_INFO)

• 0x8U: Detailed debug information (DEBUG_DETAILED)

• 2U: Use this sub command to configure the debug log buffer memory. By default this memory
is configured to PMC RAM. You can change this memory as per your need.

• Argument 1: High Address where PLM terminal prints are logged

• Argument 2: Low Address where PLM terminal prints are logged

• Argument 3: Length of Debug log buffer

• 3U: Use this sub command is to copy the logged PLM prints from the Debug log buffer to
where you need them.

• Argument 1: High Address to which the log buffer data is copied

• Argument 2: Low Address to which the log buffer data is copied

• 4U: Use this sub command to retrieve the debug log buffer memory details where the PLM
prints are logged. The response is as follows:

• Payload 0: Command status

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=97

• Payload 1: Debug log buffer High Address where the logging occurs

• Payload 2: Debug log buffer Low Address where the logging occurs

• Payload 3: Debug log buffer offset till where the logging occurs

• Payload 4: Debug log buffer length

• Payload 5: Indicates whether the debug log buffer is full

• 5U: Use this sub command to configure the trace log buffer memory. By default, this memory
is configured to PMC RAM. You can change this memory based on your need.

• Argument 1: High Address where Trace events are logged

• Argument 2: Low Address where Trace events are logged. Length of the Trace log buffer

• 6U: Use this sub command to copy the logged trace events from the Trace log buffer to where
you want them to be.

• Argument 1: High Address to which you want to copy the trace log buffer data

• Argument 2: Low Address to which you want to copy the trace log buffer data

• 7U: Use this sub command is to retrieve the details of the trace log buffer memory where the
trace events are logged. The response is as follows.

• Payload 0: Command status

• Payload 1: Trace log buffer High Address where the logging occurs

• Payload 2: Trace log buffer Low Address where the logging occurs

• Payload 3: Trace log buffer offset till where the logging occurred

• Payload 4: Trace log buffer length

• Payload 5: Indicates whether the trace log buffer is full

Error Manager
The Error Management module in the PLM initializes and handles the hardware-generated errors
across the Versal platform, and provides an option to customize these error actions. The error
management support is one of the important run-time platform management activity supported
by PLM. In the hardware, there are two error status registers for PMC and two error status
registers for PSM that contain the type of error occurrence. You can enable or disable an error
from interrupting the PMC/PSM MicroBlaze processor. The Error Manager code present in PLMI,
maintains an Error Table that contains Handler Pointer, Error Action and Subsystem (to shutdown
or restart in case of SUBSYSTEM SHUTDOWN or SUBSYSTEM RESTART error action)
information for each error that is routed to PMC and PSM. You can set any supported error
action for each of the errors to take an appropriate action when an error occurs.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=98

The possible error actions include:

• Generation of a power-on-reset (POR)

• Generation of a system reset

• Assertion of error out signal on the device

• No action (This disables all actions on the error and clear the corresponding status bit)

The PLM Error Manager provides APIs for assigning a default error action in response to an error.
During initialization of the PLM modules, the PLMI initializes the Error Manager, enables errors,
and sets error action for each error in accordance with the Error Table structure defined in the
xplmi_err.c file.

Error Management Hardware

The Versal device has a dedicated error handler to aggregate and handle fatal errors across the
SoC. The Error Manager handles the fatal errors using its hardware to trigger either SRST/PoR/
Error out, or an interrupt to PMC/PSM.

For more information, refer to the Versal ACAP Technical Reference Manual (AM011).

Error Management API Calls

The PLM Error Manager supports the following APIs:

• XPlmi_EmSetAction: Use this API to set up the error action. This API takes Error Node ID,
Error Mask, Action ID and Error Handler if the Action ID is Interrupt to PMC as input
arguments. When this function is called, it disables the existing error actions, and sets the
action specified in Action ID for the given error.

• XPlmi_EmDisable: Use this API to disable all error actions for a given Error ID. This API takes
Error ID as the input argument.

Error Management CDO Commands

The following CDO commands are supported by the PLM error management module.

Set EM Action

Table 20: Command: Set EM Action

Structure
Reserved[31:24]=0 Length[23:16]=3 EM=8 CMD_SET_EM_ACTION=1

Error Event ID

Reserved Action ID

Error Mask

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 99Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=99

Use this command to set the error action for the specified error event ID and error mask. Refer
to the following error event ID table for a list of supported error event IDs and error masks. Error
management APIs are not supported over IPI, at present.

• Power On Reset: 0x1

• System Reset: 0x2

• Error Out: 0x4

• None: 0x7. Disable all actions on the event and clear error status

Note: For PSM error events, the command returns failure if LPD is not initialized.

Register Notifier for EM Events

Table 21: Command: Register Notifier

Structure
Reserved[31:24]=0 Length[23:16]=4 PMC_XILPM=2 CMD_PM_REGISTER_NOTIFIE

R=5

Node ID (Error Event ID)

Event Mask (Error Mask)

Argument 1

Argument 2

EM supports notifying a subsystem when registered error occurs, using the register notifier API
supported by XilPM. Use this command to register for notifications when registered errors occur.
Refer to the error event ID table for a list of supported error event IDs and error masks.

• Node ID: Can either be a Device ID or Error Event ID. Use an Error Event ID for registering
error events.

• Event Mask

○ For Device ID: Event Type

○ For Error Event ID: Error Mask

• Argument 1

○ For Device ID: Wake

• Argument 2

○ For Device ID: Enable

The register notifier for an event of an error event ID enables the error event by clearing the
corresponding PMC/PSM_ERR#N_STATUS bit and writes to the corresponding PMC/
PSM_IRQ#N_EN. The notifier returns an event index (which is a bit that notify callback sets) to
indicate the occurrence of the event.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=100

The register notifier command works with the notify callback command.

For example, register notifier of error node GT_CR error event clears
PMC_ERR1_STATUS.GT_CR, enables PMC_IRQ1_EN.GT_CR, and returns a number, for example,
5. Notify callback sets bit 5 of the event status to indicate that the GT_CR error has occurred.

Notify Callback

Table 22: Command: Notify Callback

Structure
Reserved[31:24]=0 Length[23:16]=4 PMC_LIBPM=2 CMD_PM_NOTIFY_CALLBACK

Node ID (Error Event ID)

Event Status (Error Mask)

On notify callback of an event of Error Event ID, the Error Node is disabled. For example,
notification of the Error Node GT_CR error event disables the error by writing to
PMC_IRQ1_DIS.GT_CR. You must re-register to be notified again.

For more information of registration/un-registration of error events, see Event Management
Framework.

Error Events

For a complete list of the available error events, refer to the Versal ACAP Technical Reference
Manual (AM011).

PLM Interface (XilPLMI)
The PLM Interface (XilPLMI) is a low-level interface layer for the PLM main application and other
PLM modules. XilPLMI provides the common functionality required for the modules that run with
PLM. Each new module can register itself with the supported command handlers. These
command handlers are executed based on the request received from other modules or from
other subsystems.

XilPLMI also includes the CDO parser that parses and executes any CDO commands. XilPLMI
implements the Generic Module that includes generic commands to be used by all other
modules. The XilPLMI layer provides:

• Interface for parsing CDO files

• Implementation for general PLM CDO commands

• Interface to register handlers for commands that can be part of CDO and IPI

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 101Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=101

• Interface to set error actions and register notifications for error events

• Interface to schedule timer events

• Debug print levels and common utilities

• Task Dispatcher Loop: XilPLMI uses a very simple run-to-completion, time-limited priority
task loop model, to get real-time behavior. The main program is a simple loop that looks up
the next task from a queue of tasks, and calls the function to execute the task.

This model is simple in the sense that because all tasks are executed until they are done, there
are no critical regions and no locking needed. Any code in the PLM can access any global data
without having to worry about any other tasks being in the middle of updating the data.

The complexity with the run-to-completion model comes when a particular task needs to run
longer than for the maximum allowed time limit (GTL). If that happens, split the tasks into
multiple events.

Figure 28: Task Dispatch Loop

Interrupt ContextNormal Context

Add Startup
Tasks

sleep

Run Priority
Task handler

Remove Task
if completed

Goto Next
Task

TaskQueues
 == Empty

Mark Interrupt
Received /

Do minimal work and
add to TaskQueue

Return to
Normal
Context

PLM
Start

no

yes

Interrupt

X23876-061021

• Modules: XilPLMI provides an interface layer for modules to register the commands for PLM.
Commands can come from the CDO or IPI.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=102

• Configurable Parameters:

• Modules: Configurable to include or exclude modules, boot drivers based on your needs.

• Debug Prints: Configurable to include multiple levels of print statements. For more
information, refer to PLM Build Flags.

• CDO: The CDO file contains the configuration information generated by the tools in the form
of CDO commands. The module that supports the CDO registers itself to the PLM during the
module initialization phase. XilPLMI provides the API to parse the CDO file and propagates
the commands and its payload to the respective modules.

• IPI Handling: The PLM handles IPI interrupts, so that messages can be exchanged between
the PLM and other processor on the Versal device. Data that is sent through IPI follows the
CDO format.

• Scheduler: This is a simple timer-based function scheduler to support execution of periodic
tasks. A scheduler is required by modules such as XilSEM to support periodic tasks such as
SEU detection scan operations.

Note: Accuracy of the PMC IRO clock affects the scheduler accuracy.

• PLM Watchdog Timer: PLM has the framework to update the PLM health periodically. PLM
toggles multiplexed I/Os (MIO) to update health to an external watchdog timer (WDT). The
PMC MIO is preferred but if an LPD MIO is used, then it is important to note that this WDT
will be disabled when the PS LPD goes down.

The WDT can be enabled in the Vivado CIPS, and CIPS generates all the preceding required
commands to enable WDT in PLM.

The PLM WDT can be enabled by using the SetWdt CDO command with the parameters MIO
PIN and periodicity. Before running the SetWdt CDO command, ensure that MIO is
configured as GPIO and load the corresponding PMC / LPD CDO. PDI loading is considered as
the configuration mode and WDT is not supported in the configuration mode. Other
operations considered as configuration mode are boot, partial PDI loading, and subsystem
restart/resume. The minimum periodicity is 20 ms.

The PLM implementation is as follows:

• Normal Context:

• PLM will set a variable to indicate ALIVE in between every task.

• During PDI load, the PLM mode is set to the configuration mode, and then reset to
operational mode when the PDI is loaded.

• If the LPD MIO is used, the WDT is disabled during LPD shutdown.

• If any task takes longer than the WDT periodicity, the ALIVE bit will be set and external
WDT can reset the device.

• Interrupt Context:

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=103

• Current scheduler period is 10 ms. This period indicates that for every 10 ms, the PLM
gets a timer interrupt to schedule the tasks.

• The WDT handler is called in the scheduler.

• When the WDT is enabled, the WDT handler performs following operation periodically
based on configured periodicity (for example, for a periodicity of 100 ms, the following
tasks run ~10 ms before expiry of periodicity)

○ When in configuration mode, the WDT handler toggles the MIO pin irrespective of
the PLM alive status.

○ When in operation mode, the WDT handler toggles the MIO pin only when PLM
alive status is set and clear the PLM alive status.

Table 23: Set PLM WDT

Command: Set PLM WDT
Reserved [31:24]=0 Length [23:16]=2 PLM=1 CMD_SET_PLM_WDT=22

NODE Idx - PMC MIO PIN / LPD MIO PIN

[31:16] Reserved [15:0] Periodicity in ms - Default = 100 ms

XilLoader
The PDI contains all the images that must be loaded into the system. PLM reads the PDI from the
boot device and loads the images to the respective memories based on the image header.

Note: For more details on the PDI format, see the PDI section in Chapter 7: Boot and Configuration.

The XilLoader provides an interface for the modules to load/start/look up the images present in
the PDI. XilLoader also interacts with XilSecure (for secure boot), XilPM (for subsystem bring up),
and boot drivers (for boot).

The following XilLoader functions are available:

• XLoader_LoadAndStartSubSystemPdi: This function takes PDI pointer as input. This API is
called to load the images present in the PDI image, and start the subsystem based on the
hand-off information present in the PDI. Based on the Image and Partition information
present in the PDI, this API reads and loads each image partition from the PDI source. The API
checks if the image requires hand-off and calls the XilPM APIs to perform the handoff.

The image can be a CDO partition or the subsystem image. If the image is a CDO partition,
the API calls the CDO parser API from the PLMI. If the image is a subsystem executable
partition, the API loads the partition to the respective subsystem’s memory. After loading the
image, this API reads the CPI ID and hand-off address from the PDI, and calls the XilPM APIs
with this information. If there is any error while loading or starting the image, this API returns
the appropriate error code. Otherwise, this API returns SUCCESS.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=104

• XLoader_RestartImage: Each image has its own unique ID in the PDI. This function takes the
Image ID as input to identify image in the PDI and restart it. Based on the Image ID, this API
parses through the subsystem information stored during boot, and obtains the image number
and the partition number that is present in the PDI. This API then reads the Image partitions
and loads them. In addition, this API checks if the image requires hand-off, and calls the XilPM
APIs accordingly. If there is any error while restarting the image, the API returns an
appropriate error code. Otherwise, the API returns SUCCESS.

Sequence of Operations

The following is the sequence of operations that happen between the loader and other
components.

1. Based on the boot mode, the corresponding flash drivers are used to read the PDI.

2. Based on the image headers, the loader gets the CPU details for an image.

3. The loader uses the XilPlmi API for loading CDOs, and the XilPM API to start/stop the
processors, and to initialize memory.

4. The loader uses XilSecure to perform checksum, authentication, or decryption on the image.

Boot Drivers

XilLoader implements the following high-level boot device interface APIs that are called to
initialize the boot device, and to load the images from the boot device to the corresponding
subsystem memory. These APIs internally call the driver APIs as required.

• Flash Drivers: QSPI, OSPI, SD/eMMC drivers are used to read the images from the flash
device.

• PMC DMA: APIs for PMC DMA related functionality.

Image Store
The PLM supports storing of images in the DDR memory during boot time so that the images can
be used later in cases like delay load, subsystem restart, and suspend/resume. This helps in
reducing the load times because loading images from the DDR memory is faster than loading
them from other boot devices. In bif of a Boot PDI, copy attribute can be used to specify the
DDR memory address at which a particular image needs to be stored.

You can also create or upgrade the image store during run time by using partial PDIs. The address
of the partial PDI loaded in the DDR memory can be passed to PLM using an IPI command and
the PLM adds it into a PDI list. So, the PLM maintains a PDI list whose first entry is Boot PDI and
rest of them are the PDI Addresses added during run time. During any of these use cases where
a image has to be restarted, the PLM goes through the PDI list from the latest entry and checks if
the required image is present in the PDI and loads it. If an image is not found or if the loading
fails, the PLM performs a fallback to the next entry of the list until it reaches the Boot PDI.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=105

XilLoader/IPI CDO Commands
The following table provides the list of commands that are supported by the XilLoader.

Table 24: XilLoader/IPI CDO Commands

Command API ID
Load Partial PDI 1

Load DDR Copy Image 2

Update Multiboot 8

ImageStore PDI 9

Remove ImageStore PDI 10

Load Partial PDI

The Load Partial PDI CDO command with IPI interface is used to support partial reconfiguration
from DDR and flash devices. Partial reconfiguration request comes through IPI command with
source field specified as DDR/QSPI/OSPI flashes. The PdiSrc field will have the same values as
boot mode values when used as primary boot device.

