Vivado Design Suite Tutorial

Implementation

UG986 (v2019.2) December 20, 2019

This tutorial was validated with 2019.1. Minor procedural differences might be required when using later
releases.

& XILINX

"E See all versions
of this document


http://www.xilinx.com/
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG986

& XILINX

Revision History
12/20/2019: Released with Vivado® Design Suite 2019.2 without changes from 2019.1.

Section Revision Summary

06/24/2019 Version 2019.1

e Figure 35: Design Runs Window after Figure updates.
Completion

e Figure 37: Incremental Reuse Report

e Figure 45: Vivado IDE Showing
project_bft_core Project Details

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback



http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=2

& XILINX

Table of Contents

REVISION HISTOIY ..ottt ettt 8t 2
IMPIEMENTALION TULOTIAN ..ottt bbbttt 5
OVEIVIEW ..ottt e b s bbbttt 5
TULOTTAl DESIGN DESCIIPTION ...ttt ss st s sttt ss s s e 6
Hardware and SOftWare REQUIFEMIENTS ..ottt sttt ss st sses st sssens 6
Preparing the TULOrIal DESIGN FIlES ...ttt st ensas 6
Locating Design Files FOr Labs 1-3........ci ittt et e e et e e e e rtte e e e eate e e e eabee e e esabaeesenteeeeeasteeeennnens 6
Locating DesSign FIles FOr Lab 4 ......c.eeiiie ettt e e et e e e ette e e e e bte e e e e bt e e e eeataeeeenteeeeenseneeensens 7
Lab 1: Using IMpPlementation Strat@QIesS. ...ttt sssssssssse st s st st ssssssssssssssssesssnssns 8
INEFOAUCTION oottt bbb bbb 8
Step 1: Opening the EXAMPIE PrOJECT. ...ttt sttt ssss st ss st st sssssssesssssns 8
Step 2: Creating Additional IMplementation RUNS.........c..oriee ettt sse st ssss st s ssssses 14
Step 3: Analyzing IMpPlementation RESUIES ...ttt sttt st ssnee 15
Step 4: Tightening TiMiNG REQUIFEMENTS ..ot ssssssssssssssss s ss st s ssssssesssssssssssssssssesssssssssssses 18
CONCIUSION ottt bbbt bbb b bbbt 20
Lab 2: Using Incremental IMPIemMENtation..........c.coiineiesee ettt st ssns 21
INEFOAUCTION oottt bbbt 21
Step 1: Opening the EXAMPIE PrOJECT. ...ttt sss st st ss s 21
Step 2: Viewing the Incremental Heading in the Design RUNS WINAOW ... eeeesseseens 27
Step 3: Turning on Incremental IMPlemMENTatioN ...ttt ssss e ss st eeee 28
Step 4: Compiling the REFEIENCE DESIGN ...t sss s s st ss s s ss s ssssesns 30
Step 5: Making INCremental Changes ...ttt 31
Step 6: Rerunning the Synthesis and IMPIEMENTAtION ...t eees 33
CONCIUSION ettt e £8 Rttt 36
Lab 3: Manual and Dir€Cted ROUTING .....c.vvuiieireieiecireieeieeise ittt ss st et 37
INTFOTUCTION .ttt E b8ttt 37
Step 1: Opening the EXAMPIE PrOJECT. ...ttt ss st bbbt 37
Step 2: Performing Place and ROULE ON the DESIGN ..ot ssse st ssse s ss e saseseses 44
Step 3: Analyzing OULPUL BUS TIMING ..ttt ss e sss sttt ssssnssesssnsnns 46

Implementation www.xilinx.com 3
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=3

& XILINX

Step 4: Improving Bus Timing through PlaC@mMENt ...t essens 53
Step 5: Using Manual Routing to RedUCE ClOCK SKEW...........ccviuiiiiereiecie st ssss s sseens 59
Step 6: Copying ROULING tO Other INETS ...ttt st sneen 70
CONCIUSION .ttt es e s bbbt 74
LaD 4: VIVAAO ECO FIOW..... ittt essse e e e bbbt 75
INEFOTUCTION ettt et 75
Step 1: Creating a Project Using the Vivado New Project WiIzard..........nninecneneeeinecnesseisesesesesesssesenes 77
Step 2: Synthesizing, Implementing, and Generating the BitStream ... 79
Step 3: Validating the Design 0N the BOAI ... 80
Step 4: Making the ECO MOGIfiICAtIONS ..ottt e 88
Step 5: Implementing the ECO Changes.........o e tsessse s ssse st ssss s ssss e sssessas 104
Step 6: Replacing DEDUQG PrODES. ...ttt et 109
CONCIUSION ettt bbb b 113
LEGAI NOTICES ...ttt s annses 114
Please Read: IMPOrtant LEGAl NOTICES ...ttt sttt senee 114

Implementation www.xilinx.com 4
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=4

&

XILINX

Implementation Tutorial

IMPORTANT: This tutorial requires the use of the Kintex®-7 and Kintex UltraScale™ family
of devices. You will need to update your Vivado® Design Suite tools installation if you do
not have this device family installed. Refer to the Vivado Design Suite User Guide: Release
Notes, Installation, and Licensing (UG973) for more information on Adding Design Tools or
Devices.

Overview

This tutorial includes four labs that demonstrate different features of the Xilinx® Vivado® Design Suite
implementation tool:

Lab 1 demonstrates using implementation strategies to meet different design objectives.

Lab 2 demonstrates the use of the incremental compile feature after making a small design
change.

Lab 3 demonstrates the use of manual placement and routing, and duplicated routing, to fine-
tune the timing on the design.

Lab 4 demonstrates the use of the Vivado ECO to make quick changes to your design post
implementation.

Vivado implementation includes all steps necessary to place and route the netlist onto the FPGA device
resources, while meeting the logical, physical, and timing constraints of a design.

-t
-

[

VIDEO: You can also learn more about implementing the design by viewing the following
Quick Take videos:

e Vivado Quick Take Video: Implementing the Design

e Vivado Quick Take Video: Using Incremental Implementation in Vivado

Lt

TRAINING: Xilinx provides training courses that can help you learn more about the
concepts presented in this document. Use these links to explore related courses:

e Designing FPGAs Using the Vivado Design Suite 1
e Designing FPGAs Using the Vivado Design Suite 2
e Designing FPGAs Using the Vivado Design Suite 3
e Designing FPGAs Using the Vivado Design Suite 4

UG986 (v2019.2) December 20, 2019

Implementation www.xilinx.com l Send Feedback I


http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;t=release+notes
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/implementing-the-design.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/incremental-implementation-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-4.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=5

& XILINX

Implementation Tutorial

Tutorial Design Description

The design used for Lab #1 is the CPU Netlist example design, project_cpu_netlist_kintex7,
provided with the Vivado Design Suite installation. This design uses a top-level EDIF netlist source file,
and an XDC constraints file.

The design used for Lab #2 and Lab #3 is the BFT Core example design, project_bft_kintex7. This
design includes both Verilog and VHDL RTL files, as well as an XDC constraints file.

The design used for Lab #4 is available as a Reference Design from the Xilinx website. See
information in Locating Design Files for Lab 4.

The CPU Netlist and BFT Core designs target an XC7K70T device, and the design for Lab #4 targets an
XCKUO040 device. Running the tutorial with small designs allows for minimal hardware requirements and
enables timely completion of the tutorial, as well as minimizing data size.

Hardware and Software Requirements

This tutorial requires that the 2019.1 Vivado Design Suite software release or later is installed.

Refer to the Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) for a
complete list and description of the system and software requirements.

Preparing the Tutorial Design Files

Locating Design Files for Labs 1-3

You can find the files for Labs 1-3 in this tutorial in the Vivado Design Suite examples directory at the
following location:

<Vivado_install_area>/Vivado/<version>/examples/Vivado Tutorial

You can also extract the provided zip file, at any time, to write the tutorial files to your local directory, or
to restore the files to their starting condition.

Extract the zip file contents from the software installation into any write-accessible location.
<Vivado_install_area>/Vivado/<version>/examples/Vivado Tutorial.zip

The extracted Vivado_Tutorial directory is referred to as <Extract_Dir> in this tutorial.

Note: You will modify the tutorial design data while working through this tutorial. You should use a
new copy of the original Vivado_Tutorial directory each time you start this tutorial.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;t=release+notes
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=6

& XILINX

Locating Design Files for Lab 4

To access the reference design for Lab #4, do the following:
1. Inyour C: drive, create a folder called /Vivado_Tutorial.

2. Download the reference design files from the Xilinx website.

3. Unzip the tutorial source file to the /Vivado_Tutorial folder.

Implementation www.xilinx.com
UG986 (v2019.2) December 20, 2019

Implementation Tutorial

l Send Feedback I


http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=1d3051b4-bde1-465e-9c1d-99add30f6b44;d=ug986-vivado-tutorial-implementation.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=7

& XILINX

Lab 1: Using Implementation Strategies

Introduction

In this lab, you will learn how to use implementation strategies with design runs by creating multiple
implementation runs employing different strategies, and comparing the results. You will use the CPU
Netlist example design that is included in the Vivado® IDE.

Step 1: Opening the Example Project

1. Open the Xilinx® Vivado IDE.
On Linux:

a. Change to the directory where the lab materials are stored:
cd <Extract Dir>/Vivado Tutorial

b. Launch the Vivado IDE: vivado
On Windows:
a. To launch the Vivado IDE, select:
Start > All Programs > Xilinx Design Tools > Vivado 2019.x > Vivado 2019.x

Note: Your Vivado Design Suite installation might be called something other than Xilinx Design
Tools on the Start menu.

Note: As an alternative, click the Vivado 2019.x Desktop icon to start the Vivado IDE.

The Vivado IDE Getting Started page contains links to open or create projects and to view
documentation.

2. From the Getting Started page, click Open Example Project.

Quick Start

Create Project >
Open Project >
Open Example Project »

Figure 1: Open Example Project

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=8

v
i; XI I_I NXQ Lab 1: Using Implementation Strategies

4. In the Create an Example Project screen, click Next.

p Create an Example Project
V|VﬁD¢p This wizard will guide you through the creation of a new Vivado project from a predefined template.
To create a Vivado project you will specify the type of template project you would like to create. MNext, you
will need to provide a name and a location for your project files and choose a default board.

& XILINX
®

Figure 2: Open Example Project Wizard—Create an Example Project Screen

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=9

v
i; XI I_I NXQ Lab 1: Using Implementation Strategies

5. In the Select Project Template screen, choose the CPU (Synthesized) project and click Next.

Select Project Template

Select one of the below predefined templates on which to base your new project '
Templates Description
Base Zyng UltraScale+ MPSoC CPU (Synthesized) -
|
Base MicroBlaze Large synthesized netlist project
Base Zyng
BFT H
GT I0s Wishbone
Configurable MicroBlaze Design

Configurable Zyng UltraScale+ MF

CPU (HDL) Clock
CPU (Synthesized)
Wavegen (HOL)
Open RISC CPU USB '
0
FFT UsB
. BFT 1
Engine
< > < >

)

Figure 3: Open Example Project Wizard—Select Project Template Screen

Implementation www.xilinx.com 10
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=10

v
i; XI I_I NXQ Lab 1: Using Implementation Strategies

6. In the Project Name screen, specify the following, and click Next:
0 Project name: project_cpu_netlist

0 Project location: <Project_Dir>

Project Name

Enter a name for your project and specify a directory where the project data files will be stored '

Projectname:  project_cpu_netlist
Project location: | C:Vivado_Tutorial Iz‘

[ Create project subdirectory

Project will be created at C:Vivado_Tutorial/project_cpu_netlist

s
I\j ‘-J/I

Figure 4: Open Example Project Wizard—Project Name Screen

Implementation www.xilinx.com 11
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=11

v
i; XI I_I NXQ Lab 1: Using Implementation Strategies

7. In the Default Part screen, select the xc7k70tfbg676-2 part and click Next.

/’
Default Part
Choose a default Xilinx part for your project. '
Part IO Pin Count  Available IOBs  LUTElements  FlipFlops  Block RAMs  Ulira RAMs  DSPs  GbTrs
xcTk70tbgB76-2 676 300 41000 82000 135 0 240 8
|
|
< >

)

Figure 5: Open Example Project Wizard—Default Part Screen

Implementation www.xilinx.com 12
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=12

v
i; XI I_I NXQ Lab 1: Using Implementation Strategies

8.

