Vivado Design Suite Tutorial

Programming and Debugging

UG936 (v2020.1) June 24, 2020

& XILINX

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG936

& XILINX

Revision History

The following table shows the revision history for this document.

Section

Revision Summary

06/24/2020 Version 2020.1

General updates.

| Updated for Vivado 2020.1 release.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

[Send Feedback] WWW.Xi|inX.C0n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=2

& XILINX

Table of Contents

REVISION HISTONY........oeeeeeetetetsetessens et assessssssssassssssssssens 2
Debugging in Vivado Tutorial..............nenenesesesesesesssssssssssses 5
O ECEIVES. .ttt sttt sttt et st s bt et e st e b e e b e e b e st et e e ae st e beebesatenaaens 5
GELEING STANTRA. ..cueiieeeeeteeeee ettt ettt et s e s bt e b e st esat e s b e e besatesseessesanesanen 6
Lab 1: Using the Netlist Insertion Method to Debug a Design........... 1
Step 1: Creating a Project with the Vivado New Project Wizard..........ccccceveverenirienniennennene 11
Step 2: SyNthesizing the DeSigN.....c.c ittt 12
Step 3: Probing and Adding Debug IP.......coiiereeeeeeeee e 13
Step 4: Implementing and Generating BitStream........ccocceviviereeneniieneeneeeseese e 21
Lab 2: Using the HDL Instantiation Method to Debug a Design........22
Step 1: Creating a Project with the Vivado New Project Wizard........ccccovvevvenervienieenennnennn 22
Step 2: Synthesize Implement and Generate BitStream........coccovcveveeneriieneenensieneeneeseenes 24

Lab 3: Using a VIO Core to Debug a Design in Vivado Design

SUIE@....oe sttt essse st s st s s sss s s sss s s ssstsessas 25
Step 1: Creating a Project with the Vivado New Project Wizard........cccoceeeevervienieeneennenne. 26
Step 2: Synthesize, Implement, and Generate the Bitstream........cccocceeeieeiinienienennenen. 30

Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design

Suite to Debug @ DeSigN.........ereeeesenesessesssessesessssesssssssssssens 32
Step 1: Create a SynPlify Pro Project. ...ttt ssie e svesssesssesaeesanens 32
Step 2: Synthesize the SyNplify Project. ...ttt 38
Step 3: Create DCPs for the Black Box Created in Synplify Pro......ccccoceeveneeviniencnniennen. 39
Step 4: Create a Post Synthesis Project in Vivado IDE........ccccceoevieneeienieneeeeeeneeeeeee 39
Step 5: Add More Debug Nets to the Project. ...t esve e snnens 40
Step 6: Implementing the Design and Generating the Bitstream........cccceccevveenervieneennenne 43
Lab 5: Using the Vivado Logic Analyzer to Debug Hardware............... 44
Step 1: Verifying Operation of the Sine Wave Generator.........coccocvvvenervienieeneenenieenieenenns 44
Step 2: Debugging the Sine Wave Sequencer State Machine (Optional).........cccccevveuneee. 55

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 3

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=3

& XILINX

Lab 6: Using the ECO Flow to Replace Debug Probes Post

IMPIEMENTATION.......... et asssassasssesssssasees 73
Lab 7: Debugging Designs Using the Incremental Compile Flow..... 86
PrOCEAUNE ...ttt 86
Step 1: Opening the Example Design and Adding a Debug Core.......c.cccoceeverieeneenereennen. 86
Step 2: Compiling the Reference DeSigN........cocevererereninineeieresese et 90
SteP 3: Create NEW RUNS.......ii ittt s s e e s st e s e e s sna e e ssnaeessnneesannes 91
Step 4: Making Incremental Debug Changes..........cccoeveririinieiienineneneneeeee e 93
Step 5: Running Incremental CompPile.......couoiireeienieeeeeee et 96
L@o] g T (V1 [o TP TTTPPT 98
Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links.......... 99
DESIgN DESCIIPTION..ccutiitieiieiiteet ettt sttt s b e s be e sane s beesnessnne e 99
Step 1: Creating, Customizing, and Generating an IBERT DeSign........ccccevveevercvereenvennnen 100
Step 2: Adding an IBERT Core to the Vivado Project.........cceevervenieneniienieenensieneeneeseenns 101
Step 3: Synthesize, Implement and Generate Bitstream for the IBERT Design.............. 107
Step 4: Interact with the IBERT Core Using Serial I/O ANalyzer........ccoeeeeverereereveeeennns 109

Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI

TraNSACLIONS.........o et sesssssst s esssssssssessssanes 125
(DI (o] gl BT ol o4 (0] o FHU PP P PR PRRRT PRI 125
Step 1: Creating a New Vivado Project and Generating the IP Integrator Design with
JTAG-TO-AXT @Nd SYStEM ILA... ..ottt ettt st ettt saeesbe e 126
Step 2: Program the KC705 Board and Interact with the JTAG to AXI Master Core........ 139

Step 3: Using ILA Advanced Trigger Feature to Trigger on an AXI Read Transaction.... 145

Appendix A: Additional Resources and Legal Notices........................... 149
XIlINX RESOUICTES. ...ttt sttt ettt et a e e s esseen e s e e sseenneenesneens 149
Documentation Navigator and Design HUDS.........cccoceriiiinieneirienicececiesece e 149
Please Read: Important Legal NOLICES.......coceeiiririieieneeieeeesteeeie et 150

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/_] 4

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=4

iv Xl I_l NX Debugging in Vivado Tutorial
A ®

Debugging in Vivado Tutorial

This document contains a set of tutorials designed to help you debug complex FPGA designs.
The first four labs explain different kinds of debug flows that you can chose to use during the
course of debug. These labs introduce the Vivado® Design Suite debug methodology
recommended to debug your FPGA designs. The labs describe the steps involved in taking a
small RTL design and the multiple ways of inserting the Integrated Logic Analyzer (ILA) core to
help debug the design. The fifth lab is for debugging high-speed serial 1/O links in the Vivado
tool. The sixth lab is for debugging JTAG-AXI transactions in the Vivado tool. The first four labs
converge at the same point when connected to a target hardware board.

Example RTL designs are used to illustrate overall integration flows between the Vivado logic
analyzer, ILA, and the Vivado Integrated Design Environment (IDE). To be successful using this
tutorial, you should have some basic knowledge of the Vivado tool flow.

TRAINING: Xilinx provides training courses that can help you learn more about the concepts presented in this
document. Use these links to explore related courses:

Lt

e Designing FPGAs Using the Vivado Design Suite 1
e Designing FPGAs Using the Vivado Design Suite 2
e Designing FPGAs Using the Vivado Design Suite 3
e Designing FPGAs Using the Vivado Design Suite 4

e Vivado Design Suite User Guide: Programming and Debugging (UG908)

Objectives

These tutorials:

¢ Show you how to take advantage of integrated Vivado® logic analyzer features in the Vivado
design environment that make the debug process faster and simpler.

e Provide specifics on how to use the Vivado IDE and the Vivado logic analyzer to debug
common problems in FPGA logic designs.

¢ Provide specifics on how to use the Vivado Serial I/O Analyzer to debug high-speed serial
links.

After completing this tutorial, you will be able to:

e Validate and debug your design using the Vivado Integrated Design Environment (IDE) and the
Integrated Logic Analyzer (ILA) core.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 5

https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-4.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=5

iv Xl I_l NX Debugging in Vivado Tutorial
A ®

e Understand how to create an RTL project, probe your design, insert an ILA core, and
implement the design in the Vivado IDE.

e Generate and customize an IP core netlist in the Vivado IDE.

e Debug the design using Vivado logic analyzer in real-time, and iterate the design using the
Vivado IDE and a KC705 Evaluation Kit Base Board that incorporates a Kintex®-7 device.

¢ Analyze high-speed serial links using the Serial /O Analyzer.

Getting Started

Setup Requirements

Before you start this tutorial, make sure you have and understand the hardware and software
components needed to perform the labs included in this tutorial.
Software

Vivado® Design Suite 2020.1

Hardware
e Kintex®-7 FPGA KC705 Evaluation Kit Base Board
e Digilent Cable

e Two SMA (Sub-miniature version A) cables

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 6

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=6

iv Xl I_l NX Debugging in Vivado Tutorial
A ®

Figure 1: KC705 Board Showing Key Components

SipeWave | 00 e e
Selection 3 r~
Indicator (SRR 0000 SeeeEreuie)

a
- -
2555

AL

Tutorial Design Components

Labs 1 through 4 include:

A simple control state machine

Three sine wave generators using AXI4-Stream interface, native DDS Compiler
Common push buttons (GPIO_BUTTON)

DIP switches (GPIO_SWITCH)

LED displays (GPIO_LED) VIO Core (Lab 3 only)

Pushbutton Switches: Serve as inputs to the de-bounce and control state machine circuits.
Pushing a button generates a high-to-low transition pulse. Each generated output pulse is
used as an input into the state machine.

DIP Switch: Enables or disables a de-bounce circuit.

De-bounce Circuit: In this example, when enabled, provides a clean pulse or transition from
high to low. Eliminates a series of spikes or glitches when a button is pressed and released.

Sine Wave Sequencer State Machine: Captures and decodes input from the two push buttons.
Provides sine wave selection and indicator circuits, sequencing among 00, 01, 10, and 11 (zero
to three).

LED Displays: GPIO_LED_0 and GPIO_LED_1 display selection status from the state machine
outputs, each of which represents a different sine wave frequency: high, medium, and low.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—| 7

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=7

iv Xl I_l NX Debugging in Vivado Tutorial
A ®

Lab 5 includes:

e An IBERT core
o A top-level wrapper that instantiates the IBERT core.

Board Support and Pinout Information

Table 1: Pinout Information for the KC705 Board

Pin Name Pin Location Description
CLK_N AD11 Clock
CLK_P AD12 Clock
GPIO_BUTTONSI0] AA12 Reset
GPIO_BUTTONS[1] AG5 Sine Wave Sequencer
GPIO_SWITCH Y28 De-bounce Circuit Selector
LEDS_n[0] ABS Sine Wave Selection[0]
LEDS _n[1] AAS8 Sine Wave Selection[1]
LEDS_n[2] AC9 Reserved
LEDS_n[3] AB9 Reserved

Design Files

1. Inyour C: drive, create a folder called /Vivado_Debug.

2. Download the Reference Design Files from the Xilinx website.

CAUTION! The tutorial and design files may be updated or modified between software releases. You can
download the latest version of the material from the Xilinx website.

3. Unzip the tutorial source file to the /vVivado_Debug folder. There are six labs that use

different methodologies for debugging your design. Select the appropriate lab and follow the
steps to complete them.

e Lab 1: This lab walks you through the steps of marking nets for debug in HDL as well as the
post-synthesis netlist (Netlist Insertion Method). Following are the required files:

® debounce.vhd

o fsm.vhd

® sinegen.vhd

® sinegen_demo.vhd

® sine_high/sine_high.xci
® sine_low/sine_low.xci

® sine_mid/sine_mid.xci

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 8

http://secure.xilinx.com/webreg/clickthrough.do?cid=9789bf56-7bcd-49b5-b38d-8e5d3b6e1322;d=ug936-vivado-tutorial-programming-debugging.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=8

iv Xl I_l NX Debugging in Vivado Tutorial
A ®

sinegen_demo_kc705.xdc

e Lab 2: This lab goes over the details of marking nets for debug in the source HDL (HDL
instantiation method) as well as instantiating an ILA core in the HDL. Following are the
required files:

debounce.vhd

fsm.vhd

sinegen.vhd
sinegen_demo_inst.vhd
ila_0/ila_0.xci
sine_high/sine_high.xci
sine_low/sine_low.xci
sine_mid/sine_mid.xci

sinegen_demo_kc705.xdc

e Lab 3: You can test your design even if the hardware is not physically accessible, using a VIO
core. This lab walks you through the steps of instantiating and customizing a VIO core that
you will hook to the 1/Os of the design. Following are the required files:

debounce.vhd

fsm.vhd

sinegen.vhd
sinegen_demo_inst_vio.vhd
sine_high/sine_high.xci
sine_low/sine_low.xci
sine_mid/sine_mid.xci
ila_0/ila_0.xci

sinegen_demo_kc705.xdc

e Lab 4: Nets can also be marked for debug in a third-party synthesis tool using directives for
the synthesis tool. This lab walks you through the steps of marking nets for debug in the
Synplify tool and then using Vivado® to perform the rest of the debug. Following are the
required files:

debounce.vhd
fsm.vhd
sign_high.dcp

sign_low.dcp

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 9

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=9

iv Xl I_l NX Debugging in Vivado Tutorial
A ®

® sine_mid.dcp

® sine_high.xci

® sine_low.xci

® sine_mid.xci

® sinegen.edn

® sinegen_synplify.vhd
e synplify_1.sdc

e synplify_1.fdc

¢ sinegen_demo_kc705.xdc

e Lab 5: Take designs created from Lab 1, Lab 2, Lab 3, and Lab 4 and load them onto the
KC705 board.

e Lab 6: Enhance post implementation debugging by using the ECO flow to replace debug
probes.

e Lab 7: Use the Incremental Compile flow to enable faster debugging flows. Using the results
from a previous implementation run, this flow allows you to make debug modifications and
rerun implementation.

e Lab 8: Debug high-speed serial 1/0O links using the Vivado Serial I/0 Analyzer. This lab uses
the Vivado IP example design.

e Lab 9: Use Vivado ILA core to debug JTAG-to-AXI transactions. This lab uses the Vivado IP
example design.

Connecting the Boards and Cables

1. Connect the Digilent cable from the Digilent cable connector to a USB port on your
computer.

2. Connect the two SMA cables (for lab 5 only) as follows:
a. Connect one SMA cable from J19 (TXP) to J17 (RXP).
b. Connect the other SMA cable from J20 (TXN) to J66 (RXN).

The relative locations of SMA cables on the board are shown in Setup Requirements.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/—] 10

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=10

iv Xl Ll NX Lab 1: Using the Netlist Insertion Method to Debug a Design
A ®

Lab 1

Using the Netlist Insertion Method
to Debug a Design

In this lab, you will mark signals for debug in the source HDL as well as the post synthesis netlist.
Then you will create an Integrated Logic Analyzer (ILA) core and take the design through
implementation. Finally, you will use the Vivado® tool to connect to the KC705 target board and
debug your design with the Vivado Integrated Logic Analyzer.

Step 1: Creating a Project with the Vivado
New Project Wizard

To create a project, use the New Project wizard to name the project, to add RTL source files and
constraints, and to specify the target device.

1. Invoke the Vivado® IDE.
2. Inthe Getting Started page, click Create Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project proj_netlist and provide the project location
(C:/Vivado_Debug). Ensure that Create Project Subdirectory is selected and click Next.

4. In the Project Type page, specify the type of project to create as RTL Project. Click Next.
In the Add Sources page:

a. Set Target Language to VHDL.

b. Click the “+” sign, and then click Add Files.

c. Inthe Add Source Files dialog box, navigate to the /src/1ab1 directory.

d. Select all VHD source files, and click OK.

e. Verify that the files are added, and Copy Sources into project is selected.

Click Add.

In the Add Directories dialog box, navigate to the /src/1ab1 directory.

Select sine_high, sine_low, and sine_mid directories and click Select.

W o N o

Verify that the directories are added. Click Next.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/—] 11

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=11

iv Xl Ll NX Lab 1: Using the Netlist Insertion Method to Debug a Design
A ®

10. In the Add Constraints dialog box, click the “+” sign, and then click Add Files.
11. Navigate to /src/1lab1l directory and select sinegen_demo_kc705. xdc. Click Next.

12. In the Default Part dialog box, specify the xc7k325tffg900-2 part for the KC705 platform.
You can also select Boards and then select Kintex-7 KC705 Evaluation Platform. Click Next.

13. Review the New Project Summary page. Verify that the data appears as expected, per the
steps above, and click Finish.

Note: It could take a moment for the project to initialize.

Step 2: Synthesizing the Design

UG936 (v2020.1) June 24, 2020

1. Inthe Project Manager, click Settings as shown in the following figure.
¢ proj_netlist - [C;/Vivado_Debug/2017.1/proj_netlist/proj_netlistxpr] - Vivado 2017.1

File Edit Flow Tools Window Layout View Help Quick Access
=, [- T
Flow Navigator S e B PROJECT MANAGER - proj_netlist

~ PROJECT MANAGER

Sources ? 00O X Project Summary
- a z & + o
Add Sources Settings Edit

L Templat ~ . Design Sources (1
anguage Templates
> @hda sinegen_demo(Mixed) (sinegen_demovhd) (4 FURIEE PEORnEE:E

¢ Settings @

ZF IP Catalog

¥ IPINTEGRATOR

T
5]

Create Block Design General
Project Settings Specify values for various settings used throughout the design flow. These settings apply to the ol
Open Block Design current project.
General
Generate Block Design Simulation
Elaboration MName proj_netlist
v SIMULATION Synthesis Project device: [Kintex-7 KC705 Evaluation Platform (xc7k325tfg900-2) IE‘
" Implementation
Run Simulation P Target language VHDL v
Bitstream
> P Default library: xil_defaultlib
v RTL AMALYSIS
> Open Elaborated Design Tool Settings Top module name: | sinegen_demo E e
Project
Language Options
IP Defaults
~ BYMTHESIS
> Source File
Run Synthesis i . i ion=Veri E
1 Display Werilog options: verilog_version=Verilog 2001
> Open Synthesized Design WebTalk Generics/Parameters: E
Help =
} Loop count: 1,000 7
~ IMPLEMENTATION > Text Editor
P RunImplementation 3rd Party Simulators
» Colors

> Open Implemented Design
penm " o Selection Rules

Shortcuts
~ PROGRAM AND DEBUG Strategies
fi Generate Bitstream > Window Behavior

> Open Hardware Manager -

IMPORTANT! As an optional step, in the Settings dialog box, select Synthesis from the left and change flatten
hierarchy to none. The reason for changing this setting to none is to prevent the synthesis tool from performing
any boundary optimizations for this tutorial.

www.xilinx.com
Programming and Debugging l Send Feedback l A

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=12

& XILINX

Lab 1: Using the Netlist Insertion Method to Debug a Design

2. In the Vivado® Flow Navigator, expand the Synthesis drop-down list, and click Run Synthesis.
In the Launch Runs dialog box, accept all of the default settings (Launch runs on local host),

and click OK.

Note: When synthesis runs, a progress indicator appears, showing that synthesis is occurring. This

could take a few minutes.

3. In the Synthesis Completed dialog box, click Cancel as shown in the following figure. You will

implement the design later.

Synthesis Completed

Hext
@Eun Implementation
Open Synthesized Design

View Reports

Dont show this dialog again

o Synthesis successfully completed.

Ex5

Cancel

Step 3: Probing and Adding Debug IP

To add a Vivado® ILA core to the design, take advantage of the integrated flows between the
Vivado IDE and Vivado logic analyzer.

In this step, you will accomplish the following tasks:

e Add debug nets to the project.
e Run the Set Up Debug wizard.

¢ Implement and open the design.

e Generate the bitstream.

Adding Debug Nets to the Project

Following are some ways to add debug nets using the Vivado® IDE:

UG936 (v2020.1) June 24, 2020
Programming and Debugging

[Send Feedback] WWW.Xi|inX.CO1n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=13

iv Xl Ll NX Lab 1: Using the Netlist Insertion Method to Debug a Design
A ®

e Add MARK_DEBUG attribute to HDL files.

e VHDL:
attribute mark_debug : string;
attribute mark_debug of sine : signal is "true';
attribute mark_debug of sineSel : signal is "true';
¢ Verilog:
(* mark_debug = "true" *) wire sine;
(* mark_debug = "true" *) wire sineSel;

This method lets you probe signals at the HDL design level. This can prevent optimization that
might otherwise occur to that signal. It also lets you pick up the signal tagged for post
synthesis, so you can insert these signals into a debug core and observe the values on this
signal during FPGA operation. This method gives you the highest probability of preserving
HDL signal names after synthesis.

¢ Right-click and select Mark Debug or Unmark Debug on a synthesized netlist.

This method is flexible since it allows probing the synthesized netlist in the Vivado IDE and
allows you to add/remove MARK_DEBUG attributes at any hierarchy in the design. In
addition, this method does not require HDL source modification. However, there may be
situations where synthesis may not preserve the signals due to netlist optimization involving
absorption or merging of design structures.

e Use a Tcl prompt to set the MARK_DEBUG attribute on a synthesized netlist.

set_property mark_debug true [get_nets -hier [list {sinel[*]}]]

This applies the MARK_DEBUG on the current, open netlist.

This method is flexible since you can turn MARK_DEBUG on and off by modifying the Tcl
command. In addition, this method does not require HDL source modification. However, there
may be situations where synthesis does not preserve the signals due to netlist optimization
involving absorption or merging of design structures.

In the following steps, you learn how to add debug nets to HDL files and the synthesized design
using Vivado IDE.

O TIP: Before proceeding, make sure that the Flow Navigator on the left panel is enabled.

Use Ctrl-Q to toggle it off and on.

1. In the Flow Navigator under the Synthesis drop-down list, click Open Synthesized Design as
shown in the following figure.

v SYMTHESIS Properties
P+ Run Synthesis &

» Open Synthesized DeTi?n

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/_] 14

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=14

& XILINX

4.

Lab 1: Using the Netlist Insertion Method to Debug a Design

In the Window drop-down menu, select Debug. When the Debug window opens, click the

window if it is not already selected.

Expand the Unassigned Debug Nets folder. The following figure shows those debug nets that

were tagged with MARK_DEBUG attributes in sinegen_demo . vhd.

og —-— Add Mark aebug SCCriDUces Lo SNOW AeDUg NEeCs 1n Che SYyninesized nNecllisc

63 attribute mark debug : string;
g4 attribute mark debug of GPIQ BUTTONS db :
65 E attribute mark debug of GPI0 BUTTONS dly :
il attribute mark debug of GPIO BUTTONS_re :
67 E attribute mark debug of DONT_EAT :

3ignal is "true":

signal iz "true":;
3ignal is "true";
3ignal is "true";

component sinegen

i port
73 E {
73 clk : in std logic:
74 E reset : in std logics
75 3el : in std logic wector(l downto 0);
Ta 3ine : out std logic wvector (19 downto 0)

)i

3 end component;

Tcl Console Messages Log Reports Design Runs Debug *
Q = & #* %
Mame Driver Cell Driver Pin
- Unassigned Debug Mets (7)
~ I GPIO_BUTTONS db (2) FDRE o
i GPIO_BUTTONS_db[0] FDRE o
I GPIO_BUTTOMS_db[1] FDRE o
~ I GPIO_BUTTONS dly (2) FDRE o
i GPIO_BUTTONS_dly[0] FDRE o
I GPRIO_BUTTOMS_diy[1] FDORE o
~ I GPIO_BUTTONS re (2) FDRE o
i GPIO_BUTTOMNS_re[0] FDRE o
I GRIO_BUTTOMS re[1] FDORE Q
I DOMNT_EAT FDRE o
Debug Cores Debug Nets

In the Netlist window, select the Netlist tab and expand Nets. Select the following nets for
debugging as shown in the following figure.

e GPIO_BUTTONS_IBUF[0] and GPIO_BUTTONS_IBUF[1] - Nets folder under the top-level
hierarchy

e sel(2) - Nets folder under the U_SINEGEN hierarchy

UG936 (v2020.1) June 24, 2020
Programming and Debugging

I Send Feedback l WWW.Xi|inX.CO1n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=15

iv Xl Ll NX Lab 1: Using the Netlist Insertion Method to Debug a Design
A ®

¢ sine(20)- Nets folder under the U_SINEGEN hierarchy

Sources Hetlist = ? 00

= 4 o
3 sinegen_demo -
~ Mets (G0)

» o GPIO_BUTTONS (2)

» Irg GPIO_BUTTONS_db (2)

» IFg GPIO_BUTTONS dly (2)

~ I GPIO_BUTTONS_IBUF (2)
I GPIO_BUTTOMS_IBUFD]
I GPIO_BUTTONS_IBUF[1]

> T GPIO_BUTTONS._re (2)

» ol LEDS_n(4)

» LEDS_n_0OBUF (2]

I
I =constl=
S

=constl= e

Note: These signals represent the significant behavior of this design and are used to verify and debug
the design in subsequent steps.