Table 25: Load Partial PDI Command Structure

Structure
Reserved[31:24]=0 Length[23:16]=3 XilLoader=7 CMD_XILLOADER_LOAD_PPDI

= 1

PdiSrc – 0x1=QSPI24, 0x2=QSPI32, 0x8=OSPI, 0xF for DDR

High PDI Address

Low PDI Address

Load DDR Copy Image

Table 26: Load DDR Copy Image Command Structure

Structure
Reserved[31:24]=0 Length[23:16]=1 XilLoader=7 CMD_XILLOADER_LOAD_DDR

_CPY_IMG = 2

Image ID

Function ID

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=106

Update Multiboot

PLM provides a command for user applications to update the multiboot value during run-time. In
case of QSPI, OSPI, and SD/eMMC raw boot devices, the value indicates the 32K offset in the
flash device that is to be used to boot the image. For SD/eMMC file system, the value denotes
the number that is appended to the BOOT.BIN image name. After updating the multiboot
value ,you can perform SRST to let the BootROM boot the image from the given multiboot offset
in the respective boot device.

Table 27: Update Multiboot Command Structure

Structure
Reserved[31:24]=0 Length[23:16]=2 XilLoader=7 CMD_UPDATE_MULTIBOOT=

8

Reserved[31:16]=0 BootMode[15:8] Reserved[7:4]=0 [3:0] - Flash Type - 0: RAW, 1:
FS, 2: RAW BP1, 3: RAW BP2

Image location (In case of SD/eMMC File System - File Number, Remaining cases - PDI Location in the device)

This command updates the PMC_GLOBAL.PMC_MULTI_BOOT Multiboot register. BootMode is
the boot mode value corresponding to the boot device where the image is present. Flash Type is
ignored in case of QSPI/OSPI as it supports only raw mode by default.

The image location for SD/eMMC file system should be the file number which is appended to
BOOT.BIN file name. Up to 8191 files (boot0001.bin to boot8190.bin) are allowed. For all
other cases, the image location is the address of the PDI in the respective device. It should be in
multiples of 32 KB. The following boot modes are currently supported:

• QSPI

• OSPI

• SD

• eMMC

The response structure is as follows:

Table 28: Update Multiboot Response Structure

Structure
Status

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=107

Upgrade ImageStore

Add ImageStore

The ImageStore can be upgraded during run-time with any partial PDI address present in the
DDR memory controller. The PLM maintains a list of PDIs (PDI addresses). You can add or
remove any PDI address in the DDR memory controller to or from the list through IPI commands.

While restarting an image, the PLM checks if there are any entries in the list. If there are any
entries, it goes to the latest PDI in the list and tries to restart an image from that PDI. If a failure
occurs, fallback happens to the next possible image in the list, and if no more entries are left in
the PDI list, the PLM tries to restore the image from the DDR memory locations mentioned in
the BootPDI as CopyToMem addresses.

The following are the ImageStore PDI commands:

Table 29: Add ImageStore PDI Command Structure

Structure
Reserved[31:24]=0 Length[23:16]=2 XilLoader=7 CMD_ADD_IMG_STORE_PDI=

9

High PDI Address

Low PDI Address

This command adds PDI address to the list of Image Store PDIs that are maintained by the PLM.
During restore or reload of a image, the PLM first checks this dynamically added list of PDIs to
get the required image. In case of any failure, it falls back to the next possible PDI. If a valid entry
is not present, it uses Boot PDI, which is the first entry in the list.

The response structure is as follows:

Table 30: Add ImageStore PDI Response Structure

Structure
Status

Remove ImageStore

Table 31: Remove ImageStore PDI Command Structure

Structure
Reserved[31:24]=0 Length[23:16]=2 XilLoader=7 CMD_ADD_IMG_STORE_PDI=

10

High PDI Address

Low PDI Address

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=108

This command removes a PDI address from the list of Image Store PDIs that are maintained by
the PLM. During restoring or reloading an image, the PLM first checks this dynamically added list
of PDIs to get the required image. In case of any failure, it falls back to the next possible PDI. If a
valid entry is not present, it uses Boot PDI, which is the first entry in the list.

The response structure is as follows:

Table 32: Remove ImageStore PDI Response Structure

Structure
Status

Deferred Image Loading
The PLM supports the Copy to Memory and Deferred Image Handoff features. Based on the
scenario, you might have to defer loading a certain subsystem image in the PDI after a certain
boot milestone, or defer the handing off to a certain subsystem image. This establishes a certain
boot order and can be used to decrease boot time.

Copy to Memory

Images with the copy = <DDR address> attribute specified against them in the BIF file are
stored at the specified address in DDR and then loaded during boot PDI load. Specifying the
copy attribute takes a backup of the image in DDR, while loading the image. Specifying
delay_load in BIF for an image skips the loading of the image altogether.

Specifying copy = <DDR address>, delay_load in BIF takes the back up of the image in
DDR and skips loading of the image altogether.

Images are loaded by an IPI command 0x10702 that takes the image ID, function ID as
an argument. The IPI command loads and executes these images after all other images start their
run. You cannot specify delay_load and delay_handoff simultaneously for an image.

However, you can specify copy and delay_handoff simultaneously for an image.

For partial PDIs, the Copy to Memory feature is not supported.

Deferred Image Handoff

You can pass the delay_handoff attribute to the selected image IDs in the BIF file, which is an
input to Bootgen. The PLM reads the delay_handoff attribute and defers the handoff of the
images till the end of boot PDI load. In other words, the images with the delay_handoff
attribute specified, only start running after the images without the delay_handoff and copy
= 1 attributes start their run. Deferred Image Handoff is supported for both full PDIs and partial
PDIs.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=109

XilPM
Platform Management (XilPM) is a library that provides interfaces to create and manage
subsystems, MIO, Clocks, Power and Reset settings of nodes. The following table provides the
list of commands supported by this module. For details about Platform Management, refer to the
Chapter 10: Versal ACAP Platform Management.

Table 33: Platform Management Modules

Command Name API ID
Node-Related Commands

PM_GET_NODE_STATUS 3

PM_REQUEST_SUSPEND 6

PM_SELF_SUSPEND 7

PM_ABORT_SUSPEND 9

PM_REQUEST_WAKEUP 10

PM_SET_WAKEUP_SOURCE 11

PM_REQUEST_NODE 13

PM_RELEASE_NODE 14

PM_SET_REQUIREMENT 15

PM_SET_MAX_LATENCY 16

Reset Control Commands

PM_RESET_ASSERT 17

PM_RESET_GET_STATUS 18

Pin Control Commands

PM_PINCTRL_REQUEST 28

PM_PINCTRL_RELEASE 29

PM_PINCTRL_GET_FUNCTION 30

PM_PINCTRL_SET_FUNCTION 31

PM_PINCTRL_CONFIG_PARAM_GET 32

PM_PINCTRL_CONFIG_PARAM_SET 33

Generic Commands

PM_GET_API_VERSION 1

PM_REGISTER_NOTIFIER 5

PM_FORCE_POWERDOWN 8

PM_SYSTEM_SHUTDOWN 12

PM_INIT_FINALIZE 21

PM_GET_CHIPID 24

PM_QUERY_DATA 35

PM_IOCTL 34

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=110

Table 33: Platform Management Modules (cont'd)

Command Name API ID
Clock Control Commands

PM_CLOCK_ENABLE 36

PM_CLOCK_DISABLE 37

PM_CLOCK_GETSTATE 38

PM_CLOCK_SETRATE 39

PM_CLOCK_GETRATE 40

PM_CLOCK_SETDIVIDER 41

PM_CLOCK_GETDIVIDER 42

PM_CLOCK_SETPARENT 43

PM_CLOCK_GETPARENT 44

PM_PLL_SET_PARAMETER 48

PM_PLL_GET_PARAMETER 49

PM_PLL_SET_MODE 50

PM_PLL_GET_MODE 51

XilSecure
The XilSecure library is a library of security drivers that access the hardened cryptographic cores
to support the AES-GCM 256-bit/128-bit engine, the RSA/ECC engine that supports RSA-4096,
RSA-3076, RSA-2048 as well as ECDSA NIST P-384 and NIST P-521, the SHA3/384 engine, and
the PMC true random number generator (TRNG).

For more information, see Chapter 9: Security.

XilSEM
The Xilinx Soft Error Mitigation (XilSEM) library is a pre-configured, pre-verified solution to
detect and optionally correct soft errors in Configuration Memory of Versal ACAPs.

See the OS and Libraries Document Collection (UG643) for more information.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 111Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=111

PLM Usage
This section describes building PLM software using the Vitis™ tool including the build flags to
use, the PLM memory layout and PLM reserved memory and registers. To perform the PLM build
using the Vitis tool, refer to the Xilinx Embedded Design Tutorials: Versal Adaptive Compute
Acceleration Platform (UG1305).

PLM Build Flags
The following table lists the important build flags in PLM and their usage. For a complete list of
build flags, see the xplmi_config.h file in the XilPLMI library. To apply changes to the build
flags, rebuild the BSP and the PLM application.

Table 34: PLM Build Flags

Flag Description Prerequisites Default Setting
PLM_PRINT When enabled, prints the

PLM header and any
mandatory prints.

None Disabled

PLM_PRINT_NO_UART Enable this definition to
disable prints from UART.
Prints to memory are still
enabled as defined by PLM
DEBUG macros.

None Disabled

PLM_DEBUG Prints basic information and
any error messages.

None Enabled

PLM_DEBUG_INFO Prints with format specifiers
in addition to the basic
information.

None Disabled

PLM_DEBUG_DETAILED Prints detailed information. None Disabled

PLM_PRINT_PERF Prints the time taken for
loading the partitions,
images and tasks.

Any of the above-mentioned
debug print flags need to be
enabled

Enabled

PLM_QSPI_EXCLUDE When this flag is enabled,
the QSPI code is excluded.

None Disabled

PLM_SD_EXCLUDE When this flag is enabled,
the SD code is excluded.

None Disabled

PLM_SECURE_EXCLUDE When you enable this
definition, secure code (AES,
RSA, ECDSA) code is
excluded. SHA3 code is still
included to support
checksum cases.

None Disabled

PLM_SEM_EXCLUDE When this flag is enabled,
the XilSEM code is excluded.

None Disabled

PLM_DEBUG_MODE Disables soft reset in case of
error during Base PDI
loading. This will be helpful
in maintaining the system
state for debugging.

None Disabled

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 112Send Feedback

https://xilinx.github.io/Embedded-Design-Tutorials/master/docs/Introduction/Versal-EDT/README.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=112

Table 34: PLM Build Flags (cont'd)

Flag Description Prerequisites Default Setting
PLM_PRINT_PERF_POLL Prints the time taken for any

poll for MASK_POLL
command.

None Disabled

PLM_PRINT_PERF_DMA Prints the time taken for
PMC DMA, QSPI, OSPI

None Disabled

PLM_PRINT_PERF_CDO_PROC
ESS

Prints the time taken to
process the CDO file.

None Disabled

PLM_PRINT_PERF_KEYHOLE Prints the time taken to
process keyhole command.
Keyhole command is used
for Cframe and slave SLR
image loading.

None Disabled

PLM_PRINT_PERF_PL Prints the PL Power status
and House clean status.

None Disabled

PMC Memory Layout
This section contains the approximate details of the PMC memory layout and the PLM memory
footprint, with the various PLM build options.

The following figure shows the PMC memory layout.

Figure 29: PMC Memory Layout

PPU RAM
PLM: Text, data, bss,

stack sections

PMC RAM
Intermediate storage for CFI,

Data objects and used for
storing some PLM data

384 KB

128 KB

X23867-052421

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=113

In the PLM, the PLM_DEBUG and PLM_PRINT_PERF build flags along with all modules, are
enabled by default.

Services Flow
All interrupts are added as events and are run in the normal context. The PLM calls the
appropriate handler based on the interrupts or inter-processor interrupts (IPIs) received.

Chapter 8: Platform Loader and Manager

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=114

Chapter 9

Security
This chapter describes the Versal® device features that you can leverage to address security
during the application boot time and run time.

Refer to the Versal ACAP Security Manual (UG1508) for the production readiness of the desired
security feature as well as its detailed usage instructions. This manual requires an active NDA to
download from the Design Security Lounge.

Security Features
The Versal device provides several security-related features. One of the biggest security features
that Versal ACAP provides is the hardened cryptographic engines that support:

• Advanced encryption standard Galois counter mode (AES-GCM) 128-bit and 256-bit, and
supports additional authenticated data (AAD).

• RSA 2048, 3072, and 4096

• Elliptic curve cryptography (ECC) engine that supports multiple curves

○ NIST P-384

○ NIST P-521

• SHA3/384 Hashing

• True Random Number Generator (TRNG)

Because of the hardened cryptographic engines in Versal ACAP, Xilinx provides an associated set
of security-related drivers that use the cryptographic engines either during secure boot or run
time. During secure boot, the ROM, the PLM, and U-Boot can take advantage of these
cryptographic features. During run time, these drivers can be accessed directly through a bare-
metal application or indirectly depending on the architecture configuration. This can include
using an operating system, a hypervisor, Trusted Execution Environment (TEE), etc. For example,
in a Linux application, the application can call the Linux kernel, which would send an IPI request
to the PLM where the security library runs. This is just one example of accessing the security
libraries from run time; the options are numerous because Versal ACAP is highly configurable.

Chapter 9: Security

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 115Send Feedback

https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=115

If there are any security features not provided by Xilinx, you can take advantage of the PL to
implement additional security features or use the built-in Armv8 cryptographic extensions and
the Arm® NEON extensions in the Arm Cortex®-A72 processors.

Known Answer Tests
The Versal ACAP has the ability to perform KATs on the cryptographic engines before using
them. The KAT checks the integrity of the hardened cryptographic engines before operating on
the data.

The KAT includes the following tests:

• SHA3/384

• RSA-4096

• ECDSA with the NIST P-384 and NIST P-521 curves

• AES-GCM 256-bit with and without the differential power analysis (DPA) counter measure
enabled

• TRNG

KATs can be run during boot. These APIs can be called explicitly from an application running on
either Cortex-A72 or Cortex-R5F processors.

Secure Boot
On Versal devices, secure boot ensures the confidentiality, integrity, and authentication of the
firmware and software loaded onto the device. The root of trust starts with the BootROM, which
authenticates and/or decrypts the PLM depending on the secure boot mode selected. Versal
ACAPs offer two secure boot modes: Asymmetric Hardware Root of Trust (A-HWRoT) and
Symmetric Hardware Root of Trust (S-HWRoT).

The A-HWRoT boot mode forces the device to only boot images that are authenticated using
RSA or ECDSA. The S-HWRoT boot mode forces the device to only boot images that have the
PLM and MetaHeader encrypted using a black (encrypted) eFUSE key.

Encryption of partitions beyond the PLM and MetaHeader is defined by the MetaHeader that is
authenticated using AES-GCM. Secure boot is important for two reasons.

• Ensures that the software being loaded onto a device is allowed to be loaded, which prevents
malicious code from running on the device

• Protects the OEM IP because the software is stored in an encrypted fashion, which prevents
the OEM IP from being stolen.