In the New Project Summary screen, review the project details, and click Finish.

New Project Summary

VIVADO!

HixEdlions © Anew project named "project_cpu_netlist will be created from the 'CPU (Synthesized) template.

@) The default part and product family for the new project:
Default Part: xc7k70tfbg676-2
Product: Kintex-7
Family: Kintex-7 |
Package: fogh76
Speed Grade: -2

i: XI LI NX To create the project, click Finish
Q

Figure 6: Open Example Project Wizard—New Project Summary Screen

Implementation www.xilinx.com l Send Feedback I

UG986 (v2019.2) December 20, 2019

13


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=13

v
i; XI I_I NX@ Lab 1: Using Implementation Strategies

The Vivado IDE opens with the default view.

Bie Ll Frew  Tocls  Repgls  Wandew  Lapsul  Wew  Help Faway
= - » B & T = DatmstLayoun

L PROJECT MANAGER - projol_1

Q| &/ & $ |5 o

ORE Vickalions. Timing

Name Consvanls  Stas WNE TNS WHS THS TPWS TomlPowsr FalsdRouws LUT PR BRMS  URAM DSP St Blpsed

Figure 7: Vivado IDE Showing project_cpu_netlist Project Details

Step 2: Creating Additional Implementation Runs

The project contains previously defined implementation runs as seen in the Design Runs window of the
Vivado IDE. You will create new implementation runs and change the implementation strategies used
by these new runs.

1. From the main menu, select Flow > Create Runs.
2. The Create New Runs wizard opens.
3. Click Next to open the Configure Implementation Runs screen.

The screen appears with a new implementation run defined. You can configure this run and add
other runs as well.

4. In the Strategy drop-down menu, select Performance_Explore as the strategy for the run.

5. Click the Add button twice to create two additional runs. +
6. Select Flow_RunPhysOpt as the Strategy for the impl_3 run.
7. Select Flow_RuntimeOptimized as the Strategy for the impl_4 run.

The Configure Implementation Runs screen now displays three new implementations along with the
strategy you selected for each, as shown in the below figure.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback



http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=14

& XILINX

Configure Implementation Runs

Lab 1: Using Implementation Strategies

Create and configure one or more implementation runs using various parts, constraints, flows and strategies

Create Implementation Runs

Make Ac...
]
O
O

+ -
MName Constraints Set Part Run Strategy Report Strategy
impl_2 constrs_2.. ~ {8 xcTk70tb.. v fa Performance_Explore (Vivado Implementation... % fa Vivado Implementation Default Reports (Vivado Impl.. »
impl_3 constrs_2... v 8 xcTk70t... v Ja Flow_RunPhysOpt (Vivado Implementation 20... % & UltraFast Design Methodology Reports (Vivado Impl... &
impl_4 constrs_2.. ~ 8 xc7k70tb.. v & Flow_RuntimeOptimized (Vivado Implementat.. ~ % UltraFast Design Methodology Reports (Vivado Impl... ~
)
W2

Figure 8: Configure Implementation Runs

8. Click Next to open the Launch Options screen.

9. Select Do not launch now, and click Next to view the Create New Runs Summary.

10. In the Create New Runs Summary page, click Finish.

Runs to create: 3

Cancel

Step 3: Analyzing Implementation Results

1. In the Design Runs window, select all the implementation runs.

Design Runs.
a = = + %
Name Constraints  Status Fun Stratagy DCescrigbon
npi_1 2 constrs_? Drtausts [Vead 2018)  Detaut setmiegs for Implemeatation.
mei_2 conss_2 Parlormanca_E: ementation 2010) s, gerithms for opimization. placemant and routing b g uits
enpl_3 consks_2 Flow_Rus ertation 2018} 5 dementation Run Defaults, bul enables he phrs ool desig
enpl_4 conas_3 Fhorw_Ruibimy #0 [VWad Implementaton 2018) Eh imphementaion S1np aces 0e5ign pomamance 1o BeBer runime. Physical apimaation (phys_og
<

Figure 9: Design Runs Window

2. On the sidebar menu, click the Launch Runs button B

3. In the Launch Runs dialog box, select Launch runs on local host and Number of jobs: 4, as shown
below.
Implementation www.xilinx.com

UG986 (v2019.2) December 20, 2019

| Send Feedback I

15


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=15

& XILINX

|
|

Implementation

Lab 1: Using Implementation Strategies

Launch the selected synthesis orimplementation runs.

Launch directary.  w =<Default Launch Directory= A
Options
(®) Launch runs on local host:  Mumber of jobs: | 4 v

() Generate scripts only
[_] Dan't show this dialog again

Figure 10: Launch Runs

www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

16


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=16

v
i; XI I_I NX@ Lab 1: Using Implementation Strategies

4. Click OK.

Two runs launch simultaneously, with the remaining runs going into a queue.

Design Runs ?_0aXx
Q = 2 N > + %
Name A1 par Constraints  Strategy Status Progress WNS TNS WHS THS TPWS Total Power F|
Jimpl_1 (active) xc7k70tthg676-2 constrs_2 Vivado Implementation Defaults (Vivado Implementation 2017)  Running place_design... | 50%
Jimpl_2 xc7k70thg676-2 constrs_2 Performance_Explore (Vivado Implementation 2017) Running place_design... | 40%
impl_3 xcT7k70thg676-2 constrs_2 Flow_RunPhysOpt (vVivado Implementation 2017) Queued 0%
impl_4 xc7k70thg676-2 constrs_2 Flow_RuntimeOptimized (Vivado Implementation 2017) Queuesd. 0%
< b

Figure 11: Two Implementation Runs in Progress

When the active run, impl_1, completes, examine the Project Summary. The Project Summary
reflects the status and the results of the active run. When the active run (impl_1) is complete, the
Implementation Completed dialog box opens.

5. Click Cancel to close the dialog box.

Note: The implementation utilization results display as a bar graph at the bottom of the summary
page (you might need to scroll down), as shown in the following figure.

Utilization

Graph | Tahle

LUT A 49%
LUTRAM 7 1%
FF A 19%
BRAM - B1%
DSP A 28%
101 32%
GTH 100%
BUFG A 38
MMTM A 1%

0 25 a0 75 100
Litilization (%)

Figure 12: Post-Implementation Utilization

When you open an implementation run, the report_power and the report_timing_summary results
are automatically opened for the run in a new tab in the Results Window.

Implementation www.xilinx.com 17
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=17

& XILINX

Lab 1: Using Implementation Strategies

6. When all the implementation runs are complete, select the Design Runs tab.
7. Right-click the impl_3 run in the Design Runs window, and select Make Active from the popup
menu.
The Project Summary now displays the status and results of the new active run, impl_3.
Design Runs ?2 08X
QT 2 H « »r » + %
Name Part Consfraints ~ Status Run Strategy Elapsed WNS  Description
+ impl_1 Xc7K70tfogb76-2 constrs_2 route_design Complete! Vivado Implementation Defaults (Vivado Implementation 2018) 00:07:01 0105 Default settings for Implementation.
+ impl_2 Xc7K70tfogB76-2 constrs_2 route_design Complete! Performance_Explore (Vivado Implementation 2018) 00:07:10 0105 Uses multiple algorithms for optimization, placement, and routin
+ impl_3 (active xcT7k70tfbg676-2  constrs_2 route_design Complete! Flow_RunPhysOpt (Vivado Implementation 2018) 00:07:36 0.105 Similar to the Implementation Run Defaults, but enables the ph|
+ impl_4 XcTk70tfogB76-2 constrs_2 route_design Complete! Flow_RuntimeOptimized (Vivado Implementation 2018) 00:06:54 0.799 Each implementation step trades design performance for better
£ 2
Figure 13: Compare Implementation Results
8. Compare the results for the completed runs in the Design Runs window, as shown in Figure 13.

¢ The Flow_RuntimeOptimized strategy in impl_4 completed in the least amount of time, as you
can see in the Elapsed time column.

e The WNS column shows that all runs met the timing requirements.

Step 4: Tightening Timing Requirements

To examine the impact of the Performance_Explore strategy on meeting timing, you will change the
timing constraints to make timing closure more challenging.

1.

The constraints file opens in the Vivado IDE text editor.

Project Summary

jo!

# Define the
create clock

# Define the
create clock
create clock
create clock
create clock

W0 -1 hon s W

—
=

Implementation

x B B N/ B ¢

» | top_full.xdc x

Q

top level systen clock of the design
-period 10 -name sysClk [get ports sysClk]

clocks for the GIX blocks

—name
—Iame
—name
—Iame

grl_txusrclk_ i
gtZ_txusrclk i
gtd_txusrclk_ i
gte_txusrclk i

Figure

UG986 (v2019.2) December 20, 2019

-period 12.5 [get pins
-period 12.8 [get pins
-period 12.5 [get pins
-period 12.8 [get pins

14: top_full.xdc File

www.Xilinx.com

In the Sources window, double-click the top_ful l .xdc file in the constrs_2 constraint set.

00

ntEngine /ROCEETIO_WRAPFER_T.
nytEngine /ROCEETIO_WRAPPER_T.
ntEngine /ROCEETIO_WRAPFER_T.
nytEngine /ROCEETIO_WRAPPER_T.

18

l Send Feedback I


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=18

v
i; XI I_I NX@ Lab 1: Using Implementation Strategies

2. Online 2, change the period of the create_clock constraint from 10 ns to 7.35 ns.

The new constraint should read as follows:
create_clock -period 7.35 -name sysClk [get ports sysCIK]

3. Save the changes by clicking the Save File I button in the sidebar menu of the text editor.

Note: Saving the constraints file changes the status of all runs using that constraints file from
“Complete” to “Out-of-date,” as seen in the Design Runs window.

Design Runs ? —0aXx
Q = 2 + %
Name Part Consfraints  Status Run Strategy Elapsed WNS  Description
£ impl_1 XcTK70tfba676-2 constrs_2 Implementation Out-of-date Vivado Implementation Defaults (Vivado Implementation 2018) 00:07:01 0.105 Default settings for Implementation
~ impl_2 XcTK70tfba676-2 constrs_2 Implementation Out-of-date Performance_Explore (Vivado Implementation 2018) 00:07:10 0105 Uses multiple algorithms for optimization, placement, and routin|
& impl_3 (active xc7k70tfbg676-2 constrs_2 Implementation Qut-of-date Flow_RunPhysOpt (Vivado Implementation 2018) 00:07:36 0.105 Similar to the Implementation Run Defaults, but enables the phj
« impl_4 XCTK70tfbg676-2 constrs_2 Implementation Qut-of-date Flow_RuntimeOptimized (Vivado Implementation 2018) 00:06:54 0799 Eachimplementation step trades design performance for better
< >

Figure 15: Implementation Runs Out-of-Date

4. In the Design Runs window, select all runs and click the Reset Runs 14 button.
5. In the Reset Runs dialog box, click Reset.

