
Vivado Design Suite Tutorial

Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021

https://www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
02/23/2021 v2020.2

Lab 9: Abstract Shell for Dynamic Function eXchange New lab.

09/22/2020 v2020.1

Lab 8: Nested DFX New lab.

Revision History

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=2

Table of Contents
Revision History...2
Introduction.. 6

Hardware and Software Requirements.. 6
Tutorial Design Description... 7

Lab 1: 7 Series Basic DFX Flow... 9
Step 1: Extract the Tutorial Design Files... 9
Step 2: Examining the Scripts.. 9
Step 3: Synthesizing the Design.. 11
Step 4: Assembling and Implementing the Design.. 11
Step 5: Building the Design Floorplan.. 13
Step 6: Implementing the First Configuration...19
Step 7: Implementing the Second Configuration..24
Step 8: Examining the Results with Highlighting Scripts... 27
Step 9: Generating Bitstreams...29
Step 10: Partially Reconfiguring the FPGA... 31
Conclusion..32

Lab 2: UltraScale Basic DFX Flow .. 33
Step 1: Extract the Tutorial Design Files... 33
Step 2: Examining the Scripts.. 33
Step 3: Synthesizing the Design.. 35
Step 4: Assembling and Implementing the Design.. 35
Step 5: Build the Design Floorplan..37
Step 6: Implementing the First Configuration...39
Step 7: Implementing the Second Configuration..43
Step 8: Examine the Results with Highlighting Scripts...46
Step 9: Generating the Bitstreams..48
Step 10: Partially Reconfiguring the FPGA... 50
Conclusion..52

Lab 3: DFX Project Flow... 53

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=3

Step 1: Extract the Tutorial Design Files... 53
Step 2: Load Initial Design Sources...53
Step 3: Completing the Design with the Dynamic Function eXchange Wizard................. 57
Step 4: Synthesizing and Implementing the Current Design.. 63
Step 5: Adding an Additional Reconfigurable Model and Corresponding

Configuration.. 67
Step 6: Creating and Implementing a Greybox Module...70
Step 7: Modifying a Design Source or Options..73
Conclusion..74

Lab 4: Vivado Debug and the DFX Project Flow... 75
Step 1: Extract the Tutorial Design Files... 75
Step 2: Loading Initial Design Sources... 76
Step 3: Setting Up the Design for DFX.. 78
Step 4: Using the DFX Wizard to Complete the Rest of the Design.................................... 82
Step 5: Adding IP in the Reconfigurable Module.. 85
Step 6: Synthesizing the Design and Creating a Floorplan.. 88
Step 7: Running the PR Configuration Analysis Report ...93
Step 8: Implementing the Design... 94
Step 9: Adding an Additional Reconfigurable Module and Corresponding

Configuration.. 98
Step 10: Generating Bitstreams.. 103
Step 11: Connecting to the Board and Programming the FPGA....................................... 103
Conclusion..111

Lab 5: DFX Controller IP for 7 Series Devices...112
Step 1: Extract the Tutorial Design Files... 112
Step 2: Customizing the Dynamic Function eXchange (DFX) Controller IP..................... 112
Step 3: Compiling the Design.. 120
Step 4: Setting up the Board..121
Step 5: Operating the Sample Design.. 122
Step 6: Querying the DFX Controller in the FPGA... 125
Step 7: Modifying the DFX Controller in the FPGA.. 127
Conclusion..128

Lab 6: DFX Controller for UltraScale Devices.. 130
Step 1: Extract the Tutorial Design Files... 130
Step 2: Customizing the Dynamic Function eXchange (DFX) Controller IP..................... 130
Step 3: Compiling the Design.. 138

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=4

Step 4: Setting up the Board..139
Step 5: Operating the Sample Design.. 140
Step 6: Querying the DFX Controller in the FPGA... 142
Step 7: Modifying the DFX Controller in the FPGA.. 144
Conclusion..145

Lab 7: DFX Controller IP for UltraScale+ Devices...................................... 146
Step 1: Extract the Tutorial Design Files... 146
Step 2: Processing the Tutorial Design...146
Step 3: Running the Tutorial Design... 152
Conclusion..159

Lab 8: Nested DFX...160
Overview...160
Step 1: Extracting the Tutorial Design Files... 160
Step 2: Examining the Scripts.. 160
Step 3: Synthesizing the Design.. 162
Step 4: Assembling and Implementing the Design ... 163
Step 5: Test the Design in Hardware ..174
Conclusion..177

Lab 9: Abstract Shell for Dynamic Function eXchange 178
Overview...178
Step 1: Extracting the Tutorial Design Files... 178
Step 2: Processing the Tutorial Design...179
Step 3: Create Abstract Shells..180
Step 4: Implement New RM within Abstract Shells...185
Step 5: Validate the Design in Hardware..188
Complete Hardware Validation... 190
Conclusion..190

Appendix A: Additional Resources and Legal Notices........................... 191
Xilinx Resources...191
Documentation Navigator and Design Hubs.. 191
Additional Resources.. 191
Please Read: Important Legal Notices... 192

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=5

Introduction
This tutorial covers the Dynamic Function eXchange (DFX) software support in Vivado® Design
Suite release 2020.2.

Lab 1: 7 Series Basic DFX Flow and Lab 2: UltraScale Basic DFX Flow step through basic
information about the current DFX design flow, example Tcl scripts, and results within the Vivado
integrated design environment (IDE). You run scripts for part of the lab and work interactively
with the design for other parts. You can also script the entire flow and a completed script is
included with the design files. These labs focus specifically on the software flow from RTL to
bitstream, demonstrating how to process a(DFX design. Lab 2 also applies to UltraScale+™
devices.

Lab 3: DFX Project Flow guides you through the project flow within the Vivado® IDE, from
establishing the design using the DFX Wizard to synthesis, iteration runs, and then iterating the
design. Lab 4: Vivado Debug and the DFX Project Flow also walks you through the project flow,
but includes adding IP, debug cores, and debugging through the Vivado® Hardware Manager.

Lab 5: DFX Controller IP for 7 Series Devices, Lab 6: DFX Controller for UltraScale Devices, and
Lab 7: DFX Controller IP for UltraScale+ Devices are designed to show the fundamental details
and capabilities of the DFX Controller IP in the Vivado Design Suite. Managing partial bitstreams
is one of the new design requirements introduced by DFX: designers plan for when partial
bitstreams are required, where they are stored, how they are delivered to the configuration
engine, and how the static design behaves before, during and after the delivery of a new partial
bitstream. The DFX Controller IP is designed to help users solve these challenges.

Nested DFX shows the flow and methodologies for nesting a reconfigurable partition inside a
reconfigurable partition. This extension to the DFX solution further extends the flexibility of
dynamic reconfiguration in any UltraScale or UltraScale+ device.

Hardware and Software Requirements
This tutorial requires that the 2020.2 Vivado Design Suite software release or later is installed.

The labs in this tutorial document target eight different Xilinx development platforms. Unless
specifically noted, production silicon and production boards are required to match the
instructions in each lab. For Operating Systems support, see the Vivado Design Suite User Guide:
Release Notes, Installation, and Licensing (UG973) for a complete list and description of the system
and software requirements.

Introduction

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 6Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;t=vivado+install+guide
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=6

Tutorial Design Description
Designs for the tutorial labs are available as a zipped archive on the Xilinx website. Each lab in
this tutorial has its own folder within the zip file. To access the tutorial design files:

1. Download the reference design files from the Xilinx website.

2. Extract the zip file contents to any write-accessible location.

Lab 1: 7 series Basic DFX Flow

The sample design used throughout this tutorial is called led_shift_count_7s. The design
targets the following Xilinx development platforms:

• KC705 (xc7k325t)

• VC707 (xc7vx485t)

• VC709 (xc7vx690t)

• AC701 (xc7a200t)

This design is very small, which helps minimize data size and allows you to run the tutorial
quickly, with minimal hardware requirements.

Lab 2: UltraScale™ Basic DFX

The sample design used throughout this tutorial is called led_shift_count_us. The design
targets the following Xilinx development platforms:

• KCU105 (xcku040)

• VCU108 (xcvu095)

• KCU116 (xcku5p)

• VCU118 (xcvu9p)

Lab 3: DFX Project Flow

The sample design used throughout this tutorial is calleddfx_project. It is a modified version
of the led_shift_count design used in Lab 1, modified to include two shift instances instead
of one counter and one shifter. This change helps illustrate that a Partition Definition applies to
all instances of a partition type. The design targets the following Xilinx development platforms:

• KC705 (xc7k325t)

• VC707 (xc7vx485t)

• VC709 (xc7vx690t)

Introduction

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 7Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=9f0c2c60-36b7-44c4-876b-ff772a1cb2d0;d=ug947-vivado-partial-reconfiguration-tutorial.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=7

• KCU105 (xcku040)

• KCU116 (xcku5p)

• VCU108 (xcvu095)

• VCU118 (xcvu9p)

Lab 4: Vivado Debug and the DFX Project Flow

The sample design used is called dfx_project_debug. The design targets the following Xilinx
development platforms:

• KCU105 (xcku040)

• VCU108 (xcvu095)

• KCU116 (xcku5p)

• VCU118 (xcvu9p)

Lab 5: DFX Controller IP for 7 series Devices

The sample design used throughout this tutorial is called dfxc_7s and is based on the design
used in Lab 1. The design targets the following Xilinx development platforms:

• KC705 (xc7k325t)

• VC707 (xc7vx485t)

• VC709 (xc7vx690t)

Lab 6: DFX Controller IP for UltraScale Devices

The sample design used throughout this tutorial is called dfxc_us. The design targets an
xcvu095 device for use on the VCU108 demonstration board, Rev 1.0, and is based on the
design used in Lab 2.

Lab 7: DFX Controller IP Tutorial Design for UltraScale+ Devices

The sample design used throughout this tutorial is called dfxc_usp and is based on the design
used in Lab 6: DFX Controller for UltraScale Devices. The design targets the KCU116 and
VCU118 demonstration boards.

Lab 8: Nested Dynamic Function eXchange

The sample design in this tutorial is another variation on the shift-count design, where you can
configure the shifter or counter for all 8 LEDs, or reconfigure at a lower granularity, changing only
4 of the LEDs. This design targets the same UltraScale and UltraScale+ development platforms as
Lab 4: KCU105, VCU108, KCU116, and CCU118.

Introduction

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=8

Lab 1

7 Series Basic DFX Flow
This lab introduces the basic Dybamic Function eXchange (DFX) flow for 7 series devices. First,
you will use a script to individually synthesize the static module and each reconfigurable design
module variant. Then in the IDE, you will constrain the location of the reconfigurable modules
(RM) using Pblocks and implement the initial configuration of the design. Next, you will
implement alternate configurations by locking the static portion of the design, updating the
reconfigurable modules with a variant, and re-running implementation. Finally, you will verify that
each implemented RM is compatible with the static portion of the design and, if compatible,
generate bitstreams.

Step 1: Extract the Tutorial Design Files
1. Download the reference design files from the Xilinx website.

2. Extract the zip file contents to any write-accessible location.

3. In the extracted files, navigate to \led_shift_count_7s.

Step 2: Examining the Scripts
Start by reviewing the scripts provided in the design archive. The files run_dfx.tcl and
advanced_settings.tcl are located at the root level. The run_dfx.tcl script contains the
minimum required settings to run Dynamic Function eXchange. The advanced_settings.tcl
contains default flow settings and should only be modified by experienced users.

The Main Script

In \led_shift_count_7s, open run_dfx.tcl in a text editor. This is the master script
where you define the design parameters, design sources, and design structure. This is the only
file you have to modify to compile a complete Dynamic Function eXchange design. Find more
details regarding run_dfx.tcl, advanced_settings.tcl, and the underlying scripts in the
README.txt located in the Tcl_HD subdirectory.

Note the following details in this run_dfx.tcl:

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 9Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=9f0c2c60-36b7-44c4-876b-ff772a1cb2d0;d=ug947-vivado-partial-reconfiguration-tutorial.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=9

• Under Define target demo board, you can select one of many demonstration boards
supported for this design.

• Under flow control, you can control what phases of synthesis and implementation are run. In
the tutorial, only synthesis is run by the script; implementation, verification, and bitstream
generation are run interactively. To run these additional steps via the script, set the flow
variables (e.g., run.prImpl) to 1.

• The Output Directories and Input Directories set the file structure expected for design
sources and results files. You must reflect any changes to your file structure here.

• The Top Definition and RP Module Definitions sections let you reference all source files for
each part of your design. Top Definition covers all sources needed for the static design,
including constraints and IP. The RP Module Definitions section does the same for
Reconfigurable Partitions (RP). Identify each RP and list all Reconfigurable Module (RM)
variants for each RP.

○ This design has two Reconfigurable Partitions (inst_shift and inst_count), and each
RP has two module variants.

• The Configuration Definition sections define the sets of static and reconfigurable modules
that make up a configuration.

○ This design has two configurations defined within the master script:
config_shift_right_count_up_implement and
config_shift_left_count_down_import.

○ You can create more configurations by adding RMs or by combining existing RMs.

The Supporting Scripts

Underneath the Tcl_HD subdirectory, several supporting Tcl scripts exist. The scripts are called
by run_dfx.tcl, and they manage specific details for the Dynamic Function eXchange flow.
Provided below are some details about a few of the key DFX scripts.

CAUTION! Do not modify the supporting Tcl scripts.

• step.tcl: Manages the current status of the design by monitoring checkpoints.

• synthesize.tcl: Manages all the details regarding the synthesis phase.

• implement.tcl: Manages all the details regarding the module implementation phase.

• dfx_utils.tcl: Manages all the details regarding the top-level implementation of a DFX
design.

• run.tcl: Launches the actual runs for synthesis and implementation.

• log_utils.tcl: Handles report file creation at key points during the flow.

Remaining scripts provide details within these scripts (such as other *_utils.tcl scripts) or
manage other Hierarchical Design flows (such as hd_utils.tcl).

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=10

Step 3: Synthesizing the Design
The run_dfx.tcl script automates the synthesis phase of this tutorial. Five iterations of
synthesis are called, one for the static top-level design and one for each of four Reconfigurable
Modules.

1. Open the Vivado Tcl shell:

• On Windows, select the Xilinx Vivado desktop icon or Start → All Programs → Xilinx
Design Tools → Vivado 2020.2 → Vivado 2020.2 Tcl Shell.

• On Linux, simply type, vivado -mode tcl.

2. In the shell, navigate to \led_shift_count_7s.

3. If you are using a target demonstration board other than the KC705, modify the xboard
variable in run_dfx.tcl.

Valid alternatives are the VC707, VC709 and AC701 boards.

4. Run the run_dfx.tcl script by entering:

source run_dfx.tcl -notrace

After all five passes through Vivado Synthesis have completed, the Vivado Tcl shell remains
open. You can find log and report files for each module, alongside the final checkpoints, under
each named folder in the Synth subdirectory.

TIP: In \led_shift_count_7s, multiple log files have been created:

• run.log shows the summary as posted in the Tcl shell window

• command.log echoes all the individual steps run by the script

• critical.log reports all critical warnings produced during the run

Step 4: Assembling and Implementing the
Design

Now that the synthesized checkpoints for each module, plus top, are available, you can assemble
the design.

You will run all flow steps from the Tcl Console, but you can use features within the IDE (such as
the floorplanning tool) for interactive events.

TIP: Copy and paste commands directly from the tutorial to avoid redundant effort and typos in the
Vivado IDE. Copy and paste only one full command at a time. Note that some commands are long and
span multiple lines.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=11

1. Open the Vivado® IDE. You can open the IDE from the open Tcl shell by typing start_gui or
by launching Vivado® with the command Vivado® -mode gui.

2. Navigate to \led_shift_count_7s, if you are not already there. The pwd command can
confirm this.

3. Set variables that help with copying commands from this document into the Tcl Console.
Select the part and board you are targeting for this lab, and apply them in Vivado:

set part "xc7k325t-ffg900-2"
set board "kc705"

set part "xc7vx485t-ffg1761-2"
set board "vc707"

set part "xc7vx690t-ffg1761-2"
set board "vc709"

set part "xc7a200t-fbg676-2"
set board "ac701"

4. Create an in-memory design by issuing the following command in the Tcl Console:

create_project -in_memory -part $part

5. Load the static design by issuing the following command:

add_files ./Synth/Static/top_synth.dcp

6. Load the top-level design constraints by issuing these commands:

add_files ./Sources/xdc/top_io_$board.xdc
set_property USED_IN {implementation} [get_files ./Sources/xdc/top_io_
$board.xdc]

Selecting the top_io_$board version of the available xdc file loads the pin location and
clocking constraints, but does not include floorplan information. The top_$board version
includes pin location, clocking and floorplanning constraints.

7. Load the first two synthesis checkpoints for the shift and count functions by issuing these
commands:

add_files ./Synth/shift_right/shift_synth.dcp
set_property SCOPED_TO_CELLS {inst_shift} [get_files ./Synth/shift_right/
shift_synth.dcp]
add_files ./Synth/count_up/count_synth.dcp
set_property SCOPED_TO_CELLS {inst_count} [get_files ./Synth/count_up/
count_synth.dcp]

The SCOPED_TO_CELLS property ensures that the proper assignment is made to the target
cell. See this link in Vivado Design Suite User Guide: Using Constraints (UG903) for more
information.

8. Link the entire design together using the link_design command:

link_design -mode default -reconfig_partitions {inst_shift inst_count} -
part $part -top top

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 12Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf;a=xConstraintsScoping
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf;a=xConstraintsScoping
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=12

At this point a full configuration is loaded, including static and reconfigurable logic. Note that
the Flow Navigator pane is not present while you are working in non-project mode.

TIP: Place the IDE in floorplanning mode by selecting Layout → Floorplanning. Make sure the Device
view is visible.

9. Save the assembled design state for this initial configuration:

write_checkpoint -force ./Checkpoint/top_link_right_up.dcp

Step 5: Building the Design Floorplan
Next, create a floorplan to define the regions that will be partially reconfigured.

1. Select the inst_count instance in the Netlist pane. Right-click and select Floorplanning  → 
Draw Pblock, or select the Draw Pblock toolbar button, and draw a tall narrow box on the
left side of the X0Y3 clock region. The exact size and shape do not matter at this point, but
keep the box within the clock region.

Make sure that the Pblock is selected in the Device View before continuing.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=13

Figure 1: Pblock for the inst_count Reconfigurable Partition

Although this Reconfigurable Module only requires CLB resources, it also includes RAMB16,
RAMB32, or DSP48 resources if the box encompasses those types. This allows the routing
resources for these block types to be included in the reconfigurable region. The General tab
of the Pblock Properties pane can be used to add these if needed. The Statistics tab shows
the resource requirements of the currently loaded Reconfigurable Module.

2. In the Properties pane, select the checkbox for RESET_AFTER_RECONFIG to utilize the
dedicated initialization of the logic in this module after reconfiguration completes.

3. Repeat steps 1 and 2 for the inst_shift instance, this time targeting the right side of clock
region X1Y1. This Reconfigurable Module includes block RAM instances, so the resource type
must be included. If omitted, the RAMB details in the Statistics tab are shown in red.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=14

Figure 2: Pblock for the inst_shift Reconfigurable Partition

4. Run DFX Design Rule Checks by selecting Reports → Report DRC. You can uncheck All Rules
and then check Dynamic Function eXchange to focus this report strictly on DFX DRCs.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=15

Figure 3: DFX Design Rule Checks (DRCs)

One or two DRCs are reported at this point, and there are two ways of resolving them. For
this lab, you will use one method for inst_shift and the other for inst_count.

The first DRC is an error, HDPR-10, reporting that RESET_AFTER_RECONFIG requires
Pblock frame alignment.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=16

5. To resolve the first DRC error, make sure that the height of the Pblock aligns with the clock
region boundaries. Using the Pblock for inst_shift, stretch the top and bottom edges to match
the clock region boundaries of X1Y1 as shown in the figure below. See that the shading of
the Pblock is now more uniform.

Figure 4: Pblock for the aligned inst_shift Reconfigurable Partition

The other possible DRC is a warning, HDPR-26, reporting that a left or right edge of a
reconfigurable Pblock terminates on an improper boundary. Left or right edges must not split
interconnect (INT) columns. More information on this requirement can be found in the
Vivado Design Suite User Guide: Dynamic Function eXchange (UG909), in the section
entitled Reconfigurable Partition Pblock Sizes and Shapes.

6. To manually avoid this DRC warning, zoom into the upper or lower corner on the reported
edge of inst_shift (or inst_count, if inst_shift did not report an issue) to see where the
violation occurred. Move this edge left or right one column, as shown by the yellow arrows in
Figure 5, so it lands between two resource types (CLB-CLB or CLB-RAMB, for example)
instead landing between CLB-INT or BRAM-INT.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 17Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug909-vivado-partial-reconfiguration.pdf;a=xConfigurationModes
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=17

Figure 5: Adjusting the Edges of a Reconfigurable Pblock

7. Run the PR DRCs again to confirm that the errors and warnings that you have addressed
have been resolved for the inst_shift instance.

An alternative to manually adjusting the size and shape of reconfigurable Pblocks is to use
the SNAPPING_MODE feature. This feature automatically adjusts edges to align with legal
boundaries. It will make the Pblock taller, aligning with clock region boundaries, if the
RESET_AFTER_RECONFIG feature is selected. It makes the Pblock narrower, adjusting left
and/or right edges as needed. Note that the number and type of resources available are
altered if SNAPPING_MODE makes changes to the Pblock.

8. Select the Pblock for inst_count in the Device window, and in the Properties tab of the
Pblock Properties pane, change the value of SNAPPING_MODE from OFF to ROUTING (or
ON).

Note that the original Pblock does not change, but the shading behind it does. The
adjustments to the Pblock needed for it to conform to DFX rules are done automatically,
without modifying your source constraints.

9. Run the DFX DRCs once again to confirm that all errors have been resolved. Advisory
messages may still be reported, especially if the Pblock is located near the edge of the device.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=18

10. Save these Pblocks and associated properties:

write_xdc ./Sources/xdc/top_all.xdc

This exports all the current constraints in the design, including those imported earlier from
top_io_$board.xdc. These constraints can be managed in their own XDC file or managed
within a run script (as is typically done with HD.RECONFIGURABLE).

Alternatively, the Pblock constraints themselves can be extracted and managed separately. A
Tcl proc is available to help perform this task.

a. First source the proc which is found in one of the Tcl utility files:

source ./Tcl_HD/hd_utils.tcl

b. Then use the export_pblocks proc to write out this constraint information:

export_pblocks -file ./Sources/xdc/pblocks.xdc

This writes the Pblock constraint information for both Pblocks in the design. Use the -
pblocks option to select only one if desired.

Now that the floorplan is established, the next step is implementing the design.

Step 6: Implementing the First Configuration
In this step, you place and route the design and prepare the static portion of the design for reuse
with new Reconfigurable Modules.

Implementing the Design

1. Optimize, place, and route the design by issuing the following commands:

opt_design
place_design
route_design

After both place_design and route_design, examine the state of the design in the Device view
as shown in the figure below. One thing to note after place_design is the introduction of
Partition Pins. These are the physical interface points between static and reconfigurable logic.
They are anchor points within an interconnect tile through which each I/O of the
Reconfigurable Module must route. They appear as white boxes in the placed design view.

For pblock_shift, they appear in the top of that Pblock, as the connections to static are
just outside the Pblock in that area of the device. For pblock_count, they appear outside
the user-defined region, as SNAPPING_MODE vertically collects more frames to be added to
the Reconfigurable Partition.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=19

Figure 6: Partition Pins within Placed Design

2. To find these partition pins in the GUI easily:

a. Select the Reconfigurable Module (for example, inst_shift) in the Netlist pane.

b. Select the Cell Pins tab in the Cell Properties pane.

3. Select any pin to highlight it, or use Ctrl+A to select them all. The Tcl equivalent of the latter
is:

select_objects [get_pins inst_shift/*]

4. Use the Routing Resources toolbar button to toggle between abstracted and actual
routing information, and to change the visibility of the routing resources themselves. All nets
in the design are fully routed at this point.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=20

Figure 7: Close-up of First Configuration Routed

Saving the Results

1. Save the full design checkpoint and create report files by issuing these commands:

write_checkpoint -force Implement/Config_shift_right_count_up_implement/
top_route_design.dcp

report_utilization -file Implement/Config_shift_right_count_up_implement/
top_utilization.rpt

report_timing_summary -file Implement/
Config_shift_right_count_up_implement/top_timing_summary.rpt

2. [Optional] Save checkpoints for each of the Reconfigurable Modules by issuing these two
commands:

write_checkpoint -force -cell inst_shift Checkpoint/
shift_right_route_design.dcp

write_checkpoint -force -cell inst_count Checkpoint/
count_up_route_design.dcp

TIP: When running run_dfx.tcl  to process the entire design in batch mode; design checkpoints,
log files, and report files are created at each step of the flow.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=21

At this point, you have created a fully implemented Dynamic Function eXchange design from
which you can generate full and partial bitstreams. The static portion of this configuration is
used for all subsequent configurations. To isolate the static design, remove the current
Reconfigurable Modules. Make sure routing resources are enabled, and zoom in to an
interconnect tile with partition pins.

3. Clear out Reconfigurable Module logic by issuing the following commands:

update_design -cell inst_shift -black_box
update_design -cell inst_count -black_box

Issuing these commands results in many design changes as shown in the figure below:

• The number of Fully Routed nets (green) decreases.

• inst_shift and inst_count now appear in the Netlist view as empty.

Figure 8: The inst_shift module Before update_design -black_box

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=22

Figure 9: The inst_shift module After update_design -black_box

4. Issue the following command to lock down all placement and routing:

lock_design -level routing

Because no cell was identified in the lock_design command, the entire design in memory
(currently consisting of the static design with black boxes) is affected. All routed nets are now
displayed as locked, as indicated by dashed lines in the figure below. All placed components
changed from blue to orange to show they are also locked.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=23

Figure 10: Close-up of Static-Only Design with Locked Routing

5. Issue the following command to write out the remaining static-only checkpoint:

write_checkpoint -force Checkpoint/static_route_design.dcp

This static-only checkpoint is used for future configurations.

6. Close this design before moving on to the next configuration:

close_project

Step 7: Implementing the Second
Configuration

Now that the static design result is established and locked, and you can use it as context for
implementing further Reconfigurable Modules.

