
Vivado Design Suite User
Guide

Dynamic Function eXchange

UG909 (v2020.2) February 8, 2021

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG909

Table of Contents
Revision History...5

Chapter 1: Introduction.. 6
Navigating Content by Design Process.. 7
Introduction to Dynamic Function eXchange.. 8
Terminology... 9
Design Considerations..11
Dynamic Function eXchange Licensing.. 16

Chapter 2: Common Applications..17
Networked Multiport Interface... 17
Configuration by Means of Standard Bus Interface... 19
Dynamically Reconfigurable Packet Processor..21
Asymmetric Key Encryption... 21
Summary.. 23

Chapter 3: Vivado Software Flow... 24
Dynamic Function eXchange Commands.. 25
Dynamic Function eXchange Constraints and Properties..32
Apply Reset After Reconfiguration..39
Software Flow.. 42
Tcl Scripts..47
Nested Dynamic Function eXchange.. 48
Abstract Shell for Dynamic Function eXchange...60

Chapter 4: Vivado Project Flow... 73
Flow Summary... 73
Steps for Creating and Using a Dynamic Function eXchange Project................................74
Supported/Unsupported Features..92

Chapter 5: Design Considerations and Guidelines for All Xilinx
Devices... 94
Dynamic Function eXchange IP...94

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=2

Design Hierarchy... 95
Partition Pin Placement.. 99
Active-Low Resets and Clock Enables... 99
Decoupling Functionality..100
Black Boxes.. 101
Effective Approaches for Implementation... 102
Configuration Analysis Report...103
Managing Constraints for a DFX Design.. 107
Defining Reconfigurable Partition Boundaries... 109
Avoiding Deadlock.. 110
Design Revision Checks.. 110
Simulation and Verification..111

Chapter 6: Design Considerations and Guidelines for 7 Series
and Zynq Devices..112
Design Elements Inside Reconfigurable Modules.. 112
Global Clocking Rules... 113
Creating Pblocks for 7 Series Devices...114
Using High Speed Transceivers... 123
Dynamic Function eXchange Design Checklist (7 Series).. 123

Chapter 7: Design Considerations and Guidelines for UltraScale
and UltraScale+ Devices... 127
Design Elements Inside Reconfigurable Modules.. 127
Creating Pblocks for UltraScale and UltraScale+ Devices.. 128
Global Clocking Rules... 139
I/O Rules...140
Using High Speed Transceivers... 142
Dynamic Function eXchange Checklist for UltraScale and UltraScale+ Device Designs 142

Chapter 8: Configuring the Device..148
Configuration Modes..148
Bitstream Type Definitions...150
Dynamic Function eXchange through ICAP for Zynq Devices...155
Tandem Configuration and Dynamic Function eXchange... 155
Formatting BIN Files for Delivery to Internal Configuration Ports................................... 160
Summary of BIT Files for UltraScale Devices... 161
System Design for Configuring an FPGA..162

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=3

Partial BIT File Integrity.. 164
Configuration Frames...165
Configuration Time... 166
Configuration Debugging.. 167
Using Vivado Debug Cores...170

Chapter 9: Known Issues and Limitations.. 176
Known Limitations.. 176

Chapter 10: Hierarchical Design Flows... 178

Chapter 11: Additional Resources and Legal Notices.............................179
Xilinx Resources...179
Solution Centers.. 179
Documentation Navigator and Design Hubs.. 179
References..180
Training Resources..181
Please Read: Important Legal Notices... 182

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=4

Revision History
The following table shows the revision history for this document.

Section Revision Summary
02/08/2021 Version 2020.2

Abstract Shell for Dynamic Function eXchange Added the Abstract Shell for Dynamic Function eXchange
section.

06/24/2020 Version 2020.1

General Replaced all instances of Partial Reconfiguration with
Dynamic Function eXchange.

Chapter 3: Vivado Software Flow Added the Nested Dynamic Function eXchange section

Revision History

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=5

Chapter 1

Introduction
Dynamic Function eXchange (DFX) allows for the reconfiguration of modules within an active
design. This flow requires the implementation of multiple configurations, which ultimately results
in full bitstreams for each configuration and partial bitstreams for each reconfigurable module
(RM). The number of configurations required varies by the number of modules that need to be
implemented. However, all configurations use the same top-level, or static, placement and
routing results. These static results are exported from the initial configuration and imported by all
subsequent configurations using checkpoints.

DFX is a comprehensive solution that is comprised of many parts. These elements include the
Xilinx® silicon ability to be dynamically reconfigured, the Vivado® software flow for compiling
designs from RTL to bitstream, and the complementary features such as IP. In this release, you
will see a mix of DFX and Partial Reconfiguration (PR) terminology, with DFX representing the
overall solution and PR representing a component technology piece of that solution.

Complementary documentation, such as application notes, white papers, and videos, will not be
recaptured with DFX terminology, but all new documentation from 2020 on will show the DFX
terms.

The content of this guide includes the following:

• Description of Dynamic Function eXchange as implemented in the Vivado® Design Suite

• Assumption of familiarity with FPGA design software, particularly Vivado Design Suite

• Updates specific to the Vivado Design Suite Release 2020.2. This release supports Dynamic
Function eXchange for the products listed below:

○ 7 series Devices

- Nearly all Virtex®-7, Kintex®-7, Artix®-7, and Zynq®-7000 SoC devices.

Note: Spartan-7 devices, as well as Artix-7A12T and 7A25T, are not supported.

○ UltraScale™ Devices

- Place and route, as well as bitstream generation is enabled for all production devices.

Note: Access to the VU440 is not restricted in this release. However, expect memory usage to be
higher for this device than all others (potentially exceeding 64 MB).

- Bitstream generation is disabled by default for ES2 devices, but place and route can still
be performed.

○ UltraScale+ Devices

Chapter 1: Introduction

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=6

- Place and route, as well as bitstream generation, is enabled for all production devices,
including all Zynq UltraScale+ RFSoCs and the Virtex UltraScale+ VU23P.

- Place and route is enabled for all Virtex UltraScale+ VU57P devices, but bitstreams are
gated by a parameter as device support is still beta.

- Place and route is enabled for many engineering silicon (ES1, ES2) versions of
UltraScale+ devices. Bitstream generation is disabled by default for these devices.

○ Versal Devices

- DFX support for Versal devices is limited early access in this release. Please contact your
local FAE or support provider to request access.

VIDEO: For an overview of the Vivado Partial Reconfiguration solution in 7 series devices, see the
Vivado Design Suite QuickTake Video: Partial Reconfiguration in Vivado. For an overview of the Vivado
Partial Reconfiguration solution in UltraScale devices, see the Vivado Design Suite QuickTake Video:
Partial Reconfiguration for UltraScale.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal™ ACAP design process Design
Hubs can be found on the Xilinx.com website. This document covers the following design
processes:

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, subsystem functional simulation, and evaluating the Vivado®

timing, resource use, and power closure. Also involves developing the hardware platform for
system integration. Topics in this document that apply to this design process include:

• Chapter 3: Vivado Software Flow

• Chapter 4: Vivado Project Flow

• Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

• Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

• Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices

• Board System Design: Designing a PCB through schematics and board layout. Also involves
power, thermal, and signal integrity considerations. Topics in this document that apply to this
design process include:

• Chapter 8: Configuring the Device

Chapter 1: Introduction

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 7Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=partial-reconfiguration-in-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=partial-reconfiguration-for-ultrascale.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=partial-reconfiguration-for-ultrascale.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=7

Introduction to Dynamic Function eXchange
FPGA technology provides the flexibility of on-site programming and re-programming without
going through re-fabrication with a modified design. Dynamic Function eXchange (DFX) takes
this flexibility one step further, allowing the modification of an operating FPGA design by loading
a dynamic configuration file, usually a partial BIT file. After a full BIT file configures the FPGA,
partial BIT files can be downloaded to modify reconfigurable regions in the FPGA without
compromising the integrity of the applications running on those parts of the device that are not
being reconfigured.

Introduction to Dynamic Function eXchange illustrates the premise behind Dynamic Function
eXchange.

Figure 1: Basic Premise of Dynamic Function eXchange

As shown, the function implemented in Reconfig Block A is modified by downloading one of
several partial BIT files, A1.bit, A2.bit, A3.bit, or A4.bit. The logic in the FPGA design is
divided into two different types, reconfigurable logic and static logic. The gray area of the FPGA
block represents static logic and the block portion labeled Reconfig Block "A" represents
reconfigurable logic. The static logic remains functioning and is unaffected by the loading of a
partial BIT file. The reconfigurable logic is replaced by the contents of the partial BIT file.

There are many reasons why the ability to time multiplex hardware dynamically on a single FPGA
is advantageous. These include:

• Reducing the size of the FPGA required to implement a given function, with consequent
reductions in cost and power consumption

• Providing flexibility in the choices of algorithms or protocols available to an application

• Enabling new techniques in design security

• Improving FPGA fault tolerance

• Accelerating configurable computing

• Delivering updates (fixes and new features) to deployed systems

Chapter 1: Introduction

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=8

In addition to reducing size, weight, power and cost, Dynamic Function eXchange enables new
types of FPGA designs that would be otherwise impossible to implement.

Terminology
The following terminology is specific to the Dynamic Function eXchange feature and is used
throughout this document.

Bottom-Up Synthesis

Bottom-Up Synthesis is synthesis of the design by modules, whether in one project or multiple
projects. InVivado, bottom-up synthesis is referred to as out-of-context (OOC) synthesis. OOC
synthesis generates a separate netlist (or DCP) per OOC module, and is required for Dynamic
Function eXchange to ensure no optimization occurs across the module boundary. In OOC
synthesis, the top-level (or static) logic is synthesized with black_box module definitions for each
OOC module.

Configuration

A configuration is a complete design that has one RM for each reconfigurable partition (RP).
There might be many configurations in a Dynamic Function eXchange FPGA project. Each
configuration generates one full BIT file as well as one partial BIT file for each RM.

Configuration Frame

Configuration frames are the smallest addressable segments of the FPGA configuration memory
space. Reconfigurable frames are built from discrete numbers of these lowest-level elements. In
Xilinx devices, the base reconfigurable frames are one element (CLB, block RAM, DSP) wide by
one clock region high. The number of resources in these frames vary by device family.

Internal Configuration Access Port (ICAP)

The internal configuration access port (ICAP) is essentially an internal version of the SelectMAP
interface. For more information, see the 7 Series FPGAs Configuration User Guide (UG470)
References or the UltraScale Architecture Configuration User Guide (UG570) References.

Media Configuration Access Port (MCAP)

The MCAP is dedicated link to the configuration engine from one specific PCIe® block per
UltraScale™ device. This entry point can be enabled when configuring the Xilinx PCIe IP.

Chapter 1: Introduction

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 9Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=9

Partition

A Partition is a logical section of the design, user-defined at a hierarchical boundary, to be
considered for design reuse. A Partition is either implemented as new or preserved from a
previous implementation. A Partition that is preserved maintains not only identical functionality
but also identical implementation.

Partition Definition (PD)

This is a term used within the project flow only. A Partition Definition defines a set of RMs that
are associated with the module instance (or RP). A PD is applied to all instances of the module,
and cannot be associated with a subset of module instances.

Partition Pin

Partition pins are the logical and physical connection between static logic and reconfigurable
logic. The tools automatically create, place, and manage partition pins.

Partial Reconfiguration (PR)

Partial reconfiguration (PR) is the Xilinx silicon technology that enables users to modify a subset
of logic in an operating FPGA design by downloading a partial bitstream. The overall solution
name has changed to Dynamic Function eXchange, but the underlying capability of the silicon
remains, so references to PR, especially in fundamental Tcl commands, can still be seen in Vivado.

Processor Configuration Access Port (PCAP)

The processor configuration access port (PCAP) is similar to the internal configuration access
port (ICAP) and is the primary port used for configuring a Zynq-7000 SoC device. For more
information, see the Zynq-7000 SoC Technical Reference Manual (UG585) References.

Programmable Unit (PU)

In the UltraScale architecture, this is the minimum required resources for reconfiguration. The
size of a PU varies by resource type. Because adjacent sites share a routing resource (or
Interconnect tile) in the UltraScale architecture, a PU is defined in terms of pairs.

Reconfigurable Frame

Reconfigurable frames (in all references other than "configuration frames" in this guide) represent
the smallest reconfigurable region within an FPGA. Bitstream sizes of reconfigurable frames vary
depending on the types of logic contained within the frame.

Chapter 1: Introduction

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 10Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=10

Reconfigurable Logic

Reconfigurable logic is any logical element that is part of an RM. These logical elements are
modified when a partial BIT file is loaded. Many types of logical components can be reconfigured
such as LUTs, flip-flops, block RAM, and DSP blocks.

Reconfigurable Module

An RM is the netlist or HDL description that is implemented within an RP. Multiple RMs exist for
an RP.

Reconfigurable Partition

RP is an attribute set on an instantiation that defines the instance as reconfigurable. The RP is
the level of hierarchy within which different RMs are implemented. Tcl commands such as
opt_design, place_design and route_design detect the HD.RECONFIGURABLE
property on the instance and process it correctly.

Static Logic

Static logic is any logical element that is not part of an RP. The logical element is never partially
reconfigured and is always active when RPs are being reconfigured. Static logic is also known as
top-level logic.

Static Design

The static design is the part of the design that does not change during partial reconfiguration.
The static design includes the top-level and all modules not defined as reconfigurable. The static
design is built with static logic and static routing.

Design Considerations
Dynamic Function eXchange is an expert flow within the Vivado Design Suite. The following
requirements and expectations need to be understood before embarking on a DFX project.

Design Requirements and Guidelines
• Dynamic Function eXchange requires the use of Vivado 2013.3 or newer.

○ Partial reconfiguration is supported in the ISE Design Suite as well. Use the ISE Design
Suite for PR only with Virtex-6, Virtex-5 and Virtex-4 devices. See the Partial
Reconfiguration User Guide (v14.5) (UG702) for more information.

Chapter 1: Introduction

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 11Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=14.7;d=ug702.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=11

• Floorplanning is required to define reconfigurable regions, per element type.

○ For 7 series, vertically align Pblocks with frame/clock region boundaries. This produces the
best results and allows RESET_AFTER_RECONFIG to be enabled.

○ For UltraScale, the floorplanning is more flexible. Xilinx recommends stopping the Pblock
short of frame/clock region boundaries to allow for expanded routing, which can greatly
improve routability and quality.

○ Horizontal alignment rules also apply. See Create a Floorplan for the Reconfigurable Region
for more information.

○ Automatic expansion for routing resources is done for all UltraScale and UltraScale+ device
targets.

• Bottom-up/OOC synthesis (to create multiple netlist/DCP files) and management of RM
netlist files is the responsibility of the user.

○ For third party synthesis tools, I/O insertion must be disabled.

○ For Vivado OOC synthesis, I/O insertion is automatically disabled in the out_of_context
mode.

• Standard timing constraints are supported, and additional timing budgeting capabilities are
available if needed.

• A unique set of design rule checks (DRCs) has been established to help ensure successful
design completion.

• A DFX design must consider the initiation of partial reconfiguration as well as the delivery of
partial BIT files, either within the FPGA or as part of the system design.

• The Vivado Design Suite includes support for the Dynamic Function eXchange Controller IP.
This customizable IP manages the core tasks for partial reconfiguring any Xilinx device. The
core receives triggers from hardware or software, manages handshaking and decoupling tasks,
fetches partial bitstreams from memory locations, and delivers them to the ICAP. More
information on the DFX Controller IP is available on the Xilinx website.

• An RP must contain a super set of all pins to be used by the varying reconfigurable modules
(RM) implemented for the partition. If an RM uses different inputs or outputs from another
RM, the resulting RM inputs or outputs might not connect inside of the RM. The tools handle
this by inserting a LUT1 buffer within the RM for all unused inputs and outputs. The output
LUT1 is tied to a constant value and the value of the constant can be controlled by
HD.PARTPIN_TIEOFF property on the unused output pin. For more information on this
property refer to Black Boxes

• Black boxes are supported for bitstream generation. See Black Boxes for details about how to
tie off ports with constant values.

• For user reset signals, determine if the logic inside the RM is level or edge sensitive. If the
reset circuit is edge sensitive (as it may be in some IP such as FIFOs), the RM reset should not
be applied until after reconfiguration is complete.

Chapter 1: Introduction

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 12Send Feedback

https://www.xilinx.com/products/intellectual-property/dfx-controller.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=12

• DFX designs are compatible with the Xilinx Isolation Design Flow (IDF) for Zynq MPSoC
devices. For more information on solution details, please consult XAPP1335, the Isolation
Design Flow for UltraScale+ FPGAs and Zynq UltraScale+ MPSoCs application note.

Design Performance
Performance metrics vary from design to design, and the best results are achieved if you follow
the Hierarchical Design techniques suggested in Chapter 10: Hierarchical Design Flows. This
documents was created for the ISE Design Suite, but the methodologies contained therein apply
for the Vivado Design Suite. You can find additional design recommendations in the UltraFast
Design Methodology Guide for Xilinx FPGAs and SoCs (UG949).

However, the additional restrictions that are required for silicon isolation are expected to have an
impact on most designs. The application of partial reconfiguration rules, such as routing
containment, exclusive placement, and no optimization across RM boundaries, means that the
overall density and performance is lower for a DFX design than for the equivalent flat design.
The overall design performance for DFX designs varies from design to design, based on factors
such as the number of RPs, the number of interface pins to these partitions, and the size and
shape of Pblocks.

Any potential Dynamic Function eXchange design must have extra timing slack and resource
overhead before considering this solution. See the Building Up Implementation Requirements
section for more information on evaluating a design for DFX.

Design Criteria
Some component types can be reconfigured and some cannot.

• For 7 series devices, the component rules are as follows:

○ Reconfigurable resources include CLB, block RAM, and DSP component types as well as
routing resources.

○ Clocks and clock modifying logic cannot be reconfigured, and therefore must reside in the
static region.

- Includes BUFG, BUFR, MMCM, PLL, and similar components

○ The following components cannot be reconfigured, and therefore must reside in the static
region:

- I/O and I/O related components (ISERDES, OSERDES, IDELAYCTRL)

- Serial transceivers (MGTs) and related components

- Individual architecture feature components (such as BSCAN, STARTUP, ICAP, XADC.)

• For UltraScale and UltraScale+ devices, the list of reconfigurable component types is more
extensive:

Chapter 1: Introduction

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 13Send Feedback

https://www.xilinx.com/support/documentation/application_notes/xapp1335-isolation-design-flow-mpsoc.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=13

○ CLB, block RAM, and DSP component types as well as routing resources

○ Clocks and clock modifying logic, including BUFG, MMCM, PLL, and similar components

○ I/O and I/O related components (ISERDES, OSERDES, IDELAYCTRL)

Note: The types of changes for I/O components is limited. See I/O Rules for more information.

○ Serial transceivers (MGTs) and related components

○ PCIe, CMAC, Interlaken, and SYSMON blocks

○ Bitstream granularity of these new components require that certain rules are followed. For
example, partial reconfiguration of I/O require that the entire bank, plus all clocking
resources in that frame are reconfigured together.

○ Only the configuration components (such as BSCAN, STARTUP, ICAP, and FRAME_ECC)
must remain in the static portion of the design.

• Global clocking resources to RPs are limited, depending on the device and on the clock regions
occupied by these RPs.

• IP restrictions may occur due to components used to implement the IP or due to connections
required by the IP. Examples include:

○ Vivado Debug Cores (See Using Vivado Debug Cores for more information on using debug
cores inside of RMs)

○ IP modules with embedded global buffers or I/O (7 series only)

○ Memory IP controller (MMCM and BSCAN)

• RMs must be initialized to ensure a predictable starting condition after reconfiguration. For all
devices other than 7 series, GSR is automatically applied after DFX completes. For 7 series
devices, GSR can be turned on, after meeting Pblock requirements, with the
RESET_AFTER_RECONFIG Pblock property.

• Decoupling logic is highly recommended to disconnect the reconfigurable region from the
static portion of the design during the act of partial reconfiguration.

○ GSR events hold all logic inside the RM in reset until configuration completes. However,
RM outputs can be random and all downstream logic should be decoupled. For 7 series, if
RESET_AFTER_RECONFIG is not used, additional decoupling of clocks and inputs can be
required to prevent unintended capture of erroneous data of during reconfiguration (e.g.
spurious write to memory).

○ The Vivado Design Suite includes the Partial Reconfiguration Decoupler IP. This IP allows
users to easily insert MUXes to efficiently decouple AXI4-Lite, AXI4-Stream, and custom
interfaces. More information on the PR Decoupler IP is available on the Xilinx website.

• An RP must be floorplanned with a Pblock, so the module must be a block that can be
physically isolated and meet timing. If the module is complete, it is recommended to run this
design through a non-DFX flow to get an initial evaluation of placement, routing, and timing
results. If the design has issues in a non-DFX flow, these should be resolved before moving on
to the DFX flow.

Chapter 1: Introduction

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 14Send Feedback

https://www.xilinx.com/products/intellectual-property/pr-decoupler.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=14

• Optimize an RP's interface as much as possible. An excessive number of interface pins on an
RP can cause timing and routing issues. This is especially true if the partition pins are densely
placed. This can happen for two reasons:

1. RP Pblock is relatively small compared to the number of partition pins

2. All the partition pins are placed in a small area due to static connections.

Consider the RP interface when designing and floorplanning for DFX.

• Virtex-7 SSI devices (7V2000T, 7VX1140T, 7VH870T, 7VH580T) have two fundamental
requirements. These requirements are:

○ Reconfigurable regions must be fully contained within a single SLR. This ensures that the
global reset events are properly synchronized across all elements in the RM, and that all
super long lines (SLL) are contained within the static portion of the design. SLL are not
partially reconfigurable.

○ If the initial configuration of a 7 series SSI device is done through an SPIx1 interface, partial
bitstreams must be delivered to the ICAP located on the SLR where the RP exists, or to an
external port, such as JTAG. If the initial configuration is done through any other
configuration port, the master ICAP can be used as the delivery port for partial bitstreams.

• UltraScale devices have a new requirement related to partial reconfiguration events. Before a
partial bitstream for a new RM is loaded, the current RM must be "cleared" to prepare for
reconfiguration. UltraScale+ devices do not have this limitation. For more information, see
Summary of BIT Files for UltraScale Devices.

• Dedicated encryption support for partial bitstreams is available natively. See Known
Limitations for specific unsupported use cases for UltraScale devices.

• Devices can use a per-frame CRC checking mechanism, enabled by write_bitstream, to
ensure each frame is valid before loading.

• Optimization across the DFX boundary is prohibited by the implementation tools. Often the
WNS paths in a DFX design are high fanout control/reset signals that cross the RP boundary.
Avoid high fanout signals crossing the RP boundary because the drivers cannot be replicated.
To allow the tools maximum flexibility of optimization/replication, consider the following:

○ For inputs to the RP, make the signal crossing the RP boundary a single fanout net, and
register the signal inside the RM before the fanout. This can be replicated as necessary
inside the RM (or put on global resources).

○ For outputs, again make the signal crossing the DFX boundary a single fanout net. Register
the signal in static before the fanout for replication/optimization.

• For design with multiple RPs, Xilinx recommends not having direct connections between two
RPs. This includes connections that go through asynchronous static logic (not registered in
static). If direct connections exist between two RPs, all possible configurations must be
verified in static timing analysis to ensure timing is met across these interfaces. This can be
done for closed systems that are fully owned and maintained by a single user, but can be
impossible to verify for designs where different RMs are developed by multiple users. Adding
a synchronous endpoint in static ensures timing is always met on any configuration, as long as
the configuration where the RM was implemented met timing.

Chapter 1: Introduction

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=15

Dynamic Function eXchange is a powerful capability within Xilinx devices, and understanding the
capabilities of the silicon and software is instrumental to success. While trade-offs must be
recognized and considered during the development process, the overall result is a more flexible
implementation of your FPGA design.

Dynamic Function eXchange Licensing
Dynamic Function eXchange is available as a feature within the Vivado Design Suite. Starting
withVivado 2019.1, no specific license code is necessary to use this feature for any edition
ofVivado.

For older versions of Vivado, a Partial Reconfiguration license is included with every System
Edition and Design Edition seat, and is available for purchase for WebPACK Edition seats.

Chapter 1: Introduction

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=16

Chapter 2

Common Applications
The basic premise of Dynamic Function eXchange (DFX) is that the device hardware resources
can be time-multiplexed similar to the ability of a microprocessor to switch tasks. Because the
device is switching tasks in hardware, it has the benefit of both flexibility of a software
implementation and the performance of a hardware implementation. Several different scenarios
are presented here to illustrate the power of this technology.

Networked Multiport Interface
Dynamic Function eXchange optimizes traditional FPGA applications by reducing size, weight,
power, and cost. Time-independent functions can be identified, isolated, and implemented as
reconfigurable modules (RM) and swapped in and out of a single device as needed. A typical
example is a 40G OTN muxponder application. The ports of the client side of the muxponder can
support multiple interface protocols. However, it is not possible for the system to predict which
protocol will be used before the FPGA is configured. To ensure that the FPGA does not have to
be reconfigured and thus disable all ports, every possible interface protocol is implemented for
every port, as illustrated in Networked Multiport Interface.

Chapter 2: Common Applications

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=17

Figure 2: Network Switch Without Partial Reconfiguration

FPGA

Switch
Fabric

Port 1

Port 2

Port 3

Port 4

10GigE tx/rx

OC192 tx/rx

OTU2 tx/rx

10GigE tx/rx

OC192 tx/rx

OTU2 tx/rx

10GigE tx/rx

OC192 tx/rx

OTU2 tx/rx

10GigE tx/rx

OC192 tx/rx

OTU2 tx/rx

X12002-020521

This is an inefficient design because only one of the standards for each port is in use at any point
in time. Dynamic Function eXchange enables a more efficient design by making each of the port
interfaces an RM, as shown in Networked Multiport Interface. This also eliminates the MUX
elements required to connect multiple protocol engines to one port.

Figure 3: Network Switch With Partial Reconfiguration

FPGA

Config Memory
Storage

10GigE tx/rx

OC192 tx/rx

OTU2 tx/rx

Switch
Fabric

10GigE tx/rx

OC192 tx/rx

OTU2 tx/rx

OC192 tx/rx

Port 1

Port 2

Port 3

Port 4

X12003-020521

Chapter 2: Common Applications

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=18

A wide variety of designs can benefit from this basic premise. Software defined radio (SDR), for
example, is one of many applications that has mutually exclusive functionality, and which sees a
dramatic improvement in flexibility and resource usage when this functionality is multiplexed.

There are additional advantages with a dynamically reconfigurable design other than efficiency. In
the Networked Multiport Interface example, a new protocol can be supported at any time
without affecting the static logic, the switch fabric in this example. When a new standard is
loaded for any port, the other existing ports are not affected in any way. Additional standards can
be created and added to the configuration memory library without requiring a complete redesign.
This allows greater flexibility and reliability with less down time for the switch fabric and the
ports. A debug module could be created so that if a port was experiencing errors, an unused port
could be loaded with analysis/correction logic to handle the problem real-time.

In the Networked Multiport Interface example, a unique partial BIT file must be generated for
each unique physical location that could be targeted by each protocol. Partial BIT files are
associated with an explicit region on the device. In this example, sixteen unique partial BIT files
to accommodate four protocols for four locations.

Configuration by Means of Standard Bus
Interface

Dynamic Function eXchange can create a new configuration port using an interface standard
more compatible with the system architecture. For example, the FPGA could be a peripheral on a
PCIe® bus and the system host could configure the FPGA through the PCIe connection. After
power-on reset the FPGA must be configured with a full BIT file. However, the full BIT file might
only contain the PCIe interface and connection to the internal configuration access port (ICAP).

Bitstream compression can be used to reduce the size and therefore configuration time of this
initial device load, helping the FPGA configuration meet PCIe enumeration specifications.

The system host could then configure the majority of the FPGA functionality with a partial BIT
file downloaded through the PCIe port as shown in Configuration by Means of Standard Bus
Interface. An example of fast configuration over PCIe is shown in XAPP1338, with an example
targeting UltraScale+™ included.

Chapter 2: Common Applications

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=19

Figure 4: Configuration by Means of PCIe Interface

ICAP

PCle

Static

Full
 Bit File

Partial
Bit File

X12012-020521

The PCIe standard requires the peripheral (the FPGA in this case) to acknowledge any requests
even if it cannot service the request. Reconfiguring the entire FPGA would violate this
requirement. Because the PCIe interface is part of the static logic, it is always active during the
dynamic reconfiguration process, thus ensuring that the FPGA can respond to PCIe commands
even during reconfiguration.

Tandem Configuration is a related solution that at first glance appears to be the same as is shown
here. However, the solution using Dynamic Function eXchange differs from Tandem
Configuration in two regards:

• The configuration process with DFX is a full device configuration, made smaller and faster
through compression, followed by a partial bitstream that overwrites the black box region to
complete the overall configuration. Tandem Configuration is a two-stage configuration where
each configuration frame is programmed exactly once.

• Tandem Configuration for 7 series devices does not permit dynamic reconfiguration of the
user application. Using DFX, the dynamic region can be reloaded with different user
applications or field updates. Tandem Configuration for UltraScale devices does permit Field
Updates and compatibility with DFX in general. The overall flow is Tandem Configuration for a
two-stage initial load, followed by partial reconfiguration to dynamically modify the user
application.

Tandem Configuration is designed to be a specific solution for a specific goal: fast configuration
of a PCIe endpoint to meet enumeration requirements. For more information, see the following
manuals:

• 7 Series FPGAs Integrated Block for PCI Express LogiCORE IP Product Guide (PG054)

• Virtex-7 FPGA Integrated Block for PCI Express LogiCORE IP Product Guide (PG023)

• UltraScale Devices Gen3 Integrated Block for PCI Express LogiCORE IP Product Guide (PG156)

• UltraScale+ Devices Integrated Block for PCI Express LogiCORE IP Product Guide (PG213)

Chapter 2: Common Applications

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 20Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_7x;v=latest;d=pg054-7series-pcie.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_7x;v=latest;d=pg023_v7_pcie_gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_ultrascale;v=latest;d=pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=20

Dynamically Reconfigurable Packet Processor
A packet processor can use Dynamic Function eXchange to change its processing functions
quickly, based on the packet types received. In Dynamically Reconfigurable Packet Processor, a
packet has a header that contains the partial BIT file, or a special packet contains the partial BIT
file. After the partial BIT file is processed, it is used to reconfigure a co-processor in the FPGA.
This is an example of the FPGA reconfiguring itself based on the data packet received instead of
relying on a predefined library of partial BIT files.

Figure 5: Dynamically Reconfigurable Packet Processor

FPGA

ICAP

Packet Processor

Partially
Reconfigurable
Co-processor

Data

Data PBF HData PBF H

PBF: Partial
Bit File

1 2

2 1
X12005

Asymmetric Key Encryption
There are some new applications that are not possible without Dynamic Function eXchange. A
very secure method for protecting the FPGA configuration file can be architected when Dynamic
Function eXchange and asymmetric cryptography are combined. (See Public-key cryptography
for asymmetric cryptography details.)

Chapter 2: Common Applications

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 21Send Feedback

http://en.wikipedia.org/wiki/Public-key_cryptography
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=21

In Asymmetric Key Encryption, the group of functions in the shaded box can be implemented
within the physical package of the FPGA. The cleartext information and the private key never
leave a well-protected container.

Figure 6: Asymmetric Key Encryption

Public Key

Private Key

f

cleartext

ciphertext

f cleartext

Key Co-generation

X12022

In a real implementation of this design, the initial BIT file is an unencrypted design that does not
contain any proprietary information. The initial design only contains the algorithm to generate
the public-private key pair and the interface connections between the host, FPGA and ICAP.

After the initial BIT file is loaded, the FPGA generates the public-private key pair. The public key
is sent to the host which uses it to encrypt a partial BIT file. The encrypted partial BIT file is
downloaded to the FPGA where it is decrypted and sent to the ICAP to partially reconfigure the
FPGA, as shown in Asymmetric Key Encryption.

Chapter 2: Common Applications

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=22

Figure 7: Loading an Encrypted Partial Bit File

Host

Bit File Library

Config 1

Config 2

Config 3

Encrypt
Algorithm

Public

FPGA

Generate Key Pair

Public Private

External
Interface

Decrypt
Algorithm ICAP

X12023-020521

The partial BIT file could be the vast majority of the FPGA design with the logic in the static
design consuming a very small percentage of the overall FPGA resources.

This scheme has several advantages:

• The public-private key pair can be regenerated at any time. If a new configuration is
downloaded from the host it can be encrypted with a different public key. If the FPGA is
configured with the same partial BIT file, such as after a power-on reset, a different public key
pair is used even though it is the same BIT file.

• The private key is stored in SRAM. If the FPGA ever loses power the private key no longer
exists.

• Even if the system is stolen and the FPGA remains powered, it is extremely difficult to find the
private key because it is stored in the general purpose FPGA programmable logic. It is not
stored in a special register. You could manually locate each register bit that stores the private
key in physically remote and unrelated regions.

Summary
In addition to reducing size, weight, power and cost, Dynamic Function eXchange enables new
types of FPGA designs that would otherwise be impossible to implement.

Chapter 2: Common Applications

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=23

Chapter 3

Vivado Software Flow
The Vivado® Dynamic Function eXchange (DFX) design flow is similar to a standard design flow,
with some notable differences. The implementation software automatically manages the low-
level details to meet silicon requirements. You must provide guidance to define the design
structure and floorplan. The following steps summarize processing a DFX design:

1. Synthesize the static and reconfigurable modules (RM) separately. See Synthesis for more
information.

2. Create physical constraints (Pblocks) to define the reconfigurable regions. See Create a
Floorplan for the Reconfigurable Region for more information.

3. Set the HD.RECONFIGURABLE property on each reconfigurable partition (RP). See Define a
Module as Reconfigurable for more information.

4. Implement a complete design (static and one RM per RP) in context. See Implementation for
more information.

5. Save a design checkpoint for the full routed design. See Implementation for more
information.

6. Remove RMs from this design and save a static-only design checkpoint. See Implementation
for more information.

7. Lock the static placement and routing. See Preserving Implementation Data for more
information.

8. Add new RMs to the static only design and implement this new configuration, saving a
checkpoint for the full routed design.

9. Repeat Step 8 until all RMs are implemented.

10. Run a verification utility (pr_verify) on all configurations. See Verifying Configurations for
more information.

11. Create bitstreams for each configuration. See Bitstream Generation for more information.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=24

Dynamic Function eXchange Commands
The DFX flows are supported through the non-project batch/Tcl interface (no project based
commands), as well as within an RTL-based project flow. Example scripts for the non-project flow
are provided in the Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947), along with
step-by-step instructions for setting up the flows. See that Tutorial for more information.