This directs the Vivado Design Suite to remove all files associated with the selected runs from the
project directory. The status of all runs changes from “Out-of-date” to “Not started.”

6. With all runs selected in the Design Runs window, click the Launch Runs » button.

The Launch Selected Runs window opens.

TIP: You can also launch runs without resetting them first. If the runs are out of date, the Reset
Runs dialog box displays. In this dialog box, you can reset the runs before they are launched.

7. Select Launch runs on local host and Number of jobs: 2 and click OK.
When the active run (impl_3) completes, the Implementation Completed dialog box opens.

8. Click Cancel to close the dialog box.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=19

v
i; XI I_I NX@ Lab 1: Using Implementation Strategies

9. Compare the Elapsed time for each run in the Design Runs window, as seen in the following figure.

Design Runs ?2 _0aX

QT £ L« »r » + %

MName Part Constraints ~ Status Run Strategy Elapsed WNS TNS WHS THS
«/ impl_1 *C7k70tbg676-2 constrs_2 route_design Complete, Failed Timing! Vivado Implementation Defaults (Vivado Implementation 2018)  00:10:47 -0.400  -3509 0.046 0.000
+/ impl_2 (active) xc7k70tfbg676-2 constrs_2 route_design Complete, Failed Timing! Performance_Explore (Vivado Implementation 2018) 00:15:26 -0.079 -0.084 0.046 0.000
~/ impl_3 *CTk70tbg676-2 constrs_2 route_design Complete, Failed Timing! Flow_RunPhysOpt (Vivado Implementation 2018) 00:13:22 -0.462  -5.340 0.046 0.000
~ impl_4 XCTK7O0tfbg676-2 constrs_2 route_design Complete, Failed Timing! Flow_RuntimeOptimized (Vivado Implementation 2018) 00:07:32 -0.526 -5.860 0055 0.000

< >

Figure 16: Implementation Results After Constraint Change

¢ Notice that the impl_2 run, using the Performance_Explore strategy is closest to meet timing, but
also took the most time to complete.

RECOMMENDED: Reserve the Performance_Explore strategy for designs that have
challenging timing constraints. When timing is easily met, the Performance_Explore strategy
increases implementation times while providing no timing benefit.

Conclusion

In this lab, you learned how to define multiple implementation runs to employ different strategies to
resolve timing. You have seen how some strategies trade performance for results, and learned how to
use those strategies in a more challenging design.

This concludes Lab #1. If you plan to continue directly to Lab #2, keep the Vivado IDE open and close
the current project. If you do not plan to continue, you can exit the Vivado Design Suite.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

20


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=20

& XILINX

Lab 2: Using Incremental Implementation

Introduction

Incremental Implementation is a flow that should be used when a user wants to get greater consistency
of results and/or faster runtimes from Vivado. It should be used when a design is relatively stable and
only small changes are required.

After resynthesizing a design with minor changes, the incremental compile flow can speed up
placement and routing by reusing results from a prior design iteration. This can help you preserve
timing closure while allowing you to quickly implement incremental changes to the design.

In this lab, you use the BFT example design that is included in the Vivado® Design Suite, to learn how to
use the incremental compile flow. Refer to the Vivado Design Suite User Guide: Implementation (UG904)
to learn more about Incremental Compile.

Step 1: Opening the Example Project

1. Start by loading Vivado IDE by doing one of the following:
e Launch the Vivado IDE from the icon on the Windows desktop.
e Type vivado from a command terminal.

2. From the Getting Started page, click Open Example Project.

Quick Start

Create Project >
Open Project >

Open Example Project >

Figure 17: Open Example Project

Implementation www.xilinx.com 21
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=21

v
(A XI I_I NXQ Lab 2: Using Incremental Implementation

3. In the Create an Example Project screen, click Next.

¢ Open Example Project

Create an Example Project

This wizard will guide you through the creation of a new Vivado project from a predefined template

VIVADO?

To create a Vivado project you will specify the type of template project you would like to create. Nexd, you
will need to provide a name and a location for your project files and choose a default board

& XILINX

Figure 18: Open Example Project Wizard—Create an Example Project Screen

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

22


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=22

v
(A XI I_I NXQ Lab 2: Using Incremental Implementation

4. In the Select Project Template screen, select the BFT (Small RTL project) design, and click Next.

¢ Open Example Project X

Select Project Template

Select one of the below predefined templates on which to base your new project '
Templates Description
Base Zynq UltraScale+ MPSoC BFT
Base MicroBlaze small RTL project
Base Zyng
BFT

Configurable MicroBlaze Design
Configurable Zyng UltraScale+ MP:

CPU (HDL
CPU (Synthesized =

Wavegen (HDL ]

144
dhbit
144
T
144
HH
144
o4l
il

O4l4

Figure 19: Open Example Project Wizard—Select Project Template Screen

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=23

v
i; XI I_I NXQ Lab 2: Using Incremental Implementation

5. Inthe Project Name screen, specify the following, and click Next:
e Project name: project_bft_core_hdl

e Project location: <Project_Dir>

Project Name

Enter a name for your project and specify a directory where the project data files will be stored ‘

Project name;  praject_bft core_hl
Project location: C/Data/Vivado_Tutorial [ l

v| Create project subdirectory

Project will be created at: C/Data/Vivado_Tutorial/project_bft_core_hdl

Figure 20: Open Example Project Wizard—Project Name Screen

Implementation www.xilinx.com 24
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=24

& XILINX

6. In the Default Part screen, select the xc7k70tfbg484-2 part, and click Next.

Lab 2: Using Incremental Implementation

¢ Open Example Project

Default Part

Search:

Part /O Pin Count
xc7k70tfbg484-2 484
Xc7k70tfbg676-2 676

XCT7vE85ifig1157-2 1157
¥cku035-fovag00-2-e 900

b

Available I0Bs
285
300
600
468

Choose a default Xilinx part for your project. This can be changed later.

LUT Elements
41000

41000
364200
203128

FlipFlops
82000
82000
728400
406256

Block RAMs
135
135
795
540

E=al - |

Ultra RAMs
0

0
0
0

¢
DSPs Gb
240

240 8
1260 20
1700 16

i Cancel -

Figure 21: Open Example Project Wizard—Default Part Screen

Implementation
UG986 (v2019.2) December 20, 2019

www.Xilinx.com

| Send Feedback I



http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=25

v
(A XI I_I NXQ Lab 2: Using Incremental Implementation

7. In the New Project Summary screen, review the project details, and click Finish.

New Project Summary

VIVADO'

HLy Editions
' 0 Anew project named ‘project_bft_core_hdl" will be created from the ‘BFT template.

ﬂThe default part and product family for the new project:
Default Part: xc7k70ffbg484-2
Product: Kintex-7
Family: Kintex-7
Package: fbgd84
Speed Grade: -2

i: XI LI NX To create the project, click Finish
@ |

Figure 22: Open Example Project Wizard—New Project Summary Screen

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=26

v
i; XI I_I NXQ Lab 2: Using Incremental Implementation

The Vivado IDE opens with the default view.

¢ project_bft_core_hdl - [C;/Data/Vivado_Tutorial /project_bft_core_hdl/project_bft_core_hdlxpr] - Vivado 2018.1 - ] X
Eile Edit Flow Tools Reports Window Layout View Help UICK ACCess Ready
I"‘-" - b‘ | Y « T == Default Layout v
Flow Navigator E3 B S PROJECT MANAGER - project_bft_core_hdl ? X

el ot LI I Sources ? o0 X Project Summary ?200X

£ Settings P A
Q = £ + Updating D &¥ )
Add Sources ) Settings  Edit
Design Sources (1
Language Templates > @ DbR(aBFT) (bftvhdi) (20 Project name: project_bft_core_hdl
¥ IP Catalo . CnoN ) Project location C:/Data/Vivado_Tutorial/project_bft_cor
g > Simulation Sources (1 ! 2 = project bit_cor
Product family: Kintex-7
W AEINIECRATOR Hierarchy | Libraries  Compile Order Project part XCTKT0tbg484-2
Create Block Design Top module name: Bt
Properties ? oo X Target language: VHDL
senerate Block Design o Simulator language! Mixed
v SIMULATION )
perties Synthesis Impl
Run Simulation
— i
v RTL ANALYSIS
> Open Elaberated Design fclConsole | Messages | Log | Reporis | DesignRuns X ? .00
Q T|e + %
v SYNTHESIS 2 ;
MName Constraints  Status Elapsed WNS TNS WHS THS TPWS Total Power FailedRoutes LUT
P Run Synthesis v [> synth_1 constrs_1 Not started
> Open Synthesized Desig impl_1  constrs_1 Not started
v [MPLEMENTATION
P Run Implementation
>
v PROGRAM AND DEBUG | LS 2

Figure 23: Vivado IDE Showing project_bft_core_hdl Project Details

Step 2: Viewing the Incremental Heading in the Design Runs
Window

In the design runs window, right-click on any of the column headings and enable the Incremental
column if it is not already enabled, as shown in the following figures:

Implementation www.xilinx.com 27
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=27

& XILINX

Lab 2: Using Incremental Implementation

42 errc
Source File Proper 2 _ OO0 X 46 ): Progress
= Incremental
@ bft.vhdl o 48 | attribute f= %
< N = 49 E attribute f= ¥  WNS is "one-hot"
""""""""""""""""" 50 () end entity k v NS
General  Properties T g
v WHS
Tcl Console | Messages Log |Reports |DesignRuns X | « THS
o T = + % v WBSS
Name Constraints  Status Elapsed WNS v TPWS Total Power |
v synth_1 constrs_1 Not started v Total Power
impl_1  constrs_1 Not started v Failed Routes
<
v LUT
Figure 24 : Enabling Incremental Heading
Tcl Console |Messages |Log |Reports |DesignRuns X
Qa = =2 + %
Name Constraints  Status Elapsed Incremental 71 v
v synth_1 constrs_1 Not started Off
impl_1  constrs_1 Not started Off
£

Figure 25: Design Runs Window

This column shows how the incremental flow was used. The information is also be available in the
messages that are output in the Vivado log file.

Step 3: Turning on Incremental Implementation

1. Right-click on the impl_1 run and select Set Incremental Implementation.

- aLLLlilpure LS PR I E . T

< > .y . :
""""""""""""""""""" 50 end entity bf Implementation Run Properties...
General  Properties Opti = T |
Tcl Console |Messages |Log |Reports |Design Runs X
Q = = S + % Change Run Settings...
Name Constraints ~ Status Elapsed Increment Fe =l Uz e e
v synth_1 constrs_1 Not started Off Save As St%tegy...
impl_1  constrs_1 Not started Off
v £

[N

Figure 26: Enabling Incremental Implementation in the Design Runs Window

Implementation
UG986 (v2019.2) December 20, 2019

www.Xilinx.com

| Send Feedback I


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=28

& XILINX

2. In the dialog box, select Automatically use the checkpoint from the previous run.

Lab 2: Using Incremental Implementation

¢ Incremental Implementation >

Enable incremental implementation for this run. Allow the
toal to automatically choose the design checkpoint from '
previous run or choose a specific checkpoint

® Automatically use the checkpoint from the previous run

() Specify design checkpoint

(_) Disable incremental compile

Figure 27: Selecting the Incremental Mode, Automatic or User Selected Checkpoint

This dialog box can be opened from many places inside the Vivado IDE. These include the

Implementation Run Options window and the Project Summary. The same functionality can also be built
into scripts via TCL commands.