Chapter 9: Security

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=116

Additionally, if secure boot is not desired, then software can at least be validated with a simple
SHA3 checksum; however, keep in mind that the protections listed above do not apply when
using this method of boot. The following table highlights the possible secure boot configurations.

Table 35: Cumulative Secure Boot Operations

Boot Type

Operations
Hardware Crypto

EnginesAuthentication Decryption
Integrity

(Checksum
Verification)

Non-secure No No No N/A

Hardware Root-of-
Trust (HWRoT)

Yes Optional Integrity via
Authentication

N/A

Asymmetric Hardware
Root-of-Trust (A-
HWRoT)

Yes. Enforced using
eFUSEs

Optional Integrity via
Authentication

RSA/ECDSA and SHA3

Symmetric Hardware
Root-of-Trust (S-
HWRoT)

Yes via GCM and
eFUSEs

Yes
Must use PUF KEK

Integrity via
Authentication

AES-GCM/PUF

A-HWRoT + S-HWRoT Yes Yes
Must use PUF KEK

Integrity via
Authentication

RSA/ECDSA, SHA3,
AES-GCM, PUF

Note: Checksum is used to verify the integrity of the image loaded and is not a secure boot mode.

The Versal ACAP system uses the following hardware cryptographic blocks in the secure boot
process:

• SHA Hardware Accelerator: Calculates the SHA3/384 hash on images, used in conjugation
with the RSA or elliptical curve cryptography (ECC) engine for authentication.

• ECDSA-RSA Hardware Accelerator: Authenticates images using a public asymmetric key.
Either RSA-4096 or ECDSA with curve NIST P-384 can be used.

In addition to NIST-P384, NIST-P521 curve can also be used by the PLM for other images.
P-384 is required for the MetaHeader, the PMC CDO, and the PLM. For all the other
partitions, you can use P-521.

• AES-GCM Hardened Crypto Block: Decrypts images using a 256-bit key, and verifies the
integrity of the decrypted image using the GCM tag.

In addition to AES-GCM 256-bit, AES-GCM 128-bit can also be used by the PLM for other
images. AES-GCM 256-bit is required for the MetaHeader, the PMC CDO, and the PLM. For
all the other partitions, use AES-GCM 128-bit.

Chapter 9: Security

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=117

Checksum Verification
Versal ACAP uses the SHA-3 digest to verify the data integrity of Versal device images. If the
checksum verification is enabled in the PDI, the PLM calculates the SHA-3 digest and verifies it
with the expected SHA-3 digest that is the part of PDI.

The checksum option is not used with A-HWRoT and/or S-HWRoT because these methods
already perform data integrity checks.

Asymmetric Hardware Root-of-Trust (A-
HWRoT) (Authentication Required)

The Versal device image's SHA3 hash is signed with the private RSA/ECDSA key to generate a
signature and is placed into the Versal device image. Upon boot, the SHA3 hash is calculated on
the image, and the signature stored in the image is passed into the RSA/ECDSA engine using the
public key. If both the calculated SHA3 hash and the verified signature match, the image is valid.

There are two public key types used in Versal ACAP: the primary public key (PPK) and the
secondary public key (SPK). Each image is assigned its own or the same SPK. For example, the
PLM could be assigned to use SPK0 and an application for the Cortex-A72 could be assigned the
same SPK0 or its own SPK such as SPK1.

In the Versal device, there is storage for three PPK hashes in the eFUSE memory: PPK0, PPK1,
and PPK2. If you program any of the PPK eFUSE bits, the A-HWRoT is forced at boot time, and
therefore, all software needs to be authenticated before it is loaded into the Versal device. The
asymmetric key pair can be either RSA 4096 or ECDSA–P384 curve. For the three PPK choices, a
combination of RSA and ECDSA hash values are allowed to be programmed.

RSA Engine
During boot, only RSA-4096 is supported. However, post boot the RSA engine is accessible and
supports private and public key operations of sizes 2048, 3072, and 4096 bits.

Elliptic Curve Cryptography Engine
During boot, the elliptic curve digital signature algorithm (ECDSA) is only supported with the
NIST P-384 curve for the PLM, while other images can be signed using either the NIST P-384
curve or the NIST P-521 curve. However, post boot, the elliptic curve cryptography (ECC) engine
is accessible, and supports a variety of curves in addition to the NIST P-384 curve. Supported
curves are NIST P-384 and NIST P-521.

Chapter 9: Security

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=118

Key Revocation
In eFUSEs, you have only three PPK choices to store the hash value of the primary public key and
up to two of those values can be revoked. If another revocation occurs, the device is no longer
bootable. If a PPK is compromised, you can revoke the public key by setting the corresponding
PPK revocation bit in eFUSEs.

To revoke an SPK, you program the corresponding eFUSE bit in the revocation ID. There are 256-
bits [0-255] in total, so you can revoke the SPK up to 255 times. Another revocation will result in
a device that will no longer be bootable. The 0-bit of the revocation ID represents SPK 0, the
32nd bit of the revocation ID represents SPK 32, etc.

Encryption
Versal devices include an AES-GCM hardware engine that supports confidentiality,
authentication, and integrity. GCM assists in the authentication and integrity check. You can use
the engine to encrypt or decrypt data with the use of a symmetric key and initialization vector
pair boot or post-boot. The boot flow is required to use a key size of 256-bit and a 96-bit
initialization vector, through loading of the PLM. 256-bit or 128-bit key sizes are allowed for
additional firmware and software. Post boot, the engine supports both 256-bit and 128-bit key
sizes. Additionally, the AES-GCM engine supports AAD.

DPA Counter Measure
In Versal devices, the AES engine has the capability of countermeasures, which means protection
against DPA attacks. By default, the automotive devices (XA) include the DPA countermeasures.
All other devices must be ordered with an ordering code to get DPA enabled devices.

As another counter measure against DPA attacks, boot images support key rolling to minimize
the use of a single AES key. The DPA countermeasures can be used during boot as well as post-
boot.

Key Sources

Red Key

The red key is stored as plain text in either BBRAM, eFUSEs, or the boot header.

Chapter 9: Security

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=119

Black Key

The black key is produced after the red key is encrypted using the PUF generated key encryption
key (KEK).

Note: The KEK is unique per Versal device and cannot be read out of the device.

The black key can be stored in eFUSE, BBRAM, or in the boot header for secure boot. If encrypt-
only boot mode is selected, the black key can only be stored in eFUSEs.

IMPORTANT! The physical unclonable function (PUF) is only supported when using a nominal VCC_PMC
of 0.70V. Refer to the Versal ACAP Security Manual (UG1508) in the Security Lounge (registration
required) for detailed information on PUF usage.

User Key

After the boot process, you have the option to load the AES engine with the keys stored in
BBRAM, eFUSEs, as well as keys stored in memory that are specific to an operating system or an
application.

Revocation

The Revocation ID points to an eFUSE and if the eFUSE is not programmed, then keys using that
Revocation ID are valid. Programming the eFUSE revokes the key associated with its associated
eFUSEs. When revoking a key, it will also revoke an SPK because the Revocation ID is shared
with the A-HWRoT boot mode.

Symmetric Hardware Root-of-Trust (S-HWRoT) Boot
Mode (Encryption Required)
There are dedicated bits in eFUSEs that correspond to the S-HWRoT boot mode. If any one of
these bits are set, the S-HWRoT boot mode forces the device to only boot images that have the
PLM and MetaHeader encrypted using a black (encrypted) eFUSE key. Encryption of partitions
beyond the PLM and MetaHeader is defined by the MetaHeader which is authenticated using
AES-GCM.

True Random Number Generator
The Versal ACAP includes a cryptographically secure random number generator. The Versal
ACAP random true number generator (TRNG) is designed to enable NIST 800-90A/B/C and
AIS-20/31 compliant random number generation solutions.

Chapter 9: Security

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=120

The Versal ACAP TRNG consists of an entropy source, a deterministic random BitGen (DRBG),
and a health test logic. The TRNG provides a maximum security-strength of 256 bits. For more
information, see Versal ACAP Security Manual (UG1508). This manual requires an active NDA to
download from the Design Security Lounge.

Chapter 9: Security

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 121Send Feedback

https://www.xilinx.com/member/design_security.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=121

Chapter 10

Versal ACAP Platform Management
The Versal® ACAP is a heterogeneous multiprocessor SoC that combines multiple user
programmable processors, FPGA, and advanced power management capabilities.

Modern power efficient designs require usage of complex system architectures with several
hardware options to reduce power consumption, and usage of a specialized CPU to handle all
power management requests coming from multiple masters to power on, power off resources,
and handle power state transitions. In addition to power, there are other resources like clock,
reset, and pins that need to be similarly managed. The challenge is to provide an intelligent
software framework that complies to industry standard (IEEE P2415), and can handle all requests
coming from multiple CPUs running different software. Xilinx® has created the platform
management to support a flexible management control through the platform management
controller (PMC).

The platform management handles several use case scenarios. For example, Linux provides basic
power management capabilities, such as CPU frequency scaling, and CPU hot-plugging. The
kernel relies on the underlining APIs to execute power management decisions, but most RTOS do
not have this capability. Therefore, they rely on user implementation, which is made easier with
use of the platform management framework.

Industrial applications, such as embedded vision, advanced driver assistance, surveillance,
portable medical, and Internet of Things (IoT) are increasing their demand for high-performance
heterogeneous SoCs, but they have a tight power budget. Some of the applications are battery-
operated, and battery life is a concern. Others, such as cloud and data center, have demanding
cooling and energy costs, not including their need to reduce environmental cost. All these
applications benefit from a flexible platform management solution.

Key Features

The following are the key features of the platform management:

• Provides centralized power state, clock, reset, and pin configuration information using the
PMC

• Supports Embedded Energy Management Interface (EEMI) APIs (IEEE P2415)

• Provides support for the Linux common clock framework

• Provides support for the Linux reset framework

• Manages power state, clock, and reset of all devices

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=122

• Provides support for Linux power management including:

○ Linux device tree power management

○ TF-A/PSCI power management support

○ CPU frequency scaling

○ CPU hot-plugging

○ Suspend

○ Resume

○ Wake-up process management

○ Idle

• Provides direct control of the following power management features with more than 24 APIs:

○ Core management

○ Error management

○ Memories and peripherals management

○ Power, clock, reset

○ Processor unit suspend or wake-up management

Versal ACAP Platform Management Overview
The Versal ACAP platform management implements the EEMI. Platform management allows
software components running across different subsystems on Versal ACAP to issue or respond to
platform management requests. The platform management also provides support through EEMI
APIs to allow different processing units to configure clock characteristics, such as its enable/
disable state, divisor, and the PLL to use. It also provides support through EEMI APIs for
asserting/deasserting reset lines and configuring pins for use with different functional units.

Versal ACAP Power Domains
The Versal device is divided into following power domains:

• Full power domain (FPD): Contains the Arm® Cortex-A72 application processor unit (APU).

• Low power domain (LPD): Contains the Arm Cortex-R5F real-time processor unit (RPU), and
on-chip peripherals.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=123

• System power domain (SPD): Contains the DDR controllers and NoC.

• PL power domain: Contains the PL and the AI Engine.

• Battery power domain: Contains the real-time clock (RTC) as well as battery-backed RAM
(BBRAM).

• PMC power domain: Contains the platform management controller.

The battery and PMC power domains are not managed by the framework. Designs that want to
take advantage of the platform management switching the power domains, must keep some
power rails discrete. This allows individual rails to be powered off with the power domain
switching logic.

The following figure illustrates the Versal device power domains and islands.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=124

Figure 30: Power Domains and Islands Diagram

RTC

BBRAM

OscillatorVCCAUX_PMC
Good

VCCO_503

VCCO_500

VCCO_501

VCCO_502

VCC_PSLP

VCC_PSFP

GTx_AVCC
GTx_AVCCAUX

VCC_IO

VCC_RAM

VCCO_BANKx

VCC_SOC

APLL

RPLL

Dedicated

PPLL

NPLL

LPD MIO

L2 Cache
RAM

CPU 0

APU Dual
ProcessorAPU

Debug

AXI Interconnect

PLLs DDR
MCXPIO

N
M

Us
N

SU
s

CFU

VCCAUX_PMC

VCC_BATT

VCCAUX_SMON

PHY

VCCINT

PMC DMA

RCU PPU Quad SPI
Octal SPI

SD_eMMCPMC RAM
PMC_GPIO

NoC

VCC_FUSE

NPI

VCC_PMC

CPLL

PMC_I2C

eFUSE
Cache

PMC MIO 0

PMC MIO 1

JTAG

SLCRs

CPU 1

SYSMON

CCI

GIC

SCU

Interconnect

VCCAUX

16
FETs

PMC
PL
LPD
FPD
SPD
BPD

Power Domains

RPU Debug

CoreSightPL
Debug

TCM A0

TCM A1

TCM B0

TCM B1

LPD DMA

Debug GIC

RPU Dual
Processor

GEM 0

PSM Bank 0

Bank 1

Bank 2

Bank 3

OCM Control

Interconnect

XRAM

GEM 1

USB 2.0

LPD_I2Cx
SPIx

UARTx
CANFDx

TTCx
SLCRs

UltraRAM
Block RAM

100 G Multirate Ethernet

CFI

DSP Engines

HDIO

AI Engine CPM4

XPipe GTY

PL

PL

CLBs

LPD_GPIO

BBRAM
Controller

Power Island
On-chip

600 G Channelized Ethernet

600 Gb Interlaken

400 Gb High-speed Crypto

CPipe GTYP

GTY

GTM

CPM5

GTx_AVTT
GTx_AVTTRCAL

CPM4

CPM5

PL, 32 Gb/s

PL, 58 Gb/s

SoC
LPD

PS
PL

GT Bank Power Pins

Peri

AnalogESD

X23217-062921

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=125

Because of the heterogeneous multi-core architecture of the Versal ACAP, no processor can
make autonomous decisions about power states of individual components or subsystems.

Instead, a collaborative approach is taken, where a power management API delegates all power
management control to the platform management controller (PMC). The PMC is the key
component in coordinating the power management requests received from the other processing
units, such as the APU or the RPU, and the coordination and execution from other processing
units through the power management API.

Versal ACAP also supports inter-processor interrupts (IPIs), which are used as the basis for
platform management related communication between the different processors. For more
information, refer to the interrupts information in the Versal ACAP Technical Reference Manual
(AM011).

Versal DFX Management
It is possible to confgure the PL configuration at run time from baremetal and Linux-like
operating systems. The PL configuration data for Versal ACAP can be accessed as PDI files. For
baremetal/FreeRTOS applications, the “xilfpga” library can be used for programming the PL
configuration data. For more details, see OS and Libraries Document Collection (UG643). From
Linux, the FPGA Manager in Versal ACAP provides an interface to download PL configuration
data (DFX) at run time from Linux. This PL configuration data or DFX image is a PDI which can be
either authenticated/encrypted or both or can be non-secure.

Note: You have to use a DFX flow to load the PL through an application or U-Boot/Linux.