Even with the introduction of the Dynamic Function eXchange terminology, the underlying
design flow remains unchanged. Fundamental Tcl commands remain unchanged so that existing
projects and scripts will safely migrate forward. Designs and scripts created prior to Vivado
2019.2 require no modification when updating to this release.

The following sections describe a few specialized commands and options needed for the DFX
flows. Examples of how to use these commands to run a DFX flow are given. For more
information on individual commands, see the Vivado Design Suite Tcl Command Reference Guide
(UG835).

Synthesis
Synthesizing a partially reconfigurable design does not require any special commands, but does
require bottom-up synthesis. There are currently no unsupported commands for synthesis,
optimization, or implementation.

These synthesis tools are supported:

• XST (supported for 7 series only)

• Synplify

• Vivado Synthesis

IMPORTANT! Bottom-up synthesis refers to a synthesis flow in which each module has its own synthesis
project. This generally involves turning off automatic I/O buffer insertion for the lower level modules.

This document only covers the Vivado synthesis flow.

Synthesizing the Top Level

You must have a top-level netlist with a black box for each reconfigurable partition (RP). This
requires the top-level synthesis to have module or entity declarations for the partitioned
instances, but no logic; the module is empty.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 25Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=25

The top-level synthesis infers or instantiates I/O buffers on all top level ports. For more
information on controlling buffer insertion, see this link in the Vivado Design Suite User Guide:
Synthesis (UG901).

synth_design -flatten_hierarchy rebuilt -top <top_module_name> -part <part>

Synthesizing Reconfigurable Modules

Because each RM must be instantiated in the same black box in the static design, the different
versions must have identical interfaces. The name of the block must be the same in each
instance, and all the properties of the interfaces (names, widths, direction) must also be identical.
Each configuration of the design is assembled like a flat design.

To synthesize a RM, turn off all buffer insertions. You can do so in Vivado Synthesis using the
synth_design command in conjunction with the -mode out_of_context switch:

synth_design -mode out_of_context -flatten_hierarchy rebuilt -top
<reconfig_module_name> -part <part>

Table 1: synth_design Options

Command Option Description
-mode out_of_context Prevents I/O insertion for synthesis and downstream tools.

The out_of_context mode is saved in the checkpoint if
write_checkpoint is issued.

-flatten_hierarchy rebuilt There are several values allowed for -flatten_hierarchy,
but rebuilt is the recommended setting for DFX flows.

-top This is the module/entity name of the module being
synthesized.

-part This is the Xilinx® part being targeted (for example,
xc7k325tffg900-3)

The synth_design command synthesizes the design and stores the results in memory. In order
to write the results out to a file, use:

write_checkpoint <file_name>.dcp

It is recommended to close the design in memory after synthesis, and run implementation
separately from synthesis.

Reading Design Modules
If there is currently no design in memory, you must load a design. This can be done in a variety of
ways, for either the static design or for RM. After the configurations are implemented,
checkpoints are exclusively used to read in placed and routed module databases.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 26Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf;a=xSettingABottomUpFlowUsingTheOutOfContextFlow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=26

Method 1: Add and Link Files

This is the recommended method to load and link all design sources in the most explicit and
thorough manner. The following steps pull in all necessary design sources and define the RP
boundaries.

1. Create a new project in memory. While this allows you to select a target device, the project is
not saved.

create_project -part <part> -in_memory

2. Add all the design sources. This can include multiple checkpoints for static or reconfigurable
logic, including lower-level RM sources.

add_files <top>.dcp
add_files <rp1_rmA_top>.dcp
add_files <rp1_rmA_lower>.dcp
add_files <rp2_rmA_top>.dcp

3. Use the SCOPED_TO_CELLS property to define relationships between levels of hierarchy.

expanse="page">set_property SCOPED_TO_CELLS {<RP1_module_instance>}
[get_files <rp1_rmA_top>.dcp]
expanse="page">set_property SCOPED_TO_CELLS
{<RP1_lower_module_instance>} [get_files <rp1_rmA_lower>.dcp]
expanse="page">set_property SCOPED_TO_CELLS {<RP2_module_instance>}
[get_files <rp2_rmA_top>.dcp]

4. Link the design together, defining all RPs.

expanse="page">link_design -top <top> -part <part> -reconfig_partitions
{<RP1_module_instance> <RP2_module_instance>}

Table 2: link_design Options

Command Option Description
-part This is the Xilinx part being targeted (for example,

xc7k325tffg900-3)

-top This is the module/entity name of the module being
implemented. This switch can be omitted if
set_property top <top_module_name>
[current_fileset] is issued prior to link_design.

-reconfig_partitions <args> Specify a list of RPs to load while opening the design. The
specified RPs are then marked with the
HD.RECONFIGURABLE property for proper handling in the
design.

-pr_config <arg> For the project-based design flow only. This option
specifies the PR Configuration to apply while opening the
design.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=27

Method 2: Read Netlist Design

This approach should be used when modules have been synthesized by tools other than Vivado
synthesis.

read_edif <top>.edf/edn/ngc
read_edif <rp1_a>.edf/edn/ngc
read_edif <rp2_a>.edf/edn/ngc
link_design -top <top_module_name> -part <part>

Method 3: Open/Read Checkpoint

If the static (top-level) design has synthesis or implementation results stored as a checkpoint, it
can be loaded using the open_checkpoint command. This command reads in the static design
checkpoint and opens it in active memory:

open_checkpoint <file>

If the checkpoint is for the complete netlist of a RM (that is, not for static), the instance name can
be specified using read_checkpoint -cell. If the checkpoint is a post-implementation
checkpoint, the additional -strict option must be used. This option can also be used with a
post-synthesis checkpoint to ensure exact port matching. To read in a checkpoint in a RM, the
top-level design must be open and have a black box for the specified cell. Then the following
command can be specified:

read_checkpoint -cell <cellname> <file> [-strict]

Table 3: read_checkpoint Switches

Switch Name Description
-cell Specifies the full hierarchical name of the RM.
-strict Requires exact ports match for replacing a cell, and checks

that part, package, and speed grade values are identical.
Should be used when restoring implementation data.

<file> Specifies the full or relative path to the checkpoint (DCP) to
be read in.

CAUTION! Do not use this method if the synthesized checkpoint has underlying modules that are not
included. The read_checkpoint -cell  approach does not support nesting. Use the link_design 
approach instead in Method 1: Add and Link Files.

CAUTION! Any Tcl variable pointing to design objects becomes invalid after subsequent
read_checkpoint -cell  commands. The content of those variables needs to be rebuilt prior to a
second call to read_checkpoint -cell. Failure to do so could result to unwanted behavior (or even
crashes) due to referencing objects that no longer exist.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=28

Method 4: Open Checkpoint/Update Design

This is useful when the synthesis results are in the form of a netlist (EDF or EDN), but static has
already been implemented. The following example shows the commands for the second
configuration in which this is true.

open_checkpoint <top>.dcp
lock_design -level routing
update_design -cells <rp1> -from_file <rp1_b>.{edf/edn}
update_design -cells <rp2> -from_file <rp2_b>.{edf/edn}

Adding Reconfigurable Modules with Sub-Module
Netlists
If a RM has sub-module netlists, it can be difficult for the Vivado tools to process the sub-module
netlists. This is because in the DFX flow the RM netlists are added to a design that is already
open in memory. This means the update_design -cells command must be used, which
requires the cell name for every EDIF file, which can be troublesome to get.

There are two ways to make loading RM sub-module netlists easier in the Vivado Design Suite.

Method 1: Create a Single RM Checkpoint (DCP)

Create an RM checkpoint (DCP) that includes all netlists. Use add_files to add all of the EDIF
(or NGC) files, and use link_design to resolve the EDIF files to their respective cells. Here is
an example of the commands used in this process:

add_files [list rm.edf ip_1.edf ip_n.edf]
Run if RM XDC exists
add_files rm.xdc
link_design -top <rm_module> -part <part>
write_checkpoint rm_v#.dcp
close_project

IMPORTANT! Using this methodology to combine/convert a netlist into a DCP is the recommended way
to handle an RM that has one or more NGC source files as well.

Then this newly-created RM checkpoint can be used in the DFX flow. In the commands below,
the single read_checkpoint -cell command replaces what could be many
update_design -cell commands.

add_files static.dcp
link_design -top <top> part <part>
lock_design -level routing
read_checkpoint -cell <rm_inst> rm_v#.dcp

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=29

Method 2: Place the Sub-Module Netlists in the Same Directory as the RM's Top-Level
Netlist

When the top-level RM netlist is read into the DFX design using update_design -cell, make
sure that all sub-module netlists are in the same directory as the RM top-level netlist. In this case,
the lower-level netlists do not need to be specified, but they are picked up automatically by the
update_design -cells command. This is less explicit than Method 1, but requires fewer
steps. In this case the commands to load the RM netlist would look like the following:

add_files static.dcp
link_design -top <top> part <part>
lock_design -level routing
update_design -cells <rm_inst> -from_file rm_v#.edf

In the last (update_design) command above, the lower-level netlists are picked up
automatically if they are in the same directory as rm_v#.edf.

Reading Design Constraints
New constraints can be applied for each configuration at various points in the flow. If an RM is
read in as a DCP, then any constraints stored in the DCP are automatically applied. Additionally,
the read_xdc command can be used to apply constraints scoped to the top-level, or to the
specific cell (using -cell switch). If constraint are expected to directly or indirectly affect the
RM, then the RM must be resolved (not a black box) prior to reading in the new constraints.
Otherwise, the constraints may be dropped or not correctly propagated in the constraint system.
Because Static is only placed and routed in the initial configuration, all constraints for subsequent
configurations (where Static is locked) should be focused strictly on the RP regions being
implemented.

Implementation
Because the DFX flow allows for various configurations in hardware, multiple implementation
runs are required. Each implementation of a DFX design is referred to as a configuration. Each
module of the design (static or RM) can be implemented or imported (if previously implemented).
Implementation results for the static design must be consistent for each configuration, so that
the design is implemented in one configuration, and then imported in subsequent configurations.
Additional configurations can be constructed by importing static, and implementing or importing
each RM.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=30

There are no restrictions to the support of implementation commands or options for DFX, but
certain optimizations and sub-routines are not done if they oppose the fundamental
requirements of partial reconfiguration. The following list of commands can be run after the
logical design is loaded (using link_design or open_checkpoint):

Run if all constraints are not already loaded
read_xdc
Optional command
opt_design
place_design
Optional command
phys_opt_design
route_design

Preserving Implementation Data

In the DFX flow, it is a requirement to lock down the placement and routing results of the static
logic from the first configuration for all subsequent configurations. The static implementation of
the first configuration must be saved as a checkpoint. When the checkpoint is read for
subsequent configurations, the placement and routing must be locked, to ensure that the static
design remains completely identical from configuration to configuration. To lock the placement
and routing of an imported checkpoint (static or reconfigurable), the lock_design command is
used.

lock_design -level [logical|placement|routing] [cell_name]

When locking down the static logic with the above command, the optional [cell_name] can
be omitted.

lock_design -level routing

To lock the results of an imported RM, the full hierarchical name should be specified within the
post-implementation checkpoint:

lock_design -level routing u0_RM_instance

For Dynamic Function eXchange, the only supported preservation level is routing. Other
preservation levels are available for this command, but they must only be used for other
Hierarchical Design flows.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=31

Dynamic Function eXchange Constraints and
Properties

There are properties and constraints unique to the Dynamic Function eXchange flow. These
initiate DFX-specific implementation processing and apply specific characteristics in the partial
bitstreams. The four areas for constraints and properties for DFX are:

Table 4: Constraints and Properties

Constraints and Properties Necessity
Defining a module as reconfigurable Required

Creating a floorplan for the reconfigurable region Required

Applying reset after reconfiguration Optional, but highly recommended

Turn on visualization scripts Optional

Define a Module as Reconfigurable
In order to implement a DFX design, it is required to specify each RM as such. To do this you
must set a property on the top level of each hierarchical cell that is going to be reconfigurable.
For example, take a design where one RP named inst_count exists, and it has two RMs,
count_up and count_down. The following command must be issued prior to implementation
of the first configuration.

set_property HD.RECONFIGURABLE TRUE [get_cells inst_count]

This initiates the Dynamic Function eXchange features in the software that are required to
successfully implement a DFX design. The HD.RECONFIGURABLE property implies a number of
underlying constraints and tasks:

• Sets DONT_TOUCH on the specified cell and its interface nets. This prevents optimization
across the boundary of the module.

• Sets EXCLUDE_PLACEMENT on the cell's Pblock. This prevents static logic from being placed
in the reconfigurable region.

• Sets CONTAIN_ROUTING on the cell's Pblock. This keeps all the routing for the RM within the
bounding box.

• Enables special code for DRCs, clock routing, etc.

Create a Floorplan for the Reconfigurable Region
Each RP is required to have a Pblock to define the physical resources available for the RM.
Because this Pblock is set on a RP, these restrictions and requirements apply:

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=32

• The Pblock must contain only valid reconfigurable element types. The region may overlap
other site types, but these other sites must not be included in the resize_pblock
commands.

• Multiple Pblock rectangles for each component type can be used to create the RP region, but
for the greatest routability, they should be contiguous. Gaps to account for non-reconfigurable
resources are permitted, but in general, the simpler the overall shape, the easier the design is
to place and route.

• If using the RESET_AFTER_RECONFIG property for 7 series devices, the Pblock height must
align to clock region boundaries. See Apply Reset After Reconfiguration for more details.

• The width and composition of the Pblock must not split interconnect columns for 7 series
devices. See Creating Pblocks for 7 Series Devices for more details.

• The resource usage of the largest RM needs to be taken into consideration when defining the
Pblock in certain parts. If the largest RM exceeds the documented maximum resource counts
of the target device, write_bitstream generates an error.

• The Pblock must not overlap any other Pblock in the design.

• Standard Pblocks for floorplanning logic within a RP are supported, as are nested Pblocks.

• The IS_SOFT property of a reconfigurable Pblock is automatically set to FALSE, as the Pblock
size and boundaries must remain fixed. Setting this property to TRUE results in an error.

• Any nested Pblocks under the reconfigurable Pblock inherit the IS_SOFT = FALSE property;
this cannot be changed.

Table 5: Pblock Commands and Properties

Command/Property Name Description
create_pblock Command used to create the initial Pblock for each RP

instance.

add_cells_to_pblock Command used to specify the instances that belong to the
Pblock. This is typically a level of hierarchy as defined by
the bottom-up synthesis processing.

resize_pblock Command used to define the site types (such as SLICE or
RAMB36) and site locations that are owned by the Pblock.

RESET_AFTER_RECONFIG Pblock property used to control the use of the dedicated
GSR event on the reconfigurable region. Use of this
property is highly recommended and, for 7 series and
Zynq devices, requires clock region alignment in the
vertical direction.

CONTAIN_ROUTING Pblock property used to control the routing to prevent
usage of routing resources not owned by the Pblock. This
property is mandatory for PR and is set to True
automatically for RPs. Static routing is still allowed to use
resources inside of the Pblock.

EXCLUDE_PLACEMENT Pblock Property used to prevent the placement of any
logic, not belonging to the Pblock, inside the defined
Pblock RANGE. This property is mandatory for PR and set
to true automatically for RPs. Static logic can be placed
inside of the RP with a specific LOC property if
RESET_AFTER_RECONFIG is not used.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=33

Table 5: Pblock Commands and Properties (cont'd)

Command/Property Name Description
PARTPIN_SPREADING Used to control the maximum number of PartPins per INT

tile. Default is 5.
Setting a lower value (i.e. 3) increases the spreading
between partition pin placements. This typically eases
routing congestion in areas with dense PartPin placement,
but can negatively affect RP interface timing.

The following is an example of a set of constraints for a RP:

#define a new pblock
create_pblock pblock_count
#add a hierarchical module to the pblock
add_cells_to_pblock [get_pblocks pblock_count] [get_cells [list inst_count]]
#define the size and components within the pblock
resize_pblock [get_pblocks pblock_count] -add {SLICE_X136Y50:SLICE_X145Y99}
resize_pblock [get_pblocks pblock_count] -add {RAMB18_X6Y20:RAMB18_X6Y39}
resize_pblock [get_pblocks pblock_count] -add {RAMB36_X6Y10:RAMB36_X6Y19}

Floorplan in the Vivado IDE
The Vivado IDE can be used for planning and visualization tasks. The best example of this is
using the Device view to create and modify Pblock constraints for floorplanning.

1. Open the synthesized static design and the largest of each RM. Here are the commands,
using the tutorial design (found in the Vivado Design Suite Tutorial: Dynamic Function eXchange
(UG947)) as an example:

open_checkpoint synth/Static/top_synth.dcp
set_property HD.RECONFIGURABLE true [get_cells inst_count]
read_checkpoint -cell [get_cells inst_count] synth/count_up/
count_synth.dcp
set_property HD.RECONFIGURABLE true [get_cells inst_shift]
read_checkpoint -cell [get_cells inst_shift] synth/shift_right/
shift_synth.dcp

At this point, a full configuration has been loaded into memory, and the RPs have been
defined.

2. To create Pblock constraints for the RPs, right-click on an instance in the Netlist window (in
this case, inst_count or inst_shift) and select Draw Pblock. Create a rectangle in the Device
view to select resources for this RP.

3. With this Pblock selected, note that the Pblock Properties pane shows the number of
available and required resources. The number required is based on the currently loaded RM,
so keep in mind that other modules may have different requirements. If additional rectangles
are required to build the appropriate shape (an "L", for example), right-click the Pblock in the
Device view and select Add Pblock Rectangle.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 34Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=34

4. Design rule checks (DRCs) can be issued to validate the floorplan and other design
considerations for the in-memory configuration. To run, select Reports → Report DRC and
ensure the Partial Reconfiguration checks are present (see Floorplan in the Vivado IDE). Note
that if HD.RECONFIGURABLE has not been set on a Pblock, only a single DRC is available,
instead of the full complement shown below.

This set of DRCs can be run from the Tcl Console or within a script, by using the report_drc
command. To limit the checks to the ones shown here for Partial Reconfiguration, use this syntax:

report_drc -checks [get_drc_checks HDPR*]

To extend the DRCs to those checked during specific phases of design processing the -
ruledeck option can be used. For example, the following command can be issued on a placed
and routed design:

report_drc -ruledeck bitstream_checks

To save these floorplanning constraints, enter the following command in the Tcl Console:

write_xdc top_fplan.xdc

The Pblock constraints stored in this constraints file can be used directly or can be copied to
another top-level design constraints file. This XDC file contains all the constraints in the current
design in memory not just the constraints recently added.

CAUTION! Do NOT save the overall design from the Vivado IDE using File → Checkpoint → Save or the
equivalent button. If you save the currently loaded design in this way, you will overwrite your synthesized
static design checkpoint with a new version that includes RMs and additional constraints.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=35

Using Visualization Scripts
For each RP, scripts are automatically created to confirm the site ownership for each part of a
DFX design. The visualization scripts generated can vary based on architecture and need.

Scripts are automatically created for all RP Pblock in an hd_visual directory, which is created
in the directory where the run script is launched. To use these scripts, read a routed design
checkpoint into theVivado IDE, then source one of the scripts. These design-specific scripts
highlight configuration tiles as you have defined them, show configuration frames used to create
the partial bit file, or show sites excluded by the DFX floorplan. Additional scripts are created for
other flows, such as Module Analysis or Tandem Configuration, and are not used for DFX.

For 7 series devices, the main script is named <rp_pblock>_AllTiles.tcl and shows all the
sites owned by the RP, for both placement and routing of any implemented RMs. Other scripts
are created for very specific goals and are not needed in most cases.

For UltraScale and UltraScale+, unique scripts named <rp_pblock>_Placement_
AllTiles.tcl and <rp_pblock>_Routing_AllTiles.tcl show the boundaries for the
placement and expanded routing for the reconfigurable region. The placement script shows the
range available for logic placement after snapping is finished. The routing script shows the
expanded routing region and represents the contents of the partial bitstream created for that RP.

For all devices, three additional scripts might be created per design when necessary:
blockedBelsRouteThrus.tcl, blockedPins.tcl, and blockedSitesInputs.tcl.
When designs encounter higher levels of congestion, these scripts are created to show restricted
sites. This information can be used to adjust the size and shape of the RP pblock, and can also be
shared with support for troubleshooting purposes.

Timing Constraints
Timing constraints for a partially reconfigurable design are similar to timing constraints for a
traditional flat design. The primary clocks and I/Os must be constrained with the corresponding
constraints. For more information on these constraints, see this link (for defining clocks) and this
link (for constraining I/O delays) in the Vivado Design Suite User Guide: Using Constraints (UG903) .

After the correct constraints are applied to the design, run static timing analysis to verify the
performance of the design. This verification must be run for each RM in the overall static design.
For more information on how to analyze the design, see the Vivado Design Suite User Guide:
Design Analysis and Closure Techniques (UG906).

The Vivado Design Suite includes the capability to run cell level timing reports. Use the -cell
option for report_timing or report_timing_summary to focus timing analysis on a
specific RM. This is especially useful on configurations where the static design has been imported
and locked from a prior configuration.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 36Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf;a=xDefiningClocks
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf;a=xConstrainingIODelay
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=36

There is a Partition column added to the timing reports generated by report_timing and
report_timing_summary. It helps identify if failing paths are within static, an RM, or crosses
an RP boundary. Both of these commands have a new -no_pr_attribute switch to turn this
new functionality off. This can be useful if, for example, scripts are being used to parse the timing
reports and are negatively affected by this new column.

Partition Pins
Interface points called partition pins are automatically created within the Pblock ranges defined
for the RP. These virtual I/O are established within interconnect tiles as the anchor points that
remain consistent from one module to the next. No physical resources such as LUTs or flip-flops
are required to establish these anchor points, and no additional delay is incurred at these points.

The placer chooses locations based on source and loads and timing requirements, but you can
specify these locations as well. The following constraints can be applied to influence partition pin
placement.

Table 6: Context Properties

Command/Property Name Description
HD.PARTPIN_LOCS Used to define a specific interconnect tile (INT) for the

specified port to be routed. Overrides an
HD.PARTPIN_RANGE value. Affects placement and routing
of logic on both sides of the RP boundary.
Do not use this property on clock ports, as this assumes
local routing for the clock.
Do not use this property on dedicated connections.

HD.PARTPIN_RANGE Used to define a range of component sites (SLICE, DSP,
block RAM) or interconnect tiles (INT) that can be used to
route the specified port(s).
The value is automatically calculated based on Pblock range
if no user-defined HD.PARTPIN_RANGE value exists.

Note: The PARTPIN_SPREADING property in Table 5: Pblock Commands and Properties, can also be used
to affect Partition Pins, but is applied at the Pblock level.

Context Property Examples

• set_property HD.PARTPIN_LOCS INT_R_X4Y153 [get_pins <hier/pin>]

• set_property HD.PARTPIN_RANGE SLICE_X4Y153:SLICE_X5Y157 [get_pins
<hier/pins>]

get_pins should use the full hierarchical path to the pin or pins to be constrained on the
partition interface. get_ports can also be used, but the reference must be scoped to the
proper level of hierarchy. Instance names for interconnect tile sites can be seen in the Device
View with the Routing Resources enabled.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=37

Note: The HD.PARTPIN_RANGE is automatically set during place_design if no user-defined value is
found. Once the value is set, it will not be reset during interactive place and route, such as making
experimental changes to the RP Pblocks and running place_design -unplace. In this case, the
HD.PARTPIN_RANGE and HD.PARTPIN_LOCS need to be reset manually if Pblock adjustments are made.
The properties can be reset like most properties.

The following Tcl proc can be useful when doing this kind of interactive floorplanning on DFX
designs:

Proc to unroute, uplace, and reset HD.PARTPIN_*
###
proc pr_unplace {} {
route_design -unroute
place_design -unplace
set cells [get_cells -quiet -hier -filter HD.RECONFIGURABLE]
foreach cell $cells {
reset_property HD.PARTPIN_LOCS [get_pins $cell/*]
reset_property HD.PARTPIN_RANGE [get_pins $cell/*]
}
}

Partition pin information can be obtained from placed or routed designs by using the
get_pplocs command. Use either the -nets or -pins option to focus the response to a
particular RP or interface pin.

get_pplocs -nets <args> -pins <args> [-count] [-unlocked] [-locked] [-level
<arg>] [-quiet] [-verbose]

Table 7: get_pplocs Options

Name Description
-nets List of nets to report its PPLOCs.
-pins List of pins to report its PPLOCs.
[-count] Count number of PPLOCs; Do not report PPLOC or node

names.
[-unlocked] Report unlocked/unfixed PPLOCs only.
[-locked] Report locked/fixed PPLOCs only; use -level to specify

locked level.
[-level] Specify locked level.
[-quiet] Ignore command errors.
[-verbose] Suspend message limits during command execution.

Example:

get_pplocs -pins [get_pins u_count/*]

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=38

In UltraScale or UltraScale+ designs, not all interface ports receive a partition pin. With the
routing expansion feature, as explained in Expansion of CONTAIN_ROUTING Area, some
interface nets are completely contained within the expanded region. When this happens, no
partition pin is inserted; the entire net, including the source and all loads, is contained within the
area captured by the partial bit file. Rather than pick an unnecessary intermediate point for the
route, the entire net is rerouted, giving the Vivado tools the flexibility to pick an optimal solution.

Apply Reset After Reconfiguration
With the Reset After Reconfiguration feature, the reconfiguring region is held in a steady state
during partial reconfiguration, and then all logic in the new RM is initialized to its starting values.
Static routes can still freely pass unaffected through the region, and static logic (and all other
dynamic regions) elsewhere in the device continue to operate normally during Partial
Reconfiguration. Dynamic Function eXchange with this feature behaves in the same manner as
the initial configuration of the FPGA, with synchronous elements being released in a known,
initialized state.

IMPORTANT! Release of global signals such as GSR (Global Set Reset) and GWE (Global Write Enable) are
not guaranteed to be synchronized chip-wide. If functionality within a RM relies on synchronized startup of
initialized sequential elements, the clock(s) driving the logic in that module or Clock Enables on these
elements can be disabled during reconfiguration, then re-enabled after reconfiguration has been
completed. For more details, see the "Design Advisory for techniques on properly synchronizing flip-flops
and SRLs" answer record (AR#44174).

This is the RESET_AFTER_RECONFIG property syntax:

set_property RESET_AFTER_RECONFIG true [get_pblocks <reconfig_pblock_name>]

If the design uses the DRP interface of the 7 series XADC component, the interface will be
blocked (held in reset) during partial reconfiguration when RESET_AFTER_RECONFIG is enabled.
The interface will be non-responsive (busy), and there will be no access during the length of the
reconfiguration period. The interface will become accessible again after partial reconfiguration is
complete.

To apply the Reset After Reconfiguration methodology for 7 series and Zynq-7000 SoC devices,
Pblock constraints must align to reconfigurable frames. Because the GSR affects every
synchronous element within the region, exclusive use of reconfiguration frames is required; static
logic is not permitted within these reconfigurable frames (static routing is permitted). Pblocks
must align vertically to clock regions, since that matches the base region for a reconfigurable
frame. The width of a Pblock does not matter when using RESET_AFTER_RECONFIG.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 39Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=44174.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=39

UltraScale and UltraScale+ devices do not have this clock region alignment requirement, and GSR
can be applied at a fine granularity. Because of this, RESET_AFTER_RECONFIG is automatically
applied for all RPs in the UltraScale and UltraScale+ architecture. This capability cannot be
disabled.

In the following figure, the Pblock on the left (pblock_shift) is frame-aligned because the top
and bottom of the Pblock align to the height of clock region X1Y3. The Pblock on the right
(pblock_count) is not frame-aligned.

1. For 7 series devices: Pblocks that are not frame-aligned (such as pblock_count in the
figure below) cannot have RESET_AFTER_RECONFIG set because any static logic placed
between it and the clock region boundary above it would be affected by GSR after that
module was partially reconfigured.

2. • For UltraScale and UltraScale+ devices: because of the improved GSR controls, both
Pblocks automatically use RESET_AFTER_RECONFIG.

Using the SNAPPING_MODE constraint automatically creates legal, reconfigurable Pblocks. See
Automatic Adjustments for Reconfigurable Partition Pblocks (for 7 series devices) or Automatic
Adjustments for PU on Pblocks (for UltraScale and UltraScale+ devices) for more information.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=40

Figure 8: RESET_AFTER_RECONFIG Compatible (Left) and Incompatible (Right) Pblocks

The GSR capabilities are embedded within the partial bitstreams, so nothing extra must be done
to include this feature during reconfiguration. However, because this process utilizes the
SHUTDOWN sequence (masked to the reconfiguring region only), the external DONE pin are pulled
LOW when reconfiguration starts, then pull HIGH when it successfully completes. This behavior
must be considered when setting up the board. Using the STARTUP block DONEO is not an option
to prevent the DONE pin from changing state, since this block is disabled during shutdown. Nor
can STARTUP be used for other purposes, such as generating a configuration clock for partial
reconfiguration if RESET_AFTER_RECONFIG is used.

Moreover, in order to open the GSR mask for only the dynamic region when reconfiguration
occurs, the mask for the entire design begins as closed after the initial configuration. Each partial
bitstream opens the mask for the target region, loads new configuration data, issues a GSR event
for this region, then closes the mask. For UltraScale only, this process is split between two
bitstreams -- see Clearing Bitstreams for more information. Because the mask is closed when
reconfiguration is not occurring, full-device access to GSR is not permitted.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=41

For 7 series only, an alternative approach would be to forego this property and apply a local reset
to any reconfigured logic that requires initialization to function properly. This approach does not
require vertical alignment to clock region boundaries. Without GSR or a local reset, the initial
starting value of a synchronous element within a reconfigured module cannot be guaranteed.

Software Flow
This section describes the basic flow, and gives sample commands to execute this flow.

Synthesis
Each module (including Static) needs to be synthesized bottom-up so that a netlist or checkpoint
exists for static and each RM.

1. Synthesize the top level:

read_verilog top.v (and other HDL associated with the static design, including black
box module definitions for RMs), then:

read_xdc top_synth.xdc
synth_design -top top -part xc7k70tfbg676-2
write_checkpoint top_synth.dcp

2. Synthesize an RM:

read_verilog rp1_a.v
synth_design -top rp1 -part xc7k70tfbg676-2 -mode out_of_context
write_checkpoint rp1_a_synth.dcp

3. Repeat for each remaining RM

read_verilog rp1_b.v
synth_design -top rp1 -part xc7k70tfbg676-2 -mode out_of_context
write_checkpoint rp1_b_synth.dcp

Implementation
Create as many configurations as necessary to implement all RMs at least once. The first
configuration loads in synthesis results for top and the first RM. You must then mark the module
as being reconfigurable, then run implementation. Write out a checkpoint for the complete
routed configuration, and optionally for the RM so it can be reused later if desired. Finally,
remove the RM from the design (update_design -cell -black_box) and write out a
checkpoint for the locked static design alone.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=42

Configuration 1:

open_checkpoint top_synth.dcp
read_xdc top_impl.xdc
set_property HD.RECONFIGURABLE true [get_cells rp1]
read_checkpoint -cell rp1 rp1_a_synth.dcp
opt_design
place_design
route_design
write_checkpoint config1_routed.dcp
write_checkpoint -cell rp1 rp1_a_route_design.dcp
update_design -cell rp1 -black_box
lock_design -level routing
write_checkpoint static_routed.dcp

For the second configuration, load the placed and routed checkpoint for static (if it was closed),
which currently has a black box for the RM. Then load in the synthesis results for the second RM
and implement the design. Finally write out an implementation checkpoint for the second version
of the RM.

Configuration 2:

open_checkpoint static_routed.dcp
read_checkpoint -cell rp1 rp1_b_synth.dcp
opt_design
place_design
route_design
write_checkpoint config2_routed.dcp
write_checkpoint -cell rp1 rp1_b_route_design.dcp

TIP: Keep each configuration in a separate folder so that all intermediate checkpoints, log and report files,
bit files, and other design outputs are kept unique.

If multiple RPs exist, then other configurations may be required. Additional configurations can
also be created by importing previously implemented RM to create full designs that exist in
hardware. This can be useful for creating full bitstreams with a desired combination for power-
up, or for performing static timing analysis, power analysis, or simulation.

Full place and route results for each RM checkpoint is preserved completely, so creating new
configurations is easily done by loading a collection of routed checkpoints. However, there are
limitations to be aware of when using the flow. Using write_checkpoint -cell to save the
RM implementation results does not preserve constraints local to this module. For RMs with
internal clock constraints or timing exceptions starting and/or ending within the RM, these
constraints need to be reapplied for timing analysis after creating the new configuration. RMs
with Xilinx or third party IP are good examples of modules that might be exposed to this
limitation.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=43

Incremental Compile
Dynamic Function eXchange designs can use theVivado Incremental Compilation feature for any
configuration run. The flow is documented here in Vivado Design Suite User Guide: Implementation
(UG904), and best results are seen when 95% of design instances match.

For any Incremental Compile usage, be sure to select a prior checkpoint for that specific
configuration to match as much of the design as possible. Note that for the second configuration
and beyond, all static logic and routing is locked, so the Incremental Compile effort will be
focused within RMs.

Reporting
Each step of the implementation flow performs design rule checks (DRCs) unique to partial
reconfiguration. Keep a close eye on the messages given by the implementation steps to ensure
no critical warnings are issued. These messages provide guidance to optimize module interfaces,
floorplans, and other key aspects of DFX designs.

Most reports that can be generated do not have DFX-specific sections, but useful information
can be extracted nonetheless. For example, utilization information can be obtained by using the
-pblocks switch for the report_utilization command. This shows the used and available
resources within a given RM. Here is an example using the design from the Vivado Design Suite
Tutorial: Dynamic Function eXchange (UG947):

report_utilization -pblocks [get_pblocks pblock_count]

For clock reporting, however, report_clock_utilization shows the clocks reserved for
partial reconfiguration implementation.

The Dynamic Function eXchange flow can be used in conjunction with the IEEE-1735 v2
encryption capability available withinVivado. Static design checkpoints can be encrypted and
shared with other users without exposing details of the design. Rights management can be set
such that details such as LUT contents and schematic details can be hidden, and netlist export
and design modification can be disabled. Developers of dynamic regions can still insert their
reconfigurable logic and implement within this locked static context. If permission is given, these
developers can generate partial bitstreams from within this encrypted context for their dynamic
function.

Note that a license is required to use this feature, and any licensed IP within the static region will
still require a valid license to open that checkpoint even if it is encrypted.

For more information on creating encrypted design checkpoints and the options available, please
consult Chapter 6 of Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118).