5. Right-click the selected nets and select Mark Debug as shown in the following figure.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—| 16

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=16

iv Xl Ll NX Lab 1: Using the Netlist Insertion Method to Debug a Design
A ®

Sources Hetlist x ?_00 Schematic * | sinegen_der

= H o %

-~ 1 signal GPID BUTIT
2 signal GPIQ BUIT
signal GPIO _BUIT

o

1 sinegen_demo
~ Mets (60)
» off GPIO_BUTTONS (2)
» IFiE GPIO_BUTTOMS db(2)
» Ir GPIO_BUTTOMNS dly (2)
~ IF GPIO_BUTTONS_IBUF (2)
I GPID_BUTTOMS_IBUFO]

3ignal DONT_ ERATO
il signal DONT_EATI
gignal DONT_ERTZ
3ignal DONT ERT3
signal DONT_EAT4

LM OLA LR LA R LA LA LA LA
Tl

[Fe]

EAT

I GPIO_BUTTOMNS_IBUF[! Net Properties... L
» Irg GPIO_BUTTONS_ re (2)
Mark Debu L ==EE
» of LEDS n(4) * g L\Vark d
» IF LEDS_n_OBUF (2} ark d
I =constd= pric_d
ark d
I =const1= Select Driver Fin ark d

Het Properties H Schematic

Show Connectivity inege

I GRIO_BUTTOMS_IBUF[1]
Show Hierarchy

Mame: GPIO_BUTTOMS, # Highlight y | in
Type: SIGMAL %ﬂ
Bus net: I GPIO_BUTTC & Mark ' zzt
Route status: Has unplaced por

Cell pin count: 4 B

9 end component;

6. Next, mark nets for debug in the Tcl console. Mark nets “sine(20)” under the U_SINEGEN
hierarchy for debug by executing the following Tcl command.

set_property mark_debug true [get_nets -hier [list {sinel[*]}]]

O TIP: In the Debug window, you can see the unassigned nets you just selected. In the Netlist window, you can
also see the green bug icon next to each scalar or bus, which indicates that a net has the attribute mark_debug
= true as shown the following two figures.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 17

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=17

& XILINX

Lab 1: Using the Netlist Insertion Method to Debug a Design

] sinegen_demao
- Mets (G0)
Jf GPIO_BUTTONS (2)

>
>
>

>
>
¥

Ir GPIO_BUTTONS_db (2)
Ir GPIO_BUTTONS_ dly (2)

~ I |GPIO_BUTTONS_IBUF (2)

T GPIO_BUTTOMS_IBUFIO]
T GPIO_BUTTOMS_IBUF[T]
Ir GPIO_BUTTOMNS_ re (2)
o LEDS_n (4)
LEDS_n_OBUF (2)
=constl=

Lo

=constl=

Tcl Console Messages Log Reports Design Runs Debug b
Q T 2 % +
Mame Driver Cell Driver Pin
w Unassigned Debug Mets (29)
~ I GPIO_BUTTOMS_db (2) FORE Q
I GRIO_BUTTOMS_do[0] FORE Q
I GRIO_BUTTOMS_do[1] FORE Q
~ I GPIO_BUTTOMS dly (2) FORE o]
I GRIO_BUTTOMNS_dIy[0] FORE Q
I GRIO_BUTTOMNS_dIy[1] FORE Q
~ Ir& GPIO_BUTTONS_IBUF (2) IBUF o]
[GPIO_BUTTONS_IBUF[O] IBUF o]
I GPIO_BUTTONS_IBUF[1] IBUF o]
~ Irg GPIO_BUTTONS re (2) FORE Q
__________ [GRIO BUTTONS refdl_ ... FDRE_________ 0. ...
Debug Cores Debug Mets
Sources | Netlist x ?_0O0OB
= H o

Running the Set Up Debug Wizard

1. From the Debug window tool bar or Tools drop-down menu, select Set Up Debug. The Set up
Debug wizard opens.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

l Send Feedback l

www.Xilinx.com
18

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=18

iv Xl Ll NX Lab 1: Using the Netlist Insertion Method to Debug a Design
A ®

Tcl Console Messages Log Reports Design Runs Debug X

Q = = @+

Mame SetUp Debug Driver Cell Driver Pin
h Unassigned Debug Mets (29)

~ I GPIO_BUTTONS_db (2) FDRE Q

J'& GPIO_BUTTONS_db[0] FDRE Q

& GPIO_BUTTONS_db[1] FDRE Q

~ I GPIO_BUTTOMS dly (2) FDRE Q

& GPIO_BUTTONS_dIy[0] FDRE Q

I GPIO_BUTTONS _dly[1] FDRE Q

~ s GPIO_BUTTONS_IBUF (2) IBUF o

I GPIO_BUTTONS_IBUF[O] IBUF 0

& GPIO_BUTTONS_IBUF[1] IBUF o

~ I GPIO_BUTTONS re (2) FDRE Q
__________ (% GRIO BUTTONS refll . FNRE_____ . 0O

Debug Cores Debug MNets

2. When the Set up Debug wizard opens, click Next.

¢ Set Up Debug @
Set Up Debug
/
VIVADO This wizard will guide you through the process of
HLx Editions

1. Choosing nets and connecting them to debug cores.

2. Associating a clock domain with each of the nets chosen for debug.

3. Choosing additional features on the debug cores like Data Depth, Advanced Trigger mode and Capture
Control.

Mote: This setup wizard does not apply to the VIO, IBERT or JTAG-to-AXl-Master debug cores. Please refer to
Wivado Design Suite User Guide: Programming and Debugging (UG8083) for further instructions on how to use
these IPs.

P
2
I\;"JI Cancel

3. Inthe Nets to Debug page, shown in the following figure, ensure that all the nets have been
added for debug and click Next.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 19

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=19

& XILINX

¢ Set Up Debug

Nets to Debug

The nets below will be debugged with ILA cores. To add nets click "Find Mets to Add™. You can also select nets in the Metlist or other ‘
windows, then drag them to the list or click "Add Selected Mets"

Q = = m + = o
Mame Clock Domain Driver Cell Probe Type
» Fi GPIO_BUTTONS_db (2) clk FORE Data and Trigger iy
> IFid GPIO_BUTTONS dly (2) clk FDORE Data and Trigger
» IF GPIO_BUTTONS_IBUF (2) clk IBUF Data and Trigger
» I GPIO_BUTTONS re (2) clk FORE Data and Trigger
» rid U_SINEGEN/sel (2) clk FORE Data and Trigger
~ dFi U_SINCGCM/sine (20) clk roRC Data and Trigger
i sine[0] clk FORE Data and Trigger
i sine[1] clk FORE Drata and Trigger
i sinef2] clk FORE Drata and Trigger
i sine[3] clk FORE Data and Trigger
Tt sinef4] clk FORE Data and Trigger ~

Find Mets to Add...

Mets to debug: 31

oy

(3]
a
|m
o
o
=

Cancel

In the ILA Core Options page, go to Trigger and Storage Settings section and select both
Capture Control and Advanced Trigger. Click Next.

In the Setup Debug Summary page, make sure that all the information is correct and as
expected. Click Finish.

¢ Set Up Debug

=55

Set up Debug Summary

VIVADO/

HLx Editions o 0 debug cores will be removed
© 1 debug core will be created

© Found 1 clock

¥ Openin Debug layout

To apply the above changes, click Finish

Upon clicking Finish, the relevant XDC commands that insert the ILA core(s) are generated.

Lab 1: Using the Netlist Insertion Method to Debug a Design

www.Xilinx.com

UG936 (v2020.1) June 24, 2020
Programming and Debugging

20

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=20

iv Xl Ll NX Lab 1: Using the Netlist Insertion Method to Debug a Design
A ®

Step 4: Implementing and Generating
Bitstream

1. Inthe Flow Navigator, under Program and Debug, click Generate Bitstream.

“ T F % T =
~ IMPLEMENTATION ——
b Run Implementation ~ $F dbg_hub (labtools_xsdom_v3
~ §F u_ila_0 (labtools_ila_vé
> Openlmplemented Design s B k(1)
*» & probel (2
v PROGRAM AMD DEBUG > B probed (2
)i Generate Eitstre%g *» & probe2 (2
» Open Hardware Manager y Debug Cores Debug Mets

Generate a programming file after implementation

2. Inthe Save Project dialog box click Save. If a dialog box appears indicating this will cause the
Synthesis results to go out of date, click OK. This applies the MARK_DEBUG attributes on
the newly marked nets. You can see those constraints by inspecting the
sinegen_demo_kc705.xdc file.

3. When the No Implementation Results Available dialog box pops up, click Yes. In the Launch
Runs dialog box, accept all of the default settings (Launch runs on local host) and click OK.

4. When the bitstream generation completes, the Bitstream Generation Completed dialog box
pops up. Click OK.

5. In the dialog box asking to close synthesized design before opening implemented design.

Click Yes.
6. Examine the Timing Summary report to ensure that all the specified timing constraints are
met.
Tcl Console Messages Log Reports Design Runs Power DRC Methodology Timing X ? 00
Q T = 4 Design Timing Summary
»
General Information
Timer Settings Setup Hold Pulse Width
Design Timing Summary ‘Worst Negative Slack (WNS): 0491 ns Worst Hold Slack (WHS): 0.052ns Worst Pulse Width Slack (WPWS): 1732ns
Clock Summary (4 Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000ns Total Pulse Width Megative Slack (TPW3): 0.000 ns
> (= Check Timing (0 Number of Failing Endpoints: 0 MNumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0
> = Intra-Clock Paths Total Number of Endpoints: 12755 Total Number of Endpaints: 12755 Total Number of Endpoints 5938

Inter-Clock Paths All user specified timing constraints are met.
> Other Path Groups
User Ignored Paths

Unconstrained Paths

Timing Summary - impl_1 (saved)

Proceed to Lab 5: Using the Vivado Logic Analyzer to Debug Hardware to complete the rest
of the steps for debugging the design.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 21

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=21

iv Xl Ll NX Lab 2: Using the HDL Instantiation Method to Debug a Design
A ®

Lab 2

Using the HDL Instantiation Method
to Debug a Design

The HDL Instantiation method is one of the two methods supported in the Vivado® tool debug
probing. For this flow, you will generate an ILA IP using the Vivado IP Catalog and instantiate the
core in a design manually as you would with any other IP.

Step 1: Creating a Project with the Vivado
New Project Wizard

To create a project, use the New Project wizard to name the project, to add RTL source files and
constraints, and to specify the target device.

1. Invoke the Vivado® IDE.
2. Inthe Quick Start tab, click Create Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project proj_hdl and provide the project location
(C:/Vivado_Debug). Ensure that Create project subdirectory is selected. Click Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.
In the Add Sources page:
a. Set Target Language to VHDL.
b. Click the “+” sign, and then click Add Directories.

c. Inthe Add Source Directories dialog box, navigate to the /src/1ab2 directory, and
choose the sine_high, sine_low, sine_mid, and ila_O directories. Click Select.

d. Verify that the directories are added, and Copy Sources into Project is selected.
e. Click the “+” sign, and then click Add File.

f. Inthe Add Source Files dialog box, navigate to the/src/1ab2 directory and choose
debounce.vhd, £fsn.vhd, sinegen.vhd, and sine gen_demo_inst.vhd files. Click
OK.

g. Verify that the sources and directories are added, and that Copy Sources into Project is
selected. Click Next.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/—] 22

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=22

iv Xl Ll NX Lab 2: Using the HDL Instantiation Method to Debug a Design
A ®

6. In the Add Constraints dialog box, click the “+” sign, and then click Add Files.
7. Navigateto /src/1labil directory and select sinegen_demo_kc705. xdc. Click Next.

8. In the Default Part dialog box, specify the xc7k325tffg900-2 part for the KC705 platform.
You can also select Boards and then select Kintex-7 KC705 Evaluation Platform. Click Next.

0

Review the New Project Summary page. Verify that the data appears as expected, per the
steps above. Click Finish.

10. In the Sources window in Vivado IDE, expand sinegen_demo_inst to see the source files for
this lab. Note that ila_O core has been added to the project.

Sources ? 00 X
Q = & + o
e Design Sources (1)

~ Whid sinegen_demo_inst(hdl_inst) (sinegen_demo_instvhd)
wh 1) _DEBOUMNCE_D: debounce(Mixed) (debounce vhd)
@ U_DEBOUNCE_1 : debounce(Mixed) (debounce.vhd)

» W J_SINEGEN : sinegen(kintex) (sinegen.vhd) (3)

=

¥ Constraints (1)

¥ Simulation Sources (1)

Hierarchy | |F Sources Libraries Compile Order

11. Double-click the sinegen_demo_inst . vhd file, shown in the following figure to open it
and inspect the instantiation and port mapping of the ILA core in the HDL code.

U _ILL : ila 0

port map

(
CLE =»> clk,
FROBEO => 3ineSel,
FEOBEl1l => sine,
FROBEZ => GFIC _BUTTONS db,
PROBE3 =»> GPIO _BUTTONS re,
FRCOBE4 => GPIC BUTTONS dly,
FROBES => GPIO BUTTONS

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 23

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=23

iv Xl Ll NX Lab 2: Using the HDL Instantiation Method to Debug a Design
A ®

Step 2: Synthesize Implement and Generate
Bitstream

1. From the Program and Debug drop-down list, in Flow Navigator, click Generate Bitstream.
This will synthesize, implement and generate a bitstream for the design.

Size:
» PROGRAM AMD DEBUG Modified:
¥ Generate Bitstream Copied to:
» Open Hardware Manager Copiedfrom:
Copied on:
<

General Pri

2. The No Implementation Results Available dialog box appears. Click Yes. In the Launch Runs
dialog box, accept all of the default settings (Launch runs on local host) and click OK.

3. After bitstream generation completes, the Bitstream Generation Completed dialog box
appears. Open Implemented Design is selected by default. Click OK.

4. In the Design Timing Summary window, ensure that all timing constraints are met.

Tcl Console Messages Log Reports Design Runs IP Status Power DRC lethodology | Timing X - oo
Q I 5 4 Design Timing Summary
3

General Information

Timer Settings Setup Hold Pulse Width

Design Timing Summary Worst Negative Slack (WNS). 0.511ns Worst Hold Slack (WHS): 0.044 ns Worst Pulse Width Slack (WPWS): 1.732ns

Clock Summary (4 Total Negative Slack (TNS) 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Megative Slack (TPWS). 0.000 ns
» [~ Check Timing (0 Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0
» = Intra-Clock Paths Total Number of Endpoints: 4437 Total Number of Endpoints: 4437 Total Number of Endpoints: 2478

Inter-Clock Paths
> = Other Path Groups

User Ignored Paths

All user specified timing constraints are met.

Unconstrained Paths

Timing Summary - impl_1 {saved)

5. Proceed to Lab 5: Using the Vivado Logic Analyzer to Debug Hardware chapter to complete
the rest of this lab.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/_] 24

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=24

iv Xl Ll NX Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite
A .

Lab 3

Using a VIO Core to Debug a Design
in Vivado Design Suite

The Virtual Input/Output (VIO) core is a customizable core that can both monitor and drive
internal FPGA signals in real time. The number and width of the input and output ports are
customizable in size to interface with the FPGA design. Because the VIO core is synchronous to
the design being monitored and/or driven, all design clock constraints that are applied to your
design are also applied to the components inside the VIO core. Run time interaction with this
core requires the use of the Vivado® tool's logic analyzer feature. The following figure is a block
diagram of the new VIO core.

Figure 2: VIO Block Diagram

VIO
CLK
PROBE_INO[0:0] N ' ! _ | PROBE_OUTO[255:0)
PROBE_IN1[255:0] Input Registers _ PROBE_OUT1(0:0]
» and Activity Output Registers L
PROBE_IN255[31:0] Detectors PROBE_OUT255[127:0]

i '

\ ¥ Y

Interface to JTAG through Debug Hub

This lab walks you through the steps of instantiating and configuring the VIO core. It walks you
through the steps of connecting the I/Os of the design to the VIO core. This way, you can debug
your design when you do not have access to the hardware or the hardware is remotely located.

The following ports are created:

e One four-bit PROBE_INO port. This has two bits to monitor the two-bit Sine Wave selector
outputs from the finite state machine (FSM) and other two bits to mimic the state of the other
two LEDs on the board. We will configure these four-bit signals as LEDs during run time to
mimic the LEDs displayed on the KC705 board.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 25

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=25

iv Xl Ll NX Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite
A .

One two-bit PROBE_OUTO port to drive the input buttons on the FSM. We will configure it so
one bit can be used as a toggle switch during run time to mimic PUSH_BUTTON switch SW3,
and the second bit will be used as PUSH_BUTTON switch SWé.

Step
New

To

1: Creating a Project with the Vivado
Project Wizard

create a project, use the New Project wizard to name the project, add RTL source files and

constraints, and specify the target device.

1.
2.
3.

10.
11.

12.

Invoke Vivado IDE.
In the Quick Start tab, click Create Project to start the New Project wizard. Click Next.

In the Project Name page, name the new project proj_hdI_vio and provide the project
location (C: /Vivado_Debug). Ensure that the Create project subdirectory is selected. Click
Next.

In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.
In the Add Sources page:

a. Set Target Language to VHDL.

b. Click Add Files.

c. Inthe Add Source Files dialog box, navigate to the /src/1ab3 directory.

d. Select all VHD source files, and click OK.

e. Verify that the files are added, and Copy Sources into Project is selected.

Click the “+” sign, and then click Add Directories.

In the Add Source Directories dialog box, navigate to the /src/1ab3 directory and choose
the sine_high, sine_low, sine_mid, and ila_0 directories. Click Select.

Verify that the directories are added and Copy sources into project is selected. Click Next.
In the Add Constraints dialog box, click the “+” sign, and then click Add Files.
Navigate to the /src/1ab3 directory and select sinegen_demo_kc705.xdc. Click Next.

In the Default Part page, specify the xc7k325tffg900-2 platform. You can also select Boards
and then select Kintex-7 KC705 Evaluation Platform. Click Next.

Review the New Project Summary page. Verify that the data appears as expected, in
accordance with the previous steps. Click Finish.

Note: It might take a moment for the project to initialize.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/—] 26

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=26

& XILINX

Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite

13. In the Sources window in Vivado IDE, expand sinegen_demo_inst_vio to see the source
files for this lab. Note that the ila_O core has been added to the project. However, vio_0O (the

VIO core) is missing.

Sources
Q = = 4+ A
- Ciesign Sources (1)

¥ Constraints (1)
» Simulation Sources (1)

Hierarchy | |IF Sources

~ Whid sinegen_demo_inst_vio(hdl_inst_vio) (sinegen_demo_in

Wi |_DEBOUMNCE_O : debounce(Mixed) (deb
J_DEBOUMCE_1 : debounce(Mixed) |
L_SIMNEGEM : sinegenikintex) (sinegenvhd) (2)

U_F3M : fsm(Mixed) (fsm.vhd)

? 00 X

&

ounce vhd)

debounce vhd)

Libraries Compile Crder

14. Instantiate and configure this VIO core as follows. From the Flow Navigator, click IP Catalog,
expand Debug & Verification, then expand Debug, and double-click VIO. The Customize IP

dialog box opens.

15. On the General Options tab, leave the Component Name as its default value of vio_0, set
Input Probe Count to 1, Output Probe Count to 1, and select the Enable Input Probe Activity

Detectors check box.

¢ Customize IP @
VIO (Virtual Input/Output) (3.0) ‘
O Documentation IP Location (' Switch to Defaults
Show disabled ports Component Name vio_0
|T0 configure more than 64 probe ports use Vivado Tcl Console
General Options PROBE_IN Ports(0..0) PROBE_OUT Ports{0..0)
e Output Probe Count | 1
o
ipmbe_inﬂ[ﬂ:ﬂ] probe_outh[0] %
+' Enable Input Probe Activity Detectors
oK | | Cancel

UG936 (v2020.1) June 24, 2020
Programming and Debugging

www.Xilinx.com
27

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=27

& XILINX

16. On the PROBE_IN Ports tab, set Probe Width to 4.

Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite

¢ Customize IP @
VIO (Virtual Input/Output) (3.0) ‘
© Documentation IP Location (' Switch to Defaults
Show disabled ports Component Name vio_0
|TU configure more than 64 probe ports use Vivado Tcl Console
General Options PROBE_IN Ports({0..0) PROBE_OUT Ports(0..0)
Probe Port Probe Width [1 - 256]
PROBE_INO [4 |
otk be_out0[0:0)
probe_in0[0:0] probe_out[0:0]
| oK | | Cancel

17. On the PROBE_OUT Ports tab, set Probe Width to 2 and Initial Value to 0xO0.

¢ Customize IP @
VIO (Virtual Input/Output) (3.0) ‘
@ Documentation IP Location (' Switch to Defaults
Show disabled ports Component Name vio_0
|T0 configure more than 64 probe ports use Vivado Tcl Console
General Options PROBE_IN Ports(0..0) PROBE_OUT Ports({0..0)
Probe Port Probe Width [1-256] Initial Value (in hex)
PROBE_OUTO (2 0x0
i ol }_
. probe_outd[1:0]
probe_in0[3:0]
| oK | | Cancel |

18. Click OK to generate the IP. The Generate Output Products dialog box appears. Click
Generate. An additional dialog box may appear indicating that an out-of-context module run

has been launched, if so click OK.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

l Send Feedback l

www.Xilinx.com
28

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=28

iv Xl Ll NX Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite
A .

-

=

¢ Generate Output Products

The following output products will be
generated. ‘

Preview

Q \[E{H jtag_axi_0.xci (0OC per IP)
-l Instantiation Template
1l Synthesized Checkpoint (.dcp)
1 Behavioral Simulation

ik H

----- il Change Log

Synthesis Options
() Global
(@) out of context per TP

Run Settings

Humber of jobs:|8 -

’ Apply ” Generate ” Skip]

Output product generation should take less than a minute. At this point, you have finished
customizing the VIO. This core has already been instantiated in the top level design.

U WIC : wio 0

FOrt map

{
CLE =» clk,
FROBE _TINO(3) => DONI_EA&T,
EROBE _INO({2) => GPIO _BUITONS re(l),
FROBE TNO({l1 downtoc 0) => s3ine3el,
FROBE_OUTO({1} => push_button_reset,
FROBE OUTO({0} => push button_vio

i :

At this point, the Sources window should look as shown in the following figure.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 29

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=29

iv Xl Ll NX Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite
A .

Sources ? _0O0 X
Q T ¢ + B &

A Design Sources (1)

~ i I!;ine-gen_demn_in st_vio(hdl_inst_via) (sinegen_demo_in

& U DEBOUMNCE_O : debounce(Mixed) (debounce.vhd)
wh U _DEBOUNCE_1 : debounce(Mixed) (de
» @ U _SINEGEN : sinegen(kintex) (sinegen.vhd) (3)

@ U_FSM : fsmiMixed) (fsm.vhd)

ounce vhd}

o

=

> onstraints (1)

> Simulation Sources (1)

Hierarchy |F Sources Libraries Compile Order

19. Double-click sinegen_demo_inst.vhd in the Sources window to open it, and inspect the
instantiation and port mapping of the ILA core in the HDL code.

Step 2: Synthesize, Implement, and Generate
the Bitstream

1. From the Program and Debug drop-down list in Flow Navigator, click Generate Bitstream.
This synthesizes, implements, and generates a bitstream for the design

2. The Missing Implementation Results dialog box appears. Click OK.

3. After bitstream generation completes, the Bitstream Generation Completed dialog box
appears. Open Implemented Design is selected by default. Click OK.

4. Inspect the Timing Summary report and make sure that all timing constraints have been met.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 30

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=30

iv Xl Ll NX Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite
A .

Tcl Console Messages Log Reports Design Runs IP Status Power DRC Methodology Timing X ?_00
Q = = 4 Design Timing Summary
General Information '
Timer Settings Setup Hold Pulse Width
Design Timing Summary ‘Worst Negative Slack (WNS). 0.539ns Worst Hold Slack (WHS): 0.044 ns Worst Pulse Width Slack (WPWS): 1.732ns
Clock Summary (4) Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
» = CheckTiming (0} Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0 Mumber of Failing Endpaints: 0
» = Intra-Clock Paths Total Number of Endpoints: 4703 Total Number of Endpoints: 4703 Total Number of Endpoints: 2694

Inter-Clack Paths All user specified timing constraints are met.
> Other Path Groups

Userlgnored Paths

Unconstrained Paths

Timing Summary - impl_1 (saved)

5. Proceed to Lab 5: Using the Vivado Logic Analyzer to Debug Hardware to complete the rest
of the steps for debugging the design. Then proceed to the Verifying the VIO Core Activity
(Only Applicable to Lab 3) section in Lab 5 Step 2 to complete the rest of this lab.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 31

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=31

iv Xl Ll NX Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a
‘ | Design

Lab 4

Using the Synplify Pro Synthesis
Tool and Vivado Design Suite to
Debug a Design

This simple tutorial shows how to do the following:

Create a Synplify Pro project for the wave generator design.

Mark nets for debug in the Synplify Pro constraints file as well as VHDL source files.
Synthesize the Synplify Pro project to create an EDIF netlist.

Create a Vivado® project based on the Synplify Pro netlist.

Use the Vivado® IDE to setup and debug the design from the synthesized design using
Synplify Pro.

Step 1: Create a Synplify Pro Project

1.

Launch Synplify Pro and select File = New.

2. Set File Type to Project File (Project) as highlighted in the following figure.
3.
4. Click OK.

In the New File Name box, enter synplify_1.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/—] 32

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=32

iv Xl Ll NX Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a
‘ | Design

P

._B New

File Type:(Select a type)

il Verilog File

VHDLFile

4l Tcl Script

#3 Identify Design Constraint
& TextFile

' 4 Xilinx Options File

B FPGA Design Constraints
®& Analysis Design Constraints
T Project File (Project)

4y

(] Add To Project
New File Name:

[synplify_1

File Location:

1]

[C:\Vivado_Debug\synopsys]

Full Path:
[C:\Vivado_Debug\synopsys\synplify_1.prj

5. If you get a dialog box asking you to create a non-existing directory, click OK.

< Synplify Pro

The directory C:\tutorials\ug936 does not exist. Do you wish to create it?

& [o || concer |

6. In the left panel of the Synplify Pro window, click Add File as shown in the following figure.
< Synplify Pro 1-2013.09-1 - [C:/Vivado_Debug/synopsys/synplify_1.prj]
P 5 File Edit View Project Import Run Analysis HDL-Analyst Options Window Tech
B EDODE@ROFAM L0 EBYTE G

L2

OB = PRRAR S 2 W BB 02w
Synplify Pro®

'Ready
Project Files | Design ngra_rchy |

iB Open Project... | “

B Close Project I |svnpifv_1 rev_1 - Xilinx Kintex? : XC7K70T : FBG676 : -1

4y Add File [Sanilfy_ll - C:\Vivado_Debug\synopsys\synplify_1.prj
& rev 1

|8y change File... %

|| add 1mnlamantation |

2Run

UG936 (v2Q20.1)June 24, 2920 l send Feedback l www.xilinx.cog

Programming and Debugging

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=33

iv Xl Ll NX Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a
‘ | Design

7. Inthe Add Files to Project dialog box, change the Files of Type to HDL File. Navigate to
C:\Vivado_Debug\src\lab4, which shows all the VHDL source files needed for this lab.
Select the following three files by pressing the Ctrl key and clicking on them.