Implementing the Design

1. Create a new in-memory design by issuing the following command in the Tcl Console:

create_project -in_memory -part $part

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=24

2. Load the static design by issuing the following command:

add_files ./Checkpoint/static_route_design.dcp

3. Load the second two synthesis checkpoints for the shift and count functions by issuing these
commands:

add_files ./Synth/shift_left/shift_synth.dcp

set_property SCOPED_TO_CELLS {inst_shift} [get_files ./Synth/shift_left/
shift_synth.dcp]

add_files ./Synth/count_down/count_synth.dcp

set_property SCOPED_TO_CELLS {inst_count} [get_files ./Synth/count_down/
count_synth.dcp]

4. Link the entire design together using the link_design command:

link_design -mode default -reconfig_partitions {inst_shift inst_count} -
part $part -top top

At this point, a full configuration is loaded. This time, however, the static design is routed and
locked, and the reconfigurable logic is still just a netlist. Place and route from here only
applies to the RM logic.

5. Optimize, place and route the new RMs in the context of static by issuing these commands:

opt_design

place_design

route_design

The design is again fully implemented, now with the new Reconfigurable Module variants.
The routing is a mix of dashed (locked) and solid (new) routing segments, as shown below.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=25

Figure 11: Second Configuration Routed, Showing Locked and New Routes

Saving the Results

1. Save the full design checkpoint and report files by issuing these commands:

write_checkpoint -force Implement/Config_shift_left_count_down_import/
top_route_design.dcp

report_utilization -file Implement/Config_shift_left_count_down_import/
top_utilization.rpt

report_timing_summary -file Implement/
Config_shift_left_count_down_import/top_timing_summary.rpt

2. [Optional] Save checkpoints for each of the Reconfigurable Modules by issuing these two
commands:

write_checkpoint -force -cell inst_shift Checkpoint/
shift_left_route_design.dcp

write_checkpoint -force -cell inst_count Checkpoint/
count_down_route_design.dcp

At this point, you have implemented the static design and all Reconfigurable Module variants.
Repeat this process for designs that have more than two Reconfigurable Modules per
Reconfigurable Partition.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=26

Step 8: Examining the Results with
Highlighting Scripts

With the routed configuration open in the IDE, run some visualization scripts to highlight tiles
and nets. These scripts identify the resources allocated for Dynamic Function eXchange, and are
automatically generated.

1. In the Tcl Console, issue the following commands from the <Extract_Dir> directory:

source hd_visual/pblock_inst_shift_AllTiles.tcl

highlight_objects -color blue [get_selected_objects]

2. Click somewhere in the Device view to deselect the frames (or enter unselect_objects),
then issue the following commands:

source hd_visual/pblock_inst_count_AllTiles.tcl

highlight_objects -color yellow [get_selected_objects]

The partition frames appear highlighted in the Device view, as shown in the figure below:

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=27

Figure 12: Reconfigurable Partition Frames Highlighted

These highlighted tiles represent the configuration frames that are sent to bitstream
generation to create the partial bitstreams. As shown above, the SNAPPING_MODE feature
adjusted all four edges of pblock_count to account for RESET_AFTER_RECONFIG and legal
reconfigurable partition widths.

The other “tile” scripts are variations on these. If you had not created Pblocks that vertically
aligned to the clock region boundaries, the FrameTiles script would highlight the explicit
Pblock tiles, while the AllTiles script extends those tiles to the full reconfigurable frame
height. Note that these leave gaps where unselected frame types (for example: global clocks)
exist.

The GlitchTiles script is a subset of frame sites, avoiding dedicated silicon resources; the other
scripts are more informative than this one.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=28

3. Close the current design:

close_project

Step 9: Generating Bitstreams
Verifying Configurations

RECOMMENDED: Before generating bitstreams, verify all configurations to ensure that the static portion
of each configuration match identically, so the resulting bitstreams are safe to use in silicon. The PR Verify
feature examines the complete static design up to and including the partition pins, confirming that they are
identical. Placement and routing within the Reconfigurable Modules is not checked, as different module
results are expected here.

1. Run the pr_verify command from the Tcl Console:

pr_verify Implement/Config_shift_right_count_up_implement/
top_route_design.dcp Implement/Config_shift_left_count_down_import/
top_route_design.dcp

If successful, this command returns the following message.

INFO: [Vivado 12-3253] PR_VERIFY: check points Implement/
Config_shift_right_count_up/
top_route_design.dcp and Implement/Config_shift_left_count_down/
top_route_design.dcp are compatible

By default, only the first mismatch (if any) is reported. To see all mismatches, use the -
full_check option.

2. Close the project:

close_project

Generating Bitstreams

Now that the configurations have been verified, you can generate bitstreams and use them to
target your selected demonstration board.

Note: The first configuration implements shift_right and count_up. The second configuration implements
shift_left and count_down.

1. First, read the first configuration into memory:

open_checkpoint Implement/Config_shift_right_count_up_implement/
top_route_design.dcp

2. Generate full and partial bitstreams for this design. Be sure to keep the bit files in a unique
directory related to the full design checkpoint from which they were created.

write_bitstream -force -file Bitstreams/Config_RightUp.bit

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=29

close_project

Notice that three bitstreams have been created:

• Config_RightUp.bit

This is the power-up, full design bitstream.The four shift LEDs on the right will shift right
and the four count LEDs on the left will count up.

• Config_RightUp_Pblock_inst_shift_partial.bit

This is the partial bit file for the shift_right module.

• Config_RightUp_Pblock_inst_count_partial.bit

This is the partial bit file for the count_up module that causes the count LEDs to count up.

IMPORTANT! When generated by a single call to write_bitstream, the names of the bit files currently
do not reflect the name of the Reconfigurable Module variant to clarify which image is loaded. The
current solution uses the base name given by the -file option and appends the Pblock name of the
reconfigurable cell. It is critical to provide enough description in the base name to be able to identify
the reconfigurable bit files clearly. All partial bit files have the _partial postfix.

Using run_dfx.tcl to process the entire design through bitstream generation uses a different
technique for generating the bitstreams. Opening a routed design checkpoint issues multiple
calls to write_bitstream, which gives you more control over naming bitstreams and allows for
different options (such a bitstream compression) to be applied to full versus partial
bitstreams. For example, the names configured in the advanced_settings.tcl script are:

• Config_shift_right_count_up_implement_full.bit

This is the power-up, full design bitstream.

• pblock_shift_shift_right_partial.bit

This is the partial bit file for the shift_right module.

• pblock_count_count_up_partial.bit

This is the partial bit file for the count_up module.

3. Generate full and partial bitstreams for the second configuration, again keeping the resulting
bit files in the appropriate folder.

open_checkpoint Implement/Config_shift_left_count_down_import/
top_route_design.dcp
write_bitstream -force -file Bitstreams/Config_LeftDown.bit
close_project

Similarly, you see three bitstreams created, this time with a different base name.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=30

4. Generate a full bitstream with grey boxes, plus blanking bitstreams for the Reconfigurable
Modules. Blanking bitstreams can be used to “erase” an existing configuration to reduce
power consumption.

open_checkpoint Checkpoint/static_route_design.dcp
update_design -cell inst_count -buffer_ports
update_design -cell inst_shift -buffer_ports
place_design
route_design
write_checkpoint -force Checkpoint/Config_greybox.dcp
write_bitstream -force -file Bitstreams/config_greybox.bit
close_project

The base configuration bitstream has no logic for either reconfigurable partition. The
update_design commands here insert constant drivers (ground) for all outputs of the
Reconfigurable Partitions, so these outputs do not float. The term grey box indicates that the
modules are not completely empty with these LUTs inserted, as opposed to black boxes,
which would have dangling nets in and out of this region. The place_design and route_design
commands ensure they are completely implemented.

Step 10: Partially Reconfiguring the FPGA
The count_shift_led design targets one of four demonstration boards. The current design
supports the KC705, VC707, VC709 and AC701 boards, revisions Rev 1.0 and Rev 1.1.

Configuring the Device with a Full Image

1. Connect the board to your computer via the Platform Cable USB and power on the board.

2. From the main Vivado® IDE, select Flow → Open Hardware Manage.

3. Select Open a new hardware target on the green banner. Follow the steps in the wizard to
establish communication with the board.

4. Select Program device on the green banner, and select the target device. Navigate to the
Bitstreams folder to select Config_RightUp.bit, then click OK to program the device.

You should now see the bank of GPIO LEDs performing two tasks. Four LEDs are performing
a counting-up function (MSB is on the left), and the other four are shifting to the right. Note
the amount of time it took to configure the full device.

Note: The AC701 demonstration board only has a 4-bit LED bank. This design will show either the shift
function or the count function at one time. To switch between the shift and count functions, toggle
the switch 1 on the GPIO DIP switch (SW2).

Partially Reconfiguring the Device

At this point, you can partially reconfigure the active device with any of the partial bitstreams
that you have created.

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=31

1. Select Program device on the green banner again. Navigate to the Bitstreams folder to
select Config_LeftDown_pblock_inst_shift_partial.bit, then click OK to program the device.

The shift portion of the LEDs changed direction, but the counter kept counting up,
unaffected by the reconfiguration. Note the much shorter configuration time.

2. Select Program device on the green banner again. Navigate to the Bitstreams folder to
select Config_LeftDown_pblock_inst_count_partial.bit, then click OK to program the device.

The counter is now counting down, and the shifting LEDs were unaffected by the
reconfiguration. This process can be repeated with the Config_RightUp partial bit files to
return to the original configuration, or with the blanking (grey box) partial bit files to stop
activity on the LEDs (that will stay on).

Conclusion
This concludes Lab 1. In this lab, you:

• Synthesized a design bottom-up to prepare for Dynamic Function eXchange implementation

• Created a valid floorplan for a Dynamic Function eXchange design

• Created two configurations with common static results

• Implemented these two configurations, saving the static design to be used in each

• Created checkpoints for static and reconfigurable modules for later reuse

• Examined framesets and verified the two configurations

• Created full and partial bitstreams

• Configured and partially reconfigured an FPGA

Lab 1: 7 Series Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=32

Lab 2

UltraScale Basic DFX Flow
This lab introduces the basic Dynamic Function eXchange (DFX) flow for UltraScale™ and
UltraScale+™ devices. First, you will use a script to individually synthesize the static module and
each reconfigurable design module variant. Then in the IDE, you will constrain the location of the
reconfigurable modules (RM) using Pblocks and implement the initial configuration of the design.
Next, you will implement alternate configurations by locking the static portion of the design,
updating the reconfigurable modules with a variant, and re-running implementation. Finally, you
will verify that each implemented RM is compatible with the static portion of the design and, if
compatible, generate bitstreams.

Step 1: Extract the Tutorial Design Files
1. Download the reference design files from the Xilinx website.

2. Extract the zip file contents to any write-accessible location.

3. In the extracted files, navigate to \led_shift_count_us.

Step 2: Examining the Scripts
Start by reviewing the scripts provided in the design archive. The files run_dfx.tcl and
advanced_settings.tcl are located at the root level. The run_dfx.tcl script contains the
minimum required settings to run Dynamic Function eXchange. The advanced_settings.tcl
contains default flow settings and should only be modified by experienced users.

The Main Script

In \led_shift_count_us, open run_dfx.tcl in a text editor. This is the master script
where you define the design parameters, design sources, and design structure. This is the only
file you have to modify to compile a complete Dynamic Function eXchange design. Find more
details regarding run_dfx.tcl, advanced_settings.tcl, and the underlying scripts in the
README.txt located in the Tcl_HD subdirectory.

Note the following details in this run_dfx.tcl:

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 33Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=9f0c2c60-36b7-44c4-876b-ff772a1cb2d0;d=ug947-vivado-partial-reconfiguration-tutorial.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=33

• Under Define target demo board, you can select one of many demonstration boards
supported for this design.

• Under flow control, you can control what phases of synthesis and implementation are run. In
the tutorial, only synthesis is run by the script; implementation, verification, and bitstream
generation are run interactively. To run these additional steps via the script, set the flow
variables (e.g., run.prImpl) to 1.

• The Output Directories and Input Directories set the file structure expected for design
sources and results files. You must reflect any changes to your file structure here.

• The Top Definition and RP Module Definitions sections let you reference all source files for
each part of your design. Top Definition covers all sources needed for the static design,
including constraints and IP. The RP Module Definitions section does the same for
Reconfigurable Partitions (RP). Identify each RP and list all Reconfigurable Module (RM)
variants for each RP.

○ This design has two Reconfigurable Partitions (inst_shift and inst_count), and each
RP has two module variants.

• The Configuration Definition sections define the sets of static and reconfigurable modules
that make up a configuration.

○ This design has two configurations defined within the master script:
config_shift_right_count_up_implement and
config_shift_left_count_down_import.

○ You can create more configurations by adding RMs or by combining existing RMs.

The Supporting Scripts

Underneath the Tcl_HD subdirectory, several supporting Tcl scripts exist. The scripts are called
by run_dfx.tcl, and they manage specific details for the Dynamic Function eXchange flow.
Provided below are some details about a few of the key DFX scripts.

CAUTION! Do not modify the supporting Tcl scripts.

• step.tcl: Manages the current status of the design by monitoring checkpoints.

• synthesize.tcl: Manages all the details regarding the synthesis phase.

• implement.tcl: Manages all the details regarding the module implementation phase.

• dfx_utils.tcl: Manages all the details regarding the top-level implementation of a DFX
design.

• run.tcl: Launches the actual runs for synthesis and implementation.

• log_utils.tcl: Handles report file creation at key points during the flow.

Remaining scripts provide details within these scripts (such as other *_utils.tcl scripts) or
manage other Hierarchical Design flows (such as hd_utils.tcl).

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=34

Step 3: Synthesizing the Design
The run_dfx.tcl script automates the synthesis phase of this tutorial. Five iterations of
synthesis are called, one for the static top-level design and one for each of four Reconfigurable
Modules.

1. Open the Vivado Tcl shell:

• On Windows, select the Xilinx Vivado desktop icon or Start → All Programs → Xilinx
Design Tools → Vivado 2020.2 → Vivado 2020.2 Tcl Shell.

• On Linux, simply type, vivado -mode tcl.

2. In the shell, navigate to \led_shift_count_us.

3. If you are using a target demonstration board other than the KC705, modify the xboard
variable in run_dfx.tcl.

Alternatives for this lab are the VCU108, KCU116 and VCU118 boards.

4. Run the run_dfx.tcl script by entering:

source run_dfx.tcl -notrace

After all five passes through Vivado Synthesis have completed, the Vivado Tcl shell remains
open. You can find log and report files for each module, alongside the final checkpoints, under
each named folder in the Synth subdirectory.

TIP: In \led_shift_count_us, multiple log files have been created:

• run.log shows the summary as posted in the Tcl shell window

• command.log echoes all the individual steps run by the script

• critical.log reports all critical warnings produced during the run

Step 4: Assembling and Implementing the
Design

Now that the synthesized checkpoints for each module, plus top, are available, you can assemble
the design.

You will run all flow steps from the Tcl Console, but you can use features within the IDE (such as
the floorplanning tool) for interactive events.

TIP: Copy and paste commands directly from the tutorial to avoid redundant effort and typos in the
Vivado IDE. Copy and paste only one full command at a time. Note that some commands are long and
span multiple lines.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=35

1. Open the Vivado® IDE. You can open the IDE from the open Tcl shell by typing start_gui or
by launching Vivado® with the command Vivado® -mode gui.

2. Navigate to \led_shift_count_us, if you are not already there. The pwd command can
confirm this.

3. Set variables that help with copying commands from this document into the Tcl Console.
Select the part and board you are targeting for this lab, and apply them in Vivado:

set part "xc7k325t-ffg900-2"
set board "kc705"

set part "xc7vx485t-ffg1761-2"
set board "vc707"

set part "xc7vx690t-ffg1761-2"
set board "vc709"

set part "xc7a200t-fbg676-2"
set board "ac701"

4. Create an in-memory design by issuing the following command in the Tcl Console:

create_project -in_memory -part $part

5. Load the static design by issuing the following command:

add_files ./Synth/Static/top_synth.dcp

6. Load the top-level design constraints by issuing these commands:

add_files ./Sources/xdc/top_io_$board.xdc
set_property USED_IN {implementation} [get_files ./Sources/xdc/top_io_
$board.xdc]

Selecting the top_io_$board version of the available xdc file loads the pin location and
clocking constraints, but does not include floorplan information. The top_$board version
includes pin location, clocking and floorplanning constraints.

7. Load the first two synthesis checkpoints for the shift and count functions by issuing these
commands:

add_files ./Synth/shift_right/shift_synth.dcp
set_property SCOPED_TO_CELLS {inst_shift} [get_files ./Synth/shift_right/
shift_synth.dcp]
add_files ./Synth/count_up/count_synth.dcp
set_property SCOPED_TO_CELLS {inst_count} [get_files ./Synth/count_up/
count_synth.dcp]

The SCOPED_TO_CELLS property ensures that the proper assignment is made to the target
cell. See this link in Vivado Design Suite User Guide: Using Constraints (UG903) for more
information.

8. Link the entire design together using the link_design command:

link_design -mode default -reconfig_partitions {inst_shift inst_count} -
part $part -top top

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 36Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf;a=xConstraintsScoping
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf;a=xConstraintsScoping
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=36

At this point a full configuration is loaded, including static and reconfigurable logic. Note that
the Flow Navigator pane is not present while you are working in non-project mode.

TIP: Place the IDE in floorplanning mode by selecting Layout → Floorplanning. Make sure the Device
view is visible.

9. Save the assembled design state for this initial configuration:

write_checkpoint ./Checkpoint/top_link_right_up.dcp

Step 5: Build the Design Floorplan
Next, create a floorplan to define the regions for Dynamic Function eXchange.

1. Select the inst_count instance in the Netlist pane. Right click and select Floorplanning → 
Draw Pblock and draw a tall narrow box on the left side of the upper left corner of the
device. The exact size and shape do not matter at this point, but keep the box within the
clock region.

Make sure that the Pblock is selected in the Device View before continuing.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=37

Figure 13: Pblock for the inst_count Reconfigurable Partition

Although this Reconfigurable Module only requires CLB resources, also include RAMB16,
RAMB32, or DSP48 resources if the box encompasses those types. This allows the routing
resources for these block types to be included in the reconfigurable region. The General tab
of the Pblock Properties pane can be used to add these if needed. The Statistics tab shows
the resource requirements of the currently loaded Reconfigurable Module.

2. Repeat the previous step for the inst_shift instance, this time targeting clock region below the
first. This Reconfigurable Module includes block RAM instances, so the resource type must be
included. If omitted, the RAMB details in the Statistics tab will be shown in red.

3. Run Dynamic Function eXchange Design Rule Checks by selecting Reports → Report DRC.
You can uncheck All Rules and then check Dynamic Function eXchange to focus this report
strictly on DFX DRCs.

No DRC errors should be reported, as long as the inst_shift pblock includes RAMB18 and
RAMB36 resources. Advisory messages may still be reported, especially if the Pblock is
located near the edge of the device. Note that for both Pblocks, SNAPPING_MODE is set to
ON, as reported in the Properties tab of the Pblock Properties pane. This is always enabled
for all UltraScale and UltraScale+ devices given the fine granularity of programmable units in
this architecture.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=38

4. Save these Pblocks and associated properties:

write_xdc ./Sources/xdc/top_all.xdc

This exports all the current constraints in the design, including those imported earlier from
top_io_$board.xdc. These constraints can be managed in their own XDC file or managed
within a run script (as is typically done with HD.RECONFIGURABLE).

Alternatively, the Pblock constraints themselves can be extracted and managed separately. A
Tcl proc is available to help perform this task.

a. First source the proc which is found in one of the Tcl utility files:

source ./Tcl_HD/hd_utils.tcl

b. Then use the export_pblocks proc to write out this constraint information:

export_pblocks -file ./Sources/xdc/pblocks.xdc

This writes the Pblock constraint information for both Pblocks in the design. Use the -
pblocks option to select only one if desired.

Step 6: Implementing the First Configuration
In this step, you place and route the design and prepare the static portion of the design for reuse
with new Reconfigurable Modules.

Implementing the Design

1. Optimize, place, and route the design by issuing the following commands:

opt_design
place_design
route_design

After both place_design and route_design, examine the state of the design in the
Device view (see the following figure). One thing to note after place_design is the
introduction of Partition Pins. These are the physical interface points between static and
reconfigurable logic. They are anchor points within an interconnect tile through which each
I/O of the Reconfigurable Module must route. They appear as white boxes in the placed
design view. For pblock_shift, they appear in the top of that Pblock, as the connections
to static are just outside the Pblock in that area of the device. For Pblock_count, they
appear outside the user-defined region, as SNAPPING_MODE vertically collected more frames
to be added to the Reconfigurable Partition.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=39

Figure 14: Partition Pins within Placed Design

2. To find these partition pins in the GUI easily:

a. Select the Reconfigurable Module (for example, inst_shift) in the Netlist pane.

b. Select the Cell Pins tab in the Cell Properties pane.

3. Select any pin to highlight it, or use Ctrl+A to select all. The Tcl equivalent of the latter is:
select_objects [get_pins inst_shift/*]

4. Use the Routing Resources toolbar button to toggle between abstracted and actual routing
information, and to change the visibility of the routing resources themselves. All nets in the
design are fully routed at this point.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=40

Figure 15: Close up of First Configuration Routed

Saving the Results

1. Save the full design checkpoint and create report files by issuing these commands:

write_checkpoint -force Implement/Config_shift_right_count_up_implement/
top_route_design.dcp
report_utilization -file Implement/Config_shift_right_count_up_implement/
top_utilization.rpt
report_timing_summary -file Implement/
Config_shift_right_count_up_implement/top_timing_summary.rpt

2. [Optional] Save checkpoints for each of the Reconfigurable Modules by issuing these two
commands:

write_checkpoint -force -cell inst_shift Checkpoint/
shift_right_route_design.dcp
write_checkpoint -force -cell inst_count Checkpoint/
count_up_route_design.dcp

TIP: When running run_dfx.tcl  to process the entire design in batch mode, design checkpoints,
log files, and report files are created at each step of the flow.

At this point, you have created a fully implemented Dynamic Function eXchange design from
which you can generate full and partial bitstreams. The static portion of this configuration is
used for all subsequent configurations. To isolate the static design, remove the current
Reconfigurable Modules. Make sure routing resources are enabled, and zoom in to an
interconnect tile with partition pins.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=41

3. Clear out Reconfigurable Module logic by issuing the following commands:

update_design -cell inst_shift -black_box
update_design -cell inst_count -black_box

Issuing these commands results in many design changes as shown in the following figure:

• The number of Fully Routed nets (green) decreased.

• inst_shift and inst_count now appear in the Netlist view as empty.

Figure 16: The inst_shift module Before update_design -black_box

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=42

Figure 17: The inst_shift module After update_design -black_box

1. Issue the following command to lock down all placement and routing:

lock_design -level routing

Because no cell was identified in the lock_design command, the entire design in memory
(currently consisting of the static design with black boxes) is affected. All routed nets now
display as locked, as indicated by dashed lines in Figure 18. All placed components changed
from blue to orange to show they are also locked.

2. Issue the following command to write out the remaining static-only checkpoint:

write_checkpoint -force Checkpoint/static_route_design.dcp

This static-only checkpoint is used for future configurations.

3. Close this design before moving on to the next configuration: close_project

Step 7: Implementing the Second
Configuration

Now that the static design result is established and locked, and you can use it as context for
implementing further Reconfigurable Modules.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=43

Implementing the Design

1. Create a new in-memory design by issuing the following command in the Tcl Console:

create_project -in_memory -part $part

2. Load the static design by issuing the following command:

add_files ./Checkpoint/static_route_design.dcp

3. Load the second two synthesis checkpoints for the shift and count functions by issuing these
commands:

add_file ./Synth/shift_left/shift_synth.dcp
set_property SCOPED_TO_CELLS {inst_shift} [get_files ./Synth/shift_left/
shift_synth.dcp]
add_file ./Synth/count_down/count_synth.dcp
set_property SCOPED_TO_CELLS {inst_count} [get_files ./Synth/count_down/
count_synth.dcp]

4. Link the entire design together using the link_design command:

link_design -mode default -reconfig_partitions {inst_shift inst_count} -
part $part -top top

At this point, a full configuration is loaded. This time, however, the static design is routed and
locked, and the reconfigurable logic is still just a netlist. Place and route from here only
applies to the RM logic.

5. Optimize, place and route the new RMs in the context of static by issuing these
commands:opt_design place_design route_design

The design is again fully implemented, now with the new Reconfigurable Module variants.
The routing is a mix of dashed (locked) and solid (new) routing segments, as shown below.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=44

Figure 18: Second Configuration Routed, Showing Locked and New Routes

Saving the Results

1. Save the full design checkpoint and report files by issuing these commands:

write_checkpoint -force Implement/Config_shift_left_count_down_import/
top_route_design.dcp
report_utilization -file Implement/Config_shift_left_count_down_import/
top_utilization.rpt
report_timing_summary -file Implement/
Config_shift_left_count_down_import/top_timing_summary.rpt

2. [Optional] Save checkpoints for each of the Reconfigurable Modules by issuing these two
commands:

write_checkpoint -force -cell inst_shift Checkpoint/
shift_left_route_design.dcp
write_checkpoint -force -cell inst_count Checkpoint/
count_down_route_design.dcp

At this point, you have implemented the static design and all Reconfigurable Module variants.
This process would be repeated for designs that have more than two Reconfigurable Modules per
Reconfigurable Partition.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=45

Step 8: Examine the Results with Highlighting
Scripts

With the routed configuration open in the IDE, run some visualization scripts to highlight tiles
and nets. These scripts identify the resources allocated for Dynamic Function eXchange and are
automatically generated.