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 44Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug904-vivado-implementation.pdf;a=xIncrementalCompile
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=44

Verifying Configurations
Once all configurations have been completely placed and routed, a final verification check can be
done to validate consistency between these configurations using pr_verify. This command
takes in multiple routed checkpoints (DCPs) as arguments, and outputs a log of any differences
found in the static implementation and Partition Pin placement between them. Placement and
routing within any RMs is ignored during the comparison.

When just two configurations are to be compared, list the two routed checkpoints as <file1>
and <file2>. The pr_verify command loads both in memory and makes the comparison.

When more than two configurations are to be compared, provide a master configuration using
the -initial switch, then list the remaining configurations by using the -additional switch,
listing configurations in braces ({ and }). The initial configuration is kept in memory and the
remaining configurations are compared against the initial one. Bitstreams should not be
generated for any configurations if any pair of configurations do not pass the PR Verify check.

pr_verify [-full_check] [-file <arg>] [-initial <arg>] [-additional <arg>]
[-quiet] [-verbose] [<file1>] [<file2>]

Table 8: pr_verify Options

Command Option Description
-full_check Default behavior is to report the first difference only; if this

option is selected, pr_verify reports all differences in
placement or routing.

-file Filename to output results to. Send output to console if -
file is not used.

-initial Select one routed design checkpoint against which all
others will be compared.

-additional Select one or more routed design checkpoints to compare
against the initial one. List multiple checkpoints within
braces, separated by a space, as in this example:
{config2.dcp config3.dcp config4.dcp}

-quiet Ignore command errors.
-verbose Suspend message limits during command execution.

The following is a sample command line comparing two configurations:

expanse="page">pr_verify -full_check config1_routed.dcp config2_routed.dcp -
file pr_verify_c1_c2.log

The following is a second example verifying three configurations:

expanse="page">pr_verify -full_check -initial config1.dcp -additional
{config2.dcp config3.dcp} -file
three_config.log

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=45

The scripts provided with the Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947)
have a Tcl Proc called verify_configs that automatically runs all existing configurations
through pr_verify, and reports if the DCPs are compatible or not.

Bitstream Generation
As in a flat flow, bitstreams are created with the write_bitstream command. For each design
configuration, simply issue write_bitstream to create a full standard configuration file plus
one partial bit file for each RM within that configuration.

Xilinx recommends providing the configuration name and RM names in the -file option
specified with write_bitstream. Only the base bit file name can be modified, so it is
important to record which RMs were selected for each configuration.

Using the previous design, the following is an example of reading routed checkpoints
(configurations) and creating bitstreams for all implemented RMs.

open_checkpoint config1_routed.dcp
write_bitstream config1

This command generates all possible bitstreams for this particular configuration. It creates a full
design bitstream called config1.bit. This bitstream should be used to program the device
from power-up and includes the functionality of any RMs contained within. It also creates partial
bit files config1_pblock_rp1_partial.bit and config1_pblock_rp2_partial.bit
that can be used to reconfigure these modules while the FPGA continues to operate. For
UltraScale devices, it creates clearing bitstreams that pair with each partial bitstream, allowing
you to prepare the partition for the next partial image. Repeat these steps for each configuration.

TIP: Rename each partial bit file to match the RM instance from which it was built to uniquely identify
these modules. The current solution names partial bit files only on the configuration base name and Pblock
name: <base_name>_<pblock_name>_partial.bit

The size of each partial bitstream is reported in the output from write_bitstream. As this
command is run, these messages will be reported for each partial and clearing bit file.

Creating bitmap...
Creating bitstream...
Partial bitstream contains 3441952 bits.
Writing bitstream ./Bitstreams/right_up_pblock_inst_shift_partial.bit...

Bitstream compression, encryption, and other advanced features can be used. See Known
Limitations for specific unsupported use cases for UltraScale devices.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 46Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=46

Generating Partial Bitstreams Only

If the full design configuration file is not required, then a single partial bitstream can be created
on its own. With a full design configuration checkpoint loaded in memory, use the -cell option
to identify the instance for which a partial bitstream is needed. The name of this partial bitstream
can be given, as it is not automatically derived from the Pblock name.

write_bitstream -cell rp1 RM_count_down_partial.bit

This creates only a partial bitstream for the RP identified.

CAUTION! Do not run write_bitstream  directly on RM checkpoints; only use full design
checkpoints. RM checkpoints, while they are placed and routed submodules, have no information regarding
the top level design implementation, and therefore would create unsuitable partial bit files.

Generating Full Configuration Bitstreams Only

If only power-on design bitstream is desired, the -no_partial_bitfile option can be used
to bypass creation of partial bitstreams.

write_bitstream -no_partial_bitfile config3

Using this option skips the stage that creates partial and clearing bitstreams. It saves
write_bitstream runtime for scenarios where either you are looking to test only the full
design without DFX, or if the partial bitstreams already exist.

Generating Static-only Bitstreams

If a power-on configuration of the static design only is desired, run write_bitstream on the
checkpoint that has empty RPs (after update_design -black_box and update_design -
buffer_ports have run). This "grey box configuration" can be compressed to reduce the bit file
size and configuration time.

Tcl Scripts
Scripts are provided to run this flow in the Vivado Design Suite Tutorial: Dynamic Function
eXchange (UG947). The details of these sample scripts are documented in the tutorial itself and in
the readme.txt contained in the sample design archive.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 47Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=47

Nested Dynamic Function eXchange
Nested Dynamic Function eXchange (Nested DFX) is the concept of placing one or more dynamic
regions within a dynamic region, subdividing a device to permit more granular reconfiguration.
With this feature, you can segment a RP into smaller regions, each of which is partially
reconfigurable. This greater depth of flexibility allows for RM of different sizes, shapes, and
resource sets to be swapped on the fly. For example, a data center application could load one
large RM in a region in a device, or two smaller independent functions in that same region; these
two smaller functions could then be individually reconfigured as needed, resulting more efficient
use of silicon resources.

While there is no formal limit to the number of levels into which a device may be subdivided, the
further you go, the more difficult it will be to place and route. Moreover, the more complex the
levels become, the more complex the management of partial bitstreams become. Realistically,
most designs on even the largest devices should not exceed three levels of reconfiguration.

Nested DFX in this release is available for UltraScale and UltraScale+ targets, including Zynq
UltraScale+ MPSoC and RFSoC devices. Versalsupport will begin in a future release, after base
Dynamic Function eXchange (DFX) support has been added for this family. No 7 series devices
will be supported for Nested DFX. Only the Tcl-based non-project flow is supported in this
release. Project support, including IP integrator, will be considered in a future release.

Nested DFX Structure and Commands
The Nested Dynamic Function eXchange flow is essentially a step and repeat through hierarchy,
moving the context of static and reconfigurable boundaries with each pass through theVivado
tools. The first pass (configuration) will establish the implementation results of the static design,
just as is done for the standard DFX flow. Subsequent runs will establish and implement lower-
order RPs, each with its own relative static level above it.

Throughout the flow, the general requirements and recommendations for a standard Dynamic
Function eXchange design will still apply. For example, each module set to be reconfigurable
must be synthesized out-of-context, each partition must be floor planned, and proper decoupling
should be inserted on the static side of all reconfigurable boundaries.

Essentially Nested DFX should be viewed from the context of what is static and reconfigurable at
a specific hierarchical boundary. We will use the images in Design Structure to describe the
Vivado tool flow and design considerations:

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=48

Design Structure
Figure 9: Two Configurations of a Nested DFX design

This image shows two configurations of a Nested DFX design. Both designs have the same static
logic (Top) and floorplan for RP A. RP A is further divided into two more RPs, W and X for RM A1,
or Y and Z for RM A2. RP A could have more RM versions (A3, A4, etc.) and these could have any
number, size or shape sub-RPs, even none at all. The lower level RPs W, X, Y, and Z will each have
their own collection of RMs (W1, W2, W3, etc.), and must each be implemented with all
implementation results above them locked.

Note: In the image above, RPs W and X must be in different clock regions. RPs cannot occupy the same
vertical column in any single clock region given the composition requirements of partial bitstreams.

In the Nested DFX implementation flow, users implement each RM in the context of the static
design above it. The first RM for any RP establishes the static implementation results for the RM
level immediately above it (A1 or A2 in this case), then all remaining RMs are implemented into
this context. This is the flow regardless of where in the hierarchy the current target RP is.

Tcl Commands to Manage Nested DFX
Two new Tcl commands are used to subdivide and recombine the RPs forVivado processing.
Unsurprisingly, the command names are pr_subdivide and pr_recombine. These commands
shift the perspective forVivado tools, moving the HD.RECONFIGURABLE property lower
(subdivide) or higher (recombine) to define the logical boundary of static versus reconfigurable.

PR_Subdivide

The first new Tcl command is pr_subdivide. As the name implies, this command breaks up a
RP into one or more lower level RPs.

pr_subdivide
Description: Subdivide an RP into one or more lower-level
RPs when using the Nested Dynamic Function eXchange solution.
Syntax:
pr_subdivide [-cell <arg>] [-subcells <arg>] [-quiet] [-verbose]

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=49

[<from_dcp>]
Usage:
Name Description

[-cell] (Required) Specify parent RP module name
[-subcells] (Required) Specify child RP module names
[-quiet] Ignore command errors
[-verbose] Suspend message limits during command execution
[<from_dcp>] (Required) Specify OOC synthesized checkpoint path for the RM
specified by option -cell

pr_subdivide is used on the first implementation of a DFX design, the run that establishes the
results of a static portion design. This is the case whether static is the very top level, or includes
an RP that has just been subdivided. With a fully routed initial design checkpoint open inVivado,
running pr_subdivide will automatically perform these tasks:

1. Run update_design -black_box on the target RP, if it is not already a black box.

2. • Run lock_design -level routing on the remaining design if the target RP was not
already a black box

• Load a post-synthesis RM checkpoint for this RP, identified by the <from_dcp>
argument; this RM must have one or more instances of hierarchy (filled with logic or black
boxes) that will become RPs themselves

• Push the HD.RECONFIGURABLE property from the original partition (the -cell target)
to one or more lower-level partitions (defined by the -subcells option)

• Place the HD.RECONFIGURABLE_CONTAINER property on the original partition as a
placeholder; pr_recombine will need to see this property to push the context back up to
this level

If the target RP is already a black box, you must run lock_design -level routing BEFORE
pr_subdivide has been run to lock down everything that is currently placed and routed. If
lock_design is run after pr_subdivide, DONT_TOUCH properties added to the newly
loaded RM netlist will prevent logical optimization, inhibiting performance.

Because pr_subdivide must be run on a fully routed design, only one RP can be subdivided at
a time. If a design has more than one RP - for example, in the design above it there was an RP B
at the same level as RP A - the first subdivided RP must be implemented before the second RP
can be subdivided. Any number of RPs can be subdivided, but they can only be created when all
other RPs in the design have placed and routed RMs residing within them.

Similarly, you cannot subdivide an RP, then immediately subdivide a new child RP without first
implementing the new static area for the lower-level RPs. In the figure shown in Design
Structure, when RP A is subdivided into RPs W and X, module A1 must be implemented before
W or X are themselves subdivided, as that process requires static results for A1 to be locked.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=50

PR_Recombine

The second new Tcl command is pr_recombine. This command is used to remove all lower
level RPs, restoring the RP definition to the parent cell. This command is used less frequently
than pr_subdivide, as it is only needed for bitstream generation for a parent-level RM, or to
return to a specific design structure for analysis of that specific configuration.

pr_recombine
Description: Re-establish a parent cell as a RP while removing
lower-level RPs when using the Nested Dynamic Function
eXchange solution.
Syntax:
pr_recombine [-cell <arg>] [-quiet] [-verbose]
Usage:
Name Description

[-cell] (Required) Specify reconfigurable container module name
[-quiet] Ignore command errors
[-verbose] Suspend message limits during command execution

pr_recombine moves the HD.RECONFIGURABLE property to the target cell, removing it from
any cells below it.

The target cell must currently have an HD.RECONFIGURABLE_CONTAINER property, deposited
there by pr_subdivide, identifying it as a viable target for pr_recombine.

Implementation Design Flow
This section describes the implementation flow using the example from Design Structure. The
first design pass contains logic for Top and module A, but information about submodules W and
X is not needed at this point. The goal of the first run is to establish the implementation result for
Top, down to the partition pin interfaces to RP A. The results for module A may even be
discarded, but A should be a representative module to help achieve the highest quality results for
Top. In the following figure, the design is completely routed and A is defined as a RP. This is a
standard DFX configuration at this point.

Figure 10: Implemented Baseline Design Prior to pr_subdivide

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=51

Figure 11: Design After pr_subdivide

Three key details are shown in the above figure, which represents the design state after
pr_subdivide, and after netlists and constraints have been added for W and X:

1. Top is implemented and locked.

2. A1 is not yet implemented, and no longer defined as an RP.

3. W and X are not yet implemented and are defined as RPs.

Create Reconfigurable Module Results Under A1
Next, place and route this version of the design, implementing modules A1, W1 and X1. Then
follow a normal DFX flow to create more RM results for different versions of W and X,
implemented in the context of a locked A1 result, saving checkpoints along the way.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=52

Starting with the design immediately after pr_subdivide, the first thing to do is to complete
the full design (if post-synthesis design data for the new submodules were not included in the
<from_dcp> checkpoint) and make sure the floorplan has pblocks for all new RPs. In this example
code, A1_pblocks.dcp contains pblock information for RPs W and X, and could contain timing or
other constraints for any logic from A1 down.

read_checkpoint -cell A/W W1.dcp
read_checkpoint -cell A/X X1.dcp
read_xdc A1_pblocks.dcp
opt_design
place_design
route_design
write_checkpoint top_A1_W1_X1_routed.dcp
write_checkpoint -cell A/W W1_routed.dcp
write_checkpoint -cell A/X X1_routed.dcp

At this point, a normal DFX flow continues, with Top (already locked) and A1 (ready to be locked)
representing the static design. Lock the static design and swap in new RMs for W and X and
implement this second configuration using A1 in RP A.

update_design -black_box -cell A/W
update_design -black_box -cell A/X
lock_design -level routing
write_checkpoint top_a1_static.dcp
read_checkpoint -cell A/W W2.dcp
read_checkpoint -cell A/X X2.dcp
opt_design
place_design
route_design
write_checkpoint top_A1_W2_X2_routed.dcp
write_checkpoint -cell A/W W2_routed.dcp
write_checkpoint -cell A/X X2_routed.dcp

and so on. Using this standard step-and-repeat DFX flow, you should create a collection of
routed checkpoints for W and X that are compatible with this version of Top and this version (A1)
of partition A.

Create Reconfigurable Module Results Under A2
If other layouts or post-synthesis designs for module A are desired, the same fundamental
process is followed. Starting with the initial routed design (either the full design with the initial
implementation of A, or the locked static Top only and a black box for A) use pr_subdivide to
insert a new module for A, and new RPs within.

open_checkpoint top_A0_routed.dcp
pr_subdivide -cell A -subcells {A/Y A/Z} A2.dcp

As seen in the Design Structure example image on the right, RM A2 is loaded with submodules Y
and Z. From there, the implementation flow follows the same path as for A1, routing then locking
module A2 while creating a set of RMs for Y and Z.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=53

Figure 12: Design with both Top and A2 Locked, Implementing RMs Y2 and Z2

Save checkpoints for full designs and RM with appropriate names. Use update_design -black_box
to remove design information from RPs, leaving only the design above. These checkpoints will be
used to assemble any combination of design modules for the purpose of running design analysis
tools and generating full and partial bitstreams.

For example, for the design in the previous figure, use write_checkpoint -cell A/Y to save the
routed result for module Y2, and write_checkpoint -cell A/Z to do the same for Z2. Then, after
running update_design -black_box for by Y and Z, you can save just the results for A2. At that
point, you can assemble a design image of (for example) Top+A2+Y1+Z2 which could be the
default configuration the system will boot to.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=54

Checking Current Status

At any point, with a design checkpoint open, you can check the current status of any partition by
reporting the properties on that cell. Calling report_property on a target cell will return one of
three results as far as Nested DFX is concerned. An HD.RECONFIGURABLE* property will
appear in the list if it is not set to its default value of False.

report_property [get_cells A]

1. HD.RECONFIGURABLE bool false 1

This cell is currently set as an RP. It can currently be implemented with one or more RMs and
pr_subdivide can be called on it.

2. HD.RECONFIGURABLE_CONTAINER bool false 1

This cell is currently set as a parent above one or more subdivided RPs. pr_recombine can
be called on it.

3. <none>

This cell is not and has never been a RP.

To get a listing of all cells in the design that are currently RPs or RP Containers, use a filtered
get_cells command:

get_cells -hier -filter HD.RECONFIGURABLE
get_cells -hier -filter HD.RECONFIGURABLE_CONTAINER

Static Design Updates
Just as with the standard DFX design flow, implementation results are created in-context from
the top down. If any part of the design that is considered static at any point must be updated, all
results for RMs below that static must be reimplemented to ensure everything stays in sync.

For example, if there is a design change for Top, all existing results must be considered out-of-
date and everything must be recompiled. Clearly we recommend creating modular design scripts
to automate the process of rebuilding implementation results. If Top remains locked and there is
an update only to module A1, all results dependent on A1 (all versions of W and X, as well as A1
itself) must be recompiled, but A2 and its lower level modules Y and Z, as well as any other
versions of A, are still valid.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=55

Verification Passes
Just as with a standard DFX design flow, Nested DFX design images should be checked using
pr_verify to confirm all images are in sync. Like the core implementation tools (opt_design,
etc.), pr_verify will act upon the design based on the current cells marked reconfigurable.
With this in mind, perform apples-to-apples comparisons with the same current static design
present.

In the examples we have shown here, run pr_verify to compare versions of A on a collection
of checkpoints with only Top locked and cell A marked as reconfigurable - pr_recombine may
be needed to create specific design images with this status. Run pr_verify on a collection of
checkpoints with both Top and A1 locked to compare all images with different RMs for W and X,
and then do the same with both Top and A2 locked to compare all images for Y and Z.

Bitstream Creation
The Nested DFX design methodology moves the HD.RECONFIGURABLE property down and up
through the hierarchy. Implementation tools follow standard DFX design rules based on what
cells are currently defined as reconfigurable. This holds true for write_bitstream as well;
partial bitstreams will only be created for cells currently holding the HD.RECONFIGURABLE
property.

With any fully routed design checkpoint open inVivado, use write_bitstream to generate full
and partial bitstreams. Remember, by default this command will generate a standard full
bitstream for the entire device and a partial bitstream for each cell defined as reconfigurable. Two
options can limit results to one or the other:

1. The -cell option will generate ONLY a partial bitstream for the requested cell

2. The -no_partial_bitfile option will generate ONLY a standard full device bitstream

If the full design image you need a full device bitstream for, use a combination of
open_checkpoint and read_checkpoint -cell (and update_design -black_box if
necessary) to assemble a complete routed design, filling in each module one at a time with routed
RM checkpoints. Use report_route_status to confirm that the design is complete.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=56

Figure 13: Assembled Design for Bitstream Generation

For example, to create all bitstreams possible for the above design configuration, follow these
steps. These commands assume that checkpoints for each module alone (each routed, and some
locked) have been created using the same naming conventions as the A1 variants.

open_checkpoint top_A2_Y1_Z1_routed.dcp
update_design -black_box -cell A/Y
read_checkpoint -cell A/Y Y2_routed.dcp
write_bitstream top_A2_Y2_Z1.bit

This last command will create three bitstreams:

1. top_A2_Y2_Z1.bit, which is the full design bitstream for the entire device

2. top_A2_Y2_Z1_pblock_Y_partial.bit, which is the partial bitstream for Y2 only

3. top_A2_Y2_Z1_pblock_Z_partial.bit, which is the partial bitstream for Z1 only

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=57

Note that the names for the partial bitstreams are automatically generated. The name always
starts with the base name you provided, followed by the RP pblock name, followed by partial. If
you would like to have names that show the name of the current RM (for example Y2), then call
write_bitstream on the target RP directly:

write_bitstream -cell A/Y top_A2_Y2_partial.bit
write_bitstream -cell A/Z top_A2_Z1_partial.bit

Partial bitstreams can only be generated for cells currently marked as HD.RECONFIGURABLE. In
order to create a partial bitstream for RP A, pr_recombine must be called before
write_bitstream.

pr_recombine -cell A
write_bitstream -cell A A2_Y2_Z1_partial.bit

A full device bitstream for this image would be identical to one generated prior to
pr_recombine, as the full device bitstream does not have any special programming indicating
that later that device will be partially reconfigured.

Nested DFX Design Considerations
Nested Dynamic Function eXchange designs are subject to the same rules and recommendations
as standard Dynamic Function eXchange designs. Simply treat the parent RP (and above) as the
static design; all design requirements for DFX are the same from the perspective of the
reconfigurable boundary.

Floorplanning
As you would expect, modules that are nested hierarchically must also have a nested floorplan. A
child RP must have a pblock that is completely contained within its parent RP pblock, for all
resource types. Expanded routing regions are supported and on by default, but they are created
slightly differently in Nested DFX - routing expansion for lower-order RPs will fill the parent
pblock, but will still never overlap another RP at the same level. Use the hd_visual scripts to
see the placement and routing regions for any RP in the design.

Partition pins are automatically managed by theVivado tools and are established no differently
for lower level RPs. Location ranges and constraints can be used if desired. Partition pins may be
eliminated if the source and all loads are within the expanded routing region of the target RP.

Decoupling
Even though a submodule RP may be within a parent RP, from its perspective, everything above
it is static. Strategies such as logical decoupling are still critical as one RM is loaded in to replace
another. The DFX Decoupler, DFX AXI Shutdown Manager, or any user logic can be used to
accomplish this task. Decouple only the RP that is about to be reconfigured.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=58

Dynamic Function eXchange Controller IP
The DFX Controller does not (yet) know about Nested Dynamic Function eXchange, but it can
still be used in this environment. Additional circuitry is needed to safeguard against loading
partial bitstreams that would be incompatible with the currently operating design.

In the example design, a DFX Controller IP could be created to manage partial bitstreams for the
entire design. It must be customized to understand five RPs: A, W, X, Y and Z.

However, it does not know about the dependencies they have on each other, so the designer
must build this part of the solution external to the IP.

For example, if RM A1 is currently loaded, the designer must not allow any trigger events that
would reconfigure RPs Y or Z, only W and X. Each RP (Virtual Socket) has its own request,
acknowledge and decouple controls, and these can be sent into a parent RP to access user logic
that can manage child RPs - only acknowledge a request for reconfiguration if the target RP
currently exists. Alternately, an AXI4-Lite interface can be used to read the current status of a
parent RP managed by the DFX Controller to understand what child RPs can be reconfigured.

Bitstream Version and Usage Compatibility

The most critical aspect of Nested DFX is the additional importance of bitstream management.
Not only must all full and partial bitstreams be generated from the same design version (using a
consistent locked static image), but lower-level partial bitstreams must have consistent locked
logic above them. pr_verify is used to confirm this consistency prior to bitstream generation,
then users must manage bitstreams appropriately once they have been created. Tools such as the
DFX Bitstream Monitor IP can be used to track bitstream versions during device operation.

Moreover, lower level partial bitstreams must be delivered only when their RP is active in the
design. It is the responsibility of the system designer to build their controller solution such that it
permits appropriate delivery of a lower-level partial bitstream. Nothing in the silicon will natively
stop an incorrect partial bitstream from programming the device - as long as the Device ID is
correct, the configuration engine will let it in.

Supported/Unsupported Features
This section lists the current lists of supported and unsupported features. While future
enhancements may be possible, this list is not an indication that these enhancements will be
delivered in a future revision.

Supported Features

• Device support: All UltraScale and UltraScale+ devices, including MPSoC and RFSoC

• Subdivide a DFX design into any depth of levels

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=59

Unsupported Features

Some features are not yet implemented but are planned for future releases.

• Device support: Versal will be supported in an upcoming release. 7 series will not be
supported.

• Project support:Vivado projects, including those for IP integrator, are not yet supported.

Known Limitations

The Nested DFX solution does not allow more than one RP in a design to be subdivided until the
first RP has a placed and routed implementation. Focus attention on a specific RP to create lower
level results, and remember that implementation runs can be launched in parallel once the design
structure and floorplan is established.

Abstract Shell for Dynamic Function eXchange
Xilinx UltraScale+ devices support Dynamic Function eXchange (DFX), which provides the
capability to dynamically change the configuration of a portion of the device, while the rest of
the device continues to operate normally. The Vivado software tool flow lets you compile designs
using an in-context methodology. The solution requires multiple passes through place and route.

The first pass establishes the static design implementation result along with the first RM for each
RP. Then all subsequent place and route runs are done in context with that initial static image. A
fully routed and locked static design database that contains netlist and placement and routing
information for the entire static region must be loaded into Vivado before implementing any RM
beyond the first.

The Abstract Shell solution reduces the requirements for this in-context flow. Because the static
design is locked, it cannot (and must not) be modified when new RMs are implemented. The
context is still critical, and the path through the tools does not change. However, instead of
loading a full static design image, you can use an Abstract Shell checkpoint. This Abstract Shell
contains only the minimal logical and physical database necessary to:

• Implement a new RM within a specific RP

• Validate timing and pass PR Verify

• Generate a partial bitstream for the RM

By using this approach, you can:

• Reduce runtime and memory usage for each RM compilation (beyond the first)

• Reduce the file size of the “static” design checkpoint for each RP

• For designs with multiple RPs, implement all RMs in parallel

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=60

• Generate partial bitstreams without the need to load the full static design

• Hide proprietary information that exists within the static design

• Avoid license checking for any IP in the static design

As a point of comparison, here is the fully routed design checkpoint for UG947 Lab 9. This
tutorial design targets a Virtex UltraScale+ VU9P and has two RPs for shift and count functions.
u_shift is the pblock in the lower left and u_count (selected) is above and to the right. This image
is cropped to show only the top two SLRs in the device.

Figure 14: Normal Full Static Design Targeting a VU9P

The Abstract Shells for these two RPs strip away the vast majority of the static logic, which for
this design includes the DFX Controller IP. Note that in this design with two RPs, only the target
RP pblock appears in the Abstract Shell checkpoint.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=61

Figure 15: Abstract Shell for the u_shift RP

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=62

Figure 16: Abstract Shell for the u_count RP

For this design, the size of the full static-only design checkpoint is 58,816KB. The checkpoint
sizes for the Abstract Shells for u_shift and u_count are 1,712KB and 1,873KB, respectively. The
size reduction is a function of both the size of the RP pblock and the complexity of the static
design. For a simple design with small RPs in a large device, the size difference can be very large.
For designs with less static logic the improvement is more modest.

Abstract Shell Design Flow
The Abstract Shell design flow is nearly identical to the standard non-project Dynamic Function
eXchange design flow. The differences are limited to the steps where the static design
checkpoint is written from the initial (parent) implementation and where the static design is
opened to begin implementation of the second RM (and beyond) for each RP.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=63

Synthesis and implementation of the first configuration is no different with Abstract Shell than it
is with the DFX standard flow. Once the initial full design checkpoint is implemented, an Abstract
Shell for each RP can be created. If a design has more than one RP, each one has its own Abstract
Shell. Any RMs for these RPs can be independently processed.

Even though project mode is not supported for Abstract Shell runs, the initial parent
configuration can be set up and implemented using project mode within the Vivado IDE. All
subsequent RM implement runs, however, must be implemented outside the project.

With the fully routed initial design image open in memory, with an RM present in each RP, use
the write_abstract_shell command to create an Abstract Shell for a target RP. If more than
one RP exists within a design, the command must be run separately for each RP. This command:

• Carves out the target RP (using update_design -black_box)

• Locks the remaining design (including any other RMs, using lock_design -level
routing)

• Writes the Abstract Shell for the target RP (using write_checkpoint)

• Runs pr_verify for this checkpoint compared to the original fully routed design

write_abstract_shell -cell <arg> [-force] [-quiet] [-verbose] <file>

Table 9: write_abstract_shell Switches

Switch Name Description
-cell Specifies the full hierarchical name of the RP. Only one RP

may be selected.

-force Overwrites an existing checkpoint of the same name.

-quiet Ignores command errors.

-verbose Suspends message limits during command execution.

<file> Specifies the full or relative path to the checkpoint (DCP) to
be written.

When you look at the Abstract Shell checkpoints, you see they are smaller than the full design
static checkpoint. For simple designs with large dynamic regions, they may be 80-90% of the
size, depending on the floorplan and implementation. For larger designs, with more static logic,
the size reduction is more considerable.

Abstract Shells contain only the logic and routing at the periphery of the target RP needed to
implement new RMs into that RP. This includes any routing within not only the target RP pblock
but the expanded routing region as well. Much of the surrounding logic, including logic within the
expanded region, is removed, and this configuration information is skipped in the resulting partial
bitstream. Timing and boundary constraints are included in the shell as new modules
implemented in this context inherit these goals from the static design.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=64

Before continuing with Abstract Shells, you can confirm they have been constructed successfully
by running two types of checks. First, consistency with the full static design it was created from
is automatically confirmed when write_abstract_shell is called by running PR Verify. You
can also perform this PR Verify check manually by comparing the Abstract Shell checkpoint to
the static-only design after black boxes have been established and lock_design has been run.

The second check validates the routing status of the shell itself. This can be done by opening the
Abstract Shell and calling report_route_status to check the status of the checkpoint.

Implementing Reconfigurable Modules in Abstract Shells

Any new RMs can be implemented within Abstract Shells. Each RM can be implemented in
parallel in separate Vivado session as each RP is managed independently. The implementation
flow is no different than the standard DFX flow starting with the full static design image.

IMPORTANT!

Use the same methodology in the Abstract Shell run as you used in the run that created the original
implementation. For example, if the parent implementation uses the add_files / link_design approach (used
in project mode), use the same approach for the Abstract Shell child implementation runs. If you used
open_checkpoint and read_checkpoint -cell to build the initial design, continue that approach for the
Abstract Shell implementation run.

The flow through the implementation tools follows the same steps from link_design (or
read_checkpoint -cell) through place_design and route_design, and like the
standard flow, actions performed by the Vivado tools focus only on the target RM to be
implemented. Any new constraints – such as placement directives, floorplanning, and timing
goals – can be applied and scoped to the target RM.

When route_design is complete, call write_checkpoint to save the entire Abstract Shell
with the implemented RM and call and write_checkpoint -cell to save just the
implemented RM alone. The RM checkpoint alone can be read back into the full static design
checkpoint (along with other RM checkpoints for other RPs if necessary) to assemble a complete
design.

Generating Partial Bitstreams

Before considering partial bitstream generation, always use PR Verify. PR Verify compares
multiple design images where RMs differ, but static is the same, to ensure all DFX rules have
been followed. If full configuration assembly is done, you can run PR Verify in the standard way,
comparing the entire static design for each checkpoint configuration. However, PR Verify can
also run in the Abstract Shell context, comparing the initial Abstract Shell to the shell with the
routed RM. If a checkpoint for an Abstract Shell with a routed RM is still open in Vivado, you can
use the -in_memory option to compare it to the original shell. The comparison here is between
the Abstract Shell for u_shift with a black box and the Abstract Shell with an RM implemented
within it.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=65

PR Verify fails if:

• A full static design checkpoint is compared to an Abstract Shell checkpoint

• An RM checkpoint is loaded without its Abstract Shell

• Abstract Shells for different RPs are compared

Generating Partial Bitstreams from Full Configurations

Bitstream generation can be done in two ways. The first is using the standard DFX approach,
where a full design is open in Vivado and both full and partial bitstreams can be generated. Using
the Abstract Shell approach, you do not create multiple configurations as the standard flow uses,
as each RM is implemented on its own, independent of the full static top. However, any possible
configuration can be created by linking the full static checkpoint with one RM checkpoint per RP.
With a full configuration open in memory, you can call write_bitstream in the traditional
manner. This by default produces all full and partial bitstreams for this design image. Use the -
no_partial_bitfile or -cell options to create only full or only partial bit files,
respectively.

Generating Partial Bitstreams from Abstract Shells

Alternatively, partial bitstreams can be generated directly from the Abstract Shell implementation
for any RM. With this approach, the complete static design information is not required to
generate partial bitstreams. The Abstract Shell contains all the information needed not only to
implement any RM, but to create the bitstream for that function. The -cell option for
write_bitstream is required.

write_bitstream -cell <cell_inst> <RM_partial>.bit

CAUTION!

If the -cell option is omitted, write_bitstream flags an error, as this is interpreted as a request to create a
full design bitstream. The full design is clearly not present here. Similarly, Vivado returns an error if you
attempt to generate a partial bitstream from just the RM checkpoint alone (the one created from
write_checkpoint -cell, with no static design data present above the target cell). This bitstream
would only have the information for the RM, not for the static design that connects to it.

Full device bitstreams can only be generated from checkpoints containing the full static design
checkpoint plus one RM per RP. RMs can be grey box implementations, but even these must be
fully placed and routed. Partial bitstreams from any full or Abstract Shell checkpoint are
compatible with static as long as that version of static used to create each Abstract Shell has not
been modified.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=66

Device Programming Strategies
At the end of these implementation and bitstream generation processes, you have full and partial
bitstreams just as you do with the standard DFX flow. For single-user scenarios, follow the
recommendations and considerations outlined in Design Consideration and Guidelines for All
Xilinx Devices, Design Considerations and Guidelines for 7 Series and Zynq Devices, and Design
Considerations and Guidelines for UltraScale and UltraScale+ Devices in this document.

It is critical to keep all partial bitstreams in sync with the same implementation version as the full
device bitstream. This must be part of the partial reconfiguration controller functionality,
wherever and however this is managed. This is especially important when using Abstract Shell, as
bitstreams can be created in different environments by different users. PR Verify confirms
consistency, but once these bitstreams leave Vivado, it is up to the system design to maintain
that consistency.

For multi-user environments, there are scenarios where the designer of the RMs does not have
access to the static platform design. If you only have access to an Abstract Shell, you can only
generate partial bitstreams. In such a scenario, you must also be given an initial device bitstream
to program the static design. This full device bitstream could have a grey box (no functionality,
just LUT tie-offs) in the target RP, or any other initial “hello world” type of application. Configure
the device with this initial image, then use Dynamic Function eXchange to load (and reload) their
custom applications with the partially created bitstreams.

Figure 17: Bitstream Delivery Flow for Multi-User Environments

Any changes to the static platform design require updates to the full device bitstream and any
Abstract Shell checkpoints to keep all bitstreams in sync.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=67

Additional Solution Details
The contents of the Abstract Shell are determined by two main factors: the floorplan of the
target RP and the connectivity to this module.