® debounce.vhd
e fsm.vhd

® sinegen_demo.vhd

8. Click Add.
S Add Files to Project (%3
Look in: ‘ | | C:\Vivado_Debug\src\Lab4 'I (€5 4] @
A&y My Computer | # debounce.vhd
R ndutta @ fsm.vhd
& _sinegen_demo.vhd]
File name: | "debounce.vhd" "fsm.vhd" "sinegen_demo.vhd"
Files of type: | HDL Files (*.vhd =.vhd| *.v *.sv *.vma) -1
VHDL/Verilog lib: :. 7
Files to add to project: (3 file(s) selected) ¥ | Use relative paths || Add files to Folders | Folder Options...
Asrc\Lab4\debounce.vhd <- Add All
Asrc\Lab4\fsm.vhd
Asrc\Lab4\sinegen_demo.vhd
Remove All ->
| Remove ->
Cancel

9. In the same dialog box set Files of type to Constraints Files. This shows the synplify_1.sdc
file. Select the file and click Add as shown in the following figure.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l_‘/_l 34

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=34

iv Xl Ll NX Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a
‘ | Design

<5 Add Files to Project

Look in: ‘ | | C:\Vivado_Debug\src\Lab4 '| [« (5 N+ @ B
& My Computer synplify_l.sdc
& ndutta
File name: |__sy{pplify__1_‘_§dc
Files of type: I Constraint Files (*.sdc) 'I
VHDL/Verilog lib: l =

Files to add to project: (4 file(s) selected) [+ Use relative paths |¥| Add files to Folders | Folder Options...

Asrc\Lab4\debounce.vhd
Asrc\Lab4\fsm.vhd
Asrc\Lab4\sinegen_demo.vhd
Asrc\Labd\synplify_l.sdc

]

<- Add All

<- Add

Remove All ->

Remove ->

Cancel

HRELE

N

10. In the same dialog box, set Files of type to FPGA Constraint Files. This shows the
synplify_1.fdc file. Select the file and click Add as shown in the following figure. Click OK.

UG936 (v2020.1) June 24, 2020 send Feedback
Programming and Debugging l_‘/_|

www.Xilinx.com
35

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=35

iv Xl Ll NX Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a
‘ | Design

Add Files to Project x

Look in: | £ /projixcoswmktg/smitha/vivado_debug/lab4 - & 5 & & [
B comp... Isize |1ype |Date Modified |
Bl smitha synplify_1.fdc Ja68 bytes tdc File 5/6/16 9:18 AM
File name: synplify_1.fdc
Files of type: PGA Constraint Files (*.fdc) ~1

VHDL/Verllog lib:

Files to add to project: (1 file(s) selected) v Use relative paths v Add files to Folders

Slabd/synplify_1.fdc

Remove All ->
Remove ->

11. Now, you need to set the implementation options.
12. Click Implementation Options in the Synplify Pro window as shown in the following figure.
< Synplify Pro1-2013.09-1 - [C:/Vivado_Debug/synopsys/synplify_1.¢
P E] File Edit View Project Import Run Analysis HDL-Analys|
REDG DM@ RO E
S EPBRR S I VWSS O2m
Synplify Pro®

'Ready

2Run

Project Files Design Hierarchy |

| T Open Project... ‘

l 'sy_npify_l : rev_1 - Xilinx Kintex7 : XC7K
|
|

o & [synplify__ll - C:\VivadO_Deb;
e @ Lab4
@ @ VHDL

|._T,'. Close Project
| Add File...

|a§ Change File...
|4 Add Implementation... @ @ Logic Constraints (SDC)
@ @ Compiler Directive

I i -
§<% 1mplementation Optipas. @ rev 1
hﬁ Add P&R Implementation

13. This brings up the Implementation Options dialog box as shown in the following figure. In the
Device tab, set Technology to Xilinx Kintex7, Part to XC7K325T, Package to FFG200 and

Speed to -2. Leave all the other options at their default values. Click OK.

UG936 (v2020.1) June 24, 2020 l send Feedback l WWW.ininx.co?:2

Programming and Debugging

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=36

iv Xl Ll NX Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a
‘ | Design

I' Implementation Options - synplify_1:rev_1 _‘x‘? 5_ &3

Device & Options Constraints = Implementation Results | Timing Report | High Reliability VHDEM Implementations:

Technology: Part Package: Speed: revl

| Xilinx Kintex7 ~| | xcaxazst ~| | FFGg00 ~| -2 -

Device Mapping Options

|Op1ion |Value |5
Fanout Guide 10000 L
Disable I/O Insertion ™

Disable Sequential Optimizations | =)
Update Compile Point Timing Data x|

Click on an option for description

System Designer Board File

SynoPsys

l OK ” Cancel H Help

14. You need to preserve the net names that you want to debug by putting attributes in the HDL
files. These attributes are already placed in the sinegen_demo . vhd, file of this tutorial.
Open the sinegen_demo . vhd file and inspect the lines shown.

-- Attributes for Synplify Pro
attribute syn_keep : boolean;

attribute syn_keep of GPIO_BUTTONS_db : signal is true;
attribute syn_keep of GPIO_BUTTONS dly : sigmal is true;
Ettrihute syn_keep of GPIOD_BUTTONS re : signal is true;

15. You also can specify the MARK_DEBUG attributes in the source HDL files to mark the signals
for debug, as shown in the code snippet from singen_demo . vhd file.

-- Add mark_debug attributes to show debug nets in the synthesized netlist
attribute mark_debug : strinfg;

attribute mark_debug of GPIO_BUTTONS_db : signal is "true”;

attribute mark_debug of GPIO_BUTTONS _dly :- signal is "true";

attribute mark_debug of GPIO_BUTTONS re :- signal is "true";

16. The synplify_1.sdc file contains various kinds of constraints such as pin location, I/O
standard, and clock definition. The synplify_1. fdc file contains directives for the
compiler. Here is where the nets of interest to us that are marked for debug are located. The
attribute and the nets selected for debug are shown in the following figure.

Attributes that are needed to mark_debug the nets that are needed to be viewed in ILA

define_attribute -comment {Mark sinegen as black box} {v:work.sinegen} {syn_black_box} {1}
define_attribute -comment {Set no_prune on sinegen} {v:work.sinegen} {syn_noprune} {1}
define_attribute -comment {Mark entire bus for debug} {i:sinegen.sine[=]} {mark_debug} {“true"}
define_attribute -comment {Mark entire bus for debug} {i:sinegen.sel[*]} {mark_debug} {"true"}

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—| 37

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=37

iv Xl Ll NX Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a
‘ | Design

In the above constraints, sinegen has been defined as a black box by using the syn_black_box
attribute. Second, the syn_no_prune attribute has been used so that the 1/Os of this block are
not optimized away. Finally, two nets, sine[20:0] and se1[1:01, have been assigned the
MARK_DEBUG attribute such that these two nets should show up in the synthesized design
in Vivado® IDE for further debugging. For further information on these attributes, please
refer to the Synplify Pro User Manual and Synplify Pro Reference Manual.

Step

5.

2: Synthesize the Synplify Project

Before implementing the project, you need to set the name for the output netlist file. By
default, the name of the output netlist file is synplify_1.edf. To change the name of the
output file, type the following command at the Tcl command prompt:

%project -result_file "./rev_l/sinegen_demo.edf"

You will use this file in Vivado® IDE.

With all the settings in place, click the Run button in the left panel of the Synplify Pro window
to start synthesizing the design.

<> Synplify Pro 1-2013.09-1 - [C:/Vivado_Debug/synopsys/s)

B [

File Edit View Project Import Run Analysis H

B é4DO DE @ S B @ v gh @
) Wl R R B 380 ¢ # B o
__ Synplify Pro®

2Run nyf fy

iRun active implementation

I Open Project... || ProjectFiles | Design Hierar

- ‘ synplify_1 : rev_1 - Xilinx Kint

| 5 @D [synplify_1] - C\Viva
- @ Lab4

i ¥ Close Project

& Add File...

@3 Change File...

%5 Add Implementation...

" 5 @ VHDL

‘ # debounce.vh
‘ H# fsm.vhd [wor]
N

|

H@ Implementation Options...
‘%ﬂ Add P&R Implementation
| &, View Log

H sinegen_dem
=2 Logic Constrain
B synplify_1.sd

e P

During synthesis, status messages appear in the Tcl Script tab. Warning messages are
expected, but there should not be any Error messages. To see detailed messages, click the
Messages tab in the bottom left-hand corner of the Synplify Pro console.

When synthesis completes, the output netlist is written to the file: rev_1/
sinegen_demo.edf

[Optional] To view the netlist select View = View Result File.

Click File = Save All to save the project, then click File = Exit.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 38

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=38

iv Xl Ll NX Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a
‘ | Design

Step 3: Create DCPs for the Black Box Created
in Synplify Pro

The black box, sinegen, created in the Synplify Pro project, contains the Direct Digital Synthesizer
IP. You need to create a synthesized design for this block. To do this, create an RTL type project
in Vivado® IDE by following the steps outlined below.

vk 0 b e

Launch Vivado IDE.

Click Create Project. This opens up the New Project wizard. Click Next.
Under Project Name, set the project name to proj_synplify_netlist. Click Next.
Under Project Type, select RTL Project. Click Next.

Under Add Sources, click Add Files, navigate to the Vivado_Debug/src/lab4 folder and
select the sinegen. vhd file. Set Target Language to VHDL. Ensure that Copy sources into
project box is selected. Click Next.

Click Add Files, navigate to the Vivado_Debug/src/1lab4 folder and select the
sine_high.xci, sine_low.xci,and sine_mid.xci files. Click Next.

Under Default Parts, select Boards and then select the Kintex-7 KC705 Evaluation Platform
and correct version for your hardware. Click Next.

Under New Project Summary, ensure that all the settings are correct. Click Finish.

Once the project has been created, in Vivado Flow Navigator, under the Project Manager
folder, click Settings. In the dialog box, in the left panel, click Synthesis. From the pull-down
menu on the right panel, set -flatten_hierarchy to none. Click OK.

10. In Vivado IDE Flow Navigator, under Synthesis Folder, click Run Synthesis.

11. When synthesis completes the Synthesis Completed dialog box appears. Select Open

Synthesized Design and click OK.

12. Click File= Exit in Vivado IDE. When the OK to exit dialog box pops up, click OK.

Step 4: Create a Post Synthesis Project in
Vivado IDE

1
2
3.
4

Launch Vivado® IDE.
Click Create Project. This opens up the New Project wizard. Click Next.
Set the Project Name to proj_synplify. Click Next.

Under Project Type, select Post-synthesis Project. Click Next.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/—] 39

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=39

iv Xl Ll NX Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a
‘ | Design

10.

Under Add Netlist Sources, click Add Files, navigate to the Vivado_Debug/synopsys/
rev_1 folder, and select sinegen_demo . edf. Click OK.

Add the netlist file created in the previous section. Click Add Files again, navigate to the
proj_synplify_netlist/proj_synplify_netlist.runs/synthl folder and select
sinegen.dcp.

Add the DCP files created for the sub-module IPs in the previous section. Click Add
Directories again, navigate to the proj_synplify_netlist/
proj_synplify_netlist.srcs/sources_1/ip folder and select the following:

e sine_high
e sine_mid
e sine_low

Click OK in the Add Source Files dialog box. In the Add Netlist Sources dialog box ensure that
Copy Sources into Project is selected. Click Next.

Click Add Files, navigate to the Vivado_Debug/src folder, and select the
sinegen_demo_kc705.xdc file. This file has the appropriate constraints needed for this
Vivado project. Click OK in the Add Constraints File dialog box. In the Add Constraints
(optional) dialog box ensure that Copy Constraints into Project is selected. Click Next.

Under Default Part, select Boards and then select Kintex-7 KC705 Evaluation Platform and
the right version number for your hardware. Click Next.

Under New Project Summary, ensure that all the settings are correct and click Finish.

In the Sources window, ensure sinegen_demo . edf is selected as the top module.

Step

5: Add More Debug Nets to the Project

In Vivado® IDE, in the Flow Navigator, select Open Synthesized Design from the Netlist
Analysis folder.

Select the Netlist tab in the Netlist window to expand Nets. Select the following nets for
debugging:

e GPIO_BUTTONS c(2)
e sine (20)

After selecting all the specified nets, right-click the nets and click Mark Debug, as shown in
the following figure.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/_] 40

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=40

iv Xl Ll NX Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a
‘ | Design

Sources Netlist = ? 00 Sct
= 4 o -
) sinegen_demo
- Mets (G2)

» I GPIO_BUTTONS (2)

» Ir GPIO_BUTTONS ¢ (2)

» I GPIO_BUTTONS _c_i(2)
» It GPIQ_BUTTONS_db (2)
» iz GPIO_BUTTOMS_diy_1(2)
» I GPIO_BUTTONS_dly_5 (2)
» iz GPIO_BUTTOMS re_1(2)
» I GPIO_BUTTONS re_5(2)
¥

I LEDS_n (4)
» I LEDS_n_c(1)
» I sine (20
¢ Bus Met Properties. . Ctri+E
» IFid sinesSt
Mark Debu
I ck g [s .
Bus Net Properties ? 00 X
F sine Select Driver Pin - o §
M Schematic Fd
MName:
Show Connectivity Ctrl+T

Mumber of nets:
Show Hierarchy F&

»

Highlight 3

@ Mark b

General Sralar Goto Source r

3. You should be able to see all the nets that are marked for debug, as shown in the following
figure.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l_‘/_| 41

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=41

iv Xl Ll NX Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a
‘ | Design

TclConsole | Messages Log Reports Design Runs Debug x ? 00
Q T 2 % + &
MName Driver Cell Driver Pin Probe Type
hd Unassigned Debug MNets (20)

» Irs GPIO_BUTTONS_c (2) IBUF 0

» Irs GPIO_BUTTONS_db (2) FDRE Q

» Ir# GPIO_BUTTONS_dly_1(2) FDRE Q

» IF GPIO_BUTTONS re_1(2) FDRE Q

» Ire sine (20) FDRE Q

> IFid sineSel (2) FDRE Q

Debug Cores Debug Nets

Running the Set Up Debug Wizard

1. Click the Set up Debug icon in the Debug window or select the Tools menu, and select Set up
Debug. The Set up Debug wizard opens.

Tcl Console Messages Log Reports Design Runs Debug x
Q = ¢ [§+
Mame Set Up Debug Driver Cell Driver Pin Probe Type
- Unassigned Debug Mets (20)

» Irg GPIO_BUTTONS o (2) IBUF 0

» Ire GPIO_BUTTONS_db (2) FDRE o

» T GPIO_BUTTONS_dly_1(2) FDRE Q

» I GPIO_BUTTONS_ re_1(2) FDRE Q

» ik sine (20) FDORE Q

» ri sineSel (2) FDRE Q

2. Click through the wizard to create Vivado® logic analyzer debug cores, keeping the default
settings.

Note: In the Specify Nets to Debug dialog box, ensure that all the nets marked for debug have the
same clock domain.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l_‘/_l 42

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=42

iv Xl Ll NX Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a
‘ | Design

Step 6: Implementing the Design and
Generating the Bitstream

1. Inthe Flow Navigator, under the Program and Debug drop-down list, click Generate
Bitstream.

2. Inthe Save Project dialog box, click Save.

3. When the Bitstream generation finishes, the Bitstream Generation Completed dialog box
pops-up and Open Implemented Design is selected by default. Click OK.

4. If you get a dialog box asking to close the synthesized design before opening the
implemented design, click Yes.

5. Proceed to Lab 5: Using the Vivado Logic Analyzer to Debug Hardware to complete the rest
of this lab.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/_] 43

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=43

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Lab 5

Using the Vivado Logic Analyzer to
Debug Hardware

The final step in debugging is to connect to the hardware and debug your design using the
Integrated Logic Analyzer (ILA). Before continuing, make sure you have the KC705 hardware
plugged into a machine.

In this step, you learn:

e How to debug the design using the Vivado® logic analyzer.

e How to use the currently supported Tcl commands to communicate with your target board
(KC705).

e How to discover and correct a circuit problem by identifying unintended behaviors of the
push-button switch.

o Useful techniques for triggering and capturing design data.

Step 1: Verifying Operation of the Sine Wave
Generator

After doing some setup work, you will use Vivado logic analyzer to verify that the sine wave
generator is working correctly. Your two primary objectives are to verify that:

e All sine wave selections are correct.

e The selection logic works correctly.

Target Board and Server Set Up

¢ Connecting to the target board remotely: If you plan to connect remotely, you need to make
sure that the KC705 board is plugged into a machine and you are running an hw_server
application on that machine. If you plan to connect locally, skip steps 1-5 below and go
directly to the Connecting to the Target Board Locally section.

1. Connect the Digilent USB JTAG cable of your KC705 board to a USB port on a Windows
system.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/_] 44

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=44

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

LA T R

Ensure that the board is plugged in and powered on.
Power cycle the board to clear the device.
Turn DIP switch positions (pin 1 on SW11, De-bounce Enable) to the OFF position.

5. Assuming you are connecting your KC705 board to a 64-bit Windows machine and you
will be running the hw_server from the network instead of your local drive, open a cmd
prompt and type the following:

<Xilinx_Install>\Vivado\2020.x\bin\hw_server

Leave this cmd prompt open while the hw_server is running. Note the machine name that
you are using, you will use this later when opening a connection to this instance of the
hw_server application.

¢ Connecting to the Target Board Locally: If you plan to connect locally, ensure that the KC705
board is plugged into a Windows machine and then perform the following steps:

1.

Connect the Digilent USB JTAG cable of your KC705 board to a USB port on a Windows
system.

Ensure that the board is plugged in and powered on.
Power cycle the board to clear the device.

Turn DIP switch positions (pin 1 on SW13, De-bounce Enable) to the OFF position.

Using the Vivado Integrated Logic Analyzer

1. Inthe Flow Navigator, under Program and Debug, select Open Hardware Manager.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/_] 45

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=45

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Flow Navigator ? IMPLEMENT
> PROJECT MANAGER

Sources
> IP INTEGRATOR = 4
3 sinege
> SIMULATION » = Ne
> Le:
> RTL AMALYSIS > 5 db
’ o
> SYNTHESIS ¥ (W
b u_
> IMPLEMEMNTATION > EE U_
* PROGRAM AMD DEBUG Propertie
Vi Generate Bitstream 4 Debug

> Open Hardware Managear)
Version:
Descript

2. The Hardware Manager window opens. Click Open Target = Open New Target.

HARDWARE MANAGER - unconnected
ﬂ Mo hardware targetis open. Open target

£ Auto Connect
Hardware

Recent Targets 3

Open Mew Target... [

Mo content

3. The Open New Hardware Target wizard opens. Click Next.

4. In the Hardware Server Settings page, type the name of the server (or select Local server if
the target is on the local machine) in the Connect to field. Click Next.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l_‘/_| 46

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=46

& XILINX

UG936 (v2020.1) June 24, 2020

Programming and Debugging l Send Feedback l

Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

¢ Open New Hardware Target

Hardware Server Settings

Select local or remote hardware server, then configure the host name and port settings. Use Local
server ifthe target is attached to the local machine; otherwise, use Remote server.

Connectto: | Local server (targetis on local machine w

Click Next to launch and/or connect to the hw_server (port 3121) application on the local machine.

=

=55

Note: Depending on your connection speed, this may take about 10 to 15 seconds.

If there is more than one target connected, you will see multiple entries in the Select
Hardware Target page. In this tutorial, there is only one target, as shown in the following

figure. Click Next.

www.Xilinx.com
47

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=47

& XILINX

Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

¢ Open New Hardware Target @

Select Hardware Target

Select a hardware target from the list of available targets, then setthe appropriate JTAG clock (TCK) ‘

frequency. If you do not see the expected devices, decrease the frequency or select a different target.

Hardware Targets

Type MName
@ xilinx_tcf Xilinw/Port_#0002 Hub_#0004

JTAG Clock Frequency
6000000 A4

Add Xilinx Virtual Cable (XVC)

Hardware Devices (for unknown devices, specify the Instruction Register (IR) length)

MName ID Code IR Length

{8 xc7k325t 0 33651093

Hardware server: localhost 3121

Cancel

6. In the Open Hardware Target Summary page, click Finish as shown in the following figure.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

www.Xilinx.com

l Send Feedback l 48

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=48

& XILINX

Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

VIVADO!

HLx Editsons

£ XILINX

ALL PROG RAMMARLT.

¢ Open New Hardware Target

Open Hardware Target Summary
€ Hardware Server Settings:
o Server: localhost:3121

€ Target Settings:
o Target: xilinx_tcfiXilin/Port_#0003 Hub_#0004
o Frequency: 6000000

To connectto the hardware described above, click Finish

=55

Cancel

7. Wiait for the connection to the hardware to complete. The dialog in following figure appears
while hardware is connecting.

¢ Open Hardware Target

Connecting to server...

X5

Background

After the connection to the hardware target is made, the Hardware window appears as in the

following figure.

Note: The Hardware tab in the Debug view shows the hardware target and XC7K325T device detected

in the JTAG chain.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

www.Xilinx.com

l Send Feedback l 49

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=49

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Hardware ? 00 X
Q = = o
MName Status
~ B localhost (1) Connected
~ @ ilin_tefXilingPort_#0003.Hu... Open
~ {8 xcTK325t 0 (1) Mot programmed

& XADC (System Monitor)

8. Next, program the XC7K325T device using the previously created . bit bitstream by right-
clicking the XC7K325T device and selecting Program Device as shown in the following

figure.
Hardware 700X
Q = = &
Name Status
~ @ localhost (1) Connected
~ e xling_tcidlingPort_#0003.Hu... Open

~ {8 xcTK325t_0 (1)

B Hardware Device Properties...
E XADC (System M|

Program Device... %
Verify Device...
 Refresh Device

Add Configuration Memaory Device...

Boot from Configuration Memaory Device

Program BBER Key...

Clear BBR Key...
Hardware Device Properties

Program eFUSE Reqgisters...
18 %cTk325t 0

Export to Spreadsheet...

9. In the Program Device dialog box verify that the . bit and . 1tx files are correct for the lab
that you are working on and click Program to program the device as shown in the following
figure.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 50

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=50

& XILINX

Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

¢ Program Device

Select a bitstream programming file and download it to your hardware device. You can optionally select a debug

]

~' Enable end of startup check

oy
)

probes file that corresponds to the debug cores contained in the bitstream programming file. ‘
Bitstream file: C:Vivado_Debug/2017 Afproj_netlist/proj_netlistrunsfimpl_1/sinegen_demo.bit “Z‘
Debug probes file: | C:Vivado_Debug/2017 . A/proj_netlist/proj_netlistrunsfimpl_1/sinegen_demo.Ik III

Program Cancel

CAUTION! The file paths of the bitstream and debug probes to be programmed will be different for different
labs. Ensure that the relative paths are correct.

Note: Wait for the program device operation to complete. This may take few minutes.

10. Ensure that an ILA core was detected in the Hardware panel of the Debug view.

Hardware
Q| x| < > » N
Mame
~ E localhost (1)
~ e xilink_tefiXilingPort_#0003 Hu...
~ {8} xc7K325t_0 (2)
& XADC (System Monitor)

& hw_ila_1 (u_ila_0)

Status
Connected
Open

Programmed

O ldle

?

- OO X
&

11. The Integrated Logic Analyzer dashboard opens, as shown in the following figure.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

I Send Feedback l WWW.Xi|inX.CO£?

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=51

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

hw_ila_1

Waveform - hw_ila_1
a + > BB @ a H o

ILA Status:Idle

Dashboard Options

Status - hw_ila_1 Trigger Setup - hw_ila_1

> » H + o,

Core status

ldle Waiting for Trigger Post-Trigger Full

Capture status
Window 1 of 1 Window sample 0 of 1024 Total sample 0 of 1024
ldle Idle Idle
Prass the + hutton to add probe

Verifying Sine Wave Activity

1. In the Hardware window, click Run Trigger Immediate to trigger and capture data
immediately as shown in shown in the following figure.

Hardware

Q = 2 > »% [| &
Name Run Trigger Immediate

~ B localhost (1 Connected

~ @e xiliny_tcfiXilingPort_#0003.Hu... Open

~ {8} xcTK325t_0 (2 Programmed
i XADC (System Monito
E hw_ila_1 (u_ila_0} 1 Idle

2. In the Waveform window, verify that there is activity on the 20-bit sine signal as shown in
the following figure.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 52

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=52

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Waveform - hw_ila_1

aQ + o » BB @ a i « [T« &

ILA Status:ldle

Updated at: Z017-Mar-16 14:59:13

Displaying the Sine Wave

1. Right-click U_SINEGEN/sine[19:0] signals, and select Waveform Style = Analog as shown in
the following figure.

Waveform - hw_ila_1

Q + = 2 » » B B @ @ X =« KM M 1 2 + [« &

ILA Status:ldle

% DONT_EAT

<% U_SINEGEN/sine[19:0]

Updated at: Z017-Mar-16 1

CAUTION! The waveform does not look like a sine wave. This is because you must change the radix setting
from Hex to Signed Decimal, as described in the following subsection.

2. Right-click U_SINEGEN/sine[19:0] signals, and select Radix — Signed Decimal.

You should now be able to see the high frequency sine wave as shown in the following figure
instead of the square wave.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 53

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=53

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Waveform - hw_ila_1

Q4+ =2 »p » B3 Q Qo KM == I o

ILA Status:ldle

<% U_SINEGENIsine[19:0]

Updated at: Z0l7-Mar-16 14:59:13

Correcting Display of the Sine Wave

To view the mid, and low frequency output sine waves, perform the following steps:

1. Cycle the sine wave sequential circuit by pressing the GPIO_SW_E push button as shown in
the following figure.

R - ”‘

v It
“.:_l.ql.:
a ‘m®

sesssswaan

Sine Wave
Sequencer

2. Click Run Trigger Immediately again to see the new sine selected sine wave. You should see
the mid frequency as shown in the following figure. Notice that the se1 signal also changed
from O to 1 as expected.