1. In the Tcl Console, issue the following commands from the \led_shift_count_us
directory:

source hd_visual/pblock_inst_shift_Routing_AllTiles.tcl

highlight_objects -color green [get_selected_objects]

2. Click somewhere in the Device view to deselect the frames (or enter unselect_objects),
then issue the following commands:

source hd_visual/pblock_inst_shift_Placement_AllTiles.tcl

source hd_visual/pblock_inst_count_Placement_AllTiles.tcl

highlight_objects -color blue [get_selected_objects]

The partition frames appear highlighted in the Device view, as shown in the following figure.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=46

Figure 19: Reconfigurable Partition Frames Highlighted

These highlighted tiles represent the configuration frames used for placement (blue) and
routing (green) for each RM. The green tiles are sent to bitstream generation to create the
partial bitstream (for inst_shift). The SNAPPING_MODE feature adjusted three of four edges
of pblock_shift to account for alignment to programmable unit boundaries. This snapping
behavior explains why it appears that static logic may appear to have been placed inside
Reconfigurable Partitions, as seen in prior steps. In actuality, the effective boundary is one
CLB row higher than the user-defined Pblock boundary indicates, so this static logic is placed
correctly. This effective boundary can also be seen in the shading of the Pblock during
creation, as shown in Step 5: Build the Design Floorplan.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=47

Note: RCLK rows matching the width of the Pblocks are included. Global clocks driving logic in these
Reconfigurable Partitions are connected to the spines running through these rows and are enabled or
disabled during Dynamic Function eXchange.

The other “tile” scripts are variations on these. If you had not created Pblocks that vertically
aligned to the clock region boundaries, the FrameTiles script would highlight the explicit
Pblock tiles, while the AllTiles script extends those tiles to the full reconfigurable frame
height. Note that these leave gaps where unselected frame types (such as global clocks) exist.

The GlitchTiles script is a subset of frame sites, avoiding dedicated silicon resources; the other
scripts are more informative than this one.

3. Close the current design:

close_project

Step 9: Generating the Bitstreams
Verifying the Configurations

RECOMMENDED: Before generating bitstreams, verify all configurations to ensure that the static portion
of each configuration match identically, so the resulting bitstreams are safe to use in silicon. The PR Verify
feature examines the complete static design up to and including the partition pins, confirming that they are
identical. Placement and routing within the Reconfigurable Modules is not checked, as different module
results are expected here.

1. Run the pr_verify command from the Tcl Console:

pr_verify Implement/Config_shift_right_count_up_implement/
top_route_design.dcp
Implement/Config_shift_left_count_down_import/top_route_design.dcp

If successful, this command returns the following message.

INFO: [Vivado 12-3253] PR_VERIFY: check points
Implement/Config_shift_right_count_up/top_route_design.dcp and
Implement/Config_shift_left_count_down/top_route_design.dcp are
compatible

By default, only the first mismatch (if any) is reported. To see all mismatches, use the -
full_check option.

2. Close the project: close_project

Generating Bitstreams

Now that the configurations have been verified, you can generate bitstreams and use them to
target your selected demonstration board.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=48

Note: The first configuration implements shift_right and count_up. The second configuration
implements shift_left and count_down.

1. First, read the first configuration into memory:

open_checkpoint Implement/Config_shift_right_count_up_implement/
top_route_design.dcp

2. Generate full and partial bitstreams for this design. Be sure to keep the bit files in a unique
directory related to the full design checkpoint from which they were created.

write_bitstream -force -file Bitstreams/Config_RightUp.bit close_project

Notice that five (or three, if you are using an UltraScale+ device) bitstreams have been
created:

• Config_RightUp.bit This is the power-up, full design bitstream. The four shift LEDs
on the right will shift right and the four count LEDs on the left will count up.

• Config_RightUp_pblock_inst_shift_partial.bit This is the partial bit file for
the shift_right module that causes the shift LEDs to shift right.

• Config_RightUp_pblock_inst_count_partial.bit This is the partial bit file for
the count_up module that causes the count LEDs to count up.

• Config_RightUp_pblock_inst_shift_partial_clear.bit This is the clearing
bit file for the shift_right module for UltraScale devices only. It safely clears a right shift to
allow the shift module to be reconfigured.

• Config_RightUp_pblock_inst_count_partial_clear.bit This is the clearing
bit file for the count_up module for UltraScale devices only. It safely clears an up count to
allow the count module to be reconfigured.

IMPORTANT! When generated by a single call to write_bitstream , the names of the bit files
currently do not reflect the name of the Reconfigurable Module variant to clarify which image is loaded.
The current solution uses the base name given by the - file  option and appends the Pblock name of
the reconfigurable cell. It is critical to provide enough description in the base name to be able to identify
the reconfigurable bit files clearly. All partial bit files have the _partial  postfix, and all clearing bit files
have the _partial_clear  postfix.

Using run_dfx.tcl to process the entire design through bitstream generation, uses a different
technique for generating the bitstreams. Opening a routed design checkpoint issues multiple calls
to write_bitstream, which gives you more control over naming bitstreams and allows for
different options (such a bitstream compression) to be applied to full versus partial bitstreams.
For example, the names configured in the run_dfx.tcl script are:

• Config_shift_right_count_up_implement_full.bit This is the power-up, full
design bitstream.

• pblock_shift_shift_right_partial.bit This is the partial bit file for the
shift_right module.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=49

• pblock_count_count_up_partial.bit This is the partial bit file for the count_up
module.

• pblock_shift_shift_right_partial_clear.bit This is the clearing bit file for the
shift_right module for UltraScale devices only.

• pblock_count_count_up_partial_clear.bit This is the clearing bit file for the
count_up module for UltraScale devices only.

1. Generate full and partial bitstreams for the second configuration, again keeping the resulting
bit files in the appropriate folder.

open_checkpoint Implement/Config_shift_left_count_down_import/
top_route_design.dcp
write_bitstream -force -file Bitstreams/Config_LeftDown.bit
close_project

Similarly, five (or three) bitstreams are created, this time with a different base name.

2. Generate a full bitstream with grey boxes, plus blanking bitstreams for the Reconfigurable
Modules. Blanking bitstreams can be used to “erase” an existing configuration to reduce
power consumption.

Note: Note: Grey box blanking bitstreams are not the same as clearing bitstreams. Clearing bitstreams
are required to prepare the global signal mask for the next partial bitstream, ensuring the GSR event
occurs properly.

open_checkpoint Checkpoint/static_route_design.dcp
update_design -cell inst_count -buffer_ports
update_design -cell inst_shift -buffer_ports
place_design
route_design
write_checkpoint -force Checkpoint/config_grey_box.dcp
write_bitstream -force -file Bitstreams/config_grey_box.bit
close_project

The base configuration bitstream has no logic for either reconfigurable partition. The
update_design commands here insert constant drivers (ground) for all outputs of the
Reconfigurable Partitions, so these outputs do not float. The term grey box indicates that the
modules are not completely empty with these LUTs inserted, as opposed to black boxes,
which would have dangling nets in and out of this region. The place_design and
route_design commands ensure they are completely implemented. As valid
Reconfigurable Modules, note that these instances also have clearing bitstreams for
UltraScale devices only.

Step 10: Partially Reconfiguring the FPGA
The count_shift_led design targets one of four demonstration boards. The current design
supports the KCU105, VCU108, KCU116, and VCU118 boards, revisions Rev 1.0 and newer.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=50

Configuring the Device with a Full Image

1. Connect the board to your computer using the Platform Cable USB and power on the board.

2. From the main Vivado IDE, select Flow → Open Hardware Manger.

3. Select Open target on the green banner. Follow the steps in the wizard to establish
communication with the board.

4. Select Program device on the green banner and pick the target device, e.g. xcku040_0.

5. Navigate to the Bitstreams folder to select Config_RightUp.bit, then click OK to program the
device.

You should now see the bank of GPIO LEDs performing two tasks. Four LEDs are performing
a counting-up function (MSB is on the left), and the other four are shifting to the right. Note
the amount of time it took to configure the full device.

Partially Reconfiguring the Device

At this point, you can partially reconfigure the active device with any of the partial bitstreams
that you have created, starting first with the appropriate clearing bitstream.

1. UltraScale targets only: Select Program device on the green banner again. Navigate to the
Bitstreams folder to select Config_RightUp_pblock_inst_shift_partial_clear.bit, then click
OK to program the device.

The shift portion of the LEDs stopped, but the counter kept counting up, unaffected by the
reconfiguration. Note the much shorter configuration time, as well as the fact that the DONE
LED turned off.

2. UltraScale targets only: Select Program device on the green banner again. Navigate to the
Bitstreams folder to select Config_LeftDown_pblock_inst_shift_partial.bit, then click OK
to program the device.

The shift portion of the LEDs restarted in the opposite direction, and the DONE LED is back
on.

3. Select Program device on the green banner again. Navigate to the Bitstreams folder to
select Config_RightUp_pblock_inst_count_partial_clear.bit, then click OK to program the
device.

The count portion of the LEDs stopped, but the shifter kept shifting, unaffected by the
reconfiguration.

4. Select Program device on the green banner again. Navigate to the Bitstreams folder to
select Config_LeftDown_pblock_inst_count_partial.bit, then click OK to program the device.

The counter is now counting down, and the shifting LEDs were unaffected by the
reconfiguration. This process can be repeated with the Config_RightUp partial bit files to
return to the original configuration, or with the blanking partial bit files to stop activity on the
LEDs (they will stay on). Keep track of the currently loaded module for each partition to
ensure the correct clearing bitstream is loaded before the next partial bitstream.

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=51

Conclusion
This concludes Lab 2. In this lab, you:

• Synthesized a design bottom-up to prepare for Dynamic Function eXchange implementation

• Created a valid floorplan for a Dynamic Function eXchange design

• Created two configurations with common static results

• Implemented these two configurations, saving the static design to be used in each

• Created checkpoints for static and reconfigurable modules for later reuse

• Examined framesets and verified the two configurations

• Created full and partial bitstreams

• Configured and partially reconfigured an FPGA

Lab 2: UltraScale Basic DFX Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=52

Lab 3

DFX Project Flow
In this lab, you will create a new project and set up all the sources and runs defining the structure
of a DFX design. The design used in this lab is based on the simple design in labs 1 and 2, but
modified so it has two instances of the shift module instead of one shift and one count. This
shows the implications of Partition Definitions in the project flow.

This lab currently targets the following Xilinx® development platforms:

• KCU116 (Kintex® UltraScale+™)

• VCU118 (Virtex® UltraScale+™)

• KCU105 (Kintex UltraScale)

• VCU108 (Virtex UltraScale)

• KC705 (Kintex-7)

• VC707 (Virtex-7)

• VC709 (Virtex-7)

Step 1: Extract the Tutorial Design Files
1. Download the reference design files from the Xilinx website.

2. Extract the zip file contents to any write-accessible location.

3. In the extracted files, navigate to \dfx_project.

Step 2: Load Initial Design Sources
The first unique step in any DFX design flow (project based or otherwise) is to define the parts of
the design that will be marked reconfigurable. This is done via context menus in the Hierarchical
Source View in project mode. These steps will walk through initial project creation through
definition of partitions in a simple design.

1. Extract the design from the archive. The dfx_project data directory is referred to in this
tutorial as the <Extract_Dir>.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 53Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=9f0c2c60-36b7-44c4-876b-ff772a1cb2d0;d=ug947-vivado-partial-reconfiguration-tutorial.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=53

2. Open the Vivado IDE and select Create Project, then click Next.

3. Select the <Extract_Dir> as the Project location. Leave the Project name as project_1,
and leave the Create project subdirectory option checked. Click Next.

4. Select RTL Project and ensure the Do not specify sources checkbox is unchecked, then click
Next.

5. Click the Add Directories button and select these Sources directories to be added to the
design:

• <Extract_Dir>\Sources\hdl\top

• <Extract_Dir>\Sources\hdl\shift_right

6. Click Next to get to the Add Constraints window, then select these files:

• <Extract_Dir>\Sources\xdc\top_io_<board>.xdc

• <Extract_Dir>\Sources\xdc\pblocks_<board>.xdc

Note that these constraint files are full design constraints, scoped to the top level design. If
you would like to perform your own floorplanning, only select the top_io xdc, omitting the
pblocks xdc. Stop the flow after synthesis to create your own floorplan.

7. Click Next to choose the part. In the Part selector, click on Boards and choose the target
board matching the constraint file(s) you have selected. Then click Next and then Finish to
complete project creation. The Sources window shows a standard hierarchical view of the
design.

Figure 20: Sources View After Project Creation

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=54

At this point, a standard project is open. Nothing specific to Dynamic Function eXchange has
been done.

8. Select Tools → Enable Dynamic Function eXchange.

This prepares the project for the DFX design flow. Once this is set it cannot be undone, so
archive your project before selecting this option.

Figure 21: Enabling Dynamic Function eXchange

In the ensuing dialog box, click Convert to turn this project into a DFX project.

9. Right-click on one of the “shift” instances and select the Create Partition Definition… option.

This action will define *both* shift instances as Reconfigurable Partitions in the design. Since
each instance has come from the same RTL source, they are logically identical. Out-of-
context synthesis will be run to keep this module separated from top, and the one post-
synthesis checkpoint will be used for both shift instances.

TIP: If there are multiple instantiations of the same module within a design, but not all need to be
reconfigurable, then the modules must be manually modified to become unique. Then you can
independently tag desired instances as Reconfigurable Partitions.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=55

10. In the dialog box that appears, give names to both the Partition Definition and the
Reconfigurable Module. The Partition Definition is the general reference for the workspace
into which all Reconfigurable Modules will be inserted, so give it an appropriate name, such
as shifter. The Reconfigurable Module refers to this specific RTL instance, so give it a
name that references its functionality, such as shift_right, then click OK.

Figure 22: Creating the shifter Partition Definition

The Sources view has now changed slightly, with both shift instances now shown with a
yellow diamond, indicating they are Partitions. You will also see a Partition Definitions tab in
this window, showing the list and contents of all Partition Definitions (one at this point) in the
design. In addition, an out-of-context module run has been created for synthesizing the
shift_right module.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=56

Figure 23: Sources view after defining shift partition

At this point, more Reconfigurable Module sources may be added. This is done via the
Dynamic Function eXchange Wizard.

IMPORTANT! After Partitions have been defined, all additional RMs must be added via the DFX
Wizard, and any management of RM sources, configurations, and runs must also be done via this
wizard.

Step 3: Completing the Design with the
Dynamic Function eXchange Wizard

1. Launch the Dynamic Function eXchange Wizard by selecting this option under the Tools
menu or from the Flow Navigator.

2. Click Next to get to the Edit Reconfigurable Modules page. Here you can see the shift_right
RM already exists, and there are add, remove and edit buttons on the left hand side of the
window, above the RMs. Click on the blue + icon to add a new RM.

3. Click the Add Directories button to select the shift_left folder:

<Extract_Dir>\Sources\hdl\shift_left

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=57

Or use the Add Files button to select the shift_left.v file residing in this directory. If module-
level constraints were needed, they would be added here. Note that they would need to be
scoped to the level of hierarchy for this Partition.

Fill in the Reconfigurable Module field to be shift_left. Set the Partition Definition to be
shifter, leave Top Module field empty and the Sources are already synthesized check box
unchecked. Click OK to create the new module.

Two Reconfigurable Modules are now available for the shifter Reconfigurable Partition.

Figure 24: Dynamic Function eXchange Wizard with Two Reconfigurable Modules
Defined

On the next page, Configurations are defined. Configurations are full design images
consisting of the static design and one RM per RP. You can either create any desired set of
configurations, or simply let the wizard select them for you.

4. Let the Wizard create the configurations by selecting the automatically create configurations
link.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=58

Figure 25: Dynamic Function eXchange Wizard Configurations Page

After selecting this option, the minimum set of two configurations has been created. Each
shift instance has been given shift_right in the first configuration and shift_left in
the second configuration. Note that the Configuration Name is editable – in the example
below, the names have been updated to config_right and config_left to reflect the
Reconfigurable Modules contained within each one.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=59

Figure 26: Auto-Generated Minimum Set of Configurations

Additional configurations can be created by using these two Reconfigurable Modules, but
two is all you need to create all the partial bitstreams necessary for this version of the design,
as the maximum number of RMs for any RP is two.

5. Click Next to get to the Edit Configuration Runs page.

As with configurations themselves, the runs used to implement each configuration can be
automatically or manually created. A parent-child relationship will define how the runs
interact – the parent run implements the static design and all RMs within that configuration,
then child runs reuse the locked static design while implementing the RMs within that
configuration in that established context.

6. Click on the automatically create configuration run link to populate the Configuration Runs
page with the minimum set of runs.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=60

Figure 27: Dynamic Function eXchange Wizard

This creates two runs, consisting of one parent configuration (config_right) and one child
configuration (config_left). Any number of independent or related runs can be created
within this wizard, with options for using different strategies or constraint sets for any of
them. For now, leave this set to the two runs set here. Note that the names of the runs are
not editable.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=61

Figure 28: Auto-generated Minimum Set of Configuration Runs

7. Click Next to see the Summary page then Finish to complete the design setup and exit the
Wizard.

IMPORTANT! Nothing is created or modified until you click Finish to exit the DFX Wizard. All actions
are queued until this last click, so it is possible to step forward and back as needed without
implementing changes until you are ready.

Back in the Vivado IDE, you will see that the Design Runs window has been updated. A
second out-of-context synthesis run has been added for the shift_left RM, and a child
implementation run (child_0_impl_1) has been created under the parent (impl_1). You are now
ready to process the design.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=62

Figure 29: Design Runs Window Showing All Synthesis and Implementation Ready to
Launch

Step 4: Synthesizing and Implementing the
Current Design

With the design from above open in the Vivado IDE, examine the Design Runs window. The top-
level design synthesis run (synth_1) and the parent implementation run (impl_1) are marked
“active.” The Flow Navigator actions apply to these active runs and their child runs, so clicking on
Run Synthesis or Run Implementation pulls the design through only these runs, as well as the
OOC synthesis runs needed to complete them. You can select a specific parent or child
implementation run, right-click and select Launch Runs to pull through the entire flow for that
ultimate target.

1. In the Flow Navigator, click Run Synthesis → Open Synthesized Design.

This action will synthesize all OOC modules, followed by synthesis of the top level design.
This is no different than any design with OOC modules (IP or otherwise).

In the post-synthesis design that opens, note that two Pblocks have already been defined.
These were supplied in pblocks_<board>.xdc and map to the two shift instances in top.
If no Pblocks had existed with the design sources, they could be created at this step in the
flow. This can be done by right-clicking on an inst_shift instance in the design hierarchy to
select Floorplanning → Draw Pblock. Each instance will require its own unique Pblock.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=63

Figure 30: Floorplan with Two Reconfigurable Partitions (KC105 shown)

2. Select one of the two Pblocks in the floorplan and note its properties. The last two properties
listed are RESET_AFTER_RECONFIG (7 series only) and SNAPPING_MODE, two properties
specific to DFX. Note that both of these options have been enabled in the Pblocks xdc.

3. Run DFX-specific design rule checks by selecting Reports → Report DRC. To save time, you
can deselect all checkboxes other than the one for Dynamic Function eXchange.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=64

Figure 31: Checking DFX DRCs

DRC checks will report no errors with the supplied sources and constraints. Advisory
messages may be given for certain devices with suggestions on how to improve the quality of
the given Pblocks. These can be ignored for this simple design.

If you have created your own floorplan and DRCs have been reported, fix the issues before
moving on. Note that both modules will require BRAM resources, and remember that
SNAPPING_MODE will resolve any errors related to horizontal or vertical alignment.

TIP: Run DFX Design Rule Checks early and often.

4. In the Flow Navigator, select Run Implementation to run place and route on all
configurations.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=65

This action runs implementation first for impl_1 and then for child_0_impl_1. Behind the
scenes, Vivado takes care of all the details. In addition to running place and route for the two
runs with all the DFX requirements in place, it does a few more tasks specific to DFX. After
impl_1 completes, Vivado automatically:

• Writes module-level (OOC) checkpoints for each routed shift_right RM.

• Carves out the logic in each RP to create a static-only design image for the top. This is
done by calling update_design -black_box for each instance.

• Locks all placement and routing for the static-only portion of the design. This is done by
calling lock_design -level routing.

• Saves the locked static parent image to be reused for all child runs.

In addition, when the child run completes, module-level checkpoints are created for the
routed shift_left RMs. A locked static design image would be identical to the parent, so this
step is not necessary.

If only specific configuration runs are desired, these can be individually selected within the
Design Runs window. Note that a parent run must be completed successfully before a child
run can be launched, as the child run starts with the locked static design from the parent.

5. When Implementation completes, click Cancel in the resulting pop-up dialog.

CAUTION! Even though the design has been processed through to the child implementation run,
selecting Open Implemented Design opens the parent run by default. Use the pulldown selection to
choose the desired implementation run.

Figure 32: All Configurations Routed

At this point, there are two steps remaining. The first is running PR Verify to compare the two
configurations to ensure consistency of the static part of the design images. This step is
highly recommended and will occur automatically within the Vivado project. The second step
is to generate the bitstreams themselves.

6. In the Flow Navigator, click Generate Bitstream. This action launches bitstream generation
on the active parent run, and launches PR Verify and then bitstream generation on all
implemented child runs.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=66

For each configuration run, both full and partial bitstreams are generated by default.

The entire Dynamic Function eXchange flow can be run in a project environment. All steps, from
module-level synthesis to bitstream generation can be done without leaving the GUI.

Step 5: Adding an Additional Reconfigurable
Model and Corresponding Configuration

1. With the design open in the Vivado IDE, open the Dynamic Function eXchange Wizard.

2. On the Edit Reconfigurable Modules page, click the + button to add a new RM.

3. Select the shift_right_slow.v file in <Extract_Dir>\Sources\hdl\shift_right_slow
then click OK.

4. Enter shift_right_slow for the Reconfigurable Module name and then click OK and Next.

Figure 33: Adding a new RM shift_right_slow

Note that on the Edit Configurations page, there is no longer an option to automatically
create configurations, as you already have two existing ones. You can re-enable this option by
removing all existing configurations, but this will recreate all configurations and remove all
existing results.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=67

5. Create a new configuration by clicking the + button, entering the name config_right_slow,
then hitting ENTER. Select shift_right_slow for each Reconfigurable Partition instance.

Figure 34: Creating the config_right_slow Configuration

6. Click Next to advance to the Configuration Runs. Use the + button to create a new
configuration with these properties:

• Run: child_1_impl_1 - this simply matches the existing convention

• Parent: impl_1 - this makes this configuration a child run of the existing parent run

• Configuration: config_right_slow - this is the one with the new RMs that was just defined

7. Click OK to add the new Configuration Run.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=68

Figure 35: Creating a new Configuration Run

This new configuration, as a child of the existing impl_1, will reuse the static design
implementation results, just like config_left did. Three runs now exist, with two as children of
the initial parent. The green check marks indicate that two of the runs are currently complete.

Figure 36: The config_right_slow configuration added as a new child run

8. Click Next, then Finish to build this new configuration run.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=69

Figure 37: New OOC synthesis run and Configuration run added

9. Select this new child implementation run, right-click and select Launch Runs. This will run
OOC synthesis on the shift_right_slow module, then implement this module within the
context of the locked static design.

Step 6: Creating and Implementing a Greybox
Module

For some designs, the desired initial configuration of the device may be an image with no
function resident in a Reconfigurable Partition. Or perhaps there are no Reconfigurable Modules
available to implement yet. A greybox configuration can be used to implement just the static
design without real RM netlists available.

A greybox is a module that starts off as a blackbox, but then has LUTs automatically inserted for
all ports. Output ports are driven to a logic 0 (by default, 1 is selectable via property) so they do
not float. This module allows the design to be processed even if no RMs are available. Training
scripts are available to create timing budgets for this greybox image, optimizing the
implementation results of the static design. A configuration with greybox RMs can be the parent
run, but this is only recommended when no other RMs exist and/or when budgeting constraints
are used to optimize the RP interface placement.

1. Open the Dynamic Function eXchange (DFX) Wizard and move to the Configurations page –
no new Reconfigurable Modules need to be defined in this case, as this is a dedicated feature.
Create a new configuration a name of config_greybox and enter <greybox> for each
Reconfigurable Partition instance.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=70

Figure 38: Adding the new config_greybox Configuration

2. Click Next to get to the Configuration Runs page, then create another new configuration run,
this time for the greybox configuration.

• Parent: synth_1 – this makes this configuration a new parent, starting from the
synthesized top level design

• Configuration: config_greybox – the RMs consist only of LUT tie-offs

• Run: impl_greybox

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=71

Figure 39: Creating an independent greybox Configuration Run

3. Click Next then Finish to create this new run.

Now there are four implementation runs and three out-of-context runs shown in the Design
Runs window. Note that the greybox module does not require synthesis – it is an embedded
feature in the DFX solution.

Figure 40: Greybox Implementation Ready to Run

At this point the greybox configuration can be implemented.

4. Select the impl_greybox design run, right-click and select Launch Runs. The Flow Navigator
will not launch this run as it is not the active parent.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=72

IMPORTANT! Because impl_1 and impl_greybox are both parents, their static design results will be
different, and their resulting bitstreams will NOT be compatible in hardware. Only bitstreams derived
from a single parent (and subsequently confirmed using PR Verify) should ever be delivered through
Dynamic Function eXchange (DFX) to a device.

Step 7: Modifying a Design Source or Options
The Vivado IDE tracks dependencies between design runs. This is a critical feature for Dynamic
Function eXchange given the interdependencies of configurations. If any aspect of the parent
configuration or implementation results are modified, it and all children must be recompiled.

1. Select the impl_1 design run.

2. In the Options tab of the Run Properties window, change the Strategy to
Performance_Explore.

A pop-up dialog will alert you to the fact that impl_1 will be forced out of date if you proceed.

Figure 41: Modifying a Completed Run

3. Click Yes.

Multiple runs are now marked out-of-date: impl_1 and both child runs that depend on it. The
resulting files still exist in their respective folders, but will be deleted as soon as the parent
run is launched. The impl_greybox design run, on the other hand, remains completed as it
does not depend on impl_1 as a parent.

Note that the Strategy option for each of the child runs remains at Vivado Implementation
Defaults; child runs do not inherit options from the parent run. However, any strategy or
option in child runs will only have an effect on the Reconfigurable Module implementation, as
the static design is already routed and locked.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=73

Figure 42: Design Runs Reset After Parent Modification

4. In the Flow Navigator click Run Implementation.

A dialog will appear to confirm if you want to reset runs before continuing. Because the stale
step is the first step in the parent run, the first options completely reset both parent and all
child runs to the beginning of implementation. Click either Reset and Re-run or Run from
Step: phys_opt_design to continue.

Figure 43: Reset and Re-Run

This implements all three runs. First, the parent impl_1 run will complete, then the two child
runs will run in parallel.