The floorplan for reconfigurable pblocks in UltraScale+ devices by default creates an expanded
routing region to improve routability and reduce congestion. This expansion creates the frameset
to be captured as the programming contents for the partial bitstream. To implement any RM and
generate the partial bitstream for this expanded region, the Abstract Shell contains some (but not
all) of the placement and all of the routing information for this region. Any part of the static
design included in a partial bitstream is reprogrammed while it continues to operate without
disruption. Only the logic within the user-defined pblock receives the GSR event for initialization
at the end of partial bitstream delivery.

Use the hd_visual scripts to visualize the expanded region for a given RP. In the image below, the
blue placement range aligns with the pblock itself, while the yellow expanded region denotes the
overall solution space and partial bitstream range for this RP.

Figure 18: Routed Reconfigurable Module within an Abstract Shell

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=68

Figure 19: Expanded Routing Region (yellow) for the Reconfigurable Partition (blue)

For the RM implemented in the Abstract Shell, its placement is limited to the blue region, which
is the pblock as created by the designer and then snapped in to fundamental programmable unit
boundaries. For this RM, the routing is limited to the yellow expanded routing region.

Logical Connectivity Contents

When the Abstract Shell is created, some static logic is included in the Abstract Shell, based on
connectivity. All interface paths to and from the RP, up to their first synchronous element, are
included so that timing closure can be done on these paths. The static side of these interface
paths, up to the partition pin or first element, are locked, but the full path information must be
included for timing analysis. This logic may be inside or outside the expanded routing region for
the RP pblock. Other static logic in the expanded routing region is removed as long as it has no
impact on placement, routing, or timing closure for the RP in that Abstract Shell. When this
occurs, programming information in the partial bitstream is skipped, allowing that logic to
continue operating during reconfiguration.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=69

Information related to clocks and resets is also included in the Abstract Shell to create a complete
picture of the context needed to implement each RM and confirm all timing constraints are met.
This means preserving clock sources and clock modifying blocks such as clock buffers, MMCM,
or PLL elements, as well as their connectivity, feedback paths, clocks driving boundary logic, and
connections to external ports. It also includes anything else that has an impact on RM
implementation. This information is used to supply a complete timing picture for the RP so that
each RM to be implemented has the same operating conditions and constraints as when using a
full static design shell.

For example, the full clock source path to an RP is captured in the Abstract Shell, including clock
buffers and clock modifying blocks, as well as the clocking constraints needed to define the clock
requirements.

Figure 20: Full Clock Path within an Abstract Shell

create_clock -period 10.000 [get_ports clk_in1_p]

Proprietary Design Information and Licensed IP

Given the static logic trimming previously noted, two benefits emerge.

First, most of the proprietary design information from the static platform is removed, effectively
hiding this critical information from users that receive the Abstract Shell. Some fragments may
remain:

• Synchronous elements that connect to the RP

• Any combinatorial logic between that synchronous element and the RP boundary routing
elements that reside in the expanded routing region of the target RP

• Elements that tie into any common clocking or other global signals

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=70

Second, any IP that is contained in the static design is hidden (mostly, if not completely) from the
Abstract Shell. Because of this, license checking for any IP (Xilinx or third party) in static is
bypassed. Designers who implement their RMs in an Abstract Shell do not need a license for any
IP that exists in the static design. Any static IP, with or without an explicit license check, behaves
just as the proprietary design information described in the previous paragraph.

IMPORTANT!

! If you intend to redistribute an Abstract Shell checkpoint to a third party, be aware that you could be
distributing a portion of the IP netlist from your static design. Ensure you have the legal rights to distribute
this content. If you have any questions on obtaining IP netlist distribution rights, contact
ip_admin@xilinx.com for any Xilinx IP, or the provider of the IP for any non-Xilinx IP.

Design Considerations

The flow to create the initial configuration of the design, establishing the static design results, is
no different for Abstract Shell than the standard DFX flow. However, watch closely for an
Abstract Shell when two RPs connect to each other. If there is no synchronous element on a path
between two RPs, you can never be certain any possible RM combination in the two RPs is able
to meet timing. While this is technically legal in DFX, Xilinx strongly recommends avoiding this
scenario.

Two similar Design Rule Checks alert you to this scenario:

1. HDPR-34 – Signal '<object(s)>' is a direct path that connects RP '<object(s)>' and '<object(s)>'
without a synchronous timing point in the static design. This omission might lead to timing
failures in hardware depending on the RMs that are currently loaded. To close timing on all
possible synchronous paths, ensure that any possible path contains at most a segment in only
a single RP.

2. HDPR-35 – A path connects an RP '<object(s)>' and '<object(s)>' without a synchronous
timing point in the static design. This omission might lead to timing failures in hardware
depending on the RMs currently loaded. To close timing on all possible synchronous paths,
ensure that any possible path contains at most a segment in only a single RP. The following is
a list of nets (up to the first 15) in the path: <name>.

Run all DFX DRCs on the initial configuration of the design before creating Abstract Shells. If you
encounter these particular alerts, please modify your static design accordingly.

Supported/Unsupported Features
This section shows the current lists of supported and unsupported features in this version of
Vivado. While future enhancements may be possible, this list is not an indication that these
enhancements will be definitively delivered in a future revision.

Supported Features

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=71

• Abstract Shell creation for all UltraScale+ devices

• Implementation of any RM within an Abstract Shell for a given RP

• Validation of an implemented RM within an Abstract Shell via PR Verify

• Partial bitstream generation for any RM from an Abstract Shell

Unsupported Features

Some features are not yet implemented but may be considered for future releases.

• Project mode is not yet supported. However, users can use a DFX project to create all the
post-synthesis checkpoints and implement the parent configuration. Use that routed
checkpoint to jump out to a non-project flow for all the RM implementation runs.

• Nested Dynamic Function eXchange is not yet supported with Abstract Shell.

• Abstract Shell does not support UltraScale devices. Versal support will be added in a future
Vivado release, after DFX support is released for that architecture.

• Abstract Shell does not and will never support 7 series architectures.

Known Issues and Limitations

• Some issues have been seen in PR Verify due to partition pins. If PR Verify between the
original Abstract Shell and the Abstract Shell with an implemented RM returns
HDPRVerify-10 or HDPRVerify-11, look at the net (typically a clock, in a design with multiple
RPs) they have in common (shown in the latter message). A workaround is to reset the
partition pin location constraint prior to running PR Verify:

reset_property HD.PARTPIN_LOCS [get_pins RP_Top/MyClk200]

• Only the target RP can be a black box when an Abstract Shell is created. If any other RP is a
black box, the write_abstract_shell command returns this error:

ERROR: [Common 17-69] Command failed: Failed to create design checkpoint

In general, if tool errors, or issues with placing and routing new RMs in an Abstract Shell
checkpoint, are encountered, check the behavior using a full static design checkpoint first.

Chapter 3: Vivado Software Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=72

Chapter 4

Vivado Project Flow
Dynamic Function eXchange (DFX) in Xilinx® FPGAs and SoCs introduces new design
requirements compared to traditional solutions. These requirements include unique approaches
to source and runs management, as both bottom-up synthesis and multi-pass implementation are
needed. These needs are met with the Vivado® Design Suite DFX Project Flow.

Flow Summary
The Dynamic Function eXchange Project Flow inserts the key requirements of Dynamic Function
eXchange into the existing Vivado project solution, accessible within the Vivado IDE as well as
via Tcl commands. These key requirements include:

• Defining Reconfigurable Partitions (RP) within the design hierarchy

• Populating a set of Reconfigurable Modules (RM) for each RP

• Creating a set of top-level and module-level synthesis runs

• Creating a set of related implementation runs

• Managing dependencies as sources, constraints or options are modified

• Checking rules and results

• Verifying configurations

• Generating compatible sets of full and partial bitstreams

These fundamental aspects are implemented for this release, featuring support for a front-to-
back implementation for RTL-based designs including IP. Partial Reconfiguration (PR) terminology
has been replaced with Dynamic Function eXchange (DFX) terminology in this release, however,
underlying Tcl commands has remain unchanged so that existing projects and scripts will safely
migrate forward.

One expectation of this flow is that all sources (at least the top level RTL and post-synthesis
netlists for sub-modules) are managed within a single DFX-enabled project. A project cannot be
broken up or exported as Vivado would no longer be able to track dependencies between runs
and sources.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=73

Tcl Commands
Like with most everything within the Vivado IDE, the features and tasks for Dynamic Function
eXchange you see are driven behind the scenes by Tcl commands. One of the key goals for DFX
project support is to be able to work seamlessly between GUI and script and command line on
the same project. You can examine the specific Tcl commands called by examining the Vivado
journal file for this project. This can be seen by selecting File → Project → Open Journal File.
These Tcl commands are not currently documented in this user guide. The full set of commands
used to create the entire project up to its current state can be generated by selecting File → 
Project → Write Tcl. Additional information for each command can be found using the -help
option of each command.

Steps for Creating and Using a Dynamic
Function eXchange Project

This section describes the general flow and the unique features and capabilities of theVivado IDE
for Dynamic Function eXchange design flows. For front-to-back tutorials using a specific design
that target a Xilinx Evaluation Platform, see Lab 3 and Lab 4 in the Vivado Design Suite Tutorial:
Dynamic Function eXchange (UG947).

Creating a Dynamic Function eXchange Project
The initial creation of a DFX project is no different than for a standard design flow. Step through
the New Project wizard to select the target device, design sources and constraints, and set all the
main project details. When creating a new project, all source files and constraints for the static
portion of the design should be added. You have the option of including the RTL and IP design
sources for the first RM for each RP, or you can leave these as black boxes for now.

Note: Only add sources for one RM during the initial project creation. The Partial Reconfiguration wizard is
used to add additional RMs to the project. This is discussed in more detail later in this chapter.

Once the project has been created, define it to be a Dynamic Function eXchange project. This is
done by selecting Tools → Enable Dynamic Function eXchange. This prepares the project for the
DFX design flow. Once this is set it cannot be undone, so Xilinx recommends archiving your
project prior to selecting this option.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 74Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug947-vivado-partial-reconfiguration-tutorial.pdf;a=xPartialReconfigurationProjectFlow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf;a=xVivadoDebugAndThePRProjectFlow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=74

Figure 21: Enabling Dynamic Function eXchange

A subsequent dialog box will ask you to confirm this one-way project transition. When this is
done, the project will show a few DFX-specific menu options and window tabs. These include:

• A link to the Dynamic Function eXchange Wizard in the Flow Navigator

• The Partition Definitions view in the Sources window

• The Configurations window

Defining Reconfigurable Partitions
Once the project has been turned into a DFX project, RPs can be defined within the RTL source
hierarchy. Appropriate instances within the design hierarchy are those that:

• Are defined by RTL, IP or EDIF sources

• Do not pass parameter and generic values to that level of hierarchy from above. Parameters
and generics can exist on the RP boundary but must be evaluated locally prior to partition
creation.

• Do not contain out-of-context (other than IP) or EDIF modules in the underlying RTL

• Do not have IP, DCP or EDIF as the top level

• Do not contain block diagram (.bd) sources

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=75

1. Right-click on the desired module and select Create Partition Definition to begin the
process of RP creation. This module can be a black box if design sources do not yet exist.

Figure 22: Creating a Reconfigurable Partition

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=76

2. In the next dialog box that appears, give this Partition Definition a unique name. Also
define a name for the first RM. This RM is created from the RTL or netlist sources
currently residing in this level of hierarchy. More RM are added or created later in the flow.

IMPORTANT! Every instance of the selected module is turned into a RP. In order for one instance
to be defined as reconfigurable and another instance to remain static, the two instances must be
given unique module names.

Figure 23: Defining the Reconfigurable Partition and the first Reconfigurable Module

3. After clicking OK, this module displays differently in the Vivado IDE. Each instance of the
module is shown in the Hierarchy view with a diamond, indicating that it is a RP. The
design sources are moved to the Partition Definitions view to be managed separately.
Repeat this step for all unique RPs required within the design.

Figure 24: Partition Definitions as Seen in the Sources Window

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=77

Completing the Dynamic Function eXchange Project
Structure
After defining the RPs, enter the full details of the project. This consists of adding more RM for
each of the RPs, defining a full set of Configurations that combine RMs with the static design,
and declaring the set of runs that will be used to implement all the Configurations. All of these
additions are done within the Dynamic Function eXchange Wizard. Any further modifications or
additions can be made by returning to the wizard.

TIP: No actions requested in the Dynamic Function eXchange Wizard will take effect until the Finish
button is clicked. You may step forward and back within the wizard until everything is completed to your
liking, and you may cancel and throw away all edits at any time.

Open the Dynamic Function eXchange Wizard by selecting the step in the Flow Navigator or
from the Tools menu.

Figure 25: The Dynamic Function eXchange Wizard in the Flow Navigator

When the DFX Wizard opens, step through each stage of DFX project management.

Editing Reconfigurable Modules

1. After selecting Next to progress past the introduction, the first content page allows you to
define new RMs for any Partition Definitions (PD) defined. The first RM for each PD has
already been included here, if the RTL/netlist source was present when the PD was created.
Click on the blue + to create a new RM and give it a unique name. Be sure to select the
correct PD if more than one exists in the design. If netlist sources are selected, select the
Sources are already synthesized check box and declare the Top Module within the netlist.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=78

Figure 26: Creating a New Reconfigurable Module

2. Repeat this process for all existing RMs for every Partition Definition. If a greybox module is
desired, no action is required. Note that RMs may be edited by clicking on the pencil icon or
removed by clicking the red - icon. When all RM are accounted for click Next.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=79

Figure 27: Set of Reconfigurable Modules Defined

Editing Configurations

With a set of RMs defined, Configurations can be declared. Each Configuration is a combination
of the static logic plus one RM per RP; each Configuration is a full design image.

While each Configuration can be created manually, the simplest path is to letVivado create the
minimum set of Configurations automatically. This is done by selecting the automatically create
configurations link in the middle of this screen. This will create as many Configurations as
necessary to ensure that all RMs are included at least once. This option is only available if no
Configurations have been defined yet.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=80

Figure 28: Edit Configurations before creating any Configurations

Figure 29: Edit Configurations before creating any Configurations

If one Partition Definition has more RMs than another, a greybox RM will automatically be used
for any RP that has all its RMs covered by prior Configurations. These default Configurations can
be modified or renamed, and additional Configurations may be created if desired.

TIP: Greybox modules are different than black box modules, as they are not truly empty. Greybox RMs
have tie-off LUTs inserted to complete legal design connectivity in the absence of an RM and they ensure
outputs do not float during operation. Vivado creates these by calling update_design -
buffer_ports  on selected modules.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=81

Figure 30: Edit Configurations after automatic generation of Configurations

Note: If one RM is used in more than one Configuration, the implementation results may be different, as
place and route is performed each time, but only if the RM was initially implemented in a child run. RM
implementation results will be reused if they were originally done in the parent configuration. This allows
the Vivado project to track dependencies between parent and child.

Editing Configuration Runs

With all the Configurations defined, move to the final screen to manage the Configuration Runs
associated with them. Just like the Configurations themselves, Vivado can automatically create a
set of Configuration Runs. The first Configuration in the list are defined as the parent, and all
remaining Configurations are set as children to that parent.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=82

Figure 31: Automatically Generated Configuration Runs

This structure assumes that the first configuration is the most critical or challenging. Users are
free to change the parent-child relationship by setting that value in the Parent column. A Parent
of a synthesis run (synth_1 here) indicates the Configuration (most notably the static part) will be
implemented from the synthesized netlist, and a Parent of an implementation run (impl_1 here)
indicates the parent's locked static implementation result will be used as the starting point.

As you explore place and route options, timing closure techniques, and otherwise elaborate on
the DFX design, multiple independent parent runs can be used for exploration. Multiple parent
runs can be launched in parallel, then child runs can be launched after parent runs complete.
Vivado project management handles all the DFX-specific details for creating and storing
intermediate checkpoints, including a "static-only" checkpoint for a routed parent run. Ultimately,
a single parent run must be selected to establish a golden static implementation result on which
all Configurations will be based.

IMPORTANT! To ensure a safe working environment in silicon, a locked static image must remain
consistent across all Configurations so bitstream generation will create compatible full and partial
bitstreams. This is managed in the Vivado DFX Project flow by establishing a parent-child relationship for
related Configurations

Add new Configuration Runs by selecting the green + icon. When all Configuration Runs have
been created, click Next. On the final screen, the number of new elements are listed. Clicking
Finish will actually perform all the requested changes in the project.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=83

In the Design Runs window, out-of-context synthesis runs are created for each RM, and all
Configuration Runs are generated. Relationships between parent and child runs are shown by the
levels of indentation.

Figure 32: Design Runs for Synthesis and Implementation

In addition, the Configurations window now shows the composition details of each Configuration
available in the project.

Figure 33: Configurations available in the project

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=84

Adding or Modifying Reconfigurable Modules or
Configurations
The Dynamic Function eXchange Wizard is the central mechanism for making any changes to
RMs or Configurations. This includes adding new RMs, modifying source lists for any RM,
creating new Configurations or Runs, or removing any of the above. When working within the
wizard, nothing is saved or executed until the Finish button is clicked, so you can move forward
or back through the screens, making adjustments as needed.

When changes to the RTL sources themselves are needed, they can be seen and opened from
the Partition Definitions view in the Source window. This shows each RM in the same way as the
full design is shown in the Hierarchy tab, but scoped to that level of hierarchy and below. This
includes all sources and constraints that have been declared for each RM.

Figure 34: Sources Shown in Partition Definitions view

Adding or Creating IP Sources
IP are permitted within RMs. They cannot be the top level of an RM, but they can exist within
any level below the top. Include existing .xci or .xcix files along with RTL when adding
sources to a RM.

IP that exist within RMs can be synthesized either globally or out-of-context. Either value for the
Synthesis Options shown below can be selected.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=85

Figure 35: Specifying Global when Generating Output Products

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=86

Figure 36: Specifying Out of Context per IP when Generating Output Products

IP can be created from the IP Catalog within a DFX project. After the IP has been created, it is
added to the primary blockset of the design, as the IP generation flow does not know which RM
the IP is for. To assign a new IP to a specific RM, right-click on the IP in the Sources window and
select Move to Reconfigurable Module. Select the appropriate RM and click OK.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=87

Figure 37: Moving IP to a Reconfigurable Module

One final requirement is that IP must be unique per RM. If two different RMs each contain the
same IP function, two unique instances must be created. The best way to do this is to replicate
one IP to create a new identical IP. Right-click on an existing IP and select Copy IP. Once created,
this new IP must be moved to the target RM as described above.

Figure 38: Copying IP

Implementing the DFX Design
With all the necessary Configuration Runs defined, the design can be synthesized and
implemented. The Flow Navigator can be used to pull through any steps of synthesis, place and
route, and even bitstream generation. The Flow Navigator works on the active run just like a
standard flow, but it will launch all child runs in addition to the active parent.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=88

One detail that is required for Dynamic Function eXchange designs is a Pblock for each RP.
Without a Pblock defined, the following error is issued in place_design:

ERROR: [DRC 23-20] Rule violation (HDPR-30) Missing PBLOCK On
Reconfigurable Cell

If this necessary floorplan is present in a top-level design constraints file, you can pull all the way
from synthesis to bitstream generation. If not, the easiest way to create one is to stop and open
the design after top-level synthesis. In the Netlist hierarchy view, right-click on the module that
corresponds to the RP and select Floorplanning > Draw Pblock.

After you draw the Pblock for a RP, its properties can be seen in the Pblock Properties window
under the Properties view. Available here are two options unique to RPs:
RESET_AFTER_RECONFIG (7 series only) and SNAPPING_MODE. The Statistics view reports
the resources available and used for the currently loaded RM, so it is important to consider the
needs for the other RMs as well.

Figure 39: Dynamic Function eXchange Properties on a Pblock (7 series)

Once a Pblock has been created for each RP, each Configuration can be implemented. The Run
Implementation button in the Flow Navigator launches place and route on the active parent run
first. Upon completion, all child runs will be launched in parallel, using the static design results of
the parent as a starting point.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=89

TheVivado project takes care of the underlying details of the DFX solution. Database
management is one of these details. Upon completion of the parent run, the routed database for
the entire design is saved, as well as a cell-level checkpoint for each RM. ThenVivado calls
update_design -black_box to carve out each RM, resulting in a static-only design
checkpoint, which is the basis for all of its child runs. When child implementations runs are
launched,Vivado assembles the configuration from the static-only routed parent checkpoint and
post-synthesis checkpoints for each RM. At this time, only routed module checkpoints from the
parent run can be reused in child Configurations; if the same RM is selected for one RP in
multiple child runs, the results will be different.

Figure 40: Implementing Multiple Configurations in Parallel

Just as with a standard project,Vivado tracks dependencies between runs. When design sources,
constraints, options or settings are modified, any synthesis or implementation run that depends
on them are marked out-of-date. One example: if an RTL design source for one RM is updated,
that out-of-context module run will be marked out-of-date, and any Configuration Runs that
include that RM will also be marked out-of-date. Another example: if any implementation option
for a parent Configuration Run is changed, it and all child runs will be marked out-of-date.

Only parent Configuration Runs can be set as active. The Flow Navigator acts upon the active
run, but in the DFX flow, all child runs are also included in whatever action is requested. Pop-up
messages (completed run, error, etc.) can relate to multiple runs but default to the parent run.
Use the pull down selection to choose the desired implementation run.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=90

Figure 41: Implementation Completed Dialog Box

Everything shown in the different windows, as shown in Implementing the DFX Design, relate to
the active parent run. In order to see details about a child implementation run, select that run
and look at the Implementation Run Properties window to see all the inputs (properties, options)
and outputs (log, reports, messages) for that specific run.

Figure 42: Implementation Run Properties Window for a Child Run

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=91

Generating Bitstreams
Once all desired Configurations have been placed and routed, bitstreams may be generated. Just
as with Implementation, the Generate Bitstream button in the Flow Navigator may be used. This
launches write_bitstream for all child runs as well as the active parent. A local right-click call
to write_bitstream on any Configuration is also available.

The pr_verify utility is automatically called prior to write_bitstream on each child
Configuration run. This routed database is compared to the parent database to ensure all DFX
rules have been met. The results of this check are stored in the run directory under the name
<impl_name>_pr_verify.log.

By default, a full design bitstream and all partial (and for UltraScale™, clearing) bitstreams are
generated for all routed configurations. You can request specific bitstreams only by utilizing the
write_bitstreams options available. Under the Write Bitstream options category in the
Options pane for the Implementation Run Properties, use the More Options field to select one of
these options:

• -no_partial_bitfile generates only the full configuration file and no partial bitstreams.

• -cell <cell> generates only the partial bitstream for the requested cell.

Supported/Unsupported Features
This section lists the current lists of supported and unsupported features for DFX Projects.

Supported Features

• Device support: All 7 series, Zynq®, UltraScale and UltraScale+ devices supported by the
Dynamic Function eXchange flow.

• Source types for RMs: RTL, DCP, EDIF, XDC, XCI, XCIX.

○ XCI or XCIX (Xilinx® IP) cannot be the top level.

○ EDIF cannot be a sub-module.

• Module-level constraints must be scoped to the hierarchical instance.

• Greybox (black box module with LUT tie-off) implementation can be done

• An extensive set of Design Rule Checks can be issued from within the project environment.

• All synthesis and implementation design switches can be used.

• PR Verify is automatically called prior to bitstream generation for any child configuration.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=92

Unsupported Features

The following features are not currently implemented:

• IP integrator support is not in place. Block Diagrams cannot be included as RMs or within
RMs. Modules within Block Diagrams cannot be set as RMs.

• Simulation is not supported from within the project.

Known Limitations

• Once Partitions are defined, they cannot be undone. The only way to return to a flat non-DFX
project is to create a new one.

• Reuse of implemented RMs from a child run is not supported. Only implementation results
from RMs from the parent run can be reused in a child run.

• Child implementation runs cannot be set active. Flow Navigator actions work on just the
parent run, or the parent and all child runs, depending on the action.

Chapter 4: Vivado Project Flow

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=93

Chapter 5

Design Considerations and
Guidelines for All Xilinx Devices

This chapter explains design requirements that are unique to Dynamic Function eXchange (DFX),
and covers specific DFX features within the Xilinx® design software tools.

To take advantage of the dynamic reconfiguration capability of Xilinx FPGAs, you must analyze
the design specification thoroughly, and consider the requirements, characteristics, and
limitations associated with PR designs. This simplifies both the design and debug processes, and
avoids potential future risks of malfunction in the design.

This chapter describes the design requirements that apply to all Xilinx 7 series and UltraScale™
devices. For design requirements specific to the individual FPGA and SoC architectures, see the
following chapters in this manual:

• Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

• Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices

Dynamic Function eXchange IP
Xilinx has created four pieces of intellectual property specifically for the use within DFX designs.
There is no charge for any of these IP, and DFX designs do not require them. They are available
to assist users in quickly and easily implementing key aspects of a reconfigurable design. The IP
are all found under the Dynamic Function eXchange heading within the IP Catalog, and each
have their own landing page on Xilinx.com with a detailed product guide.

These four IP for Dynamic Function eXchange are currently available inVivado and can be used
for any Xilinx® device that supports Dynamic Function eXchange in Vivado. As ofVivado 2020.1,
these IP now have the DFX terminology within the name and throughout the IP, but are
functionally equivalent to their Partial Reconfiguration named predecessors. You should use the
IP upgrade feature to transition any existing PR IP to DFX IP. See the product guides for each IP
for more information.

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 94Send Feedback

https://www.xilinx.com/products/intellectual-property/nav-ip-utility/nav-dynamic-function-exchange.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=94

• Dynamic Function eXchange Controller: The DFX Controller core provides management
functions for self-controlling partially reconfigurable designs. It is intended for enclosed
systems where all of the reconfigurable modules (RM) are known to the controller. The
optional AXI4-Lite register interface allows the core to be reconfigured at run time, so it can
also be used in systems where the RMs can change in the field. The core can be customized
for many Virtual Sockets, RMs per Virtual Socket, operations and interfaces. Labs 5, 6, and 7
in Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947) show examples of the DFX
Controller IP in a sample design.

• Dynamic Function eXchange Decoupler: The DFX Decoupler can be used to provide a safe
and managed boundary between the static logic and a Reconfigurable partition (RP) during
reconfiguration. The core can be customized for the number of interfaces, type of interfaces,
decoupling functionality, status and control.

• Dynamic Function eXchange AXI Shutdown Manager: One or more DFX AXI Shutdown
Managers can be used to make the AXI interfaces between a RP and the static logic safe
during reconfiguration. When active, AXI transactions sent to the RM, and AXI transactions
emanating from the RM, are terminated because the RM might not be able to complete them.
Failure to complete could cause system deadlock. When inactive, transactions pass unaltered.

• Dynamic Function eXchange Bitstream Monitor: The DFX Bitstream Monitor can be used to
identify partial bitstreams as they flow through the design. This information can be used for
debugging or system applications such as blocking bitstream loads. Identifiers embedded at
key places in partial bitstreams are extracted and reported by the core. This information can
be passed to Vivado HW Debugger using an ILA core to work out what partial bitstream was
fetched, if it was fetched in its entirety, and how far through the datapath it went.

Design Hierarchy
Good hierarchical design practices resolve many complexities and difficulties when implementing
a partially reconfigurable FPGA design. A clear design instance hierarchy simplifies physical and
timing constraints. Registering signals at the boundary between static and reconfigurable logic
eases timing closure. Grouping logic that is packed together in the same hierarchical level is
necessary.

These are all well known design practices that are often not followed in general FPGA designs.
Following these design rules is not strictly required in a partially reconfigurable design, but the
potential negative effects of not following them are more pronounced. The benefits of Dynamic
Function eXchange are great, but the extra complexity in design could be more challenging to
debug, especially in hardware.

For additional information about design hierarchy, see Chapter 10: Hierarchical Design Flows.

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 95Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=95

Dynamic Reconfiguration Using the DRP
Logic that is in the static region, and therefore is never partially reconfigured, can still be
reconfigured dynamically through the Dynamic Reconfiguration Port (DRP). The DRP can be used
to configure logic elements such as MMCMs, PLLs, and serial transceivers (MGTs).

Information about the DRP and dynamic reconfiguration, including how to use the DRP for
specific design resources, can be found in these documents:

• 7 Series FPGAs Configuration User Guide (UG470)

• 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)

• 7 Series FPGAs GTP Transceivers User Guide (UG482)

• MMCM and PLL Dynamic Reconfiguration Application Note (v1.8) (XAPP888)

• UltraScale Architecture Configuration User Guide (UG570)

• UltraScale Architecture Clocking Resources User Guide (UG572)

• UltraScale Architecture GTH Transceivers User Guide (UG576)

• UltraScale Architecture GTY Transceivers User Guide (UG578)

Packing Logic
Any logic that must be packed together must be placed in the same group, whether it is static or
reconfigurable. For example, if a LUT and a flip-flop are expected to be placed within the same
slice, they must be within the same partition. Partition boundaries are barriers to optimization.

For RPs that include I/O, Clocking, and GT resources, it might be necessary to instantiate any I/O
buffers that are automatically inferred by the tools inside that RP level. For example, if
GT_COMMON is in an RP, the IBUFDS_GTE needs to be instantiated. If the associated I/O buffer is
in the top-level/static portion, it cannot be packed.

Design Instance Hierarchy
The most simple method is to instantiate the RPs in the top-level module, but this is not required
because a RP may be located in any level of hierarchy. Each RP must correspond to exactly one
instance—an RP must not have more than one top. The instantiation has multiple modules with
which it is associated.

Changes in design hierarchy can be used to merge and/or separate modules and leaf cells into
and out of an RP level of hierarchy. There are several reasons to do this:

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 96Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug476_7Series_Transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug482_7Series_GTP_Transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp888_7Series_DynamicRecon.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug572-ultrascale-clocking.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug576-ultrascale-gth-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug578-ultrascale-gty-transceivers.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=96

• To balance device resources between the dynamic region and static region, making the design
more efficient. For example, if the target RP takes up most of the device, and there is a module
in the static region that requires a high number of Block RAMs unavailable to Static, you can
move that module into the dynamic region.

• If you need cells to reside in the same physical area of the device, but they are in a different
design hierarchy. For example, if you need GT_CHANNELS to be placed in the same UltraScale
Clock Region, but the design has GTs in both the Static and RP regions.

• To ensure that dedicated connections, for example from IBUFDS_GT to GT_COMMON, reside in
the same region.

Reconfigurable Partition Interfaces
One of the fundamental requirements of a partially reconfigurable design is consistency between
RMs. As one module is swapped for another, the connections between the static design and the
RM must be identical, both logically and physically. To achieve this consistency, optimizations
across the partition boundary or of the boundary itself are prohibited.

RECOMMENDED: Keep interface logic connecting to and from RM ports consistent across all RMs. Do
not change the levels of logic between RMs, such as using one level of logic in the initial design and five
levels of logic in next RM. Also, do not change the driver type, such as using flip-flops in the initial RM and
block RAM in next RM. Since the static side of the interface is locked after the initial configuration, the
tools are unable to adjust for these changes in later configurations. Xilinx recommends registering all inputs
and outputs of the RMs.

For optimal efficiency, all ports of a RP should be actively used on the static design side. For
example, if static drivers of the RP are driven by constants (0 or 1), they are implemented
through the creation of a LUT instance and local tie-off to a constant driver and cannot be
trimmed away. Likewise, unconnected outputs remain on RP outputs, creating unnecessary
waste in the overall design. These measures must be taken by the implementation tools to ensure
that all RM have the same port map during design assembly.

Examine the interface of all RPs after synthesis to ensure that as few constants or unconnected
ports as possible remain. By clearing out dead logic, resource utilization is reduced, and
congestion and timing closure challenges easier to address.

Six different cases are possible for partition interface usage:

• Both Static and Reconfigurable Module sides have active logic: (Applies to partition inputs or
outputs)

This is the optimal situation. A partition pin is inserted.

If partition inputs are driven by VCC or GND, push these constants into the RM. This reduces
LUT usage and allow the implementation tools to optimize these constants with the RM logic.

• The Static side has an active driver but the Reconfigurable Module does not have active
loads.: (Applies to partition inputs)

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=97

This is acceptable because it accommodates the situation in which not every RM has the same
I/O requirements. A partition pin is inserted, and the unused input ports are left unconnected.

For example, one module might require CLK_A, while a second might require CLK_B. Clock
spines are pre-routed to the RP clock regions, but the module only taps into the clock source
that is needed. However, if a partition input is not used by any RM, it should be removed from
the partition instantiation.

• The Static side has active loads but the Reconfigurable Module does not have an active
driver.: (Applies to partition outputs)

This is acceptable and similar to the case above. A partition pin is inserted, and it is driven by
ground (logic 0) within the RM.

• The Static side does not have an active driver, but the Reconfigurable Module has active
loads.: (Applies to partition inputs)

This results in an error that must be resolved by modifying the partition interface. The
following is an example of an error that may be seen for this scenario:

ERROR: [Opt 31-65] LUT input is undriven either due to a missing connection from a design
error, or a connection removed during opt_design.

This error message would be followed by a LUT instance that is within the RM.

• Reconfigurable Module has an active driver, but the Static side has no active loads.: (Applies
to partition outputs)

This does not result in an error, but is far from optimal because the RM logic remains. No
partition pin is inserted. These partition outputs should be removed.

• Neither Static nor Reconfigurable Module sides have driver or loads for a partition port.:
(Applies to partition inputs or outputs.)

Nothing is inserted or used, so there is no implementation inefficiency, but it is unnecessary in
terms of the instantiation port list.

One basic requirement regarding partition interfaces is that each pin must be unidirectional.
The use of bidirectional ports (type inout) on the module boundary is not supported. This
requirement is due to the fact that routing resources within Xilinx FPGAs are fundamentally
unidirectional and there are no internal tristate resources that could help manage changes in
direction. Even if module ports resolve to be input or output after synthesis, Vivado will still
consider the port to potentially be bidirectional. Please change any inout port to be explicitly
input or output.

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=98

Partition Pin Placement
Each pin of an RP has a partition pin (PartPin). By default the tools automatically place these
PartPins inside of the RP Pblock range (which is required). For many cases, this automatic
placement can be sufficient for the design. However, for timing-critical interface signals or
designs with high congestion, it might be necessary to help guide the placement of the PartPins.
The following is an example of how to achieve this:

• Define user HD.PARTPIN_RANGE constraints for some or all of the pins.

set_property HD.PARTPIN_RANGE {SLICE_Xx0Yx0:SLICE_Xx1Yy1
SLICE_XxNYyN:SLICE_XxMYyM}
[get_pins <rp_cell_name>/*]

By default the HD.PARTPIN_RANGE is set to the entire Pblock range. Defining a user range
allows the tools to place PartPins in the specified areas, improving timing and/or reducing
congestion.