Waveform - hw_ila_1
Q + =2 > R B2 Q@GR KM =» Py
ILA Status:Idle

BUF(1:0]
e[1:0]

<% U_SINEGEN/sine[19:0]

3. Repeat step 1 and 2 to view other sine wave outputs.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L‘/_] 54

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=54

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Waveform - hw_ila_1

Q + = 2 » BB @ @ X o [2 + [o
ILA Status:Idle

ab{1:0]
diy1:0]
IBUF[1:0]

<t U_SINEGEN/sine[19:0] -377487

Waveform - hw_ila_1

Q + = 2 »p » B B @ Q {1 » M = 2 [« o

ILA Status:ldle

OMS_db[1.0]

ONS_dly[1:0]

ONS_IBUF[1:0]
re[1:0]

<% U_SINEGENIsine[19:0]

Note: As you sequence through the sine wave selections, you may notice that the LEDs do not light up
in the expected order. You will debug this in the next section of this tutorial. For now, verify for each
LED selection, that the correct sine wave displays. Also, note that the signals in the Waveform window
have been re-arranged in the previous three figures.

Step 2: Debugging the Sine Wave Sequencer
State Machine (Optional)

As you corrected the sine wave display, the LEDs might not have lit up in sequence as you
pressed the Sine Wave Sequencer button. With each push of the button, there should be a single,
cycle-wide pulse on the GPTO_BUTTONS_re[1] signal. If there is more than one, the behavior
of the LEDs becomes irregular. In this section of the tutorial, use Vivado logic analyzer to probe
the sine wave sequencer state machine, and to view and repair the root cause of the problem.

Before starting the actual debug process, it is important to understand more about the sine wave
sequencer state machine.

UG936 (v2020.1) June 24, 2020

www.xilinx.com
Programming and Debugging | Send Feedback | .

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=55

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Sine Wave Sequencer State Machine Overview

The sine wave sequencer state machine selects one of the four sine waves to be driven onto the
sine signal at the top-level of the design. The state machine has one input and one output. The
following figure shows the schematic elements of the state machine. Refer to this diagram as you
read the following description and as you perform the steps to view and repair the state machine
glitch.

e The input is a scalar signal called “button”. When the button input equals “1”, the state
machine advances from one state to the next.

e The output is a 2-bit signal vector called “Y”, and it indicates which of the four sine wave
generators is selected.

The input signal button connects to the top-level signal GPIO_BUTTONS_re[1], which is a low-
to-high transition indicator on the Sine Wave Sequencer button. The output signal Y connects to
the top-level signal, sineSe1, which selects the sine wave.

Figure 3: Sine Wave Sequence Button Schematic

GPIO_BUTTON_[1] GPIO__BU-'*IONs_re[';] s-r.{-lysm
IBUF
) e L +
I O D Q—+0 Q ; button Yy —
A
: > = FSM
GPIO_BUTTON_IBUF_1

Viewing the State Machine Glitch

You cannot troubleshoot the issue identified above by connecting a debug probe to the
GPIO_BUTTON [1] input signal itself. The GPIO_BUTTON [1] input signal is a PAD signal that is
not directly accessible from the FPGA fabric. Instead, you must trigger on low-to-high transitions
(rising edges) on the GPIO_BUTTON_IBUF signal, which is connected to the output of the input
buffer of the GPIO_BUTTON [1] input signal.

As described earlier, the glitch reveals itself as multiple low-to-high transitions on the
GPIO_BUTTONS_IBUF_1 signal, but it occurs intermittently. Because it could take several button
presses to detect it, you will now set up the Vivado logic analyzer tool to Repetitive Trigger Run
Mode. This setting makes it easier to repeat the button presses and look for the event in the
Waveform viewer.
1. Under the Settings tab for hw_ila_1, configure the following:

e Trigger Mode to BASIC_ONLY

e Capture Mode to BASIC

e Window Data Depth to 1024

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 56

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=56

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

e Trigger position to 512

e Press the + button in the Trigger Setup window and add probe GPIO_BUTTONS_IBUF_1.

Change the Value field to RX by selecting the value RX in the Value field, as shown in the
following figure.

Waveform - hw_ila_1

Q + = |2/ > » B B @ @ i + M = 2 [a

ILA Status:Idle

Settings - hw_ila_1 Trigger Setup - hw_ila_1

Trigger Mode Settings Q + 1*‘
Trigger mode: | BASIC_OMLY w Name Operator Radix Value Port
GPIO_BUTTONS_IBUF[1:0] == > [B v XX ~ probe3[1:0]
Capture Mode Settings
Capture mode: ALWAYS &
Number of windows 1 4
Window data depth 1024w [1-1024

Trigger position in window: | 512

General Settings

Refreshrate: | 500 ms

Trigger Setup - hw_ila_1

Q + = D
Mame Operator Radix Value Port
GPIO_BUTTONS_IBUF[1:0] == > [B] > X “~ probe3[1:0]

Value: |XX

—H=

& CAUTION! For different labs the GPIO_BUTTONS_IBUF may show up differently or have a different name such
as button_in4_in. This may also show up as two individual bits or two bits lumped together in a bus. Ensure that

you are using bit 1 of this bus to set up your trigger condition. For example in case of a two-bit bus, you will set
the Value field in the Compare Value dialog box to RX.

2. Select Enable Auto Re-trigger mode on the ILA debug core as shown below.

UG936 (v2020.1) June 24, 2020

www.xilinx.com
Programming and Debugging | Send Feedback | oy

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=57

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Hardware hw_ila_1
Q = 2 » » N o T
Name Status

; . Q
~ B localhost Connected

~ @l xiling_tefiXilingPort_#0003 Hu Open L4

~ (B xc7k325t 0 (2 Programmed
& XADC (System Monitor
S hw_ila_1 (u_ila_0)

Ne

Dashboard Optians

ILA Core Properties...

» RunTrigger
¥ Run Trigger Immediate
B stop Trigger
Enable Auto Re-trigger %

Create User Defined Probe

Dashboard 3

Exportto Spreadshest... I

Q CAUTION! The ILA properties window may look slightly different for different labs.

When you issue a Run Trigger or a Run Trigger Immediate command after setting the Auto
Retrigger mode, the ILA core does the following repetitively until you disable the Auto
Retrigger mode option.

e Arms the trigger.
e Waits for the trigger.
e Uploads and displays waveforms.

3. On the KC705 board, press the Sine Wave Sequencer button until you see multiple
transitions on the GPIO_BUTTONS_IBUF _1 signal (this could take 10 or more tries). This is a
visualization of the glitch that occurs on the input. An example of the glitch is shown in the
following two figures.

Q CAUTION! You may have to repeat the previous two steps repeatedly to see the glitch. Once you can see the
glitch, you may observe that the signal glitches are not at exactly the same location as shown in the figure
below.

hwe_ila_data_1.wcfg*

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/—] 58

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=58

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

hwa_ila_data_1.wcfg™ -0 a x

Fixing the Signal Glitch and Verifying the Correct
State Machine Behavior

The multiple transition glitch or “bounce” occurs because the mechanical button is making and
breaking electrical contact just as you press it. To eliminate this signal bounce, a “de-bouncer”
circuit is required.

1. Enable the de-bouncer circuit by setting DIP switch position on the KC705 board (labeled
De-bounce Enable in Figure 1: KC705 Board Showing Key Components) to the ON or UP
position.

2. Enable the Auto-Retrigger mode on the ILA debug core and click RunTrigger on the ILA core,
and

e Ensure that you no longer see multiple transitions on the GPIO_BUTTON_re[1] signal on a
single press of the Sine Wave Sequencer button.

o \Verify that the state machine is working correctly by ensuring that the sineSel signal
transitions from 00 to 01 to 10 to 11 and back to 00 with each successive button press.

Verifying the VIO Core Activity (Only Applicable to
Lab 3)

1. From the Program and Debug section in Flow Navigator, click Open Hardware Manager.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 59

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=59

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Flow Navigator ? IMPLEMENT
> PROJECT MANAGER

Sources
> IP INTEGRATOR = 4
3 sinege
> SIMULATION » = Ne
> Le:
> RTL AMALYSIS > 5 db
’ o
> SYNTHESIS ¥ (W
b u_
> IMPLEMEMNTATION > EE U_
* PROGRAM AMD DEBUG Propertie
Vi Generate Bitstream 4 Debug

> Open Hardware Managear)
Version:
Descript

The Hardware Manager window opens.

2. Click Open a new hardware target.

HARDVWARE MAMNAGER - unconnected
o Mo hardware target is open. Opentarget

£ Auto Connect
Hardware

Recent Targets »

Cpen Mew Target... [

Mo content

3. The Open New Hardware Target wizard opens. Click Next.

4. In the Hardware Server Settings page, type the name of the server (or select Local server if
the target is on the local machine) in the Connect to field.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—| 60

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=60

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

5. Ensure that you are connected to the right target by selecting the target from the Hardware
Targets page. If there is only one target, that target is selected by default. Click Next.

In the Set Hardware Target Properties page, click Next.

In the Open Hardware Target Summary page, verify that all the information is correct, and
click Finish.

8. Program the device by selecting and right-clicking the device in the Sources window and then
selecting Program Device.

Hardware ? 00 X
Q = = o
Mame Status
~ B localhost (1) Connected

~ B xling_tofdilingPort_#0003.Hu... Open

~ {8 xcTK325t_0 (1)

- Hardware Device Properties. ..
2k XADC (System M

Program Device... L\\g
Verify Device. ..
(& Refresh Device

Add Configuration Memory Device...

Boot from Configuration Memory Device

Program BBR. Key...
Clear BBR Key...

Hardware Device Properties

Program eFUSE Reqgisters...
8} xcTk325t 0

Export to Spreadsheet...

9. In the Program Device dialog box, ensure that the bit file to be programmed is correct. Click
OK.

¢ Program Device @

Select a bitstream programming file and download it to your hardware device. You can optionally select a debug probes file
that corresponds to the debug cores contained in the bitstream programming file.

Bitstream file: C:Mivado_Debugi2017 . 1/proj_hdl_vio/proj_hdl_vio.runsfimpl_1/sinegen_demo_inst_vio.bit ”Z‘

Debug probes file: | C:Vivado_Debugf2017 /proj_hdl_vio/proj_hdl_vio.runsfimpl_1/sinegen_demo_inst_vio.Itx B

+'| Enable end of startup check

=
\?) Program Cancel

10. After the FPGA device is programmed, you see the VIO and the ILA core in the Hardware
window.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 61

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=61

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Hardware
Q = 2 o
MName Status
~ B localhost (1 Connected
~ @ xiling_tcfiXilingPort_#0003Hu.. Open
~ {8 xcTk325L_0 (3 Programmed
& XADC (System Monitor
SE hw_ila_1 (LU_ILA O dle
SE hw_vio_1 (U_VIO) OK - Outputs Reset

You now have a debug dashboard for the ILA core as shown in the following figure.

hwe_ila_1

Waveform - hw_ila_1

Q + zx b » BB @ @ X o K +

ILA Status:idie

Name

Dashboard Options

Trigger Setup - hw_ila_1

e > » W + o,

Core status
Idle Pre-Trigger Waiting for Trigger | Post-Trigger Full

Capture status
Window 1 0f 1 Window sample 0 of 1024 Total sample 0 of 1024
ldle Idle de

11. Click Run Trigger Immediate to capture the data immediately.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 62

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=62

& XILINX

Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

Hardware

Q = 2 > = o
Mame Status

~ B localhost (1

Run Trigger Immediate
~ @@ xiling_tefXilingPort_#0003.Hu...

Open
v {8} xc7k325t_0 (3) Programmed
& XADC (System Monit
SE hw_ila_1(L_|LA O Idle
& hw_vio_1

Ok - Cutputs A

12. Make sure that there is activity on the sine [19:0] signal.

13. Select the sine signal in the Waveform window, right-click and select Waveform Style =
Analog.

14. Select the sine signal in the Waveform window again, right-click and select Radix = Signed
Decimal. You should be able to see the sine wave in the Waveform window.

Waveform - hw_ila_1
Q + =

> » BB @ a 2 « M = 2 Ja
ILA Status:Idle

<% sine[19:0)

¢ sineSel[1:0]

UG936 (v2020.1) June 24, 2020
Programming and Debugging

[Send Feedback] www.Xilinx.com

63

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=63

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

15. Instead of using the GPIO_SW push button to cycle through each different sine wave output
frequency, you are going to use the virtual “push_button_vio” toggle switch from the VIO
core.

16. You can now customize the ILA dashboard options to include the VIO window. This allows
you to toggle the VIO output drivers and observe the impact on the ILA waveform window all
in one dashboard. Slide out the Dashboard Options window.

hw_ila_1

Waveform - hw_ila_1

Q + > > » W [
ILA Status:Idle

Name
B GPIO_BUTTO
B GPIO_BUTTO
B GPIO_BUTTOMNS re_1[1:0]

Dashboard Options

a7

B sine[19:0]
B sineSel[1:0]

Status - hw_ila_1
» [b5 [|
17. Add the VIO window to the ILA dashboard by selectinghw_vio_1.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/_] 64

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=64

& XILINX

hw_ila_1

Dashboard Options

a = <

~ *cTk3251_0

~ ¥ hw_ila_1 (U_ILA

+| Status
¥ Settings
¥ Trigger Setup
¥ Capture Setup

|

Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

Waveform - hw_ila_1

Q + = 2 » »

ILA Status:ldle

1% push_button_vio

<% sine[19:0]

at: ZO017-Mar-17 1

Status - hw_ila_1

rr » N +
Core status
lddle Pre-Trigger Waiting for Tric
Capture status Pressthe < button to add probes
Window 1 0f1 Window sample 0 of 1024 Tota

Idle Idle

Note: The ILA dashboard now contains the VIO window as well.

18. Adjust the Trigger Setup - hw_ila_1 window and the hw_vio_1 window so that they are side
by side as shown in the following figure.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

www.Xilinx.com

| Send Feedback I 65

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=65

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Waveform - hw_ila_1
Q + = 2 > » B B3 @@ Q H « MM = 2 [a &

ILA Status:1dle

™ sineSel[1:0]

Updated at: 2017-Mar-17 11:25:13
> <

Trigger Setup - hw hw_vio_1

19. In the hw_vio_1 window, select the “+” button, and select all the probes under hw_vio_1.
20. Click OK.

Note: The initial values of all the probes.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 66

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=66

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Waveform - hw_ila_1
Q + = 2 » » B E @ Q i » 4 M = 2 + [e

ILA Status:Idle

dly[1:0]
diy[1:0]
re_1[1:0]

h_button_re
h_button_

Updated at: 2017-Mar-17 11::
> L
Trigger Setup - hw hw_vio_1
+ o, +
Add Probes
z s o
P e =+ bu

Search:
Probes for hw_vio_1 (5 hd

~ 3 hw_vio_1

= DONT_EAT
= GPIO_BUTTONS re[1:1]
“.a push_button_reset
“a push_button_vio_1 I,\\)
> sineSel_1[1.0
ILL_NARME=~"U_ILA"}] = _101.0]
3 xcTk325t_0] -filter [CELL NAME=-"U_ILA"}]]
3:189
.fproj_hdl_wio/proj_hdl_vioc.hw/backup/hw_ila data_l.ila. Use Tcl command 'import_hw_ila_da

21. Note the values on all probes in the hw_vio_1 window.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 67

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=67

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Waveform - hw_ila_1

Q + = 2 » » B B @ @ X & M 1= 2 [&

ILA Status:Idle

_re_1[1:0]
h_button_reset_1
1 push_button_vio

Updated at: 2017-Mar-17 11:25:13
> <
Trigger Setup - hw hw_vio_1
+ o, a z & -
Name Value Acti... Directi VIO
= DONT_EAT [Bl0 Input hw_vio_1
s GPIO_BUTTONS_re[11] [B]0O Input hw_via_1
N 4 bution to add probes a push_button_reset Blo - Output hw_vio_1
T - SE R a push_button_vio_1 [Bl0 A Output hw_vio_1
> g sineSel_1[1:.0] [HIO Input hw_vio_1

22. Set the push_button_reset output probe by right-clicking push_button_reset and select
Toggle Button.

This will toggle the output driver from logic from ‘0’ to ‘1’ to ‘O’ as you click. It is similar to the
actual push button behavior, though there is no bouncing mechanical effect as with a real
push button switch.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 68

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=68

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

hw_vio_1 ¥ Capture Setup - hw_ila_1 ? 0
Q T2 -
MName Value Activity Direction VIO
e DOMNT_EAT [B] O Input hw_vio_1
e GPIO_BUTTONS_re[1:1] [B1O Input hw_via_1
a push_bution_rese* e = S hw_vio_1
“a push_button_vio_ Debug Probe Properties. .. hw_vio_1
» g sineSel_1[1:0] ® Text hw_wvio_1

Active-High Button
Active-Low Button

Toggle Button %

? 00
Rename...
MName » -
Remove B

mand "import hw ila da Export to Spreadshest... i Data menu item to impo

wr

The Value field for push_button_reset is highlighted.
23. Click in the Value field to change its value to 1.

hw_vio_1 * Capture Setup - hw_ila_1 ? -0
Q T 2 -
Mame Yalue Activity Direction VIO
o DONT_EAT [Bl O Input hw_vio_1
HE GPIO_BUTTOMNS_re[1:1] [B]O Input hw_vio_1
a push_button_reset 1 Cutput hw_vio_1
La push_button_vio_1 0 Output hwi_vio_1
» i sineSel_1[1:0] [H] O Input hw_vio_1

24. Follow the step above to change the push_button_vio to Toggle button as well.

25. Set these two bits of the “sineSel” input probe by right-clicking PROBE_INO[0] and
PROBE_INO[1] and selecting LED.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 69

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=69

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

hw_vio_1 » Capture Setup - hw_ila_1

Qlx|e —
Mame Yalue Activity Direction VIO
= DOMT_EAT [B]O Input hw_vio_1
it GPIO_BUTTOMS re[1:1] [BIO Input hw_vio_1
La push_button_reset 1 Qutput hw_vio_1
a push_button_vio_1 0 QOutput hw_vio_1
» 12 sineSel_1[1:0] [H] O Input hw_vio_1
Debug Probe Properties...
* Text
LED... I}
Radix b 1
Activity Persistence 3
Rename...
"I VIO"}]1]
Mame 3
Remuove

Exportto Spreadsheet...

26. In the Select LED Colors dialog box, pick the Low Value Color and the High Value Color of
the LEDs as you desire and click OK.

-

s Select LED Colors]
Low Value Color: @ Gray w
High Value Color: @ Red v

27. When finished, your VIO Probes window in the Hardware Manager should look similar to the
following figure.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 70

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=70

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

hw_vio_1 ¥ Capture Setup - hw_ila_1 ? _ 0O
Q T 2 -
MName Value Activity Direction VIO
= DOMNT_EAT [B] O Input hw_vio_1
s GPIO_BUTTONS_re[1:1] [BIO Input hw_vio_1
a push_button_reset 1 Cutput hw_vio_1
a push_button_vio_1 0 Cutput hw_vio_1
» g sineSel_1[1:0] [HIO Input hw_vio_1

28. To cycle through each different sine wave output frequency using the virtual
“push_button_vio” from the VIO core, perform the following simple steps:

a. Toggle the value of the “push_button_vio” output driver from O to 1 to O by clicking on
the logic displayed under the Value column. You will notice the sineSel LEDs changed
accordingly - 0, 1, 2, 3,0, etc...

hw_vio_1 * Capture Setup - hw_ila_1 ? -0
Qlx|¢ -
MName Walue Activity Direction VIO
= DONT_EAT [B] O Input hw_vio_1
g GPIO_BUTTOMS re[1:1] [B]O Input hw_vio_1
La push_button_reset |I| Output hwi_vio_1
~ & sineSel_1[1:0] [H]1 Input hw_vio_1
T sineSel_1[1] [*] Input hw_vio_1
I sineSel_1[0] L~] Input hwi_vio_1
La push_button_vio_1 1 Cutput hw_vio_1

b. Click Run Trigger for hw_ila_1 to capture and display the selected sine wave signal from
the previous step.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 71

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=71

iv Xl Ll NX Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
A ®

Waveform - hw_ila_1
Q + P » BB @ @ 2 o« [e &

ILA Status:ldle

h_button_
h_button_»

2017-Mar-17 1Z:41:31

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 72

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=72

iv Xl Ll NX Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation
A ®

Lab 6

Using the ECO Flow to Replace
Debug Probes Post Implementation

This simple tutorial shows you how to replace nets connected to an ILA core in a placed and
routed design checkpoint using the Vivado® Design Suite Engineering Change Order (ECO) flow.

Note: To learn more about using the ECO flow, refer to the Debugging Designs Post Implementation chapter
in the Vivado Design Suite User Guide: Programming and Debugging (UG908).

1. Open the Vivado® Design Suite, and select File— Open Checkpoint.
¢ Vivado 2018.1 E

Eile Flow ools Window Help Q- Quick Access

ALL PROGRAMMABLE

Project

Checkpoint 4 Open.

Open Project >
Open Example Project >

Tasks

Manage IP >
Open Hardware Manager >

Xilinx Tcl Store »

Learning Center

Documentation and Tutorials >
Quick Take Videos >

Release Notes Guide >

Tel Console ? 00X

I &8 =

Opena intfile ing a netlist, XDC ,and a physical database

2. Open the routed checkpoint that you created in Lab 2: Using the HDL Instantiation Method
to Debug a Design.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—| 73

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=73

iv Xl Ll NX Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation
A ®

¢ Open Checkpoint

Lookin: | & impl_1 v TRy DS

& X

¢ sinegen_demo.dcp

Recent Directories

C:/NVivado_Debug/2017.1/proj_netlistproj_netlistrunsfiimpl_1 hd
¢ sinegen_demo_opt.dcp

¢ sinegen_demo_placed.dcp File Preview

¢ sinegen_demo_routed.dcp File: sinegen_demo_routed.dcp

Directory: C:Vivado_Debug/2017./proj_netlistproj_netlistrunsimpl_1
Created: Wednesday 03/15/17 02:54 PM

Accessed: Wednesday 03/15M17 02:54 PM

Modified: Wednesday 03/15/M17 02:54 PM

Size: 4.5 MB
Type: Checkpoint design
Owner: XLMNX\smitha
File name: sinegen_demo_routed.dcp
Files of ype: | Vivado Checkpoint Files (.dcp) v

I [crce |

Change the layout in the Vivado Design Suite toolbar dropdown to ECO.

¢ sinegen_demo_routed.dcp - [C:/Vivado_Debug/2017.1/proj_netlist/proj_netlist.runs/impl_1/sinegen_demao_routed.dcp] - Vivado 2017.1 E
File Edit Flow Tools Window Layout View Help Quick Access
=, - T~ I O] o Debug -
CHECKPOINT DESIGN - xc7k325tfg200-2 Default Layout
1’0 Planning
Hetlist ? 00O X Schematic Floorplanning
E | & - @ e ¥ m o C 35Cells 9UOPorts 114 Ng= Debug
Timing Analysis

50 sinegen_demo
> Mets (114)
Leaf Cells (
dbg_hub
U_DEBOUNCE_O
U_DEBOUNCE_-
U_FSM (fsm)
» ZE u_jla_0(u_ila_0
> U_SINEGEN (sinegen)

ECO

Save As New Layout..
Reset Layout F5

BEBED

Properties ?-00E X

Select an objectto see properties

TclConsole X Messages | Debug ?2_00
a T £ Il B B i
& total of 734 instances were transformed. 2

CPELUTS => CFGLUTS (SRLC32E, SRLLGE): 696 instances
RAM32M => REM32M (REMS32, REMS32, REMD32, REMD32, REMD32, REMD32, REMD32, REMD32): € instances
RAME4M => REMG4M (REMDG4E, RAMDGLE, RAMDG4E, RAMD4E): 32 instances

INFQ: [Project 1-604] Checkpoint was created with Viwvado v2017.1 (€4-bit) build 1812560
open_checkpoint: Time (s): cpu = 00:01:25 ; elapsed = 00:01:03 . Memory (MB): peak = 1962.723 ; gain = 1038.313

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l_‘/_| 74

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=74

& XILINX

Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

Note: The Flow Navigator window now changes to ECO Navigator with a different set of options.

¢ sinegen_demo_routed.dep - [C:NivadofDebug/ZOl?.l/pronvEtlistfprojfnetlist.rumfimplflhnegenﬁdemofrouted.dcp] - Vivado 2017.1

B=8 Bl =5

[5 write Debug Probes

Open Hardware Manager

File Edit Flow Tools Window Layout View Help Quicl
=, & H O -] ECO ~
CHECKPOINT DESIGN - xc7k3251fg900-2 ? X
ECO Navigator — Scratch F Propertie Neti X ?_0O0 Schematic X Device X | Package x 200
Edit E - | o - @ 6 M m ¢ C 35Cells 910 Pors >
3
Create Net 2] sinegen_demo
> Mets (114
Create Cell > [LeafCells (31
Create Port » % dbg_hub (dbg_hu
> [E U_DEBOUNGE_O unce
Greate Pin > [8 U_DEBOUNCE_1 (debounce_0
Connect Net > [@ U_FSM (fzm
> & u_jla_0(u_ila_0
Disconnect Net R
> U_SINEGEN (si
Replace Debug Probes
Place Cell
Unplace Cell
Run
Check ECO D
Optimize Logical Design i_‘:%% =aN
Place Design : i
Optimize Physical Design
Route Design
Report
Edit Timing Constraints
(B Report Timing Summary
I Report Clock Networks
Report Clock Interaction
Report DRC
Tcl Console x Messages Package Pins 10 Ports 200
Report Utilization - - -
Q = £ Il B E @
% Report Power | INFO: [Project 1-111] Unisim Transformation Summary: ~
R total of 734 instances were transformed.
Program CFGLUIS => CFGLUIS (SRLC32E, SRL16E): 696 instances
RAM32M => RAM32M (RAMS32, REMS32, RAMD32, RAMD32, RAMD32, RAMD32, REMD32, BAMD32): 6 instances
Save Checkpoint As RAMG4M => RAMG4M (RRMDGAE, RAMDGLE, RAMDGLE, RAMDG4E): 32 instances
o . H
i Generate Bitstream | INFO: [Froject 1-604] Checkpoint was created with Vivade v2017.1 (4-bit) build 1212560

"] open_checkpoint: Time {s): cpu = 00:01:25

; elapsed = 00:01:03 . Memory (MB): peak = 1962.723 ; gain = 1038.313

3.