The following figure shows the PL configuration flow for Linux.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 126Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=126

Figure 31: PL Configuration Flow from Linux

Libdfx and fpga-utils

Trusted Firmware-A

FPGA manager core framework

Versal firmware driver

Versal FPGA manager driver

PLM

Versal ACAP

EEMI Request

SMC

Application layer

Linux kernel -EL1-NS

TF-A (BL31) – EL3

PLM

Hardware device

IPI

X25442-061121

To load a PDI with PL configuration data, the FPGA manager allocates the required memory and
invokes the EEMI API using the FPGA LOAD API ID. This request is a blocking call. The FPGA
manager waits for the response from the TF-A and response is provided to the FPGA manager
core layer which passes it to the application. At the application layer, Xilinx provides two user
space utilities, namely fpgautils and libdfx for programming the PL configuration data.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=127

fpgautils is a legacy and developer friendly Linux user space utility for programming the PL
configuration data from command line. Unlike fpgautils, libdfx is a C library that can be integrated
into user applications. It provides different APIs that can address multiple use cases for DFX or
PL configuration data programming. It also provides faster programming capability by avoiding
multiple buffer copies that are involved in other methods. For more information on libdfx and its
usage, refer to the libdfx repo. An example application for programming the PL configuration
data is available in the apps/ directory.

Versal ACAP Platform Management Software
Architecture

The Versal ACAP architecture includes a dedicated platform management controller (PMC) unit
that controls the power-up, power-down, and monitors of all system resources. You benefit from
a system that is better equipped on handling platform management administration for a
multiprocessor heterogeneous system. However, the system becomes more complex to operate.
The platform management framework abstracts this complexity and exposes only the APIs you
need to meet your power budget and efficiently manage resources.

Based on CDOs passed to the PLM, the PLM builds and adds a topology of resources to its
platform management framework. The platform management framework manages resources
such as power domains, power islands, clocks, resets, pins and their relationship to CPU cores,
memory, and peripheral devices.

Figure 32: Platform Management Framework

X23401-051220

Platform Management

RPU User Application

RTOS & Bare Metal

XilPM Client APIs

EEMI APIs

PLM
(Bare Metal)

XilPM Server
EEMI APIs

APU User Application

Linux

TF-A/PSCI

Bare Metal & OSes

XilPM Client APIs

RPU PMC APU

EEMI APIs

PM
Request

PM
State

PM
Request

PM
State

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 128Send Feedback

https://github.com/xilinx/libdfx
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=128

The Versal ACAP platform management framework is based on an implementation of EEMI (refer
to the Embedded Energy Management Interface EEMI API Reference Guide (UG1200). APIs are
available to the processing units to send messages to the PLM, as well as callback functions for
the PLM to send messages to the processing units.

EEMI provides a common API that allows all software components to manage cores and
peripherals. For power management, EEMI allows you to specify a high-level management goal,
such as suspending a complex processor cluster or just a single core. The underlying
implementation is then free to autonomously implement an optimal power-saving approach.

The Linux device tree provides a common description format for each device and its power
characteristics. Linux also provides basic power management capabilities such as CPU and clock
frequency scaling, and CPU hot-plugging. The kernel relies on the underlining APIs to execute
power management decisions.

You can create your own platform management applications using the XilPM client library, which
provides access to more than 24 APIs. The APIs can be grouped into the following functional
categories:

• Slave device power management, such as memories and peripherals

• Clock management

• Reset management

• Pin management

• Miscellaneous

The following figure illustrates the API-based platform management software architecture.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 129Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1200-eemi-api.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=129

Figure 33: API-Based Platform Management Software Architecture

IPI –

communication
PSM

PLMPLM

APU

OS/Application(s)

XilPM client API

RPU

RTOS/Application(s)

XilPM client API

MicroBlaze

Application(s)

XilPM client API

PM Masters

XilPM server API
PM Controllers

PM Slaves Memory_A Memory_B Peripheral_A Peripheral_B

IPI - communication IPI - c
ommunication

Power state controlPower state control

Power state control

X23402-051821

PMC

Related Information

Platform Loader and Manager

API Calls and Responses
Platform Management Communication Using IPIs
In the Versal device, the platform management communication layer is implemented using inter-
processor interrupts (IPIs), provided by the IPI block. For more details on IPIs, see the Interrupts
chapter of the Versal ACAP Technical Reference Manual (AM011).

Each processing unit has a dedicated IPI channel with the PMC, consisting of an interrupt and a
payload buffer. The buffer passes the API ID and up to five arguments. The IPI interrupt to the
target triggers the following processing of the API:

• When calling an API function, a processing unit generates an IPI to the PMC, prompting the
execution of necessary platform management action.

• The PMC performs each request atomically, meaning that the action cannot be interrupted.

• To support platform management callbacks, which are used for notifications from the PMC to
a processing unit, each processing unit implements handling of these callback IPIs.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 130Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=130

Platform Management Layers
The following API layers are included in the platform management implementation for the Versal
devices:

• XilPM (client): Library layer used by standalone applications in the different processing units,
such as the APU and RPU.

• XilPM (server): Library layer part of the PLM that handles the requests that are passed from
the XilPM client layer through IPIs.

• TF-A: The TF-A contains its own implementation of the client-side PM framework. It is
currently used by the Linux OS.

• PLM: The PLM receives IPI packets and passes platform management requests to the XilPM
server.

• PSM Firmware: Invoked by the XilPM server to control power islands and power domains of
PS.

For more details on PMC, PSM, and power domain hardware topics, see the Versal ACAP
Technical Reference Manual (AM011).

The following figure shows the interaction between the APU, the RPU, and the platform
management APIs.

Figure 34: API Layers Used Only With Bare-Metal Applications

RPU

Bare metal application

XilPM

PM-API

PMC

PM-API

IPI

RPU

Bare metal application

XilPM

PM-API

X23537-110520

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 131Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=131

If the APU runs a complete software stack with an operating system, it does not use the XilPM
library. Instead, the TF-A running at EL3 implements the client-side XilPM API and provides a
secure monitor call (SMC)-based interface to the software running at EL2, SEL1, or EL1
depending on the Versal ACAP system architecture.

For more details on the Armv8 architecture and its different execution modes, see https://
developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-
a-architecture-profile.

The following figure illustrates the platform management layers that are involved when running a
full software stack on the APU.

Figure 35: Platform Management Layers Involved When Running a Full Software Stack
on the APU

APU

RPU

Hypervisor, Secure OS,
 or OS

TF-A

PM-API

EL2/
SEL1/

EL1

EL3

SMC

Bare metal application

XilPM

PM-API

PMC

PM-API

IPI

X23537-051120

Typical Platform Management API Call Flow
Any entity that is involved in power management is referred to as a node. The following sections
describe how the platform management works with slave nodes allocated to each subsystem
instead of the APU and the RPU.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 132Send Feedback

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=132

Generally, the APU or the RPU inform the PMC about their usage of a slave node, by requesting
for it. The PMC is then informed about the capability requirement needed from the slave node.
At this point, the PMC powers up the slave node, so it can be initialized by the APU or the RPU.

Requesting and Releasing Slave Nodes

When a processing unit requires a peripheral or memory slave node, it must request the slave
node using the power management API. After the slave node has performed its function and is
no longer required, it can be released and powered off.

The following figure shows the call flow for a use case where the APU and the RPU are sharing
an on-chip memory bank, ocm0.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=133

Figure 36: Platform Management Framework Call Sequence for APU and RPU Sharing
an On-Chip Memory Bank

APU

pm_request_node
(nodelD=ocm0,
cap=full, ack=1)

PMC + PSM RPU ocm0

pm_release_node
(node=ocm0, latency=0)

pm_self_suspend
(nodelD=APU 0,
latency=MAX)

WFI interrupt

pm_request_node
(nodeID=ocm0,
cap=full, ack=1)

pm_release_node
(node=ocm0, latency=0)

RUN

POWER
DOWN

RUN RUN OFF

ON

OFF

X20022-111020

Note: The ocm0 memory remains powered on after the APU calls XStatus XPm_ReleaseNode, because
the RPU has also requested the same slave node. After the RPU also releases the ocm0 node, then the
PMC requests the PSM to power off the ocm0 memory.

Platform Management Default Subsystem

Currently, there is no support for isolation configuration, and all PM masters are part of the
default subsystem.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=134

In this configuration, both PM masters (APU and RPU) have permission to access all devices, so
exercise caution on how PM slave devices are used by different masters.

Activation of Subsystem

To activate a subsystem is to make it operational by requesting (using XPm_RequestNode) all its
pre-allocation devices. This is an essential one-time operation that is required before the
subsystem image can start execution. Every time a subsystem is restarted/shutdown, activation
happens before execution of the new subsystem image.

When the application binaries (ELFs) are downloaded using Programmable Device Image (PDI) as
a subsystem image, the PLM automatically activates the corresponding subsystem image using
the subsystem image ID that is present in the BIF. Currently, this is the default subsystem as
there is no support for custom subsystems. However, there can be debugging use-cases where
you need to download and execute application binaries (ELFs) directly on a master using the
XSDB, and not through the PDI-flow. In such cases, the PLM is not aware of the corresponding
subsystem image ID for ELFs. As a result, pre-allocation devices essential for a subsystem to be
operational will not be requested, which may cause unforeseen issues. Therefore, before
downloading any application binaries (ELFs) using XSDB, a one-time activation of a subsystem is
required.

Currently, XSDB automatically requests the PLM to activate the default subsystem before
downloading an application binary/ELF on a specific master. In future, when there are multiple/
custom subsystems, you may need to explicitly activate the subsystem of choice for such
debugging use-cases.

Using the API for Power Management
This section contains detailed instructions on how to use the Xilinx platform management APIs
to carry out common power management tasks. These APIs can be used by any bare-metal
application that imports the XilPM client library.

Implementing Power Management on a Processor Unit

The XilPM client library provides the functions that the standalone applications executing on a
processor can use to initiate the power management API calls.

See Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137) for information on how to
include the XilPM library in a project.

Initializing the XilPM Library

Before initiating any power management API calls, you must initialize the XilPM library by calling
the XPm_InitXilpm API. Because the argument to this API is a pointer to a proper IPI driver
instance, there is a dependency for your design to have an IPI channel assigned to the PM
master, so it could communicate with PMC.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 135Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=135

For more information on IPIs, see the Interrupts information in the Versal ACAP Technical
Reference Manual (AM011).

For more information about XPm_InitXilpm, see OS and Libraries Document Collection (UG643).

Power Management Using XPm_InitFinalize

A subsystem sends the XPm_InitFinalize(void) requests the PLM to finalize the
subsystem configuration and power down unused nodes to maintain optimum power
consumption.

For bare-metal application, an application developer needs to call XPm_InitFinalize(void)
from the application.

For Linux applications, the platform management driver calls XPm_InitFinalize().

A subsystem that is incapable of PM never sends this request. Therefore, its platform
management devices remain powered up at all times, or until the PM subsystem itself is powered
down.

If XPm_InitFinalize() is not called, the PLM does not power down any device. The
objective of XPm_InitFinalize() is to make the firmware aware that the caller subsystem of
XPm_InitFinalize() is platform management capable (uses platform management APIs if it
needs any device). XPm_RequestNode() will power up devices even if
XPm_InitFinalize() is not invoked. Nodes will also be released through
XPm_ReleaseNode() even if XPmInitFinalize() is not invoked XPm_ReleaseNode()
also passes. However in this case, only the use count is decremented, and no power down
operation is performed.

Pre-requisites for Power Management

Call XPm_InitFinalize() for proper power management and to obtain desired power values.
The PLM power downs all unused nodes when you call XPm_InitFinalize() from each
subsystem. The PLM also allows you to power down any device when you call the
XPm_ReleaseNode() API. A PM-capable subsystem sends an XPm_InitFinalize() request
after initializing the sub-system. The PLM then begins to power down the PM devices in this
subsystem whenever they are not being used.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 136Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=136

In a default subsystem (id = 0x1C000000), APU or RPUs can exist in same subsystem (id =
0x1C000000). In such a case, if any of master calls XPmInitFinalize(), all unused nodes are
powered down by the PLM. For example, if the APU is running Linux and it calls
XPmInitFinalize() during the Linux boot from the Linux Power Management driver, unused
devices will be powered down. If this default subsystem has any other processors, for example an
RPU application, they must request device using XPm_RequestNode(). This is done to avoid
powering down required nodes or request for nodes which are already powered down during
initial boot sequence. For more details, see Requesting and Releasing a Device From a Standalone
Application.

Consider a APU subsystem that is PM capable (uses PM APIs), and a RPU subsystem that is PM
incapable (does not use PM API). Assume that both subsystems use TCM.

As the APU subsystem is PM-capable, it calls both XPm_RequestNode(TCM) and
XPm_InitFinalize(). The PLM then knows that the APU subsystem is PM capable, and calls
XPm_RequestNode() when it requires a device.

In contrast, because the RPU is PM unaware, applications might be using devices without
requesting the PM API, as Xilinx allows applications to run without using the XilPM library. The
PLM is aware that the RPU subsystem is running, but remains unaware about the devices that
are used by the RPU. Therefore, the PLM does not power down any device until each subsystem
has called XPm_InitFinalize().

Working with Memory and Peripheral Devices

The Versal ACAP platform management contains functions dedicated to managing memories and
peripherals. Subsystems use these functions to inform the PMC about the requirements (such as
capabilities and wake-up latencies) for those devices. The PMC manages the system so that each
device resides in the lowest possible power state, meeting the requirements from all eligible
subsystems.

Requesting and Releasing a Node

When a subsystem requires a device node, either peripheral or memory, the device must be
requested using the power management API. After the device node has performed its function
and is no longer required, it should be released, so the device can be powered off or used by
other subsystems.

When you call the XPm_InitFinalize() API, the platform management firmware turns off
devices (such as a peripheral or memory) that are not requested by any subsystem.

You must pass the PM_CAP_ACCESS argument to the REQUEST_NODE API to access the
particular peripheral/memory, as otherwise it is not powered ON.

The device, clock, and the reset operation are also not allowed if the device is not requested.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=137

Setting up Device Request Permissions

The PLM checks permissions for any subsystem that requests a device. While creating a
subsystem in the Vivado tool, you can assign a single peripheral to multiple subsystems, or to a
single subsystem. This information is exported to PMC CDO, and the access for requesting a
device is allowed based on this information from the CDO. By default, this permission is shared
for all subsystems, that is, a single device can be requested by multiple subsystems. The
exceptions are clock, reset and the power operation that are allowed only if a single subsystem
has requested any of these resources.

Note: All subsystems must call the XPm_InitFinalize() API when they have finished initializing all
their devices and requested devices using XPm_RequestNode(). Otherwise, the PLM does not power
down any device.

The following sequence is the ideal sequence for calling using the PM API for device
management is as follows:

1. Call XPm_RequestNode() on all required devices.

2. Initialize devices.

3. Call XPM_InitFinalize() to inform PLM that all required devices are requested and
initialized

It is not mandatory that XPm_RequestNode() has to be called before XPm_InitFinalize().
If XPm_InitFinalize() is called before XPm_RequestNode(), the PLM powers down that
device (as initial state is ON). If XPm_RequestNode() is called after XPm_InitFinalize(),
the PLM powers up the device.

Some device initialization is done through CDO. Therefore, if XPm_InitFinalize() is called
before XPm_RequestNode(), it is possible that initialization is lost as device is powered down
first and then powered up again. It is recommended that you call XPm_InitFinalize() once it
has requested all required devices. Otherwise, you need to take care of initialization again.