3. To enable automatic checkpoint selection via TCL, use the following command:
set_property AUTO_INCREMENTAL_CHECKPOINT 1 [get_runs impl_1]

After this is done, you should see the Incremental Column in the design runs window update to

Auto(skipped). This setting indicates that Auto mode is enabled but that Incremental Implementation
has not been run.

Tcl Console | Messages |Log |Reports |Design Runs X
a x ¢ > + %
Name Constraints ~ Status Elapsed Incremental '
synth_1 constrs_1 Not started Off
impl_1  constrs_1 Auto(Skipped)
<

Figure 28: Design Runs Window (Auto Incremental Implementation Enabled)

It is possible to select your own checkpoint, which is desirable when the checkpoint must not be

updated or lower thresholds for reuse are OK to use. It is your responsibility to manage the suitability of
the checkpoint in this case.

Implementation

www.xilinx.com 29
UGY86 (v2019.2) December 20, 2019 send Feedback



http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=29

v
i; XI I_I NX@ Lab 2: Using Incremental Implementation

Step 4: Compiling the Reference Design

1. From the Flow Navigator, select Run Implementation.
2. In the Missing Synthesis Results dialog box that appears, click OK to launch synthesis first.
Synthesis runs, and implementation starts automatically when synthesis completes.

Note: The dialog box appears because you are running implementation without first running
synthesis.

¢ Missing Synthesis Results >

There is no netlist available. OK to launch synthesis first? Implementation will automatically
start when synthesis completes.

Figure 29: Missing Synthesis Results

3. After implementation finishes, the Implementation Complete dialog box opens. Click Cancel to
dismiss the dialog box.

o Implementation successfully completed

Next
® QOpen Implemented Design
Generate Bitstream

View Reports

Don't show this dialog again

N ]

Figure 30: Implementation Completed

In a project-based design, the Vivado Design Suite saves intermediate implementation results as
design checkpoints in the implementation runs directory. You will use the final checkpoint as the
reference to the incremental compile flow.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

30


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=30

& XILINX

Lab 2: Using Incremental Implementation

Step 5: Making Incremental Changes

In this step, you make minor changes to the RTL design sources. These changes necessitate
resynthesizing the netlist and re-implementing the design.

1. In the Hierarchy tab of the Sources window, double-click the top-level VHDL file, bft.vhdl, to

open the file in the Vivado IDE text editor, as shown in the following figure.

PROJECT MANAGER - project_bft_core_hdl

Sources ? 00 X
Q T & + o

~ Ghids bft(aBFT) (bftvhdl) (20)
i arnd? : round_1(aR1) (round_1.vhdl) (

=]

=]

i arnd2 : round_2(aR2 ind_2vhdl) {

]

i arnd3 : round_3({aR3) (round_3vhdl) (

W o0 o

arnd4 : round_4(aR4) (round_4.vhdl) (8)
' ingressLoop[0].ingressFifo : FifoBuffer (FifoBuffery) |
' ingressLoop[1lingressFifo : FifoBuffer (FifoBuffery) |

ingressLoop[2lingressFifo : FifoBuffer (FifoBuffer.y) (

' ingressLoop[3lingressFifo : FifoBuffer (FifoBuffery) |

ingressLoop[4].ingressFifo : FifoBuffer (FifoBuffer.v) (
' ingressLoop[5lingressFifo : FifoBuffer (FifoBuffery) |

VW W W W W W v W W W

e 66660 6 &

' ingressLoop[6lingressFifo : FifoBuffer (FifoBuffery) |

Hierarchy = Libraries Compile Order

Source File Properties ? 00X
@ pftvhdl o

+' Enabled .
(G >
General Properies

Project Summary

* | bftvhdl*  x

B B N/ E Q

! library IEEE;

| use IEEE.STD LOGIC 1164.all;

| use IEEE.STD LOGIC ARITH.zll;
2 | use IEEE.STD LOGIC SIGNED.all;

4 | library bftlib;
| use bftlib.bftPackage.all;

entity bft is

port
wbClk, bftClk, reset : in std logic;
wbDataForInput :in std logic;
whliritefut: in std legic;
out std legic;
: in std logic wector (31 downto 0);
: out std logic wvector (31 downto 0);
er:I std logic

wbDataForCutput :
wbInputData
wblutputData
error : buffi

1:

. attribute fam encoding :string;
3 | attribute fsm encoding of bft :
: end entity bft;

entity iz "one-hot" ;

-] architecture aBFT of bft is

L ¢

|

Figure 31: BFT VHDL File

2. Go to line 45 of the bft._vhdl file and change the error port from an output to a buffer, as follows:

error : buffer std_logic

Implementation
UG986 (v2019.2) December 20, 2019

www.Xilinx.com

| Send Feedback I

31


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=31

v
i; XI I_I NXQ Lab 2: Using Incremental Implementation

3. Go to line 331 of the bft.vhdl file and modify the VHDL code, as follows:

From To

-- enable the read fifo
process (fifoSelect, error)
begin
if (error = “0”) then
readeEgressFifo <= fifoSelect;

-- enable the read fifo
process (FifoSelect)
begin
readEgressFifo <= fifoSelect;

end process;
else

readegressFifo <= (others => "07);
end if;
end process;

The results should look like the following figure.

Project Summary = | bftvhdl* ® ? 005
1

Q W <« * B ®B /4 B Q

324 [ end if; ~H

325 when others =>

326 : end case;

327 end if;

328 [ end if;

32% [-] end process;

4
4
I
I
I
L

[
o

[T R w ]

33 . begin

340 if (error = '0'} then

341 readEgressFifoc <= fifoSelect;

342 else

343 E readEgressFifc <= (others => "0");
344 nd iz:

end procesa:r

L

L
1 &y n

LA
e

end architecture aBFI;

LA
[T
(Y= s]

[

Figure 32: Modified VHDL Code

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=32

v
i; XI I_I NXQ Lab 2: Using Incremental Implementation

4. Save the changes by clicking the Save File Il button in the sidebar menu of the text editor.

As you can see in the following figure, changing the design source files also changes the run status
for finished runs from Complete to Out-of-date.

Tcl Console |Messages |Log |Reports |Design Runs X
Q = | = + %
Name Constraints ~ Status Elapsed Incremental 7 WNS TNS WHS THS
v o4 synth_1 constrs_1 Synthesis Out-of-date 00:01:23  Off

<& impl_1  constrs_1 Implementation Out-of-date 00:02:41 Auto(Skipped) 1452 0. 0062 0.
<

Figure 33: Design Runs Out-of-Date

Step 6: Rerunning the Synthesis and Implementation

With changes to the RTL source now made, synthesis and implementation must be rerun. As
Incremental Implementation has already been configured, all that must be done is to relaunch the tool
flow as would be done in the default flow.

1. In the flow navigator, click on Run Implementation. At this point, all the runs are reset and
relaunched.

In the design sources window, the Utility Source is updated with the checkpoint from the previously
routed impl_1 if the checkpoint has met certain criteria to ensure it is a good quality reference
checkpoint for future runs.

Sources ? OO0 X
a T & + o
v Design Sources (1)

> @ & bft(aBFT) (bft.vhdl) (20)

v Constraints (1)

> constrs_1 (1)
v Simulation Sources (1)
> sim_1 (1)
v Utility Sources (1)
v utils_1 (1)
v Design Checkpoint (1)
¢+ |pft_routed.dcp

Hierarchy  Libraries Compile Order

Figure 34: Reference Checkpoint in Utility Sources

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback



http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=33

v
i; XI I_I NXQ Lab 2: Using Incremental Implementation

Also updated is the Incremental column in the Design Runs window. This should now say Auto. If the
checkpoint did not meet the criteria to be used as a suitable reference, it shows Auto(Skipped) as
before.

After implementation is complete, the design runs window shows the completed run.

Design Runs ? —0Oa X
a T 2 + %
Name Constraints ~ Status Elapsed  Incremental WNS TNS WHS THS  WBSS TPWS Total Powe
v« synth_1 constrs_1 synth_design Complete! 00:01:02 Off

~ impl_1  constrs_1 route_design Complete! 00:01:31  Auto 1452 0.000 0.062 0.000 0.000 041
< >

Figure 35: Design Runs Window after Completion

In the Design Runs window, it is possible to examine runtime and timing criteria. In this case:

. Runtime has improved from 2:13 to 1:31 for implementation as seen in the Elapsed column.
. WNS has been maintained at 1.452

Note: Synthesis has not been run in a different mode than before so should be similar to before.

The "Elapsed” column measurement includes improvements to the place_design (phys_opt_design is
not run here) and route_design and also the extra commands that are required in the incremental flow
such as read_checkpoint -incremental and the extra reporting. To see more significant runtime
improvements, the flow should be used on larger designs with a good reference checkpoint.

Note: opt_design is not incremental and runtime for opt_design is unimpacted.

Designs that have a complex flow, requiring most effort in the reference run see the highest benefit.
Ideally, reference checkpoints are timing-closed, with fewer than 5% of the leaf cells different than the
updated design.

2. Select the Reports tab in the Results Window area and double-click the Incremental Reuse
Report in the Route Design section, as shown in the following figure.

Tel Console Messages Log Reports x Design Runs

Qa = 2 4+ = 7
Report Report Type
Route Design (route_design
s impl_1_route_report_drc_0 Report an error or violations against a set of design rule checks (report_dre
& impl_1_route_report_methodology 0 Report on error or violations against a set of methodology checks (report_method
& impl_1_route_report_power_0 Report power analysis details (report_power
a impl_1_route_report_route_status_0 Report on status of the routing. (report_route_statu
« impl_1_route_report_timing_summary_0 Report timing summary (report_timing_summary
« impl_1_route_report_incremental_reuse_0 Report on achievable incremental reuse for the given design-checkpoint (report_incremental_reuse)
« impl_1_route_report_clock_utilization_0 Report information about clock nets in design (report_clock utilization
« impl_1_route_report_bus_skew_0 Report on calculated bus skew among the signals constrained by set_bus_skew (report_bus_skew

Figure 36: Reports Window

Implementation www.xilinx.com 34
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=34

v
i; XI I_I NX@ Lab 2: Using Incremental Implementation

So far, you have modified the generation of the readEgressFifo so that the signal is zero when the error
signal is non-zero. This is a small change to the design so you would expect the reuse to be high. Now
examine the Incremental Reuse Report to confirm this is the case.