In the ECO Navigator window, click Replace Debug Probes to bring up the Replace Debug

Probes dialog box. Note the Debug Hub and ILA cores in the design.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

www.Xilinx.com
75

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=75

iv Xl Ll NX Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation
A ®

¢ Replace Debug Probes @
Use the Edit Probes button to replace one or more debug probes. To reflect these
changes in the Vivado Hardware Manager, regenerate the debug probes file (LTX).
= = 7 t+t 3
Search:
Mame Frobe
@ Ch13 # U_SINEGEM/sine[13] -
@ Ch 14 # U_SINEGEN/sine[14]
@ Ch15 & L_SINEGEM/sine[18]
@ Ch 16 # U_SINEGEM/sine[16]
@ Ch17 # U_SINEGEN/sine[17]
@ ch18 & LU_SINEGEM/sine[18]
@ Ch 18 # U_SINEGEM/sine[19]
~ @ probe2 (2
@cCho & GPIO_BUTTOMNS_IBUFIO]
@ Ch 1 # GPIO_BUTTONS_IBUFT]
~ @ probe3 (2
@cCho & GPIO_BUTTONS_db[0]
@ Ch 1 # GPIO_BUTTONS_db[1]
~ @ probed (2
@cCho & GPIO_BUTTOMNS _diy[0]
@ Ch 1 # GPIO_BUTTONS_diy[1]
~ [probes (2
@cCho & GPIO_BUTTOMNS rel0] ~
Probes changed: 0
Cancel

IMPORTANT! Xilinx strongly recommends that you do not replace the clock nets associated with ILA and
Debug Hub cores.

4. In the Replace Debug Probes dialog box, highlight the probes whose nets you want to
change. In this lab we will replace the GPIO_BUTTONS_dly[0] net that is being probed.

5. Click the Edit Probes button to the right of the GPIO_BUTTONS_dly[0] probe net to bring up
the Choose Nets dialog box.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 76

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=76

iv Xl Ll NX Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation
A ®

-

¢ Replace Debug Probes @
Use the Edit Probes button to replace one or more debug probes. Tao reflect these
changes in the Vivado Hardware Manager, regenerate the debug probes file (LTX).
= = 7 +t 3
Search:
Mame Frobe
@ Ch13 [% U_SINEGEMisine[13] -
@ ch14 | % U_SINEGEM/sine[14]
@ Ch 15 [# U_SINEGEM/sing[15]
@ Ch 18 [% U_SINEGEMisine[16]
@& Cch17 & L_SINEGEM/sine[17]
@ Ch 18 # U_SINEGEM/sing[18]
@ Ch 18 [% U_SINEGEMisine[19]
~ @ probe2 (2)
@Ccho # GPI0_BUTTONS_IBUFO]
@ Ch 1 # GPIO_BUTTONS_IBUF[1]
~ @ probel (2)
@Ccho [% GPIO_BUTTONS_db[0]
@ Ch 1 # GPIO_BUTTONS_db[1]
~ [probed (2)
@ Cho # GPIO_BUTTONS_diy]0] '{TJ
@ Ch 1 [% GPIO_BUTTONS_diy[1]
~ @ probes (2)
@Ccho # GPI0_BUTTONS_re[0] %
Probes changed: 0

6. In the Choose Nets dialog box, choose the U_DEBOUNCE_O/clear net to replace the existing
GPIO_BUTTONS_dly[0] probe net. Click OK.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 77

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=77

iv Xl Ll NX Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation
A ®

¢ Choose Nets @

Choose nets to replace existing probes

Properties

MAME | | contains v |* +

Regular expression ' Search hierarchically ' Display unique nets

Of objects: E

Fd
Found: 12857 Selected: 0 of 1 E !
I =const0=
I =constt=
I clk
I clk_ibufgds
o CLK_N
I CLK_P
I dbg_hubi=const0=
I dbg_hublinsti=const0=
I dbg_hublinsttBSCANID.u_xsdbm_id/<const1=
T dbg_hubfinstBSCANID.u_xsdbm_id/bscanid[0]

I dbg_hublinstBSCANID.u_xsdbm_id/bscanid[1]
< >

Use the buttons on the left to copy Mets into this List.

H

Cancel

7. Type for “*clear net” in the Name field and Click Find. Notice the U_DEBOUNCE_O net in the
Found nets area. Select U_DEBOUNCE_O/clear net using the “->" arrow and click OK. The
U_DEBOUNCE_O/clear net to replaces the existing GPIO_BUTTONS_dly[0O] probe net.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 78

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=78

iv Xl Ll NX Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation
A ®

¢ Choose Nets @

Choose nets to replace existing probes.

Properties

NAME | | contains w I*clear I +

Reqular expression /| Search hierarchically v/ Display unique nets

Of objects: |I|

Found: 68 Selected: 0 of 1 1 |

u_ila_hnstila_core_instu_ila_regs/Cl
I u_ila_0vinstfila_core_instiu_ila_regs/CNT CNT_SRL
I u_ila_0vfinstfila_core_instiu_ila_regs/CNT CNT_SRL
T u_ila_0finstila_core_instiu_ila_regs/CNT.CNT_SRL

. o . . Use the buttons on the left to copy Mets into this List.
I u_ila_0dinstila_core_instiu_ila_regs/MU_SRLI0L.mu,

H

I u_ila_Diinstfila_core_instu_ila_regsMU_SREL[1]L.mu_
I u_ila_Ddfinstfila_core_instiu_ila_regsMU_SRL[2]. mu,
I u_ila_vinstfila_core_instiu_ila_regsMU_SRL[3].mu,
I u_iIa_DIinsUiIa_core_instfu_ila_regsfMU_SRL[d-].mu_v
¢ >

Ok Cancel

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—| 79

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=79

iv Xl Ll NX Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation
A ®

¢ Choose Nets @

Choose nets to replace existing probes.

Properties

NAME | | contains w | | *clear +

Reqular expression /| Search hierarchically v/ Display unique nets

Of objects: II‘

Found: 88 Selected: 1 of 1 <L |
T dbg_hub/instBSCANID.u_xsdbm_id/CORE_XSDB.U ™ T U_DEBOUNCE_O/clear

I U_DEBDUNCE_O/clear

I u_ila_Ddfinstfila_core_instiu_ila_regs/CNT CNT_SRL

I u_ila_0vfinstfila_core_instiu_ila_regs/CNT CNT_SRL

I u_ila_0vfinstfila_core_instiu_ila_regs/CNT CNT_SRL

T u_ila_0finstila_core_instiu_ila_regs/CNT.CNT_SRL

I u_ila_0dinstila_cere_instiu_ila_regs/MU_SRLOLmu. =%
T u_ila_0finstila_core_instiu_ila_regs/MU_SRL1Lmu, SR R E S TR B T
I u_ila_Ddfinstfila_core_instiu_ila_regsMU_SRL[2]. mu,

I u_ila_vinstfila_core_instiu_ila_regsMU_SRL[3].mu,

I u_ila_0vfinstfila_core_instiu_ila_regsMU_SRL[4].mu_

¢ >

8. Now click OK in the Replace Debug Probes dialog. An additional dialog box may appear if the
nets were marked with DONT_TOUCH indicating that it must be removed to proceed. If so,
click Unset Property and Continue.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 80

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=80

iv Xl Ll NX Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation
A ®

¢ Replace Debug Probes @
Use the Edit Probes button to replace one or more debug probes. To reflect these
changes in the Vivado Hardware Manager, regenerate the debug probes file (LTX).
= s 72 C t 3
Search:
Mame Frobe
@ Ch13 [U_SINEGEN/sine[13] -
@ Ch 14 [# U_SINEGEN/sine[14]
@ Ch15 | % U_SINEGEM/sine[15]
@ Ch 16 [# U_SINEGEN/sine[16]
@ Ch17 [% U_SINEGEN/sine[17]
@ ch18 | % U_SINEGEM/sine[18]
@ Ch 18 [# U_SINEGEN/sine[18]
~ @ probe2 (2)
@cCho | % GPIO_BUTTOMNS_IBUFIO]
@ Ch 1 [# GPIO_BUTTONS_IBUF[1]
~ @ probe3 (2)
@cCho | % GPIO_BUTTOMNS_db[0]
@ Ch 1 [# GPIO_BUTTONS_db[1]
~ @ probed (2)
@Cho [U_DEBOUNCE_Diclear g
@ Ch 1 [# GPIO_BUTTONS_diy[1]
~ @ probes (2)
@cCho | % GPIO_BUTTOMNS_re[0] &
Probes changed: 1

i} IMPORTANT! Check the Tcl Console to ensure that there are no Warnings/Errors.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 81

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=81

& XILINX

TciConsole X Messages | Debug | Package Pins | IO Ports
a = = I B E @

E show_objects -name NET_ONLY [get_nets -hierarchical -top_net_of_hierarchical_group "*" |
. show_cbjects -name NET_ONLY [get_nets -hierarchical -top_net_of hierarchical group "*clear*"]
modify debug ports -probes [list {u_ila 0/probel 0 U _DEBOUNCE 0/clear}]

, Netlist sorting complete. Time (s): cpu = 00:00:00 ; elapsed = 00:00:00.028 . Memory (MB): peak = 2884.758 ; gain = 0.000
INFQ: [Vivado_Tcl 4-963] Removed DONT_TQUCH property on net U_SINEGEN/sine[0] to prepare for debug probe changes.

INFO: [Vivado 12-3773] the DONT_TOUCH property on this net is implied by a MARK DEBUG. Setting the DONT_TOUCH property to FALSE or 0 will enabl

Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

. INFO:

<

E Starting Physical Synthesis Task
E Phase 1 Physical Synthesis Initialization

+ INFO: [Physopt 32-668] Current Timing Summary | WNS=0.594 | TN5=0.000 | WHS=0.060 | TH5=0.000 |
. Phase 1 Fhysical Synthesis Initialization | Checksum: 1£020a02d

[Fhysopt 32-721] Multithreading enabled for phys_opt_design using a maximum of 2 CEUs

Tcl Console ® Messages Debug Package Pins IO Ports

? 00

o = == Il B B o
!)) ~
. INFO: [Common 17-83] Releasing license: Implementation
L1z Infos, 0 Warnings, 0 Critical Warnings and 0 Errors encountered.
! route_design completed successfully

route_design: Time (3): cpu = 00:01:33 ; elapsed = 00:01:44 . Memory (MB): peak = 2239.453 ; gain = 225.266
E =

<]

Save your modifications to a new checkpoint. Use the Save Checkpoint As option in the ECO

Navigator to bring up the Save Checkpoint As dialog box. Specify a file name for the .dcp file
and click OK.

¢ Save Checkpoint As @

Create a checkpoint file that contains the netlist, XDC constraints, and the physical
database.

Checkpoint file: | 2017 1/proj_netlist/proj_netlist runsfimpl_1/icheckpoint_1.d |E|

10. Click Write Debug Probes in the ECO Navigator. When the Write Debug Probes dialog

appears,

UG936 (v2020.1) June 24, 2020

click OK to generate a new .Itx file for the debug probes.

www.xilinx.com
Programming and Debugging l Send Feedback l .

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=82

& XILINX

¢ Write Debug Probes

‘Write debug probes to afile.

=X
y

Eile Mame: | 17 1proj_netlist/proj_netlistrunsfimpl_1/probes_2 |E|

' Overwrite

Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation

11. Click Generate Bitstream in the ECO navigator. When the Generate Bitstream dialog appears,
change the bit file name to project_sinegen_demo_routed_debug_changes.bit in
the Bit File field and click OK to generate a new .bit file that reflects the debug probe

changes.

¢ Generate Bitstream

Create a programming file from the current design

=X
y

Bit File | etlist/proj_netlist.runsfimpl_1/project_sinegen_demo_routed. “Z‘

Options

-raw_hitfile
-mask_file
-no_pbinary_bitfile
-bin_file
-readback_file
-logic_location_file

-verbose

Select an option above to see a description of it

12. Connect to the Vivado Hardware Manager by selecting Open Hardware Manager in the ECO

Navigator.

13. Connect to the local hardware server by following the steps in the Target Board and Server

Set Up section in Lab 5: Using the Vivado Logic Analyzer to Debug Hardware

UG936 (v2020.1) June 24, 2020
Programming and Debugging

l Send Feedback l

www.Xilinx.com
83

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=83

iv Xl Ll NX Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation
A ®

Program the device using the . bit fileand . 1tx files that you created in the previous
steps.

¢ Program Device @

Select a bitstream programming file and download it to your hardware device. You can optionally
selecta debug probes file that corresponds to the debug cores contained in the bitstream ‘
programming file.

Bitstream file: " lproj_netlistiproj_netlistrunsfimpl_1/project_sinegen_demo_routed.bit E

Debug probes file: | Z:Vivado_Debug/2017 . 1/proj_netlist'proj_netlistrunsimpl_1/probes_1.Ix HII

v Enable end of startup check

(‘?') Program Cancel

14. Select Window — Debug Probes from the Vivado Design Suite toolbar. Ensure that the
probes that were replaced in step 8 and 9 above are reflected in the probes associated with
hw_ila_1.

Hardware Debug Probes hw_ila_1
Q = 2 > » N = a = 2 = Waveform - w_ila_1
Name Status ~ g hw_ila_1 “ »
g a + e p » BB @ @ X »
~ B localhost (1 Connected e clear £ i
~
v @l dlin_tefXilingPort_#0003.Hu... Open 1= DONT_EAT g ILA Status:idle
~ @ ¥cTK325L0 (2 Programmed s GPIO_BUTTONS_db[1:0] E
& XADC (System Monitor %5 GPIO_BUTTONS_diy[1:1] E
& hw_ila_1 (u_ilz_0 O ldle s GPIO_BUTTONS_IBUF[1:0] e
& GPIO_BUTTONS re[1:0] [1:1]
iz U_SINEGENM/sel[1:0] C ONS_db[1:0]
& U_SINEGEN/sine[19:0] C ONS_IBUF[1:0]
1:0]
¢ > 0
Debug Probe Properties
e clear - o
Source: METLIST
Type: ILA Trigger Setup -h
Probe type: Data and Trigger -
»
width: 1 sIri» + o
Core status
Display Name ldle
® Long name: clear
Capture status
Short name: clear
. Windnw 1 nf4 >
General | Properies Enumeration 4 2

15. Run the Trigger on the ILA. Ensure the probes that were replaced in step 8 and 9 above are
reflected in the Waveform window as well.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/_] 84

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=84

iv Xl Ll NX Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation
A ®

Waveform - hw_ila_1
Q + e r » BB & a X o K +T 7

ILA Status:ldle

BUF[1:0]

I[1:0]
19:0]

?7-Mar—-17 14:43:

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 85

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=85

iv Xl Ll NX Lab 7: Debugging Designs Using the Incremental Compile Flow
A .

Lab 7

Debugging Designs Using the
Incremental Compile Flow

This lab introduces the Vivado® Incremental Compile Flow to add/edit/delete debug cores to an
earlier implementation of the design.

Procedure

This lab consists of five generalized steps followed by general instructions and supplementary
detailed steps that allow you to make choices based on your skill level as you progress through
the lab.

If you need help completing a general instruction, go to the detailed steps below it, or if you are
ready, simply skip the step-by-step directions and move on to the next general instruction.

The lab has five primary steps as follows:
Step 1: Opening the Example Design and Adding a Debug Core
Step 2: Compiling the Reference Design

Step 3: Create New Runs
Step 4: Making Incremental Debug Changes

vk 0 b e

Step 5: Running Incremental Compile

Step 1: Opening the Example Design and
Adding a Debug Core

1. Start Vivado IDE
Load Vivado IDE by doing one of the following:
e Double-click the Vivado IDE icon on the Windows desktop.

e Type vivado in a command terminal.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 86

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=86

iv Xl Ll NX Lab 7: Debugging Designs Using the Incremental Compile Flow
A .

From the Getting Started page, click Open Example Project.
2. Inthe Open Example Project dialog box, click Next.
Select the CPU (Synthesized) design template, and click Next.
4. In the Project Name dialog box, specify the following:
e Project name: project_cpu_incremental
e Project location: <Project_Dir>
Click Next.
5. In the Default Part screen, select xc7k70tfbg676-2 and click Next.

6. The New Project Summary screen appears, displaying project details. Reviewed these and
click Finish.

7. When Vivado IDE opens with the default view, open the Synthesized design.

8. In the Netlist window, select the set of signals specified below in the cpuEngine hierarchy
and apply the MARK_DEBUG property by right-clicking and selecting Mark Debug from the
dialog.

cpuEngine/dcqgmem_dat_qmem[*],
cpuEngine/dcpu_dat_qgmem[*],
cpuEngine/dcqgmem_adr_qmem/[*],
cpuEngine/du_dsr[*],
cpuEngine/dvr0__0[*],
cpuEngine/du_dsr[*],
cpuEngine/dcqgmem_sel_gmem|[*]

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 87

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=87

iv Xl Ll NX Lab 7: Debugging Designs Using the Incremental Compile Flow
A .

SYNTHESIZED DESIGHN - constrs_2 | xc7k70fbg676-2 (active)
Sources | Metlist ? 00
e o
s TP depu_adr_cpu (22) -~
» A depu_dat_cpu (22)
» A depu_dat_gmem (25)
» AT depu_sel_cpu (3)
» T depu_tag_dmmu (1)
» A degmem_adr_gmem (32)
» AT degmem_dat_gmem (32)
> P degmem_=al _amam 4}
> I degmem, Bus Met Properties. .
> I degmem. # Mark Debug I}
» A desb_adr,
» IF desb_sel
> I dout (32) Select Driver Pin
» A7 dilb_ppn (
> T du_dat o} Y1 Schematic
> - du_dat_di Show Connectivity
» A du_dsr (1 Show Hierarchy
? A du_excer 4 ighiignt ,
» I dwr0__0(t
» I dwb_dat_|
> T dwb_dat] @ Mark ’
» I E(1)
» A ex_insn (2 o to Source
» I fifo_dat_o T2 'vl

Alternatively use can use the Tcl command below to set the MARK_DEBUG property on the
signals specified.

set_property mark_debug true [get_nets [list {cpuEngine/
dcgmem_dat_gmem[*]}

{cpuEngine/dcpu_dat_qmem[*]} {cpuEngine/dcgmem_adr_qgmeml[*]}
{cpuEngine/du_dsr[*]} {cpuEngine/dvrO__0[*]} {cpuEngine/du_dsr([*]}
{cpuEngine/dcqmem_sel_qmem[*]}]]

9. In the Flow Navigator, click Set Up Debug to invoke the Set Up Debug wizard.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—| 88

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=88

iv Xl Ll NX Lab 7: Debugging Designs Using the Incremental Compile Flow
A .

M4
Al
L)

Flow Navigator
v PROJECT MANAGER
£} Settings
Add Sources

Language Templates

~ SIMULATION

Run Simulation

~ MNETLIST ANALYSIS
~ (pen Synthesized Design
Constraints Wizard

Edit Timing Constraints

W SetUp Debug
>

£

() Report Timing Summary
Report Clock Metworks
Report Clock Interaction

Report Methodology
Report DRC
Report Moise
Report Utilization

& Report Power

4 Schematic

~ IMPLEMEMTATION

P Run Implementation

Open Implemented Design

¥ PROGRAM AND DEBUG

¥ Generate Bitstream

» Open Hardware Manager

10. When the Set Up Debug Wizard appears, click Next.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—| 89

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=89

& XILINX

Lab 7: Debugging Designs Using the Incremental Compile Flow

¢ SetUp Debug

Nets to Debug

Name

17 i cpuEngine/dcpu_dat_gmem (25)
i cpuEngine/dcqgmem_adr_gmem (32)
I cpuEngine/dcgmem_dat_gmem (32)
17 i cpuEngine/dcgmem_sel_gmem (4)
i cpuEngine/du_dsr (11)

i cpuEngine/dvr0__0 (6)

N " A

Find Mets to Add...

Clock Domain
clkgenicpuClk
clkgenicpuClk
clkgenicpuClk
clkgenicpuClk
clkgenicpuClk
clkgen/cpuClk

Driver Cell
FDRE
FDRE
FDRE
FDRE
FDCE
FDCE

Probe Type

Data and Trigger
Data and Trigger
Data and Trigger
Data and Trigger
Data and Trigger
Data and Trigger

¢ ¢ ¢ ¢ ¢ ¢

The nets below will be debugged with ILA cores. To add nets click "Find Nets to Add™. You can also select nets in the Metlist or other
windows, then drag them to the list or click "Add Selected Nets”

Nets to debug: 110

Cancel

11. When ILA Core Options screen appears, click Next again.

12. When Set Up Debug Summary screen appears, ensure that 1 debug core is created and click

Finish.

13. Check the Debug widow to ensure that u_ila_O core has been inserted into the design.

Q = 2 % +

B clk (1)

>

> & probe0 (32)

> @ probet (4)

> B probe2 (32)

> & probe3 (11)

> | probed (25)

¥ & probe5 (6)
Unassigned Debug Nets (0)

Debug Cores Debug Nets

TciConsole | Messages | Log | Reports | Design Runs

Driver Cell

Debug %

Driver Pin

Probe Type

Data and Trigger
Data and Trigger
Data and Trigger
Data and Trigger
Data and Trigger
Data and Trigger

¢ ¢ < ¢ <K

?

-oo
-]

14. Save the new debug XDC commands by selecting File = Constraints = Save or clicking the

Save Constraints button.

Step 2: Compiling the Reference Design

The following are the steps to run implementation on the reference design.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

I Send Feedback l WWW.Xi|inX.C09I’1(’1)

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=90

iv Xl Ll NX Lab 7: Debugging Designs Using the Incremental Compile Flow
A .

1. From the Flow Navigator, select Run Implementation.
2. After implementation finishes, the Implementation Complete dialog box opens. Click Cancel.

3. In a project-based design, the Vivado® Design Suite saves intermediate implementation
results as design checkpoints in the implementation runs directory. You will use one of the
saved design checkpoints from the implementation in the incremental compile flow.

TIP: When you re-run implementation, the previous results will be deleted. Save the intermediate
implementation results to a new directory or create a new implementation run for your incremental compile to
preserve the reference implementation run directory.

4. In the Design Runs window, right-click impl_1 and select Open Run Directory from the
popup menu. This opens the run directory in a file browser as seen in the following figure.
The run directory contains the routed checkpoint (top_routed . dcp) to be used later for
the incremental compile flow. The location of the implementation run directory is a property
of the run.

5. Get the location of the current run directory in the Tcl Console by typing:
get_property DIRECTORY [current_run]

This returns the path to the current run directory that contains the design checkpoint. You
can use this Tcl command, and the DIRECTORY property, to locate the DCP files needed for
the incremental compile flow.

Step 3: Create New Runs

In this step, you define new synthesis and implementation runs to preserve the results of the
current runs. Then you make debug related changes to the design and rerun synthesis and
implementation. If you do not create new runs, Vivado overwrites the current results.

1. From the Vivado tool bar, select Flow = Create Runs to invoke the Create New Runs wizard.
2. In the Create New Runs screen, click Next.

3. The Configure Implementation Runs screen opens, as shown in the figure below. Select the
Make Active check box, and click Next.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 91

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=91

iv Xl Ll NX Lab 7: Debugging Designs Using the Incremental Compile Flow
A .

¢ Create New Runs @

Configure Implementation Runs

Create and configure one or more implementation runs using various parts, constraints, flows and strategies ‘

Create Implementation Runs

+
Mame Constraints Set Part Strategy Make Active
impl_2 - = constrs_2 (act.. v {8} xcTKT0thgE7... v & Vivado Implementation Defaults (Vivado Implementation 2. ~ v

Runs to create: 1

Cancel

4. From the Launch Options window, select Do not launch now and click Next.

¢ Create New Runs @
Launch Options
Configure hosts for launching runs, and/or set advanced launch options ‘
Launch directory: | & <Default Launch Directory= w
Options

® Launch runs on local host: Mumber ofjobs: 4w
Generate scripts only

Do not launch now

Cancel

5. In the Create New Runs Summary screen, click Finish to create the new runs.

The Design Runs window displays the new active runs in bold.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 92

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=92

& XILINX

Lab 7: Debugging Designs Using the Incremental Compile Flow

Q = =
Name
o impl_1 (acive
impl_2

Tcl Console Messages Log

Po» + %

Constraints Status

constrs_2

Reports Package Pins Design Runs X Power Timing Methodology DRC 2 _ 0BG

route_design Complete!

constrs_2 Mot started

WNS TNS WHS THS TPWS TotalPower FailedRoutes LUT FF BRAMs URAM DSP Stat Elapsed Sirat
1.265 0.0.. 0.057 0.0.. 0.000 2.393 0 2. 1. 11250 o 68 3M.. 00:14:25 Viva

2

Vivad)

Step 4: Making Incremental Debug Changes

In this step, to add/delete/edit debug cores, you need to reopen the synthesized netlist. Make
debug related changes to the design using the Set Up Debug wizard.

1. If you have closed the synthesized netlist, go back to the synthesized design using the Flow

Navigator.