When you call XPm_ReleaseNode(), be mindful that the device powers down, and
initialization configuration might be lost.

Requesting and Releasing a Device From a Standalone Application

The application needs to call XPm_RequestNode(). to request usage of peripheral/device. For
example:

XStatus XPm_RequestNode (const u32 DeviceId, const u32 Capabilities, const
u32 QoS, const u32 Ack);

The arguments are as follows:

• Device ID: Device ID of the PM device to be requested.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=138

• Capabilities: Device-specific capabilities are required, and can be combined. The capabilities
include:

• PM_CAP_ACCESS: Full access / functionality

• PM_CAP_CONTEXT: Preserve context

• PM_CAP_WAKEUP: Emit wake interrupts

• PM_CAP_UNUSABLE: Runtime suspend (Device is requested for a subsystem but the
device is clock disabled)

• PM_CAP_SECURE: Secure access type (non-secure/secure)

• PM_CAP_COHERENT: Device coherency

• PM_CAP_VIRTUALIZED: Device virtualization

For more information, see OS and Libraries Document Collection (UG643).

• QoS: Quality of Service (0-100) is required.

Note: Currently, this argument is not available.

• Ack: Requested acknowledge type.

Note: This argument is used only for Zynq UltraScale+ MPSoCs. For Versal devices, this argument value
is always set to blocking.

If a device is already requested by a subsystem, you can call XPm_SetRequirement() to
change its requirement. For example:

XStatus XPm_SetRequirement (const u32 DeviceId, const u32 Capabilities,
const u32 QoS, const u32 Ack);

The application must release the device when it is no longer required. To release the device, call
XPm_ReleaseNode(). For example:

XStatus XPm_ReleaseNode (const u32 DeviceId);

Changing Requirements

When a subsystem is using a PM slave, its requirement on the capability of the slave can change.
For example, an interface port might go into a low power state, or even be completely powered
off, if the interface is not being used. The subsystem can use XPm_SetRequirement to change
the capability requirement of the PM slave. Typically, the subsystem would not release the PM
slave if it will be changing the requirement again in the future.

The following example call changes the requirement for the node argument so it is powered up
and accessible to the PM master.

XPm_SetRequirement(node, PM_CAP_ACCESS, 0, REQUEST_ACK_NO);

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 139Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=139

IMPORTANT! Setting the requirements of a node to zero is not equivalent to releasing the PM slave. By
releasing the PM slave, a subsystem might be allowing other subsystems to use the device exclusively.

When multiple subsystems share a PM slave (this applies mostly to memories), the PMC selects a
power state of the PM slave that satisfies all requirements of the requesting subsystems.

The requirements on a PM slave include capability as well as latency requirements. Capability
requirements may include a top capability state, some intermediate capability states, an inactive
state (but with the configuration retained), and the off state. Latency requirement specifies the
maximum time allowed for the PM slave to switch to the top capability state from any other
state. If this time limit cannot be met, the PMC will leave the PM slave in the top capability state
regardless of other capability requirements.

For more information about XPM_SetRequirement, see OS and Libraries Document Collection
(UG643).

Self-Suspending

A processing unit can be a cluster of CPUs. The APU is a dual-core Arm Cortex-A72 CPU and
RPU a dual-core Arm Cortex-R5F CPU. The RPUs can run independently (split mode) or in fault
tolerant mode (lockstep). Currently, these processing units are part of the Default Subsystem.

Any processing unit can suspend itself by calling the XPm_SelfSuspend API to inform PMC
about its intent. The processing unit must also inform the target state as part of this call.
Currently, CPU Idle target state is supported for PU Suspend.

There are two types of target states CPU Idle and Suspend to RAM.

Actions performed by the respective processing units, PMC and PSM are discussed as follows in
each case.

• CPU Idle:

• Rich OS-like Linux has the capability to idle and subsequently power-down cores not being
used by any process. This helps in power saving. If the workload increases, the OS can also
wake up the powered down core. The platform management provides API calls as part of
the TF-A and the XilPM (Client) library.

• A processing unit can invoke CPU Idle in a bare-metal APU application use case by using
XPm_SelfSuspend with the target state set as PM_SUSPEND_STATE_CPU_IDLE.

• Suspend to RAM:

• The platform management provides the capability to suspend an entire subsystem. If the
subsystem uses the DDRMC and no other subsystem uses the DDRMC, XilPM puts the
DDR memory into the self-refresh mode. This mode eliminates need for the DDRMC to
refresh the DRAM.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 140Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=140

• A PM master that is part of subsystem (to be suspended) can invoke subsystem suspend
using the XPm_SelfSuspend call to the PMC by setting target state as
PM_SUSPEND_STATE_SUSPEND_TO_RAM.

For more information about XPm_SelfSuspend and XPm_SuspendFinalize, see OS and
Libraries Document Collection (UG643).

Setting a Wake-up Source

The platform management provides the option to power down a PU or a subsystem. The
platform management can even power down the entire FPD if none of the FPD devices are in
use and existing latency requirements allow this. If the FPD is powered off and the APU is woken
up by an interrupt triggered by a device in the LPD or PMC domain, the GIC Proxy must be
configured to allow propagation of FPD wake events. The APU can ensure this by calling
XPm_SetWakeUpSource for all devices that might need to issue wake interrupts.

Before suspending, the PU must call the XPm_SetWakeUpSource API and add the slaves as a
wake-up source. The PU can then set requirement to zero. However, to set the requirement to
zero, the following conditions should be met:

1. No other subsystem can share the devices. In the present case, because only default
subsystem is supported, this is not a consideration.

2. No other PM master (that is in Running state) present in the same subsystem, as the PU that
is self suspending should use the slave device.

Setting the requirement to zero indicates to the platform management that the subsystem does
not require these slaves to be up. After the PU finalizes the suspend procedure, provided no
devices under FPD are being used, the PMC powers the entire FPD and configures the GIC proxy
to enable propagation of the wake event of the LPD or PMC domain slaves.

For more information about XPm_SetWakeupSource, see OS and Libraries Document Collection
(UG643).

Resuming Execution

A CPU can be woken up by:

• Wake interrupt triggered by a hardware resource

• Explicit wake request using the XPm_RequestWakeup client API

The CPU starts executing from the resume address provided with the XPm_SelfSuspend call.

For more information about XPm_RequestWakeup and XPm_SelfSuspend, see OS and
Libraries Document Collection (UG643).

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 141Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=141

Suspend-Resume Flow

The following figure shows the detailed interactions between different processors for a suspend
resume use case.

Figure 37: Versal ACAP APU Suspend/Resume Flow

APU PSM PLM Peripheral DDR

Power Down event

Power Down Call through IPI

return

Interrupt

Power Up event

Power Up call through IPI

APU Power Up

APU power down

Pre-
processing

Pre-
processing

Pre-
processing

Pre-
processing

Save context

Configure

Self Suspend

Set Wakeup Source

WFI interrupt

Restore context

return

X23866-051220

In this example, a peripheral is set up as a wake up source. Each step in the flow is explained as
follows:

Suspend Flow

1. APU saves the CPU context in the DDRMC.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=142

2. Peripheral is configured to be used as a wake up source.

3. APU through the TF-A or XilPM client (if APU bare-metal application is running) informs PMC
of its intent to suspend. PLM enables WFI interrupt.

4. Informs PLM of the Wake Up Source.

5. APU interrupts PSM by going into WFI state. If APU runs a bare-metal application, PSM can
be interrupted by using XPm_SuspendFinalize API.

6. After receiving the interrupt, a handshake between PSM and PLM occurs through the IPI.
PSM powers down by power implementing power gating, asserting reset to APU and clock
gating APU.

Wake Up Flow

1. The peripheral (configured by the APU to act as a wake up source) interrupts PSM.

2. PSM handshakes with PLM to initiate APU power up.

3. After the handshake, PSM powers up the APU. It disables power gating, deassert reset, and
disables clock gating on the APU.

4. APU resumes context stored in the DDRMC.

Suspending the Entire FPD Domain

To power-down the entire full power domain, the PMC must suspend the APU when none of the
FPD devices are in use. After this condition is met, the PMC can power-down the FPD
automatically. The PMC powers down the FPD if no latency requirements constrain this action,
otherwise the FPD remains powered on.

For information on powering down the FPD, refer to Suspend to RAM in Self-Suspending.

Forcefully Powering Down the FPD

There is the option to force the FPD to power-down by calling the function
XPM_ForcePowerdown. This requires that the requesting PU has proper privileges configured in
the PMC. The PMC releases all PM Slaves used by the APU automatically.

IMPORTANT! This force method is typically not recommended, especially when running complex
operating systems on the APU because it could result in loss of data or system corruption, due to the OS
not suspending itself gracefully.

For more information about XPM_ForcePowerdown, see OS and Libraries Document Collection
(UG643).

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 143Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=143

Using the API for Clock Management
There are EEMI APIs available that allow processing units to manage clocks in the system. Each
clock is identified by a unique ClockId. A PM master can use the XPm_Query API to obtain a list
of ClockIds accessible to that processing unit. Before a PM master can modify any attributes of a
clock, the master should request the slave device that is associated with that clock. See the
XPm_RequestNode API in OS and Libraries Document Collection (UG643) for more information.

Use the following APIs to get and set a clock’s state:

• XStatus XPm_ClockGetStatus(const u32 ClockId, u32 *const State)

• XStatus XPm_ClockEnable(const u32 ClockId)

• XStatus XPm_ClockDisable(const u32 ClockId)

Use the following APIs to configure a clock to operate at a different divider value:

• XStatus XPm_ClockGetDivider(const u32 ClockId, u32 *const Divider)

• XStatus XPm_ClockSetDivider(const u32 ClockId, const u32 Divider)

Use the following APIs to configure clocks that could be driven by different parents:

• XStatus XPm_ClockGetParent(const u32 ClockId, u32 *const ParentId)

• XStatus XPm_ClockSetParent(const u32 ClockId, const u32 ParentId)

IMPORTANT! ParentId is an index to possible clocks that could be configured as a parent of ClockId. In
Zynq UltraScale+ MPSoC, the definition of ParentId is not unified between Linux and standalone
applications. In Versal ACAP, these EEMI APIs are unified in expecting ParentId to be an index value to
possible parent clocks.

Use the following APIs to configure the rate of reference clocks:

• int XPm_ClockGetRate(const u32 ClockId, u32 *const Rate)

• int XPm_ClockSetRate(const u32 ClockId, const u32 Rate)

IMPORTANT! XPm_ClockSetRate()  can only be valid during CDO loading. You cannot set the clock
rate from XilPM client API.

Use the following APIs to configure PLLs that are identified by ClockId:

• XStatus XPm_PllGetMode(const u32 ClockId, u32 *const Value)

• XStatus XPm_PllSetMode(const u32 ClockId, const u32 Value)

• XStatus XPm_PllGetParameter(const u32 ClockId, const enum
XPm_PllConfigParams ParamId, u32 *const Value)

• XStatus XPm_PllSetParameter(const u32 ClockId, const enum
XPm_PllConfigParams ParamId, const u32 Value)

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 144Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=144

See OS and Libraries Document Collection (UG643) for more information about these APIs.

Using the API for Reset Management
There are EEMI APIs available which allow PUs to manage reset lines in the system. Each reset is
identified by a unique ResetId. In case of Linux as a PM master, a set of available ResetIds are
obtained from the device tree. Before a PM master can modify state of a reset line, it should
request the slave device that is associated with that reset. See the XPm_RequestNode API in OS
and Libraries Document Collection (UG643) for more information.

Use the following APIs to manage resets:

• XStatus XPm_ResetGetStatus(const u32 ResetId, u32 *const State)

○ State is either 1 (asserted), or 2 (released)

• XStatus XPm_ResetAssert(const u32 ResetId, const u32 Action)

○ Action is either 0 (reset_release), 1 (reset_assert), or 2 (reset_pulse)

Using the API for Pin Management
There are EEMI APIs available that allow PUs to manage pins in the system. Each pin is identified
by a unique PinId. A PM master could obtain a list of PinIds accessible to that PU by using the
XPm_Query API.

Use the following APIs to request or release control of a pin:

• XStatus XPm_PinCtrlRequest(const u32 PinId)

• XStatus XPm_PinCtrlRelease(const u32 PinId)

You can configure a pin for use by different functional units. Use the XPm_Query API to obtain a
list of functional units accessible to a pin, which is identified by FunctionId. Request a pin before
assigning a functional unit to a pin. Most functional units are associated with a device. Use the
XPm_RequestNode API to request the device before assigning it to a pin.

• XStatus XPm_PinCtrlGetFunction(const u32 PinId, u32 *const
FunctionId)

• XStatus XPm_PinCtrlSetFunction(const u32 PinId, const u32
FunctionId)

Use the following APIs to configure a pin for different operating characteristics. For a list of
possible ParamIds and ParamVals, see OS and Libraries Document Collection (UG643).

• XStatus XPm_PinCtrlGetParameter(const u32 PinId, const u32 ParamId,
u32 *const ParamVal)

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 145Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=145

• XStatus XPm_PinCtrlSetParameter(const u32 PinId, const u32 ParamId,
const u32 ParamVal)

Using Miscellaneous APIs
Most of Platform Management APIs can be categorized into groups like clock management, pin
management, and device management. However, there are few APIs which do not belong in any
specific group. These APIs are considered as Miscellaneous APIs. They include:

• Device control inferences

• General Storage Registers access

• Query information

• Event notifications

• Subsystem Activation

The following sections describe these APIs in detail.

XPm_DevIoctl EEMI API

The XPm_DevIoctl EEMI API allows a platform management master to perform specific
operations to certain devices.

The following table lists the supported operations in Versal ACAP.