IMPORTANT! When examining the placement of PartPins, there are limited routing resources
available along the edges, and especially in the corners, of the Pblock. The PartPin placer attempts to
spread the partition pins, minimizing the number of partition pins per interconnect along the edges, and
increasing the PartPin density towards the middle of the Pblock. When defining a custom
HD.PARTPIN_RANGE  constraint, be sure to make the range wide enough to allow for spreading, or
you are likely to see congestion around the PartPins.

Active-Low Resets and Clock Enables
In Xilinx 7 series FPGAs, there are no local inverters on control signals (resets or clock enables).
The following description uses a reset as the example, but the same applies for clock enables.

If a design uses an active-Low reset, a LUT must be used to invert the signal. In non-DFX designs
that use all active-Low resets multiple LUTs are inferred but can be combined into a single LUT
and pushed into the I/O elements (the LUT goes away). In non-DFX designs that use a mix of
High and Low, the LUT inverters can be combined into one LUT that remains in the design, but
that has minimal effect on routing and the timing of the reset net (output of LUT can still be put
on global resources). However, for a design that uses active-Low resets on a partition, it is
possible to have inverters inferred inside the partition that cannot be pulled out and combined.
This makes it impossible to put the reset on global resources, and can lead to poor reset timing
and to routing issues if the design is already congested.

The best way to avoid this is to avoid using active-Low control signals. However, there are cases
where this is not possible (for example, when using an IP core with an Advanced eXtensible
Interface (AXI) interface). In these cases the design should assign the active-Low reset to a signal
at the top level, and use that new signal everywhere in the design.

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=99

As an example:

reset_n <= !reset;

Use the reset_n signal for all cases, and do not use the !reset assignments on signals or
ports.

This ensures that a LUT is inferred only for the reset net for the whole design and has a minimal
effect on design performance.

Decoupling Functionality
Because the reconfigurable logic is modified while the device is operating, the static logic
connected to outputs of RMs must ignore data from RMs during dynamic reconfiguration. The
RMs do not output valid data until reconfiguration is complete and the reconfigured logic is reset.
There is no way to predict or simulate the functionality of the reconfiguring module.

You must decide how the decoupling strategy is solved. A common design practice to mitigate
this issue is to register all output signals (on the static side of the interface) from the RM. An
enable signal can be used to isolate the logic until it is completely reconfigured. Other
approaches range from a simple 2-to-1 MUX on each output port, to higher level bus controller
functions.

The static design should include the logic required for the data and interface management. It can
implement mechanisms such as handshaking or disabling interfaces (which might be required for
bus structures to avoid invalid transactions). It is also useful to consider the down-time
performance effect of a DFX module (that is, the unavailability of any shared resources included
in a DFX module during or after reconfiguration).

A Partial Reconfiguration Decoupler IP is available, allowing users to insert MUXes to efficiently
decouple AXI4-Lite, AXI4-Stream, and custom interfaces. More information about the DFX
Decoupler IP is available on the Xilinx website.

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 100Send Feedback

https://www.xilinx.com/products/intellectual-property/pr-decoupler.html
https://www.xilinx.com/products/intellectual-property/pr-decoupler.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=100

Black Boxes
You can implement an RP as a pseudo black box, referred to in Vivado as a greybox. To do this,
the RP must be a black box in the static design (either from bottom-up synthesis results or from
running update_design -black_box). Then the black box can have LUT1 buffers placed on
all inputs and outputs using the command update_design -buffer_ports on the black box
RP cell:

update_design -cell <rp_cellName> -buffer_ports

Now you can run this design through implementation to place and route the LUT1 buffers (and
static logic, if not already placed and routed).

All the inserted LUT1 output buffers are tied to a logic 0 (ground). If it is necessary to drive a
logic 1 (VCC) from the RP outputs, this can be controlled using an RP pin property called
HD.PARTPIN_TIEOFF. This property can be set at any time (all the way up to pre-
write_bitstream), and it controls the LUT equation of the LUT1 buffer connected to the specified
port. The default value is '0', which configures the LUT as a route-thru (output is 0). Setting this
property to '1' configures the LUT as an inverter (output is 1). You might have to change the
output value in some design situations.

set_property HD.PARTPIN_TIEOFF 1 [get_pins <RP_cellName>/<output_pinName>]

The greybox has no user logic (just the tool-inserted LUT1 buffers). The greybox bitstream
contains information for these LUTs, as well as any static logic/routes that use resources inside
the RP frames. Static routes that pass through the region, including interface nets up to the
partition pin nodes, exist within this region. Programming information for these signals is
included in the black box programming bitstream.

Use of greyboxes is an effective way to reduce the size of a full configuration BIT file, and
therefore reduce the initial configuration time. The compression feature might also be enabled to
reduce the size of BIT files. This option looks for repeated configuration frame structures to
reduce the amount of configuration data that must be stored in the BIT file. The compression
results in reduced configuration and reconfiguration time. When the compression option is
applied to a routed DFX design, all of the BIT files (full and partial) are created as compressed BIT
files. To enable compression, set this property prior to running write_bitstream:

set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=101

Effective Approaches for Implementation
There are trade-offs associated with optimizing any FPGA design. Dynamic Function eXchange is
no different. Partitions are barriers to optimization, and reconfigurable frames require specific
layout constraints. These are the additional costs to building a reconfigurable design. The
additional overhead for timing and area needs vary from design to design. To minimize the
impact, follow the design considerations stated in this guide.

When building Configurations of a reconfigurable design, the first Configuration to be chosen for
implementation should be the most challenging one. Be sure that the physical region selected has
adequate resources (especially elements such as block RAM and DSP48) for each RM in each RP,
then select the most demanding (in terms of either timing or area) RM for each RP. If all of the
RMs in the subsequent Configurations are smaller or slower, it is easier to meet their demands.
Timing budgets should be established to meet the needs of all RM.

If it is not clear which RM is the most challenging, each can be implemented in parallel in context
with static, allowing static to be placed and routed for each. Examine resource utilization
statistics and timing reports to see which configuration met design criteria most easily and which
had the tightest tolerances, or which missed by the widest margins.

IMPORTANT! Focus attention on the configuration that is the furthest from meeting its goals, iterating on
design sources, constraints, and strategies until needs are met. At some point, one configuration must be
established as the golden result for the static design, and that implementation of the static logic will be
used for all other configurations.

Building Up Implementation Requirements
Implementation of Dynamic Function eXchange designs requires that certain fundamental rules
are followed. These rules have been established to ensure that a partial bitstream can be
accurately created and safely delivered to an active device. As noted throughout this document,
these rules include these basic premises:

• The logical and physical interface of a RP remains consistent as each RM is implemented.

• The logic and routing of a RM is fully contained within a physical region which is then
translated into a partial bitstream.

• The logic of the static design must be kept out of the reconfigurable region if the dedicated
initialization feature is used.

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=102

These requirements necessitate specific implementation rules for optimization, placement and
routing. Application of these rules might make it more difficult to meet design goals, including
timing closure. A recommended strategy is to build up this set of requirements one at a time,
allowing you to analyze the results at each step. Starting with the most challenging configuration
and the full set of timing constraints, implement the design through place and route and examine
the results, making sure you have sufficient timing slack and resources available to continue to
the next step.

1. Implement the design with no Pblocks. Use bottom-up synthesis and follow general
Hierarchical Design recommendations, such as registered boundaries, to achieve a baseline
result.

2. Add Pblocks for the design partitions that will later be marked reconfigurable. This floorplan
can be based on the results established in the bottom-up synthesis run from Step 1. Logic
from the RMs must be placed in the Pblocks, but static logic may be included there as well.

While creating these Pblocks, the HD.RECONFIGURABLE property (and optionally, the
RESET_AFTER_RECONFIG property) can be added temporarily to run PR-specific Design
Rule Checks. This ensures that the floorplan created meets PR size and alignment
requirements.

3. With the floorplan established, separate the placement of static design resources from those
to be reconfigurable by adding the EXCLUDE_PLACEMENT property to the Pblocks. This
keeps static logic placed outside the defined Pblocks.

4. Keep the routing for RMs bound within the Pblocks by applying the CONTAIN_ROUTING
property to the Pblocks. With the properties from this and the previous step, the only
remaining rules relate to boundary optimization procedures as well as PR-specific Design
Rule Checks.

5. Finally, mark the RP Pblocks as HD.RECONFIGURABLE. The EXCLUDE_PLACEMENT and
CONTAIN_ROUTING properties are now redundant and can be removed.

If design requirements are not met at any of these steps, you have to opportunity to review the
design structure and constraints in light of the newly applied implementation condition.

Configuration Analysis Report
The Dynamic Function eXchange design flow uses multiple versions of the design that must be
implemented through place and route. These different configurations have common static design
results, but differing modules within each RP. Designers must set up timing constraints and
floorplans that account for these different modules that will be swapped on the fly.

The DFX Configuration Analysis report compares each RM that you select to give you
information on your DFX design. It examines resource usage, floorplanning, clocking, and timing
metrics to help you manage the overall PR design.

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=103

The DFX Configuration Analysis report is currently run in the Tcl Console or within a Tcl script.
The top level design must be open before issuing this command:

report_pr_configuration_analysis -cells <RP_name> -dcps
{<list_of_RM_checkpoints>}

Either select a single cell (RP) and multiple DCPs (each representing an RM) that can be inserted
into that cell for a comprehensive analysis of that RP, or select multiple cells with no subsequent
DCPs for a top-level analysis of the static design and interfaces into each RP.

By default, three aspects of the PR design are analyzed. You can select one or more of these
switches to narrow the focus of the report.

• The -complexity switch focuses the report on resource usage, including the maximum
number of each resource type required for the RP.

• The -clocking switch focuses the report on clock usage and loads for each RM, helping you
plan the overall clocking distribution of the design.

• The -timing switch focuses the report on boundary interface timing details, allowing you
analyze bottlenecks in and out of RMs.

Additionally, the -rent switch adds Rent metrics to the report. The Rent exponent calculates
the routing complexity and can be an indication of how much congestion is likely to be seen. For
more information on Rent, see this link in Vivado Design Suite User Guide: Design Analysis and
Closure Techniques (UG906). Note that this option can take a long time to run on large designs.

When this analysis is done, each RM is examined based on information in the checkpoints
provided. While post-synthesis checkpoints can be supplied, if the RM contains IP that have
been synthesized out-of-context, or if debug cores are to be inserted, information will be missing
from these checkpoints. The most complete information is not available until after opt_design
when all the linking and expansion has been done. We advise you to create fully assembled RM
checkpoints after opt_design by calling write_checkpoint -cell for each configuration,
then run the configuration analysis report using these files.

Here are some example sections from a report for a design with a single RP that has three RM.

Complexity
First is the resource usage table for the -complexity switch:

expanse="page">+------------------------+---------+------------+------------
+------------+------------+------------+
expanse="page">| Categories |Grid Type| Current | RM1 | RM2 |
RM3 | Max |
expanse="page">+------------------------+---------+------------+------------
+------------+------------+------------+
expanse="page">|Slice Logic | | | | | | |
expanse="page">| Slice LUTs | SLICE | 936(23.40%)| 936(23.40%)|
927(23.17%)|1091(27.28%)|1091(27.28%)|
expanse="page">| LUT as Logic | SLICE | 836(20.90%)| 836(20.90%)|

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 104Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf;a=xComplexityReport
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=104

827(20.67%)| 977(24.43%)| 977(24.43%)|
expanse="page">| LUT as Memory | SLICE | 100(5.00%)| 100(5.00%)|
100(5.00%)| 114(5.70%)| 114(5.70%)|
expanse="page">| LUT as Distributed RAM| SLICE | 32(1.60%)| 32(1.60%)|
32(1.60%)| 42(2.10%)| 42(2.10%)|
expanse="page">| LUT as Shift Register | SLICE | 68(3.40%)| 68(3.40%)|
68(3.40%)| 72(3.60%)| 72(3.60%)|
expanse="page">| Slice Registers | SLICE |1775(22.19%)|1775(22.19%)|
1613(20.16%)|1654(20.68%)|1775(22.19%)|
expanse="page">| Register as Flip Flop | SLICE |1775(22.19%)|1775(22.19%)|
1613(20.16%)|1654(20.68%)|1775(22.19%)|
expanse="page">| CARRY8 | SLICE | 14(2.80%)| 14(2.80%)|
16(3.20%)| 16(3.20%)| 16(3.20%)|
expanse="page">| F7 Muxes | SLICE | 6(0.30%)| 6(0.30%)|
6(0.30%)| 6(0.30%)| 6(0.30%)|
expanse="page">| Unique Control Sets | SLICE | 105(21.00%)| 105(21.00%)|
100(20.00%)| 102(20.40%)| 105(21.00%)|
expanse="page">|Memory | | | | | | |
expanse="page">| RAMB18 | RAMB18 | 1(5.00%)| 1(5.00%)|
3(15.00%)| 2(10.00%)| 3(15.00%)|
expanse="page">| PPLOCs (INT Tile Ratio)| - | 28(0.09)| 28(0.09)|
28(0.09)| 28(0.09)| 28(0.09)|
expanse="page">+------------------------+---------+------------+------------
+------------+------------+------------+

Notice that RM1 requires the most resources for Slice Registers, RM2 requires the most block
RAM, and RM3 requires the most Slice LUTs. These maximum values for each resource type are
summarized in the Max column—this column should be used to plan Pblock resource sizes.
Remember that additional overhead is advised—packing densities for a given RP is similar to a
complete design.

Clocking
The -clocking switch summarizes the full set of clocks in the design, then breaks down the
clock loads in each RM. It also reports the number of RM clock loads in each clock region (not
shown here).

expanse="page">Static Clock Summary
expanse="page">
+--
+------------+-------------+
expanse="page">| Clock Name |Static Loads|RP1
Max Loads|
expanse="page">
+--
+------------+-------------+
expanse="page">|mb_prc_wrapper/mb_prc_i/ddr4/inst/u_ddr4_infrastructure/
dbg_clk | 2889 | 0 |
expanse="page">|mb_prc_wrapper/mb_prc_i/ddr4/inst/u_ddr4_infrastructure/
CLK | 1639 | 0 |
expanse="page">|dbg_hub/inst/BSCANID.u_xsdbm_id/itck_i |
496 | 365 |
expanse="page">|mb_prc_wrapper/mb_prc_i/ddr4/inst/u_ddr4_infrastructure/
addn_clkout1 | 8534 | 1403 |
expanse="page">|mb_prc_wrapper/mb_prc_i/ddr4/inst/u_ddr4_infrastructure/
c0_ddr4_ui_clk | 15098 | 0 |
expanse="page">|mb_prc_wrapper/mb_prc_i/ddr4/inst/u_ddr4_infrastructure/
addn_ui_clkout2 | 11791 | 0 |

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=105

expanse="page">
+--
+------------+-------------+
expanse="page">Reconfigurable Module Clocking RP1
expanse="page">+---+-------
+---------+---------+---------+---------+
expanse="page">| Clock Name |Current|RM1 Loads|RM2 Loads|
RM3 Loads|Max Loads|
expanse="page">+---+-------
+---------+---------+---------+---------+
expanse="page">|Static Clocks | | | |
| |
expanse="page">| dbg_hub/inst/BSCANID.u_xsdbm_id/itck_i | 365 | 365
| 360 | 350 | 365 |
expanse="page">| mb_prc_wrapper/mb_prc_i/ddr4/inst/ | | |
| | |
expanse="page">| u_ddr4_infrastructure/addn_clkout1 | 1403 | 1403
| 1385 | 1344 | 1403 |
expanse="page">+---+-------
+---------+---------+---------+---------+

Timing
The -timing switch analyzes the worst interface paths on the RP boundary based on logic
levels. The default is to examine the 10 worst paths but this can be changed using the -nworst
option. The Logic Path field shows the levels of logic and defines if each level is in the static (S) or
RM partition. Here is a sample of a single boundary path:

expanse="page">Reconfigurable Module Boundary Timing RP1
expanse="page">+-----------------------
+---
+
expanse="page">| Characteristics |
Paths |
expanse="page">+-----------------------
+---
+
expanse="page">| Path #1 | ------- |
expanse="page">| RP Boundary Pin |
S_BSCAN_shift |
expanse="page">| RM With Worst Path | RP1 1st
Configuration |
expanse="page">| Static Logic Levels |
3 |
expanse="page">| RM Logic Levels | 2
|
expanse="page">| Logic Path | FDRE(S) LUT3(S) LUT6(S) LUT3(S)
LUT4(RM) LUT6(RM) FDRE(RM) |
expanse="page">| Start Point Clock |
itck_i |
expanse="page">| End Point Clock |
itck_i |
expanse="page">| High Fanout | 45 |
expanse="page">| Boundary Fanout | 1
|
expanse="page">+-----------------------
+---
+

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=106

This information can help you optimize boundary paths. Insertion of pipeline registers can break
up these timing challenges and even create a decoupling point between reconfigurable and static
logic.

Summary
Run the report_pr_configuration_analysis command early in your design flow, after
you have established the logic in each RM but before you finalize the floorplan of the design. This
report helps you optimize each Pblock for the RPs in your design, give you guidance on the
clocking usage throughout the design, and provide insight as you close timing on each
configuration in the overall project.

Managing Constraints for a DFX Design
Dynamic Function eXchange requires all the same constraints as any other design, and requires
additional physical constraints (Pblocks) and may require various sets of constraints that define
the various configurations defined by a set of RMs. Constraints be defined as either global or
scoped.

• Global: These are constraints that are applied to the entire design, and all object references
(cell/pin/net/port) are with respect to the full design hierarchy.

• Scoped: These are constraints that are written with respect to a module other than the top
module and are scoped to a single or all instances of that module. For the following discussion
on Dynamic Function eXchange, it is assumed scoped constraints are scoped to one or more
instances of a RM. For more information on XDC scoping, see this link in Vivado Design Suite
User Guide: Using Constraints (UG903).

Constraint Creation
Constraints should be broken up into multiple files based on the type of constraint. For Dynamic
Function eXchange, Xilinx recommends breaking up the design constraints into the three
following types:

• Static: Constraints (physical or timing) that reference only static objects (cell/pins/nets/ports),
and do not reference any objects within an RP. These are global constraints and are applied to
static synthesis, or at implementation of the initial configuration. It is not recommended to
reapply these constraints for subsequent configurations where static is imported, as these
constraints should already exist within the static DCP and reapplying them can cause
unintended constraint interactions.

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 107Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf;a=xConstraintsScoping
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=107

• Boundary: These are timing constraints (such as set_false_path) that reference objects in
both static and the RP. Write these constraints referencing the RP pin object, and not objects
internal to the RM. For example, take the following two constraints:

set_false_path -from [get_pins static_reset/C] -through [get_pins rp_inst/
rst]
set_false_path -from [get_pins static_reset/C] -to [get_pins rp_inst/
foo/D]

The first constraint is preferred, as this constraint will not be lost when the RMs are converted
to a black box after the initial configuration. Even when the RMs are carved out, the RP
interface still exists in the static design, and the rp_inst/rst pin referenced in the
constraint still exists in the design. If a constraint is defined using objects inside the RM, as
shown in the second constraint, the constraint becomes invalid and is dropped from the
design after carving. These constraints would have to be reapplied for every configuration if
written using this syntax.

• RM: Constraints (physical or timing) that reference only RM logic. While these constraints
should all be scoped to the RM, how they get applied will depend on what type of constraints
they are:

• General RM constraints: These constraints apply to every instance of the RM. An example
is a timing constraint, like a false path, multi-cycle exception, or a create_clock for a
local RM clock. These apply to the RM regardless of the physical location.

• RP specific RM constraints: These constraints are specific to the location (Pblock) in which
the RM is being implemented. An example is physical constraints like specific block RAM
placement, or PACKAGE_PIN constraints for embedded I/O.

IMPORTANT! If an RP has embedded I/O, the I/O (PACKAGE_PIN, IOSTANDARD, direction) must be
reapplied for every configuration, even if the I/O pins are identical between every RM. In the Vivado
database, a port is a top-level object. However, the I/O constraint information associated with that
port is intentionally cleared out during caving of the RM if the associated I/O buffer is part of an RP.

In addition to this, it is also recommended to separate physical (Pblock, LOC, PACKAGE_PIN, etc)
and timing constraints into separate XDC files. This allows for better control of when constraints
are applied (synthesis vs implementation), and easier management of constraint files if
constraints need to be modified.

Constraint Application
Once all of the constraint have been broken up, then the method of how and when to apply
these constraints become much easier.

• Static Timing Constraints: Apply these at static synthesis and mark them for use in synthesis
as well as implementation so that they are passed into the static synthesis DCP. As long as
these constraints are properly applied, and exist in the post synthesis DCP, there is no need to
reapply them at implementation time.

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=108

• Static Physical Constraints: Apply these at implementation of the initial configuration. There is
no need to reapply these for subsequent configurations, as the routed static DCP contains all
of these, as well as the static timing constraints.

• Boundary Timing Constraints: Apply these at implementation of the initial configuration. If
the constraints were written without referencing any objects internal to the RM, then these
constraints do not need to be reapplied for subsequent configurations.

• General RM Constraints: Apply these at RM synthesis time and mark them for use in
synthesis and implementation. These constraints exist in the RM DCP and are applied when
the DCP is linked into the full design.

IMPORTANT! If there are additional OOC specific timing constraints that are used for OOC synthesis
only (such as a create_clock  for a module port), mark these for use in out_of_context  so that
they do not get applied to the full design. Failure to do this can result in unwanted constraint
interaction when the top-level constraints are applied and conflict with these lower level OOC
constraints.

• RP Specific RM Constraints: Apply these at implementation of any configuration involving the
specific RM at the specific RP location. All physical constraints within the RM (including IOB)
are cleared out during carving, and must be reapplied.

If a post-route_design RM DCP is being reused, the physical information (block RAM, IOB, etc) is
all included within the RM DCP and there is no need to reapply these constraints. However, the
RM DCP (created with write_checkpoint -cell) does not contain any RM specific timing
constraints, and all general RM constraints need to be applied as well as any boundary timing
constraint that reference RM objects.

Defining Reconfigurable Partition Boundaries
Partial reconfiguration is done on a frame-by-frame basis. As such, when partial BIT files are
created, they are built with a discrete number of configuration frames. The size of a partial bit file
depends on the number and type of frames included. You can see this size in the header of a raw
bit file (.rbt) created by write_bitstream -rawbitfile.

Partition boundaries do not have to align to reconfigurable frame boundaries, but the most
efficient place and route results are achieved when this is done. Static logic is permitted to exist
in a frame that will be reconfigured, as long as:

• It is outside the area group defined by the Pblock

• It does not contain dynamic elements such as block RAM, Distributed (LUT) RAM, or SRLs
(7 series only).

When static logic is placed in a reconfigured frame, the exact functionality of the static logic is
rewritten, and is guaranteed not to glitch.

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=109

Irregular shaped Partitions (such as a T or L shapes) are permitted but discouraged. Placement
and routing in such regions can become challenging, because routing resources must be entirely
contained within these regions. Boundaries of Partitions can touch, but this is not recommended,
as some separation helps mitigate potential routing restriction issues as these partitions connect
to the static design. Nested or overlapping RPs (partitions within partitions) are not permitted.
Design rule checks (Reports → Report DRC) validate the Partitions and settings in a PR design.

Only one RP can exist per physical Reconfigurable Frame.

A Reconfigurable Frame is the smallest size physical region that can be reconfigured, and its
height aligns with clock region or I/O bank boundaries. A Reconfigurable Frame cannot contain
logic from more than one RP. If it were to contain logic from more than one RP, it would be very
easy to reconfigure the region with information from an incorrect RM, thus creating contention.
The software tools are designed to avoid that potentially dangerous occurrence.

Avoiding Deadlock
Some transactions across an RM boundary can take multiple cycles to complete. Removing an
RM after a transaction has started but before it completes causes the system to deadlock (for
example, the master, which initiated the transaction, waits for a response from a slave which no
longer exists).

Additionally, the RM itself can cause deadlock. For example, assume some software is polling an
RM register for a particular value. If the RM is removed, the software might stall as it continues
to wait. It could also stall while waiting on a large block transfer to complete.

Any Dynamic Function eXchange design should be built with some sort of handshaking, ensuring
that the removal of a RM occurs when it is safe to do so. This request or acknowledgment pairing
is part of the user design and can be built in any fashion you deem appropriate.

Design Revision Checks
A partial bitstream contains programming information and little else, as described in Chapter 8:
Configuring the Device. While you do not need to identify the target location of the bitstream
(the die location is determined by the addressing that is part of the BIT file), there are no checks
in the hardware to ensure the partial bitstream is compatible with the currently operating design.
Loading a partial bitstream into a static design that was not implemented with that RM revision
can lead to unpredictable behavior.

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=110

Xilinx suggests that you prefix a partial bitstream with a unique identifier indicating the particular
design, revision and module that follows. This identifier can be interpreted by your configuration
controller to verify that the partial bitstream is compatible with the resident design. A mismatch
can be detected, and the incompatible bitstream can be rejected, before being loaded into
configuration memory. This functionality must be part of your design, and would be similar to or
in conjunction with decryption and/or CRC checks, as described in PRC/EPRC: Data Integrity and
Security Controller for Partial Reconfiguration Application Note (v1.0) (XAPP887).

A bitstream feature provides a simple mechanism for tagging a design revision. The
BITSTREAM.CONFIG.USR_ACCESS property allows you to enter a revision ID directly into the
bitstream. This ID is placed in the USR_ACCESS register, accessible from the FPGA
programmable logic through a library primitive of the same name. Partial Reconfiguration designs
can read this value and compare it to information a user can add to a header of a partial
bitstream to confirm the revisions of the design match. More information on this switch can be
found in the application noteBitstream Identification with USR_ACCESS using the Vivado Design
Suite Application Note (v1.0) (XAPP1232).

CAUTION! Do not use the TIMESTAMP feature because this value is not consistent for each call to
write_bitstream . Only select a consistent, explicit ID to be used for all write_bitstream  runs.

Simulation and Verification
Configurations of Dynamic Function eXchange designs are complete designs in and of
themselves. All standard simulation, timing analysis, and verification techniques are supported for
DFX designs. Partial reconfiguration itself cannot be simulated. Specifically, the delivery of a
partial bitstream to a configuration port like the ICAP to see the resulting change (including
intermediate states) in an RP.

Chapter 5: Design Considerations and Guidelines for All Xilinx Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 111Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp887_PRC_EPRC.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1232-bitstream-id-with-usr_access.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=111

Chapter 6

Design Considerations and
Guidelines for 7 Series and Zynq
Devices

This chapter explains design requirements that are unique to Dynamic Function eXchange (DFX),
and are specific to 7 series and Zynq®-7000 SoC devices.

To take advantage of the Dynamic Function eXchange capability of Xilinx® devices, you must
analyze the design specification thoroughly, and consider the requirements, characteristics, and
limitations associated with DFX designs. This simplifies both the design and debug processes,
and avoids potential future risks of malfunction in the design.

Design Elements Inside Reconfigurable
Modules

Not all logic is permitted to be actively reconfigured. Global logic and clocking resources must be
placed in the static region to not only remain operational during reconfiguration, but to benefit
from the initialization sequence that occurs at the end of a full device configuration.

Logic that can be placed in a reconfigurable module (RM) includes:

• All logic components that are mapped to a CLB slice in the device. This includes LUTs (look-up
tables), FFs (flip-flops), SRLs (shift registers), RAMs, and ROMs.

• Block RAM and FIFO:

○ RAMB18E1, RAMB36E1, BRAM_SDP_MACRO, BRAM_SINGLE_MACRO,
BRAM_TDP_MACRO

○ FIFO18E1, FIFO36E1, FIFO_DUALCLOCK_MACRO, FIFO_SYNC_MACRO

Note: The IN_FIFO and OUT_FIFO design elements cannot be placed in an RM. These design elements
must remain in static logic.

• DSP blocks: DSP48E1

• PCIe® (PCI™ Express): Entered using

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=112

• PCIe IP

All other logic must remain in static logic and must not be placed in an RM, including:

• Clocks and Clock Modifying Logic - Includes BUFG, BUFR, MMCM, PLL, and similar
components

• I/O and I/O related components (ISERDES, OSERDES, IDELAYCTRL, etc.)

• Serial transceivers (MGTs) and related components

• Individual architecture feature components (such as BSCAN, STARTUP, XADC, etc.)

Global Clocking Rules
Because the clocking information for every RM for a particular Reconfigurable Partition (RP) is
not known at the time of the first implementation, the DFX tools pre-route each BUFG output
driving a partition pin on that RP to all clock regions that the Pblock encompasses. This means
that clock spines in those clock regions might not be available for static logic to use, regardless of
whether the RP has loads in that region.

In 7 series devices, up to 12 clock spines can be pre-routed into each clock region. This limit must
account for both static and reconfigurable logic. For example, if 3 global clocks route to a clock
region for static needs, any RP that covers that clock region can use the 9 global clocks available,
collectively, in addition to those three top-level clocks.

In the example shown in Global Clocking Rules, icap_clk is routed to clock regions X0Y1,
X0Y2, and X0Y3 prior to placement, and static logic is able to use the other clock spines in that
region.

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=113

Figure 43: Pre-routing Global Clock to Reconfigurable Partition

If there are a large number of global clocks driving an RP, create area groups that encompass
complete clock regions to ease placement and routing of static logic. Global clocks can be
downgraded to regional clocks (for example, BUFR, BUFH) for clocks with fewer loads or less
demanding requirements. Shifting clocks from global to local resources allows for more flexibility
in floorplanning when the RP requires many unique clocks.

Creating Pblocks for 7 Series Devices
As noted in Apply Reset After Reconfiguration, the height of the RP must align to clock region
boundaries if RESET_AFTER_RECONFIG is to be used. Otherwise, any height can be selected
for the RP.

The width of the RP must be set appropriately to make most efficient usage of interconnect and
clocking resources. The left and right edges of Pblock rectangles should be placed between two
resource columns (for example, CLB-CLB, CLB-block RAM or CLB-DSP) and not between two
interconnect columns (INT-INT). This allows the placer and router tools the full use of all
resources for both static and reconfigurable logic. Implementation tool DRCs provide guidance if
this approach is not followed.

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=114

Automatic Adjustments for Reconfigurable Partition
Pblocks
The Pblock SNAPPING_MODE property automatically resizes Pblocks to ensure no back-to-back
violations occur for 7 series designs. When SNAPPING_MODE is set to a value of ON or ROUTING,
it creates a new set of derived Pblock ranges that are used for implementation. The new ranges
are stored in memory, and are not written out to the XDC. Only the SNAPPING_MODE property is
written out, in addition to the normal Pblock constraints.

In 7 series devices the structure is such that the routing resources, called interconnect tiles, are
placed adjacent, or back-to-back. When floorplanning for partial reconfiguration, it is important
to understand where these back-to-back boundaries exist. If a Pblock splits these paired
interconnect tiles, it is called a back-to-back violation. For more information on back-to-back
interconnect please refer to Creating Reconfigurable Partition Pblocks Manually.

The original Pblock rectangle(s) are not modified when using SNAPPING_MODE and can still be
resized, moved, or extended with additional rectangles. Whenever the original Pblock rectangle is
modified, the derived ranges are automatically recalculated. The SNAPPING_MODE property is
supported in batch mode, so there is no requirement to open the current Pblock in the Vivado
IDE to set the SNAPPING_MODE value, although this option is available when performing
interactive floorplanning, as shown in Automatic Adjustments for Reconfigurable Partition
Pblocks.

Figure 44: Enabling the SNAPPING_MODE Property in the Vivado IDE

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=115

When you set the SNAPPING_MODE property using the following syntax (or by selecting the
Pblock Property as shown above), the implementation tools automatically see the corrected
Pblock ranges.

set_property SNAPPING_MODE ON [get_pblocks <pblock_name>]

The following table shows SNAPPING_MODE property values for 7 series devices.

Table 10: SNAPPING_MODE Property Values for 7 Series Devices

Property Value Description
SNAPPING_MODE OFF Default for 7 series. No adjustments

are made and DERIVED_RANGES ==
GRID_RANGES

ON Fixes all back-to-back violations.

ROUTING Same behavior as ON, except for the
following exceptions:

• Does not fix back-to-back violations
across the center clock column to
improve routing.

• Grabs unbonded I/O and GT sites
that are within or adjacent to the
RP Pblock to improve routing. It can
only use these resources for PR
routing if the sites are unbonded
and if the entire column (Clock
Region in height) is included in the
Pblock rectangle.
This is the recommended value for
7 series and Zynq designs.

The SNAPPING_MODE property also works in conjunction with RESET_AFTER_RECONFIG.
Using RESET_AFTER_RECONFIG requires Pblocks to be vertically frame (or clock region)
aligned. When SNAPPING_MODE is set to ON or to ROUTING and RESET_AFTER_RECONFIG is
set to TRUE, the derived ranges automatically include all sites necessary to meet this
requirement.

Automatic Adjustments for Reconfigurable Partition Pblocks shows the original user-created
Pblock in purple. RESET_AFTER_RECONFIG has been enabled, and both left and right edges
split interconnect columns. By applying SNAPPING_MODE, the resulting derived Pblock (shown in
yellow) is narrower to avoid INT-INT boundaries, and taller to snap to the height of a clock region.

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=116

Figure 45: Original and Derived Pblocks using SNAPPING_MODE

Creating Reconfigurable Partition Pblocks Manually
If automatic modification to the RP Pblock is not desired to fix back-to-back issues, you can
create Pblock ranges manually to meet your needs. This is most useful when explicit control is
needed for Pblocks that must span non-reconfigurable sites, such as configuration blocks or the
center column, which contains clock buffer resources.

In Creating Reconfigurable Partition Pblocks Manually, note that the left and right edges are
drawn between CLB columns for the Pblock highlighted in white. Visualization of the
interconnect tiles as shown in this image requires that the routing resources are turned on, using

this symbol in the Device View .

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=117

Figure 46: Optimal - Reconfigurable Partition Pblock Splitting CLB-CLB on Both Left
and Right Edges

The RP Pblock must include all reconfigurable element types within the shape drawn. In other
words, if the rectangle selected encompasses CLB (Slice), block RAM, and DSP elements, all three
types must be included in the Pblock constraints. If one of these is omitted, a DRC is triggered
with an alert that a split interconnect situation has been detected.

Other considerations must be taken if the RP spans non-reconfigurable sites, such as the center-
column clocking resources or configuration components (ICAP, BSCAN, etc.), or abuts non-
reconfigurable components such as I/O. If a Pblock edge splits interconnect columns for different
resource types, implementation tools accept this layout, but restrict placement in the columns on
each side of the boundary. If this prohibits sites that are needed for the design (such as the ICAP
or BSCAN, for example), the Pblock must be broken into multiple rectangles to clearly define
reconfigurable logic usage, or SNAPPING_MODE must be used.