2. For this tutorial, assume that you now need to debug some other nets in addition to the ones
already being debugged. However, you want to reuse the previous place and route results. So
now, you will debug the nets fftEngine/fifo_out [*]

3. Apply the MARK_DEBUG property to this bus in the netlist window.

Sources
= 4
i top

. L . L L A L

o

Netlist

Ir
F
I

b Mets (4564)
» Leaf Cells (223)

b clkgen (clock_generator)

C (16)
D (32)

X

> cpuEngine (or1200_top)
> & dbg_hub (dbg_hub_
~ [@] fitEngine (fTop)
Mets (3331)
A(16)

Pt
AP

F
Ir
I
I
Ir

=

13 (32)
14 (32)
15 (32)
16 (32)
I7 (32)

1S 370

A I
2

Fa

UG936 (v2020.1) June 24, 2020
Programming and Debugging

I Send Feedback l WWW.Xi|inX.C09n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=93

iv Xl Ll NX Lab 7: Debugging Designs Using the Incremental Compile Flow
A .

4. Click Set Up Debug to invoke the Set Up Debug wizard in the Flow Navigator.

5. In the Existing Debug Nets tab, select Continue debugging 110 nets connected to existing

debug cores.

¢ Set Up Debug

Existing Debug Nets

Choose how to handle existing nets connected to debug cores.

Continue debugging 110 nets connected to existing debug core
Only debug new nets

Disconnect all nets and remove debug cores

5

Cancel

6. Click Next to debug the new unassigned debug nets.

UG936 (v2020.1) June 24, 2020 send Foodback
Programming and Debugging L\/_]

www.Xilinx.com
94

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=94

iv Xl Ll NX Lab 7: Debugging Designs Using the Incremental Compile Flow
A .

¢ Set Up Debug @

Additional Debug Nets
Choose additional nets to debug. ‘

+ Debug 32 unassigned debug nets

+'| Debug 32 selected nets

7. Click Next and ensure the new nets are in the list of Nets to Debug.

¢ Set Up Debug @

Nets to Debug

The nets below will be debugged with ILA cores. To add nets click "Find Mets to Add™. You can also select nets in the Netlist or other ‘
windows, then drag them to the list or click "Add Selected Mets”.

Q = = m =+ = o
Mame Clock Domain Driver Cell Probe Type

» Ir# cpuEngine/dcpu_dat_gmem (25) clkgenfcpuClk FDRE Data and Trigger

> IF# cpuEngine/dcgmem_adr_gmem (22} clkgenfcpuClk FDRE Data and Trigger

» Ir# cpuEngine/dcgmem_dat_gmem (32) clkgenfcpuClk FDRE Data and Trigger

» JF# cpuEngine/dcgmem_sel_gmem (4 clkgenfcpuClk FDRE Data and Trigger

» Ir# cpuEngine/du_dsr(11) clkgenfcpuClk FDCE Data and Trigger

» Ir# cpuEnginel/dw0__0 (F) clkgenfcpuClk FDCE Data and Trigger

» I fEngineffifo_out (32) clkgen/itClk RAMB36... Dataand Trigger

Find Mets to Add... Mets to debug: 142
o)

8. Click Next and ensure that two debug cores are created and click Finish.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 95

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=95

iv Xl Ll NX Lab 7: Debugging Designs Using the Incremental Compile Flow
A .

9. Save the new debug XDC commands by clicking the Save Constraints button or selecting
File— Constraints = Save from the main Vivado toolbar.

Step 5: Running Incremental Compile

In the previous steps, you have updated the design with debug changes. You could run
implementation on the new netlist, to place and route the design and work to meet the timing
requirements. However, with only minor changes between this iteration and the last, the
incremental compile flow lets you reuse the bulk of your prior debug, placement and routing
efforts. This can greatly reduce the time it takes to meet timing on design iterations. For more
information, refer to Vivado Design Suite User Guide: Implementation (UG904).

1. Start by defining the design checkpoint (DCP) file to use as the reference design for the
incremental compile flow. This is the design from which the Vivado Design Suite draws
placement and routing data.

2. Inthe Design Runs window, right-click the impl_2 run and select Set Incremental
Implementation from the popup menu. The Set Incremental Implemenation dialog box opens.

Select Automatically use the checkpoint from the previous run.

4. Click OK. This information is stored in the INCREMENTAL_CHECKPOINT property of the
selected run. Setting this property tells the Vivado Design Suite to run the incremental
compile flow during implementation.

5. You can check this property on the current run using the following Tcl command:

get_property INCREMENTAL_CHECKPOINT [current_run]

This returns the full path to the top_routed.dcp checkpoint.

O TIP: To disable Incremental Compile for the current run, clear the INCREMENTAL_CHECKPOINT property. This
can be done using the Set Incremental Compile dialog box, or by editing the property directly through the
Properties window of the design run, or through the reset_property command.

6. From the Flow Navigator, select Run Implementation.

This runs implementation on the current run, using thetop_routed. dcp file as the
reference design for the incremental compile flow. When the run is finished, the
Implementation Completed dialog box opens.

7. Select Open Implemented Design and click OK. As shown in the following figure, the Design
Runs window shows the elapsed time for implementation run impl_2 versus impl_1.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/—] 96

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug904-vivado-implementation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=96

& XILINX

Lab 7: Debugging Designs Using the Incremental Compile Flow

TclConsole | Messages |Log | Reporis | DesignRuns X Power | DRC | Methodology | Timing 2 _00

Q = 2 M« »r » + %

Name Constraints ~ Status WNS TNS WHS THS TPWS Total Power Failed Routes LUT FF BRAMs URAM DSP Start Elapsed Run Strateg
& impl_1 constrs_2 Implementation Out-of-date 0530 0000 0041 0000 0000 2395 0 21386 18106 11250 1] 68 4/18M8511PM 00:10:36 Vivado Implg
/impl_2 (active) constrs 2 route_design Complete! 0530 0.000 0.055 0.000 0.000 2408 0 22020 19264 11350

o 68 4M8M8526PM 00:10:05 Vivado Imple

Note: This is an extremely small design. The advantages of the incremental compile flow are greater
and significant with larger, more complex designs.

8. Select the Reports tab in the Results window area and under Place Design, double-click
Incremental Reuse Report as shown in the following figure.

Q 2 + =7
Report
v imprerenEion
~ impl_2
> Design Initialization (ini_design
> OptDesign (opt_design
>
~ Place Design (place_design
4 impl_2_place_report_io_0
4 impl_2_place_report_utilization_0

& impl_2_place_report_control_sets_0

TciConsole | Messages | Log |Reports x DesignRuns | Power |DRC

4 impl_2_place_report_incremental_reuse_0

>
>
> Route Design (route_desian
>

> Write Bitstream (write_bitsiream

Methodology | Timing 2

? 00

Report Type Options

Reportinformation about all the 10 sites on the device (report_io

Report on utilization of resources on the targeted device (report_utilization; sir="false; packihru = false; hierarchical = fal

Report the unique control sets in design (report_control_sets verbose = true;

Report on achievable incremental reuse for the given design-checkpoint (report_incremental_reuse) hierarchical = false;

Report on achievable incremental reuse for the given design-checkpoint (report_incremental_reuse) hierarchical = false;

Report timing summary (report_timing_summar check_timing_verbose = false; setup = faise;

The Incremental Reuse Report opens in the Vivado IDE text editor. This report shows the
percentage of reused Cells, Ports, and Nets. A higher percentage indicates more effective
reuse of placement and routing from the incremental checkpoint.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

l Send Feedback l

www.Xilinx.com
97

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=97

& XILINX

Lab 7: Debugging Designs Using the Incremental Compile Flow

X | Device » impl_2_place_report_incremental_reuse_0 -impl_2 X

=] BE Q

" bopyright 1986-2018 Xilink, Inc. ALl Rights Reserved.

Project Summary

Q

Tool Version : Viwvado v.2018.1 (win64) Build 2188600 Wed Rpr 4 18:40:38 MDT 2018

Date : Wed Rpr 18 17:34:29 2018

Host : ®xcosmitha32 running 64-bit Service Pack 1 (build 7601)

Command : report_incremental_ reuse -file top_incremental reuse pre_placed.rpt.rpt
Design T top

Device : xcTET0L

Design State : Fully Routed

[L R SR N

1o

| Incremental Implementation Information

14 | Table of Contents

. Reuse Summary

. Reference Checkpoint Information
. Compariscn with Reference Run

. Non Reuse Information

. Reuse Summary

Type | Matched % (of Total) | Reuse % (of Total) | Fixed % {of Total) | Total

95. 9 0.31 |
95. a5 | 0.00 |
| |
| |

v | Cells | a9 |

© | Heta | a0 |
| | | -
| | |

Pinz

g

a

6.48
Forts 1]

oo

100.00 1 100.00

34 2. Reference Checkpoint Information

oo
&

~

Read-only

In the report, fully reused nets indicate that the entire routing of the nets is reused from the
reference design. Partially reused nets indicate that some of the routing of the nets reuses
routing from the reference design. Some segments re-route due to changed cells, changed
cell placements, or both. Non-reused nets indicate that the net in the current design was not

matched in the reference design.

Conclusion

This concludes the lab. You can close the current project and exit the Vivado IDE.

In this lab, you learned how to run the Incremental Compile Debug flow, using a checkpoint from
a previously implemented design. You inserted a new debug core using the Set Up Debug wizard
on the synthesized netlist. You examined the similarity between a reference design checkpoint

and the current design by examining the Incremental Reuse Report.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

l Send Feedback l

www.Xilinx.com
98

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=98

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

Lab 8

Using the Vivado Serial Analyzer to
Debug Serial Links

The Serial /O analyzer is used to interact with IBERT debug IP cores contained in a design. It is
used to debug and verify issues in high speed serial I/O links.

The Serial I/O Analyzer has several benefits:

e Tight integration with Vivado® IDE.
o Ability to script during netlist customization/generation and serial hardware debug.

e Common interface with the Vivado Integrated Logic Analyzer (ILA).

The customizable LogiCORE™ IP Integrated Bit Error Ratio Tester (IBERT) core for 7 series FPGA
GTX transceivers is designed for evaluating and monitoring the GTX transceivers. This core
includes pattern generators and checkers that are implemented in FPGA logic, and provides
access to ports and the dynamic reconfiguration port attributes of the GTX transceivers.
Communication logic is also included to allow the design to be run time accessible through JTAG.

In the course of this tutorial, you:

e Create, customize, and generate an Integrated Bit Error Ratio Tester (IBERT) core design using
the Vivado tool.

e Interact with the design using Serial I/O Analyzer. This includes connecting to the target
KC705 board, configuring the device, and interacting with the IBERT/Transceiver IP cores.

e Perform a sweep test to optimize your transceiver channel and to plot data using the IBERT
sweep plot GUI feature.

Design Description

You can customize the IBERT core and use it to evaluate and monitor the functionality of
transceivers for a variety of Xilinx® devices. The focus for this tutorial is on Kintex®-7 GTX
transceivers. Accordingly, the KC705 target board is used for this tutorial.

The following figure shows a block diagram of the interface between the IBERT Kintex-7 GTX
core interfaces with Kintex-7 transceivers.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/—] 99

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=99

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

¢ DRP Interface and GTX Port Registers: IBERT provides you with the flexibility to change GTX
transceiver ports and attributes. Dynamic reconfiguration port (DRP) logic is included, which
allows the runtime software to monitor and change any attribute in any of the GTX
transceivers included in the IBERT core. When applicable, readable and writable registers are
also included. These are connected to the ports of the GTX transceiver. All are accessible at
run time using the Vivado® logic analyzer.

e Pattern Generator: Each GTX transceiver enabled in the IBERT design has both a pattern
generator and a pattern checker. The pattern generator sends data out through the
transmitter.

e Error Detector: Each GTX transceiver enabled in the IBERT design has both a pattern
generator and a pattern checker. The pattern checker takes the data coming in through the
receiver and checks it against an internally generated pattern.

Figure 4: IBERT Design Flow

y
DRP DRP
Interface
TxN/TxP
Pattern \
Tx Data
Generator
External Serial
ITAG Kintex 7 GTX Loopback via
BSCAN Transceiver SMA Cables
Error
y Detector ¢ Rx Dota /
RxN/RxP
GTX Port
Detector Ports
K

Step 1: Creating, Customizing, and Generating
an IBERT Design

To create a project, use the New Project wizard to name the project, to add RTL source files and
constraints, and to specify the target device.

1. Invoke the Vivado® IDE.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 100

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=100

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

© N o u bk

In the Quick Start screen, click Create Project to start the New Project wizard, and click Next.

In the Project Name page, name the new project ibert_tutorial and provide the project
location (C: /ibert_tutorial). Ensure that Create Project Subdirectory is selected. Click
Next.

In the Project Type page, specify the Type of Project to create as RTL Project. Click Next.
In the Add Sources page, click Next.

In the Add Existing IP page, click Next.

In the Add Constraints page, click Next.

In the Default Part page, select Boards and then select Kintex-7 KC705 Evaluation Platform.
Click Next.

Review the New Project Summary page. Verify that the data appears as expected, per the
steps above. Click Finish.

Note: It might take a moment for the project to initialize.

Step 2: Adding an IBERT Core to the Vivado
Project

1.

2.

In the Flow Navigator click IP Catalog.
The IP Catalog opens.

¢ ibert_tutorial - [C;/Vivado_Debug/2017.1/ibert_tutorial/ibert_tutorial xpr] - Vivac

File Edit Flow Tools Window Layout View Help Quick Access

m, -~ R -
Flow Navigator = PROJECT MAMAGER - ibert_tutorial
~ PROJECT MANAGER
Sources 5
£} Seftings
a T ¢ +

Add Sources

Design Sources
Language Templates

> Constraints
TP CataE? ~ = Simulation Sources
sim_1

v P INTEGRATOR

Create Block Design

TR VR Y g——

In the search field of the IP Catalog type IBERT, to display the IBERT 7 series GTX IP.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 101

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=101

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

-~

=
Name
v

-

Project Summary X | IPCatalog x rO0E

Cores | Interfaces

~ Debug

s |#® -E:‘ * & Q IBERT o

AT A4 Status License VLNV
Vivado Repository
Debug & Verification

4F IBERT 7 Series GTX Production Included xilinx.com:ip:ibert_7series_ghc3.0

3. Double-click IBERT 7 series GTX IP. This brings up the customization GUI for the IBERT.

4.

In the Customize IP dialog box, choose the following options in the Protocol Definition tab:

a.

=3

-~ o a 0

>

Type the name of the component in the Component Name field. In this case, leave the
name as the default name, ibert_7series_gtx_0.

Ensure that the Silicon Version is selected as General ES/Production.
Ensure that the Number of Protocols option is set to 1.

Change the LineRate (Gb/s) to 8.

Change DataWidth to 40.

Change Refclk (MHz) to 125.

Ensure that the Quad Count is set to 2.

Ensure Quad PLL box is selected.

¢ Customize IP @
IBERT 7 Series GTX (3.0) a
© Documentation IP Location (' Switch to Defaults
Show disabled ports Component Name ibert_7series_ghx_0
Protocol Definition Protocol Selection Clock Settings Summary
Silicon Version
* General ES/Production

RM_[3:0] Initial ES

R¥P_I[3:0] THN_O[3:0]

GTREFCLWO_I0:0] TXP_O[30] The maximum number of quads available for this device is 4

GTREFCLKI_I[0:0] RXQUTCLK_O Mumber of Protocols 1 ~

SYSCLK Protocol LineRate(Gbps) DataWidth Refclk(MHz) Quad Count Quad PLL

5. Under the Protocol Selection tab, update the following selections:

a.

For GTX Location QUAD_117, in the Protocol Selected column, click the pull-down menu
and select Custom 1 / 8 Gbps. This should automatically populate Refclk Selection to
MGTREFCLKO 117 and TXUSRCLK Source to Channel O.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 102

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=102

& XILINX

b. For GTX Location QUAD_118, do the following:

Gbps.

Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

In the Protocol Selected column, click the pull-down menu and select Custom 1/ 8

In the Refclk Selection column, change the value to MGTREFCLKO 117.
In the TXUSRCLK Source column, change the value to Channel O.

¢ Customize IP

IBERT 7 Series GTX (3.0)

@ Documentation IP Location (' Switch to Defaults

Summary

Refclk Selection THUSRCLK Source

~ | Mone

~ | Mone
—

Show disabled ports ComponentName ibert_Tseries_gh_0
Protocol Definition Protocol Selection Clock Settings
Please select Protocol-Quad combination
GTxX Location Protocol Selected
QUAD_115 None
QUAD 116 Nﬁne
RAM_I7:0] QUAD_117 Custom 1/8 Gbps
RAP_I[7:0] TXN_O[7 0]
- - QUAD_118 Custom 1/8 Gbps
GTREFCLKDI:0] T*P_O[7:0]

~ | MGTREFCLKO 117 ~ Channel 0

~ | MGTREFCLKO 117 ~ | Channel 0

GTREFCLKI_I[1:0] RYXQOUTCLK O
SYSCLK_|

6. Click the Clock Settings tab and make the following changes for both QUAD_117 and
QUAD_118:

a
b.

C.

Leave the Source column at its default value of External.

Change the I/0O Standard column to DIFF SSTL15.

Change the P Package Pin to AD12.
Change the N Package Pin to AD11.

Leave the Frequency (MHz) at its default value of 200.00.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

l Send Feedback l WWW'X“mX'C?g;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=103

& XILINX

Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

¢ Customize IP

IBERT 7 Series GTX (3.0)

© Documentation IP Location ' Switch to Defaults

Show disabled ports Component Name ibert_7series_ghx_0

Protocol Definitio Protocol Selectio

RXOUTCLK Probe

[] Add RXOUTCLK Probes

RXN_I[7:0] Clock Type Source
R¥P_I[7:0] TEN_O[7:0] System Clock External hé
GTREFCLWO_I[1:0] TXP_O[7 0]

GTREFCLKI_I[1:0] RXOUTCLE_O System Clock Termination Settings
SYSCLK_|

Enable DIFF Term

Clock Settings ~ Summary

1i0 Standard P Package Pin M Package Pin Frequency(MHz)
DIFF 8STL15 v AD12 AD1 200.00

7. Click the Summary tab and ensure that the content matches the following figure, then click

OK.

¢ Customize IP

IBERT 7 Series GTX (3.0)

@ Documentation IP Location (Switch to Defaults

Show disabled ports ComponentName ibert_Tseries_gh_0

IBERT Design Summary

Protocol Definitio Protocol Selectio Clock

Settings Summary

RXN_I[7:0]
RXP_[70] THN_O[7 0]
GTREFCLKD_I[1:0] TXR_O[7:0]
GTREFCLKI_I[1:0] RXOUTCLK_O
SYSCLK_|

MNumber of Protocols
System Clock Source
System Clock Source
QUAD Count

MMCM Count

ReiClk Sources

1
External (P Pin : AD12)
BExternal (N Pin : AD11)
2
1
1

8. When the Generate Output Products dialog box opens, click Generate.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

l Send Feedback l

www.Xilinx.com
104

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=104

& XILINX

Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

Preview

Q - il
— —
il -

il RTL Sources
i Change Log

Synthesis Options

® Global

Run Settings

8

Mumber of jobs: w

¢ Generate Output Products

The following output products will be generated.

~ 4F ibent_7series_gh_0.xci (Global)

(I Instantiation Template

-

Ex5

Senerate

Skip

9.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

In the Sources window, right-click the IP, and select Open IP Example Design.

www.Xilinx.com
105

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=105

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

| PROJECT MANAGER - ibert_tutorial

Sources ? 00 X Project Sumimr
Q = 2 4 e 3 Cores | Inte
h Design Sources (1) = = |9
» AF& ibert_Tseries_gty 0 ihert Tsarias ot 0wril
b Constraints Source Mode Properties...
ado F
b Simulation Sources (1) Enahle Core Container Bebt
’ sim_1 (1} /& Re-customize IP... D
Generate Output Products... I
Feset Output Products...
Copy IP...
Open IP Example Desian... %
IP Documentation 2
Hierarchy |IP Sources

T T s > Remove File from Project...

AF ibert_Tseries_gbe_0.xci

Disable File
IF name: IBERT 7 Serie Hierarchy Update N
Wersion: 3.0 (Rev. 16) C Refresh Hierarchy I
L d

Description: The IEIE_RT [E: IP Hierarchy ,

customizable

and monitorin

fransceivers. 1

generators an

implemented SetUsed|n..

ports and the

attributes of th Edit Constraints Sets..

Communicati
allow the desi Edit Simulation Sets. ..
through Jaoint 7

_______________ Run-time inter Add Sources...

General Properties | IP Report IP Status

10. In the Open IP Example Design dialog box, and specify the location of your project directory.
Ensure that the Overwrite existing example project is selected and click OK.

Note: This opens a new instance of Vivado® IDE with the new example design opened.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 106

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=106

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

¢ Open IP Example Design @
Specify a location where the example project directory 'ibert_7series_gh_0_ex will be
placed.
Location
Put example project directory here: C:Vivado_DebugifZ2017.1 |E|

v Owverwrite existing example project

Step 3: Synthesize, Implement and Generate
Bitstream for the IBERT Design

1. Inthe newly opened instance of Vivado IDE, click Generate Bitstream in the Flow Navigator.
When the No Implementation Results Available dialog box appears. Click Yes.

No Implementation Results Available @

There are no implementation results available. OK to launch synthesis and
implementation? ‘Generate Bitstream® will automatically start when synthesis
and implementation completes.

D Don't show this dialog again

Yes Mo

When the bitstream generation is complete, the Bitstream Generation Completed dialog box
opens.

2. Select Open Hardware Manager, and click OK.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 107

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=107

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

Ll a1

Bitstream Generation Completed @

o Bitstream Generation successfully completed.

Next
@ Open Implemented Design
View Reports
Open Hardware Manager

Generate Memory Configuration File

Don't show this dialog again

3. The Hardware Manager window appears as shown in the following figure.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 108

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=108

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

¢ ibert_7series_gtx_0_ex - [c;/Vivado_Debug/2017 /ibert_7series_gtx_0_ex/ibert_7series_gt«_0_ex.xpr] - Vivado EI@

File Edit Flow Tools Window Layout View Help Quick ACCess write_bitstream Complete v

= >, E o X Serial /0 Analyzer hd

Flow Navigator Co e HARDWARE MANAGER - unconnected ? X

v PROJECT MANAGER | @ No hardware targetis open. Open target

£} Settings
Hardware ? 00X

Add Sources
=
Language Templates

¥ IP Catalog

<

IP INTEGRATOR Mo content

Create Block Design

e Block Design

Properties ? 00X

<

SIMULATION

Run Simulation

<

RTL AMALYSIS

> Open Elaborated Design

Select an objectto see properties

~ SYNTHESIS
P Run Synthesis

> Open Synthesized Desigr ~ : e - - - C
Tel Console lessages | SeriallOLinks x SerialliO Scans ? O

v IMPLEMENTATION u
P Run Implementation

> OpenImplemented Desit

~ PROGRAM AND DEBUG Mo content
s Generate Bitstream
~ Open Hardware Manage

Open Target

Step 4: Interact with the IBERT Core Using
Serial I/0 Analyzer

In this tutorial step, you connect to the KC705 target board, program the bitstream created in the
previous step, and then use the Serial I/0O Analyzer to interact with the IBERT design that you
created in Step 1. You perform some analysis using various input patterns and loopback modes,
while observing the bit error count.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 109

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=109

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

| HARDVARE MANAGER - unconnected
O Mo hardware target is open. Cpen target

£ Auto Connect
Hardware

Recent Targets 3

Open Mew Target... I:E

1. Click Open New Target. When the Open Hardware Target wizard opens, click Next.

¢ Open New Hardware Target @

Open Hardware Target

/
VIVADO This wizard will guide you through connecting to a hardware target.

HLx Editions

To connect to a remote hardware target, provide the host name and IP port of the remote machine on which the
instance of a Vivado Hardware Server is running.

N

)

2. In the Connect to field, choose Local server. Click Next.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 110

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=110

& XILINX

3.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/_]

Hardware Server Settings

Select local or remote hardware server, then configure the host name and port settings. Use Local server if the target is attached to the ‘
local machine; otherwise, use Remote server.

Connectto: | Local server (target is on local maching) -

Click Mext to launch andior connect to the hw_server (port 3121) application on the local machine.

/_\I

¢ Open New Hardware Target @

In the Select Hardware Target page, and click Next.

There is only one target board in this case to connect to, so that the default is selected.

Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

111

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=111

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

¢ Open New Hardware Target @

Select Hardware Target

Select a hardware target from the list of available targets, then set the appropriate JTAG clock (TCK) frequency. If you do not see the ‘
expected devices, decrease the frequency or select a different target.

Hardware Targets
Type MName JTAG Clock Frequency
@ wilinx_tcf XilimyPort_#0003 Hub_#0004 5000000 4

Add Xilink Virtual Cable (XVC)

Hardware Devices (for unknown devices, specify the Instruction Register (IR} length)

Mame ID Code IR Length
& xc7k325¢ 0 33651093 6

Hardware server: localhost3121

oy

L)
a
Im
w
o
=

Cancel

4. In the Open Hardware Target Summary page, review the options that you selected. Click
Finish.

¢ Open New Hardware Target @

Open Hardware Target Summary

VIVADO'

HLx Editions o Hardware Server Settings:
o Server: localhost:3121

© Target Settings:
o Target: xilinx_tcfXilingPort_#0003. Hub_#0004
o Frequency: 6000000

& XILINX

ALL PROGRAMMARLE- To connect to the hardware described above, click Finish

(=))
\2) = Back Cancel

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 112

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=112

& XILINX

Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

5. The Hardware window in Vivado IDE should show the status of the target FPGA on the

KC705 board.