Table 36: XPm_DevIoctl Operations

ID Name Description
Arguments

Node ID Arg1 Arg2 Return
Value

0 IOCTL_GET_RPU_OPER_MODE Returns current
RPU operating
mode

NODE_RPU_0
NODE_RPU_1

- - Operating
mode:
0: LOCKSTEP
1: SPLIT

1 IOCTL_SET_RPU_OPER_MODE Configures RPU
operating mode

NODE_RPU_0
NODE_RPU_1

Value of
operating
mode
0: LOCKSTEP
1: SPLIT

- -

2 IOCTL_RPU_BOOT_ADDR_CONFIG Configures RPU
boot address

NODE_RPU_0
NODE_RPU_1

Value to set
for boot
address
0:
LOVEC/TCM
1:
HIVEC/OCM

- -

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=146

Table 36: XPm_DevIoctl Operations (cont'd)

ID Name Description
Arguments

Node ID Arg1 Arg2 Return
Value

3 IOCTL_TCM_COMB_CONFIG Configures TCM
to be in split
mode or
combined mode

NODE_RPU_0
NODE_RPU_1

Value to set
(Split/
Combined)
0: SPLIT
1: COMB

- -

4 IOCTL_SET_TAPDELAY_BYPASS Enable/disable
tap delay bypass

NODE_QSPI Type of tap
delay
2: QSPI

Tapdelay
Enable/
Disable
0: DISABLE
1: ENABLE

-

6 IOCTL_SD_DLL_RESET Resets DLL logic
for the SD
device

NODE_SD_0,
NODE_SD_1

SD DLL Reset
type
0: ASSERT
1: RELEASE
2: PULSE

- -

7 IOCTL_SET_SD_TAPDELAY Sets input/
output tap delay
for the SD
device

NODE_SD_0,
NODE_SD_1

Type of tap
delay to set
0: INPUT
1: OUTPUT

Value to set
for the tap
delay

-

12 IOCTL_WRITE_GGS Writes value to
GGS register

- GGS register
index
(0/1/2/3)

Register
value to be
written

-

13 IOCTL_READ_GGS Returns GGS
register value

- GGS register
index
(0/1/2/3)

- Register
value

14 IOCTL_WRITE_PGGS Writes value to
PGGS register

- PGGS
register
index
(0/1/2/3)

Register
value to be
written

-

15 IOCTL_READ_PGGS Returns PGGS
register value

- PGGS
register
index
(0/1/2/3)

- Register
value

17 IOCTL_SET_BOOT_HEALTH_STATUS Sets healthy bit
value to indicate
boot health
status to
firmware

- healthy bit
value

- -

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=147

Table 36: XPm_DevIoctl Operations (cont'd)

ID Name Description
Arguments

Node ID Arg1 Arg2 Return
Value

19 IOCTL_PROBE_COUNTER_READ
Read probe
counter register
of LPD/FPD

FPD/LPD
power
domain ID
0x4210002U
for LPD
0x420C003U
for FPD

Register
configuration
- Counter
Number (0 to
7 bit)
- Register
Type (8 to 15
bit)
0 - LAR_LSR
access
(Request
Type and
Counter
Number are
ignored)
1 - Main Ctl
(Counter
Number is
ignored)
2 - Config Ctl
(Counter
Number is
ignored)
3 - State
Period
(Counter
Number is
ignored)
4 - PortSel
5 - Src
6 - Val
- Request
Type (16 to
23 bit)
0 - Read
Request
1 - Read
Response
2 - Write
Request
3 - Write
Response
4 - LPD Read
Request (For
LPD only)
5 - LPD Read
Response
(For LPD
only)
6 - LPD Write
Request (For
LPD only)
7 - LPD Write
Response
(For LPD
only)

- Register
value

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=148

Table 36: XPm_DevIoctl Operations (cont'd)

ID Name Description
Arguments

Node ID Arg1 Arg2 Return
Value

20 IOCTL_PROBE_COUNTER_WRITE
Write probe
counter register
of LPD/FPD

FPD/LPD
power
domain ID
0x4210002U
for LPD
0x420C003U
for FPD

Register
configuration
- Counter
Number (0 to
7 bit)
- Register
Type (8 to 15
bit)
0 - LAR_LSR
access
(Request
Type and
Counter
Number are
ignored)
1 - Main Ctl
(Counter
Number is
ignored)
2 - Config Ctl
(Counter
Number is
ignored)
3 - State
Period
(Counter
Number is
ignored)
4 - PortSel
5 - Src
- Request
Type (16 to
23 bit)
0 - Read
Request
1 - Read
Response
2 - Write
Request
3 - Write
Response
4 - LPD Read
Request (For
LPD only)
5 - LPD Read
Response
(For LPD
only)
6 - LPD Write
Request (For
LPD only)
7 - LPD Write
Response
(For LPD
only)

Register
value to be
written

-

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=149

Table 36: XPm_DevIoctl Operations (cont'd)

ID Name Description
Arguments

Node ID Arg1 Arg2 Return
Value

21 IOCTL_OSPI_MUX_SELECT Select OSPI AXI
Multiplexer

NODE_OSPI Operation
mode
0: Select
DMA
1: Select
Linear
2: Get mode

- Get mode
0: DMA
1: Linear

22 IOCTL_USB_SET_STATE Set USB
controller in
different device
power states

NODE_USB_0 Requested
power state
0: D0
1: D1
2: D2
3: D3

- -

23 IOCTL_GET_LAST_RESET_REASON
Get last reset
reason of
system

- - - 0 – The POR
button was
pressed
outside of
the system
1 – An
internal POR
was caused
by software
2 - One of
the other
SSIT slices
caused a
POR
3 - An error
caused a
POR
7 - JTAG TAP
initiated
system reset
8 - Error
initiated
system reset
9 - Software
initiated
system reset
10 - One of
the other
SSIT slices
caused a
system reset
15 – Invalid
reset reason

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=150

Table 36: XPm_DevIoctl Operations (cont'd)

ID Name Description
Arguments

Node ID Arg1 Arg2 Return
Value

24 IOCTL_AIE_ISR_CLEAR Clear AIE NPI
Interrupts

DEV_AIE
(0x18224072
U)

4-bit NPI
Interrupt
Clear Mask
(wtc)
Bit<3-0>
correspond
to
Interrupt<3-0
>

- -

XPm_GetOpCharacteristic EEMI API

The XPm_GetOpCharacteristic EEMI API allows a PM master to request PMC to return
information about an operating characteristic of a component. Currently, the following device
characteristics can be requested:

• Temperature of the SoC

• Wake-up latency of Cores, Power Islands and rails, and PLL locking time

XPm_Query EEMI API

The XPm_Query EEMI API allows a platform management master to request specific
configuration information from the PLM.

The following table lists the supported operations in Versal® ACAP.

Table 37: XPm_Query Operations

ID Name Description
Arguments

Arg1 Arg2 Return Value
1 XPM_QID_CLOCK_

GET_NAME
Get the string
name associated
with a clock id

Clock id -
Data[0]:
Success/
Failure
Data[1-4]:
String name

2 XPM_QID_CLOCK_
GET_TOPOLOGY

Get a clock’s
topology

Clock id Topology node
index Data[0]:

Success/
Failure
Data[1-3]: 3
nodes of
topology start
from node
index (passed
in Arg 2)

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=151

Table 37: XPm_Query Operations (cont'd)

ID Name Description
Arguments

Arg1 Arg2 Return Value
3 XPM_QID_CLOCK_

GET_FIXEDFACTOR
_PARAMS

Get Fixed Factor
value

Clock id -
Data[0]:
Success/
Failure
Data[1]: Fixed
factor value

4 XPM_QID_CLOCK_
GET_MUXSOURCE
S

Get clock’s
multiplexer
sources

Clock id Parent node index
Data[0]:
Success/
Failure
Data[1-3]:
Parents id of a
clock, starts
from parent
index (passed
in Arg 2)

5 XPM_QID_CLOCK_
GET_ATTRIBUTES

Get clock’s
attributes

Clock id -
Data[0]:
Success/
Failure
Data[1] Bit(0):
Valid/Invalid
clock
Data[1] Bit(1):
Initial enable
requirement
Data[1] Bit(2):
Clock type
(output/
external)
Data[1]
Bit(14:19):
Clock node
type
Data[1]
Bit(20-25):
Clock node
subclass
Data[1]
Bit(26:31):
Clock node
class

6 XPM_QID_PINCTRL
_GET_NUM_PINS

Get the number of
pins available for
configuration

- -
Data[0]:
Success/
Failure
Data[1]:
Number of
pins

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=152

Table 37: XPm_Query Operations (cont'd)

ID Name Description
Arguments

Arg1 Arg2 Return Value
7 XPM_QID_PINCTRL

_GET_NUM_FUNCT
IONS

Get the total
number of
functional units
available

- -
Data[0]:
Success/
Failure
Data[1]:
Number of
functions

8 XPM_QID_PINCTRL
_GET_NUM_FUNCT
ION_GROUPS

Get the number of
groups that a
function id
belongs

Function id -
Data[0]:
Success/
Failure
Data[1]:
Number of
groups

9 XPM_QID_PINCTRL
_GET_FUNCTION_
NAME

Get the string
name associated
with a functional
unit

Function id -
Data[0]:
Success/
Failure
Data[1-3]:
String name

10 XPM_QID_PINCTRL
_GET_FUNCTION_
GROUPS

Get group ids that
a function id
belongs

Function id Index
Data[0]:
Success/
Failure
Data[1-3]: 6
groups start
from index
(Arg2) , each
group is of 16
bits

11 XPM_QID_PINCTRL
_GET_PIN_GROUPS

Get group ids that
a pin id could
belong

Pin id Index
Data[0]:
Success/
Failure
Data[1-3]: 6
groups start
from index
(Arg 2), each
group is of 16-
bits

12 XPM_QID_CLOCK_
GET_NUM_CLOCKS

Get the number of
clocks

- -
Data[0]:
Success/
Failure
Data[1]:
Number of
clocks

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=153

Table 37: XPm_Query Operations (cont'd)

ID Name Description
Arguments

Arg1 Arg2 Return Value
13 XPM_QID_CLOCK_

GET_MAX_DIVISOR
Get the maximum
divisor value of a
clock

Clock id -
Data[0]:
Success/
Failure
Data[1]:
Maximum
divisor value

14 XPM_QID_PLD_GE
T_PARENT

Get the parent of
the PL Device
Node

PLDevice Id -
Data[0]:
Success/
Failure
Data[1]:
PlDevice
Parent

XPm_ActivateSubsystem API

The XPm_ActivateSubsystem API allows the XSDB master to request PMC to activate a
subsystem. See Activation of Subsystem for more details.

This API activates a subsystem by requesting all its pre-allocation devices that are essential for it
to be operational. This API accepts a target subsystem ID that needs activation, as an input
argument. The format for activating a subsystem is as follows:

XPm_ActivateSubsystem(u32 Subsystem ID)

This command is only allowed from the XSDB master. Currently, only the default subsystem is
supported and is automatically activated before downloading any application binaries on a
specific master.

Event Management Framework
The event management framework allows a PU to request the PMC to call it notify callback
whenever a qualifying event occurs. One can request to be notified for a specific node or any
event related to a specific node. The two qualifying events will invoke the callback function for
the following events:

• State change of the node for which callback is registered

• Zero users of the node for which callback is registered

• Error events for which callback is registered

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=154

If you are no longer interested in receiving notifications about events related to the node that the
callback was previously requested, you can de-register it.

Note: Only the error, device, and power nodes are supported in this release.

For more information on error events, see PLM Errors.

Event Management in Standalone Application
For standalone applications, an agent uses the XPm_Register_Notifier () function of the
XilPM client library to get notifications for any specific event(s). If an agent is no longer interested
in receiving notifications about events related to the node that the callback was previously
registered, use XPm_Register_Notifier() for de-registration.

The caller initializes the notifier object before invoking the XPm_RegisterNotifier() with
the following parameters.

• node: ID of the node, such as device node, power node, or error event node, for which
notifications are received.

• event: Event ID or error event mask. Specify the event ID, if device node or power node IDs
are provided as the node parameter. If the node parameter has an error event node ID, then
specify the error event mask.

• wake: true:: Wake up on event, false: do not wake up (only notify if awake), no buffering/
queuing.

• callback: Pointer to the custom callback function to be called when the notification is
available. The callback executes from interrupt context, so you must take special care when
implementing the callback. Callback is optional and can be set to NULL.

If any event related to a device or a power node occurs, the agent gets the data in the following
format as the payload.

Reserved [12-15] Event Mask [8-11] NodeID [4-7] Callback Type [0-3]

Node state [12-15] Event ID [8-11] NodeID [4-7] Callback Type [0-3]

Once the agent catches the notification check for the callback type. If the callback type is
PM_NOTIFY_CB, the agent calls XPm_NotifyCb().

For more information on the error event node ID, error event mask, and APIs, refer to the OS and
Libraries Document Collection (UG643).

Registering and Unregistering the Event Handler

To register and unregister the event handler, follow these steps:

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 155Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=155

1. Define callback function wants to call on occurrence of event.

void TestNotifyCb(XPm_Notifier* const notifier)
{
 xil_printf("Received notification: Node=0x%x, Event=%d, OPP=%d\n",
 notifier->node, (int)notifier->event, (int)notifier->oppoint);
}

2. Define the notifier object. The notifier object can be of the following types:

• Notifier object for device event:

XPm_Notifier notifier = {
.callback = TestNotifyCb,
.node = PM_DEV_USB_0,
.event = EVENT_STATE_CHANGE,
.flags = 0,
};

• Notifier object for power event:

XPm_Notifier notifier = {
.callback = TestNotifyCb,
.node = PM_POWER_FPD,
.event = EVENT_ZERO_USER,
.flags = 0,
};

• Notifier object for register error event:

XPm_Notifier notifier = {
.callback = TestNotifyCb,
.node = PM_POWER_FPD,
.event = EVENT_ZERO_USER,
.flags = 0,
};

3. Use notifier object and register for the event.

XPm_RegisterNotifier(¬ifier);

4. Unregister for the event.

XPm_UnregisterNotifier(¬ifier);

Event Management in Linux Kernel
In Linux, the event management driver allows an agent driver to register handlers for the
platform management events. These events can be power management events such as suspend
callback, zero users, device state change, or any error event.

When an agent driver registers for the specific event, the event manager registers those events
with the firmware. When any of these registered events occurs, the firmware notifies the TF-A
through the IPI. The TF-A informs the Linux event manager driver through the SGI. During the
event manager driver initialization, it informs the TF-A about which SGI to use for the
communication though the PM IOCTL EEMI API.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=156

When the event manager driver gets the SGI interrupt, it reads the callback data to know which
event has occurred and then calls the respective agent driver handler based on the event. The
agent driver can unregister if it does not need to be notified for an event for which a handler was
previously registered.

Registering and Unregistering the Event Handler

Use the xlnx_register_event() API to register handler for the event(s). You can register a
single handler for multiple events by using the OR operator on multiple event masks.

int xlnx_register_event(const enum pm_api_cb_id cb_type, const u32 node_id,
const u32 event, const bool wake, event_cb_func_t cb_fun, void *data)

where,

• cb_type: Type of callback from pm_api_cb_id

• PM_NOTIFY_CB for error events.

• PM_INIT_SUSPEND_CB for suspend callbacks.

• node_id: The node ID for the error event.

• event: The error event mask for the error event.

• wake: Flag specifying whether the subsystem should be woken upon event notification.

• cb_fun: Function pointer to store the callback function.

• data: Pointer for the driver instance.

To get information or the macro for error event node-id and error event mask, see the /
include/linux/firmware/xlnx-error-events.h file in Linux.

For example, assume that the agent is the DDRMC driver.

1. Define the user callback function that needs to handle this error event.

void xddr_err_callback(const u32 *payload, void *data)
{
 /* Tack action */
}

The driver wants the appropriate data when xddr_err_callback() is called on
occurrence of error event in firmware.

Struct xddr_data
{
 U32 var1;
 .
 .
}

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=157

2. Register for the DDRMC correctable and non-correctable error.

xlnx_register_event(PM_NOTIFY_CB, XPM_NODETYPE_EVENT_ERROR_PMC_ERR1,
XPM_EVENT_ERROR_MASK_DDRMC_CR | XPM_EVENT_ERROR_MASK_DDRMC_NCR, false,
xddr_err_callback, (void *) data);

3. Unregister for the DDRMC correctable and non-correctable error.

ret = xlnx_unregister_event(PM_NOTIFY_CB,
XPM_NODETYPE_EVENT_ERROR_PMC_ERR1, XPM_EVENT_ERROR_MASK_DDRMC_CR |
XPM_EVENT_ERROR_MASK_DDRMC_NCR,
xddr_err_callback,);

XilPM Client Implementation Details
The system layer of the platform management is implemented on the Versal ACAP using the IPI.
To issue an EEMI API call, a PU writes the API data (API ID and arguments) into the IPI request
buffer and then triggers the IPI to the PMC.