Conclusion
The Dynamic Function eXchange Project Flow allows a great deal of flexibility, enabling users to
manage their design environment and explore different options. Users must remain careful to
track implementation results and bitstreams to ensure that only compatible bitstreams, built from
a single fixed static image, are downloaded to the target device.

Lab 3: DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=74

Lab 4

Vivado Debug and the DFX Project
Flow

Overview

This lab covers more project-based features for the Dynamic Function eXchange (DFX) solution.
The following topics are covered in this lab:

• The DFX project flow in the Vivado® IDE

• Current IP support within Reconfigurable Modules (RM)

• Inserting Vivado Debug cores within Reconfigurable Modules

• Improvements to reporting unique to DFX

• Debugging within the Vivado Hardware Manager

It differs from the DFX flow in Lab 3 in that while this Project Flow does not show greybox
implementation and a few other features, it covers IP and debugging. This lab supports the
following development platforms:

• KCU116 (Kintex® UltraScale+™)

• VCU118 (Virtex® UltraScale+™)

• KCU105 (Kintex UltraScale)

• VCU108 (Virtex UltraScale)

Step 1: Extract the Tutorial Design Files
1. Download the reference design files from the Xilinx website.

2. Extract the zip file contents to any write-accessible location.

3. In the extracted files, navigate to \dfx_project_debug.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 75Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=9f0c2c60-36b7-44c4-876b-ff772a1cb2d0;d=ug947-vivado-partial-reconfiguration-tutorial.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=75

Step 2: Loading Initial Design Sources
The first unique step in any DFX design flow (project based or otherwise) is to define the parts of
the design to be marked as reconfigurable. This is done via context menus in the Hierarchical
Source View in project mode.

1. Extract the design from the TSC archive. The dfx_project_debug data directory is
referred to in this tutorial as the <Extract_Dir>.

2. Open the Vivado IDE and select Create Project, then click Next.

3. Select the <Extract_Dir> as the Project location. Leave the Project name as project_1,
and leave the Create project subdirectory option checked. Click Next.

4. Select RTL Project and ensure the Do not specify sources checkbox is unchecked, then click
Next.

5. Click the Add Files button and select these sources to add to the design:

• <Extract_Dir>\Sources\hdl\top.v

• <Extract_Dir>\Sources\hdl\multiplier\mult.v

• <Extract_Dir>\Sources\ip\<board>\clk_wiz\clk_wiz_0.xci

• <Extract_Dir>\Sources\ip\<board>\vio\vio_0.xci

Do not select add.v or mult_no_ila.v (in the adder and multiplier_without_ila
folders, respectively), as these are the sources for RMs that will be added later.

6. Select the Copy sources into project checkbox.

7. Click Next to get to the Add Constraints window, then click the Add Files button, and select
the following file: <Extract_Dir>\Sources\xdc\top_io_<board>.xdc

8. Select the Copy constraints files into project checkbox.

Note: These constraint files are full design constraints, scoped to the top-level design. This constraint
file does not include a floorplan.

9. Click Next to choose the part. In the Part selector, click on Boards and (using filters if needed)
choose the appropriate target platform:

• Kintex UltraScale KCU105 Evaluation Platform

• Virtex UltraScale VCU108 Evaluation Platform

• Kintex UltraScale+ KCU116 Evaluation Platform

• Virtex UltraScale+ VCU118 Evaluation Platform

10. Then click Next and then Finish to complete project creation. The Sources window shows a
standard hierarchical view of the design.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=76

Figure 44: Sources View After Project Creation

If red lock icons appear on either IP, as shown above, select Reports → Report IP Status to
see if they can be upgraded. Ensure any out-of-date IP are checked, then click Upgrade
Selected to bring them to the most recent version available. Leave Core Container disabled
and click Skip when asked to generate output products.

At this point, a standard project is open. Nothing specific to Dynamic Function eXchange has
been done yet. Next, you will add an ILA core.

11. In the Flow Navigator, under Project Manager, open the IP Catalog and navigate to Debug &
Verification → Debug.

12. Right-click on the ILA (Integrated Logic Analyzer) and select Customize IP. Customize the IP
with these non-default options on the General Options and Probe_Ports(0..0) tabs :

• Component Name: ila_mult

• Input Pipe Stages: 1

• Probe Width of PROBE0: 8

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=77

Figure 45: ILA Customized for the Multiplier Function

13. Click OK and then Skip to create the IP.

Do not select Generate. Leave the Synthesis Options set to Out of context per IP.

This IP now fills in underneath the my_math hierarchy. The ILA core monitors the multiply
function. You have now completed a full design hierarchy.

Step 3: Setting Up the Design for DFX
1. Select Tools → Enable Dynamic Function eXchange.

This prepares the project for the DFX design flow. Once this is set it cannot be undone, so
Xilinx recommends archiving your project before selecting this option.

In the dialog box, click Convert to turn this project into a DFX project.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=78

Figure 46: Enabling Dynamic Function eXchange

2. Right-click on the my_math instance in the sources window and select the Create Partition
Definition… option.

This defines this instance as a Reconfigurable Partition in the design. Out-of-context
synthesis is run to keep this module separated from top, and the post-synthesis checkpoint is
used for the math_rp instance..

TIP: If there are multiple instantiations of a module within a design, each are marked as
reconfigurable. If they all do not need to be reconfigurable, then the modules must be manually
modified to remain unique. Then you can independently tag desired instances as Reconfigurable
Partitions.

Note: IP placed within Reconfigurable Modules can be synthesized as Global or Out-of-Context. For
this lab, leave the ILA IP set as the default of Out-of-Context.

3. In the dialog box that appears, name both the Partition Definition and the Reconfigurable
Module.

The Partition Definition is the general reference for the workspace into which all
Reconfigurable Modules will be inserted, so give it an appropriate name: math.

The Reconfigurable Module refers to this specific RTL instance, so give it a name that
references its functionality: mult.

4. Then click OK.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=79

Figure 47: Creating the math Partition Definition

The Sources view has now changed slightly, with the my_math instance now shown with a
yellow diamond, indicating it is a Partition. The Partition Definitions tab in this window shows
the list and contents of all Partition Definitions (just one in this case) in the design. In
addition, an out-of-context module run has been created for synthesizing the mult module.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=80

Figure 48: Sources Views After the Math Partition has been Defined

At this point, new Reconfigurable Modules may be added (or modified) via the Dynamic
Function eXchange Wizard.

IMPORTANT! After Partitions have been defined, all additional RMs must be added via the DFX
Wizard, and any management of RM sources, configurations, and runs must also be done via this
wizard.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=81

Step 4: Using the DFX Wizard to Complete the
Rest of the Design

1. Launch the Dynamic Function eXchange Wizard by selecting this option under the Tools
menu or from the Flow Navigator.

2. Click Next to get to the Edit Reconfigurable Modules page. Here you can see the mult RM
already exists, and there are add, remove and edit buttons on the left-hand side of the page.
Click on the + icon to add a new RM.

3. Click the Add Files button to select the top level of the add function:

<Extract_Dir>\Sources\hdl\adder\add.v

If module-level constraints were needed, they would be added here. Note that they would
need to be scoped to the level of hierarchy for this Partition.

4. Select add.v either by double-clicking or by single-clicking and selecting OK.

5. Fill in the Reconfigurable Module name to be add. Set the Partition Definition name to be
math, leave Top Module name empty and the Sources are already synthesized option
unchecked. Select the Copy sources into project checkbox. Click OK to create the new
module.

Two Reconfigurable Modules are now available for the math Reconfigurable Partition.

Figure 49: DFX Wizard with two Reconfigurable Modules defined

6. Click Next to define configurations.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=82

7. Let the Wizard create the configurations by selecting the automatically create configurations
link.

Configurations are full design images consisting of the static design and one RM per RP. You
can either create any desired set of configurations, or simply let the wizard select them for
you, as you did above.

The minimum set of two configurations is now created. The math instance has been given
mult in the first configuration and add in the second configuration.

Note: The Configuration Name is editable, and the names have been updated to config_mult and
config_add to reflect the Reconfigurable Modules contained within each configuration.

Figure 50: Auto-Generated minimum set of Configurations with modified names

Additional configurations can be created by using these two Reconfigurable Modules when
desired. Greybox (blackbox with LUT tie-offs) configurations can also be selected, but this
feature is not used in this lab.

8. Click Next to get to the Edit Configuration Runs page.

As with configurations themselves, the runs used to implement each configuration can be
automatically or manually created. A parent-child relationship will define how the runs
interact – the parent run implements the static design and all RMs within that configuration,
then child runs reuse the locked static design while implementing the RMs within that
configuration in that established context.

9. Click the automatically create configuration run link to populate the Configuration Runs page
with the minimum set of runs.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=83

This creates two runs, consisting of one parent configuration (config_mult) and one child
configuration (config_add). Any number of independent or related runs can be created within
this wizard with options for using different strategies or constraint sets for any of them. For
now, leave this set to the two runs set here. Note that the names of the runs are not editable.

Figure 51: Auto-generated minimum set of Configuration Runs

10. Click Next to see the Summary page then Finish to complete the setup and exit the Wizard.

IMPORTANT! Nothing is created or modified until you click Finish to exit the DFX Wizard. All actions
are queued until this last click, so it is possible to step forward and back as needed without
implementing changes until you are ready.

Back in the Vivado IDE, the Design Runs window has been updated. A second out-of-context
synthesis run has been added for the math RM, and a child implementation run
(child_0_impl_1) has been created under the parent (impl_1).

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=84

Figure 52: Design Runs Window Showing All Synthesis and Implementation Ready to
Launch

Step 5: Adding IP in the Reconfigurable
Module

Looking back at the Partition Definitions tab, expand the added RM math_rp to see that there are
three submodules that must be added to complete its functionality, as indicated by the question
mark icons.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=85

Figure 53: Partition Definitions Tab with Missing Sources for add

All three of these missing modules are IP. The IP instances must be unique within each RM, so
the same ILA core instance cannot be used from static or another RM.

1. Right-click the ila_mult instance within the mult RM and select Copy IP.

2. Set the Destination IP Name to ila_add and leave the Destination IP Location as is, then click
OK.

Figure 54: Copying the ILA from math to add

This copied IP will be placed in the main Sources hierarchy window in the primary design
fileset, so it must be moved to the add RM blockset.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=86

3. In the Hierarchy tab, right-click on the ila_add instance and select Move to Reconfigurable
Module. Select the add RM and click OK.

Figure 55: Moving IP to an RM

If you navigate back to the partitions definitions tab, you’ll see the ILA IP instance was
properly moved under the add RM.

4. Open the IP Catalog and search on add to find the Adder/Subtracter IP. Open this IP and
customize it with these non-default options, leaving the name set to c_addsub_0:

• Input Type: Unsigned (for both A and B)

• Input Width: 5 (for both A and B)

• Output Width: 6

• Latency: 0

• Uncheck the Clock Enable on the Control tab

5. Click OK.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=87

Figure 56: Customizing the Adder/Subtracter IP

6. Click Skip to complete IP generation.

Like with the ILA IP, this has been added to the main source set, so follow the same
procedure to move it to the add RM.

7. In the Hierarchy tab of the Sources window, right-click on the c_addsub_0 instance and
select Move to Reconfigurable Module.

Select the add RM and click OK.

Note that this IP is used for both adder function instances within the add RM. At this point, the
entire design has been loaded, and you are ready to move on to implementation.

Step 6: Synthesizing the Design and Creating
a Floorplan

Before launching synthesis, take a look at the naming convention that inserts the Debug Hubs
necessary for the Vivado Debug solution.

1. Open mult.v and examine the port list in this file.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=88

The port list includes twelve ports that start with S_BSCAN_. These ports are used to
connect the Debug Hubs that are inserted in the static and reconfigurable parts of the design.
The insertion of these hubs is automatic. Connections are automatically made as long as the
port list matches this naming convention.

CAUTION! These exact port names must be used to have the inference occur. If the port names differ
at all, then the attributes shown in the comments of these RTL files must be used to assign the new
signal names to the debug properties as indicated.

With the design from section one open in the Vivado IDE, take a look at the Design Runs
window. The top-level design synthesis run (synth_1) and the parent implementation run
(impl_1) are marked “active.” The Flow Navigator actions apply to these active runs, so
clicking on Run Synthesis or Run Implementation will pull the design through only these runs,
as well as the OOC synthesis runs needed to complete them. You could select the child
implementation run, right-click, and select Launch Runs to pull through the entire flow, but
we’ll run synthesis separately here.

2. In the Flow Navigator, click Run Synthesis. When synthesis completes, select Open
Synthesized Design.

This action synthesizes all OOC modules, followed by synthesis of the top level design. This is
no different than any design with OOC modules (IP or otherwise).

3. Open the schematic for the post-synthesis view to see the insertions performed during
synthesis.

In the top level design, see that a dbg_hub instance was inserted. Its sl_* ports are connected
to the VIO debug core at the top level. Next, descend into the my_math hierarchy to see that
another dbg_hub instance has been inserted, with its sl_* ports connected to the ILA debug
core in that module. Note that this Reconfigurable Module is the multiplier, as this is the
schematic view of the active parent run.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=89

Figure 57: dbg_hub_1 Inserted within the mult RM

4. Select Layout → Floorplanning to put Vivado in floorplanning mode. Then in the Netlist
window, right click on the my_math instance and select Floorplanning → Draw Pblock. Create
a Pblock wherever you’d like. In the dialog box that appears, keep the name pblock_my_math
and leave only SLICE, DSP and BRAM resource types checked.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=90

Figure 58: Drawing a Pblock for the my_math RP

If the region you have selected does not have enough resources of any particular type, these
resource types will appear in red in the Statistics tab of the Pblock Properties window. Make
adjustments as necessary, then save the floorplan. Remember, each RM contains an ILA core,
which will require BRAM. Also, this design has a high number of control sets, so the region
required may be a little bigger than expected. An area of at least 3000 CLBs plus a column of
BRAM is suggested.

5. Run DFX-specific design rule checks by selecting Reports → Report DRC. To save time, you
can deselect all checkboxes other than the one for Dynamic Function eXchange. Click OK to
run.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=91

Figure 59: Checking DFX DRCs

Fix any errors that may appear. Advisory messages might appear for certain devices with
suggestions on how to improve the quality of the given Pblocks.

TIP: Run DFX Design Rule Checks early and often.

6. Save your constraints by clicking Save Constraints in the top toolbar.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=92

Step 7: Running the PR Configuration Analysis
Report

The PR Configuration Analysis tool compares each Reconfigurable Module that you select to give
you input on your DFX design. It examines resource usage, floorplanning, clocking, and timing
metrics to help you manage the overall DFX design. The PR Configuration Analysis tool is run
through the Tcl Console.

1. In the Tcl Console, cd into the project directory. Next, enter this command to run a report on
the two RMs available in this design:

report_pr_configuration_analysis -cells my_math -dcps
 {./project_1.runs/add_synth_1/math_rp.dcp ./project_1.runs/mult_synth_1/
math_rp.dcp}

Note: If your project is not named “project_1” you’ll need to adjust this in the Tcl command.

This runs the analysis with the default settings, gathering data for the first three focus areas
listed below. Use the -help option to see that you can focus on three specific areas.

• The -complexity switch focuses the report on resource usage, including the maximum
resources required for the RP.

• The -clocking switch focuses the report on clock usage and loads for each RM.

• The -timing switch focuses the report on boundary interface timing details.

• The -rent switch adds rent metrics to the report, but can take a long time to run.

• The -file switch redirects the report to a file.

Examining the report in the Tcl Console, you will see a Complexity summary in section 2. It
shows the current RM (the multiplier), RMs 1 and 2 (the adder and multiplier, respectively),
and a column for the maximum. This table examines the resource utilization of each
module to find the maximum of each so you can construct Pblocks appropriately.

Note that the resource counts of RM1 and RM2 appear to be low. Above the report in the
log you will see a few critical warnings:

CRITICAL WARNING: [Project 1-486] Could not resolve non-primitive
black box cell 'math_rp_c_addsub_0' instantiated as
 'adder_ip_instance0'

The post-synthesis checkpoints do not include the submodule IP as those were generated
out-of-context. In order to see the complete picture of each RM, these lower-level
checkpoints must be linked in, or the IP must be synthesized set to Global.

2. In the Partition Definitions tab, expand the hierarchy if necessary to be able to right click on
the my_mult_ila IP and select Generate Output Products.

3. Change the Synthesis Options value to Global, then click Apply and then Cancel.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=93

4. Repeat this process for both IP under the adder module, my_add_ila and adder_ip. The latter
has two instances but this process only needs to happen once, as the IP instances are
identical.

5. Synthesis for these modules are now out of date. Select Run Synthesis in the Flow Navigator.
Accept all the dialogs that ask about resetting and resynthesizing all runs.

6. When synthesis completes, rerun the report_pr_configuration_analysis command
from step 1 and examine the log and results.

Step 8: Implementing the Design
1. In the Flow Navigator, select Run Implementation to run place and route on all

configurations.

This action runs implementation first for impl_1 and then for child_0_impl_1. In addition to
running place and route for the two runs with all the DFX requirements in place, it does a few
more tasks specific to DFX. After impl_1 completes, Vivado automatically:

• Writes a module-level (OOC) checkpoint for the routed multiplier RM.

• Carves out the logic in the RP to create a static-only design image. This is done by calling
update_design -black_box for the RP instance.

• Locks all placement and routing for this static-only design. This is done by calling
lock_design -level routing.

• Saves this locked static parent image to be reused for all child runs.

In addition, when the child run completes, a module-level checkpoint is created for the
routed adder RM. A locked static design image would be identical to the parent, so this step
is not necessary.

In Vivado projects, dependency management is handled by the Vivado IDE. If sources are
modified, any applicable runs will be marked out-of-date. The parent-child relationship means
these checks must understand dependencies. For example, if add.v is modified, only its OOC
synthesis run and the child implementation run would be marked out of date.

If only specific configuration runs are desired, these can be individually selected within the
Design Runs window. Note that a parent run must be completed successfully before a child
run can be launched, as the child run starts by importing the locked static design from the
parent.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=94

Figure 60: Both Configurations Routed

2. When the implementation runs complete, select Open Implemented Design and then OK in
the resulting pop-up dialog.

Figure 61: Open the impl_1 Configuration

CAUTION! Even though the design has been processed through to the child implementation run,
selecting Open Implemented Design opens the parent run by default. Use the pulldown selection to
choose the desired implementation run.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=95

Figure 62: Device View of the Routed Parent Design

This is the routed design for the multiplier configuration. Next, take a look at the frameset of
the placement and routing areas.

3. In the Tcl Console, cd to the current project directory (if you are not already there). Then run
these commands to source visualization scripts:

source project_1.runs/impl_1/hd_visual/
pblock_my_math_Routing_AllTiles.tcl
highlight_objects -color yellow [get_selected_objects]

This first Tcl script identifies the frames that are valid for routing the reconfigurable part of
the design. Note that it extends to the height of the clock region(s) occupied by the Pblock,
and extends left and right by two programmable units. (Programmable units are pairs of
resource columns.)

4. Run these commands to identify the frameset used for placing the reconfigurable part of the
design.

source project_1.runs/impl_1/hd_visual/
pblock_my_math_Placement_AllTiles.tcl
highlight_objects -color blue [get_selected_objects]

This highlighted region will be either the Pblock area itself, or an area just smaller than the
Pblock if the Pblock did not align with programmable units boundaries.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=96

Your device view should look something like this:

Figure 63: The math RP Highlighted Showing Placement (Blue) and Routing (Yellow)
Boundaries

Static logic may be placed in the expanded routing region, which is now the remaining yellow
region. Static routing can use any resources in the device.

5. In the Flow Navigator, select Report Timing Summary and click OK to analyze the design
timing.

6. In the Timing tab, select the Design Timing Summary and click on the value for the Worst
Negative Slack (WNS) to bring up the top ten worst paths. Double-click on the first path to
open the timing summary on that path.

In this timing report, note that in the Clock Paths and the Data Path, there is a new column
labeled Partition that shows which partition (or boundary) that particular part of the path is
in.

CAUTION! You might need to toggle the visibility of the Partition column by right-clicking on the
table header and checking Partition. Then expand the timing report window or adjust the column
widths to see the Partition column, the last column on the right.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=97

Figure 64: Timing Report Path with Partitions Shown

7. Close the impl_1 implemented design with File → Close Implemented Design.

Step 9: Adding an Additional Reconfigurable
Module and Corresponding Configuration

In this step, you will add a third RM and implement its configuration. This new RM is the same
multiplier function but with the ILA instantiation commented out. Even though there are no
debug cores in this module, the Debug-specific port names (and corresponding attributes if used)
are still required for consistency across all RMs. These ports are tied off via LUTs much like the
greybox flow.

1. Open the Dynamic Function eXchange Wizard.

2. On the Edit Reconfigurable Modules page, click the + button to add a new RM.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=98

Figure 65: Adding a new RM mult_no_ila

3. Select the mult_no_ila.v file in <Extract_Dir>\Sources\hdl
\multiplier_without_ila, name the Reconfigurable Module mult_no_ila, and then click
OK and Next.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=99

Figure 66: Creating the mult_no_ila configuration

Note that on the Edit Configurations page, there is no longer an option to automatically
create configurations, as you already have two existing ones. You can re-enable this option by
removing all existing configurations, but this recreates all configurations and removes all
existing results.

4. Create a new configuration by clicking the + button, entering the name config_mult_no_ila,
then clicking OK. Select mult_no_ila as the Reconfigurable Module.

Figure 67: Creating a new Configuration Run

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=100

5. Click Next to advance to the Configuration Runs. Use the + button to create a new
configuration with these properties:

• Run: child_1_impl_1 – this matches the existing convention, although it can be named
anything.

• Parent: impl_1 – this makes this configuration a child run of the existing parent run

• Configuration: config_mult_no_ila – this is the one with the new RM

Click OK to accept this new configuration.

Figure 68: Creating a new Configuration Run

This new configuration, as a child of the existing impl_1, will reuse the static design
implementation results, just like config_add did. Three runs now exist, with two as children of
the initial parent. The green check marks indicate that two of the runs are currently complete.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=101

Figure 69: The config_mult_no_ila Configuration Added as a New Child Run

6. Click Next then Finish to build this new configuration run.

Figure 70: New OOC Synthesis Run and Configuration Run Added

7. Select this new child implementation run, right-click and select Launch Runs. This runs OOC
synthesis on the mult_no_ila module, then implements this module within the context of the
locked static design.

CAUTION! Do not select Run Implementation from the Flow Navigator. It will rerun all the
implementation runs, even those that have completed.

8. Click Cancel on the dialog that opens after implementation completes.

Right-click on child_1_impl_1 and select Open Run. In the device view note two things:

a. The static logic is locked and therefore appears orange.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=102

b. In the Design Runs tab, notice that the amount of logic in the RP Pblock is much smaller
than for the other configurations.

9. Select Tools → Schematic (or seelct F4) to open the schematic view. Descend into the
math_rp instance to see that all the BSCAN ports are tied to LUTs and no ILA or Dbg_Hub
cores are inserted.

Step 10: Generating Bitstreams
At this point, there are two steps remaining: the first is running PR Verify to compare the two
configurations to ensure consistency of the static part of the design images. This step is highly
recommended and will occur automatically within the Vivado project. The second step is to
generate the bitstreams themselves.

1. In the Flow Navigator, click Generate Bitstream. This action launches bitstream generation
on the active parent run, and launches PR Verify and then bitstream generation on the
implemented child runs.

2. This generates full and partial bitstreams for each configuration run.

3. When bitstream generation completes, select Open Hardware Manager.

Step 11: Connecting to the Board and
Programming the FPGA

1. Open the hardware manager and connect to the target board.

This can be a local board or on a remote server. Exact details of how to accomplish this task
depends on your setup. You can interact with this design remotely via the VIO and ILA debug
cores.

2. Once you are connected to the hardware, right-click on the FPGA instance and select
Program Device. The top.bit file should be selected by default from the project_1.runs/
impl_1 directory. If it is not, select top.bit from the impl_1 project run directory. Note that the
top.ltx probes file is automatically selected. This is a complete device bitstream that includes
the multiplier RM.

3. Click on the hw_vio_1 dashboard tab. If it is not visible, open Dashboard Options and check
the hw_vio_1 box.

4. Press the + button and select all the probes from the add probes dialog box, then click OK.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=103

Figure 71: Selecting Probes for Debug

5. Right click on the probes and set them up in the following manner:

• count_out_OBUF[7:0] bus – Radix: unsigned decimal

• count_out_OBUF[7:0] individual bits – LED: low value Red, high value Green

• pause_vio_out – Active High Button

• reset_vio_out – Active High Button

• toggle_vio_out – Active High Button

• vio_select – Toggle Button

The resulting dashboard looks like this:

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=104

Figure 72: Initial VIO Dashboard for Debugging

6. Change the vio_select value to a 1. This disables the buttons on the physical board and
enables the pause, reset and toggle buttons via the VIO.

7. Select the pause button by clicking on the Value field of pause_vio_out. You will see the LED
counter stop at a particular value. Take note of the unsigned binary value of the
count_out_OBUF. In this screenshot, the value is 12.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=105

Figure 73: Monitoring the Counter via VIO

8. Press the toggle_vio_out button. The value of the count_out_OBUF bus be squared, as the
current RM is a multiplier. In this case, 144.

9. Press the pause button again and the counter will start. The count_out_OBUF values will now
count by the square of 0 to 15. Ex. 1, 4, 9, 16, 25, etc.

Note: Given the relative frequencies of the internal clock and the sampling rate of the Hardware
Manager, you may not see all values in the sequence.

10. Press the reset button to return the design to its default state. This count resumes to its initial
0 to 15 range.

11. Play with these buttons to understand the design. If you have a local board, you can toggle
the vio_select and use the buttons on the board and the LEDs on the board to observe the
same behavior.

12. Switch to the ILA dashboard. Up to this point you have used the VIO located in the static
design. You can see the result of the multiplier, but if you want to observe the waveforms
inside the RM, you can do this with the ILA located there.

13. In the Trigger Setup window, press the + button and add the my_math/mult[7:0] probes.
Change the radix (in both the trigger setup and waveform windows) to unsigned decimal and
set the value to 196 (i.e. 14x14).

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=106

Figure 74: Defining probes within the mult RM

14. In the settings window for the ILA, change the trigger position in the window to 512.

Figure 75: Setting the Trigger Position

15. Click on the run trigger button in the waveform toolbar. You will see the transition of the
waveform from 169 to 196 (i.e. 132 to 142).