Hardware

Q = =2
il -

Mame

~ B localhost(1)

? 00 X
g
Status
Connected

~ @ wilin_tofilingPort_#0003.Hu... Open
~ {8 xc7k3I25t_0 (1) Mot programmed
ZE XADC (System Monitor)

6. Select XC7K325T_0(0) in the Hardware window, right-click and select Program Device.

Hardware

Q T =
. -

Hame

~ B localhost (1)

~ {8} xc7K325¢
& XADC

Hardware Device Pr

£ xcTRAZSE 0

Mame: }

Fart: }

ID code:

IR length: |
£ 1

~ B wilin tefiXilingPort_ #0003 Hu... Open

? 00X
E e
Status
Connected

Hardware Device Properties...

Program Device...
Werify Device...

Refresh Device

Add Configuration Memaory Device...

Boot from Configuration Memaory Device

Program BEBR Key...
Clear BER Key...

Program eFUSE Registers...

Export to Spreadsheet...

General Properties

UG936 (v2020.1) June 24, 2020
Programming and Debugging

l Send Feedback l

www.Xilinx.com
113

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=113

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

7. The Program Device dialog box opens. Make sure that the correct .bit file is selected, and
click Program.

¢ Program Device @

Select a bitstream programming file and download it to your hardware device. You can
optionally select a debug probes file that corresponds to the debug cores contained in the ‘
bitstream programming file.

Bitstream file: 't_?series_gtx_[l_ex.runsfimpl_1IexampIe_ibert_?series_gb{_ﬂ.hiﬂ IZ'
Debug probes file: IZ'

v+ | Enable end of startup check

(o)
\?) Program Cancel

8. The Hardware window now shows the IBERT IP that you customized and implemented from
the previous steps. It contains two QUADS each of which has four GTX transceivers. These
components of the IBERT were detected while scanning the device after downloading the
bitstream. If you do not see the QUADS then select the XC7K325 device, right-click and
select Refresh Device.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l_‘/_l 114

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=114

& XILINX

Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

Q =

Mame

\

Hardware

4r

~ B localhost (1)
~ @ wiling_tofiilinyPort_#0003.Hu...
~ {8 xcTk325t_0(2)
& XADC (System Monitor)
~ #E |BERT (IBERT)
~ B Quad_117 (5)

COMMON_X0Y2
By MGT_X0YS
MGT_X0Y9
MGT_X0Y10
B MGT_X0Y11

B
B

~ [Quad_118(5)

COMMON_X0Y3
B2 MGT_X0Y12
B MGT_X0Y13
By MGT_X0Y14
B MGT_X0Y15

? 00 X

Status
Connected
Cpen

Programmed

Locked
Mo Link
Mo Link
Mo Link
Mo Link

Locked
Mo Link
Mo Link
Mo Link
Mo Link

>

9. Next, create links for all eight transceivers. Vivado Serial I/O analyzer is a link-based analyzer,
which allows users to link between any transmitter and receiver GTs within the IBERT design.
For this tutorial, simply link the TX and RX of the same channel. To create a link, right-click
the IBERT Core in the Hardware window and click Create Links.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

www.Xilinx.com

l Send Feedback l 115

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=115

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

Hardware ? 00X
Q = = 4
Mame Status
~ B localhost(1) Connected
~ B xiling_tefXilingPort_#0003.Hu... Cpen
~ {8 xcTk325t 0 (2) Programmed
& XADC (System Monitor)

~ & |BERT (IBERT)
~ B Quad_117 (5)
COMMON_X0Y

IBERT Core Properties... Cirl+E

Create Links... L}
Auto-detect Links

By MGT_X0YS
By MGT_X0Y9 Serial /0 Links
Fq MGT_X0Y10 Serial D Scans

By MET_X0Y11
~ E Quad 118 (5)
COMMON_X0Y

Commit Properties

Refresh Serial IO Objects

By MGT_X0Y12 Select >
By MGT_X0Y13 Export to Spreadsheet ..
Fq MGET_X0Y14 - Mo Link
By MGT_X0Y15 Mo Link
¢ >

The Create Links dialog box opens.
10. Ensure the first transceiver pairs (MGT_X0Y8/TX and MGT_X0Y8/RX) are selected.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—| 116

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=116

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

¢ Create Links @
To create a new link select a TX GT and/or an RX GT, then click the Add button an the Mew Links toolbar. ‘
TXGTs RX GTs
Search: Search:
[> MGT_X0Y8ITX (xc7k325t_0iQuad_117) < MGT_XO0YS8/RX (xc7k325t_0Mwad_117)
[B> MGT_X0Y9ITX (xcTk325t_0iQuad_117) < MGT_XOYY/RX (3251_0Muad_117)
[MGT_X0Y10/TX | 325t_0ituad_117) < MGT_XO0Y10/RX 25t_0/Quad_117)
[MET_X0Y11/TX | t_0iCuad_117) <1 MGT_X0Y11/RX t_0Muad_117)
[MET_X0Y12/TX | 0fwuad_118) <1 MGT_X0Y12/RX 25t_0/Quad_118)
[MGT_X0Y13mX | t_OiCuad_118) < MGT_X0Y13/RX t_0/Muad_118)
[MGT_X0Y14/TX | 25t_0iuad_118) < MGT_XO0Y14/RX 25t_0/Quad_118)
[MET_X0Y15/TX (xc7k325t_0/Quad_118) < MGT_XOY15/RX (xc7k325t_0/Quad_118)
Hew Links
+
Press the + button to Add Link
< Create link group
Link group description: | Link Group 0 |
| Open Serial 'O Analyzer layout
P

11. Click the “+” button add a new link. In the Link group description field, type Link Group SMA.
Select the Internal Loopback check box.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 117

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=117

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

¢ Create Links @
To create a new link select a TX GT and/or an RX GT, then click the Add button an the Mew Links toolbar. ‘
TXGTs RX GTs
Search: Search:
[MGT_X0Y9ITX (xc7k325t_0iQuad_117) < MGT_X0Y9/RX (xc7k325t_0Mwad_117)
[MGT_X0Y10/TX | < MGT_XO0Y10/RX (xc7k325t_0/Quad_117)
[MGT_X0Y11/TX t_OiCuad_117) < MGT_XO0Y11/RX [25t_0/Quad_117)
[MGT_X0Y12/TX 0iCuad_118) < MGT_XO0Y12/RX (x 25t_0Mwad_118)
[MGT_X0Y13mX 0iCuad_118) < MGT_XO0Y13/RX (x t_0/Muad_118)
[MGT_X0Y14/TX 0iQuad_118) < MGET_XO0Y14/RX (x 25t_0Mwad_118)
[f> MGT_X0YASTX (xc7k325t_0iQuad_118) < MGT_XOY15/RX (xc7k325t_0/Quad_118)
Hew Links
+
Description TX RX Internal Loopback
S Link 0 MGT_XOYB/TX (xcTk325t_0/Quad_117) MGT_XOYS/RX (xc7k325t_0/Quad_117) <
< Create link group
Link group description: | Link Group SMA |
| Open Serial 'O Analyzer layout
P

For the first link group, call this Link Group SMA as this is the only transceiver channel that is
linked through the SMA cables. The new link shows up in the Links window.

Tcl Console Messages Serial l/O Links * Serial 'O Scans

Q = = B

MName Create Links... R Status Bits Errors BER BERT Reset TX Pattern R Pattern
Ungrouped | b

~ @ Link Group £

PRBS7-bit ¥ PRBS 7-bit ~
Create Scan...

% Link 0 [MGT_XOY8/RX 7.988 G.. 1356.. 274E10 2021. PRBS7-bit ¥ PRBS 7-bit ~
Create Sweep...

12. Click Create Link again to create link groups for the rest of the transceiver pairs. To do this
ensure that the transceiver pairs are selected, and click the + sign icon (add new link)
repeatedly, until all the links have been added to the new link group called Link Group
Internal Loopback. Click OK.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 118

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=118

& XILINX

Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

¢ Create Links

TAGTs

Search:

New Links

Description TX

% Link 1 MGT_X0YITX [
“% Link 2 MGT_X0Y 10T |
“% Link 3 MGT_X0Y11TK [
“% Link 4 MGT_X0Y12/TK |
“% Link 5 MGT_X0Y13/MK |
“% Link & MGT_X0Y14TK |
% Link 7 MGT_X0Y15/TX |

<+ Create link group
Link group description:

' Open Serial /O Analyzer layout

(2)
\?)

To create a new link select a TX GT andfor an RX GT, then click the Add button on the Mew Links toolbar.

Quad_117)

L 0/Quad_118)
luad_118)
0/Quad_118)

0/Quad_118)

Link Group Internal Loopback

RX GTs

Search:

RX Internal Loopback
MGT_XOYQIRX (x Quad_117) v

MGT_X0Y10/RX
MGT_X0Y11/RX
MGT_X0Y12/RX
MGT_X0Y13/RX
MGT_X0Y14/RX
MGT_X0Y15/RX

L 0/Mwad_118)

lad_118)

RN AN EN NN

13. After the links have been created, they are added to the Links window as shown.

Tcl Console Messages Serial /O Links ® Serial 'O Scans

Q = = +

Mame X Status Bits Errars BER BERT Reset TXPattern R
Ungrouped Links (0}

~ @ Link Group SMA (1) PRBS 7-bit v~ P
% Link 0 MGT_XOYSITX MGT_XOYS/RX 7.088Gbps 1343E12 2645E11 1.969E-1 PRBS 7-bit ¥ P

~ & Link Group Internal... PRES 7-bit v P
% Link 1 MGT_XOYQITX MGT_XOYO/RX 7.987 Gbps 2.805E12 2079E12 5.465E-1 PRBS 7-bit v~ P
S Link2 MGT_XOY10/TX MGT_XOY10/RX 7.988 Gbps ~ 3.805E12 2175E12 5.715E-1 PRBS 7-bit v P

The status of the links indicate an 8.0 Gbps line rate.

For more information about the different columns of the Links windows, see the Vivado
Design Suite User Guide: Programming and Debugging (UG908).

14. Change the GT properties of the rest of the transceivers as described above.

15. Next, create a 2D scan. Click Create Scan in the Links window.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

www.Xilinx.com
119

l Send Feedback l

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=119

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

benerdl Froperes

Tcl Console | Mé Link Properties... Ans
Q T = ¥ Delete
Mame s
Lngrouped |
~ @ Link Group § Create Jan..
%, Link D Create Sweep... } Gbps
¥ % Link Group | Commit Properties
"o LNk 1 ™ Refresh Serial IO Obiects | S0ps

The Create Scan dialog box opens. In this dialog box, you can change the various scan
properties. In this case, leave everything to its default value and click OK. For more
information on the scan properties, see Vivado Design Suite User Guide: Programming and
Debugging (UG908).

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 120

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=120

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

P -

¢ Create Scan @

Setthe description and other properies to create and optionally run a scan
on the selected link.

Link: Link 0 (MGT_X0Y3/TX, MGT_X0YS/RX)

Description: | Scan 0

Scan Properties

Scan type: 20 Full Eyescan w
Horizontal increment. | 8 w
Harizontal range: -0.500 Ul to 0.500 LI w
Yertical increment: a w
YWertical range: 100% w
Dwell
* BER: 1e-5 w
Time:
< Bun scan

I/"_:'\I
2 OK Cancel

The Scan Plot window opens as shown in the following figure.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 121

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=121

& XILINX

Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

Scan Plots - Scan 68 TOO X
- a g X C 3 e | Comtour (Fills ~
Unit Interval BER
0=-03
a
=
& 10e-03
2
E § 0a-04
]
=
Summary Metrics Settings
Hame: SCAN_ 68 Open area: 17316 Link: settings. A
Description. 5can 68 Open IR BB37 Horizomal incremaent: 1
Starad 2017-Apr-19 15:39:41 Harizonal rangs: -0.500 W1 0.500 W
Endad: 2017-Apr-19 15:41:15 Verical incrament: 1
Vertical range: 100%

The 2D Scan Plot is a heat map of the BER value.

You can also perform a Sweep test

16. In the Links window, highlight Link
select Create Sweep.

5
General = Properties
i
Link Properies...

Tcl Console |

- x Delete
Q = =
Mame

Ungroupel
~ & Link Groug Create Scan...

% Link 0 | Create Sweep...
¥ % Link Groug Commit Properties

on the links that you created earlier.

0 under the Link called Link Group SMA, right-click and

_____________________ 2]
Cir+E |
ycans
Delete
atus Bit:
B2 Gbps 3.1

s

17. The Create Sweep dialog box opens, as shown below. Various properties for the Sweep test
can be changed in this dialog box. Leave all the values to its default state and click OK.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

www.Xilinx.com
122

l Send Feedback I

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=122

iv Xl Ll NX Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
A ®

¢ Create Sweep @

Selectthe sweep properties and values to create and optionally run a set of scans on the selected link

Link: Link 0 (MGT_XOYSTX, MGT_X0YB/RX)

Description: | Sweep 0 |

Scan Properties

Scan type: 2D Full Eyescan -
Horizontal increment. | & w
Harizontal range -0.500 Ul'to 0.500 U1 b
Vertical increment: 8 -~
Vertical range: 100% v
Dwell
* BER: | 1e-5 v
Time:

Sweep Properties

Sweep mode: Semi Custom + | Foreach property selectvalues to be swept The sweep will cover all combinations of property values

Set Properties & Values Preview &1 Scans

+

Order Property Mame Values to Sweep # of Values
%1 RATERM ~ 100 mV,550 mV,1100 mv - 3
G2 TXDIFFSWING ~ 269 mV (D000),741 mV (011131119 mV (1111) - 3
% 3 TKPOST ~ 0.00 dB (00000),4.08 dB (01111),12.96 dB (11111) - 3
%4 THPRE ~ 0.00 dB (00000)4.08 dB (01111),6.02 dB (11111) - 3

Reset RX after applying Settings for each scan

+| Run sweep

Because here are four different Sweep Properties and each of these properties has three
different values (as seen in the Values to Sweep column), a total number of 81 sweep tests
are carried out. The Scans window shows the results of all the scans that have been done for
the selected link.

& CAUTION! Since there are 81 scans to be done, it could be a few minutes before all the scans are complete.

TclConsole | Messages | Serial IO Links | Serial IO Scans x ?2_00

Q = 2 &

Name Link Link Seftings ResetRX ScanType Satis Progress Openirea OpenUI% Homincr HowzRange

> Scans (4] -

~ @ Sweep0 (31 20 ful_eye Done 8 v 0500UIb0500U1 v
51 Sweep0-Scan 2 RXTERM {100 mV) TXDIFFSWING (269 mV (0000} TXPOST {0.00 48 (00000 TXPRE { 20.tull_ere Done —100% 10175 778 8 v 0500UIt00500UN v
[E Sweep 0-Scan 3 RXTERM {100 mV} TXDIFFSWING {269 mV (0000); TXPOST {0.00 dB (00000)} TXPRE {. 2d_full_eye Done —100% 10240 778 8 v -0.500UIt00.500U1 v

| @ sweep0-scane | RXTERH {100 mV} TXDIFFSWING {269 mV (0000)} TXPOST {0.00 dB (00000)} TPRE {. 24 full_eye Done —100% 10112 7778 8 v -0500UIt00500U1 v
5 sweep0-Scans RXTERM {100 mV) TXDIFFSWING (269 mV (0000)} TXPOST (4.08 08 (01111)} TXPRE { 20.tull_ere Done —100% 10175 778 8 v 0500UIt00500UN v
5 sweep0-Scans RXTERM {100 mV) TXDIFFSWING (269 mV (0000)} TXPOST (4.08 08 (01111)} TXPRE { 20.tull_ere Done —100% 10260 778 8 v 0500UIt00500UN v
5 Sweep0-Scan7 RXTERM {100 mV) TXDIFFSWING (269 m\ (0000} TXPOST (4.08 08 (01111)} TXPRE { 20 ful_ere Done —100% 10260 778 8 v 0500UIt00500UN v
51 Sweep0-Scans RXTERM {100 mV) TXDIFFSWING (269 m\ (0000)} TXPOST {1296 0B (11111 TXPRE 20.tull_ere Done —100% 10112 778 8 v 0500UIt00500UN v
1 Sweep0-Scan 9 RXTERM {100 mV) TXDIFFSWING (269 m\ (0000)} TXPOST {1296 0B (11111 TXPRE 20.tull_ere Done —100% 10112 778 8 v 0500UIt00500UN v
5] Sweep 0-Scan 10 RXTERM {100 mV) TXDIFFSWING (269 m\ (0000)} TXPOST {1296 0B (11111 TXPRE 20.tull_ere Done —100% 10260 778 8 v 0500UIt00500UN v
5] Sweep0-Scan 11 RXTERM {100 mV) TXDIFFSWING {741 mV (0111)} TXPOST {0.00 d8 (00000, TXPRE 20.tull_ere Done —100% 10260 778 8 v 0500UIt00500UN v

. [sweepo-scan 12 RXTERM {100 mv) TXDIFFSWING {741 mV (0111)} TXPOST {0.00 dB (00000) TXPRE { 24 ull eve Done —100% 10112 778 & v 0s0u0s0Ul ¥

To see the results of any of the scans that have been performed, highlight the scan, right-
click, and select Display Scan Plots.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 123

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=123

& XILINX

Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links

Tcl Console Messages Serial VO Links Serial /0O Scans X

aQa = = » G &

Name Link Link Settings

¥ Scans (4)

~ Sweep 0 (31)
& sweep : T = T FFSWING {269 mV (0000)} TXPOST {0.00 dB (000
E sweep Scan Properties... S FFSWING {269 mV (0000)} TKPOST {0.00 dB (000
[E sweepd P RunSweeporScan EFSWING {260 mV (0000} TXPOST {0.00 dB (000
& sweep EFSWING {269 mV (0000)} TXPOST {4.08 dB (011
© sweep U [5] Display Scan Plots FFSWING {269 mV (0000)} TAPOST {4.08 dB (011
© sweenC 3 it scan Data.. B srswne {269 mV (0000)} TXPOST {4.08 dB (011
& sweep X ReadScanData. EFSWING {269 mV (0000)} TXPOST {12.96 dB (11
& sweep FFSWING {269 mY (0000)} TAPOST {12.96 dB (11
& sweep FFSWING {269 mV (0000)} TXPOST {12.96 dB (11
@& sweepq X Delete Delele =pawING {741 mV (0111)} TXPOST {0.00 dB (000

- E sweep Export to Spreadsheet... FFSWING {741 mV (01111} TXPOST {0.00 dB (000

The Scan Plots window opens showing the details of the scan performed.

50

Scan Plots - Scan 0 x| Scan Plols - Sweep 0 - Scan 64 x| Scan Plots - Sweep 1 - S@an 65 x 7 OC
||l a | x|c i] |Coﬂ1wr- e V|
Unit Interval BER
-0.5

5 0e=-01
1.02-01
5 08-02
1.0e-02
5 00-03

10e-03

5.0e-04

N 10e-05

Settings

Sranad
Endad:

2017-Apr-19 15:36:08
2017-Apr-19 15:37:38

a
=
=
1
]
=1
-50
-100
Summary Metrics
MHame: SCAN 65 Open area: 15949
Dascription. Sweep 1 - 5can 65 Open UIX: B7.60

Link. settings.
Harizontal incrarmant
Horizontal range
Venical incramant:

Vertical range:

RATERM (260 mV}

1

=0.500 W10 0.500 W
1

100%

UG936 (v2020.1) June 24, 2020
Programming and Debugging

l Send Feedback I

www.Xilinx.com
124

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=124

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

Lab 9

Using the Vivado ILA Core to Debug
JTAG-AXI Transactions

This lab illustrates how to insert an ILA core into the JTAG to AXI Master IP core example design,
using the ILA's advanced trigger and capture capabilities.

What is the JTAG to AXI Master IP core?

The LogiCORE™LogiCORE IP JTAG-AXI core is a customizable core that can generate AXI
transactions and drive AXI signals internal to the FPGA at run-time. This supports all memory-
mapped AXI interfaces (except AXI4-Stream) and Lite protocol and can be selected using a
parameter. The width of the AXI data bus is customizable. This IP can drive any AXI4-Lite or
Memory-Mapped Slave directly. It can also be connected as master to the interconnect. Run-time
interaction with this core requires the use of the Vivado® logic analyzer feature.

Key Features

e AXI4 master interface

e Option to select AX14 and AXI4-Lite interfaces
e User controllable AXI read and write enable

e User Selectable AXI data width: 32 and 64

¢ Vivado Integrated Logic Analyzer Tcl Console interface to interact with hardware

Additional Documentation

JTAG to AXI Master LogiCORE IP Product Guide (PG174) contains additional information

Design Description
This section has three steps as follows:

1. Creating a simple design in IP integrator that includes a System ILA and JTAG-to-AXI master.

2. Programming the Kintex®-7 FPGA KC705 Evaluation Kit Base Board and interacting with the
JTAG to AXI Master IP core.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/—] 125

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=jtag_axi;v=latest;d=pg174-jtag-axi.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=125

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

3. Using the ILA Advanced Trigger Feature to Trigger on an AXI Read Transaction.

Step 1: Creating a New Vivado Project and
Generating the IP Integrator Design with
JTAG-to-AXI and System ILA

To create a project, use the New Project wizard to name the project, add RTL source files and
constraints, and specify the target device.

1. Invoke the Vivado® IDE
2. In the Quick Start tab, click Create Project to start the New Project wizard. Click Next.

3. In the Project Name page, name the new project jtag_2_axi_tutorial and provide the
project location (C: /jtag_2_axi_tutorial). Ensure that Create Project Subdirectory is
selected. Click Next.

4. In the Project Type page, specify the Type of Project to create as RTL Project. Ensure that Do
not specify sources at this time is checked. Click Next.

5. In the Default Part page, choose Boards and choose the Kintex-7 KC705 Evaluation
Platform. Click Next.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/—] 126

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=126

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

| A New Project x |
Default Part
| Choose a default Xilinx part or board for your project. This can be chanaed later. '

Parts | Boards

Raser All Filters

Vandor: | All ~ | Name: | All

Search: | ©l- w

Display Name Praview Vendor File *
Add Daughter Card Connections

-
xilinx.com 1.4
Kintex-7 KC705 Evaluation Platform
Add Daughter Card Connections
xilinx.com x5
Kinmex-UltraScale KCU105 Evaluation Flatform
Add Daughter Card Connections
ilinx.com 1.4
e

)
M
o
=
o
=
=
]
=
5
m
o
S
2
z

6. Inthe New Project Summary page, click Finish.

UG936 (v2020.1) June 24, 2020

www.Xilinx.com
Programming and Debugging l Send Feedback l 17

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=127

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

A New Project x

Mew Project Summary

VIVADO’

HLx Editions @ Anew RTL project namad 'project_2' will be craatad.

o The default part and product family for the new project:
Default Board: Kintex-7 KC705 Evaluation Platform
Default Part: ®xc7k325tffga00-2
Product: Kintex-7
Family. Kintex-7
Package: ffgad0
Speed Grade: -2

b
i‘ XILlNX To create the project, click Finish

7. In the leftmost panel of the Flow Navigator under Project Manager, click Create Block
Diagram. A dialog box appears that allows you to specify a block diagram name. You can
choose to specify a custom name or take the default. Click OK.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 128

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=128

& XILINX

<

<

<

Eile

Flow Navigator

Reports
>

?

Ediit
m -

Flow Tools

PROJECT MANAGER
£ Settings
Add Sources
Language Templates

¥ 1P Catalog

|P INTEGRATOR.

SIMULATION

Run simulation

RTL ANALYSIS

> Open Elaborated Design

SYNTHESIS

P Run Synthesis

IMPLEMENTATION

P Run Implementation

> Open Implemented Design

PROGRAM AND DEBUG
¥ Generate Bitstrzam

> Open Hardware Manager

Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

Window View Help Quick Access

B oa X

PROJECT MANAGER - project 2

Layout

Sources ?2 00X
Q z = + L]
Design Sources
> = Constraints
~ = Simulation Sources
sim_1
» = Utility Sources
Hierarchy Libraries Compile Order
Properties ?2 .00 X
-
Select an object 1o s
Td Consele | Messages | Log |Reporis | Design Runs
Q = %
Name Constraints ~ Status
v > smh.l consirs.1 Nt started
impl.1 constrs_.1 ot started
<

x

project_2 - [/home/mpiazza/project_2/project_2.xpr] - Vivado 2018.3.0

Project Summary

Overview | Dashboard

Settings Edit

Project name:
Project location:
Product family:
Froject part

Top module name
Target language
Simulator language:

Board Part

Display name:
Board part name:
Connectors
Repository path:

WNS TNS WHS THS TPWS Total Power Failed Routes LUT FF BRAMS

Ready

Default Layout

project_2

/home /mpiazza/project 2

Kintex-7

Kintex-7 KC705 Evaluation Platform (xc7k3251g300-2)

Not defined
Verilag

Mixed

Kintex-7 KC705 Evaluation Platform
xilinx.com:kc705:partd: 1.5

No connections

fproj/xbuildsf2018.3_0815_0946/installs/lin64/Vivado/2018.3 /data/boards/board files

el — [a] [z

URAM DSP Start Elapsed Run Strategy
Vivado Synthesis Defa

Vivado Implementatio

In the far right of the window is an empty block diagram design window labeled Diagram.
Click the + sign in the middle of the pane or the + toolbar button to bring up a search
window. In the Search field, type “JTAG to AXI" and double-click it to add the JTAG to AXI
Master to the block diagram.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

www.Xilinx.com
129

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=129

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

Joard ? 0O Diagram

e 2t m [0 g » C

Search: JTAG 1o Axl (1 match)

JTAC to AX] Master

Repol

shing IF
ier IP ¢
i Wivac e/ install s 11 ned Adivado, 2018, 3 /datasip'.