After the PMC processes the request, it sends the acknowledgment depending on the particular
EEMI API and provided arguments.

Payload Mapping for API Calls to PMC
The following data uniquely identifies each EEMI API call:

• EEMI API identifier (ID)

• EEMI API arguments

See OS and Libraries Document Collection (UG643) for a list of all API identifiers as well as API
argument values.

Before initiating an IPI to the PMC, the PU writes the information about the call into the IPI
request buffer. Each data written into the IPI buffer is a 32-bit word. Total size of the payload is
six 32-bit words—one word is reserved for the EEMI API identifier, while the remaining words are
used for the arguments. Writing to the IPI buffer starts from offset zero. The information is
mapped as follows:

• Word [0] EEMI API ID

• Word [1:5] EEMI API arguments

The IPI response buffer is used to return the status of the operation as well as up to three values.

• Word [0] success or error code

• Word [1:3] value 1..3

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 158Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=158

Payload Mapping for API Callbacks from the PMC
The EEMI API includes callback functions, invoked by the PMC, sent to a PU.

• Word [0] EEMI API Callback ID

• Word [1:5] EEMI API arguments

See OS and Libraries Document Collection (UG643) for a list of all API identifiers as well as API
argument values.

Issuing EEMI API Calls to the PMC
Before issuing an API call to the PMC, a PU must wait until its previous API call is processed by
the PMC. Implement a check for completion of a PMC action by reading the corresponding IPI
observation register.

Issue an API call by populating the IPI payload buffer with API data and triggering an IPI interrupt
to the PMC. For a blocking API call, the PMC responds by populating the response buffer with
the status of the operation and up to 3 values. See Appendix B for a list of all errors that can be
sent by the PMC if a PM operation was unsuccessful. The PU must wait until the PMC has
finished processing the API call prior to reading the response buffer, to ensure that the data in
the response buffer is valid.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 159Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=159

Figure 38: Example Flow of Issuing API Call to the PMC

EEMI API Call

Previous
API call

processed by
the PMC?

Copy API data into IPI
request buffer

Trigger IPI interrupt

Blocking API call?

API call
processed by

the PMC?

Read response from
the PMC

Return

No

No

Yes

Yes

Yes

X23557-112119

Handling API Callbacks from the PMC
The PMC invokes callback functions to the PU by populating the IPI buffers with the API callback
data and triggering an IPI interrupt to the PU. To receive such interrupts, the PU must properly
initialize the IPI block and interrupt controller. A single interrupt is dedicated to all callbacks. For
this reason, element 0 of the payload buffer contains the API ID, which the PU should use to
identify the API callback. The PU should then call the respective API callback function, passing in
the arguments obtained from locations 1 to 4 of the IPI request buffer.

The XilPM library contains an implementation of this behavior.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=160

PM Features in Linux
Note: Arm® AArch64 architecture is common between Zynq UltraScale+ MPSoC APU and the Versal®

ACAP APU. The existing architectural reference nomenclature found in the Linux source also applies to
Versal devices.

Linux executes at EL1, and the communication between Linux and the TF-A software layer is
realized using SMC calls. Power management features based on the EEMI API have been ported
to the Linux kernel, ensuring that the Linux-centric power management features use the EEMI
services provided by the PMC. Additionally, the EEMI API can be accessed directly via debugfs
for debugging purposes. Note that direct access to the EEMI API through debugfs will interfere
with the kernel power management operations and may cause unexpected problems. All the
Linux power management features presented in this chapter are available in the PetaLinux
default configuration.

User Space Platform Management Interface

System Power States

Platform management facilitates the switching of the system or subsystem to the new power
state. You can request to change the power state of a subsystem or the entire system.

See System PM for all the power state of a system and how to enable/disable them.

Power Management for the CPU

You can control CPU power using CPU hot-plugging, CPU idle, and CPU frequencies feature as
follows.

CPU Hot-Plugging

This feature can be used to set one or more APU cores on-line and off-line as needed using the
CPU hot-plug control interface.

See CPU Hot-plug for more information.

CPU Idle

Use the CPU idle feature to cut power to individual APU cores when they are idling.

See CPI Idle for more information.

CPU Frequencies

This feature permits the CPU cores to switch between different operation clock frequencies.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 161Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842232/Zynq+UltraScale+MPSoC+Power+Management+-+Linux+Kernel#ZynqUltraScale%EF%BC%8BMPSoCPowerManagement-LinuxKernel-SystemPM
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842232/Zynq+UltraScale+MPSoC+Power+Management+-+Linux+Kernel#ZynqUltraScale%EF%BC%8BMPSoCPowerManagement-LinuxKernel-CPUHotplug
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842232/Zynq+UltraScale+MPSoC+Power+Management+-+Linux+Kernel#ZynqUltraScale%EF%BC%8BMPSoCPowerManagement-LinuxKernel-CPUIdle
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=161

See CPU Frequency for more information.

Power Management for the Devices

You can control device power with the help of the following features.

Clock Gating

This feature stops device clocks when they are not being used (also called Common Clock
Framework).

See Common clock framework for more information.

Run-time Power Management

This feature powers off devices when they are not being used.

Note: Individual drivers might or might not support run-time power management.

See Runtime Power Management for more information.

Global General Storage Registers

Four 32-bit storage registers are available for general use. Their values are not preserved after
software reboots.

Persistent Global General Storage Registers

Four 32-bit persistent global storage registers are available for general use. Their values are
preserved after software reboot. See Global Storage Registers for more information.

The following registers are reserved.

RECOMMENDED: Xilinx recommends that you do not use reserved registers.

Table 40: Reserved Storage Registers

Register Description
PMC_GLOBAL_GLOBAL_GEN_STORAGE0,
PMC_GLOBAL_GLOBAL_GEN_STORAGE1

Contains the ROM execution time stamp. When PLM is
active, it reads these two registers to obtain the execution
time of ROM. Registers can be used after loading boot PDI.

PMC_GLOBAL_GLOBAL_GEN_STORAGE2 Contains device security status, updated by ROM. PLM uses
this register to determine if KAT needs to be performed.

PMC_GLOBAL_GLOBAL_GEN_STORAGE4 Used by PLM to store the TF-A handoff parameter address
pointer.

PMC_GLOBAL_PERS_GLOB_GEN_STORAGE0 Reserved for XilPM to save the status of each power domain
initialization.

PMC_GLOBAL_PERS_GLOB_GEN_STORAGE1 Not yet used in PLM but intended for data sharing between
PLM and debugger.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 162Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842232/Zynq+UltraScale+MPSoC+Power+Management+-+Linux+Kernel#ZynqUltraScale%EF%BC%8BMPSoCPowerManagement-LinuxKernel-CPUFrequency
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841636/Common+Clock+Framework+for+Zynq+Ultrascale+MPSOC
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842232/Zynq+UltraScale+MPSoC+Power+Management+-+Linux+Kernel#ZynqUltraScale%EF%BC%8BMPSoCPowerManagement-LinuxKernel-RuntimePM
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842232/Zynq+UltraScale+MPSoC+Power+Management+-+Linux+Kernel#ZynqUltraScale%EF%BC%8BMPSoCPowerManagement-LinuxKernel-GlobalStorageRegisters
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=162

Debug Interface
The PM platform driver exports a standard debugfs interface to access all EEMI services. The
interface is only intended for testing and does not contain any checking regarding improper
usage, and the number, type, and valid ranges of the arguments.

CAUTION! Invoking EEMI services directly through this interface can very easily interfere with the kernel
power management operations, resulting in unexpected behavior or a system crash.

See Debugfs for more information.

PM Linux Drivers
The Versal ACAP power management for Linux is encapsulated in a power management driver,
power domain driver, and platform firmware driver. The system-level API functions are exported
and can be called by other Linux modules with GPL compatible license.

See Firmware Driver for more information about platform firmware driver.

Trusted Firmware-A
The Trusted Firmware-A (TF-A) executes at EL3. It supports the EEMI API for managing the
power state of the slave nodes, by sending PM requests through the IPI-based communication to
the PMC. This section is specific to Platform Management support in TF-A. For generic
information on TF-A, see the Trusted Firmware-A Documentation.

Event Handling in TF-A
The TF-A registers for the IPI interrupts during boot. The PLM sends IPI to the TF-A when any
event occurs along with event data in IPI payload. The TF-A then sends an SGI to Linux to notify
that an event has occurred. This SGI number is provided by Linux during the event manager
driver initialization using IOCTL EEMI call (IOCTL_SET_SGI).

The TF-A provides a callback through which Linux can read the IPI data to identify the event that
has occurred and sends an IPI acknowledgment to the PLM when Linux reads the IPI data.

TF-A Application Binary Interface
All APU executable layers below EL3 can communicate indirectly with the PMC through the TF-
A. The TF-A receives all calls made from the lower EL software, consolidates all requests, and
sends the requests to the PMC.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 163Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842232/Zynq+UltraScale+MPSoC+Power+Management+-+Linux+Kernel#ZynqUltraScale%EF%BC%8BMPSoCPowerManagement-LinuxKernel-Debugfs
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841632/ZynqMP+firmware+driver
https://trustedfirmware-a.readthedocs.io/en/latest/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=163

Following the Arm® SMC calling convention, the PM communication from the non-secure world
to the TF-A is organized as SiP service calls, using a predefined SMC function identifier and SMC
sub-range ownership.

The EEMI API implementation for the APU is compliant only with the SMC64 calling convention.
EEMI API calls made from the hypervisor, secure OS or OS, and pass the 32-bit API ID as the
SMC function identifier, and up to four 32-bit arguments as well. As all PM arguments are 32-bit
values, pairs of two are combined into one 64-bit value.

The TF-A returns up to five 32-bit return values:

• Return status, either success or error and reason

• Additional information from the PM controller

Checking the API Version

Before using the EEMI API to manage the slave nodes, you must check that the EEMI API version
implemented in the TF-A matches the version implemented in the PLM. EEMI API version is a
32-bit value separated in higher 16-bits of MAJOR and lower 16-bits of MINOR part. Both fields
must be the same between the TF-A and the PLM.

How to Check the EEMI API Version

The EEMI version implemented in the TF-A is defined in the local EEMI_API_VERSION flag. The
rich OS can invoke the PM_GET_API_VERSION function to retrieve the EEMI API version from
the PMC. If the versions are different, this function reports an error.

Note: This EEMI API function is version independent; every EEMI version implements it.

Checking the Chip ID

Linux or another rich OS can invoke the PM_GET_CHIPID function using SMC to retrieve the
chip ID information from the PMC. The return values are as follows:

• TAP idcode register

• TAP version register

For more details, see the Versal ACAP Technical Reference Manual (AM011).

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 164Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=164

Power State Coordination Interface
The Power State Coordination Interface (PSCI) is a standard interface for controlling the system
power state of Arm processors, such as suspend, shutdown, and reboot. For the PSCI
specifications, see http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022c/
index.html.

The TF-A handles the PSCI requests from Linux. The TF-A only supports PSCI v0.2 (with no
backward compatible support for v0.1).

The Linux kernel comes with standard support for PSCI. For information about the binding
between the kernel and the TF-A/PSCI, see https://www.kernel.org/doc/Documentation/
devicetree/bindings/arm/psci.txt.

The following table lists the PSCI v0.2 functions that the TF-A supports.

Table 41: PSCI v0.2 Functions Supported by TF-A

Function Description Supported?
PSCI Version Return the implemented PSCI version. Yes

CPU Suspend Suspend execution on a core or higher
level topology node. This call is
intended for use in idle subsystems
where the core is expected to return to
execution through a wake-up event.

Yes

CPU On Power up a core. This call is used to
power up cores that either:
• Have not yet been booted into the

calling supervisory software.
• Have been previously powered

down with a CPU_OFF call.

Yes

CPU Off Power down the calling core. This call is
intended for use in a hotplug. A core
that is powered down by CPU_OFF can
only be powered up again in response
to a CPU_ON.

Yes

Affinity Info Enable the caller to request status of an
affinity instance.

Yes

Migrate (Optional) This is used to ask a uniprocessor
trusted OS to migrate its context to a
specific core.

Yes

Migrate Info Type (Optional) This function allows a caller to identify
the level of multicore support present
in the trusted OS.

Yes

Migrate Info Up CPU (Optional) For a uniprocessor Trusted OS, this
function returns the current resident
core.

Yes

System Off Shut down the system. Yes

System Reset Reset the system. Yes

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 165Send Feedback

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022c/index.html
https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/psci.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/psci.txt
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=165

Table 41: PSCI v0.2 Functions Supported by TF-A (cont'd)

Function Description Supported?
PSCI Features Introduced in PSCI v1.0.

Query API that allows discovering
whether a specific PSCI function is
implemented and its features.

Yes

CPU Freeze (Optional) Introduced in PSCI v1.0.
Places the core into an
IMPLEMENTATION DEFINED low-power
state. Unlike CPU_OFF it is still valid for
interrupts to be targeted to the core.
However, the core must remain in the
low power state until it a CPU_ON
command is issued for it.

No

CPU Default Suspend (Optional) Introduced in PSCI v1.0.
Will place a core into an
IMPLEMENTATION DEFINED low-power
state. Unlike CPU_SUSPEND, the caller
does not need to specify a power state
parameter.

No

Node HW State (Optional) Introduced in PSCI v1.0.
This function is intended to return the
true hardware state of a node in the
power domain topology of the system.

Yes

System Suspend (Optional) Introduced in PSCI v1.0.
Used to implement suspend to RAM.
The semantics are equivalent to a
CPU_SUSPEND to the deepest low-
power state.

Yes

PSCI Set Suspend Mode (Optional) Introduced in PSCI v1.0.
This function allows setting the mode
used by CPU_SUSPEND to coordinate
power states.

No

PSCI Stat Residency (Optional) Introduced in PSCI v1.0.
Returns the amount of time the
platform has spent in the given power
state because cold boot.

Yes

PSCI Stat Count (Optional) Introduced in PSCI v1.0.
Return the number of times the
platform has used the given power
state because of cold boot.

Yes

PS Management Controller Firmware
The PS management controller (PSM) is a separate, MicroBlaze™ processor with a triple modular
redundancy MicroBlaze implementation in the PS domain. The PSM firmware, that runs on the
PSM, is in charge of managing power PS power islands and domains. The PMC leverages
functions implemented in the PSM firmware to power up or down the PS power islands and
domains. These functions are exposed only to the PLM.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=166

When an EEMI request results in changing the state of a power island or a power domain, the
PLM triggers an interrupt handler in the PSM to handle that operation. There is also an IPI
channel assigned to the PSM to communicate with the PLM on completion of the operation.

Relationship with PLM
The EEMI service handlers are implemented in the PLM, as one of the modules called a PM
Controller (there are other modules running in the PLM to handle other types of services). For
more details, see the Chapter 7: Boot and Configuration.