Note: Make sure the VIO does not have the design paused, or the trigger will not occur.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=107

Figure 76: Watching the Multiply Function

16. Now load the partial bitstream for the adder. Right click on the target part in the hardware
view and choose Program Device.

17. If you are targeting an UltraScale part, you must first program the clearing bitstream to
prepare the design for the next partial bitstream. For the bitstream file choose the multiplier
clearing bitstream. Navigate to the project_1.runs/impl1/ directory and choose the
my_math_mult_partial_clear.bit file.

Figure 77: Selecting the Clearing Bitstream that Corresponds to the Current RM

The paired LTX file will be picked up automatically. Click Program.

18. Switch to the VIO dashboard, and observe that the counter is still counting. If you press the
toggle button to switch to the multiplier output, the value is held at 255. This is because the
logic in the Reconfigurable Partition is currently disabled. Click the toggle button to switch
back to the counter. Remember, vio_select must be set to a 1 to control remotely.

19. Right click on the target part in the hardware view and choose Program Device.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=108

20. For the Bitstream file, navigate to project_1.runs/child_0_impl_1/ and choose the
my_math_add_partial.bit file.

Figure 78: Selecting the New Partial Bitstream

Once again, the matching LTX file will populate automatically. Click Program.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=109

Figure 79: The add Function in Action

21. On the VIO dashboard. Select pause. In this case, the value stopped at 6. After a toggle, the
value is 18. The adder adds the same number 3 times.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=110

22. Switch to the ILA dashboard. In the trigger setup window click + and add my_math/
outtemp2[5:0] bus. Change the following settings for the trigger:

• Radix = unsigned decimal

• Value = 30

23. In the ILA settings window change the trigger position to 512.

24. In the waveform window, click the + button and add the my_math/outtemp2[5:0] bus to the
waveform. Right-click on the probe and change the radix to unsigned decimal.

25. In the waveform window, click the trigger button for the ILA. You will see the transition from
27 (9+9+9) to 30 (10+10+10).

Note: Make sure the VIO does not have the design paused.

Figure 80: Watching the add Function

Close the Hardware Manager when you are satisfied that everything is functioning properly.

Conclusion
With the addition of RM-level debug, any part of a Dynamic Function eXchange design is
debuggable. Users can easily switch between different RMs within the Hardware Manager to
monitor design activity just as you would in a flat design.

Lab 4: Vivado Debug and the DFX Project Flow

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=111

Lab 5

DFX Controller IP for 7 Series
Devices

Step 1: Extract the Tutorial Design Files
1. Download the reference design files from the Xilinx website.

2. Extract the zip file contents to any write-accessible location.

3. In the extracted files, navigate to \dfxc_7s.

Step 2: Customizing the Dynamic Function
eXchange (DFX) Controller IP

The DFX Controller IP requires a few details to be entered during the customization process.
Identifying all information regarding each Reconfigurable Partition (RP) and Reconfigurable
Module (RM) creates a fully populated controller that understands the entirety of the
reconfiguration needs of the target FPGA. Within this IP, reconfigurable portions of the design
are referred to as Virtual Sockets, which encompasses the RP along with all associated static logic
used to manage it, such as decoupling or handshaking logic. While the core parameters are
customizable during operation, the more that can be entered during this step, the better. This
allows the front-end design description to more accurately match the final implemented design.

1. Open the Vivado IDE and in the Tasks section, click the Manage IP task. Select New IP
Location and click Next. Enter the following details before clicking Finish:

• Part: Click on Boards to select your target. This lab supports the KC705, VC707 and
VC709.

• IP Location: <Extract_Dir>/Sources/ip

2. In the IP Catalog, expand the Dynamic Function eXchange category to double-click on the
DFX Controller IP.

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 112Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=9f0c2c60-36b7-44c4-876b-ff772a1cb2d0;d=ug947-vivado-partial-reconfiguration-tutorial.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=112

Figure 81: The Dynamic Function eXchange Controller in the IP Catalog

Note: Vivado 2020.1 has replaced all the original Partial Reconfiguration utility IP with new names
using Dynamic Function eXchange terminology. Although the functionality is the same, the names of
the IP and therefore the IP themselves are considered new.

The DFX Controller IP GUI has four tabs on the left side, providing feedback on the current
configuration of the IP. The pane labeled Validation shows any errors that might arise as the
core parameters are entered. The core will not compile if errors exist.

There are two tabs on the right side of the GUI where all customization is done. Most of the
information is entered on the Virtual Socket Manager Options tab.

3. Leave the component name as dfx_controller_0. The version of the DFX Controller used in
the final design will be automatically compiled in Step 3: Compiling the Design.

4. On the Global Options tab, make three changes:

a. Set the polarity of reset and icap_reset = 1

b. Specify the CAP arbitration protocol = 1. Latency has not been added to arbiter signals

c. Specify the number of Clock domain crossing stages = 2

Make sure that the Managed device type is set to 7 Series. The DFX Controller GUI should
now look like this:

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=113

Figure 82: Component Name and Global Options Completed

Note that this DFX Controller can manage Virtual Sockets on 7 series, UltraScale, and
UltraScale+ devices. This IP is not limited to managing reconfiguration on the same device on
which it resides. It can connect to an ICAP on another device to manage its reconfiguration.

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=114

Figure 83: Example of a Multi-chip Solution using the DFX Controller

5. Next, switch to the Virtual Socket Manager Options tab to define information about the
Virtual Sockets and their Reconfigurable Modules.

The DFX Controller IP is preloaded with one Virtual Socket with one Reconfigurable Module
to get you started.

First, define the Virtual Socket Manager (VSM) for the Shift functionality.

6. Rename the current VSM from VS_0 to vs_shift in the Virtual Socket Name field.

7. Rename the current RM from RM_0 to rm_shift_left in the Reconfigurable Module Name
field.

CAUTION!

• Underscores are not visible in the Virtual Socket Manager and Reconfigurable Module pull-
down dialogs. The Name (ID) label below the pull-down shows this more accurately.

• To accept a new value in any field in the GUI, simply click in any other field in the GUI or
press the Tab key. Do NOT press Enter, as this will trigger compilation of the IP.

8. Click the New Reconfigurable Module button to create a new RM for this VSM. Notice the
form has changed. The new, generic, Reconfigurable Module Name is RM_1. Name it
rm_shift_right.

TIP: Up to 128 Reconfigurable Modules can be managed by a single Virtual Socket Manager.

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=115

9. Configure the vs_shift VSM to have the following properties:

• Has Status Channel = checked

• Has PoR RM = rm_shift_right

• Number of RMs allocated = 4

The PoR RM indicates which RM is contained within the initial full-design configuration
file, so the VSM knows which triggers and events are appropriate upon startup of the
FPGA. The VSM tracks the current active Reconfigurable Module in its socket.

Even through you have only defined two RMs for this Virtual Socket, you have set aside
space for four in total. This allows for expansion later on. Additional Reconfigurable
Modules can be identified using the AXI4-Lite interface, but only if spaces have been
reserved for them.

10. For each of these RMs, enter the following values. Use the Reconfigurable Module To
configure pull-down to switch between the two RMs.

• For rm_shift_left:

○ Reset type = Active High

○ Duration of Reset = 3

• For rm_shift_right:

○ Reset type = Active High

○ Duration of Reset = 10

Note: The different reset durations are given to show that these can be independently assigned, as
each RM may have different requirements. Reset durations are measured in clock cycles.

11. For each RM, assign a bitstream size and location to identify where it will reside in the BPI
flash device. These values differ based on the target board.

• When targeting the KC705:

○ For rm_shift_left:

- Bitstream 0 address = 0x00AEA000

- Bitstream 0 size (bytes) = 482828

○ For rm_shift_right:

- Bitstream 0 address = 0x00B60000

- Bitstream 0 size (bytes) = 482828

• When targeting the VC707:

○ For rm_shift_left:

- Bitstream 0 address = 0x01355C00

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=116

- Bitstream 0 size (bytes) = 708260

○ For rm_shift_right:

- Bitstream 0 address = 0x01402C00

- Bitstream 0 size (bytes) = 708260

• When targeting the VC709:

○ For rm_shift_left:

- Bitstream 0 address = 0x00800000

- Bitstream 0 size (bytes) = 889252

○ For rm_shift_right:

- Bitstream 0 address = 0x008D9400

- Bitstream 0 size (bytes) = 889252

This information is typically not known early in design cycles, as bitstream size is based on
the size and composition of the Reconfigurable Partition Pblock, and bitstream address is
based on storage details. Until the design is to be tested on silicon, these can be set to 0. As
the design settles and hardware testing with the DFX Controller is set to begin, this
information can be added. The bitstream address information must match the information
passed during PROM file generation. Certain bitstream generation options, most notably
bitstream compression, can lead to variations in the final bitstream size for different
configurations, even for the same Reconfigurable Partition.

12. Define the Trigger Options for the Shift functionality:

• Number of Hardware Triggers = 4

• Number of Triggers allocated = 4

The four trigger assignments are done automatically. These can be modified during device
operation using AXI4-Lite, which is especially useful when you have added a new RM
through the same mechanism during a field system upgrade.

At this point, the IP GUI should look like this (showing rm_shift_left here):

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=117

Figure 84: VSM vs_shift Completed

Next, you will create and populate the Count Virtual Socket following the same basic steps,
with slightly different options.

13. Click the New Virtual Socket Manager button to create a new VSM.

14. Select the New Reconfigurable Module button to add two RMs with these names and
properties:

• RM Name = rm_count_up

○ Reset type = Active High

○ Duration of Reset = 12

• RM Name = rm_count_down

○ Reset type = Active High

○ Duration of Reset = 16

For this Virtual Socket, leave the bitstream address and size information at the default of 0. In
addition to being defined here, bitstream size information can be added to a routed
configuration checkpoint via the DFX Controller Tcl API, or can be added in an active design
using the AXI4-Lite interface. For the Count Virtual Socket, the bitstream address and size
information is added using the Tcl commands after place and route, but before bitstream
generation.

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=118

Note: For more information about how to use the DFX Controller Tcl API, see this link in the Dynamic
Function eXchange Controller Product Guide (PG374).

Examine the Tcl scripts in the <Extract_Dir>/Sources/scripts directory. The
update_dfxc_<board>.tcl uses the DFX Controller Tcl API to update the bitstream address
and bitstream size, which is stored in dfx_info_<board>.tcl. This file is sourced later in the lab
from <Extract_Dir>/design.tcl.

15. On the VSM tab, modify these VSM settings from their default values:

• Virtual Socket Manager name = vs_count

• Start in Shutdown = checked

• Shutdown on error = unchecked

• Has PoR RM = checked, rm_count_up

Figure 85: Final DFX Controller Symbol

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 119Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=prc;v=latest;d=pg193-partial-reconfiguration-controller.pdf;a=xCustomizingTheCorePostImplementation
https://www.xilinx.com/support/documentation/ip_documentation/dfx_controller/v1_0/pg374-dfx-controller.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=119

Step 3: Compiling the Design
The DFX Controller IP is created, but the design is not yet compiled. In order to create the PROM
image with all the necessary full and partial images, source the following scripts in Tcl mode using
the commands below.

IMPORTANT! Before running this Tcl script, open it to set the value of the xboard variable. KC705 is the
default, but VC707 or VC709 can be selected.

• vivado -mode tcl -source design.tcl:

Sourcing design.tcl generates all the necessary IP (including the DFX Controller), synthesizes
and implements the entire design (three configurations), updates the vs_count VSM using the
DFX Controller Tcl API, and generates bitstreams.

Note that the customization of the IP is scripted. Examine the gen_ip_<board>.tcl script
in <Extract_Dir>/Sources/scripts to see all these parameters defined for automated
IP creation, the DFX Controller, and others. The DFX Controller instance you create using the
IP GUI is not actually used for the full design processing, so you do not have to complete Step
2 to compile the entire design.

• vivado -mode tcl -source create_prom_file_<board>.tcl:

Sourcing the board-specific create_prom_file.tcl creates the PROM image for the target board.
This script contains hard-coded values for bitstream address for the entire project. If this
design is modified in such a way that changes bitstream sizes, full or partial, then these values
must also change. Changes that affect bitstream sizes include changing the target device,
changing the size or shape of the Pblocks, or introducing bitstream options such as
compression or per-frame CRC.

This script defines PROM file options by setting properties and then making calls to
write_cfgmem. The DFX Controller works in byte addresses because the data is stored in
bytes in AXI. This linear flash PROM uses half word addresses because it stores data in half
words (16 bits). Divide the ROM address by 2 to get the AXI address. For example, the
shift_left address for the KC705 is given as 00AEA000 in during DFX Controller customization
and 00575000 (half that value) for write_cfgmem. Note that the starting addresses are always
multiples of 1024 (0x0400) to ensure that each bitstream starts on a byte address boundary.
Also note that the initial configuration file for the VC709 is compressed in order to fit in the
linear flash; the address for the first partial bitstream that follows is padded to allow
expansion of that initial configuration file.

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=120

Supplied in the lab directory is a file called dfxc_bitstream_sizes_lab5.xlsx. In this file, bitstream
sizes are entered by the user based in the yellow highlighted fields. It calculates the starting
address in hex for each partial bitstream at the next byte boundary. Values in blue are to be
supplied for DFX Controller IP customization, in either the DFX Controller IP GUI, in the
gen_ip_<board>.tcl script, or in dfx_info_<board>.tcl which is used for post-route
API modification. The values in green are addresses divided by two to be used in PROM file
generation in the create_prom_file_<board>.tcl script.

Step 4: Setting up the Board
Once the partially reconfigurable design is in operation, you can connect to and communicate
with the core to check status, deliver triggers and make modifications.

1. Prepare the target board for programming.

a. Connect the JTAG port to your computer via the micro-USB connection.

• For the KC705: U59

• For the VC707 or VC709: U26

b. Set the configuration mode to 010 (BPI) by setting the Address DIP Switch (SW13) to
00010 (bit 4 is high).

c. Turn on the power to the board.

2. Open the Vivado IDE.

3. Select Flow → Open Hardware Manager

4. Click on the Open Target link and select Auto Connect for the device to be recognized.

5. To program the BPI configuration flash, right-click the device (e.g. xc7k325t_0) and select
Add Configuration Memory Device.

6. From the list shown, select the appropriate linear BPI flash and click OK twice.

• For the KC705, select 28f00ap30t

• For the VC707 or VC709, select 28f00ag18f

7. In the Configuration file field, search the tutorial directory for dfx_prom.mcs found in the
bitstreams subdirectory. Click OK to select this file, and then click OK to program the flash.

At this point, the board is ready to operate with the tutorial design. Any power-cycle or hard
reset automatically programs the Xilinx FPGA with this sample design.

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=121

Step 5: Operating the Sample Design
Position the board so that the text is readable. The LCD screen is on the side closest to you, with
the power connection on the right and the JTAG connection on the left. The buttons of interest
are the five user push buttons in the lower right corner, plus the PROG push button in the middle
right.

Their functions for the KC105 are as follows:

• PROG (SW14) – program the device from the BPI flash

• North (SW2) – load the Count Up partial bit file

• South (SW4) – load the Count Down partial bit file

• East (SW3) – load the Shift Right partial bit file

• West (SW6) – load the Shift Left partial bit file

• Center (SW5) – reset the design

Figure 86: Push Buttons, Switches and Connections on the KC705 Demonstration
Board

Their functions for the VC707 and VC709 are as follows:

• PROG (SW9) – program the device from the BPI flash

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=122

• North (SW3) – load the Count Up partial bit file

• South (SW5) – load the Count Down partial bit file

• East (SW4) – load the Shift Right partial bit file

• West (SW7) – load the Shift Left partial bit file

• Center (SW6) – reset the design

Figure 87: Push Buttons, Switches and Connections on the VC707 Demonstration
Board

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=123

Figure 88: Push Buttons, Switches and Connections on the VC709 Demonstration
Board

1. Program the FPGA by pressing the PROG pushbutton. The 8 GPIO LEDs in the upper-right
corner will start operation after the DONE LED goes high.

At this point, the four bits on the left of the GPIO bank are counting up, and the four bits on
the right are shifting to the right.

2. Press the Shift Left and Shift Right buttons alternately.

With each push, a partial bit file is pulled from the BPI flash by the DFX Controller and
delivered to the ICAP, changing the functionality in that Reconfigurable Partition. When this
happens, the LED shift direction changes, depending on the button pushed.

3. Press the Count Down and Count Up buttons alternately.

With each push, nothing happens. When configuring the DFX Controller, the Counter Virtual
Socket was programmed to begin in Shutdown mode. It does not respond to any hardware or
software triggers until it is moved to Active mode.

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=124

Step 6: Querying the DFX Controller in the
FPGA

In this step, you interact with the core via JTAG from the Hardware Manager to understand the
status of the core and issue software triggers.

In the Vivado Hardware Manager, you might need to select Refresh Device to establish the link
to the device over the JTAG connection. Notice the XADC as well as 6 ILA cores and the hw_axi
link shown under the device in the Hardware view.

1. In the Tcl Console, cd into the DFX Controller tutorial directory then source the AXI4-Lite
command Tcl script.

source ./Sources/scripts/axi_lite_procs.tcl

This enables a set of procedures that make the subsequent interaction with the DFX
Controller easier. Examine this file to see how these procedures are defined. Note that these
are written explicitly (hard-coded) for this design, the references to Virtual Sockets in any
other design will need to be modified. For more information on this topic, consult the
Dynamic Function eXchange (DFX) Controller Product Guide (PG374).

2. Source the procedure to establish communication with the DFX Controller.

dfxc_jtag_setup

3. Check the state of each Virtual Socket to see if they are in Shutdown or not.

is_vsm_in_shutdown vs_shift
is_vsm_in_shutdown vs_count

You should see that the Shift Virtual Socket is in Active mode (value = 0), and the Count
Virtual Socket is in Shutdown mode (value = 1).

4. Examine the status of each Virtual Socket.

dfxc_decode_status vs_shift
dfxc_decode_status vs_count

Before examining the data returned, reference Table 2-4 in this link of the Dynamic Function
eXchange (DFX) Controller Product Guide (PG374). The table in that section defines the values
in the STATUS register. While this is a 32-bit register, you only need to pay attention to the
lowest 24 bits, as the upper 8 bits are used for Virtual Socket Managers (VSM) in UltraScale
devices.

The status of vs_shift is 263, which is 0000_0000_0000_0001_0000_0111 in binary. The
status for vs_shift may also be 7, where the only difference is that RM_ID is now 0.

• RM_ID (bits 23:8) = 1. This means RM 1 is loaded (rm_shift_right). It may also appear as
RM_ID (bits 24:8) = 0. This means RM 0 is loaded (rm_shift_left).

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 125Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/dfx_controller/v1_0/pg374-dfx-controller.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=prc;v=latest;d=pg193-partial-reconfiguration-controller.pdf;a=xSTATUSRegister
https://www.xilinx.com/support/documentation/ip_documentation/dfx_controller/v1_0/pg374-dfx-controller.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=125

• SHUTDOWN (bit 7) = 0. This VSM is not in the shutdown state.

• ERROR (bits 6:3) = 0000. There are no errors.

• STATE (bits 2:0) = 111. The Virtual Socket is full.

The status of vs_count is 129, which is 0000_0000_0000_0000_1000_0001 in binary.

• RM_ID (bits 23:8) = 0. This means RM 0 is loaded (rm_count_up).

• SHUTDOWN (bit 7) = 1. This VSM is in the shutdown state.

• ERROR (bits 6:3) = 0000. There are no errors.

• STATE (bits 2:0) = 001. RM_SHUTDOWN_ACK is 1, as this VSM is executing the
hardware shutdown step.

These explicit details are reported in the breakdown of the status register in the return
value from this Tcl proc.

5. Send a software trigger to the Shift Virtual Socket.

dfxc_send_sw_trigger vs_shift 1
dfxc_send_sw_trigger vs_shift 0

Remember that values of 0 and 2 correspond to shift left, and values of 1 and 3 correspond
to shift right, as defined during DFX Controller customization.

6. Check the configurations of the RMs for the Count Virtual Socket.

dfxc_show_rm_configuration vs_count 1
dfxc_show_rm_configuration vs_count 0

The values for the bitstream sizes and address are reported here. These values could then be
modified to account for necessary adjustments to the size or location of the bitstream.
Different indices can be added to insert new RMs. Note that this query cannot be done for
vs_shift, as the vs_shift VSM is not in the shutdown state.

7. Move the Count Virtual Socket Manager into active mode.

dfxc_restart_vsm_no_status vs_count

The Count Up and Count Down pushbuttons can now be used to load these partial
bitstreams using the DFX Controller.

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=126

Step 7: Modifying the DFX Controller in the
FPGA

In the final step, you add a new Reconfigurable Module to the Shifter VSM. In the
create_prom.tcl script, you can see that two black box modules have already been generated.
These represent two new RMs that may have been created after the static design was deployed
to the field. You modify the DFX Controller settings to access one of these RMs by assigning the
size, address, properties and trigger conditions.

1. Shut down the Shift VSM so it can be modified.

dfxc_shutdown_vsm vs_shift

Currently, RM ID 2 has the same mapping as the partial bit file for RM ID 0, so the same shift
left partial bitstream would be loaded. This is the behavior as requested when the initial
trigger mapping was done during core customization.

2. Check the status of the first three RM IDs to see their register bank assignments.

dfxc_show_rm_configuration vs_shift 0

dfxc_show_rm_configuration vs_shift 1

dfxc_show_rm_configuration vs_shift 2

3. When the MCS file is created for the prom, it adds additional blanking RMs that are already
loaded into the BPI flash. Use this sequence of commands to reassign the trigger mapping for
slot 2 to point to the blanking Reconfigurable Module for vs_shift.

dfxc_write_register vs_shift_rm_control2 0

This defines the settings for the RM_CONTROL register for slot 2. No shutdown, startup, or
reset are required. Note how for the other two slots, the differing reset durations lead to
different control values.

dfxc_write_register vs_shift_rm_bs_index2 2

This assigns a new bitstream reference for this RM ID.

dfxc_write_register vs_shift_trigger2 2

This assigns the trigger mapping such that trigger index 2 retrieves RM 2.

dfxc_show_rm_configuration vs_shift 2

This shows the current state of RM ID 2. Note the changes from the prior call to this
command.

4. Complete the RM ID 2 customization by setting the bitstream details.

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=127

For the KC705:

dfxc_write_register vs_shift_bs_size2 482828

dfxc_write_register vs_shift_bs_address2 13496320

For the VC707:

dfxc_write_register vs_shift_bs_size2 708260

dfxc_write_register vs_shift_bs_address2 23108608

For the VC709:

dfxc_write_register vs_shift_bs_size2 889252

dfxc_write_register vs_shift_bs_address2 11960320

5. Restart the VSM and then issue trigger events to it using software, as there is no pushbutton
assigned for slot 2.

dfxc_restart_vsm_no_status vs_shift

dfxc_send_sw_trigger vs_shift 2

Switch between values of 0, 1 and 2 to reload different partial bitstreams. The blanking
bitstream in slot 2 removes the shifter function, so no activity on the LEDs is seen.

Note that this same sequence of events could not be performed for the Count VSM as it is
currently configured, even knowing that the PROM image has a Count black box partial
bitstream sitting at (for the KC705) address 13979648 with a size of 541812. During DFX
Controller customization, this VSM was selected to have only 2 RMs allocated, so expansion
is not permitted.

Conclusion
This concludes lab 5. In this lab, you:

• Customized the Dynamic Function eXchange (DFX) Controller IP.

• Created a Virtual Sockets and added RMs to them.

• Complied the design and created a PROM file.

• Programmed the linear flash on the KC705, VC707 or VC709 board.

• Used pushbuttons to issue hardware triggers.

• Used the AXI4-Lite interface to check the core status and issue software triggers.

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=128

• Added a new RM to an already deployed design.

Lab 5: DFX Controller IP for 7 Series Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=129

Lab 6

DFX Controller for UltraScale
Devices

Step 1: Extract the Tutorial Design Files
1. Download the reference design files from the Xilinx website.

2. Extract the zip file contents to any write-accessible location.

3. In the extracted files, navigate to \dfxc_us.

Step 2: Customizing the Dynamic Function
eXchange (DFX) Controller IP

The DFX Controller IP requires a few details to be entered during the customization process.
Identifying all information regarding each Reconfigurable Partition (RP) and Reconfigurable
Module (RM) creates a fully populated controller that understands the entirety of the
reconfiguration needs of the target FPGA. Within this IP, reconfigurable portions of the design
are referred to as Virtual Sockets, which encompasses the RP along with all associated static logic
used to manage it, such as decoupling or handshaking logic. While the core parameters are
customizable during operation, the more that can be entered during this step, the better. This
allows the front-end design description to more accurately match the final implemented design.

1. Open the Vivado IDE and in the Tasks section click the Manage IP task, select New IP
Location, and click Next. Enter the following details before clicking Finish:

• Part: Click on Boards to select the VCU108

• IP Location: <Extract_Dir>/Sources/ip

Note: The KCU105 development board is not supported, as the boot flash on this board is a QSPI
device. QSPI and sync-mode BPI configuration schemes are not supported for Dynamic Function
eXchange on UltraScale devices. See Table 8-1 in this link of Vivado Design Suite User Guide: Dynamic
Function eXchange (UG909).

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 130Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=9f0c2c60-36b7-44c4-876b-ff772a1cb2d0;d=ug947-vivado-partial-reconfiguration-tutorial.zip
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug909-vivado-partial-reconfiguration.pdf;a=xConfigurationModes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug909-vivado-partial-reconfiguration.pdf;a=xConfigurationModes
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=130

2. In the IP Catalog, expand the Dynamic Function eXchange (DFX) category to double-click on
the Dynamic Function eXchange (DFX) Controller IP.

Figure 89: The Dynamic Function eXchange Controller in the IP Catalog

The DFX Controller IP GUI has four tabs on the left side, providing feedback on the current
configuration of the IP. The pane labeled Validation shows any errors that might arise as the
core parameters are entered. The core does not compile if errors exist.

There are two tabs on the right side of the GUI where all customization is done. Most of the
information is entered on the Virtual Socket Manager Options tab.

3. Leave the component name as dfx_controller_0. The version of the DFX Controller used in
the final design will be automatically compiled in Step 3: Compiling the Design.