Incremental Implementation Information

Takle of Contents

1. Beuse Summary

2. Beference Checkpoint Information
3. Comparison with Reference Run

4. Non Reuse Information

1. Beuse Summary

o e e e o +
| Type | Matched % {of Total) | Beuse % (of Total) | Fixed % (of Total) | Total |
tomm - e e et mm o R Fomm oo - +
| Cells | 99.07 | 99.52 | l.83 | 3578 |
| HNets | 99.71 | 98.97 | 0.00 | 5185 |
| Pins | -1 29.30 | - | 19485 |
| Ports | 100.00 | 100.00 | 100.00 | 71 |
tomm - e e et mm o R Fomm oo - +

=

Eesused % can excesd matched % when unmatched cells take their placement directly from other cells that have bkeen matched

2. Beference Checkpoint Information

- e ————— +
| DCP Location: | C:/Viwado Tutorial/project_bft_core/project_bft_core.srcs/utils_l/imports/impl_l/bft_routed.dcp |
oo o +
o o +
| DCP Information | Value |
e e +
| Vivado Wersion | 2019.1 |
| DCP State | POST_ROUIE |
| Becorded WNS | 1.450 |
| Recorded WHS | 0.059 |
| Reference Speed File Version | BRODUCTICN 1.12 2017-02-17 |
| Incremental Speed File Version | PRODUCTICN 1.12 2017-02-17 |
e e +

-

Recorded WNS/WHS timing numbers are estimated timing numbers. They may wary slightly from sign-off timing numbers.
Figure 37: Incremental Reuse Report

In the report you can confirm that a high percentage of cells, nets and ports are fully reused.

In the Reference Checkpoint Information section you can see information reported on the reference
checkpoint. This is useful when the source of the checkpoint is unknown.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

35


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=35

v
i; XI I_I NX@ Lab 2: Using Incremental Implementation

3. Comparison with Reference Run

| | WHS {n3) | PRuntime (elapsed) (hhimm) | Buntime (cpu) (hh:mm) |

| Stage | Reference | Incremental | Reference | Incremental | Reference | Incremental |
| synth_design | | | < 1 min | Q0:01 | < 1 min | Q0:01 |
| opt_design | | | 00:01 | Q0:01 | Q0:01 | Q0:01 |
| read_checkpoint | | | | < 1 min | | < 1 min |
| place_design | 2.209 | 1.795 | < 1 min | < 1 min | Q0:01 | < 1 min |
| route_design | 1.794 | 1.793 | 00:0L | 00:0L | 00:0L | 00:0L |
4. Non Reuse Information

| Type [

Hon-Reused Cells
Hew
Partially reused nets
| Non-Reused nets
| Non-Reused Ports

0.62
0.62
0.00
0.54
0.00

Figure 38: Incremental Reuse Report

In the Comparison with Reference Run section, you can see how the runtime and WNS at each stage of
the flow compares. This is good for debugging purposes to understand where WNS and runtime
diverge when there are issues. Note that these designs are not 100% the same so this information is a
only guide.

The WNS in the reference checkpoint section is the target WNS of the incremental run as this is run
with the Default directive at place_design and route_design. If you target the Explore directive, the
target WNS will be 0.00 ns. You can confirm this by searching the log file for place_design. Directly after
place_design, the following is reported.

Conclusion

This concludes Lab #2. You can close the current project and exit the Vivado IDE.

In this lab, you learned how to run the Incremental Implementation portion of the Incremental Compile
flow, using a checkpoint from a previously implemented design. You also examined the similarity
between a reference design checkpoint and the current design by examining the Incremental Reuse
Report.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

36


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=36

& XILINX

Lab 3: Manual and Directed Routing

Introduction

In this lab, you learn how to use the Vivado® IDE to assign routing to nets for precisely controlling the
timing of a critical portion of the design.
¢ You will use the BFT HDL example design that is included in the Vivado Design Suite.

e Toillustrate the manual routing feature, you will precisely control the skew within the output
bus of the design, wbOutputData.

Step 1: Opening the Example Project

1. Start by loading Vivado IDE by doing one of the following:
e Launch the Vivado IDE from the icon on the Windows desktop.
e Type vivado from a command terminal.

2. From the Getting Started page, click Open Example Project.

Quick Start

Create Project >
Open Project >

Open Example Project >

Figure 39: Open Example Project

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

37


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=37

v
i; XI I_I NXQ Lab 3: Manual and Directed Routing

3. In the Create an Example Project screen, click Next.

p Create an Example Project
V|VﬁD¢p This wizard will guide you through the creation of a new Vivado project from a predefined template.
To create a Vivado project you will specify the type of template project you would like to create. MNext, you
will need to provide a name and a location for your project files and choose a default board.

& XILINX
®

Figure 40: Open Example Project Wizard—Create an Example Project Screen

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=38

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

4. In the Select Project Template screen, select the BFT (Small RTL project) design, and click Next.

Select Project Template

Select one of the below predefined templates on which to base your new project '
|
Templates Description
Base Zyng UltraScale+ MPSoC BFT
Base MicroBlaze Small RTL project
Base Zynqg
—
— =
Configurable MicroBlaze Design PR § - % - % - % - = |
Configurable Zyng UltraScale+ MF M m m "'" B s}
CPU gHI:L ™ " px - - - - T
: || © 4| ©
CPU (Synthesized ] ]
= = F

‘Wavegen (HDL

(2 ~

Figure 41: Open Example Project Wizard—Select Project Template Screen

Implementation www.xilinx.com 39
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=39

v
i; XI I_I NXQ Lab 3: Manual and Directed Routing

5. Inthe Project Name screen, specify the following, and click Next:
0 Project name: project_bft_core

0 Project location: <Project_Dir>

Project Name

Enter a name for your project and specify a directory where the project data files will be stored

Projectname:  project_bft_core
Project location: | C:/Vivado_Tutorial

[+ Create project subdirectory

Project will be created at: C:/\Vivado_Tutorial/project_bft_core

() .

Cancel

Figure 42: Open Example Project Wizard— Project Name Screen

Implementation www.xilinx.com
UG986 (v2019.2) December 20, 2019

| Send Feedback I

40


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=40

& XILINX

Lab 3: Manual and Directed Routing

6. Inthe Default Part screen, select the xc7k70tfbg484-2 as your Default Part, and click Next.

Default Part

Choose a default Xilink part for your project.

Part /0 Pin Count
XCTKT0tfbg484-2 484
XCTKTOfbgB76-2 B76

xc7voa5ifg1157-2 1157
¥cku035-fovag00-2-e 900

Figure 43: Open Example Project Wizard—Default Part Screen

Implementation
UG986 (v2019.2) December 20, 2019

Available 10Bs  LUT Elements

285
300
600
468

41000
41000
364200
203128

FlipFlops
82000
82000
728400
406256

Block RAMs
135
135
795
540

www.Xilinx.com

UltraRAMs  DSPs Gl

0

0
0
0

240 4
240
1260 2(
1700 1€
|
H

Cancel

| Send Feedback I

41


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=41

v
i; XI I_I NXQ Lab 3: Manual and Directed Routing

7.

In the New Project Summary screen, review the project details, and click Finish.

New Project Summary

VIVADO'

HLy Editions
! o Anew project named ‘project_bft_core’ will be created from the "'BFT template. |

) The default part and product family for the new project:
Default Part: xc7¥ k7 0tfbg484-2
Product: Kintex-7
Family: Kintex-7
Package: fbg484
Speed Grade: -2

| i: XI LI NX To create the project, click Finish
@

Figure 44: Open Example Project Wizard—New Project Summary Screen

Implementation www.xilinx.com l Send Feedback I

UG986 (v2019.2) December 20, 2019

42


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=42

v
(A XI I_I NXQ Lab 3: Manual and Directed Routing

The Vivado IDE opens with the default view.

4 prajece bR cse - [CVnde, Tutarialpeeject R cosapociact b coreanpe] - Verad 2015.1 o x
Ble E8 Fow Jeols  Repors  Window  Lmut  Yew L Lisiid
DS > W8 T = DttmALame

Navigator LR PROJECT MANAGER - project_BA_core 7X

- PROJECT MAKASTR

Sources 70K Promet Summary 700X
& Setngs
a iR el £ Overview | Dashbowa
And Sources
o Casion Saurcns {1 ~
Languags Tamplates L i Sattiags et
23 o Sons¥sinty
IrEae > - Ranamalny Frojuct name prejoct_tA_conn
Seeuldion Sources Eehaas aiacl M ook
v P INTEGRETOR ¥ Uity Sources Prosud tamiy: Y
Create Biock Dasign Froject part
Top module name:
Torpettanguage:
Simutator anguage
- BMULATION
Lisranies thesis Inphementation
Run Simelaton Menrcw e
= Status Non startad Stahus: Nk startad
v RILANATSS i = uessages Mo #rrees orwaenings. Messapes: Ho dmaes o warmings
> Open Exbonmea Design - Fart scTKTgeRd. 2 Part TETbdnp4a4.2
Strategy Swatgr
Fepon Strategs Frpon ¥am
- EYNTHESE chtbeidries - T
Wcrmmestal oS Incremental imglemestaton
b Fun Simhess
>
DRE Violatoas Teming

~ EPLEMENTATION B I o Run
B Run implemtnlaion

~ PROGRAM AND DEBUG Design Fress. T_pu
B Goneas Bistream Q + %
¥~ Quen Hardwar Manager Hama Congtaints St WIS TNS WS THS  TRWE  ToulPower FaledRotes LUT FF BRAMS URAM DSF St Elspsed  Aun Skitegy Hepon Srategy

HOM_)  conalrs 1 Nolstaned heao Bxmhasis Deaurs (Wwads Snimesis 2010) s Senhasis DR REHMS Bvans St
gt conabn t Mol ateted \heade bmglnmeetaton Dalauit beglumeckabon 20101 Vioasds gl tihvarta b
< ’

Figure 45: Vivado IDE Showing project_bft_core Project Details

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=43

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

Step 2: Performing Place and Route on the Design

1. In the Flow Navigator, click Run Implementation.

The Missing Synthesis Results dialog box opens to inform you that there is no synthesized netlist to
implement, and prompts you to start synthesis first.

There is no netlist available. OK to launch synthesis first? Implementation will automatically
start when synthesis completes.

Figure 46: Missing Synthesis Results

2. Click OK to launch synthesis first.

Implementation automatically starts after synthesis completes, and the Implementation Completed
dialog box opens when complete, as shown in the following figure.

0 Implementation successfully completed.

Next

® Open Implemented Design
Generate Bitstream

View Reports

Dont show this dialog again

Figure 47: Implementation Completed

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

44


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=44

v
i; XI I_I NXo Lab 3: Manual and Directed Routing

3. In the Implementation Completed dialog box, select Open Implemented Design and click OK.

The Device window opens, displaying the placement results.

4. Click the Routing Resources button === to view the detailed routing resources in the Device
window.

Device

@ @ (O [Hl] B O, ol &

]

Figure 48: Device Window

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

45


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=45

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

Step 3: Analyzing Output Bus Timing

IMPORTANT: The tutorial design has an output data bus, wbOutputData, which feeds
external logic. Your objective is to precisely control timing skew by manually routing the nets
of this bus.

You can use the Report Datasheet command to analyze the current timing of members of the output
bus, wbOutputData. The Report Datasheet command lets you analyze the timing of a group of ports
with respect to a specific reference port.

1. From the main menu, select Reports > Timing > Report Datasheet.

2. Select the Groups tab in the Report Datasheet dialog box, as seen in the following figure, and enter
the following:

0 Reference: [get_ports {wbOutputData[0]}]
0 Ports: [get_ports {wbOutputData[*]}]

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

46


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=46

v
i; XI I_ NX@ Lab 3: Manual and Directed Routing

Create a datasheet report for the current design. The datasheet has the timing characteristics
of a design atthe /O pads.