The implementation tools automatically prevent placement on both sides of the back-to-back
interconnect by creating PROHIBIT constraints. If the sites that are prohibited due to a back-to-
back violation are not needed in the design, it is acceptable to leave the back-to-back violation in
the design. Doing so allows an extra column of routing tiles to be included in the dynamic region,
and can reduce congestion in a dynamic region that spans non-reconfigurable sites. In this case, a
Critical Warning is issued by DRCs, but the warning can be safely ignored if you understand the
trade-offs of placement versus routing resources.

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=118

The one exception to this behavior is around the clock column. If a violation occurs at the clock
column boundary, PROHIBIT constraints are generated for the RM side of the violation (typically
SLICE prohibits), but the clocking resources do not get prohibit constraints and are still available
to the static logic. The SNAPPING_MODE property has a value of ROUTING, which takes
advantage of this special exception. For example, the initial floorplan shown in Creating
Reconfigurable Partition Pblocks Manually spans the center column, which contains clock buffer
resources (BUFHCE/BUFGCTRL). These resources have not been included in the Pblock, as they
are not highlighted in Creating Reconfigurable Partition Pblocks Manually. There is violation
caused by spanning this clock column but the resources can still be used by the static logic.

Figure 47: Pblock Spanning Non-Reconfigurable Sites

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=119

Prohibited sites appear in placed or routed checkpoints as sites with a red circle with a slash, as
shown in Creating Reconfigurable Partition Pblocks Manually. With this automatic prohibit
feature, the routing interconnect associated with reconfigurable sites (CLBs) can still be used for
the RM even though the CLBs themselves are not used. In Creating Reconfigurable Partition
Pblocks Manually, the column of INT on the left is available for the RM, but the column of INT on
the right is only available for static logic because these are part of the clock tile, which is not
reconfigurable for 7 series devices.

Figure 48: Prohibited Sites in a Checkpoint

If a back-to-back violation prohibits sites that are needed for the design (that is, ICAP or BSCAN
sites), a placement error is issued, stating that not enough sites are available in the device.

ERROR: [Common 17-69] Command failed: Placer could not place all instances

To avoid this restriction, create multiple Pblock rectangles that avoid splitting interconnect
columns, as shown in Creating Reconfigurable Partition Pblocks Manually, or use the Pblock
SNAPPING_MODE property.

In general, spanning non-reconfigurable site types (such as IOB, configuration, or clocking
columns) should be avoided whenever possible. If the Pblock must span one of these, the
clocking column is the least risky choice, owing to its special nature (described previously). Use
SNAPPING_MODE ROUTING to cross this boundary as efficiently as possible.

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=120

Figure 49: Multiple Pblock Rectangles that Avoid Non-Reconfigurable Resources

Creating Reconfigurable Partition Pblocks Manually is a close-up of this split, showing Slice (CLB)
and Interconnect (INT) resource types. The gap between the two Pblock rectangles gives full
access to the BUFHCE components to route completely using static resources. This also leaves
one column of CLBs available for the static design to use. Although routing resources exist that
can cross these gaps, the overall routability of such structures is notably reduced. This approach
is more challenging and should be avoided if possible. When spanning other static boundaries,
such as IOB or configuration tiles, the routing gap for the dynamic region becomes two INT
resources, and routing becomes difficult.

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=121

Figure 50: Close-up Showing Columns Reserved for Clock Routing Usage

Irregular shaped Partitions (such as a T or L shapes) are permitted, but you are encouraged to
keep overall shapes a simple as possible. Placement and routing in such regions can become
challenging because routing resources must be entirely contained within these regions.
Boundaries of Partitions can touch, but this is not recommended, as some separation helps
mitigate potential routing restriction issues. Nested or overlapping RPs (partitions within
partitions) are not permitted.

Finally, only one RP can exist per physical Reconfigurable Frame. A Reconfigurable Frame is the
smallest size physical region that can be reconfigured, and aligns with clock region boundaries. A
Reconfigurable Frame cannot contain logic from more than one RP. If it were to contain logic
from more than one RP, it would be very easy to reconfigure the region with information from an
incorrect RM, thus creating contention. TheVivado tools are designed to avoid that potentially
dangerous occurrence.

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=122

Using High Speed Transceivers
Xilinx high speed transceivers (GTP, GTX, GTH,GTZ) are not reconfigurable in 7 series devices,
and must remain in static logic. However, settings for the transceivers can be updated during
operation using the DRP ports. For more information on the transceiver settings and DRP access,
see 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476), or 7 Series FPGAs GTP Transceivers
User Guide (UG482).

Dynamic Function eXchange Design Checklist
(7 Series)

Xilinx highly encourages the following items for a 7 series FPGA design using Dynamic Function
eXchange:

Recommended Clocking Networks

Are you using Global Clock Buffers, Regional Clock Buffers, or Clock Modifying Blocks (MMCM,
PLL)?

These blocks must be in static logic.

See Design Elements Inside Reconfigurable Modules for more information, and Global Clocking
Rules for complete details on global clock implementation.

Configuration Feature Blocks

Are you using device feature blocks (BSCAN, CAPTURE, DCIRESET, FRAME_ECC, ICAP,
STARTUP, USR_ACCESS)?

These featured blocks must be in static logic.

See Design Elements Inside Reconfigurable Modules for more information.

High Speed Transceiver Blocks

Do you have high speed transceivers in your design?

High speed transceivers must remain in the static partition.

See Using High Speed Transceivers for specific requirements.

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 123Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug476_7Series_Transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug482_7Series_GTP_Transceivers.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=123

System Generator DSP Cores, HLS cores, or IP Integrator Block Diagrams

Are you using System Generator DSP cores, HLS cores, or IP Integrator block diagrams in your
Dynamic Function eXchange design?

Any type of source can be used as long as it follows the fundamental requirements for Dynamic
Function eXchange. Any code processed by System Generator, HLS, orVivado IP Integrator (or
other tools) is eventually synthesized. The resulting design checkpoint or netlist must be made up
entirely of reconfigurable elements (CLB, block RAM, DSP) for it to be legally included in an RP.

Packing I/Os into Reconfigurable Partitions

Do you have I/Os in RMs?

All I/Os must reside in static logic.

See Design Elements Inside Reconfigurable Modules for more information.

Packing Logic into Reconfigurable Partitions

Is all logic that must be packed together in the same RP?

Any logic that must be packed together must be in the same RP and RM.

See Packing Logic for more information.

Packing Critical Paths into Reconfigurable Partitions

Are critical paths contained within the same partition?

RP boundaries limit some optimization and packing, so critical paths should be contained within
the same partition.

See Packing Logic for more information.

Floorplanning

Can your RPs be floorplanned efficiently?

See Creating Pblocks for 7 Series Devices for more information.

Recommended Decoupling Logic

Have you created decoupling logic on the outputs of your RMs?

During reconfiguration the outputs of RPs are in an indeterminate state, so decoupling logic must
be used to prevent static data corruption.

See Decoupling Functionality for more information.

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=124

Recommended Reset after Reconfiguration

Are you resetting the logic in an RM after reconfiguration?

After reconfiguration, new logic might not start at its initial value. If the Reset After
Reconfiguration property is not used, a local reset must be used to ensure it comes up as
expected when decoupling is released. Clock and other inputs to the RP can also be disabled
during reconfiguration to prevent initialization issues. Alternatively, the Reset After
Reconfiguration property can be applied. This option holds internal signals steady during
reconfiguration, then issues a masked global reset to the reconfigured logic.

See Apply Reset After Reconfiguration for more information.

Debugging with Logic Analyzer Blocks

Are you using theVivado Logic Analyzer with your Dynamic Function eXchange design?

Vivado Logic Analyzer (ILA/VIO debug cores) can be used in your Dynamic Function eXchange
design, but care must be taken when connecting these cores to debug hubs. Use the automatic
inference solution shown in Using Vivado Debug Cores.

Efficient Reconfigurable Partition Pblocks

Have you created efficient RP Pblock(s) for your design?

The height of the RP Pblock must align with the top and bottom of a clock region boundary, if the
RESET_AFTER_RECONFIG property is to be used. Otherwise, any height can be selected for the
RP Pblock.

See Creating Pblocks for 7 Series Devices for more information.

Validating Configurations

How do you validate consistency between configurations?

The pr_verify command is used to make sure all configurations have matching imported
resources.

See Verifying Configurations for more information.

Configuration Requirements

Are you aware of the particular configuration requirements for Dynamic Function eXchange for
your design and device?

Each device family has specific configuration requirements and considerations.

See Chapter 8: Configuring the Device for more information.

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=125

Effective Pblock recommendations

Does an RP Pblock extend over the center clock column or the configuration column in the
device?

Due to the back-to-back INT tile requirement for 7 series devices, coupled with the
CONTAIN_ROUTING requirement, extending a Pblock over these specialized blocks in the device
can make routing very difficult or impossible. Avoid extending an RP Pblock across these areas
whenever possible.

See Automatic Adjustments for Reconfigurable Partition Pblocks and Creating Reconfigurable
Partition Pblocks Manually for more information on back-to-back requirements.

Chapter 6: Design Considerations and Guidelines for 7 Series and Zynq Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=126

Chapter 7

Design Considerations and
Guidelines for UltraScale and
UltraScale+ Devices

This chapter explains design requirements that are unique to Dynamic Function eXchange (DFX),
and are specific to UltraScale and UltraScale+ devices.

To take advantage of the Dynamic Function eXchange capability of Xilinx® devices, you must
analyze the design specification thoroughly, and consider the requirements, characteristics, and
limitations associated with DFX designs. This simplifies both the design and debug processes,
and avoids potential future risks of malfunction in the design.

Design Elements Inside Reconfigurable
Modules

In UltraScale and UltraScale+ devices, nearly all component types can be partially reconfigured.

Logic that can be placed in a reconfigurable module includes:

• All logic components that are mapped to a CLB slice in the FPGA. This includes LUTs (look-up
tables), FFs (flip-flops), SRLs (shift registers), RAMs, and ROMs.

• Block RAM and FIFO: RAMB18E2, RAMB36E2, FIFO18E2, FIFO36E2

• DSP blocks: DSP48E2

• PCIe® (PCI Express), CMAC (100G MAC), and ILKN (Interlaken MAC) blocks

• UltraRAM blocks: URAM288

• SYSMON (XADC and System Monitor)

• Clocks and Clock Modifying Logic: Includes BUFG, BUFGCE, BUFGMUX, MMCM, PLL, and
similar components

• I/O and I/O related components (ISERDES, OSERDES, IDELAYCTRL, etc.)

• Serial transceivers (MGTs) and related components

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=127

• HSADC blocks in Zynq RFSoC devices for RF-ADC and RF-DAC data conversion

Note: DNA_PORT -- the Device DNA Access Port (DNA_PORTE2) is the only configuration element in
the CONFIG_SITE that is reconfigurable. Any other use of CONFIG_SITE elements is not permitted if
the DNA_PORT is to be reconfigurable.

Only configuration components must remain in the static part of the design. These components
are:

• BSCAN

• CFG_IO_ACCESS

• DCIRESET

• EFUSE_USR

• FRAME_ECC

• ICAP

• MASTER_JTAG

• STARTUP

• USR_ACCESS

Creating Pblocks for UltraScale and UltraScale
+ Devices

As part of improvements to the UltraScale architecture, the smallest unit that can be
reconfigured is much smaller than in previous architectures. The minimum required resources for
reconfiguration varies based on the resource type, and are referred to as a Programmable Unit
(PU). Because adjacent sites share a routing resource (or Interconnect Tile) in UltraScale, a PU is
defined in terms of pairs.

Examples of some of the minimum PU that can be reconfigured based on the site types include:

• CLB PU: 2 adjacent CLBs and the shared interconnect

• Block RAM PU: 1 block RAM/FIFO, the 5 adjacent CLBs and the shared interconnect

• DSP PU: 1 DSP, the 5 adjacent CLBs, and the shared interconnect

• IOB PU: The IO of the full height of the clock_region includes BITSLICE_CONTROL,
BITSLICE_RX_TX, BITSLICE_TX, BUFGCE, BUFGCE_DIV, BUFGCTRL, IOB, MMCME3_ADV,
PLLE3_ADV, PLL_SELECT_SITE, RIU_OR, HBM_REFCLK etc., the adjacent 60 CLBs and the
shared interconnect

• GT PU: A full GT quad (4 GT_CHANNEL and 1 GT_COMMON), the adjacent 60 CLBs and the
shared interconnect

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=128

• PCIe PU: 1 PCIE40E4 or PCIE4CE4, 120 adjacent CLBs (60 on each side) and the shared
interconnect

• CMAC PU: 1 CMACE4, 120 adjacent CLBs (60 on each side) and the shared interconnect

• Interlaken PU: 1 ILKNE4, 120 adjacent CLBs (60 on each side) and the shared interconnect

• CONFIG PU: 1 CONFIG_SITE, 120 adjacent CLBs (60 on each side) and the shared
interconnect

○ Note: The CONFIG_SITE contains many single site resources including ICAP, STARTUP,
BSCAN, FRAME_ECC, DNA_PORT, EFUSE_USR and MASTER_JTAG, and cannot be broken
up further.

• HBM BLI PU: 1 HBM_PLI, 15 adjacent CLBs and the shared interconnect.

Automatic Adjustments for PU on Pblocks
In UltraScale and UltraScale+ devices, there is no RESET_AFTER_RECONFIG option. Instead,
GSR is always issued at the end of a partial reconfiguration, and there are no Pblock size/shape
requirements to enable this like there are in 7 series devices. However, to ensure that the Pblock
does not violate any rules for minimum PU sizes, the SNAPPING_MODE property is also always
on by default, and automatically adjusts the Pblock to make sure it is valid for PR.

Automatic Adjustments for PU on Pblocks and Automatic Adjustments for PU on Pblocks below
give an example of how SNAPPING_MODE adjusts the Pblock for PU alignment. In Automatic
Adjustments for PU on Pblocks, despite the larger outer rectangle, only the selected tiles belong
to the RP Pblock. The upper block RAM and DSP sites are not included because they are not fully
contained in the Pblock, and the associated CLB sites are not included either, based on the PU
rules. There are also CLB sites on both the left and right edge that are not included in the Pblock
because the adjacent CLBs are not owned by the original rectangle.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=129

Figure 51: SNAPPING_MODE Example - UltraScale

While SNAPPING_MODE made the above Pblock legal for the RP, it is possible that the intent was
to include all of these sites. By making a small adjustment to the original Pblock rectangle, you
can prevent SNAPPING_MODE from removing sites that are intended for the dynamic region. In
Automatic Adjustments for PU on Pblocks the Pblock has been expanded by one CLB on the left,
right, and top edges. The shaded tiles that are owned by the RP Pblock now match the outer
rectangle.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=130

Figure 52: PU Aligned Pblock

While shading shows what is included in a reconfigurable partition (RP), you can best visualize
the sites owned by a RP by using highlighting scripts that the Vivado Design Suite tools create
automatically for Pblocks of RPs. The following steps can be used for debugging/verifying
Pblocks:

1. Create or make an adjustment to an RP. The cell assigned to the Pblock must have the
HD.RECONFIGURABLE property set.

2. Source the highlighting script that was generated by the Vivado tools.

source ./hd_visual/<pblock_name>_AllTiles.tcl

Note: The scripts in the hd_visual directory are updated any time the Pblock constraints are
processed. This includes opening a design that contains Pblocks and creating or modifying Pblocks in
an open design.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=131

Sharing Configuration Frames between RP and Static
Logic
Even though UltraScale and UltraScale+ devices Pblocks are not required to be frame aligned
(that is, the height of the clock region), Dynamic Function eXchange still programs the entire
configuration frame. This means that logic outside of the RP is overwritten. This does not cause
any issues in DFX, but in previous architectures there were some limitations about what kind of
static logic could be in the same frame as reconfigurable logic.

For UltraScale and UltraScale+ devices, any static logic can be placed in the same configuration
frame as the RM, in any sites not owned by the RP Pblock. This includes block RAM, DSP, and
LUT RAM. There is still a restriction however, that there can be only one RP per configuration
frame. That means you cannot vertically stack two RPs in the same clock region.

Expansion of CONTAIN_ROUTING Area
The contained routing requirement of RP Pblocks for UltraScale and UltraScale+ devices has
been relaxed to allow for improved routing and timing results. Instead of routing being confined
strictly to the resources owned by the Pblock, the routing footprint is expanded. This includes
resources that are within the Pblock boundary, but not necessarily owned by the Pblock, as well
as resources beyond the Pblock rectangle. This means there might be RM nets and partition pins
outside of the Pblock boundary. However, any partition pin or contained net is still within the
expanded routing footprint.

The expanded routing footprint can be visualized by sourcing one of the hd_visual Tcl scripts.
These are scripts that are generated automatically during the Dynamic Function eXchange flow,
and can be found in the ./hd_visual subdirectory within the current working directory. The
visualization script that shows the expanded routing footprint is named ./hd_visual/
<pblock_name>_Routing_AllTiles.tcl. The expanded routing footprint is actually
determined during routing, so this file is not be available until route_design completes. To see the
expanded routing footprint, source this file from the Tcl Console after opening a routed design.
This selects all tiles available to the router, and then selected tiles can be highlighted or marked
as desired. In the figure below, the user-defined Pblock that bounds placement is shown in blue,
and the expanded routing zone is shown in yellow.

source ./hd_visual/pblock_inst_shift_low_Routing_AllTiles.tcl

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=132

Figure 53: Highlighted Pblock and Expanded Routing Footprint

Any frames that are used by the RM must be contained with the partial bit files, so one effect of
expanding the routing footprint is larger partial bit files. The increase in size depends on the
original Pblock size and shape. Pblocks that are already rectangular can still expand. However,
the expansion cannot go beyond a clock region boundary in the vertical direction; it can extend
into a new clock region to the left or right. It may help the routability of the RP if the Pblock
boundaries stop short of internal clock region edges, especially in the vertical direction. Pblock

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=133

edges that align to the device edges, such as left or bottom edges, should not be pulled in just to
allow for expanded routing. This causes placement issues if the static region now has access to
small pockets of resources along the edges. Xilinx recommends keeping this routing expansion
enabled, but if the partial bitstream size is more critical than the performance of the design, then
this feature can be disabled by setting the following parameter:

set_param hd.routingContainmentAreaExpansion false

IMPORTANT! The expanded routing footprint is not supported for 7 series devices.

In Vivado 2020.2, the algorithms that determine the device and design resources included in the
expanded routing region were updated. The expansion region is now a bit smaller than in prior
tool versions, producing smaller partial bitstreams with minimal impact on design routability. The
changes made were required to support the Abstract Shell feature for UltraScale+ targets.

For DFX designs that are brought into Vivado 2020.2 for the purpose of generating only new
partial bitstreams, the original routing expansion will be maintained, to preserve bitstream
compatibility. In other words, if the parent configuration (the run that establishes the static
design results) was implemented in Vivado 2020.1 or older and will not be reimplemented in
Vivado 2020.2, the partial bitstreams for all new RMs will continue to use the older style routing
expansion so these new partial bitstreams will be compatible with existing deployed static
platforms.

All designs that are new in Vivado 2020.2 or whose static design will be reimplemented in
2020.2 will use the new routing expansion solution. No user intervention is required beyond
simply implementing the static design through place and route. Per DFX methodology rules, all
child configurations to create results for all remaining RMs must also be implemented. Therefore,
all partial bitstreams will remain compatible.

IMPORTANT! The use of Abstract Shell requires the enhanced expanded routing footprint. All DFX
designs that intend to use this feature must be implemented in Vivado 2020.2, the first production release
for Abstract Shell, to ensure the abstract shells are generated correctly. You cannot generate abstract shells
from pre-2020.2 design checkpoints.

UltraRAM Behavior
Just as with a full device configuration, UltraRAM memory is initialized to all 0's during partial
reconfiguration. There is no user defined INIT attribute and therefore the content of the SRAM
array cannot be initialized to user defined values.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=134

Floorplanning Rules for Clocks inside an RP
UltraScale and UltraScale+ devices support clocking resources within the RP such as BUFG_*,
PLL, and MMCM. Designs incorporating this feature should follow the general design restrictions
described in Global Clocking Rules as well as the additional floorplanning rules below. These
rules are required to ensure that the clocks internal to the RP can reach the necessary routing
resources within the frames owned by the RP Pblock.

1. Create rectangular Pblocks whenever possible. If the Pblock is made up of multiple
rectangles, the tallest column of the Pblock must be clock_region aligned.

2. The CLOCK_ROOT property of the internal RM clock should be set as one of the tallest
columns in the Pblock. The tools attempt to pick the correct columns for the CLOCK_ROOT
automatically, but in some cases this cannot be done.

a. If a USER_CLOCK_ROOT property exists on the clock net, then the tools will not
automatically select the CLOCK_ROOT. If the USER_CLOCK_ROOT property is set to a
column that is not the full height of the Pblock, unroutable connections might occur.

b. Certain configurations of BUFG_GT require that the CLOCK_ROOT be in the same region
as the BUFG_GT. If this is not the tallest column of the Pblock, unroutable connection
might occur. To resolve this, consider splitting the clock net into two BUFG_GT (one for
user logic, and the other for the direct GT connections). This way each clock can have its
own CLOCK_ROOT.

As shown in Floorplanning Rules for Clocks inside an RP, a CLOCK_ROOT defined in
region X2Y2 (top-left of the Pblock) would prevent routing to any loads in region X3Y1
(bottom-right of the Pblock), because the region X2Y1 is not available to the clock.
Conversely, if the CLOCK_ROOT were defined in either X3Y2 or X3Y1, no clock routing
restrictions would apply.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=135

Figure 54: CLOCK_ROOT Restrictions on L-Shaped Pblocks

3. If a CLOCK_ROOT cannot be set to the tallest column, the loads of the clock can be
contained to regions accessible by the clock using nested Pblocks within the RP region. The
nested Pblock will prevent the placer from putting a load in a region that is not accessible by
the clock due to irregularly shaped Pblocks.

4. Do not create U or H shaped Pblocks with large gaps that span an entire clock_region, as
shown in Floorplanning Rules for Clocks inside an RP below.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=136

Figure 55: Unsupported Pblock with clock_region Gap

As shown in Floorplanning Rules for Clocks inside an RP below, small static gaps, such as an
IOB column, are permitted in the row of an RP Pblock. However, Xilinx recommends avoiding
these gaps when possible, as they are a potential source of routing congestion because RM
routes need to route over these gaps.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=137

Figure 56: Supported Pblock with Small Static Gap

Small stair-step shaped Pblocks, as shown in Floorplanning Rules for Clocks inside an RP, are
sometimes necessary. While they are supported, they can also lead to routing congestion
around the corners.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=138

Figure 57: Supported Stair-Step Shaped Pblock

5. RP Pblocks with clocking resources cannot share any part of a clock region with any other RP.
It can share a clock region with static logic. This is true regardless of where the logic driven by
these clock resources exist—inside or outside of the given RP.

Global Clocking Rules
As with architectures previous to UltraScale, all unique clocks driving the RP are pre-routed to
every clock region in which the RP owns sites. Effectively, this means that the total number of
global clocks driving the RP (regardless of size) is a maximum of 24. Higher clock utilization is
possible when the clock source is in the RM, since these do not need to be pre-routed to every
clock region. For this reason it is always important to carefully consider the RP Pblock size and
shape. However, one difference in the UltraScale architecture is that there are now 24 global
clocks available per clock region instead of the 12 available in 7 series devices.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=139

Note: For BUFGCTRL components, the PRESELECT_I0 and PRESELECT_I1 properties are ignored
during partial reconfiguration, even with RESET_AFTER_RECONFIG enabled. The clock source selected
depends only on the select and clock enable inputs of the BUFGCTRL instance.

Clock sources that exist within RM can drive logic to the static design or other RM.Vivado
handles many of the low-level details, such as consistent clock spine usage. Design rule checks
ensure that fundamental rules are applied. There are, however, a few considerations to be aware
of:

• Clock resource must be consistent from one RM to the next for a given RP. While you may
change characteristics of the clock such as MMCM parameters, the clock driver type (BUFG,
etc.) must remain fixed so routing resources can remain consistent in the locked static design.

• Clock behavior is indeterminate during reconfiguration, so consider decoupling. Because
clocks will be using high-fanout routing resources, a basic 2-to-1 MUX or register will not be
appropriate like it would be for standard interfaces. Instead, a BUFGMUX can be used to
block the clock source during reconfiguration. Alternately, synchronous elements in static or
other RMs can be disabled or held in reset while the clock source is reconfigured.

I/O Rules
In UltraScale and UltraScale+ devices, I/O logic and buffers can be included in an RP. While the
I/O can be modified from one RM to another, there are some rules that must be followed.

The following checks are done between all configurations that use the I/O sites. If an I/O site
changes from being used to unused, or vice versa, then these checks are not done for those
configurations. If an I/O is unused in a particular configuration, make sure the appropriate
property for the design is set on these ports via the PULLTYPE attribute. For more information
on setting PULLTYPE, see this link in Vivado Design Suite Properties Reference Guide (UG912).

• The I/O direction and I/O standard must be the same between all RMs whenever the I/O is
used.

• For DCI_CASCADE, the member bank assignments between RMs cannot overlap.

○ Legal example: In Configuration 1, DCI_CASCADE has banks 12, 13. In Configuration 2,
DCI_CASCADE has banks 14, 15 and 16. They do not have overlapped banks.

○ Illegal example: In Configuration 1, DCI_CASCADE has banks 12 and 13. In Configuration 2,
DCI_CASCADE has banks 13, 14, 15 and 16. In this case bank 13 overlaps.

• For DCI_CASCADE, member banks must be fully contained within the reconfigurable region.
All of the member banks for the same DCI_CASCADE must be in either the same RP Pblock,
or completely in static. DCI_CASCADE usage must remain consistent between different RM.

• DCI calibration is automatically done for any IO bank included in a RP at the end of partial
reconfiguration, in the same way it is done at the initial configuration of the device. DCIRESET
or any user intervention is not necessary.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 140Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug912-vivado-properties.pdf;a=xPULLTYPE
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug912-vivado-properties.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=140

Changes to the IOB from one configuration to another are limited by the rules above. This means
that the following I/O characteristics may be modified through Dynamic Function eXchange:

• Usage (used vs. unused, per I/O)

• Drive Strength (12mA, 8mA, etc.)

• Driver Output Impedance (40?, 48?, etc.)

• Driver Input Impedance (40?, 48?, etc.)

• Driver Slew Rate (slow, fast, etc.)

• ODT Termination (40, 60, etc.)

Adding the I/O sites into the RP requires that the entire PU (encompassing the I/O bank,
BITSLICE, MMCM, PLL, and one column of CLBs plus shared interconnect) be added. All
components in this fundamental region are reconfigured and reinitialized, and adding these other
site types to the reconfigurable region can be beneficial in some cases for these reasons:

• Adding I/O sites allows use of the routing resources of the I/O, which reduces congestion
(instead of increasing congestion, as it could if the I/O sites were in Static, and caused a gap in
the reconfigurable region).

• Allows reconfiguration of other clocking resources like the MMCM and PLL.

• Allows reconfiguration of other I/O logic sites such as BITSLICE and BITSLICE_CONTROL.

Regardless of whether or not the I/O usage or characteristics change during reconfiguration, the
entire bank is reconfigured. During reconfiguration, all I/O in the banks defined by the RP Pblock
is held with the dedicated global tri-state (GTS) signal, which is released at the end of
reconfiguration.

If the RM contains an MMCM or PLL component, the size of the partial bitstream will be at its
smallest when the lock cycle of these components are set to "no wait". Similarly, IO with DCI
matching requirements will have minimal bitstream sizes when the lock cycle is set to “no wait”.
Set these options using this commands:

set_property BITSTREAM.STARTUP.LCK_CYCLE NoWait [current_design]
set_property BITSTREAM.STARTUP.MATCH_CYCLE NoWait [current_design]

During the Dynamic Function eXchange flow, RMs are carved out using update_design -
black_box. During this command any embedded IO buffers, and the associated constraints,
such as PACKAGE_PIN and IOSTANDARD, are removed. When the black box RP is filled in with a
new RM, these IOB constraints need to be reapplied to the design.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=141

Using High Speed Transceivers
Xilinx high speed transceivers (GTH, GTY) are supported within a RP. As with other
reconfigurable site types, the entire PU must be included. For the UltraScale GT transceivers, the
PU includes

• 4 GT_CHANNEL sites (GT Quad)

• Associated GT_COMMON site

• Associated BUFG_GT_SYNC sites

• Associated BUFG_GT sites

• Associated Interconnect and CLB sites

The required GT PU is the entire height of a clock region. As with previous architectures, it is also
possible to leave the GT components in static logic and change the functionality through the
DRP. For more information on using UltraScale and UltraScale+ transceivers, see the UltraScale
Architecture GTH Transceivers User Guide (UG576) or the UltraScale Architecture GTY Transceivers
User Guide (UG578).

Virtex UltraScale+ High Bandwidth Memory (HBM) devices support Dynamic Function eXchange
just like any other UltraScale+ device. Users have the choice of where the HBM Controllers are
placed: in the static region or in the dynamic region. If the AXI High Bandwidth Memory
Controller IP is kept in the static region with an active HBM reference clock, the memory
interface will remain active and all memory contents are retained. Self-refresh mode can be used
for power savings during reconfiguration or when the memory is not need; memory contents will
be maintained in this case as well. If this IP is placed in a RM, it will be reconfigured and memory
contents will be reinitialized per its Vivado customization. For more information on the HBM
Controller IP, consult the documentation here: https://www.xilinx.com/products/intellectual-
property/hbm.html

Dynamic Function eXchange Checklist for
UltraScale and UltraScale+ Device Designs

Xilinx highly encourages the following for anUltraScale and UltraScale+ device design using
Dynamic Function eXchange:

Recommended Clocking Networks

Are you using Global Clock Buffers or Clock Modifying Blocks (MMCM, PLL)?

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 142Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug576-ultrascale-gth-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug578-ultrascale-gty-transceivers.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=142

These blocks can be reconfigured, but all elements in this frame type must be reconfigured. This
includes an entire I/O bank and all clocking elements in that shared region, plus one column of
CLBs that share the interconnect.

See Design Elements Inside Reconfigurable Modules for more information, and Global Clocking
Rules for complete details on global clock implementation.

In addition, the following restrictions are currently enforced by Vivado Design Suite DRC rules.
The use of clocking resources BUFGCTRL, BUFG_CE and BUFG_GT is supported with the
following restrictions:

• Xilinx recommends using rectangular Pblock shapes. Non-rectangular shapes are also
supported for RPs with clocking logic, as long as the tallest column of the Pblock is aligned
vertically and horizontally with the clock region. The tallest column of the RP Pblock must also
range the IOB, and this range must cover the full height of all the rectangles that define the
RP Pblock, as shown in Dynamic Function eXchange Checklist for UltraScale and UltraScale+
Device Designs. In other words, this vertical column of IOB ranges must be able to access all
rows of the Pblock. Pblock shapes like a sideways "L" are not supported unless the vertical
section of the shaped includes the IOB range.

Figure 58: Tallest Column of Pblock Clock Region Aligned

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=143

• A gap is defined as an unranged site type with ranged sites on both sides of it. The following
gaps are not allowed:

○ Gaps in the IOB/XIPHY ranges, such as the gap in the IOB column shown in Dynamic
Function eXchange Checklist for UltraScale and UltraScale+ Device Designs below.

Figure 59: Unsupported Gap in the IOB Column

○ Gaps in the DSP ranges.

• A clock region cannot be shared by two RP Pblocks if:

○ At least one of them has a global clock source.

○ The other has ranged a global clock source.

Configuration Feature Blocks

Are you using device feature blocks (BSCAN, DCIRESET, FRAME_ECC, ICAP, STARTUP,
USR_ACCESS)?

These featured blocks must be in static logic.

See Design Elements Inside Reconfigurable Modules for more information.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=144

Pblock Boundaries

Have you set the Pblock boundaries?

For UltraScale and UltraScale+ devices, the X-axis boundary of a dynamic region can be set by a
PU, including CLB, Block RAM, DSP, and others. The tool adjusts the Pblock automatically for a
valid placement. The Y-axis boundary of a PR region can be a clock region and IO bank. However,
if BUFGCTRL/BUFG_CE/BUFG_GT are used in the RP, a full clock region must be used.

SSI Technology

Does the Pblock span an SLR of an SSI device?

If using an SSI device it is recommended to keep a dynamic region within a single SLR. However,
for UltraScale and UltraScale+ devices, if a RP Pblock must span an SLR, the necessary Laguna
sites must be included to allow for routing across this boundary. This requires that at least one
full clock region belongs to the dynamic region on both sides of the SLR boundary.

For more information on SSI Technology devices and Laguna, see Devices using Stacked Silicon
Interconnect (SSI) Technology in the UltraScale Architecture Configurable Logic Block User Guide
(UG574).

High Speed Transceiver Blocks

Do you have high speed transceivers in your design?

High speed transceivers can be reconfigured. An entire quad, including all component types
(GT_CHANNEL, GT_COMMON, BUFG_GT) must be reconfigured together.

See Using High Speed Transceivers for specific requirements.

System Generator DSP Cores, HLS cores, or IP Integrator Block Diagrams

Are you using System Generator DSP cores, HLS cores, or IP integrator block diagrams in your
Dynamic Function eXchange design?

Any type of source can be used as long as it follows the fundamental requirements for Dynamic
Function eXchange. Any code processed by System Generator, HLS, or IP integrator (or other
tools) is eventually synthesized. The resulting design checkpoint or netlist must be comprised
entirely of reconfigurable elements in order for it to be legally included in an RP.

Packing I/Os into Reconfigurable Partitions

Do you have I/Os in RMs?

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 145Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug574-ultrascale-clb.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=145

I/Os can be partially reconfigured. An entire I/O bank, along with all I/O logic (XiPhy) and
clocking resources, must be reconfigured at once. IOSTANDARD and direction cannot change
and DCI Cascade rules must be followed. But other I/O characteristics may change from one RM
to the next.

See Design Elements Inside Reconfigurable Modules for more information.

Packing Logic into Reconfigurable Partitions

Is all logic that must be packed together in the same RP?

Any logic that must be packed together must be in the same RP and RM.

See Packing Logic for more information.

Packing Critical Paths into Reconfigurable Partitions

Are critical paths contained within the same partition?

RP boundaries limit some optimization and packing, so critical paths should be contained within
the same partition.

See Packing Logic for more information.

Floorplanning

Can your RPs be floorplanned efficiently?