4. On the Global Options tab, make three changes:

a. Set the Polarity of reset and icap_reset = 1

b. Specify the CAP arbitration protocol = 1) Latency has not been added to arbiter signals

c. Set the number of Clock domain crossing stages = 2

Make sure that the Managed device type is set to UltraScale. The DFX Controller GUI should
now look like this:

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=131

Figure 90: Component Name and Global Options Completed

Note that this DFX Controller can manage Virtual Sockets on 7 series, UltraScale, or
UltraScale+ devices. This IP is not limited to managing reconfiguration on the same device on
which it resides. It can connect to an ICAP on another device to manage its reconfiguration.
An example of a multi-chip solution using the DFX Controller follows.

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=132

Figure 91: Example of a Multi-Chip Solution using the DFX Controller

5. Next, switch to the Virtual Socket Manager Options tab to define information about the
Virtual Sockets and their Reconfigurable Modules.

The DFX Controller IP is preloaded with one Virtual Socket with one Reconfigurable Module
to get you started.

First, define the Virtual Socket Manager (VSM) for the Shift functionality.

6. Rename the current VSM from VS_0 to vs_shift.

7. Rename the current VSM from VS_0 to vs_shift.

8. Rename the current RM from RM_0 to rm_shift_left.

CAUTION!

• Underscores are not visible in the Virtual Socket Manager and Reconfigurable Module pull-
down dialogs. The Name (ID) label below the pull-down shows this more accurately.

To accept a new value in any field in the GUI, simply click in any other field in the GUI or press the Tab
key. Do NOT press Enter, as this will trigger compilation of the IP.

9. Click the New Reconfigurable Module button to create a new RM for this VSM. Name it
rm_shift_right in the Reconfigurable Module Name field.

TIP: Up to 128 Reconfigurable Modules can be managed by a single Virtual Socket Manager.

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=133

10. Configure the vs_shift VSM to have the following properties:

• Has Status Channel = checked

• Has PoR RM = rm_shift_right

• Number of RMs allocated = 4

The PoR RM indicates which RM is contained within the initial full-design configuration file,
so the VSM knows which triggers and events are appropriate upon startup of the FPGA. The
VSM tracks the current active Reconfigurable Module in its socket.

Even through you have only defined two RMs for this Virtual Socket, you have set aside
space for four in total. This allows for expansion later on. Additional Reconfigurable Modules
can be identified using the AXI4-Lite interface, but only if spaces have been reserved for
them.

11. For each of these RMs, enter the following values. Use the Reconfigurable Module to
configure pull-down to switch between the two RMs.

a. For rm_shift_left:

b. Reset type = Active High

c. Duration of Reset = 3

d. For rm_shift_right:

e. Reset type = Active High

f. Duration of Reset = 10

Note: The different reset durations are given to show that these can be independently
assigned, as each RM may have different requirements. Reset durations are measured in clock
cycles.

12. For each RM, assign a bitstream size and location to identify where it will reside in the BPI
flash device.

• For rm_shift_left:

○ Bitstream 0 address = 0x00B00000

○ Bitstream 0 size (bytes) = 375996

○ Bitstream 0 is a clearing bitstream = unchecked

○ Bitstream 1 address = 0x00B5C000

○ Bitstream 1 size (bytes) = 26036

○ Bitstream 1 is a clearing bitstream = checked

• For rm_shift_right:

○ Bitstream 0 address = 0x00B62800

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=134

○ Bitstream 0 size (bytes) = 375996

○ Bitstream 0 is a clearing bitstream = unchecked

○ Bitstream 1 address = 0x00BBE800

○ Bitstream 1 size (bytes) = 26036

○ Bitstream 1 is a clearing bitstream = checked

This information is typically not known early in design cycles, as bitstream size is based on
the size and composition of the Reconfigurable Partition Pblock, and bitstream address is
based on storage details. Until the design is to be tested on silicon, these can be set to 0. As
the design settles and hardware testing with the DFX Controller is set to begin, this
information can be added. The bitstream address information must match the information
passed during PROM file generation. Certain bitstream generation options, most notably
bitstream compression, can lead to variations in the final bitstream size for different
configurations, even for the same Reconfigurable Partition.

13. Define the Trigger Options for the Shift functionality:

• ○ Number of Hardware Triggers = 4

○ Number of Triggers allocated = 4

The four trigger assignments are done automatically. These can be modified during device
operation using AXI4-Lite, which is especially useful when you have added a new RM
through the same mechanism during a field system upgrade.

At this point, the IP GUI should look like this (showing rm_shift_left here):

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=135

Figure 92: VSM vs_shift Completed

Next, you will create and populate the Count Virtual Socket following the same basic steps,
with slightly different options here and there.

14. Click the New Virtual Socket Manager button to create a new VSM.

15. Add two RMs with these names and properties:

• RM Name = rm_count_up

• Reset type = Active High

• Duration of Reset = 12

• RM Name = rm_count_down

• Reset type = Active High

• Duration of Reset = 16

For this Virtual Socket, leave the bitstream address and size information at the default of 0,
but set bitstream 1 to be a clearing bitstream In addition to being defined here, bitstream size
information can be added to a routed configuration checkpoint via the DFX Controller Tcl
API, or can be added in an active design using the AXI4-Lite interface. For the Count Virtual
Socket, the bitstream address and size information is added using the Tcl commands after
place and route, but before bitstream generation.

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=136

TIP: For more information about how to use the DFX Controller Tcl API, see this link in the Dynamic
Function eXchange Controller Product Guide (PG374).

Examine the Tcl scripts in the <Extract_Dir>/Sources/scripts directory. The
update_dfxc_vcu108.tcl uses the DFX Controller Tcl API to update the bitstream
address and bitstream size, which is stored in dfx_info_vcu108.tcl. This file is sourced
later in the lab from <Extract_Dir>/design.tcl.

16. On the VSM tab, modify these VSM settings from their default values:

• Virtual Socket Manager name = vs_count

• Start in Shutdown = checked

• Shutdown on error = unchecked

• Has PoR RM = checked, rm_count_up

17. Define the Trigger Options for the Count functionality:

• Number of Hardware Triggers = 4

• Number of Triggers allocated = 4

This completes the planned customization of the DFX Controller IP for this tutorial.

18. Click OK and then Generate to begin core compilation and out-of-context synthesis.

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 137Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=prc;v=latest;d=pg193-partial-reconfiguration-controller.pdf;a=xCustomizingTheCorePostImplementation
https://www.xilinx.com/support/documentation/ip_documentation/dfx_controller/v1_0/pg374-dfx-controller.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=137

Figure 93: Final DFX Controller Symbol

Step 3: Compiling the Design
The DFX Controller IP is created, but the design is not yet compiled. In order to create the PROM
image with all the necessary full and partial images, source the following scripts in Tcl mode using
the commands below.

• vivado -mode tcl -source design.tcl:

Sourcing design.tcl generates all the necessary IP (including the DFX Controller),
synthesizes and implements the entire design (three configurations), updates the vs_count
VSM using the DFX Controller Tcl API, and generates bitstreams.

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=138

Note that the customization of the IP is scripted. Examine the gen_ip_vcu108.tcl script (in
<Extract_Dir>/Sources/scripts) to see all these parameters defined for automated IP creation,
the DFX Controller, and others. The DFX Controller instance you create using the IP GUI is
not actually used for the full design processing, so you do not have to complete Step 2 to
compile the entire design.

• vivado -mode tcl -source create_prom_file_vcu108.tcl:

Sourcing create_prom_file_vcu108.tcl creates the PROM image for the VCU108
target. This script contains hard-coded values for bitstream address for the entire project. If
this design is modified in such a way that changes bitstream sizes, full or partial, then these
values must also change. Changes that affect bitstream sizes include changing the target
device, changing the size or shape of the Pblocks, or introducing bitstream options such as
compression or per-frame CRC.

This script defines PROM file options by setting properties and then making calls to
write_cfgmem. The DFX Controller works in byte addresses because the data is stored in
bytes in AXI. This linear flash PROM uses half word addresses because it stores data in half
words (16 bits). Divide the ROM address by 2 to get the AXI address. For example, the
shift_left address is given as 00B00000 during DFX Controller customization and 00580000
(half that value) for write_cfgmem. Note that the starting addresses are always multiples of
1024 (0x0400) to ensure that each bitstream starts on a byte address boundary.

Supplied in the lab directory is a file called dfxc_bitstream_sizes_lab6.xlsx. In this
file, bitstream sizes are entered by the user based in the yellow highlighted fields. It calculates
the starting address in hex for each partial bitstream at the next byte boundary. Values in blue
are to be supplied for DFX Controller IP customization, in either the DFX Controller IP GUI, in
the gen_ip_vcu108.tcl script, or in dfx_info_vcu108.tcl which is used for post-
route API modification. The values in green are addresses divided by two to be used in PROM
file generation in the create_prom_file_vcu108.tcl script.

Step 4: Setting up the Board
Once the partially reconfigurable design is in operation, you can connect to and communicate
with the core to check status, deliver triggers, and make modifications.

1. Prepare the VCU108 board for programming.

a. Connect the JTAG port (J106) to your computer via the micro-USB connection.

b. Set the configuration mode to 010 (BPI) by setting the Address DIP Switch (SW16) to
00010 (bit 4 is high).

c. Turn on the power to the board.

2. Open the Vivado IDE.

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=139

3. Select Flow > Open Hardware Manager

4. Click on the Open Target link and select Auto Connect. The Virtex UltraScale VU095 device
will be recognized.

5. To program the BPI configuration flash, right-click the device (xcvu095_0) and select Add
Configuration Memory Device.

6. From the list shown, select the Micron flash 28f00ag18f and click OK twice.

7. In the Configuration file field, search the tutorial directory for dfx_prom.mcs found in the
bitstreams subdirectory. Click OK to select this file, and then click OK to program the flash.

At this point, the board is ready to operate with the tutorial design. Any power-cycle or hard
reset automatically programs the Virtex UltraScale FPGA with this sample design.

Step 5: Operating the Sample Design
Position the board so that the text is readable. The LCD screen is on the side closest to you, with
the power connection on the right and the JTAG connection on the left. The buttons of interest
are the five user push buttons in the lower right corner, plus the PROG push button in the middle
right. Their functions are as follows:

• PROG (SW4) – program the device from the BPI flash

• North (SW10) – load the Count Up partial bit file

• South (SW8) – load the Count Down partial bit file

• East (SW9) – load the Shift Right partial bit file

• West (SW6) – load the Shift Left partial bit file

• Center (SW7) – reset the design

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=140

Figure 94: Push Buttons, Switches and Connections on the VCU108 Demonstration
Board

1. Program the FPGA by pressing the PROG pushbutton. The 8 GPIO LEDs in the upper-right
corner will start operation after the DONE LED goes high.

At this point, the four bits on the left of the GPIO bank are counting up, and the four bits on
the right are shifting to the right.

2. Press the Shift Left and Shift Right buttons alternately.

With each push, a partial bit file is pulled from the BPI flash by the DFX Controller and
delivered to the ICAP, changing the functionality in that Reconfigurable Partition. When this
happens, the LED shift direction changes, depending on the button pushed.

3. Press the Count Down and Count Up buttons alternately.

With each push, nothing happens. When configuring the DFX Controller, the Counter Virtual
Socket was programmed to begin in Shutdown mode. It does not respond to any hardware or
software triggers until it is moved to Active mode.

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=141

Step 6: Querying the DFX Controller in the
FPGA

In this step, you interact with the core via JTAG from the Hardware Manager to understand the
status of the core and issue software triggers.

In the Vivado Hardware Manager, you might need to select Refresh Device to establish the link
to the device over the JTAG connection. Notice the XADC as well as 6 ILA cores and the hw_axi
link shown under the device in the Hardware view.

1. In the Tcl Console, cd into the DFX Controller tutorial directory then source the AXI4-Lite
command Tcl script.

source ./Sources/scripts/axi_lite_procs_us.tcl

This enables a set of procedures that make the subsequent interaction with the DFX
Controller easier. Examine this file to see how these procedures are defined. Note that these
are written explicitly (hard-coded) for this design, the references to Virtual Sockets in any
other design will need to be modified. For more information on this topic, consult the
Dynamic Function eXchange (DFX) Controller Product Guide (PG374).

2. Source the procedure to establish communication with the DFX Controller.

dfxc_jtag_setup

3. Check the state of each Virtual Socket to see if they are in Shutdown or not.

is_vsm_in_shutdown vs_shift
is_vsm_in_shutdown vs_count

You should see that the Shift Virtual Socket is in Active mode (value = 0), and the Count
Virtual Socket is in Shutdown mode (value = 1).

4. Examine the status of each Virtual Socket.

dfxc_decode_status vs_shift
dfxc_decode_status vs_count

Before examining the data returned, reference Table 2-4 in this link of the Dynamic Function
eXchange Controller Product Guide (PG374). The table in that section defines the values in the
STATUS register. While this is a 32-bit register, you only need to pay attention to the lowest
24 bits, as the upper 8 bits are used for Virtual Socket Managers (VSM) in UltraScale devices.

The status of vs_shift is 263, which is 0000_0000_0000_0001_0000_0111 in binary. The
status for vs_shift may also be 7, where the only difference is that RM_ID is now 0.

• RM_ID (bits 23:8) = 1. This means RM 1 is loaded (rm_shift_right). It may also appear as
RM_ID (bits 24:8) = 0. This means RM 0 is loaded (rm_shift_left).

• SHUTDOWN (bit 7) = 0. This VSM is not in the shutdown state.

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 142Send Feedback

https://www.xilinx.com/support/documentation/ip_documentation/dfx_controller/v1_0/pg374-dfx-controller.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=prc;v=latest;d=pg193-partial-reconfiguration-controller.pdf;a=xSTATUSRegister
https://www.xilinx.com/support/documentation/ip_documentation/dfx_controller/v1_0/pg374-dfx-controller.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=142

• ERROR (bits 6:3) = 0000. There are no errors.

• STATE (bits 2:0) = 111. The Virtual Socket is full.

The status of vs_count is 129, which is 0000_0000_0000_0000_1000_0001 in binary.

• RM_ID (bits 23:8) = 0. This means RM 0 is loaded (rm_count_up).

• SHUTDOWN (bit 7) = 1. This VSM is in the shutdown state.

• ERROR (bits 6:3) = 0000. There are no errors.

• STATE (bits 2:0) = 001. RM_SHUTDOWN_ACK is 1, as this VSM is executing the
hardware shutdown step.

These explicit details are reported in the breakdown of the status register in the return value
from this Tcl proc.

5. Send a software trigger to the Shift Virtual Socket.

dfxc_send_sw_trigger vs_shift 0
dfxc_send_sw_trigger vs_shift 1

Remember that values of 0 and 2 correspond to shift left, and values of 1 and 3 correspond
to shift right, as defined during DFX Controller customization.

6. Check the configurations of the RMs for the Count Virtual Socket.

dfxc_show_rm_configuration vs_count 0
dfxc_show_rm_configuration vs_count 1

The values for the bitstream sizes and address for both clearing and partial bitstreams are
reported here. These values could then be modified to account for necessary adjustments to
the size or location of the bitstream. Different indices can be added to insert new RMs. Note
that this query cannot be done for vs_shift, as the vs_shift VSM is not in the shutdown state.

7. Move the Count Virtual Socket Manager into active mode.

dfxc_restart_vsm_no_status vs_count

The Count Up and Count Down pushbuttons can now be used to load these partial
bitstreams using the DFX Controller.

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=143

Step 7: Modifying the DFX Controller in the
FPGA

In the final step, you add a new Reconfigurable Module to the Shifter VSM. In the
create_prom.tcl script, you can see that two black box modules have already been
generated. These represent two new RMs that may have been created after the static design was
deployed to the field. You modify the DFX Controller settings to access one of these RMs by
assigning the size, address, properties and trigger conditions.

1. Shut down the Shift VSM so it can be modified.

dfxc_shutdown_vsm vs_shift

2. Check the status of the first three RM IDs to see their register bank assignments.

dfxc_show_rm_configuration vs_shift 0
dfxc_show_rm_configuration vs_shift 1
dfxc_show_rm_configuration vs_shift 2

Currently, RM ID 2 is not assigned to any partial bitstreams. This is the behavior as requested
when the initial trigger mapping was done during core customization.

3. When the MCS file is created for the prom, it adds additional blanking RMs that are already
loaded into the BPI flash. Use this sequence of commands to reassign the trigger mapping for
slot 2 to point to the blanking Reconfigurable Module for vs_shift.

dfxc_write_register vs_shift_rm_control2 0

This defines the settings for the RM_CONTROL register for slot 2. No shutdown, startup, or
reset are required. Note how for the other two slots, the differing reset durations lead to
different control values.

dfxc_write_register vs_shift_rm_bs_index2 327684

This assigns a new bitstream reference for this RM ID.

dfxc_write_register vs_shift_trigger2 2

This assigns the trigger mapping such that trigger index 2 retrieves RM 2. The RM_BS_INDEX
register within the DFX Controller is 32 bits but is broken into two fields. UltraScale devices
require clearing and partial bitstreams. These bitstreams are identified separately with unique
IDs, but referenced together in this field.

This value of 327684 converts to 0000000000000101_0000000000000100 in binary. Or
more simply, ID 5 for the upper 16 bits for the CLEAR_BS_INDEX and ID 4 for the lower 16
bits for the BS_INDEX. This assignment sets the clearing and partial bitstream identifiers at
the same time.

dfxc_show_rm_configuration vs_shift 2

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=144

This shows the current state of RM ID 2. Note the changes from the prior call to this
command.

4. Complete the RM ID 2 customization by setting the bitstream details.

dfxc_write_register vs_shift_bs_size4 375996
dfxc_write_register vs_shift_bs_address4 12935168
dfxc_write_register vs_shift_bs_size5 26036
dfxc_write_register vs_shift_bs_address5 13312000

5. Restart the VSM and then issue trigger events to it using software, as there is no pushbutton
assigned for slot 2.

dfxc_restart_vsm_no_status vs_shift
dfxc_send_sw_trigger vs_shift 2

Switch between values of 0,1, and 2 to reload different partial bitstreams. The blanking
bitstream in slot 2 removes the shifter function, so no activity on the LEDs is seen.

Note that this same sequence of events could not be performed for the Count VSM as it is
currently configured, even knowing that the PROM image has a Count black box partial
bitstream sitting at address 13338624 with a size of 274104. During DFX Controller
customization, this VSM was selected to have only 2 RMs allocated, so expansion is not
permitted.

Conclusion
This concludes lab 6. In this lab, you:

• Customized the Dynamic Function eXchange (DFX) Controller IP.

• Created Virtual Sockets and added RMs to them.

• Compiled the design and created a PROM file.

• Programmed the linear flash on the VCU108 board.

• Used pushbuttons to issue hardware triggers.

• Used the AXI4-Lite interface to check the core status and issue software triggers.

• Added a new RM to an already deployed design.

Lab 6: DFX Controller for UltraScale Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=145

Lab 7

DFX Controller IP for UltraScale+
Devices

Step 1: Extract the Tutorial Design Files
1. Download the reference design files from the Xilinx website.

2. Extract the zip file contents to any write-accessible location.

3. In the extracted files, navigate to \dfxc_usp.

Step 2: Processing the Tutorial Design
The purpose of this design is the end run-time functionality and software management, not
design processing, so the details of the implementation flow are not extensively covered here.
For a review of the Dynamic Function eXchange design flow, refer to earlier labs in this
document.

1. Extract the tutorial design archive.

2. From a command shell, launch Vivado with the example design project creation script. This
must be launched from the directory where the appropriate board-specific script is located
(dfxc_vcu118.tcl or dfxc_kcu116.tcl).

vivado –mode tcl –source project_dfxc_kcu116.tcl

or

vivado –mode tcl –source project_dfxc_vcu118.tcl

3. When the script completes, open the Vivado IDE by typing the following: start_gui

4. Check to see if IP needs to be updated. Run Reports → Report IP Status and update any out-
of-date IP.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 146Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=9f0c2c60-36b7-44c4-876b-ff772a1cb2d0;d=ug947-vivado-partial-reconfiguration-tutorial.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=146

A few minor revision changes, such as for ILA, might be found if using a newer version of
Vivado. Please use this tutorial only with the version of Vivado that matches this document
version. If updates must be made, use the default setting, which has the core container
disabled, but skip the actual synthesis of the IP module – this will be done during the next
step.

5. In the Flow Navigator, under the IP INTEGRATOR heading, click Generate Block Design to
prepare the design for processing. Leave the Out of context per IP Synthesis option selected,
then click Generate.

This step creates all the IP identified in the block design and launches them through
synthesis. For this design, this block design covers the vast majority of the static logic
representing the design infrastructure. This step does not launch out-of-context synthesis for
the RTL submodules, which includes the shift and count Reconfigurable Modules.

6. In the Flow Navigator, click Run Implementation to pull the design all the way through
synthesis and implementation.

Note: This design should pass all timing constraints with default setting, but depending on the exact
version of Vivado, some extra effort may be required. The easiest way to do this is to select the impl_1
design run, then under the Options tab for that run, set the -directive option for Place Design and
Route Design to Explore.

While place and route is running, take a look at the design. The top level is basically the LED-
Shift-Count design that is the base of the other lab in this tutorial. This version has a block
diagram (mb_dfxc) inserted that takes care of a few functions within an AXI subsystem:

• A MicroBlaze is the center of design management, connecting to a user interface via uart.

• The DFX Controller IP manages the reconfiguration events. An ILA core and a timer give
some visibility into what’s happening in there.

• DDR4 and QSPI interfaces are in this part of the design.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=147

Figure 95: Block Diagram for Dynamic Function eXchange Management

The top-level design instantiates the shift and count reconfigurable modules and also houses
the SEM IP. The details of the SEM IP instantiation differ between Virtex UltraScale+ and
Kintex UltraScale+, as the VU9P is an SSI device. Multiple instantiations (one per SLR) of the
FRAME_ECC component are required for SSI support.

7. When implementation completes, do not generate bitstreams. Click Cancel in the pop-up
dialog.

8. Select File → Export → Export Hardware. Leave the Platform type set to Fixed and click Next,
then leave the Output set to Pre-synthesis and click Next. Leave the XSA file name as the
default of "top" and click Next then Finish to build a design image for the Vitis™ software
platform.

9. Select Tools → Launch Vitis IDE, and the Eclipse Launcher dialog box appears.

10. Ensure the Workspace maps to the current project directory , and click Launch to compile the
software for this example design.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=148

Figure 96: Create a New Application Project

11. In Vitis, select File → New → Application Project.

12. Click Next then select the Create a new platform from hardware (XSA) tab, and Browse to
select top.xsa to import the file that was exported from Vivado. Click Next.

Note: The software platform for your project is standalone and language is C.

13. Click Next. Name the new project dfxc_demo, and click Next and then Next again.

14. Select Empty Application and click Finish.

15. In the Project Explorer window, expand dfxc_demo. Right click src and select Import Sources.
Browse to the sources/dfxc_demo/src directory and click OK. Finally, check all six .c
and .h sources in that folder and click Finish.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=149

Figure 97: Sources for the Vitis Project

After the files are added, right-click the dfxc_demo project, and select Build Project. This will
compile the project, and the dfxc_demo.elf file is created. Build the project manually
every time any change is made to the sources of the project to get an updated ELF file.

16. Expand the src directory and open dfxc_demo.c. This file contains most of the software
code that you will see later. The locations and sizes of the partial bitstreams are stored in
dfxc_demo.h. The calculations can be seen in dfxc_bitstream_sizes_lab7.xlsx.

17. Exit Vitis.

18. In the Vivado IDE project, select File → Add Sources.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=150

19. Select Add or create design sources, then click Next.

20. Add dfxc_demo.elf from the project_dfxc_$board/dfxc_demo/Debug folder.
Deselect the Copy Sources into project option, and click Finish.

21. Right click on dfxc_demo.elf in the ELF section of the Sources window, and select
Associate ELF Files. Because the design is already compiled, select Skip Generate.

22. In the window that appears, change the top reference for Design Sources to the
dfxc_demo.elf file that was just added. Then click OK.

Figure 98: Associate the prc_demo.elf File with the MicroBlaze Instance

23. Right click impl_1 in the Design Runs window and select Generate Bitstream, and click OK.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=151

This action creates the full bitstream (containing the MicroBlaze code in the .elf file) for the
Shift Right – Count Up configuration, along with partial bitstreams for each of the
Reconfigurable Modules. Only the full configuration bitstream from the parent run will be
used here, so there is no need to generate bitstreams from the child_0_impl_1 run. Note that
the sizes for all partial bitstreams are reported, in bits, in the log.

24. Source this script to create all bit files. In the Tcl Console, make sure you are currently in the
level above the project_dfxc_<board> directory, where this script exists.

source create_all_bitstreams_kcu116.tcl

or

source create_all_bitstreams_vcu118.tcl

Settings for full versus partial bitstreams must be different to account for the configuration
modes and options in this design. This is done within a Tcl script that copies the full bitstream
created in the prior step, and then creates all the partial bitstreams that are necessary for all
Reconfigurable Modules.

IMPORTANT! Users are not yet able to set different options for full versus partial bitstreams in
project mode in the Vivado IDE. This feature is planned for a future Vivado release and is expected to
be shown as a new page in the DFX Wizard.

Examining this script shows that the CONFIG_MODE must change from the default of SPIx4
for the initial configuration to SELECTMAP32 for the partial bitstreams, which are delivered
to the ICAP. Two versions of partial bitstreams are generated, with and without the per-frame
CRC feature enabled.

25. Source one of these two scripts to create PROM images for the target board.

source create_prom_file_kcu116.tcl

or

source create_prom_file_vcu118.tcl

This creates a QSPI boot image with the full bitstream followed by all the partial bitstreams.
The addresses listed in this script are calculated based on the size of each partial bitstream.
Note that the sizes for all partial bitstreams are reported, in bytes, in the log. The calculations
can be seen in dfxc_bitstream_sizes_lab7.xlsx.

Step 3: Running the Tutorial Design
Once all the bitstreams and prom images have been created, you can run the design on hardware.
There are many different features that can be demonstrated. There is no specific order in which
these demonstrations must be done after the device has been programmed.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=152

Program the QSPI Flash Device
1. Connect the target board to your computer and power the board on. Connect to both micro-

USB ports for JTAG and UART connections.