Options Groups Timer Settings

1. Reference [get_ports {wbOutputData[0[}] E'

Pors [get_ports {wbOutputDatal*T} E' +

Command: :-group [aet_pors {wbOutputData[0]}] [get_ports fwbhOutputData* " -name timing_1

+'| Openin a new tab

Open in Timing Analysis layout

(2
7 Ok Cancel

Figure 49: Report Datasheet

3. Click OK.

In this case, you are examining the timing at the ports carrying the wbOutputData bus, relative to
the first bit of the bus, wbOutputData[0]. This allows you to quickly determine the relative timing
differences between the different bits of the bus.

4. Click the Maximize button [J to maximize the Timing - Datasheet window and expand the results.

5. Select the Max/Min Delays for Groups > Clocked by wbClk > wbOutputData[0] section, as seen in
the following figure.

You can see from the report that the timing skew across the wbOutputData bus varies by almost
660 ps. The goal is to minimize the skew across the bus to less than 100 ps.

Implementation www.xilinx.com 47
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=47

v
i; XI I_I NXQ Lab 3: Manual and Directed Routing

Timing ? _0ax
Q T £ C H 4 Q @ MaxMin Delays for Groups - Clocked by wbClk - whOutputData[0]
General Information ' Pad Max Max Max Process Min Min Min Process E v‘
Input Ports SetupiHold Delay Edge Comer Delay Edge Corner
Output Parts Clack-to-out wbOutputData[28] 9.281 Rise SLOW 4060 Rise FAST 0.659
Setup between Clocks wbOutputData[31] 9.249 Rise  SLOW 4054 Rise FAST 0.627
 Setup/Mold for Input Buses wbOutputData[30] 9.226 Rise  SLOW 4020 Rise FAST 0.604
~ Clocked by wbClk wbOutputData[27] 9214 Rise  SLOW 4023 Rise FAST 0592
whinputData wbOutputData[26] 9202 Rise SLOW 3997 Rise FAST 0580
~ Max/Min Delays for Quiput Buses wbOutputData[24] 9190 Rise  SLOW 3998 Rise FAST 0.568
~ Clocked by wbClk whbOutputData[29] 9130 Rise SLOW 3871 Rise FAST 0508
whbOutputData whbOutputData[23] 9.079 Rise SLOW 3040 Rise FAST 0.457
*~ MaxiMin Delays for Groups whbOulputData[20] 9.011 Rise SLOW 3820 Rise FAST 0.389
v Clocked by wbClk whOutputData[25] 8.084 Rise SLOW 3897 Rise FAST 0.362
|| r2E whOUtputData[21] 8.962 Rise SLOW 3874 Rise FAST 0.340
wbOutputData[22] £.945 Rise  SLOW 3870 Rise FAST 0.323
wbOutputData[12] £.828 Rise SLOW 3821 Rise FAST 0.206
wbOutputData[18] 8.813 Rise  SLOW 1784 Rise FAST 0.191
wbOutputData[6] 8.801 Rise  SLOW 31822 Rise FAST 0.179
wbOutputData[g] 8784 Rise  SLOW 3801 Rise FAST 0162
wbOutputData[13] 8771 Rise  SLOW 3808 Rise FAST 0149
whbOutputData[19] 8760 Rise SLOW 3773 Rise FAST 0138
whbOutputData[14] 8747 Rise SLOW 3774 Rise FAST 0.125
whbOutputData[11] 8738 Rise SLOW 3782 Rise FAST 0.118
whbOutputData[15] 8722 Rise SLOW 3758 Rise FAST 0.100
whbOutputData[1] 8522 Rise SLOW 3645 Rise FAST 0.100
wbOutputData[g] 8717 Rise  SLOW 3753 Rise FAST 0.095
wbOutputData[16] 8714 Rise  SLOW 31753 Rise FAST 0.092
wbOutputData[3] 8.534 Rise SLOW 3646 Rise FAST 0.088
wbOutputData[10] 8541 Rise  SLOW 3557 Rise  FAST 0.081
wbOutputData[17] BEAT Rise  SLOW 3708 Rise FAST 0.065
wbOutputData[7] 8675 Rise  SLOW 3736 Rise FAST 0053
wbOutputData[2] BE74 Rise SLOW 3735 Rise FAST 0052
whbOutputData[4] 8649 Rise SLOW 3708 Rise FAST 0028
whbOutputDatals] 642 Rise SLOW 3736 Rise FAST 0.021
whbOutputData[0] £8.622 Rise SLOW 3716 Rise FAST 0.000
Worst Case Summary ~ 9.281 Rise  SLOW 3645 Rise FAST 0.659
Bus Skew: 0.659 ns
Timing Summary - impl_1(saved) x Datasheet-timing_1 x

Figure 50: Report Datasheet Results

6. Click the Restore button EF so you can simultaneously see the Device window and the Timing -
Datasheet results.

7. Click the hyperlink for the Max Delay of the source wbOutputData[28].
This highlights the path in the Device window that is currently open.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=48

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

Note: Make sure that the Autofit Selection Qis highlighted in the Device window so you can see the
entire path, as shown in the following figure.

Figure 51: Detailed Routing View

8. In the Device window, right click on the highlighted path and select Schematic from the popup
menu.

This displays the schematic for the selected output data bus. From the schematic, you can see that
the output port is directly driven from a register through an output buffer (OBUF).

If you can consistently control the placement of the register with respect to the output pins on the

bus and control the routing between registers and the outputs, you can minimize skew between the
members of the output bus.

Implementation www.xilinx.com 49
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=49

v
i; XI _I NXQ Lab 3: Manual and Directed Routing

Schematic Pk OVl X

@ 6 M W |G T 4 = C 2cels 32U0Pots 2Nets o

wbOutputData reg[28]

% wbOutputData_ OBUF[28] inst
CE | P, O
O a
= 1> O wbOutputData[31:0]
OBUF
R
FDRE

Figure 52: Schematic View of Output Path

9. Change to the Device window.

To better visualize the placement of the registers and outputs, you can use the mark_objects
command to mark them in the Device window.
10. From the Tcl Console, type the following commands:

mark_objects -color blue [get ports wbOutputData[*]]
mark_objects -color red [get cells wbOutputData reg[*]]

Blue diamond markers show on the output ports, and red diamond markers show on the registers
feeding the outputs, as seen in the following figure.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

50


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=50

v
i; XI I_I NXo Lab 3: Manual and Directed Routing

11.

Device

- e e I X |[¢|F Rk E o

]

g

Figure 53: Marked Startpoints (red) and Endpoints (blue)

The outputs marked in blue are spread out along two banks on the left side starting with
wbOutputData[0] (on the bottom) and ending with wbOutputData[31] (at the top), while the
output registers marked in red are clustered close together on the right.

To look at all of the routing from the registers to the outputs, you can use the
highlight_objects Tcl command to highlight the nets.

Type the following command at the Tcl prompt:

highlight objects -color yellow [get nets -of [get pins -of [get cells\
wbOutputData reg[*]] -filter DIRECTION==0UT]]

This highlights all the nets connected to the output pins of the wbOutputData_reg[*] registers.

In the Device window, you can see that there are various routing distances between the clustered
output registers and the distributed outputs pads of the bus. Consistently placing the output
registers in the slices next to each output port eliminates a majority of the variability in the clock-to-
out delay of the wbOutputData bus.

Implementation www.xilinx.com l Send Feedback I

UG986 (v2019.2) December 20, 2019

51


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=51

v
i; XI I_I NXo Lab 3: Manual and Directed Routing

Device

=

i

INME R RN Fh iy ARBAN T A

JHENEEAE
IANEVNRRRRE TR

Figure 54: Highlighted Routes

12. In the main toolbar, click the Unhighlight All button p | and the Unmark All button @

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

52


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=52

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

Step 4: Improving Bus Timing through Placement

To improve the timing of the wbOutputData bus you will place the output registers closer to their
respective output pads, then rerun timing to look for any improvement. To place the output registers,
you will identify potential placement sites, and then use a sequence of Tcl commands, or a Tcl script, to
place the cells and reroute the connections.

)

RECOMMENDED: Use a series of Tcl commands to place the output registers in the slices next to the
wbOutPutData bus output pads.

1. In the Device window click to disable Routing Resources === and make sure AutoFit Selection Q
is still enabled on the sidebar menu.

This lets you see placed objects more clearly in the Device window, without the added details of the
routing.

2. Select the wbOutputData ports placed on the I/O blocks with the following Tcl command:
select_objects [get _ports wbOutputData*]
The Device window will show the selected ports highlighted in white, and zoom to fit the selection.

By examining the device resources around the selected ports, you can identify a range of placement
Sites for the output registers.

Device

- Q@ 1 ® |© #H B B o

F

L
[
[
L]
L]
]
]
]
]
]
-
]
]
L]
-

Figure 55: Selected wbOutputData Ports

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

53


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=53

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

3. Zoom into the Device window around the bottom selected output ports. The following figure shows
the results.

Device

Direction: Cutput

met whoutputDatald]
EEL: PAD

Site: 21 {fixed)

Site type: I0_LYP_T1_13
Tile: LIOB33_x0v34
Fackage pin: 721

170 Bank: 100 Bank 13

Figure 56: wbOutputData[0] Placement Details

The bottom ports are the lowest bits of the output bus, starting with woOutputData[0].

This port is placed on Package Pin Y21. Over to the right, where the Slice logic contains the device
resources needed to place the output registers, the Slice coordinates are X0Y36. You will use that
location as the starting placement for the 32 output registers, woOutputData_reg[31:0].

By scrolling or panning in the Device window, you can visually confirm that the highest output data
port, wbOutputData[31], is placed on Package Pin K22, and the registers to the right are in Slice
X0Y67.

Now that you have identified the placement resources needed for the output registers, you must
make sure they are available for placing the cells. You will do this by quickly unplacing the Slices to
clear any currently placed logic.

4. Unplace any cells currently assigned to the range of slices needed for the output registers,
SLICE_XO0Y36 to SLICE_X0Y67, with the following Tcl command:

for {set i O} {$i<32} {incr i} {
unplace_cell [get cells -of [get _sites SLICE_XOY[expr 36 + $i]l]
}

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=54

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

This command uses a for loop with an index counter (i) and a Tcl expression (36 + $i) to get
and unplace any cells found in the specified range of Slices. For more information on for loops and
other scripting suggestions, refer to the Vivado Design Suite User Guide: Using Tcl Scripting (UG894).

TIP: If there are no cells placed within the specified slices, you will see warning messages that
nothing has been unplaced. You can safely ignore these messages.

10.

11.

With the Slices cleared of any current logic cells, the needed resources are available for placing the
output registers. After placing those, you will also need to replace any logic that was unplaced in the
last step.

Place the output registers, wbOutputData_reg[31:0], in the specified Slice range with the
following command:

for {set i O} {$i<32} {incr i} {
place_cell wbOutputData_reg[$i] SLICE_XOY[expr 36 + $i]/AFF
}

Now, place any remaining unplaced cells with the following command:
place_design

Note: The Vivado placer works incrementally on a partially placed design.

As a precaution, unroute any nets connected to the output register cells,

wbOutputData_reg[31:0], using the following Tcl command:
route_design -unroute -nets [get_nets -of [get _cells wbOutputData reg[*]11]

Then route any currently unrouted nets in the design:

route _design
Note: The Vivado router works incrementally on a partially routed design.

Analyze the route status of the current design to ensure that there are no routing conflicts:

report_route_status

Click the Routing Resources button a== to view the detailed routing resources in the Device
window.