See Creating Pblocks for UltraScale and UltraScale+ Devices for more information.

Recommended Decoupling Logic

Have you created decoupling logic on the outputs of your RMs?

During reconfiguration the outputs of RPs are in an indeterminate state, so decoupling logic must
be used to prevent static data corruption.

See Decoupling Functionality for more information.

Recommended Reset After Reconfiguration

Are you resetting the logic in an RM after reconfiguration?

Reset After Reconfiguration is always enabled for UltraScale and UltraScale+ devices. This
capability cannot be disabled.

See Apply Reset After Reconfiguration for more information.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=146

Debugging with Logic Analyzer Blocks

Are you using theVivado Logic Analyzer with your Dynamic Function eXchange design?

Vivado logic analyzer (ILA/VIO debug cores) can be used in your Dynamic Function eXchange
design, but care must be taken when connecting these cores to debug hubs. Use the automatic
inference solution shown in Using Vivado Debug Cores.

Efficient Reconfigurable Partition Pblocks

Have you created efficient RP Pblock(s) for your design?

A RP Pblock can be any height, but multiple RPs cannot be stacked vertically within a single clock
region.

See Creating Pblocks for UltraScale and UltraScale+ Devices for more information.

Validating Configurations

How do you validate consistency between configurations?

The pr_verify command is used to make sure all configurations have matching imported
resources.

See Verifying Configurations for more information.

Configuration Requirements

Are you aware of the particular configuration requirements for Dynamic Function eXchange for
your design and device?

Each device family has specific configuration requirements and considerations.

See Chapter 8: Configuring the Device for more information.

Chapter 7: Design Considerations and Guidelines for UltraScale and UltraScale+
Devices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=147

Chapter 8

Configuring the Device
This chapter describes the system design considerations when configuring your device with a
partial BIT file, as well as architectural features in the FPGA that facilitate Dynamic Function
eXchange (DFX). Because most aspects of Dynamic Function eXchange are no different than
standard full configuration, this section concentrates on the details that are unique to DFX.

Configuration Modes
Dynamic Function eXchange is supported using the following configuration modes:

• ICAP: A good choice for user configuration solutions. Requires the creation of an ICAP
controller as well as logic to drive the ICAP interface.

• MCAP: (UltraScale™ and UltraScale+™ devices only) Provides a dedicated connection to the
configuration engine from one specific PCIe® block per device.

• PCAP: The primary configuration mechanism for Zynq®-7000 SoC and
Zynq UltraScale+ MPSoC designs.

• JTAG: A good interface for quick testing or debug. Can be driven with the Vivado Logic
Analyzer.

• Slave SelectMAP or Slave Serial: A good choice to perform full configuration and dynamic
reconfiguration over the same interface.

Master modes are not directly supported because IPROG housecleaning clears the configuration
memory.

Table 11: Supported Configuration Ports

Configuration
Mode 7 series Zynq UltraScale UltraScale+

Zynq
UltraScale+

MPSoC
JTAG Yes Yes Yes Yes Yes

ICAP Yes Yes Yes Yes Yes

PCAP N/A Yes N/A N/A Yes

MCAP N/A N/A Yes Yes Yes

Slave Serial Yes N/A Yes Yes N/A

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=148

Table 11: Supported Configuration Ports (cont'd)

Configuration
Mode 7 series Zynq UltraScale UltraScale+

Zynq
UltraScale+

MPSoC
Slave SelectMap Yes N/A Yes Yes N/A

SPI (any width)1 No N/A No Yes N/A

BPI sync mode No N/A No Yes N/A

BPI async mode Yes N/A Yes Yes N/A

Master modes No N/A No No N/A

Notes:
1. SPI and BPI flash can be used to store partial bitstreams, but the STARTUP primitive cannot be used to deliver partial

bitstreams to the configuration engine for devices prior to UltraScale+. The static design would need to be connected
to the flash via user IO, and a controller would be used to fetch bitstreams for delivery to the ICAP.

To use external configuration modes (other than JTAG) for loading a partial BIT file, these pins
must be reserved for use after the initial device configuration. This is achieved by using the
BITSTREAM.CONFIG.PERSIST property to keep the dual-purpose I/O for configuration usage
and to set the configuration width. Refer to this link in the Vivado Design Suite User Guide:
Programming and Debugging (UG908). The Tcl command syntax to set this property is:

set_property BITSTREAM.CONFIG.PERSIST <value> [current_design]

where <value> is either No or Yes.

Note: When configuration pins are persisted, the ICAP is disabled; the two features are mutually exclusive.
For more information on the ICAP, see 7 Series FPGAs Configuration User Guide (UG470) or UltraScale
Architecture Configuration User Guide (UG570), depending on your device.

Partial bitstreams contain all the configuration commands and data necessary for Dynamic
Function eXchange. The task of loading a partial bitstream into an FPGA does not require
knowledge of the physical location of the RM because configuration frame addressing
information is included in the partial bitstream. A valid partial bitstream cannot be sent to the
wrong part of the FPGA.

A DFX controller retrieves the partial bitstream from memory, then delivers it to a configuration
port. The DFX control logic can either reside in an external device (for example, a processor) or in
the programmable logic of the FPGA to be reconfigured. A user-designed internal DFX controller
loads partial bitstreams through the ICAP interface. As with any other logic in the static design,
the internal DFX control circuitry operates without interruption throughout the reconfiguration
process.

Internal configuration can consist of either a custom state machine, or an embedded processor
such as MicroBlaze. For a Zynq-7000 SoC and Zynq UltraScale+ MPSoC, the Processor
Subsystem (PS) can be used to manage partial reconfiguration events.

Note: For Zynq-7000 SoC devices, the Programmable Logic (PL) can be partially reconfigured, but the
Processing System cannot.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 149Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf;a=xDeviceConfigurationBitstreamSettings
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=149

As an aid in debugging Dynamic Function eXchange designs and DFX control logic, the Vivado
Logic Analyzer can be used to load full and partial bitstreams into an FPGA by means of the JTAG
port.

For more information on loading a bitstream into the configuration ports, see the Configuration
Interfaces chapter in these documents:

• 7 Series FPGAs Configuration User Guide (UG470)

• UltraScale Architecture Configuration User Guide (UG570)

• Zynq-7000 SoC Technical Reference Manual (UG585)

Bitstream Type Definitions
When designs are compiled for Dynamic Function eXchange in Xilinx devices, different types of
bitstreams are created. This section defines terminology and explains the details for each type of
bitstream for 7 series and UltraScale devices. The types of bitstreams are:

• Full Configuration Bitstreams

• Partial Bitstreams

• Blanking Bitstreams

• Clearing Bitstreams

Full Configuration Bitstreams
All DFX designs start with standard configuration of the full device using a full configuration
bitstream. The format and structure is no different than for a flat design solution (with one
exception), and there is no difference in how this bitstream can be used to initially program the
FPGA. The one exception is that the global signal mask for a DFX design is closed; it is opened
with each partial (or clearing) bitstream to affect only the reconfigurable region. Because of this
exception, chip-wide GSR events (after the initial configuration) cannot be issued. However, note
that the design itself has been processed in preparation for partial reconfiguration of the device
after the full programming has been done. Standard features, such as encryption and
compression, are supported.

RPs set as black boxes are supported, so RMs with no functionality can be delivered as part of
the initial configuration, to be replaced later with a desired RM. Bitstream compression can be
effective in this case, reducing bitstream size and initial configuration time.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 150Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=150

Downloading a Full BIT File

The FPGA in a digital system is configured after power on reset by downloading a full BIT file,
either directly from a PROM or from a general purpose memory space by a microprocessor. A full
BIT file contains all the information necessary to reset the FPGA, configure it with a complete
design, and verify that the BIT file is not corrupt. The figure below illustrates this process.

Figure 60: Configuring with a Full BIT File

After the initial configuration is completed and verified, the FPGA enters user mode, and the
downloaded design begins functioning. If a corrupt BIT file is detected, the DONE signal is never
asserted, the FPGA never enters user mode, and the corrupt design never starts functioning.

Partial Bitstreams
Partial bitstreams are delivered during normal device operation to replace functionality in a pre-
defined device region. These bitstreams have the same structure as full bitstreams but are limited
to specific address sets to program a specific portion of the device. Dedicated DFX features such
as per-frame CRC checks (to ensure bitstream integrity) and automatic initialization (so the region
starts in a known state) are available, as well as full bitstream features such as encryption and
compression.

The size of a partial bitstream is directly proportional to the size of the region it is reconfiguring.
For example, if the RP is composed of 20% of the device resources, the partial bitstream is
roughly 20% the size of the full design bitstream.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=151

Partial bitstreams are fully self-contained, so they are delivered to an appropriate configuration
port. All addressing, header, and footer details are contained within these bitstreams, just as they
would be for full configuration bitstreams. You deliver partial bitstreams to the FPGA through
any external non-master configuration mode, such as JTAG, Slave Serial, or Slave SelectMap.
Internal configuration access includes the ICAP (all devices), PCAP (Zynq-7000 SoC devices), and
MCAP (UltraScale and UltraScale+ devices through PCIe).

Partial bitstreams are automatically created when write_bitstream is run on a DFX
configuration. Each partial bitstream file name references your top-level design name, plus the
Pblock name for the RP, plus _partial. For example, for a full design bit file top_first.bit,
a partial bit file could be named top_first_pblock_red_partial.bit.

The Pblock instance is always the same, regardless of the RM contained within, so it is
recommended that you use a descriptive base configuration name or rename the partial bit files
to clarify which module it represents.

Downloading a Partial BIT File

A partially reconfigured FPGA is in user mode while the partial BIT file is loaded. This allows the
portion of the FPGA logic not being reconfigured to continue functioning while the RP is
modified. Partial Bitstreams illustrates this process.

Figure 61: Configuring with a Partial BIT File

The partial BIT file has a simplified header, and there is no startup sequence that brings the FPGA
into user mode. The BIT file contains (essentially, and with default settings) only frame address
and configuration data, plus a final checksum value. Additional CRC checks can be inserted, if
desired, to perform bitstream integrity checking.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=152

If Reset After Reconfiguration is used, the DONE pin pulls LOW when reconfiguration begins and
pulls HIGH again when partial reconfiguration successfully completes, although the partial
bitstream can still be monitored internally as well.

Note: With UltraScale devices, the DONE pin pulls LOW at the beginning of the clearing bitstream and
remains low until the end of the partial bitstream because the two bitstreams together constitute a
complete partial reconfiguration sequence. The DONE pin does NOT return high at the end of the clearing
bitstream.

If Reset After Reconfiguration is not selected, you must monitor the data being sent to know
when configuration has completed. The end of a partial BIT file has a DESYNCH word
(0000000D) that informs the configuration engine that the BIT file has been completely
delivered. This word is given after a series of padding NO OP commands, ensuring that once the
DESYNCH has been reached, all the configuration data has already been sent to the target
frames throughout the device. As soon as the complete partial BIT file has been sent to the
configuration port, it is safe to release the reconfiguration region for active use.

Blanking Bitstreams
A blanking bitstream is a specific type of partial bitstream, one that represents a logical black box.
In Vivado this is referred to as a greybox, as it is not completely empty. It removes the
functionality of an existing RM by replacing it with new functionality, which consists simply of
tie-off LUTs on all appropriate module I/O.

To create a greybox RM, you remove the logical and physical representation of a fully placed and
routed design configuration and replace it with tie-off LUTs. Starting with a routed configuration
(with the static design locked) in active memory, run these steps:

update_design -cell <foo> -black_box
update_design -cell <foo> -buffer_ports
place_design
route_design

The design must be placed and routed to implement the LUTs that have been inserted into the
design. Outputs of the greybox RM are tied to ground by default, but can be set to Vcc by setting
the HD.PARTPIN_TIEOFF on desired ports.

Compression can be used to greatly reduce the size of blanking bitstreams. Note that these
bitstreams still contain, not only the tie-off LUTs, but also any static routing that happens to pass
through this region of the FPGA. Blanking bitstreams are generated and named in the same way
as standard partial bitstreams, as the greybox variation is saved as another configuration
checkpoint.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=153

Advisories had been given for prior versions of Vivado software recommending the use of
blanking bitstreams for 7 series and Zynq devices to avoid potential glitching conditions. Starting
with Vivado 2016.1, these rare glitching scenarios are automatically avoided by embedding
specific blanking events in each partial bitstream. Blanking bitstreams, while still available to
remove logic from a RP, are no longer required to avoid any potential glitch events. Automatically
embedding blanking events results in an increased size of the partial bit files; compression can be
used to reduce these effects.

Clearing Bitstreams
Unlike the bitstream types noted above, this type is for UltraScale devices only (UltraScale+ does
not have this requirement). A new requirement for this architecture is to clear an existing module
before loading a new module. This clearing bitstream prepares the device for the delivery of any
subsequent partial bitstream for that RP by establishing the global signal mask for the region to
be reconfigured. Although the existing module is technically not removed (the current logical
module remains), it is easiest to think of it this way. If a clearing bitstream is not delivered, the
subsequent RM will not be initialized.

Clearing bitstreams are not partial bitstreams. They comprise less than 10% of the frames for the
target region and are therefore less than 10% the size of the corresponding partial bitstreams.
They do not change the functionality but shut down clocks driving logic in the region. They must
be delivered between partial bitstreams and should always be followed as soon as possible by the
next partial bitstream.

Each clearing bitstream is built for a specific RM and must be applied after that module has been
used, and must be sent to the configuration engine immediately before the next partial bitstream
is delivered. For example, to transition from module A to module B, the clearing bitstream for A
must be delivered just before the partial bitstream for B is delivered. To transition from module B
back to module A, the clearing bitstream for B must be delivered just before the partial bitstream
for A is delivered. This is the case even if any partial bitstream in question is a blanking bitstream.

Clearing bitstreams are automatically generated and have the same name as partial bitstreams
with _clear at the end. Looking at the example above, if top_first is an UltraScale device
design, the clearing bit file name would be top_first_pblock_red_partial_clear.bit.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=154

Dynamic Function eXchange through ICAP for
Zynq Devices

The primary configuration mechanism for the programmable logic (PL) of Zynq-7000 and Zynq
UltraScale+ MPSoC devices is through the processing system (PS), which delivers bitstreams to
the PCAP. The most common mechanism for partial reconfiguration is also through this path.
However, to manage partial reconfiguration completely within the PL (either through the PR
Controller IP or through a custom-designed controller module), partial bitstreams can also be
delivered to the ICAP, just as they can be for FPGA devices.

The PCAP and ICAP interfaces are mutually exclusive and cannot be used simultaneously.
Switching between ICAP and PCAP is possible, but you must ensure that no commands or data
are being transmitted or received before changing interfaces. Failure to do this could lead to
unexpected behavior.

To enable the ICAP for Zynq-7000 devices, set bit 27 (PCAP_PR) of the Control Register
(devc.CTRL). This bit selects between ICAP and PCAP for PL reconfiguration. The default is
PCAP (1), but that can be changed to ICAP (0) to enable this configuration port. Note that
bit 28 (PCAP_MODE) must also be set to 1, which is the default. For more details, see the
Zynq-7000 SoC Technical Reference Manual (UG585).

To enable the ICAP for Zynq UltraScale+ MPSoC devices, set the PCAP_PR field of the
pcap_ctrl (CSU) register. This bit selects between ICAP (or MCAP) and PCAP for PL
reconfiguration. The default is PCAP (1), but that can be changed to ICAP / MCAP (0) to
enable this configuration port. For more details, see the Zynq UltraScale+ Device Technical
Reference Manual (UG1085) and the Zynq UltraScale+ Device Register Reference (UG1087).

The Zynq UltraScale+ MPSoC Xilfpga library supports the delivery of partial bit files for Linux and
bare-metal applications. In the current release, only non-secure bitstreams (without encryption or
authentication) are supported. For more information and examples, visit the Xilfpga wiki page
(www.wiki.xilinx.com/xilfpga).

Tandem Configuration and Dynamic Function
eXchange

UltraScale devices introduced the MCAP, a dedicated connection from one specific PCIe block on
a device to the configuration engine, providing an efficient mechanism for delivering partial
bitstreams. No explicit routes are required to connect the PCIe block to the configuration engine,
saving considerable resources.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 155Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+ultrascale
http://www.wiki.xilinx.com/xilfpga
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=155

The MCAP is enabled by customizing a Xilinx PCIe IP with Dynamic Function eXchange or
Tandem Configuration features. These features are available for three IP cores that support PCI
Express:

• UltraScale Devices Gen3 Integrated Block for PCI Express LogiCORE IP Product Guide (PG156)

• AXI Bridge for PCI Express Gen3 Subsystem Product Guide (PG194)

• DMA/Bridge Subsystem for PCI Express Product Guide (PG195)

• UltraScale+ Devices Integrated Block for PCI Express LogiCORE IP Product Guide (PG213)

Tandem Configuration utilizes a two-stage methodology that enables the IP to meet the
configuration time requirements indicated in the PCI Express Specification. The following use
cases are supported with this technology:

• Tandem PROM: Loads the single two-stage bitstream from the flash.

• Tandem PCIe: Loads the first stage bitstream from flash, and deliver the second stage
bitstream over the PCIe link to the MCAP.

• Tandem with Field Updates: After a Tandem PROM (UltraScale only) or Tandem PCIe
(UltraScale or UltraScale+) initial configuration, update the entire user design while the PCIe
link remains active. The update region (floorplan) and design structure are pre-defined, and Tcl
scripts are provided.

• Tandem + Dynamic Function eXchange: This is a more general case of Tandem Configuration
followed by Dynamic Function eXchange of any size or number of dynamic regions.

• DFX over PCIe: This is a standard configuration followed by DFX, using the PCIe / MCAP as
the delivery path of partial bitstreams.

The Tandem and DFX combined solutions have few additional requirements. This approach
requires that the Pblocks for the HD.TANDEM_IP_PBLOCK and HD.RECONFIGURABLE parts of
the design do not overlap. Otherwise, like a standard DFX design, any number or size RPs can be
defined.

To enable any of these capabilities, select the appropriate option when customizing the core. In
the Basic tab:

1. Change the Mode to Advanced.

2. Change the Tandem Configuration or Partial Reconfiguration option according to your
desired case in UltraScale:

• Tandem for Tandem PROM, Tandem PCIe or Tandem + Dynamic Function eXchange use
cases

• Tandem with Field Updates ONLY for the pre-defined Field Updates use case

• PR over PCIe to enable the MCAP link for Dynamic Function eXchange, without enabling
Tandem Configuration

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 156Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_ultrascale;v=latest;d=pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_pcie3;v=latest;d=pg194-axi-bridge-pcie-gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=xdma;v=latest;d=pg195-pcie-dma.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=156

3. Change the Tandem Configuration or Partial Reconfiguration option according to your
desired case in UltraScale+:

• Tandem PROM for Tandem PROM or Tandem + Dynamic Function eXchange use cases

• Tandem PCIe for Tandem PCIe or Tandem + Dynamic Function eXchange use cases

• Tandem PCIe with Field Updates ONLY for the pre-defined Field Updates use case;
Tandem PROM does not support Field Updates in UltraScale+

• PR over PCIe to enable the MCAP link for Dynamic Function eXchange, without enabling
Tandem Configuration

The PCIe block that must be selected in most cases is the lowest instance in the device, except
for SSI devices with three super logic regions (SLRs), in which case it is the lowest PCIe instance
in the center SLR. A complete listing of the specific supported blocks is shown below in Table
12: UltraScale: PCIe Block and Reset Locations Supporting DFX, by Device. All other PCIe blocks
do not have the dedicated MCAP feature.

For complete information about Tandem Configuration, including required PCIe block locations,
design flow examples, requirements, restrictions and other considerations, see this link in
UltraScale Devices Gen3 Integrated Block for PCI Express LogiCORE IP Product Guide (PG156) for
UltraScale devices. For UltraScale+ devices, see UltraScale+ Devices Integrated Block for PCI
Express LogiCORE IP Product Guide (PG213).

Table 12: UltraScale: PCIe Block and Reset Locations Supporting DFX, by Device

Device Package PCIe Block PCIe Reset Location Status
Kintex UltraScale

KU025 PCIE_3_1_X0Y0 IOB_X1Y103 Production

KU035 PCIE_3_1_X0Y0 IOB_X1Y103 Production

KU040 PCIE_3_1_X0Y0 IOB_X1Y103 Production

KU060 PCIE_3_1_X0Y0 IOB_X2Y103 Production

KU085 PCIE_3_1_X0Y0 IOB_X2Y103 Production

KU095 PCIE_3_1_X0Y0 IOB_X1Y103 Production

KU115 PCIE_3_1_X0Y0 IOB_X2Y103 Production

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 157Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_ultrascale;v=latest;d=pg156-ultrascale-pcie-gen3.pdf;a=xTandemConfiguration
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_ultrascale;v=latest;d=pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=157

Table 12: UltraScale: PCIe Block and Reset Locations Supporting DFX, by Device (cont'd)

Device Package PCIe Block PCIe Reset Location Status
Virtex® UltraScale™

XVU065 PCIE_3_1_X0Y0 IOB_X1Y103 Production

VU080 PCIE_3_1_X0Y0 IOB_X1Y103 Production

VU095 PCIE_3_1_X0Y0 IOB_X1Y103 Production

VU125 PCIE_3_1_X0Y0 IOB_X1Y103 Production

VU160 PCIE_3_1_X0Y1 IOB_X1Y363 Production

VU190 PCIE_3_1_X0Y2 IOB_X1Y363 Production

VU440 PCIE_3_1_X0Y2 IOB_X1Y363 Production

To easily find the package pin for the dedicated PCIe Reset for UltraScale devices, issue the
following Tcl command:

get_package_pins -of_objects [get_sites IOB_X1Y103]

Table 13: UltraScale+: PCIe Block Locations Supporting DFX, by Device

Device Package PCIe Block Status1

UltraScale+

KU3P PCIE40E4_X0Y0 Production

KU5P PCIE40E4_X0Y0 Production

KU11P PCIE40E4_X1Y0 Production

KU15P PCIE40E4_X1Y0 Production

KU19P no MCAP enabled PCIe site Unsupported for PCIe delivery2

UltraScale+

VU3P PCIE40E4_X1Y0 Production

VU5P PCIE40E4_X1Y0 Production

VU7P PCIE40E4_X1Y0 Production

VU9P PCIE40E4_X1Y2 Production

VU11P PCIE40E4_X0Y0 Production

VU13P PCIE40E4_X0Y1 Production

VU19P PCIE4CE4_X0Y2 Production

VU23P PCIE4CE4_X0Y0 Production

VU27P PCIE40E4_X0Y0 Production

VU29P PCIE40E4_X0Y0 Production

VU31P PCIE4CE4_X1Y0 Production

VU33P PCIE4CE4_X1Y0 Production

VU35P PCIE4CE4_X1Y0 Production

VU37P PCIE4CE4_X1Y0 Production

VU45P PCIE4CE4_X1Y0 Production

VU47P PCIE4CE4_X1Y0 Production

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=158

Table 13: UltraScale+: PCIe Block Locations Supporting DFX, by Device (cont'd)

Device Package PCIe Block Status1

VU57P PCIE4CE4_X1Y0 Production

Zynq MPSoC

ZU4EV/EG/CC PCIE40E4_X0Y1 Production

ZU5EV/EG/CC PCIE40E4_X0Y1 Production

ZU7EV/EG/CC PCIE40E4_X0Y1 Production

ZU11EG PCIE40E4_X1Y0 Production

ZU17EG PCIE40E4_X1Y0 Production

ZU19EG PCIE40E4_X1Y0 Production

Notes:
1. For the most up-to-date information on core and device support status, consult the product guide for the specific

version of the IP you wish to use.
2. The KU19P has no master PCIe block instance; none of the three PCIe blocks in the device contain the MCAP

connection to the configuration engine. Tandem Configuration is not supported for this device, and any partial
bitstream delivery via PCIe must be sent to the ICAP.

Note: Any device not listed in this table does not have a PCIe site in the programmable logic portion of the
device, or, like Zynq RFSoC devices, does not have an MCAP-enabled PCIe site in the programmable logic.
Unlike UltraScale, UltraScale+ does not have a dedicated connection to a PCIe Reset pin, but Xilinx
recommends using a pin in Bank 65.

The MCAP is capable of operating at 200 MHz with a 32-bit data path. Traditionally bitstreams
are loaded into the MCAP from a host PC through PCI Express configuration packets. In these
systems the host PC and host PC software are the main factors which limit MCAP performance
and bitstream throughput. Because PCIe performance of specific host PC and host PC software
can vary widely, overall MCAP performance throughput might vary.

For more information and sample drivers, see the answer record, Bitstream Loading across the PCI
Express Link in UltraScale Devices for Tandem PCIe and Partial Reconfiguration (AR# 64761).

If the performance of partial bitstream delivery using the MCAP port is insufficient, the ICAP can
be used instead. While this approach does require additional logic to funnel configuration data
from the PCIe end point to this internal configuration port, the ICAP can be saturated with 32-bit
configuration data at the maximum clock rate (200MHz for monolithic devices, 125MHz for SSI
devices). See Fast Partial Reconfiguration Over PCI Express Application Note (v1.0) (XAPP1338) for
more information and an example design.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 159Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=64761.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1338-fast-partial-reconfiguration-pci-express.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=159

Formatting BIN Files for Delivery to Internal
Configuration Ports

Partial bit files have the same basic format as full bit files, but they are reduced to the set of
configuration frames for the target region and restricted to the set of events that make sense for
active devices. Partial bit files can be:

• Delivered to external interfaces, such as JTAG or slave configuration ports.

• Reformatted as BIN files to be delivered to the internal configuration ports: ICAP (7 series or
UltraScale devices), PCAP (Zynq devices only) or MCAP (UltraScale devices only).

Generate BIN files using the write_cfgmem utility. Three options are critical:

• Set -format as BIN to generate that file type.

• Use -interface to select the SelectMap width, and use SMAPx32 for PCAP or MCAP for
UltraScale ICAP.

○ SMAPx16 and SMAPx8 (default) can also be used for the 7 series ICAP.

○ SMAPx8 is required for 7 series encrypted partial bitstreams.

• You must use -disablebitswap to target the PCAP or MCAP.

Examples

ICAP (for 7 series devices)

write_cfgmem -format BIN -interface SMAPx8 -loadbit "up 0x0
<partial_bitfile>"

ICAP (for UltraScale devices)

write_cfgmem -format BIN -interface SMAPx32 -loadbit "up 0x0
<partial_bitfile>"

PCAP (for Zynq-7000 SoC devices) or MCAP (for one specific PCIe block per UltraScale device)

write_cfgmem -format BIN -interface SMAPx32 -disablebitswap -loadbit "up
0x0
<partial_bitfile>"

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=160

Summary of BIT Files for UltraScale Devices
This section applies specifically to UltraScale devices and does not apply to 7 series, UltraScale+,
Zynq or Zynq MPSoC devices. With the finer granularity of global signals (that is, GSR) and the
ability to reconfigure new element types, a new configuration process is necessary. Prior to
loading in a partial bitstream for a new RM, the existing RM must be cleared. This clearing
bitstream prepares the device for delivery of any subsequent partial bitstream for that RP by
establishing the global signal mask for the region to be reconfigured. Although the existing
module technically is not removed, it is easiest to think of it this way.

When running write_bitstream on a design configuration with RPs, a clearing BIT file per RP
is created. For example, take a design in which two RPs (RP1 and RP2), with two RMs each, A1
and B1 into RP1, and A2 and B2 into RP2, have been implemented. Two configurations (configA
and configB) have been run through place and route, and pr_verify has passed. When
bitstreams are generated, each configuration produces five bitstreams. For configA, these could
be named:

• configA.bit: This is the full design bitstream that is used to configure the device from
power-up. This contains the static design plus functions A1 and A2.

• configA_RP1_A1_partial.bit: This is the partial BIT file for function A1. This is loaded
after another RM has been cleared from this RP.

• configA_RP1_A1_partial_clear.bit: This is the clearing BIT file for function A1.
Before loading in any other partial BIT file into RP1 after function A1, this file must be loaded.

• configA_RP2_A2_partial.bit: This is the partial BIT file for function A2. This is loaded
after another RM has been cleared from this RP.

• configA_RP2_A2_partial_clear.bit: This is the clearing BIT file for function A2.
Before loading in any other partial BIT file into RP2 after function A2, this file must be loaded.

Likewise, configB produces five similar bitstreams:

• configB.bit: This is the full design bitstream that is used to configure the device from
power-up. This contains the static design plus functions B1 and B2.

• configB_RP1_B1_partial.bit: This is the partial BIT file for function B1. This is loaded
after another RM has been cleared from this RP.

• configB_RP1_B1_partial_clear.bit: This is the clearing BIT file for function B1.
Before loading in any other partial BIT file into RP1 after function B1, this file must be loaded.

• configB_RP2_B2_partial.bit: This is the partial BIT file for function B2. This is loaded
after another RM has been cleared from this RP.

• configB_RP2_B2_partial_clear.bit: This is the clearing BIT file for function B2.
Before loading in any other partial BIT file into RP2 after function B2, this file must be loaded.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=161

The sequence for any reconfiguration is to first load a clearing BIT file for a current RM,
immediately followed by a new RM. For example, to transition RP RP1 from function A1 to
function B1, first load the BIT file configA_RP1_A1_partial_clear.bit, then load
configB_RP1_B1_partial.bit. The first bitstream prepares the region by opening the
mask, and the second bitstream loads the new function, initializes only that region, then closes
the mask.

If a clearing bit file is not loaded, initialization routines (GSR) have no effect. If a clearing file for a
different RP is loaded, then that RP is initialized instead of the one that has been just
reconfigured. If the incorrect clearing file for the proper RP is used, the current RM or possibly
even the static design could be disrupted until the following partial bit file has been loaded.

System Design for Configuring an FPGA
A partial BIT file can be downloaded to the FPGA in the same manner as a full BIT file. An
external microprocessor determines which partial BIT file should be downloaded, where it exists
in an external memory space, and directs the partial BIT file to a standard FPGA configuration
port such as JTAG, Select MAP or serial interface. The FPGA processes the partial BIT file
correctly without any special instruction that it is receiving a partial BIT file.

It is common to assert the INIT or PROG signals on the FPGA configuration interface before
downloading a full BIT file. This must not be done before downloading a partial BIT file, as that
would indicate the delivery of a full BIT file, not a partial one.

Any indication to the working design that a partial BIT file will be sent (such as holding enable
signals and disabling clocks) must be done in the design—and not by means of dedicated FPGA
configuration pins. System Design for Configuring an FPGA shows the process of configuring
through a microprocessor.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=162

Figure 62: Configuring Through a Microprocessor

In addition to the standard configuration interfaces, Dynamic Function eXchange supports
configuration by means of the Internal Configuration Access Port (ICAP). The ICAP protocol is
identical to SelectMAP and is described in the Configuration User Guide for the target device.
The ICAP library primitive can be instantiated in the HDL description of the FPGA design, thus
enabling analysis and control of the partial BIT file before it is sent to the configuration port. The
partial BIT file can be downloaded to the FPGA through general purpose I/O or gigabit
transceivers and then routed to the ICAP in the FPGA programmable logic.

Rules for DFX ports and formats:

• Encrypted partial bitstreams can be delivered to any port, but only when the initial
configuration was also encrypted. The same key must be used for all bitstreams.

• If the initial configuration of a device is encrypted, unencrypted partial bitstreams can be used
only if they are delivered to the ICAP.

• Bitstream authentication for partial bitstreams is not supported for or Kintex devices, only for
Zynq devices.

• The ICAP must be used with an 8-bit bus only for Dynamic Function eXchange for encrypted
7 series BIT files.

• Reconfiguration through external configuration ports is permitted only when bitstream
readback security is not set to Level 2.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=163

Partial BIT File Integrity
Error detection and recovery of partial BIT files have unique requirements compared to loading a
full BIT file. If an error is detected in a full BIT file when it is being loaded into an FPGA, the
FPGA never enters user mode. The error is detected after the corrupt design has been loaded
into configuration memory, and specific signals are asserted to indicate an error condition.
Because the FPGA never enters user mode, the corrupt design never becomes active. You must
determine the system behavior for recovering from a configuration error such as downloading a
different BIT file if the error condition is detected.

When you download partial BIT files, you cannot use this methodology for error detection and
recovery. The FPGA is by definition already in user mode when the partial BIT file is loaded.
Because the configuration circuitry supports error detection only after a BIT file has been loaded,
a corrupt partial BIT file can become active, potentially damaging the FPGA if left operating for
an extended period of time.

If a CRC error is detected during a partial reconfiguration, it asserts the INIT_B pin of the FPGA
(INIT_B goes Low to indicate a CRC error). In UltraScale devices, this behavior is echoed on the
PRERROR output pin of the ICAP. It is important to note that if a system monitors INIT_B for
CRC errors during the initial configuration, a CRC error during a partial reconfiguration might
trigger the same response. To detect the presence of a CRC error from within the FPGA, the CRC
status can be monitored through the ICAP block. The Status Register (STAT) indicates that the
partial BIT file has a CRC error, by asserting the CRC_ERROR flag (bit 0).

There are two types of partial BIT file errors to consider: data errors and address errors (the
partial BIT file is essentially address and data information). Given that static routes are free to
pass through reconfigurable regions, both types of errors can corrupt the static design, although
the likelihood is very small. The only method for completely safe recovery is to download a new
full BIT file to ensure the state of the static logic, which requires the entire FPGA to be reset.

Many systems do not need a complex recovery mechanism because resetting the entire FPGA is
not critical, or the partial BIT file is stored locally. In that case, the chance of BIT file corruption is
not appreciable. Systems in which the BIT files are at risk of becoming corrupted (such as sending
the partial BIT file over a radio link) should use a dedicated silicon feature that avoids the
problem.

The configuration engines of 7 series, UltraScale, and UltraScale+ FPGAs, as well as Zynq-7000
SoC devices, have the ability to perform a frame-by-frame CRC check and do not load a frame
into the configuration memory if that CRC check fails. A failure is reported on the INIT_B pin (it is
pulled Low) and gives you the opportunity to take the next steps: retry the partial bit file, fall
back to a golden partial bit file, etc. The partially loaded reconfiguration region does not have
valid programming in it, but the CRC check ensures the remainder of the device (static region and
any other RMs) stays operational while the system recovers from the error.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=164

To enable this feature for these devices, set the PerFrameCRC property prior to running
write_bitstream. The default is No, and Yes inserts the extra CRC checks. The size of an
uncompressed bit file increases four to five percent with this option enabled. Note that this
feature is not compatible with bitstream compression. No other specific design considerations
are necessary to select this option, but your partial reconfiguration controller solution should be
designed to choose the course of action should the INIT_B pin indicate a failure has occurred.