2. Program the configuration memory device (QSPI).

a. Open the Vivado Hardware Manager and connect to the target board.

b. Right-click on the device and select Add Configuration Memory Device.

c. Select the Micron mt25qu01g that supports x1, x2 and x4 modes.

Figure 99: Program the QSPI Flash

d. When prompted, add a programming file. The target file is the dfx_prom.mcs from the
Bitstreams folder in the project directory.

3. After the PROM has been programmed, use the PROG button to reconfigure the FPGA from
this boot flash.

The push buttons can control actions in the FPGA design. The left and right buttons load shift
left and shift right partial bitstreams, respectively. The up and down buttons load count up
and count down partials, respectively. Do not push the center button yet.

Manage Reconfiguration via Software
1. Open a UART terminal to communicate with the software running in MicroBlaze.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=153

a. Set the COM port to an appropriate value for your computer

b. Set the Baud Rate to 115200.

c. Press the PROG button on the board to restart the design with the UART terminal open.

Note: If you need a USB to UART driver for your terminal, see Silicon Labs CP210x USB-to-UART
(UG1033).

Notice that all the partial bitstreams are copied from the QSPI flash over to the DDR4
memory. Then the software menu appears:

Figure 100: The pr_demo Software Application Running

The menu options allow you to:

• 1-4: These are the four trigger options to load partial bitstreams to the ICAP via the DFX
Controller. These mimic the pushbuttons on the board.

• 5-6: These toggle the DFX Controller status between active and shutdown mode for both
RPs. When the RPs are in shutdown mode, triggers (software or hardware) are ignored.

• 7: This toggles the partial bitstreams used between standard partials and those
instrumented with per-frame CRC checks.

• 8: This toggles the partial bitstream source between QSPI and DDR4 memory storage.

• 9: Reports the current status of each Virtual Socket.

As you walk through these different features, the software will give feedback. Note that
reconfiguration time is reported each time reconfiguration is executed from within the
software.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 154Send Feedback

https://www.xilinx.com/cgi-bin/docs/bkdoc?k=install;d=ug1033-cp210x-usb-uart-install.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=154

Monitor Dynamic Function eXchange via Debug
Cores
Vivado debug cores have been inserted in this design, allowing you to monitor activity during
Dynamic Function eXchange events. A key detail for configuring via the ICAP is to have prepared
the partial bitstreams with the right bit and byte ordering for each .bin file.

1. In the Vivado Hardware Manager, refresh the device to find all the Vivado Debug cores.
There are three ILA cores, one VIO core and one MIG core in this design.

2. Right-click the part in Hardware Menu, and select Hardware Device Properties. In the
General tab, point the probes file to Bitstreams/top_count_up_shift_right.ltx.

3. In hw_ila_2, click the + to add probes in the Trigger Setup window.

4. Select SLOT_2_ICAP_i_1[31:0] and click OK. Change the Radix to [H] for hexidecimal.

5. Set the trigger in the Trigger Settings window to a value of 5599_AA66, which is the
configuration sync word, bit-swapped.

6. Set the trigger position in the Settings window to 980.

Figure 101: ICAP Input Capture Settings for Sync Word

7. Select the Run Trigger button in the Hardware Manager GUI.

8. On the board, push one of the pushbuttons other than the center to trigger reconfiguration
of the shifter or counter. Or, perform this action via the UART terminal.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=155

9. In the resulting captured waveform, note a few things:

• Far to the left, one of the rm_decouple signals (depending on which Reconfigurable
Partition you have chosen to reconfigure) has transitioned from low to high. This isolation
is initiated in the design prior to partial bitstream delivery

• The sync word is preceded by 000000dd and then 88440022, which are the bit-swapped
bus width detection

• The ICAP output transitions from ffffff9b (no sync, no error) to ffffffdb (sync, no error).
This transition shows recognition of the sync word, and the configuration engine is now
expecting bitstream data.

• PRDONE transitions high to low much further to the right, out of the range of this
captured waveform.

Figure 102: Waveform Capture of Sync Word Entering ICAP

Note: Bitstreams will have multiple sync-desync pairs, as they are constructed via multiple segments.
Multi-SLR devices, for example, have more due to bitstream formatting per SLR.

10. Change the Value of the ICAP_i port to 0000_00B0, which is the desync word, bit-swapped.

11. Set the trigger position in window to 512.

12. Arm the trigger again and issue a reconfiguration.

The resulting waveform shows the end of this part of the reconfiguration sequence, and
shows PRDONE going high a few clock cycles after the desync word was seen.

Insert CRC Failures and View the FPGA Response
Partial bitstreams with and without per-frame CRC checking were created and loaded into the
QPSI flash as part of the PROM file. The design can insert CRC failures by swapping some bits in
the CRC value just prior to loading the file into the ICAP. Any uncompressed – using bitstream
generation property, not the DFX Controller feature – partial bitstream can have an error
injected in this manner to see how the device responds. This is controlled via the center
pushbutton.

1. If not done in the prior section: In the Vivado Hardware Manager, refresh the device to find
all the Vivado Debug cores.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=156

There are three ILA cores, one VIO core and one MIG core in this design.

2. If not done in the prior section: In one of the ILA core windows, click the Specify the probes
file links to find Bitstreams/top_count_up_shift_right.ltx.

3. Click OK then Refresh.

4. In hw_ila_2, click the + to add probes in the Trigger Setup window.

5. Select icap_err_inserted and click OK.

6. Set the trigger in the Trigger Settings window to rising edge of icap_error_inserted.

7. Set the trigger position in the Settings window to 512.

Figure 103: Trigger Setting for icap_err_inserted

8. Push the Run Trigger button in Hardware Manager GUI.

9. In the UART terminal, set Reconfig Type as Normal CRC from DDR4 (option 7). This is the
default setting.

10. Push the center pushbutton – this inserts the CRC error – and then reconfigure the module
you would like via pushbutton or the UART terminal. The CRC value at the end of the partial
bitstream is swapped to cause a CRC error. As a result, INIT_B goes low (the INIT_B LED
turns red), indicating a CRC error. Notice on the board that the function not reconfigured is
still operating.

11. In ILA Waveform, the trigger location marks where icap_err_inserted is asserted. After the
error insertion, you will see PRERROR then PRDONE goes high. Also, the rm_decouple
signal is high throughout, indicating the Reconfigurable Partition is still isolated.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=157

Figure 104: Waveform Capture Showing icap_err_inserted, PRERROR, PRDONE, and
Decouple Asserted

Note: The dfxc_vsm_vs_*_event_error signal is low, but it will be pulsed outside of captured waveform
because of the latency in Dynamic Function eXchange (DFX) Controller.

If the CRC error is found using the standard CRC, which only occurs at the end of the partial
bitstream, the incorrect bitstream has already been loaded into the device. There is no way to
know where any incorrect bits exist, or if they will disrupt the reconfigurable or static design.
The only way to be sure of a full recovery from this condition is to perform a full
reconfiguration of the device. In this tutorial, only the CRC value is swapped, so we can be
assured that the error has not affected the static design.

12. When CRC error occurred, the DFX Controller entered shutdown mode. In the UART
terminal, Report Status (option 9) shows the RP is in shutdown mode and it reports a BS
ERROR. To recover from this error status, return the RP to active mode by selecting Put RPs
in Active Mode (option 5) from the terminal, and reconfigure with a correct partial bit file.
Then INIT_B returns high (LED turns green) and the design is now back to normal operation.

Next, try with per-frame CRC values inserted.

13. In the terminal, set the Reconfig Type to per Frame CRC (option 7).

14. In the Hardware Manager, re-arm the trigger by clicking the Run Trigger button. Then perform
Dynamic Function eXchange from the terminal or via pushbutton.

15. In the ILA waveform, you can see the error has been inserted in the first frame of partial
bitstream – you can see that reconfiguration starts soon after vs_rm_*_decouple goes High.
However, when using per-frame CRC, the error inserted frame has not been loaded into the
device yet, so there is no need for a reconfiguration of the full design, just reconfigure the
incomplete Reconfigurable Partition with a valid partial bitstream. To recover from the error
status, repeat the procedure from step 8.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=158

Conclusion
This concludes lab 7. In this lab, you:

• Implemented an UltraScale+ version of a design with the Dynamic Function eXchange (DFX)
Controller.

• Compiled a MicroBlaze core with software that manages Dynamic Function eXchange events.

• Programmed the QSPI on the KCU116 or VCU118 board.

• Programmed the QSPI on the VCU118 board.

• Used a UART interface to manage Dynamic Function eXchange from QSPI or DDR4 memory.

• Inserted bitstream delivery errors to see CRC checking capabilities.

Note: Although an SEM core exists within the design, it is not exercised during hardware testing in this lab.
If the SEM core is running on hardware to detect upset events, it must be paused before performing
Dynamic Function eXchange.

Lab 7: DFX Controller IP for UltraScale+ Devices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=159

Lab 8

Nested DFX

Overview
This lab covers a simple example of Nested Dynamic Function eXchange (Nested DFX) targeting
one of four UltraScale™ or UltraScale+™ demo boards. Nested DFX is the concept of placing one
or more dynamic regions within a dynamic region, subdividing a device to permit more granular
reconfiguration. With this feature, you can segment a Reconfigurable Partition (RP) into smaller
regions, each of which is partially reconfigurable.

The design in this lab is a modified version of the LED-Shift-Count design used in other labs in
this document. Instead of simply swapping different shifters or different counters, an additional
reconfigurable layer has been inserted that enables you to have two shifters or two counters in
the current design. Each of these shifters or counters are then individually partially
reconfigurable.

The design flow uses the Tcl scripted solution used in Lab 2, as Nested DFX is not yet supported
in project mode. You may follow the explicit instructions as shown in segmented Tcl scripts
within this tutorial, or use a single full script that runs the full front-to-back processing of the
complete design.

Step 1: Extracting the Tutorial Design Files
1. To obtain the tutorial design file, see the Tutorial Design Description.

2. Navigate to \nested_dfx in the extracted files. The nested_dfx data directory is referred
to in this lab as the <Extract_Dir>.

Step 2: Examining the Scripts
Start by reviewing the Tcl scripts provided in the design archive.

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=160

The Synthesis Scripts
The files run_synth.tcl, design_settings.tcl and advanced_settings.tcl are located at the root level.
The run_synth.tcl script contains the minimum required settings to run the synthesis portion of
this Dynamic Function eXchange design. The design_settings.tcl script selects the target device
and board and sets relative paths for the project. The advanced_settings.tcl contains default flow
settings and should only be modified by experienced users.

In run_synth.tcl for this specific lab, under flow control, you can control which modules are
synthesized. In the tutorial, as the name implies, only synthesis is run by this script;
implementation, verification, and bitstream generation are run interactively. The full DFX scripts
from Labs 2 are not currently set up to run Nested DFX

In design_settings.tcl, under Define target demo board, you can select one of four
demonstration boards supported for this design. The script is delivered targeting the VCU118, so
if you wish to target a different board, make the edit here. This lab currently targets the following
Xilinx® development platforms:

• KCU116 (Kintex® UltraScale+™)

• VCU118 (Virtex® UltraScale+™)

• KCU105 (Kintex UltraScale)

• VCU108 (Virtex UltraScale)

The Nested DFX Scripts
During this lab, after synthesis, you will walk through the Nested DFX flow step-by-step using
individual Tcl commands. This lab is designed to show the unique details required for inserting
the second layer of reconfigurability and therefore highlights the new steps required to achieve
this, but the entire solution can be scripted. Specific sections are grouped into scripts that can be
run to compile a subsection of the flow. Explicit names and paths are used in these scripts, but
they can certainly be modified for use in new designs. These scripts include:

• implement_parent_config.tcl: This implements the top-level static design and
establishes the first-order Reconfigurable Partition (inst_RP) that will be later subdivided.

• subdivide_shifters.tcl: This subdivides the first-order Reconfigurable Partition into
two second-order shift functions, each partially reconfigurable.

• subdivide_counters.tcl: This subdivides the first-order Reconfigurable Partition into
two second-order count functions, each partially reconfigurable.

• implement_sub_shifters.tcl: This implements shift_right and shift_left Reconfigurable
Modules in the two second-order RPs below inst_RP

• implement_sub_counters.tcl: This implements count_up and count_down
Reconfigurable Modules in the two second-order RPs below inst_RP

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=161

• verify_configurations.tcl: This runs pr_verify on pairs of design checkpoints to
confirm compatibility of Reconfigurable Modules contained within

• generate_all_bitstreams.tcl: This opens checkpoints one-by-one to create all
possible partial bitstreams for this overall design

• run_all.tcl: This runs all scripts above, in order, from synthesis to bitstream generation, to
compile the complete tutorial design

The default board is the VCU118, but three other boards are available for selection. The board
selection can be made just once within design_settings.tcl each of the implementation scripts will
pick up the value, so even if a new Vivado session is launched, the design settings will be
understood.

Step 3: Synthesizing the Design
The run_synth.tcl script automates the synthesis phase of this tutorial. Seven iterations of
synthesis are called, one for the static top-level design, two for the first-order Reconfigurable
Modules, and four for the second-order Reconfigurable Modules.

1. Open the Vivado Tcl shell:

On Windows, select the Xilinx Vivado desktop icon or Start > All Programs > Xilinx Design
Tools> Vivado 2020.2 > Vivado 2020.2 Tcl Shell.

On Linux, type: vivado -mode tcl.

2. In the shell, navigate to the <Extract_Dir>directory.

3. Confirm the target board is selected by the xboard variable in run_synth.tcl.

4. Run the run_synth.tcl script by entering:

source run_synth.tcl -notrace

After all the seven passes through Vivado Synthesis have completed, the Vivado Tcl shell is left
open. You can find log and report files for each module, alongside the final checkpoints, under
each named folder in the Synth subdirectory.

TIP: In the <Extract_Dir> directory, multiple log files have been created:

1. run.log shows the summary as posted in the Tcl shell window

2. command.log echoes all the individual steps run by the script

3. critical.log reports all critical warnings produced during the run

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=162

Step 4: Assembling and Implementing the
Design

Now that the synthesized checkpoints for each module, plus top, are available, you can assemble
the design. You will run all flow steps from the Tcl Console, but you can use features within the
IDE (such as the floorplanning tool) for interactive events.

Implementation Design Flow
The steps in this lab are managed by a set of Tcl scripts that walk through the commands used to
implement each configuration of the Nested DFX design. Examine each script before running to
see what each does. Most commands (link_design, route_design, pr_verify, write_bitstream, etc.)
will look familiar, and others (pr_subdivide, pr_recombine) are new. The key detail is the order in
which they are run, as later scripts are dependent on earlier ones.

After scripts have completed, open checkpoints (for example top_route_design.dcp or
top_count_up_up_route_design.dcp) to examine the results, noting the implications of the DFX
attributes and commands used to create them.

The first implementation design run establishes the static design and the first-order
Reconfigurable Partition. At this point, the flow is no different than a standard DFX design flow –
“inst_RP” is the lone RP in the design, and the shifter modules that reside below that level are
implemented with the rest of the inst_RP logic. Second-order Reconfigurable Partitions do not
exist yet.

1. Implement the parent configuration by sourcing its run script:

source implement_parent_config.tcl -notrace

The resulting checkpoint (top_route_design.dcp) is a full design image with the single RP. No
additional DFX steps such as carving the RP into a black box or locking the static design have
been done at this point. This checkpoint will only be used to establish the locked static design
image which is common to all design iterations that follow.

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=163

Figure 105: First-Order Implementation

Open top_route_design.dcp that has been written to the Implement/top_static folder to see
that this is a standard DFX design. inst_RP has the HD.RECONFIGURABLE property and an
associated pblock for the Reconfigurable Partition.

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=164

Figure 106: inst_RP is the only Reconfigurable Partition After the First-Order
Implementation

2. Create the second-order Reconfigurable Partitions by sourcing this script:

source subdivide_shifters.tcl

This script subdivides the inst_rp module into second-order Reconfigurable Partitions. The
pr_subdivide command removes the HD.RECONFIGURABLE property from inst_RP and
applies it to both inst_shift_upper and inst_shift_lower. inst_RP is then tagged with the
HD.RECONFIGURABLE_CONTAINER property, noting that it was once an RP. This can be
seen by examining the top_static_shifters.dcp checkpoint.

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=165

Figure 107: Design After pr_subdivide for Shifter Functions

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=166

Figure 108: inst_RP with the HD.RECONFIGURABLE_CONTAINER Property

3. Implement the shifter submodules in second order Reconfigurable Partitions.

source implement_sub_shifters.tcl -notrace

This walks through two implementation flows to place and route shift_right and shift_left
functions in the second-order RPs. The commands used here are identical to a standard DFX
flow with one difference: The starting point of the first configuration includes the locked top-
level static design. Implementation treats the logical design in the inst_RP level
(reconfig_shifters) as static; this is the level of hierarchy that is locked by the lock_design
-level routing command after the first configuration completes.

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=167

Figure 109: Two Second-Order Runs Implementing shift_right and then shift_left in
the Two RPs

This script finishes with a call to pr_recombine to create a routed design checkpoint of the
shift_right-shift_right combination, moving the HD.RECONFIGURABLE property back to the
inst_RP level. Examining the hierarchy of top_shift_right_right_recombined.dcp
you can see this property has returned to the inst_RP instance.

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=168

Figure 110: Design Hierarchy and Properties of the Recombined Shifter Configuration

4. Create another set of second-order Reconfigurable Partitions sourcing this script:

source subdivide_counters.tcl

Just like the first subdivide script, this starts with the initial configuration
(top_route_design.dcp) and subdivides the inst_RP level, but this time into two counter
functions. The top-level static for this design version is identical to the version used for the
shifters.

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=169

Figure 111: Design After pr_subdivide for Counter Functions

5. Implement the counter submodules in second order Reconfigurable Partitions.

source implement_sub_counters.tcl -notrace

Again, like with the shifters path, a standard DFX flow is used to process two counter
modules (count_up, count_down) in each second-order Reconfigurable Partition. Also like the
shifters, a recombined design checkpoint is created from the first pass through the second-
order flow.

Note that the two second-order implementation scripts (as well as the subdivide scripts that
precede them) can be run in parallel in two unique Vivado sessions. Both rely on the same
locked top static design but are unique from the inst_RP level on down. This version has
slightly different floorplans for the second-order RPs, but could also vary in number.

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=170

Figure 112: Two Second-Order Runs Implementing count_up and then count_down in
the Two RPs

Static Design Updates
Just as with a standard DFX design flow, implementation results are created in-context from the
top down. If any part of the design that is considered static at any point must be updated, all
results for Reconfigurable Modules below that static must be reimplemented to ensure
everything stays in sync.

For example, if there is a design change for the top-level static, all existing results must be
considered out-of-date and everything must be recompiled. If there is an update to one of the
first-order RMs (reconfig_shifters or reconfig_counters), all results dependent on the modified
module must be recompiled. Any of these individual scripts can be called on their own to update
the results as needed.

Verification Passes
Just as with a standard DFX design flow, Nested DFX design images should be checked using
pr_verify to confirm all images are in sync. Like the core implementation tools (opt_design, etc.),
pr_verify will act upon the design based on the current cells marked reconfigurable. With this in
mind, perform apples-to-apples comparisons with the same current static design present. Verify
all compatible configurations by sourcing this script:

source verify_configurations.tcl

This script compares three pairs of routed designs. Each does a pairwise comparison of
checkpoints with static logic expected to be identical. This section describes the comparisons
done and the compatible bitstreams that will be created in the next step.

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=171

1. The first call to pr_verify compares the two recombined checkpoints. These should each
have identical static implementation results top only, with a single Reconfigurable Partition,
inst_RP. These checkpoints represent standard DFX designs with no nesting, even though
each could receive appropriate second-order partial bitstreams.

If other checkpoints are created with second-order modules (for example shift_left,
count_down) and then recombined, they could be compared via pr_verify and have their
“inst_RP” partial bitstreams added to this compatibility list. This would also be true for any
other RMs for inst_RP even without any subdivided second-order RPs.

2. The second call to pr_verify compares the shift_right and shift_left second level checkpoints.
These have static locked down to the upper and lower submodules, so the comparison is
between this static logic for the top and reconfig_shifters levels of hierarchy.

3. Much like the second, the third call to pr_verify compares the count_up and count down
second level checkpoints. These have static locked for top and reconfig_counters, so the
comparison is between this static logic down to the upper and lower Reconfigurable
Partitions.

Bitstream Creation
The Nested DFX design methodology moves the HD.RECONFIGURABLE property down and up
through the hierarchy. Implementation tools follow standard DFX design rules based on what
cells are currently defined as reconfigurable. This holds true for write_bitstream as well; partial
bitstreams will only be created for cells currently holding the HD.RECONFIGURABLE property.

With any fully routed design checkpoint open in Vivado, use write_bitstream to generate full and
partial bitstreams. Remember, by default this command will generate a standard full bitstream for
the entire device and a partial bitstream for each cell currently defined as a Reconfigurable
Partition. Two options can limit results to one or the other:

• The -cell option will generate ONLY a partial bitstream for the requested cell.

• The -no_partial_bitfile option will generate ONLY a standard full device bitstream

Run the following script to create a collection of full and partial bitstreams for existing
configurations that have been implemented. To save time and space, only a single full device
bitstream is created.

source generate_all_bitstreams.tcl

This script opens each checkpoint, one by one, and writes specific full or partial bitstreams. The
bitstreams are placed in subfolders based on compatibility. Each bitstream is created with either
the -no_partial_bitfile option (the first bitstream listed below) or the -cell option
(every other bitstream). The use of the latter means that partial bit file names can be anything
you desire; use names that clearly indicate function, version and compatibility. Here are the
eleven bitstreams generated in their respective folders:

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=172

• Bitstreams

○ top_shift_right_right.bit

• Bitstreams/inst_RP

○ inst_RP_shift_right_right_recombined_partial.bit

○ inst_RP_count_up_up_recombined_partial.bit

• Bitstreams/inst_shift

○ shift_right_upper_partial.bit

○ shift_right_lower_partial.bit

○ shift_left_upper_partial.bit

○ shift_left_lower_partial.bit

• Bitstreams/inst_count

○ count_up_upper_partial.bit

○ count_up_lower_partial.bit

○ count_down_upper_partial.bit

○ count_down_lower_partial.bit

In addition to these, clearing bit files are created for UltraScale devices, one for each partial bit
file listed above. The base names are the same but end in “_clear.” More information about how
these are to be used is given in the next section of this lab.

Commands are also included to create, implement, and generate partial bitstreams for grey box
configurations. These are not required for the solution but can be used to “turn off” activity
within a particular RP. Set the grey parameter to “true” before sourcing the
generate_all_bitstreams.tcl script to create these optional partial bitstreams.

Grey box partial (and clearing) bitstreams are established for each second-order RP (4 in total)
and the first-order RP (inst_RP), as well as the case of each inst_RP RM instance
(reconfig_shifters, reconfig_counters) with grey boxes for the second-order RPs within them.

• Bitstreams/inst_RP

○ inst_RP_grey_partial.bit

○ reconfig_shifters_grey_grey_partial.bit

○ reconfig_counters_grey_grey_partial.bit

• Bitstreams/inst_shift

○ shift_upper_grey_partial.bit

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=173

○ shift_lower_grey_partial.bit

• Bitstreams/inst_count

○ count_upper_grey_partial.bit

○ count_lower_grey_partial.bit

Note that no bitstreams have been created from the initial top_route_design.dcp checkpoint. This
is because there is no need – the top-level static image for this design is identical to all others,
and the shift_right-shift_right function is logically the same to the first subdivided run. The
implementation results for the latter are different because of the new RPs introduced, but if you
were to load a shift_right-shift_right partial image from before the subdivide, you could not
individually swap out the second-order shifters.

For this lab a full device bitstream is created only for this shift_right-shift_right version of the
design, but a full device bitstream could be generated for any legal combination of first- and
second-order Reconfigurable Modules. It simply depends on how you would like the device to
initially behave. You could create a count_up-count_down version, or a shifter version with grey
boxes for each second-order RP, all by linking routed module checkpoints with the locked top
static, then calling write_bitstream.

In summary, build the design results from the top down, locking each relative static layer using
the pr_subdivide function. Then, to return to higher-level Reconfigurable Partitions, use
pr_recombine to create checkpoints for generating partial bitstreams at that level.

Step 5: Test the Design in Hardware
With a set of full and partial bitstreams created, the design can be tested on one of the four
demonstration boards. The current design supports the KCU105, VCU108, KCU116, and
VCU118 boards, revisions Rev 1.0 and newer.

Configuring the Device with a Full Image

1. Connect the board to your computer using the Platform Cable USB and power on the board.

2. From the main Vivado IDE, select Flow > Open Hardware Manager.

3. Select Open target on the green banner. Follow the steps in the wizard to establish
communication with the board.

4. Right-click the Xilinx device (e.g. xcku040_0) and select Program Device.

5. Navigate to the Bitstreams folder to select top_shift_right_right.bit, then click
Program to program the device.

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=174

You should now see the bank of GPIO LEDs performing two identical tasks: two sets of four
LEDs are shifting to the right. Note the amount of time it took to configure the full device.

The currently operating device contains top (static), first-order RM reconfig_shifters, and second-
order RMs shift_right (upper) and shift_right (lower).

Partially Reconfiguring the Device
At this point, you can partially reconfigure the active device with any of the partial bitstreams
that you have created, but only if it is compatible with the currently loaded design. For UltraScale
devices, you must always first start with the appropriate clearing bitstream(s). Because of this,
the following section is split by family, as UltraScale+ instructions are simpler. The instructions
below have been separated by family for clarity.

Load partial bitstreams for UltraScale+ devices

If you are targeting the VCU118 or KCU116, follow these instructions. UltraScale device
instructions are further on in this section.

First, reconfigure the “upper” shifter location.

1. Select Program device on the green banner (or right-click on the target device and select
Program device). Navigate to the Bitstreams/inst_shift folder to select
shift_left_upper_partial.bit, then click Program to program the device. The upper
shift portion is now shifting left, while the lower portion is still shifting right. DONE has also
returned high (on).

In order to transition to counter functions, the first-order reconfig_counters RM must first be
loaded. Loading any second-order count_up or count_down partial bitstreams at this point
would not function properly, as these functions would not connect to the top-level static
design.