1= 00 L= B768.5984 ; gain = 7.852 ; free phwsical = 574
1%.Com: k

Wwt_2/nr [[vid

- SOUFCE ENTER to select, ESC to cancel, Ctri+Q for IP details

9. The JTAG to AXI Master core appears on the IP integrator canvas. Double-click the core to
view the Customization dialog. Review the available settings and click OK to accept the

default core settings.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 130

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=130

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

P Re-customize IP X
JTAG to AXI Master (1.2) '
o Documentation IP Location
Show disabled ports Component Name | jtag_axi_0

AX1 Protocol Ax14 ~
AX| Address Width 32 ~
AX| Data Wichth 32 [
AX11D Wiclth 1 [1-4]
A¥14 Burst Type Support ALL BURST TYFES W

aclk . Write Transaction Queue Length |1 [1-18]
M_AXI + [Q g ' !

' arezetn
Read Transaction Queue Length |1 [1- 18]

‘ oK | ‘ Cancel |

10. Following the same process from the previous step, add the additional IP to the block
diagram: AXI BRAM controller and Block Memory Generator. This creates a design using a
simple AXI infrastructure to create AXI transactions that demonstrate the debugging
capabilities of the System ILA core.

11. Before continuing, you need to customize AXI BRAM Controller and Block Memory
Generator. Begin by locating the AXI BRAM Controller in the block diagram canvas and
double-clicking on it. This invokes the Customization Dialog for the IP. Locate the Number of
BRAM interfaces and set the value to 1. Click OK.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 131

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=131

& XILINX

O Documentation

AXI BRAM Controller (4.0)

[show disabled ports

HESEA
s_axi_aclk
s_axi_aresetn

Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

Re-customize IP

Component Name | axi_bram_ctrl_0

Ax] Protocol
Data Width
Memory Depth (Auto)

1D Wiclth (Auto)
I_J Auto) Support &I Marrow Bursts

ERAM Options

BRAM _INSTANCE (Auto) External

32 ~

8192

Yes

Mumber of BRAM interfaces | 1

ECC Options
Enable ECC Mo ~
ECC TYPE Hamming

Enakle Fault Injection = Mo

ECC Reset Value 0

| ok

| Cancel |

12. Next, locate the Block Memory Generator in the block diagram and double-click as in the
previous step to invoke the Customization dialog. Clear Enable Safety Circuit check box. Click

OK.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

l Send Feedback l

www.Xilinx.com
132

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=132

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

A Re-customize IP x

Block Memory Generator (8.4) '
ﬂ Documentation IP Location

IP Symbol Power Estimation Component Name |blk_mem_gen_0
(] show disabled ports
Basic | Port A Options | Other Options Summary

Fipeline Stagas within Mux | O Mux Size: 281

Memory Initialization

Coe File

Mam File

" + BRAM_PORTA Remaining Memory Locations (Hex) 4]

Structural/UniSim Simulation Model Options

Defines the type of warnings and outputs are generated when a
read-write or write-write collision occurs.

Collision Warnings Al

Behavioral Simulation Model Options

Safety logic to minimize BRAM data corruption

"] Enakle Safety Circuit

0K | | Cancal

13. At this point the design should look like the following figure.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 133

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=133

& XILINX

Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

Diagram x Address Editor
@ Q e a +

F Designer Assistance available. Run Connaction Automation

b

(¥
'Y

oy Bt

A B A C

jtag_axi_0
aclk + s.AX r(-‘
M_AXI + fif s_axi_aclk BRAM_PORTA + ||| 4=
aresetn : . n
S_axi_arese
- L =

JTAG to AXI Master

220 P

o

axi_bram_ctrl_0

AXI BRAM Controller

14. Notice the green banner indicating that Designer Assistance is available at the top of the
block diagram canvas. Click the Run Connection Automation button on this banner. When
the Connection Automation window appears, click the radio button for All Automation, then

Diagram x Address Editor ? 380G
e a X k|9 a + @ oA C YT &
Designer Assistance available. Run Connection Automation
jtag_axi_0
rst_clk_wiz_100M " axi_bram_ctrl_0
M_AX| + fis
slowest_sync_clk aresetn AXI i - - |
JTAG to AXI Master U3 sram_porTA + [} i
reset
raset G AXI SmartConnect L <4
clicin locked dem_locked peripheral_aresetn(0:0] AXi BRAM Contraller

Processor System Reset

Clocking Wizard

15. Notice, that the Clocking Wizard and Processor System Reset as well as an AXI
SmartConnect are auto-inserted into the design. Also, take note that the Clocking Wizard

clock and reset inputs are not

connected and the Run Connection Automation banner

persists. These inputs will be connected to physical input ports on the FPGA, wired to
buttons on the KC705 board though customization of the Clocking Wizard.

UG936 (v2020.1) June 24, 2020
Programming and Debugging

www.Xilinx.com
134

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=134

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

16. Invoke the Customization Dialog for the Clocking Wizard by double-clicking the IP in the

block diagram canvas. When the dialog appears, set CLKIN_1 to sys_diff_clk and
EXT_RESET-_IN to reset. Click OK.

Note: It is not necessary to add constraints for these ports because the project has been generated

using an evaluation board as the target and the IP allows the constraint information to be selected
with the sys diff clk.

A

Re-customize IP

Clocking Wizard (6.0)

o Documentation IP Location

IPSymbol Resource Component Mame | clk_wiz

Show disabled ports

Board Clocking Options Output Clocks MMCM Settings Summar

Associate P interface with board interface
IP Interface

CLK_IM1

CLE_IMNZ

EXT_RESET_IN

Clear Board Parametars

Board Interface
sys diff clock
Custom

reset

||+ cLaMi D elk_outl
raset locked

[ok | [cancar |

17. Just as before, locate the green banner indicating that Designer Assistance is Available and

click Run Connection Automation. When the Run Connection Automation dialog appears
select the button for All Automation. Click OK.

18. Now, sys_diff_c1lk and reset are connected to external ports. Examine the connectivity of
the design and notice that it might be necessary to monitor AXI transactions between the
JTAG to AXI master and the AXI BRAM Controller slave. This is possible if a System ILA is
added to probe the AXI bus between the AXI BRAM Controller and the JTAG to AXI master.

UG936 (v2020.1) June 24, 2020

www.Xilinx.com
Programming and Debugging l Send Feedback l 135

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=135

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

?
@ e ¥ ®|© Qa + A E A C YT -

jtag_axi_¢
axi_sme
iz,
adk " =
MAXT | - 500_AX1
reset set g aresetn g . M .
us s . X
. o aresem g
sys_diff_clock intes o
m_lo
rocessor System Reset

19. To add a System ILA to the design, click the Add IP (+) button as in previous steps. Search for
System ILA, and double click to add it to the block diagram. When it appears in the block
diagram canvas, double-click on it to invoke the Customization Dialog. Ensure that both
Capture Control and Advanced Trigger are selected. Also, set the Number of Comparators to
the value 3. Click OK.

UG936 (v2020.1) June 24, 2020

www.Xilinx.com
Programming and Debugging l Send Feedback l 136

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=136

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

N Re-customize IP x
System ILA (1.1) '
@ Documentation IP Location
IPSymbol | Resources Component Name | systam_ila_o
= BRAM \To configure more than 64 probe ports use Vivado Tcl Console
Fesource Estimates)
General Options Interface Options
100.0 Monitor Type
30.0 Monitor Type | INTERFACE
80.0
Numer of mertace Sos
70.0
€ 500 sample Data Depth | 1024~
g
E 50.0 | Same Mumber of Comparators for All Probe Ports
40.0 MNumber of Comparators 3 v
30,0
Trigaer Out Port
20.0
Trigaer In Port
10,0
Input Fipe Stages 0 ~
0.0 T " P g
Q.0 1.0

Trigger And Storage Settings

| Capture Control

Resource Usage
| Advanced Trigger

BRAM Slice: 5

[ox | [canca |

20. Now, make a connection between the System ILA SLOT_O_AXI port and the S_AXI port on
the AXI BRAM Controller. Do this by clicking on the SLOT_O_AXI port and clicking again on
the S_AXI port on the AXI BRAM Controller.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 137

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=137

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

21.

22.

23.

24.
25.
26.
27.

? I
system_ila_0
+ SLOT_0_aX1
ak
0 resetn
jtag_axi_0 .
axi_smc System ILA
aclk - . i
M_AXI o it | 4 500_ax) - H axi_bram_ctrl_0
mb_reset 0 aresetn B - x o
adk E—=E Mo0_axl 4 .
reset[0:0] . x o i+ S_AX
_reset[0:0] ITAG to AXI Master = s_axLaclk BRAM_PORTA 4 [[=T |
tn[0:0 11
resetn[0:0] AX| SmartConnect s-anlaresen
resetn[0:0]
AX| BRAM Controller
Connect from 'SLOT_0_AXI' interface
to 'axi_smc_MOO_AXI" interface connection

When the Run Connection Automation banner appears, click it and select All Automation.
Then click OK. Notice that the clk and resetn ports on the System ILA are connected to the
AXI clock and the AXI reset.

sys_diff_clock [D—t

In the upper left side of the Vivado IDE, click File = Save Block Design. Select File = Close
Block Design in the same menu to close the block design.

In the sources window, right-click on design_1 block design and select Create HDL Wrapper.
Allow Vivado IDE to manage the wrapper, and click OK.

In the Flow Navigator on the left side of the Vivado IDE, click Generate Bitstream.
Click OK to implement the design.
Wait until the Vivado Status window shows write_bitstream complete.

In the Bitstream Generation Completed dialog, select Open Hardware Manager, and click
OK.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 138

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=138

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

N Bitstream Generation Completed x

o Bitstream Generation successfully completed.

Next
Qpen Implemented Design
View Reports
@ Open Hardware Manager

Cenerate Memory Configuration File

Don't show this dialog again

Step 2: Program the KC705 Board and Interact
with the JTAG to AXI Master Core

1. Connect your KC705 board's USB-JTAG interface to a machine that has Vivado® IDE and
cable drivers installed and power up the board.

2. The Hardware Manager window opens. Click Open New Target. The Open New Hardware
Target dialog opens.

HARDWARE MAMNAGER - unconnected
'ﬂ Mo hardware targetis open. Open target

£ Auto Connect
Hardware
Recent Targets 3

Open Mew Target... [}

Mo content

3. In the Connect to field choose Local server, and click Next.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 139

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=139

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

¢ Open New Hardware Target @

Hardware Server Settings

Select local or remote hardware server, then configure the host name and port settings. Use Local server if the target is attached to the ‘
local machine; otherwise, use Remote server.

Connectto: | Local server (targetis on local machine ~

Click Mextto launch andior connect to the hw_server (port 3121) application on the local machine.

Note: Depending on your connection speed, this may take about 10 to 15 seconds.

4. If there is more than one target connected to the hardware server, you see multiple entries in
the Select Hardware Target page. In this tutorial, there is only one target as shown in the
following figure. Leave these settings at their default values, and click Next.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 140

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=140

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

¢ Open New Hardware Target

Select Hardware Target
Select a hardware target from the list of available targets, then setthe appropriate JTAG clock (TCK)

Hardware Targets
Type MName JTAG Clock Frequency
@ xilinx_tcf Xilinw/Port_#0002 Hub_#0004 6000000 A4

Add Xilinx Virtual Cable (XVC)

Hardware Devices (for unknown devices, specify the Instruction Register (IR) length)

MName ID Code IR Length
€ xc7k325 0 33651093 6

Hardware server: localhost 3121

frequency. If you do not see the expected devices, decrease the frequency or select a different target.

Cancel

5. Leave these settings at their default values as shown. Click Next.

6. In the Open Hardware Target Summary page, click Finish as shown in the following figure.

UG936 (v2020.1) June 24, 2020 send Feedback
Programming and Debugging l_‘/_l

www.Xilinx.com
141

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=141

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

¢ Open New Hardware Target @I
Open Hardware Target Summary
VIVADO!
HLx Editions © Hardware Server Settings:
= Server: localhost3121
© Target Settings:
= Target: xiliny_tcfXilinwPort_#0003. Hub_#0004
= Frequency: 6000000
-
& XILINX
ALL PROG RAMMABLE. To connect to the hardware described above, click Finish
=

Wait for the connection to the hardware to complete. After the connection to the hardware
target is made, the Hardware dialog shown in the following figure opens.

Note: The Hardware tab in the Debug view shows the hardware target and XC7K325T device that was
detected in the JTAG chain.

Hardware ? 00X
Q = = &
Mame Status
~ B localhost (1) Connected
~ Ee ilin_tefdlingPort_#0003.Hu... Open
~ {8 xcTK3Z5L 0 (1) Mot programmed

£ XADC (System Monitor)

7. Next, program the previously created XC7K325T device using the . bit bitstream file by
right-clicking the XC7K325T device, and selecting Program Device as shown in the following
figure.

8. Inthe Program Device dialog verify that the . bit file is correct for the lab that you are
working on. Click Program to program the device.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging l—./—l 142

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=142

& XILINX

Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

¢ Program Device

bitstream programming file.

Select a bitstream programming file and download it to your hardware device. You can
optionally select a debug probes file that corresponds to the debug cores contained in the

=X
y

Bitstream file:

1Ijtag_axi_0_ex.n’jtag_axi_U_ex.runsa’impI_1Iexample_itag_axi_ﬂ.biﬂ |E|

Debug probes file:

Fl Fomakhla nnd afF atachon akbaals
iy
L)
Mo

fjtag_axi_0_exftag_axi_0_exrunsfimpl_1/example_jtag_axi_0.Itx

Note: Wait for the program device operation to complete. This may take few minutes.

9. Verify that the JTAG to AXI Master and ILA cores are detected by locating the hw_axi_1 and
hw_ila_1 instances in the Hardware Manager window.

Hardware

Q

Mame
~ B 17220873 (1)

-

s

L[]

w B xilinx_tof fXiling M/ /1170 (1)
w {8F WC7k3251_0 (3)
IE XADC (System Monitor)
IE hw_axi_1 (design_1_i/jt...

Sy,

IE hw_ila_1 (design_1_i/

?

- OO0 X
o]

Status
Connected
Open

Programmed

) ldle

10. You can communicate with the JTAG to AXI Master core via Tcl commands only. You can
issue AXI read and write transactions using the run_hw_axi command. However, before
issuing these transactions, it is important to reset the JTAG to AXI Master core. Because the

aresetn input port of the jtag_axi_O core instance is not connected to anything, you need to
use the following Tcl commands to reset the core:

reset_hw_axi

TclConsole x Messages | Serial IO Links | Serial IO Scans

[get_hw_axis hw_axi_1]

I8 ® @

ime (3): cpu = 00:00:25 ;
5

/hw_ila_dats_1.ila. Use Tcl command 'import_hw_ila_data' or Vivedo File->Import->Import T

>

UG936 (v2020.1) June 24, 2020
Programming and Debugging

www.Xilinx.com
143

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=143

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

11. The next step is to create a 4-word AXI burst transaction to write to the first four locations of
the BRAM:

set wt [create_hw_axi_txn write_txn [get_hw_axis hw_axi_1] -type WRITE -
address C0000000 -len 128 -data {44444444_33333333_.22222222_.111111111}]

where:

e write_txn is the name of the transaction.

e [get_hw_axis hw_axi_1] returns the hw_axi_1 object.
e -address C0000000 is the start address.

-len 128 sets the AXI burst length to 128 words

e _data [44444444_33333333_22222222_-111111111 is the data to be written.

Note: The data direction is MSB to the left (i.e., address 3) and LSB to the right (i.e., address 0). Also
note that the data will be repeated from the LSB to the MSB to fill up the entire burst.

12. The next step is to set up a 128-word AXI burst transaction to read the contents of the first
four locations of the AXI-BRAM core:

set rt [create_hw_axi_txn read_txn [get_hw_axis hw_axi_1] -type READ -
address C0000000 -len 128]

where:

e read_txn is the name of the transaction.

e [get_hw_axis hw_axi_1] returns the hw_axi_1 object.
e -address C0000000 is the start address.

e -len 128 sets the AXI burst length to 4 words.

13. After creating the transaction, you can run it as a write transaction using the run_hw_axi
command:

run_hw_axi $wt
This command should return the following:

INFO: [Labtools 27-147] : WRITE DATA is
44444444333333332222222211111111..

14. After creating the transaction, you can run it as a read transaction using the run_hw_axi
command:

run_hw_axi $rt
This command should return the following:

INFO: [Labtools 27-147] : READ DATA is
44444444333333332222222211111111...

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/_] 144

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=144

& XILINX

Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions

Step 3: Using ILA Advanced Trigger Feature to
Trigger on an AXI Read Transaction

1. Inthe ILA - hw_ila_1 dashboard, locate the Trigger Mode Settings area and set Trigger mode

to ADVANCED_ONLY.

2. Inthe Capture Mode Settings area, set the Trigger position to 512.

3. Inthe Trigger State Machine area click the Create new trigger state machine link.

Settings - hw_ila_1

Trigger Mode Settings

ADVANCED_ONLY ~

BASIC_ONLY
ADVANCED_OMNLY

Trigger mode

Trigger state machine:

Capture Mode Settings

Capture mode: ALWAYS w

Number of windows: 1 1-1024]

Window data depth 1024 v [1-1024

Trigger position in window: | 512 0-1023]
General Settings

Refreshrate: 500 ms

?

-]

— 0O

X Trigger Setup - hw_ila_1

> » H

Core status

Idle

Trigger State Machine
Flag o
Trigger state: 0

Capture status

Window 1 of1
ldle

Capture Setup - hw_ila_1 | Status-hw_ila_1 x
Pre-Trigger ‘Waiting for Trigger Post-Trigger
Flag 1 Flag 2 Flag 3

Window sample 0 of 1024 Total sample 0 of 1024
Idle Idle

? -0

4.
txns.tsm.

In the New Trigger State Machine File dialog box, set the name of the state machine script to

¢ New Trigger State Machine File

Save In: W jtag_axi_0_ex

W imports

jtag_axi_0_ex.cache

jtag_axi_0_ex.hw
jtag_axi_0_exioplanning

jtag_axi_0_exip_user_files

jtag_axi_0_exruns

jtag_axi_0_exsim

jtag_axi_0_exsrcs

File name: tns

Files oftype: | Trigger State Machine Files (tsm)

v aEks D5

Recent Directories

c:Nivado_Debug/2017.1/tag_axi_0_ex/jtag_axi_0_exrunsfimpl_1 +~

File Preview

Select afile to preview

Save Cancel

sl

~

UG936 (v2020.1) June 24, 2020
Programming and Debugging

l Send Feedback l

www.Xilinx.com

145

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=145

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

5. A basic template of the trigger state machine script is displayed in the Trigger State Machine
gadget. Expand the trigger state machine gadget in the ILA dashboard. Copy the script below
after line 17 of the state machine script and save the file.

The "wait_for_arvalid' state is used to detect the start
of the read address phase of the AXI transaction which
is indicated by the axi_arvalid signal equal to '1'

#
state wait_for_arvalid:
if (design_1_i/system_ila_0/U0/net_slot_O_axi_arvalid == 1'bl) then
goto wait_for_rready;
else
goto wait_for_arvalid;
endif
#

The "wait_for_rready" state is used to detect the start
of the read data phase of the AXI transaction which
is indicated by the axi_rready signal equal to '1'
#
state wait_for_rready:
if (design_1_i/system_ila_0/U0/net_slot_O_axi_rready == 1'bl) then
goto wait_for_rlast;
else
goto wait_for_rready;
endif

#

The "wait_for_rlast" state is used to detect the end

of the read data phase of the AXI transaction which

is dindicated by the axi_rlast signal equal to '1'.

Once the end of the data phase is detected, the ILA core
will trigger.

#
s

tate wait_for_rlast:

if (design_1_i/system_ila_0/U0/net_slot_O_axi_rlast == 1'bl) then
trigger;

else
goto wait_for_rlast;

endif

Note: Use the state machine to detect the various phases of an AXI read transaction:
e Beginning of the read address phase.

e Beginning of the read data phase.

e End of the read data phase.

6. Arm the trigger of the ILA by right-clicking the hw_ila_1 core in the Hardware Manager
window and selecting Run Trigger.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 146

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=146

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

Hardware
Q = e > » n o Waveform - hw_ila,
Mame Status
e Q +
~ B localhost (1 Connected =2
[=1
v Ee ilin_tofiXilingPort_#0003.Hu.. Open 9 | ILAStatus:idle
~ {8 xcTk325t 0 (3) Proarammeri a Moma
& XADC (System I Hardware Device Properties...
SE hw_axi_1 (A Program Device...
T hw_ila_1 (u_ila_ Verify Device...
P Run Trigger
»» Run Trigger Immediate
B stop Trigger
Enable Auto Re-frigger
Create User Defined Probe...
 Refresh Device
Add Configuration Memory Device...
Boot from Configuration Memaory Device
i i 1gs - hw_ila_1
Hardware Device Properties Program BBR Kay... a _lia_
{8 xcTk325t 0 Clear BBR Key. . 1er Mode Sett
Mame: XCTR325t_(Program eFUSE Reqgisters... Trigger mode:
Part: KCTR325t Exportto Spreadsheet.. L.
rigger state i
D code: 33651093
IR length: G Capture Mode Set

7. Inthe Trigger Capture Status window, note that the ILA core is waiting for the trigger to
occur, and that the trigger state machine is in the wait_for_a_valid state. Note that the pre-
trigger capture of 512 samples has completed successfully:

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 147

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=147

iv Xl Ll NX Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
A ®

Settings - hw_ila_1 Status - hw_ila_1
e » W G
Core status O Waiting for Trigger

Trigger State Machine - Flags: ' 0 1 2 '3

Trigger state: wait_for_anvalid {O)

Capture status - Window 1 of 1

Window sample 512 of 1024

s

8. Inthe Tcl console, run the read transaction that you set up in the previous section of this
tutorial.

run_hw_axi $rt

Note: The ILA core has triggered and the trigger mark is on the sample where the axi_rlast signalis
equal to '1', just as the trigger state machine program intended.

Waveform - hw_ila_1
Q + = ¢ » » B B @ @ X o M = 2 4 ol &

ILA Status: Idle

1

T
No hrite Data Beats
[

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 148

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=148

& XILINX

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs

Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

e From the Vivado® IDE, select Help - Documentation and Tutorials.
e On Windows, select Start = All Programs = Xilinx Design Tools = DocNav.

e At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

¢ In DocNav, click the Design Hubs View tab.
¢ On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L\/—] 149

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=149

iv Xl Ll NX Appendix A: Additional Resources and Legal Notices
A ®

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPQOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https:/
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https:/www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2012-2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective
owners.

UG936 (v2020.1) June 24, 2020 send Feedback www.xilinx.com
Programming and Debugging L/—] 150

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG936&Title=Vivado%20Design%20Suite%20Tutorial&releaseVersion=2020.1&docPage=150

	Vivado Design Suite Tutorial
	Revision History
	Table of Contents
	Debugging in Vivado Tutorial
	Objectives
	Getting Started
	Setup Requirements
	Tutorial Design Components
	Board Support and Pinout Information
	Design Files
	Connecting the Boards and Cables

	Lab 1: Using the Netlist Insertion Method to Debug a Design
	Step 1: Creating a Project with the Vivado New Project Wizard
	Step 2: Synthesizing the Design
	Step 3: Probing and Adding Debug IP
	Adding Debug Nets to the Project
	Running the Set Up Debug Wizard

	Step 4: Implementing and Generating Bitstream

	Lab 2: Using the HDL Instantiation Method to Debug a Design
	Step 1: Creating a Project with the Vivado New Project Wizard
	Step 2: Synthesize Implement and Generate Bitstream

	Lab 3: Using a VIO Core to Debug a Design in Vivado Design Suite
	Step 1: Creating a Project with the Vivado New Project Wizard
	Step 2: Synthesize, Implement, and Generate the Bitstream

	Lab 4: Using the Synplify Pro Synthesis Tool and Vivado Design Suite to Debug a Design
	Step 1: Create a Synplify Pro Project
	Step 2: Synthesize the Synplify Project
	Step 3: Create DCPs for the Black Box Created in Synplify Pro
	Step 4: Create a Post Synthesis Project in Vivado IDE
	Step 5: Add More Debug Nets to the Project
	Running the Set Up Debug Wizard

	Step 6: Implementing the Design and Generating the Bitstream

	Lab 5: Using the Vivado Logic Analyzer to Debug Hardware
	Step 1: Verifying Operation of the Sine Wave Generator
	Target Board and Server Set Up
	Using the Vivado Integrated Logic Analyzer
	Verifying Sine Wave Activity
	Displaying the Sine Wave
	Correcting Display of the Sine Wave

	Step 2: Debugging the Sine Wave Sequencer State Machine (Optional)
	Sine Wave Sequencer State Machine Overview
	Viewing the State Machine Glitch
	Fixing the Signal Glitch and Verifying the Correct State Machine Behavior
	Verifying the VIO Core Activity (Only Applicable to Lab 3)

	Lab 6: Using the ECO Flow to Replace Debug Probes Post Implementation
	Lab 7: Debugging Designs Using the Incremental Compile Flow
	Procedure
	Step 1: Opening the Example Design and Adding a Debug Core
	Step 2: Compiling the Reference Design
	Step 3: Create New Runs
	Step 4: Making Incremental Debug Changes
	Step 5: Running Incremental Compile
	Conclusion

	Lab 8: Using the Vivado Serial Analyzer to Debug Serial Links
	Design Description
	Step 1: Creating, Customizing, and Generating an IBERT Design
	Step 2: Adding an IBERT Core to the Vivado Project
	Step 3: Synthesize, Implement and Generate Bitstream for the IBERT Design
	Step 4: Interact with the IBERT Core Using Serial I/O Analyzer

	Lab 9: Using the Vivado ILA Core to Debug JTAG-AXI Transactions
	Design Description
	Step 1: Creating a New Vivado Project and Generating the IP Integrator Design with JTAG-to-AXI and System ILA
	Step 2: Program the KC705 Board and Interact with the JTAG to AXI Master Core
	Step 3: Using ILA Advanced Trigger Feature to Trigger on an AXI Read Transaction

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	Please Read: Important Legal Notices