Embedded Energy Management Interface (EEMI)

EEMI API events are software-generated events. The events are triggered using IPI interrupts
when a PM master initiates an EEMI API call to the PMC. The PM Controller handles the EEMI
request. An EEMI request often triggers a change in the power state, or change in configuration
of a resource.

General Flow of an EEMI API Call
The following figure shows the typical API sequence call, starting with the call initiated by a PM
master (such as another processing unit).

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=167

Figure 39: EEMI API Call Sequence

PM Master PLM PM Controller

IPI

EEMI API event

acknowledge

return

EEMI API call

PSM

IPI

return

X23558-033020

The figure shows four actors; the first actor represents the PM master, which is either the RPU,
APU, or a MicroBlaze processor core. The remaining three actors are the PLM, PMC, and PSM.

First, the PLM receives the IPI interrupt. After the interrupt has been identified as a power
management-related interrupt, the IPI arguments are passed to the XilPM server. The XilPM
server then processes the API call. If necessary, the XilPM server can call the PSM firmware to
perform some power management operations, such as powering on or powering off a power
island, or a power domain.

PSM Health Check in PLM
PLM periodically checks whether PSM is alive and healthy by sending IPI notifications to
PSMFW. Both PLM and PSM firmware maintain counters and periodically make sure that they
are in sync. If PSM is not alive and healthy, PLM throws the PSM keep alive error. The PLM can
also notify you about the PSM keep alive error if you have registered for the PSM keep alive
error.

Chapter 10: Versal ACAP Platform Management

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=168

Chapter 11

Target Development Platforms
This chapter describes the various development platforms available for Versal® ACAP, such as
boards and kits.

The following are the available Versal portfolio:

• AI Edge Series:

Designed with safety in mind, this series delivers an adaptive technology platform that
combines high AI inference performance, low latency, and power efficiency for edge
applications.

• AI Core Series:

The high-compute series with medium density programmable logic and connectivity capability
coupled with AI and DSP acceleration engines.

• Versal Prime Series:

The mid-range series with medium density programmable logic, signal processing, and
connectivity capability.

• Versal Premium Series:

The high-end, high bandwidth series, rich in networking interfaces, security engines, and
providing high compute density.

• HBM Series:

For memory-bound, compute-intensive applications, the series features heterogeneous
integration of 3D IC memory, secure connectivity, and adaptive compute to eliminate
performance bottlenecks.

Boards and Kits
Xilinx provides the Versal ACAP evaluation kit for developers.

Currently, there are two evaluation kits available for Versal ACAP:

Chapter 11: Target Development Platforms

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=169

• VCK190: AI Core series evaluation kit. For more details on the VCK190 board, refer to the
VCK190 Evaluation Board User Guide (UG1366).

• VMK180: Prime series evaluation kit. For more details on the VMK180 board, refer to
VMK180 Evaluation Board User Guide (UG1411).

Chapter 11: Target Development Platforms

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 170Send Feedback

https://www.xilinx.com/cgi-bin/docs/bkdoc?k=vck190;d=ug1366-vck190-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=vmk180;d=ug1411-vmk180-eval-bd.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=170

Appendix A

Libraries
See OS and Libraries Document Collection (UG643) for information on API reference for the
following Versal ACAP libraries.

• LwIP

• XilFFS

• XilFPGA

• XilMailbox

• XilPM

• XilSEM

Appendix A: Libraries

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 171Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=171

Appendix B

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix B: Additional Resources and Legal Notices

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 172Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=172

Xilinx References

1. PetaLinux Tools

2. Xilinx Vivado Design Suite – HLx Editions

3. Xilinx Third-Party Tools

4. Embedded Software & Ecosystem

Devices Documentation

1. Versal ACAP AI Engine Architecture Manual (AM009)

2. Versal ACAP Technical Reference Manual (AM011)

3. Versal Architecture and Product Data Sheet: Overview (DS950)

4. Versal ACAP Programmable Network on Chip and Integrated Memory Controller LogiCORE IP
Product Guide (PG313)

5. OS and Libraries Document Collection (UG643)

6. Versal ACAP AI Engine Programming Environment User Guide (UG1076)

7. Embedded Energy Management Interface EEMI API Reference Guide (UG1200)

8. Versal ACAP Design Guide (UG1273)

9. Bootgen User Guide (UG1283)

10. Xilinx Embedded Design Tutorials: Versal Adaptive Compute Acceleration Platform (UG1305)

11. VCK190 Evaluation Board User Guide (UG1366)

12. Versal ACAP QEMU User Guide (UG1372)

13. VMK180 Evaluation Board User Guide (UG1411)

Tools and PetaLinux Documentation

1. Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137)

2. PetaLinux Tools Documentation: Reference Guide (UG1144)

3. Bootgen User Guide (UG1283)

4. Vitis Unified Software Platform Documentation

Miscellaneous Links

1. https://github.com/Xilinx/linux-xlnx/

2. https://github.com/torvalds/linux/blob/master/drivers/soc/xilinx/zynqmp_pm_domains.c

3. https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842279/Build+Device+Tree+Blob

4. https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841996/Linux#Linux-XilinxLinux

Appendix B: Additional Resources and Legal Notices

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 173Send Feedback

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/support/answer-navigation/design-tools/third-party-tools.html
https://www.xilinx.com/products/design-tools/embedded-software.html#ecosystem
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am009-versal-ai-engine.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=architecture-manuals;d=am011-versal-acap-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds950-versal-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_noc;v=latest;d=pg313-network-on-chip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=oslib_rm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vitis+doc;v=latest;d=yii1603912637443.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1200-eemi-api.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1273-versal-acap-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://xilinx.github.io/Embedded-Design-Tutorials/master/docs/Introduction/Versal-EDT/README.html
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=vck190;d=ug1366-vck190-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2021.2;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://docs.xilinx.com/v/u/vitis-documentation.html
https://github.com/Xilinx/linux-xlnx/
https://github.com/torvalds/linux/blob/master/drivers/soc/xilinx/zynqmp_pm_domains.c
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842279/Build+Device+Tree+Blob
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841996/Linux#Linux-XilinxLinux
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=173

5. https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux

6. https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842316/Linux+Prebuilt+Images

7. https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841718/OpenAMP

8. https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842530/XEN+Hypervisor

9. https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto

Third-Party References

1. https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-
for-armv8-a-architecture-profile

2. https://www.yoctoproject.org/software-overview/downloads/

3. https://git.yoctoproject.org/cgit/cgit.cgi/meta-xilinx/

4. https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/psci.txt

5. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022c/index.html

6. https://www.kernel.org/doc/Documentation/cpuidle/core.txt

7. https://www.kernel.org/doc/Documentation/cpuidle/driver.txt

8. https://www.kernel.org/doc/Documentation/cpuidle/governor.txt

9. https://www.kernel.org/doc/Documentation/cpuidle/sysfs.txt

10. https://www.kernel.org/doc/Documentation/cpuidle/sysfs.txt

11. https://www.kernel.org/doc/Documentation/devicetree/bindings/opp/opp.txt

12. http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/arm/idlestates.txt

13. https://www.kernel.org/doc/Documentation/cpu-hotplug.txt

14. https://wiki.archlinux.org/index.php/Power_management/Suspend_and_hibernate

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage

Appendix B: Additional Resources and Legal Notices

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 174Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842316/Linux+Prebuilt+Images
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841718/OpenAMP
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842530/XEN+Hypervisor
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://www.yoctoproject.org/software-overview/downloads/
https://git.yoctoproject.org/cgit/cgit.cgi/meta-xilinx/
https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/psci.txt
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022c/index.html
https://www.kernel.org/doc/Documentation/cpuidle/core.txt
https://www.kernel.org/doc/Documentation/cpuidle/driver.txt
https://www.kernel.org/doc/Documentation/cpuidle/governor.txt
https://www.kernel.org/doc/Documentation/cpuidle/sysfs.txt
https://www.kernel.org/doc/Documentation/cpuidle/sysfs.txt
https://www.kernel.org/doc/Documentation/cpuidle/core.txt
http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/arm/idlestates.txt
https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
https://wiki.archlinux.org/index.php/Power_management/Suspend_and_hibernate
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=174

(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

This document contains preliminary information and is subject to change without notice.
Information provided herein relates to products and/or services not yet available for sale, and
provided solely for information purposes and are not intended, or to be construed, as an offer for
sale or an attempted commercialization of the products and/or services referred to herein.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2020-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Kria, Spartan,
Versal, Vitis, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S,
CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and
other countries.PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license.
OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. All
other trademarks are the property of their respective owners.

Appendix B: Additional Resources and Legal Notices

UG1304 (v2021.2) October 27, 2021 www.xilinx.com
Versal ACAP System Software Developers Guide 175Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1304&Title=%20Versal%20ACAP%20System%20Software%20Developers%20Guide&releaseVersion=2021.2&docPage=175

	 Versal ACAP System Software Developers Guide
	Revision History
	Table of Contents
	Ch. 1: Overview
	Introduction to Versal ACAP
	Navigating Content by Design Process
	About This Guide

	Ch. 2: Programming View of Versal ACAP
	Hardware Overview
	Processing System
	Application Processing Unit
	Real-Time Processing Unit
	Tightly Coupled Memory Interface
	RPU Configuration Options

	Programmable Logic
	MicroBlaze Processors in the Programmable Logic

	Ch. 3: Development Tools
	Vivado Design Suite
	Vitis Software Platform
	Accelerated Flow
	Embedded Flow
	Vitis Tools

	PetaLinux Tools
	Device Tree Generator
	Open Source
	Xilinx Arm GNU Tools

	Linux Software Development Using Yocto
	Yocto Project Development Environment

	QEMU
	AI Engine Development Environment
	AI Engine Software Development Flow
	AI Engine Runtime Stack

	Ch. 4: Software Stack
	Bare-Metal Software Stack
	The C Standard Library (libc)
	The C Standard Library Mathematical Functions (libm)
	Standalone BSP

	Linux Software Stack
	FreeRTOS Software Stack

	Third-Party Software Stack

	Ch. 5: Software Development Flow
	Bare-Metal Application Development in the Vitis Environment
	Linux Application Development Using PetaLinux Tools
	Linux Application Development Using the Vitis Software Platform

	Ch. 6: Software Design Paradigms
	Frameworks for Multiprocessor Development
	Symmetric Multiprocessing
	Execution Domain and Images

	Asymmetric Multiprocessing
	OpenAMP
	Virtualization with Hypervisor
	Use of Hypervisors

	Ch. 7: Boot and Configuration
	Versal ACAP Boot Process
	Phase 1: Pre-Boot
	Phase 2: Boot Setup
	Phase 3: Boot and Configuration sequence by PLM (Platform Loader)
	Phase 4: Post-Boot

	Boot Flow
	Non-Secure Boot Flow
	Secure Boot Flow
	PDI Content Integrity and Support for Secure Boot

	Classic SoC Boot Flow

	Boot Device Modes
	Secondary Boot Process and Device Choices
	Boot Process for Primary Boot Device

	Fallback Boot and MultiBoot
	Boot Mode Search Limits
	Octal-SPI and Quad-SPI Boot Devices
	SD/eMMC Boot Devices
	SD/eMMC RAW Boot Mode

	Programmable Device Image
	Configuration Data Object
	Boot Image (PDI) Creation
	Software Developer Control of PDI File Creation via BIF File

	Methods for Copying the PDI to a Primary Boot Device

	Ch. 8: Platform Loader and Manager
	PLM Boot and Configuration
	BootROM, PLM Handoff State
	PLM Subsystem
	LPD Configuration
	PL Configuration
	FPD Configuration
	DFX Configuration
	CPM Configuration
	Processor Subsystem Configuration
	AI Engine Configuration

	PLM Software Details
	PLM Responsibilities
	PLM Architecture
	PLM Software
	PLM Execution Flow

	PLM Errors
	PLM Major Error Codes
	Exception Handling

	PLM Event Logging
	Logging PLM Terminal Prints
	Logging Trace Events
	Event Trace Log Command Examples

	Event Logging IPI Command
	Error Manager
	Error Management Hardware
	Error Management API Calls
	Error Management CDO Commands
	Error Events

	PLM Interface (XilPLMI)
	XilLoader
	Image Store
	XilLoader/IPI CDO Commands
	Load Partial PDI
	Load DDR Copy Image
	Update Multiboot
	Upgrade ImageStore

	Deferred Image Loading

	XilPM
	XilSecure
	XilSEM
	PLM Usage
	PLM Build Flags
	PMC Memory Layout

	Services Flow

	Ch. 9: Security
	Security Features
	Known Answer Tests
	Secure Boot
	Checksum Verification

	Asymmetric Hardware Root-of-Trust (A-HWRoT) (Authentication Required)
	RSA Engine
	Elliptic Curve Cryptography Engine
	Key Revocation

	Encryption
	DPA Counter Measure
	Key Sources
	Red Key
	Black Key
	User Key
	Revocation

	Symmetric Hardware Root-of-Trust (S-HWRoT) Boot Mode (Encryption Required)

	True Random Number Generator

	Ch. 10: Versal ACAP Platform Management
	Versal ACAP Platform Management Overview
	Versal ACAP Power Domains
	Versal DFX Management
	Versal ACAP Platform Management Software Architecture
	API Calls and Responses
	Platform Management Communication Using IPIs
	Platform Management Layers
	Typical Platform Management API Call Flow
	Requesting and Releasing Slave Nodes
	Platform Management Default Subsystem
	Activation of Subsystem

	Using the API for Power Management
	Implementing Power Management on a Processor Unit
	Initializing the XilPM Library
	Power Management Using XPm_InitFinalize
	Working with Memory and Peripheral Devices
	Requesting and Releasing a Node
	Setting up Device Request Permissions
	Requesting and Releasing a Device From a Standalone Application
	Changing Requirements
	Self-Suspending
	Setting a Wake-up Source
	Resuming Execution
	Suspend-Resume Flow
	Suspending the Entire FPD Domain
	Forcefully Powering Down the FPD

	Using the API for Clock Management
	Using the API for Reset Management
	Using the API for Pin Management
	Using Miscellaneous APIs
	XPm_DevIoctl EEMI API
	XPm_GetOpCharacteristic EEMI API
	XPm_Query EEMI API
	XPm_ActivateSubsystem API

	Event Management Framework
	Event Management in Standalone Application
	Registering and Unregistering the Event Handler

	Event Management in Linux Kernel
	Registering and Unregistering the Event Handler

	XilPM Client Implementation Details
	Payload Mapping for API Calls to PMC
	Payload Mapping for API Callbacks from the PMC
	Issuing EEMI API Calls to the PMC
	Handling API Callbacks from the PMC

	PM Features in Linux
	User Space Platform Management Interface
	System Power States
	Power Management for the CPU
	CPU Hot-Plugging
	CPU Idle
	CPU Frequencies

	Power Management for the Devices
	Clock Gating
	Run-time Power Management
	Global General Storage Registers
	Persistent Global General Storage Registers

	Debug Interface
	PM Linux Drivers

	Trusted Firmware-A
	Event Handling in TF-A
	TF-A Application Binary Interface
	Checking the API Version
	Checking the Chip ID

	Power State Coordination Interface
	PS Management Controller Firmware
	Relationship with PLM
	General Flow of an EEMI API Call
	PSM Health Check in PLM

	Ch. 11: Target Development Platforms
	Boards and Kits

	Appx. A: Libraries
	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