2. Select Program device on the green banner again. Navigate to the Bitstreams/inst_RP folder
to select inst_RP_count_up_up_recombined_partial.bit, then click Program to program the
device. The two sections of LEDs are now counting up.

Now that the reconfig_counters first-order function is established, Reconfigurable Partitions
below that hierarchy can be partially reconfigured.

3. Select Program device on the green banner one last time. Navigate to the Bitstreams/
inst_count folder to select count_down_lower_partial.bit, then click OK to program the
device. The upper shift portion is still counting up, while the lower portion is now counting
down.

This concludes the lab instructions for UltraScale+ devices.

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=175

Load partial bitstreams for UltraScale devices

If you are targeting the VCU108 or KCU105, follow these instructions. First, reconfigure the
“upper” shifter location.

1. Select Program device on the green banner (or right-click on the target device and select
Program device). Navigate to the Bitstreams/inst_shift folder to select
shift_right_upper_partial_clear.bit, then click Program to program the device. The upper shift
portion of the LEDs stopped, but the lower shift portion kept shifting, unaffected by the
reconfiguration. Note the much shorter configuration time, as well as the fact that the DONE
LED has turned off.

2. Select Program device on the green banner again. Navigate to the Bitstreams/inst_shift
folder to select shift_left_upper_partial.bit, then click Program to program the device. The
upper shift portion is now shifting left, while the lower portion is still shifting right. DONE has
also returned high (on).

In order to transition to counter functions, the first-order reconfig_counters RM must first be
loaded. Loading any second-order count_up or count_down partial bitstreams at this point
would not function properly, as these functions would not connect to the top-level static
design.

IMPORTANT! Moreover, for UltraScale devices, clearing bitstreams must be applied, from the bottom
up, before a new first-order partial bitstream can be delivered. Each clearing bitstream must match the
currently loaded function at that level of hierarchy. The order in which the second-order clearing
bitstreams does not matter, but they must precede the first-order clearing bitstream.

3. Select Program device on the green banner and program the device using these clearing
bitstreams, one at a time.

• inst_shift/shift_left_upper_partial_clear.bit

• inst_shift/shift_right_lower_partial_clear.bit

• inst_RP/inst_RP_shift_right_right_recombined_partial_clear.bit

Following these actions, all LED activity has stopped, as the functionality of the shifters and
the connectivity to the top static have been removed from the active design.

4. Select Program device on the green banner again. Navigate to the Bitstreams/inst_RP folder
to select inst_RP_count_up_up_recombined_partial.bit, then click Program to program the
device. The two sections of LEDs are now counting up.

Now that the reconfig_counters first-order function is established, Reconfigurable Partitions
below that hierarchy can be partially reconfigured.

5. Select Program device on the green banner. Navigate to the Bitstreams/inst_count folder to
select count_up_lower_partial_clear.bit then click Program to program the device. This stops
the counter that is driving the count function in the lower set of LEDs.

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=176

6. Select Program device on the green banner one last time. Navigate to the Bitstreams folder
to select count_down_lower_partial.bit, then click OK to program the device. The upper shift
portion is still counting up, while the lower portion is now counting down.

This concludes the lab instructions for UltraScale devices.

Conclusion
This concludes lab 8. In this lab, you:

• Synthesized a design bottom-up to prepare for Nested Dynamic Function eXchange
implementation

• Applied pr_subdivide and pr_recombine to create nested levels of Reconfigurable Partitions

• Implemented multiple configurations via scripts.

• Compared checkpoints pairwise for static design consistency.

• Examined framesets and verified the two configurations.

• Configured and partially reconfigured an FPGA with first-order and second-order partial
images

Lab 8: Nested DFX

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=177

Lab 9

Abstract Shell for Dynamic Function
eXchange

Overview
The Vivado software tool flow lets you compile DFX designs using an in-context methodology.
This solution requires multiple passes through place and route. The first pass establishes the
static design implementation result (along with the first Reconfigurable Module (RM) for each
Reconfigurable Partition (RP)). Then all subsequent place and runs are done in context with that
initial static image. A fully routed and locked static design database, containing netlist, placement,
and routing information for the entire static region, must be loaded into Vivado before
implementing any RMs beyond the first.

The Abstract Shell solution reduces the requirements for this in-context flow. Because the static
design is locked, it cannot (and must not) be modified when new RMs are implemented. The
context is still critical, so the path through the tools does not change. However, instead of
loading a full static design image, an Abstract Shell checkpoint is used. This Abstract Shell
contains only a minimal logical and physical database necessary to implement a new RM within a
specific RP to validate timing and pass PR Verify, and then generate a partial bitstream for that
RM.

This lab uses the DFX Controller IP design shown in Lab 7. The first pass through place and route
is identical to the run completed in Lab 7, but then all child runs to implement new RMs are done
within Abstract Shells. The end result is a collection of design checkpoints that can be used to
program the VCU118 in the same way that was done in Lab 7, but compilation time for
producing the child RMs is reduced.

Step 1: Extracting the Tutorial Design Files
1. Download the reference design files from the Xilinx website.

2. Extract the zip file contents to any write-accessible location.

3. In the extracted files hierarchy, navigate to \abstract_shell.

Lab 9: Abstract Shell for Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 178Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=9f0c2c60-36b7-44c4-876b-ff772a1cb2d0;d=ug947-vivado-partial-reconfiguration-tutorial.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=178

Step 2: Processing the Tutorial Design
The purpose of this design is to review the design flow process using Abstract Shell, so the
details of the implementation flow and hardware operation are not extensively covered here. For
a review of the Dynamic Function eXchange design flow, refer to earlier labs in this document.
For details on the DFX Controller IP and hardware operation, review Lab 7 in this document.

1. Extract the tutorial design archive.

2. From a command shell, launch Vivado with the example design project creation script. This
must be launched from the directory where the script is located.

vivado –mode tcl –source project_dfxc_vcu118.tcl

3. When the script completes, open the Vivado IDE by typing the following: start_gui.

4. Check to see if IP needs to be updated. Run Reports → Report IP Status and update any out-
of-date IP.

A few minor revision changes, such as for ILA, might be found if using a newer version of
Vivado. Please use this tutorial only with the version of Vivado that matches this document
version. If updates must be made, use the default setting, which has the core container
disabled, but skip the actual synthesis of the IP module – this will be done during the next
step.

5. In the Flow Navigator, under the IP INTEGRATOR heading, click Generate Block Design to
prepare the design for processing. Leave the Out of context per IP Synthesis option selected,
then click Generate.

This step creates all the IP identified in the block design and launches them through
synthesis. For this design, this block design covers the vast majority of the static logic
representing the design infrastructure. This step does not launch out-of-context synthesis for
the RTL submodules, which includes the shift and count Reconfigurable Modules.

6. In the Design Runs tab, right-click on impl_1 and select Launch Runs. This will pull the design
all the way through synthesis and implementation for the parent run only.

Note: Do not use Run Implementation from the Flow Navigator, as this will launch both the impl_1 run
as well as the child_0_impl_1 run. The latter should not be implemented at this point.

7. When impl_1 completes, select Open Implemented Design in the resulting dialog box.

Lab 9: Abstract Shell for Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=179

Figure 113: Open the Implemented Parent Configuration

With the routed parent design open in the Vivado IDE, you are ready to create Abstract Shells.

Step 3: Create Abstract Shells
By default, in the DFX flow, multiple design checkpoints will be written after place and route of
the parent configuration completes. In addition to the full design routed checkpoint, the Vivado
project flow will create a static-only design checkpoint that will be the starting point for all child
runs by calling update_design -black_box for each Reconfigurable Partition, followed by
lock_design -level routing. Moreover, module-level checkpoints are written for each
RM in the parent configuration by calling write_checkpoint -cell. No user intervention is
necessary to create these files.

1. Examine the files created for the parent configuration. Within Windows Explorer or in a shell
console, navigate to the impl_1 subdirectory:

\abstract_shell\dfxc_vcu118\project_dfxc_vcu118\project_dfxc_vcu118.runs\impl_1

Examine the different design checkpoints and their sizes. Note that file sizes listed here may
be slightly different depending on Vivado tool version, implementation run options and
operating system. Key files include:

• top_routed.dcp (58,284 KB) – full routed design including one RM per RP

• top_routed_bb.dcp (55,819 KB) – static only design with locked placement and
routing and black boxes for each RP

Lab 9: Abstract Shell for Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=180

• u_count_count_up_routed.dcp (1,267 KB) – routed module-level checkpoint for the
count_up RM instance

• u_shift_shift_right_routed.dcp (463 KB) – routed module-level checkpoint for
the shift_right RM instance

It is no surprise the Reconfigurable Module checkpoints are much smaller than the static
design checkpoints given their size and complexity in this design.

Figure 114: Full Design Checkpoint (left) and Static-Only Checkpoint (right)

2. Create Abstract Shells for both the u_count and u_shift instances. Make sure your current
working directory in the Tcl Console is the <extract_dir> directory, the same place where the
project_dfxc_vcu118, sources and abstract_shell folders reside.

write_abstract_shell -force -cell u_count ./abstract_shell/
ab_sh_count.dcp

write_abstract_shell -force -cell u_shift ./abstract_shell/
ab_sh_shift.dcp

Each call to write_abstract_shell first creates a copy of the full design checkpoint in
memory, then runs the following steps automatically:

• Carves out the target Reconfigurable Partition (using update_design -black_box)

• Locks the remaining design (including any other Reconfigurable Modules)

• Writes the Abstract Shell for the target RP

• Runs pr_verify for this checkpoint compared to the original fully routed design

Lab 9: Abstract Shell for Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=181

This process does take longer than a simple call to write_checkpoint, but in nearly all
cases the runtime savings for RM compilation will be worth this initial investment.

3. Examine the sizes of the Abstract Shells, comparing them to the size of the
top_routed_bb.dcp full shell checkpoint.

Again, sizes may vary, but for the initial release of Vivado 2020.2 in Windows, file sizes for
the Abstract Shells are:

• ab_sh_count.dcp (1,785 KB) – Abstract Shell for the Count RP

• ab_sh_shift.dcp (1,699 KB) – Abstract Shell for the Shift RP

4. Open each Abstract Shell checkpoint to examine the contents.

open_checkpoint ./abstract_shell/ab_sh_count.dcp

Lab 9: Abstract Shell for Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=182

Figure 115: Abstract Shell for the Count RP (top two SLRs only)

Note how much of the static design is no longer present. Visually this is quite clear for this
simple design – compare Figure 114: Full Design Checkpoint (left) and Static-Only
Checkpoint (right) and Figure 115: Abstract Shell for the Count RP (top two SLRs only). You
will see that only one RP remains in each Abstract Shell – the shell for u_count does not
include u_shift and vice versa. But even though the vast majority of the static design has
been removed, parts do remain, including elements from the DFX Controller and DFX
Decoupler design, as they have connectivity to each target RP.

Lab 9: Abstract Shell for Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=183

Figure 116: Remaining Hierarchy for the u_count Abstract Shell

5. Run a routing report to confirm that the Abstract Shell is intact.

report_route_status

This step is optional and merely shows that the Abstract Shell is a valid design database with
zero routing errors.

6. Close the Abstract Shell checkpoint.

close_project

Lab 9: Abstract Shell for Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=184

Step 4: Implement New RM within Abstract
Shells

At this point, all remaining Reconfigurable Modules can be implemented within these shells. Each
RM can be implemented in parallel in separate Vivado sessions if desired, as each RP can be
managed independently. This can be done not only for a specific shell, e.g. for the u_count
instance, but for all Reconfigurable Partitions in the design. Unlike within the project flow where
the focus is on full design configurations, the focus for the Abstract Shell approach is on the
Reconfigurable Modules.

1. Start a new Vivado session to work independent of the initial VCU118 example design
project. In the Tcl Console, navigate to the tutorial directory.

IMPORTANT! Use the same methodology in the Abstract Shell run as was used in the run that
created the original implementation. Vivado project mode uses the add_files / link_design approach,
and that is continued here. If you used open_checkpoint and read_checkpoint -cell to build the initial
design, continue that approach for the Abstract Shell implementation run.

2. Load an Abstract Shell checkpoint instead of the full static checkpoint.

add_files ./abstract_shell/ab_sh_count.dcp

3. Then add the post-synthesis netlist for only the count_down module.

add_files ./project_dfxc_vcu118/project_dfxc_vcu118.runs/
count_down_synth_1/count.dcp

set_property SCOPED_TO_CELLS {u_count} [get_files ./
project_dfxc_vcu118/project_dfxc_vcu118.runs/count_down_synth_1/
count.dcp]

4. When linking the design, only reference the u_count RP.

link_design -mode default -reconfig_partitions {u_count} -part
xcvu9p-flga2104-2L-e -top top

5. Implement the design normally, then when it is time to save the routed design, save both the
complete current image (Abstract Shell plus Reconfigurable Module) as well as the RM-only
checkpoint.

opt_design

place_design

route_design

write_checkpoint -force ./abstract_shell/abs_count_down/
abstract_shell_count_down_routed.dcp

Lab 9: Abstract Shell for Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 185Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=185

write_checkpoint -force -cell u_count ./abstract_shell/
abs_count_down/rm_count_down_route_design.dcp

Repeat these steps for the shift_left module, adjusting the file names and commands
accordingly. Tcl scripts for both count_down and shift_left abstract shell implementation can
be found in the tutorial directory to automate these steps. Script names are:

• abs_impl_count_down.tcl

• abs_impl_shift_left.tcl

In the following images compare the count_down RM within the Count RP Abstract Shell
with the module-level checkpoint for the count_down RM alone. Only the former should be
used for partial bitstream generation, as the latter does not contain static design information
in the dynamic region.

Figure 117: RM count_down within the RP Count Abstract Shell

Lab 9: Abstract Shell for Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=186

Figure 118: RM count_down without its Abstract Shell

At this point you will have a collection of routed static and RM checkpoints, where all the RM
checkpoints are in sync with the static design.

Note: Before considering partial bitstream generation, PR Verify should always be done. PR Verify
compares multiple design images where RMs differ but static is the same to ensure all DFX rules have
been followed. If full configuration assembly is done, then PR Verify can be run in the standard way,
comparing the entire static design for each checkpoint. However, PR Verify can also be done in the
Abstract Shell context, comparing the initial Abstract Shell to the shell with the routed Reconfigurable
Module.

6. Using the checkpoints created above, this verification check can be done if no checkpoints
are currently open:

pr_verify ./abstract_shell/ab_sh_count.dcp ./abstract_shell/
abs_count_down/abstract_shell_count_down_routed.dcp

Alternatively, if a routed Abstract Shell checkpoint is still open in Vivado, you can use the -
in_memory option to compare to the original shell. For example, if the Abstract Shell for
u_count with count_down implemented within it is still open use this command to run PR
Verify:

pr_verify -in_memory -additional ./abstract_shell/ab_sh_count.dcp

Note that the comparison here is between the Abstract Shell for u_shift with a black box and
the Abstract Shell for u_shift with either shift_left or shift_right implemented within it. The
goal is to compare different RM implementations with command static checkpoints. PR Verify
will fail if:

Lab 9: Abstract Shell for Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=187

• A full static design checkpoint is compared to an Abstract Shell checkpoint

• An RM checkpoint is loaded without its Abstract Shell

• Abstract Shells for different Reconfigurable Partitions are compared

Step 5: Validate the Design in Hardware
In order to test this tutorial design in hardware, a few additional steps are required. These steps
include:

• Building the Vitis application project to run in MicroBlaze

• Creating the full design bitstream with this application present

• Generating all partial bitstreams and the PROM image

• Loading the PROM image in hardware and running hardware tests

Because this design is the same one used for the DFX Controller tutorial in Lab 7, the same
process is used to generate the software application and operate the design in hardware. Rather
than reiterate these details here, the following steps will reference the appropriate steps in Lab 7.
However, given that the Abstract Shell solution was used to generate some of the partial
bitstreams, the bitstream generation scripts have been modified.

1. If the main project_dfxc_vcu118 project has been closed, reopen it within Vivado.

2. Turn to Lab 7, Step 2, Instruction 8 and follow this lab through Instruction 23.

Bitstream generation can be done in two ways when using Abstract Shell. The first is the
standard way, where a full design is open in Vivado and both full and partial bitstreams are
generated. Alternatively, partial bitstreams only can be generated directly from the Abstract
Shell implementation for any RM.

The following two sections describe the Vivado Tcl commands used to create partial
bitstreams using each of these methodologies. The set of commands are embedded in the Tcl
script noted at the beginning of each section. Choose one approach and call the script for
that approach before moving on to hardware validation.

• Approach 1: Generate Partial Bitstreams from Full Configurations

• Approach 2: Generate Partial Bitstreams from Abstract Shells

Lab 9: Abstract Shell for Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 188Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=188

Approach 1: Generate Partial Bitstreams from Full
Configurations
Using the Abstract Shell approach, you did not create multiple configurations as the standard
flow uses, as each RM is implemented on its own, independent of the full static top. However,
you can create any possible configuration by linking the original full static checkpoint with one
RM checkpoint per RP.

1. Source this script to create all bit files. In the Tcl Console, make sure you are currently in the
level above the project_dfxc_vcu118 directory, where this script exists.

source create_all_bitstreams_via_configs_vcu118.tcl

This script first generates full and partial bitstreams from the impl_1 run exactly how it was
done for Lab 7. Then, it assembles a “child_0” configuration from the count_down and
shift_left RMs implemented within the Abstract Shells before generating their partial
bitstreams.

The linking portion of the script looks like this:

create_project -in_memory -part $part

add_files ./project_dfxc_vcu118/project_dfxc_vcu118.runs/impl_1/
top_routed_bb.dcp

add_files ./abstract_shell/abs_shift_left/
rm_shift_left_route_design.dcp

set_property SCOPED_TO_CELLS {inst_shift} [get_files ./
abstract_shell/abs_shift_left/rm_shift_left_route_design.dcp]

add_files ./abstract_shell/abs_count_down/
count_down_route_design.dcp

set_property SCOPED_TO_CELLS {inst_count} [get_files ./
abstract_shell/abs_count_down/count_down_route_design.dcp

link_design -mode default -reconfig_partitions {u_shift u_count} -
part $part -top top

write_checkpoint -force abstract_shell/
config_shift_left_count_down_import/top_route_design.dcp

This configuration is effectively the same as Lab 7 produced for the child_0_impl_1 through
the project flow. At this point, you have a full configuration from which you can run
write_bitstream in the traditional manner using a non-project approach. This by default will
produce all full and partial bitstreams for this design image. You can use the -no_partial_bitfile
or -cell options to create only full or only partial bit files, respectively. In this lab, you do not
use the full design bitstream from the child implementation.

Lab 9: Abstract Shell for Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=189

Approach 2: Generate Partial Bitstreams from
Abstract Shells
When using Abstract Shells, complete static design information is not required for users to
generate partial bitstreams. Each Abstract Shell contains all the information needed not only to
implement any RM for that RP, but to create the partial bitstream for that function.

1. Source this script to create all bit files. In the Tcl Console, make sure you are currently in the
level above the project_dfxc_vcu118 directory, where this script exists.

source create_all_bitstreams_via_abs_vcu118.tcl

This script first generates full and partial bitstreams from the impl_1 run exactly how it was
done for Lab 7. Then, it opens the count_down and shift_left RMs implemented within the
Abstract Shells to generate their partial bitstreams.

IMPORTANT! Generate partial bitstreams for Reconfigurable Modules from the design checkpoint
that includes both the RM and the Abstract Shell in which it was implemented. The Abstract Shell
contains critical information about the static design that must be included in a partial bitstream. See
Figure 117: RM count_down within the RP Count Abstract Shell and Figure 118: RM count_down
without its Abstract Shell for an illustration of this concept.

Complete Hardware Validation
With all full and partial bitstreams generated, PROM file generation can be done. The bitstreams
are named and located in the same way as was done in Lab 7, so this design testing can be
completed in that lab. Return to Lab 7, Step 2, Instruction 25 to complete the hardware testing.

Conclusion
This concludes Lab 9. In this lab, you:

• Revisited the UltraScale+ version of a design with the Dynamic Function eXchange (DFX)
Controller.

• Implemented the parent configuration using the standard DFX project mode

• Created Abstract Shells for each Reconfigurable Partition in the design

• Implemented additional Reconfigurable Modules within these Abstract Shells

• Generated partial bitstreams using two different methodologies

Lab 9: Abstract Shell for Dynamic Function eXchange

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=190

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

Additional Resources
For additional information, see the following documents:

Appendix A: Additional Resources and Legal Notices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 191Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=191

• Vivado Design Suite User Guide: Dynamic Function eXchange (UG909)

• DocNav includes a Dynamic Function eXchange Design Hub that links these documents and
other DFX-specific resources. It is also available through the Xilinx support site.

• Dynamic Function eXchange Controller IP LogiCORE IP Product Guide (PG374)

• Dynamic Function eXchange Decoupler IP LogiCORE IP Product Guide (PG375)

• Dynamic Function eXchange Bitstream Monitor IP LogiCORE IP Product Guide (PG376)

• Dynamic Function eXchange AXI Shutdown Manager IP LogiCORE IP Product Guide (PG377)

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING

Appendix A: Additional Resources and Legal Notices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 192Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/content/xilinx/en/support/documentation-navigation/design-hubs/dh0017-vivado-partial-reconfiguration-hub.html
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=prc;v=latest;d=pg374-dfx-controller.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pr_decoupler;v=latest;d=pg375-dfx-decoupler.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pr_bitstream_monitor;v=latest;d=pg376-dfx-bitstream-monitor.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pr_axi_shutdown_manager;v=latest;d=pg377-dfx-axi-shutdown-manager.pdf
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=192

OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2012-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other
trademarks are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

UG947 (v2020.2) February 23, 2021 www.xilinx.com
Dynamic Function eXchange 193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG947&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.2&docPage=193

	Vivado Design Suite Tutorial
	Revision History
	Table of Contents
	Introduction
	Hardware and Software Requirements
	Tutorial Design Description

	Lab 1: 7 Series Basic DFX Flow
	Step 1: Extract the Tutorial Design Files
	Step 2: Examining the Scripts
	Step 3: Synthesizing the Design
	Step 4: Assembling and Implementing the Design
	Step 5: Building the Design Floorplan
	Step 6: Implementing the First Configuration
	Step 7: Implementing the Second Configuration
	Step 8: Examining the Results with Highlighting Scripts
	Step 9: Generating Bitstreams
	Step 10: Partially Reconfiguring the FPGA
	Conclusion

	Lab 2: UltraScale Basic DFX Flow
	Step 1: Extract the Tutorial Design Files
	Step 2: Examining the Scripts
	Step 3: Synthesizing the Design
	Step 4: Assembling and Implementing the Design
	Step 5: Build the Design Floorplan
	Step 6: Implementing the First Configuration
	Step 7: Implementing the Second Configuration
	Step 8: Examine the Results with Highlighting Scripts
	Step 9: Generating the Bitstreams
	Step 10: Partially Reconfiguring the FPGA
	Conclusion

	Lab 3: DFX Project Flow
	Step 1: Extract the Tutorial Design Files
	Step 2: Load Initial Design Sources
	Step 3: Completing the Design with the Dynamic Function eXchange Wizard
	Step 4: Synthesizing and Implementing the Current Design
	Step 5: Adding an Additional Reconfigurable Model and Corresponding Configuration
	Step 6: Creating and Implementing a Greybox Module
	Step 7: Modifying a Design Source or Options
	Conclusion

	Lab 4: Vivado Debug and the DFX Project Flow
	Step 1: Extract the Tutorial Design Files
	Step 2: Loading Initial Design Sources
	Step 3: Setting Up the Design for DFX
	Step 4: Using the DFX Wizard to Complete the Rest of the Design
	Step 5: Adding IP in the Reconfigurable Module
	Step 6: Synthesizing the Design and Creating a Floorplan
	Step 7: Running the PR Configuration Analysis Report
	Step 8: Implementing the Design
	Step 9: Adding an Additional Reconfigurable Module and Corresponding Configuration
	Step 10: Generating Bitstreams
	Step 11: Connecting to the Board and Programming the FPGA
	Conclusion

	Lab 5: DFX Controller IP for 7 Series Devices
	Step 1: Extract the Tutorial Design Files
	Step 2: Customizing the Dynamic Function eXchange (DFX) Controller IP
	Step 3: Compiling the Design
	Step 4: Setting up the Board
	Step 5: Operating the Sample Design
	Step 6: Querying the DFX Controller in the FPGA
	Step 7: Modifying the DFX Controller in the FPGA
	Conclusion

	Lab 6: DFX Controller for UltraScale Devices
	Step 1: Extract the Tutorial Design Files
	Step 2: Customizing the Dynamic Function eXchange (DFX) Controller IP
	Step 3: Compiling the Design
	Step 4: Setting up the Board
	Step 5: Operating the Sample Design
	Step 6: Querying the DFX Controller in the FPGA
	Step 7: Modifying the DFX Controller in the FPGA
	Conclusion

	Lab 7: DFX Controller IP for UltraScale+ Devices
	Step 1: Extract the Tutorial Design Files
	Step 2: Processing the Tutorial Design
	Step 3: Running the Tutorial Design
	Program the QSPI Flash Device
	Manage Reconfiguration via Software
	Monitor Dynamic Function eXchange via Debug Cores
	Insert CRC Failures and View the FPGA Response

	Conclusion

	Lab 8: Nested DFX
	Overview
	Step 1: Extracting the Tutorial Design Files
	Step 2: Examining the Scripts
	The Synthesis Scripts
	The Nested DFX Scripts

	Step 3: Synthesizing the Design
	Step 4: Assembling and Implementing the Design
	Implementation Design Flow
	Static Design Updates
	Verification Passes
	Bitstream Creation

	Step 5: Test the Design in Hardware
	Configuring the Device with a Full Image
	Partially Reconfiguring the Device
	Load partial bitstreams for UltraScale+ devices
	Load partial bitstreams for UltraScale devices

	Conclusion

	Lab 9: Abstract Shell for Dynamic Function eXchange
	Overview
	Step 1: Extracting the Tutorial Design Files
	Step 2: Processing the Tutorial Design
	Step 3: Create Abstract Shells
	Step 4: Implement New RM within Abstract Shells
	Step 5: Validate the Design in Hardware
	Approach 1: Generate Partial Bitstreams from Full Configurations
	Approach 2: Generate Partial Bitstreams from Abstract Shells

	Complete Hardware Validation
	Conclusion

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	Additional Resources
	Please Read: Important Legal Notices