Mark the output ports and registers again, and re-highlight the routing between them using the
following Tcl commands:

mark_objects -color blue [get ports wbOutputData[*]]

mark_objects -color red [get cells wbOutputData reg[*]]
highlight_objects -color yellow [get_nets -of [get pins -of [get_cells\
wbOutputData_reg[*]] -filter DIRECTION==0UT]]

TIP: Because you have entered these commands before, you can copy them from the
Journal file (vivado . jou) to avoid typing them again.

Implementation www.xilinx.com l Send Feedback I

UG986 (v2019.2) December 20, 2019

55


http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=55

v
i; XI I_I NXo Lab 3: Manual and Directed Routing

12. In the Device window, zoom into some of the marked output ports.

13. Select the nets connecting to them.

O TIP: You can also select the nets in the Netlist window, and they will be cross-selected in
the Device window.

In the Device window, you can see that all output registers are now placed equidistant from their
associated outputs, and the routing path is very similar for all the nets from output register to
output. This results in clock-to-out times that are closely matched between the outputs.

Netlist Device

zx 8 - @ a 2 x[o@Epr g o

’l

~

~ I whOutputData_OBUF (32

T whoutputData_OBUF[0]
whOUtputData_OBUF[1]
whOUtputData_OBUF[2]
whOUtputData_OBUF[3]
whOUtputData_OBUF[4]
whOUtputData_OBUF[S]
whOutputData_0OBUF[8]
whOutputData_0BUF[T]
whOutputData_0BUF[8]
whOutputData_0BUF[9]
whOutputData_0BUF[10]
whOutputData_0BUF[11]
whOutputData_0BUF[12)
whOutputData_0BUF[13]
whOutputData_0BUF[14]
whOutputData_OBUF[15)
whOutputData_OBUF[16]
whOutputData_0BUF[17]
whOutputData_OBUF[18]
whOutputData_0BUF[19]

SIS E LSS

Figure 57: Improved Placement and Routing

14. Run the Reports > Timing > Report Datasheet command again.
The Report Datasheet dialog box is populated with settings from the last time you ran it:
o0 Reference: [get _ports {wbOutputData[0]}]
0 Ports: [get_ports {wbOutputData[*]}]

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=56

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

15. In the Report Datasheet results, select the Max/Min Delays for Groups > Clocked by wbClk >
wbOutputData[0] section.

Examining the results, the timing skew is closely matched within both the lower bits,
wbOutputData[0-13], and the upper bits, wbOutputData[14-31], of the output bus. While
the overall skew is reduced, it is still over 200 ps between the upper and lower bits.

With the improved placement, the skew is now a result of the output ports and registers spanning
two clock regions, X0Y0 and X0Y1, which introduces clock network skew. Looking at the
wbOutputData bus, notice that the Max delay is greater on the lower bits than it is on the upper
bits. To reduce the skew, add delay to the upper bits.

You can eliminate some of the skew using a BUFMR/BUFR combination instead of a BUFG, to clock
the output registers. However, for this tutorial, you will use manual routing to add delay from the
output registers clocked by the BUFG to the output pins for the upper bits, woOutputData[14-
31], to further reduce the clock-to-out variability within the bus.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=57

& XILINX

Lab 3: Manual and Directed Routing

Timing

Q

-
-~

s|c| 7

General Information
Input Ports Setup/Hold
Cutput Ports Clock-to-out
Setup between Clocks
~ Setup/Hold for Input Buses
~ Clocked by wbClk

whinputData

~ Max/Min Delays for Qutput |
~ Clocked by whbClk

whCutputData

~ Max/Min Delays for Groups
~ Clocked by wbClk

whOutputData[ 0]

Q, @ Max/Min Delays for Groups - Clocked by wbClk - wbOQutputData[0]

Pad

# whOutputData[0]
* whOutputData[31]
L 3 whCutputData[30]
+ whOutputDatal[29]
+* whOutputDatal28]
# whOutputData[27]
* whOutputData[26]
L 3 whCutputData[25]
+ whOutputData[24]
+* whOutputDatal23]
# whOutputData[22]
* whCutputDatal21]
L 3 whCOutputData[20]
+ whCOutputData[19]
+* whOutputData[18]
# whOutputData[17]
* whCutputData[16]
L 3 whCOutputData[15]
L 3 whOutputData[14]
+* whOutputData[13]
# whOutputData[12]
* whCutputDatal[11]
L 3 whCOutputData[10]
L 3 whCOutputData[9]
+* whOutputDatal8]
# whOutputData[7]
L 3 whCutputData[6]
+ whOutputData[5]
+* whOutputDatal4]
# whOutputData[3]
# whOutputData[2]
L 3 whCutputData[1]
+ whCutputData[l]

Worst Case Summary

Bus Skew: 0.233 ns

Max
Delay

7.91
7.720
1.697
7.705
7707
7.715
7.683
7.604
7.695
770
7.687
7.691
7.723
7.730
7.678
7.681
7718
7.723
1.735
7.942
7.891
7.897
7.905
7.914
7.886
7.881
7915
7.919
7.868
7.874
7.875
7.878
791
7.942

Max
Edge

Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise

Rise

Max Process
Corner

SLOW
sLow
sLow
SLow
SLOw
SLOW
sLow
sLow
SLow
SLOW
sLow
sLow
sLow
SLow
SLOW
sLow
sLow
sLow
SLow
SLOW
sLow
sLow
sLow
SLow
SLOW
sLow
sLow
SLow
SLOw
SLOW
sLow
sLow
SLow
SLOwW

Min
Delay

3.303
3.236
3.213
3.221
3.222
3.228
3.201
3.208
3.208
3.214
3.200
3.203
3.236
3.242
3191
3.193
3.23
3.236
3.268
3.336
3.284
3.280
3.297
3.306
3.278
3.274
3.306
331
3.261
3.267
3.269
3.2M
3.303
3.191

Min
Edge
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise

Rise

? -0 X

Min Process  Edge

Corner Skew

FAST 0.000
FAST 0,190
FAST 0.213
FAST 0.205
FAST 0.204
FAST 0.196
FAST 0.223
FAST 0.217
FAST 0.215
FAST 0.210
FAST 0.224
FAST 0.220
FAST 0.188
FAST 0,181
FAST 0.233
FAST 0.230
FAST 0,193
FAST 0.188
FAST 0,136
FAST 0.032
FAST 0.019
FAST 0.4
FAST 0.007
FAST 0.004
FAST 0.025
FAST 0.030
FAST 0.004
FAST 0.008
FAST 0.043
FAST 0.037
FAST 0.035
FAST 0.033
FAST 0.000
FAST 0.233

Datasheet - timing_2

Implementation
UG986 (v2019.2) December 20, 2019

Figure 58: Report Datasheet—Improved Skew

www.Xilinx.com

| Send Feedback l

58


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=58

& XILINX

Lab 3: Manual and Directed Routing

Step 5: Using Manual Routing to Reduce Clock Skew

To adjust the skew, begin by examining the current routing of the nets,
wbOutputData_ OBUF[14:31], to see where changes might be made to consistently add delay. You
can use a Tcl FOR loop to report the existing routing on those nets, to let you examine them more

closely.

1. Inthe Tcl Console, type the following command:

for {set i 14} {$i<32} {incr

i} {

puts "$i [get property ROUTE [get nets -of [get pins -of \
[get_cells wbOutputData_reg[$i]] -Ffilter DIRECTION==0UT]]]"

}

This For loop initializes the index to 14 (set 1 14), and gets the ROUTE property to return the

details of the route on each selected net.

The Tcl Console returns the net index followed by relative route information for each net:

14 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
15 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
16 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
17 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
18 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
19 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
20 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
21 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
22 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
23 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
24 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
25 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
26 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
27 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
28 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
29 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
30 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4
31 { CLBLL_LL_AQ CLBLL_LOGIC_OUTS4

From the returned ROUTE properties, note that the nets are routed from the output registers using
identical resources, up to node IMUX_L34. Beyond that, the Vivado router uses different nodes for

WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO
WW2BEGO

IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34
IMUX_L34

101_OLOGICO_D1
101_0LOGIC1_D1
101_0LOGICO_D1
101_0LOGIC1_D1
101_0LOGICO_D1
101_0LOGIC1_D1
101_0LOGICO_D1
101_0LOGIC1_D1
101_0LOGICO_D1
101_0LOGIC1_D1
101_0LOGICO_D1
101_0LOGIC1_D1
101_0LOGICO_D1
101_0LOGIC1_D1
101_0LOGICO_D1
101_0LOGIC1_D1
101_0LOGICO_D1
101_0LOGIC1_D1

L101_OLOGICO_0Q
L101_OLOGIC1_0Q
L101_OLOGICO_0Q
L101_OLOGIC1_0Q
L101_OLOGICO_0Q
L101_OLOGIC1_0Q
L101_OLOGICO_0Q
L101_OLOGIC1_0Q
L101_OLOGICO_0Q
L101_OLOGIC1_0Q
L101_OLOGICO_0Q
L101_OLOGIC1_0Q
L101_OLOGICO_0Q
L101_OLOGIC1_0Q
L101_OLOGICO_0Q
L101_OLOGIC1_0Q
L101_OLOGICO_0Q
L101_OLOGIC1_0Q

odd and even index nets to complete the connection to the die pad.

By reusing routing paths, you can manually route one net with an even index, like

wbOutputData_OBUF[14], and one net with an odd index, such as wbOutputData_OBUF[15],

and copy the routing to all other even and odd index nets in the group.

2. Inthe Tcl Console, select the first net with the following command:

select _objects [get nets -of [get pins -of \
[get_cells wbOutputData reg[14]] -filter DIRECTION==0UT]]

3. In the Device window, right-click to open the popup menu and select Unroute.

4. Click Yes in the Confirm Unroute dialog box.

The Device window displays the unrouted net as a fly-line between the register and the output pad.

5. Click the Maximize button [J to maximize the Device window.

Implementation
UG986 (v2019.2) December 20, 2019

www.Xilinx.com

LI101_00 }
LI101_01 }
LI101_00 }
LI01_01 }
LI101_00 }
LI01_ 01 }
LI101_00 }
LI01_ 01 }
LI101_00 }
LI01_01 }
LI101_00 }
LI01_01 }
LI101_00 }
LI01 01 }
LI01_00 }
LI01_ 01 }
LI0I_00 }
LI01_ 01 }

l Send Feedback I

59


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=59

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

6. Right-click the net and select Enter Assign Routing Mode.

The Target Load Cell Pin dialog box opens, as seen in Figure 60, to let you select a load pin to route
to or from. In this case, only one load pin populates: wbOutputData_OBUF[14]_inst.

Please choose atarget load cell pin you want to route toffrom. Select Mo
Load' if unsure of target load cell pin.