The syntax for setting the PerFrameCRC property is:

set_property bitstream.general.perFrameCRC yes [current_design]

This property inserts per-frame CRC checks in all bitstreams created from the current checkpoint,
not just partial bitstreams. Full device bitstreams for the initial configuration of the device would
also contain the extra CRC checks.

After a partial bit file has been loaded (with or without the per-frame CRC checks), the overall
configuration of the device has changed. If the POST_CRC feature for SEU mitigation is enabled,
the SEU mitigation engine automatically recalculates the embedded SEU CRC value after the
partial bitstream has been loaded and after you have de-synced the configuration interface.
Upon completion of the CRC recalibration, the FRAME_ECCE2 FRAME_VALID output toggles
again to indicate that SEU detection has resumed.

Configuration Frames
All user-programmable features inside Xilinx FPGA and SoC devices are controlled by volatile
memory cells that must be configured at power-up. These memory cells are collectively known as
configuration memory. They define the LUT equations, signal routing, IOB voltage standards, and
all other aspects of the design.

Xilinx FPGA and SoC architectures have configuration memory arranged in frames that are tiled
about the device. These frames are the smallest addressable segments of the device
configuration memory space, and all operations must therefore act upon whole configuration
frames.

Reconfigurable Frames are built upon these configuration frames, and these are the minimum
building blocks for performing dynamic reconfiguration.

• Base Regions in 7 series FPGAs are:

• CLB: 50 high by 1 wide

• DSP48: 10 high by 1 wide

• Block RAM: 10 high by 1 wide

• Base Regions in UltraScale and UltraScale+ FPGAs are:

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 165Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=165

• CLB: 60 high by 1 wide

• DSP48: 24 high by 1 wide

• Block RAM: 12 high by 1 wide

• I/O and Clocking: 52 I/O (one bank), plus related XiPhy, MMCM, and PLL resources

• Gigabit Transceivers: Four high (one quad, plus related clocking resources)

Configuration Time
The speed of configuration is directly related to the size of the partial BIT file and the bandwidth
of the configuration port. The different configuration ports in each device family have the
maximum bandwidths shown in Table 14: Maximum Bandwidths for Configuration Ports in 7
Series Devices,Table 17: ICAP “O” Port Bits, and Table 18: ICAP Sync Bits.

Table 14: Maximum Bandwidths for Configuration Ports in 7 Series Devices

Configuration Mode Max Clock Rate Data Width Maximum Bandwidth
ICAP 100 MHz 32 bit 3.2 Gb/s

SelectMAP 100 MHz 32 bit 3.2 Gb/s

Serial Mode 100 MHz 1 bit 100 Mb/s

JTAG 66 MHz 1 bit 66 Mb/s

Table 15: Maximum Bandwidths for Configuration Ports in UltraScale Devices

Configuration Mode Max Clock Rate Data Width Maximum Bandwidth
ICAP/MCAP 200 MHz 32-bit 6.4 Gb/s

ICAP/MCAP (SSI)1 125 MHz 32-bit 4.0 Gb/s

SelectMAP 125 MHz 32 bit 4.0 Gb/s

Serial Mode 150 MHz 1 bit 150 Mb/s

Serial (SSI Devices) 100 MHz 1 bit 100 Mb/s

JTAG 50 MHz 1 bit 50 Mb/s

JTAG (SSI Devices) 20 MHz 1 bit 20 Mb/s

1. When delivered to the master SLR to program any SLR; when programming to the same SLR as the ICAP, the faster
rate can be used. Note that configuration clock frequency maximums may be less than these values depending on
speed grade or operating voltage. Consult the Data Sheet for your target device for more information.

Table 16: Maximum Bandwidths for Configuration Ports in UltraScale+ Devices

Configuration Mode Max Clock Rate Data Width Maximum Bandwidth
ICAP/MCAP 200 MHz 32-bit 6.4 Gb/s

ICAP/MCAP (SSI)1 125 MHz 32-bit 4.0 Gb/s

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=166

Table 16: Maximum Bandwidths for Configuration Ports in UltraScale+ Devices (cont'd)

Configuration Mode Max Clock Rate Data Width Maximum Bandwidth
BPI 125 MHz 16-bit 2.0 Gb/s

QSPI 125 MHz 4-bit 500 Mb/s

SelectMAP 125 MHz 32-bit 4.0 Gb/s

Serial Mode 125 MHz 1-bit 125 Mb/s

JTAG 66 MHz 1-bit 66 Mb/s

JTAG (SSI Devices) 20 MHz 1-bit 20 Mb/s

1. When delivered to the master SLR to program any SLR; when programming to the same SLR as the ICAP, the faster
rate can be used. Note that configuration clock frequency maximums may be less than these values depending on
speed grade or operating voltage. Consult the Data Sheet for your target device for more information.

In addition to being reported by write_bitstream, The exact bitstream length is available in
the created.rbt file by using the -raw_bitfile option for write_bitstream. Use this
number along with the bandwidth to calculate the total configuration time. Here is an example of
the header in a raw bit file:

Xilinx ASCII Bitstream
Created by Bitstream 2019.2
Design name: led_shift_count;UserID=0XFFFFFFFF
Architecture: kintex7
Part: 7k325tffg900
Date: Mon Mar 16 16:42:05 2015
Bits: 1211072
11111111111111111111111111111111

Configuration Debugging
The ICAP interface can be use used to monitor the configuration process when it is used as the
port for delivering bitstreams. The "O" port of the ICAP block is a 32-bit bus, but only the lowest
byte is used. The mapping of the lower byte is as follows:

Table 17: ICAP “O” Port Bits

ICAP “O” Port Bits Status Bit Meaning
O[7] CFGERR_B Configuration error (active-Low)

0 = A configuration error has occurred.
1 = No configuration error.

O[6] DALIGN Sync word received (active-High)
0 = No sync word received.
1 = Sync word received by interface
logic.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=167

Table 17: ICAP “O” Port Bits (cont'd)

ICAP “O” Port Bits Status Bit Meaning
O[5] RIP Readback in progress (active-High)

0 = No readback in progress.
1 = A readback is in progress.

O[4] IN_ABORT_B ABORT in progress (active-Low)
0 = Abort is in progress.
1 = No abort in progress.

O[3:0] 1 Reserved

The most significant nibble of this byte reports the status. These Status bits indicate whether the
Sync word been received and whether a configuration error has occurred. The following table
displays the values for these conditions.

Table 18: ICAP Sync Bits

O[7:4] Sync Word? CFGERR?
9 No Sync No CFGERR

D Sync No CFGERR

5 Sync CFGERR

1 No Sync CFGERR

Note: In the above table, the entries in the first column are different depending on the board. For 7 series
devices, they end with “F”, so 9F, DF, etc. For UltraScale+ devices, they end with “B”, so 9B, DB, etc.

Configuration Debugging shows a completed full configuration, followed by a partial
reconfiguration with a CRC error, and finally a successful partial reconfiguration. Using the table
above, and the description below, you can see how the “O” port of the ICAP can be used to
monitor the configuration process. If a CRC error occurs, these signals can be used by a
configuration state machine to recover from the error. These signals can also be used by Vivado
Logic Analyzer to capture a configuration failure for debug purposes. With this information
Vivado Logic Analyzer can also be used to capture the various points of a partial reconfiguration.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=168

Figure 63: Vivado Logic Analyzer Display for Dynamic Function eXchange

The markers in the Vivado Logic Analyzer display indicate the following:

• 1st_done: This marker indicates the completion of the initial full bitstream configuration. The
DONE pin (done_pad in this waveform) goes HIGH.

• cfgerr: This marker indicates a CRC error is detected while loading partial bitstream. The
status can be observed through O[31:0] (icap_o_top[31:0] in the waveform).

• Icap_o_top[31:0] starts at 0x9F

• After seen SYNC word, Icap_o_top[31:0] change to 0xDF

• After detect CRC error, Icap_o_top[31:0] change to 0x5F for one cycle, and then
switches to 0x1F

• INIT_B pin is pulled Low (init_pad in the waveform)

• RCRC: This marker indicates when the partial bitstream is loaded again. The RCRC command
resets the cfgerr status, and removes the pull-down on the INIT_B pin (init_pad in this
waveform).

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=169

• Icap_o_top[31:0] change from 0x1F to 0x5F when the SYNC word is seen

• Icap_o_top[31:0] change from 0x5F to 0xDF when RCRC command is received

• pr_done: This marker indicates a successful partial reconfiguration.

• Icap_o_top[31:0] change from 0xDF to 0x9F when the DESYNC command is received
and no configuration error is detected.

In addition to the techniques described above, the UltraScale architecture introduced two new
dedicated ports on the ICAP to aid in Dynamic Function eXchange:

• The PRDONE pin is intended to echo the external DONE pin. However, it should only be used
for the following:

○ Monolithic devices

○ SSI devices when the RP is on the master SLR

○ When the ICAP used is on the same SLR as the RP.

Any partial bitstream that configures a slave SLR from the master ICAP will see multiple
PRDONE events due to the construction of these partial bitstreams. Instead, use the EOS pin
on the STARTUP block on the master SLR as a reliable indication of the completion of partial
reconfiguration.

• The PRERROR pin echoes the external INIT_B pin. It drops LOW when a CRC error occurs,
either with the standard full CRC value at the end of the bit file, or with any per-frame CRC
value.

Using Vivado Debug Cores
Vivado debug cores (ILA, VIO, etc.) can be placed in any part of a Dynamic Function eXchange
design, including within RMs. A specific design methodology is necessary to connect these cores
to a central Debug Hub for communication throughout the device.

The connectivity between the central Debug Hub in static can be set up automatically, and this is
triggered by a specific naming convention for the port names on the RP. These twelve pins are
required, and the hub will be inferred if these exact names are used. Examples in Verilog and
VHDL are below.

Verilog instantiation in the static design:

my_count counter_inst (
.clk(my_clk),
.dout(dout),
.S_BSCAN_drck(),
.S_BSCAN_shift(),
.S_BSCAN_tdi(),

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=170

.S_BSCAN_update(),

.S_BSCAN_sel(),

.S_BSCAN_tdo(),

.S_BSCAN_tms(),

.S_BSCAN_tck(),

.S_BSCAN_runtest(),

.S_BSCAN_reset(),

.S_BSCAN_capture(),

.S_BSCAN_bscanid_en()
);

VHDL component declaration and instantiation in the static design:

component my_count is
Port (clk : in STD_LOGIC;
dout : out STD_LOGIC;
S_BSCAN_drck: IN std_logic := '0';
S_BSCAN_shift: IN std_logic := '0';
S_BSCAN_tdi: IN std_logic := '0';
S_BSCAN_update: IN std_logic := '0';
S_BSCAN_sel: IN std_logic := '0';
S_BSCAN_tdo: OUT std_logic;
S_BSCAN_tms: IN std_logic := '0';
S_BSCAN_tck: IN std_logic := '0';
S_BSCAN_runtest: IN std_logic := '0';
S_BSCAN_reset: IN std_logic := '0';
S_BSCAN_capture: IN std_logic := '0';
S_BSCAN_bscanid_en: IN std_logic := '0'
);
end component;

counter_inst: my_count
port map (clk => my_clk,
dout => dout,
S_BSCAN_drck => open,
S_BSCAN_shift => open,
S_BSCAN_tdi => open,
S_BSCAN_update => open,
S_BSCAN_sel => open,
S_BSCAN_tdo => open,
S_BSCAN_tms => open,
S_BSCAN_tck => open,
S_BSCAN_runtest => open,
S_BSCAN_reset => open,
S_BSCAN_capture => open,
S_BSCAN_bscanid_en => open
);

Note: These input ports must receive an initial value to use the open keyword, and that initial value must
be 0. Ports tied to 1 will not connect to the local debug hub.

Within the RM top-level RTL, leave these twelve ports unconnected. Debug Hubs are inserted as
black boxes, one in static and one in each RM during synthesis. These inserted IP are then
expanded during opt_design. This is done for each RM, even if there are no debug cores
within that RM (including greybox RMs).

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=171

If these exact port names cannot be used for any reason, such as the need to explicitly connect
to multiple BSCAN instances, attributes can be used to drive the Debug Hub insertion. This
approach must also be used if the first configuration processed does not have any debug cores
present; inference of Debug Hubs is not done if no debug cores within the RM can be found
byVivado implementation tools.

In the syntax shown below, do not change anything other than the port names in order to assign
Debug ports. These attributes are to be used in all RM top level source files.

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=172

Verilog attributes in the RM top level:

expanse="page">(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0
S_BSCAN drck" *) (* DEBUG="true" *)
input my_drck;

expanse="page">(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0
S_BSCAN shift" *) (* DEBUG="true" *)
input my_shift;

expanse="page">(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0
S_BSCAN tdi" *) (* DEBUG="true" *)
input my_tdi;

expanse="page">(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0
S_BSCAN update" *) (* DEBUG="true" *)
input my_update;

expanse="page">(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0
S_BSCAN sel" *) (* DEBUG="true" *)
input my_sel;

expanse="page">(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0
S_BSCAN tdo" *) (* DEBUG="true" *)
output my_tdo;

expanse="page">(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0
S_BSCAN tms" *) (* DEBUG="true" *)
input my_tms;

expanse="page">(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0
S_BSCAN tck" *) (* DEBUG="true" *)
input my_tck;

expanse="page">(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0
S_BSCAN runtest" *) (* DEBUG="true" *)
input my_runtest;

expanse="page">(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0
S_BSCAN reset" *) (* DEBUG="true" *)
input my_reset;

expanse="page">(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0
S_BSCAN capture" *) (* DEBUG="true" *)
input my_capture;

expanse="page">(* X_INTERFACE_INFO = "xilinx.com:interface:bscan:1.0
S_BSCAN bscanid_en" *)
(* DEBUG="true" *) input my_bscanid_en;

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=173

VHDL attributes in the RM top level:

expanse="page">attribute X_INTERFACE_INFO : string;

expanse="page">attribute DEBUG : string;

expanse="page">attribute X_INTERFACE_INFO of my_drck: signal is
"xilinx.com:interface:bscan:1.0 S_BSCAN
drck";

expanse="page">attribute DEBUG of my_drck: signal is "true";

expanse="page">attribute X_INTERFACE_INFO of my_shift: signal is
"xilinx.com:interface:bscan:1.0 S_BSCAN
shift";

expanse="page">attribute DEBUG of my_shift: signal is "true";

expanse="page">attribute X_INTERFACE_INFO of my_tdi: signal is
"xilinx.com:interface:bscan:1.0 S_BSCAN
tdi";

expanse="page">attribute DEBUG of my_tdi: signal is "true";

expanse="page">attribute X_INTERFACE_INFO of my_update: signal is
"xilinx.com:interface:bscan:1.0 S_BSCAN
update";

expanse="page">attribute DEBUG of my_update: signal is "true";

expanse="page">attribute X_INTERFACE_INFO of my_sel: signal is
"xilinx.com:interface:bscan:1.0 S_BSCAN
sel";

expanse="page">attribute DEBUG of my_sel: signal is "true";

expanse="page">attribute X_INTERFACE_INFO of my_tdo: signal is
"xilinx.com:interface:bscan:1.0 S_BSCAN
tdo";

expanse="page">attribute DEBUG of my_tdo: signal is "true";

expanse="page">attribute X_INTERFACE_INFO of my_tms: signal is
"xilinx.com:interface:bscan:1.0 S_BSCAN
tms";

expanse="page">attribute DEBUG of my_tms: signal is "true";

expanse="page">attribute X_INTERFACE_INFO of my_tck: signal is
"xilinx.com:interface:bscan:1.0 S_BSCAN
tck";

expanse="page">attribute DEBUG of my_tck: signal is "true";

expanse="page">attribute X_INTERFACE_INFO of my_runtest: signal is

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=174

"xilinx.com:interface:bscan:1.0 S_BSCAN
runtest";

expanse="page">attribute DEBUG of my_runtest: signal is "true";

expanse="page">attribute X_INTERFACE_INFO of my_reset: signal is
"xilinx.com:interface:bscan:1.0 S_BSCAN
reset";

expanse="page">attribute DEBUG of my_reset: signal is "true";

expanse="page">attribute X_INTERFACE_INFO of my_capture: signal is
"xilinx.com:interface:bscan:1.0 S_BSCAN
capture";

expanse="page">attribute DEBUG of my_capture: signal is "true";

expanse="page">attribute X_INTERFACE_INFO of my_bscanid_en: signal is
"xilinx.com:interface:bscan:1.0
S_BSCAN bscanid_en";

expanse="page">attribute DEBUG of my_bscanid_en: signal is "true";

There are currently two limitations to this solution:

1. All debug cores within RMs must be instantiated. The MARK_DEBUG insertion flow is not
yet supported.

2. A greybox configuration cannot be the first one processed. The debug bridge must be
established within an RM with debug cores to establish connectivity with the debug hub
before moving to versions that do not contain debug cores.

For an example of this core insertion as well as functionality within the Vivado Hardware
Manager, see this link in Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947).

Chapter 8: Configuring the Device

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 175Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug947-vivado-partial-reconfiguration-tutorial.pdf;a=xVivadoDebugAndThePRProjectFlow
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=175

Chapter 9

Known Issues and Limitations
This is a list of issues that might be encountered when using Dynamic Function eXchange (DFX)
in the current Vivado® Design Suite release. If you encounter any of these issues, or discover any
others, contact Xilinx® Support and send an example design that shows the issue. These test
cases are very helpful to improve the overall solution.

Report to Xilinx all cases of fatal or internal errors, incomplete routing (partial antennas), or other
rule violations that prevent place and route, pr_verify, and write_bitstream from
succeeding. Including a design showing the failure is critical for proper analysis and
implementation of fixes.

• If the initial configuration of a 7 series SSI device (7V2000T, 7VX1140T) is done through an
SPI interface, partial bitstreams cannot be delivered to the master (or any) ICAP; they must be
delivered to an external port, such as JTAG. If the initial configuration is done through any
other configuration port, the master ICAP can be used as the delivery port for partial
bitstreams. Contact Xilinx Support for a workaround.

• Do not drive multiple outputs of a single RM with the same source. Each output of an RM
must have a unique driver.

• When using Virtex UltraScale+ VU29P devices, connections between the IBUFDS_GTM and
GTM_DUAL sites might be unroutable if the placer does not place them on the same SLR and
the same side of the device. You might encounter route_design Route 35-7 in this case. If this
occurs, you must LOC both the IBUFDS_GTM and GTM_DUAL instances to appropriate
locations in the same SLR on the same side of the device.

• Engineering Silicon (ES) for UltraScale™ or UltraScale+™ devices does not officially support
Dynamic Function eXchange. To investigate the capabilities of DFX on ES devices, contact
Xilinx Support for advice.

Known Limitations
Certain features are not yet developed or supported in the current release. These include:

• When selecting Pblock ranges to define the size and shape of the RP, do not use the
CLOCKREGION resource type for 7 series or Zynq-7000 designs. Pblock ranges must only
include types SLICE, RAMB18, RAMB36, and DSP48 resource types.

Chapter 9: Known Issues and Limitations

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=176

• Do not use Vivado Debug core insertion features within RPs. This flow inserts the debug hub,
which includes BSCAN primitive, which is not permitted inside reconfigurable bitstreams.
Vivado Debug cores must be instantiated or included within IP, then the Debug Hub can be
inferred as described in Using Vivado Debug Cores.

• UpdateMEM does not support partial or Tandem bitstreams. To associate memory files with
DFX designs, the ELF Association flow must be applied. See this link in the Vivado Design Suite
User Guide: Designing IP Subsystems using IP Integrator (UG994) for details.

• The Soft Error Mitigation (SEM) IP core is supported in conjunction with DFX in monolithic
devices. For UltraScale devices, the SEM IP core is not supported when using Dynamic
Function eXchange on SSI devices. For UltraScale+ devices, the SEM IP core is supported
when using DFX on SSI devices. For more information on using the SEM IP in DFX designs,
see Demonstration of Soft Error Mitigation IP and Partial Reconfiguration Capability on Monolithic
Devices (XAPP1261).

• The STARTUP primitive does not support loading of partial bitstreams for 7 series and
UltraScale devices, as its clock will stop once a partial bitstream enters the configuration
engine. IP, such as the AXI SPI IP or the AXI EMC IP, should not be configured to use the
STARTUP primitive to clock or deliver partial bitstreams from external flash. For these
architectures, partial bitstreams may be stored in BPI or SPI flash, but they must be moved to
DDR or another location before being shifted into the ICAP.

• Two use cases regarding encryption will not be supported when using new features within
UltraScale and UltraScale+ devices:

1. If RSA authentication is selected for the initial configuration, then encrypted partial
reconfiguration is not supported. RSA authentication is not supported on FPGAs for
partial bitstreams.

2. If the initial configuration bitstream uses an obfuscated AES-256 key stored in either the
eFUSE or BBRAM, then any encrypted partial bitstreams must use the same obfuscated
key. Encrypted partial bitstreams using a different key than the initial bitstream is not
supported.

In either of these two cases, an unencrypted partial bitstream may be delivered to the
ICAP to partially reconfigure the device.

• Bitstream compression and per-frame CRC checks cannot be enabled at the same time for a
partial bitstream.

• The update_design command in general permits multiple targets for the -cells switch.
However, when using this command for PR designs (for use with -black_box or -
buffer_ports), specify one cell (RP) at a time. Performing these actions on more than RP
requires multiple calls to update_design.

• Cascaded global clocking buffers across RM boundary is not a supported use case and is not
guaranteed to be successfully routed. If cascaded BUFS are unavoidable in the design, it is
recommended to keep them both, either in static or RP.

• All RP ports must be strictly input or output in direction. Ports of type inout are not
supported.

Chapter 9: Known Issues and Limitations

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 177Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf;a=xAddingAndAssociatingAnElfFileToAnEmbeddedDesign
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1261-demo-sem-pr.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=177

Chapter 10

Hierarchical Design Flows
The Dynamic Function eXchange (DFX) flow is an ideal hierarchical design tool for a top-down in-
context use case. The ability to implement the static portion of the design, meet timing, and then
reuse those results meets the needs of other hierarchical design (HD) flows.

Platform Reuse takes advantage of the tool's ability to separate out the top-level (Platform) from
the lower level partitions. Platform Reuse can be used for a number of use cases including:

• Reduced design cycle and timing closure. By closing timing on the top-level, interface logic
that changes once (such as memory controllers, networking IP, high speed interconnect) and
then locking down and reusing the placed/routed result for the Platform which partition logic
is being developed.

• Platform delivery to end users. In this case a Platform can be developed by one user, and then
fully placed, routed, and locked DCP (with black boxes for partitions) and be delivered to
another user for development of customer partition logic.

Both of these flows use the Dynamic Function eXchange flow, to implement the initial design,
carve out the partitions, and lock down the Static/Platform logic. All features of DFX (like
greybox support) can be used, and all requirements of the DFX flow must be followed. From the
tool's perspective, there is no difference between the flows, and all DFX DRCs will be applied.

Because partial bit files are not required for this flow, Xilinx recommends using the -
no_partial_bitfile switch of the write_bitstream command to avoid producing partial
bitstreams.

Chapter 10: Hierarchical Design Flows

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=178

Chapter 11

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual property
at all stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx Documentation
Navigator (DocNav):

• From theVivado IDE, select Help > Documentation and Tutorials.

• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Chapter 11: Additional Resources and Legal Notices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 179Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=179

Note: For more information on Documentation Navigator, see the Documentation Navigator page on
the Xilinx website.

References
1. Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947)

2. Dynamic Function eXchange Controller IP LogiCORE IP Product Guide (PG374)

3. Dynamic Function eXchange Decoupler IP LogiCORE IP Product Guide (PG375)

4. Dynamic Function eXchange Bitstream Monitor IP LogiCORE IP Product Guide (PG376)

5. Dynamic Function eXchange AXI Shutdown Manager IP LogiCORE IP Product Guide (PG377)

6. Demonstration of Soft Error Mitigation IP and Partial Reconfiguration Capability on
Monolothic Devices (XAPP1261)

7. Bitstream Loading across the PCI Express Link in UltraScale Devices for Tandem PCIe and Partial
Reconfiguration (AR# 64761)

8. Partial Reconfiguration of a Hardware Accelerator with Vivado Design Suite (v1.1) (XAPP1231)
(XAPP1231)

9. Fast Partial Reconfiguration Over PCl Express (XAPP1338)

10. 7 Series FPGAs Configuration User Guide (UG470)

11. UltraScale Architecture Configuration User Guide (UG570)

12. Zynq-7000 SoC Technical Reference Manual (UG585)

13. Partial Reconfiguration User Guide (UG702) - For ISE Design Tools

14. UltraFast Design Methodology Guide for Xilinx FPGAs and SoCs (UG949)

15. 7 Series FPGAs Integrated Block for PCI Express LogiCORE IP Product Guide (PG054)

16. Virtex-7 FPGA Integrated Block for PCI Express LogiCORE IP Product Guide (PG023)

17. UltraScale Devices Gen3 Integrated Block for PCI Express LogiCORE IP Product Guide (PG156)

18. Vivado Design Suite Tcl Command Reference Guide (UG835)

19. Vivado Design Suite User Guide: Synthesis (UG901)

20. Vivado Design Suite User Guide: Using Constraints (UG903)

21. Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)

22. 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476)

23. 7 Series FPGAs GTP Transceivers User Guide (UG482)

24. MMCM and PLL Dynamic Reconfiguration Application Note (v1.8) (XAPP888) (XAPP888)

Chapter 11: Additional Resources and Legal Notices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 180Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=prc;v=latest;d=pg374-dfx-controller.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pr_decoupler;v=latest;d=pg375-dfx-decoupler.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pr_bitstream_monitor;v=latest;d=pg376-dfx-bitstream-monitor.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pr_axi_shutdown_manager;v=latest;d=pg377-dfx-axi-shutdown-manager.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1261-demo-sem-pr.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=64761.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1231-partial-reconfig-hw-accelerator-vivado.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1231-partial-reconfig-hw-accelerator-vivado.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1338-fast-partial-reconfiguration-pci-express.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=14.7;d=ug702.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie_7x;v=latest;d=pg054-7series-pcie.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_7x;v=latest;d=pg023_v7_pcie_gen3.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_ultrascale;v=latest;d=pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug476_7Series_Transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug482_7Series_GTP_Transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp888_7Series_DynamicRecon.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp888_7Series_DynamicRecon.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=180

25. UltraScale Architecture Clocking Resources User Guide (UG572)

26. UltraScale Architecture GTH Transceivers User Guide (UG576)

27. UltraScale Architecture GTY Transceivers User Guide (UG578)

28. Vivado Design Suite User Guide: Programming and Debugging (UG908)

29. AXI Bridge for PCI Express Gen3 Subsystem Product Guide (PG194)

30. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

31. DMA/Bridge Subsystem for PCI Express Product Guide (PG195)

32. UltraScale+ Devices Integrated Block for PCI Express LogiCORE IP Product Guide (PG213)

33. Zynq UltraScale+ Device Technical Reference Manual (UG1085)

34. Zynq UltraScale+ Device Register Reference (UG1087)

35. Bitstream Identification with USR_ACCESS using the Vivado Design Suite Application Note (v1.0)
(XAPP1232) Vivado Design Suite

36. Local Partial Reconfiguration Using Embedded Processing for 3D ICs (XAPP1099)

37. Design Advisory for Techniques on Properly Synchronizing Flip-Flops and SRLs (AR# 44174)

38. Vivado Design Suite Documentation

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more about
the concepts presented in this document. Use these links to explore related training resources:

1. Vivado Design Suite QuickTake Video Tutorials

2. Vivado Design Suite QuickTake Video: Partial Reconfiguration in Vivado

3. Vivado Design Suite QuickTake Video: Partial Reconfiguration for UltraScale

4. Vivado Design Suite QuickTake Video: Partial Reconfiguration for UltraScale+

5. Partial Reconfiguration Flow on Zynq usingVivado

6. Xilinx Partial Reconfiguration Tools and Techniques

Chapter 11: Additional Resources and Legal Notices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 181Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug572-ultrascale-clocking.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug576-ultrascale-gth-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug578-ultrascale-gty-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_pcie3;v=latest;d=pg194-axi-bridge-pcie-gen3.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=xdma;v=latest;d=pg195-pcie-dma.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie4_uscale_plus;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+ultrascale
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1232-bitstream-id-with-usr_access.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1099-7series-partial-reconfiguration-ssi-embedded.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=44174.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=partial-reconfiguration-in-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=partial-reconfiguration-for-ultrascale.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/partial-reconfiguration-for-ultrascale-plus.html
https://www.xilinx.com/support/university/vivado/vivado-workshops/Vivado-partial-reconfiguration-flow-zynq.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=partial-reconfiguration-tools-and-techniques.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=181

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD (“SAFETY DESIGN”). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

2012-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and
other designated brands included herein are trademarks of Xilinx in the United States and other
countries. © PCI, PCIe and PCI Express are trademarks of PCI-SIG and used under license. All
other trademarks are the property of their respective owners.

Chapter 11: Additional Resources and Legal Notices

UG909 (v2020.2) February 8, 2021 www.xilinx.com
Dynamic Function eXchange 182Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG909&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=182

	 Vivado Design Suite User Guide
	Table of Contents
	Revision History
	Ch. 1: Introduction
	Navigating Content by Design Process
	Introduction to Dynamic Function eXchange
	Terminology
	Design Considerations
	Design Requirements and Guidelines
	Design Performance
	Design Criteria

	Dynamic Function eXchange Licensing

	Ch. 2: Common Applications
	Networked Multiport Interface
	Configuration by Means of Standard Bus Interface
	Dynamically Reconfigurable Packet Processor
	Asymmetric Key Encryption
	Summary

	Ch. 3: Vivado Software Flow
	Dynamic Function eXchange Commands
	Synthesis
	Synthesizing the Top Level
	Synthesizing Reconfigurable Modules

	Reading Design Modules
	Method 1: Add and Link Files
	Method 2: Read Netlist Design
	Method 3: Open/Read Checkpoint
	Method 4: Open Checkpoint/Update Design

	Adding Reconfigurable Modules with Sub-Module Netlists
	Reading Design Constraints
	Implementation
	Preserving Implementation Data

	Dynamic Function eXchange Constraints and Properties
	Define a Module as Reconfigurable
	Create a Floorplan for the Reconfigurable Region
	Floorplan in the Vivado IDE
	Using Visualization Scripts
	Timing Constraints
	Partition Pins

	Apply Reset After Reconfiguration
	Software Flow
	Synthesis
	Implementation
	Incremental Compile
	Reporting
	Verifying Configurations
	Bitstream Generation

	Tcl Scripts
	Nested Dynamic Function eXchange
	Nested DFX Structure and Commands
	Design Structure
	Tcl Commands to Manage Nested DFX
	Implementation Design Flow
	Create Reconfigurable Module Results Under A1
	Create Reconfigurable Module Results Under A2
	Checking Current Status

	Static Design Updates
	Verification Passes
	Bitstream Creation
	Nested DFX Design Considerations
	Floorplanning
	Decoupling
	Dynamic Function eXchange Controller IP
	Bitstream Version and Usage Compatibility

	Supported/Unsupported Features

	Abstract Shell for Dynamic Function eXchange
	Abstract Shell Design Flow
	Implementing Reconfigurable Modules in Abstract Shells
	Generating Partial Bitstreams
	Generating Partial Bitstreams from Full Configurations
	Generating Partial Bitstreams from Abstract Shells

	Device Programming Strategies
	Additional Solution Details
	Logical Connectivity Contents
	Proprietary Design Information and Licensed IP
	Design Considerations

	Supported/Unsupported Features
	Supported Features
	Unsupported Features
	Known Issues and Limitations

	Ch. 4: Vivado Project Flow
	Flow Summary
	Tcl Commands

	Steps for Creating and Using a Dynamic Function eXchange Project
	Creating a Dynamic Function eXchange Project
	Defining Reconfigurable Partitions
	Completing the Dynamic Function eXchange Project Structure
	Editing Reconfigurable Modules
	Editing Configurations
	Editing Configuration Runs

	Adding or Modifying Reconfigurable Modules or Configurations
	Adding or Creating IP Sources
	Implementing the DFX Design
	Generating Bitstreams

	Supported/Unsupported Features

	Ch. 5: Design Considerations and Guidelines for All Xilinx Devices
	Dynamic Function eXchange IP
	Design Hierarchy
	Dynamic Reconfiguration Using the DRP
	Packing Logic
	Design Instance Hierarchy
	Reconfigurable Partition Interfaces

	Partition Pin Placement
	Active-Low Resets and Clock Enables
	Decoupling Functionality
	Black Boxes
	Effective Approaches for Implementation
	Building Up Implementation Requirements

	Configuration Analysis Report
	Complexity
	Clocking
	Timing
	Summary

	Managing Constraints for a DFX Design
	Constraint Creation
	Constraint Application

	Defining Reconfigurable Partition Boundaries
	Avoiding Deadlock
	Design Revision Checks
	Simulation and Verification

	Ch. 6: Design Considerations and Guidelines for 7 Series and Zynq Devices
	Design Elements Inside Reconfigurable Modules
	Global Clocking Rules
	Creating Pblocks for 7 Series Devices
	Automatic Adjustments for Reconfigurable Partition Pblocks
	Creating Reconfigurable Partition Pblocks Manually

	Using High Speed Transceivers
	Dynamic Function eXchange Design Checklist (7 Series)

	Ch. 7: Design Considerations and Guidelines for UltraScale and UltraScale+ Devices
	Design Elements Inside Reconfigurable Modules
	Creating Pblocks for UltraScale and UltraScale+ Devices
	Automatic Adjustments for PU on Pblocks
	Sharing Configuration Frames between RP and Static Logic
	Expansion of CONTAIN_ROUTING Area
	UltraRAM Behavior
	Floorplanning Rules for Clocks inside an RP

	Global Clocking Rules
	I/O Rules
	Using High Speed Transceivers
	Dynamic Function eXchange Checklist for UltraScale and UltraScale+ Device Designs

	Ch. 8: Configuring the Device
	Configuration Modes
	Bitstream Type Definitions
	Full Configuration Bitstreams
	Partial Bitstreams
	Blanking Bitstreams
	Clearing Bitstreams

	Dynamic Function eXchange through ICAP for Zynq Devices
	Tandem Configuration and Dynamic Function eXchange
	Formatting BIN Files for Delivery to Internal Configuration Ports
	Summary of BIT Files for UltraScale Devices
	System Design for Configuring an FPGA
	Partial BIT File Integrity
	Configuration Frames
	Configuration Time
	Configuration Debugging
	Using Vivado Debug Cores

	Ch. 9: Known Issues and Limitations
	Known Limitations

	Ch. 10: Hierarchical Design Flows
	Ch. 11: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