Cell Pins

B [ir BEL.. Cell MetDelay (... Rout
C1 Input 1M whOutputData_OBUF[14]_inst

< ?

| Load Met Delays |

Figure 59: Target Load Cell Pin Dialog Box

7. Select the load cell pin wbOutputData_OBUF[14]_inst/I, and click OK.

The Vivado IDE enters into Assign Routing mode, displaying a new Routing Assignment window on
the right side of the Device window, as shown in the following figure.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=60

v
i; XI I_I NXo Lab 3: Manual and Directed Routing

4 el a x =oxr @ o o
Routing Assignment

Met | T whOutputData_OBUF[14]

~ Options

MNumber of hops 1

-

Maximum number of neighbors: | 1,000 5 [10-5000

+ Allow overlap with unfixed nets

Neighbor Nodes
Q Hame Base Tile

Assigned Nodes

Q Hame Base Tile
%2 CLBLL_LL_AQ CLBLL_L_X2Y50
%2 CLBLL_LOGIC_OUTS4  CLBLL_L_X2Y50
dF Met Gap: 1

=2 IMUX_L34 INT_L_X0Y50

=2 101_0OLOGICO_D1 LIOIZ_SING_X0Y50

2 LIOI_OLOGIC0_0Q LIOI3_SING_X0Y50

2 LIOI_00 LIOI3_SING_X0Y50
Agsign Routing. | ‘ Exit Mode

@ Ready to assign routing

Figure 60: Assign Routing Mode

The Routing Assignment window includes the following sections:
0 Net: Displays the current net being routed.
0 Options: Are hidden by default, and can be displayed by clicking Options.

— Number of Hops: Defines how many programmable interconnect points, or PIPs, to look
at when reporting the available neighbors. The default is 1.

— Number of Neighbors: Limits the number of neighbors displayed for selection.

— Allow Overlap with Unfixed Nets: Enables or disables a loose style of routing which can
create conflicts that must be later resolved. The default is ON.

0 Neighbor Nodes: Lists the available neighbor PIPs/nodes to choose from when defining the
path of the route.

0 Assigned Nodes: Shows the currently assigned nodes in the route path of the selected net.

0 Assign Routing: Assigns the currently defined path in the Routing Assignment window as
the route path for the selected net.

0 Exit Mode: Closes the Routing Assignment window.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

61


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=61

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

The Assigned Nodes section displays six currently assigned nodes. The Vivado router automatically
assigns a node if it is the only neighbor of a selected node and there are no alternatives to the
assigned nodes for the route. In the Device window, the assigned nodes appear as a partial route in
orange.

In the currently selected net, wbOutputData_OBUF[14], nodes CLBLL_LL_AQ and
CLBLL_LOGIC_OUTS4 are already assigned because they are the only neighbor nodes available to
the output register, wobOutputData_reg[14]. The nodes IMUX_L34, 101_OLOGICO_D1,
LIOI_OLOGICO_0Q, and LIOI_OQO are also already assigned because they are the only neighbor
nodes available to the destination, the output buffer (OBUF).

A gap exists between the two routed portions of the path where there are multiple neighbors to
choose from when defining a route. This gap is where you will use manual routing to complete the
path and add the needed delay to balance the clock skew.

You can route the gap by selecting a node on either side of the gap and then choosing the
neighbor node to assign the route to. Selecting the node displays possible neighbor nodes in the
Neighbor Nodes section of the Routing Assignment window and appear as dashed white lines in
the Device window.

TIP: The number of reachable neighbor nodes displayed depends on the number of hops defined
in the Options.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=62

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

8. Under the Assigned Nodes section, select the CLBLL_LOGIC_OUTS4 node before the gap.
The available neighbors appear as shown in the following figure.

To add delay to compensate for the clock skew, select a neighbor node that provides a slight detour
over the more direct route previously chosen by the router.

Device ? - 318Kk
- @ a 2 ueEer @ o o
i : i Routing Assignment
~ Options
Number of hops: 1% 1-20

-

Maximum number of neighbers: | 1,000 2| [10-50000]

| Allow overlap with unfixed nets

Neighbor Nodes (one hop from "CLBLL_LOGIC_OUTS4%)

Name Base Tile
"2 NW2BEGO INT_L_X2Y50 ~

" NR1BEGO INT_L_X2Y50
"2 NNEBEGO INT_L_X2Y50
T2 NN2ZBEGO INT_L_X2Y50
"2 NEBBEGO INT_L_X2Y50
"2 NE2BEGD INT_L_X2Y50
"2 IMUX_LS INT_L_X2Y50
Assigned Nodes
(e} Mame Base Tile
=, CLBLL_LL_AQ CLBLL_L_x2Y50
"2 CLBLL_LOGIC_OUTS4 CLBLL_L_X2Y50
fF et Gap: 1
=3 IMUX_L 34 INT_L_X0Y50
T2 101_0LOGICO_D1 LIDI3_SING_X0Y50
" LIOI_OLOGICO_0G LIQI3_SING_X0Y50
% LoI_oo LIOI3_SING_X0Y50

[
]
]
1
]
]
]
]
]
]
1
1
]
]
]
]
]
1
1
]
]
1
]
]
]
]
]
1
]
]
1
]
]
]
]
]
1
1
]
]
]
L

Assign Routing... | | Exit Mode

@ Ready to assign routing

Figure 61: Routing the Gap from CLBLL_LOGIC_OUTS4

9. Under Neighbor Nodes, select node NE2BEGO.

This node provides a routing detour to add delay, as compared to some other nodes such as
WW2BEGO, which provide a more direct route toward the output buffer. Clicking a neighbor node
once selects it so you can explore routing alternatives. Double-clicking the node temporarily assigns
it to the net, so that you can then select the next neighbor from that node.

10. In Neighbor Nodes, assign node NE2BEGO by double-clicking it.

This adds the node to the Assigned Nodes section of the Routing Assignment window, which
updates the Neighbor Nodes.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

63


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=63

v
i; XI I_I NXo Lab 3: Manual and Directed Routing

11. In Neighbor Nodes, select and assign nodes WR1BEG1, and then WR1BEG2.

TIP: In case you assigned the wrong node, you can select the node from the Assigned Nodes
O list, right click, and select Remove on the context menu.

You can turn off the Auto Fit Selection € in the Device window if you would like to stay at
the same zoom level.

The following figure shows the partially routed path using the selected nodes shown in orange. You
can use the automatic routing feature to fill the remaining gap.

Device

- @ e ¥ B |[OFH B O o &

“

Routing Assignment
Net | T whOutputData_OBUF[14]
~ Options

Number of hops. 1

A |4

Maximum number of neighbors 1,000

¥ Allow overlap with unfixed nets

Neighbor Nodes (one hop from "WR1BEG2")
Q Name Base Tile

"2 WR1BEG3  INT_R_X1Y51

"2 FAN_ALT?  INT_R_X1Y51

"1 FAN_ALTS  INT_R_X1Y51

% BYP_ALT2  INT_R_X1¥51

% BYP_ALTS  INT_R_X1Y51

%L NW2BEG2  INT_R_X1Y51

%L NN2ZBEG2  INT_R_X1Y51

=2 IMUXE INT_R_X1Y51

T2 IMUX44 INT_R_X1Y51 ~

Assigned Nodes

Q Name Base Tile
% CLBLL_LL_AO CLBLL_L_X2Y50 &
%2 CLBLL_LOGIC_OUTS4 CLBLL_L_X2Y50
. NE2BEGO INT_L_X2Y50
. WR1BEG1 INT_R_X3v51
"2 WR1BEG2 INT_L_X2Y51
fAf MetGap:1
2 IMUX_L34 INT_L_X0Y50
%1 10_OLOGICO0_D1 LIOI3_SING_X0Y50
= LIOI_OLOGICO_0Q LIOI3_SING_X0Y50
= LIoI_o0 LIOIZ_SING_X0Y50 w
Assign Routing.. ‘ ‘ Exit Mode

@ Ready to assign routing

Figure 62: Closing the Gap

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=64

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

12. Under the Assigned Nodes section of the Routing Assignment window, right-click the Net Gap,
and select Auto-Route, as shown in the following figure.

Assigned Nodes

Q Mame Base Tile
T CLBLL_LL_AQ CLBLL_L_X2Y50 -
%, CLBLL_LOGIC_OUTS4 CLBLL_L_Xx2Ys50
= NE2BEGO INT_L_X2Y50
%, WR1BEG1 INT_R_X23Y¥51
= WR1BEG2 INT_L_X2Y51

(L1 .

IMUX_ L34 Auto-Route

= 0_0LoGICO_ Mode F'ropert%s...

" LIDI_OLOGICC Exportto Spreadsheet..

T LICI_00 LT3 SING_R0TSy -
‘ Assign Routing... ‘ | Exit Mode ‘

Figure 63: Auto-Route the Gap

The Vivado router fills in the last small bit of the gap. With the route path fully defined, you can
assign the routing to commit the changes to the design.

13. Click Assign Routing at the bottom of the Routing Assignment window.

The Assign Routing dialog box opens, as seen in the following figure. This displays the list of
currently assigned nodes that define the route path. You can select any of the listed nodes,
highlighting it in the Device window. This lets you quickly review the route path prior to committing
it to the design.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=65

v
i; XI I_I NXQ Lab 3: Manual and Directed Routing

’
Routing for net ‘wbOutputData_OBUF[14] will be
assigned
Mame Base Tile
T CLBLL_LL_AQ CLBLL_L_X2Y50
% CLBLL_LOGIC_OUTS4 CLBLL_L_X2Y50
"= MEZBEGO INT_L_X2Y50
& WR1BEG1 INT_R_X3Y51
% WR1BEGZ INT_L_X2Y51
= SW2BEG1 INT_R_X1Y¥51
T IMUX_L34 INT_L_X0Y50
= 10I_OLOGICO_D LIOIZ_SING_X0Y50
& LIOI_OLOGICo_0G LICI3_SING_X0Y50
= LIo_oo LIOI3_SING_X0Y¥50
[+ Eix Routing

Figure 64: Assign Routing—Even Nets

14. Make sure Fix Routing is checked, and click OK.

The Fix Routing checkbox marks the defined route as fixed to prevent the Vivado router from
ripping it up or modifying it during subsequent routing steps. This is important in this case, because
you are routing the net manually to add delay to match clock skew.

Implementation www.xilinx.com 66
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=66

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

15.

16.

17.

Examine the Tcl commands in the Tcl Console.

The Tcl Console reports any Tcl commands that assigned the routing for the current net. Those
commands are:

set_property is _bel fixed 1 [get cells {wbOutputData reg[14]

wbOutputData OBUF[14] inst }]

set_property is_loc_fixed 1 [get_cells {wbOutputData_ reg[14]

wbOutputData OBUF[14]_inst }]

set _property fixed route { { CLBLL_LL_AQ CLBLL LOGIC OUTS4 NE2BEGO WR1BEG1l
WR1BEG2 SW2BEG1 IMUX_L34 101_OLOGICO_D1 LIOI_OLOGICO_OQ LIOI_0O0 } 1} [get_nets
{wbOutputData_OBUF[14]}1]

IMPORTANT: The FIXED_ROUTE property assigned to the net, wbOutputData_OBUF[14], uses a
directed routing string with a relative format, based on the placement of the net driver. This lets
you reuse defined routing by copying the FIXED_ROUTE property onto other nets that use the
same relative route.

After defining the manual route for the even index nets, the next step is to define the route path for
the odd index net, wbOutputData_OBUF[15], applying the same steps you just completed.

In the Tcl Console type the following to select the net:
select_objects [get _nets wbOutputData OBUF[15]]

With the net selected:

a. Unroute the net.

b. Enter Routing Assignment mode.

c. Select the Load Cell Pin.

d. Route the net using the specified neighbor nodes (NE2BEGO, WR1BEG1, and WR1BEG2).
e. Auto-Route the gap.

f.  Assign the routing.

The Assign Routing dialog box, shown in the following figure, shows the nodes selected to
complete the route path for the odd index nets.

UG986 (v2019.2) December 20, 2019

Implementation www.xilinx.com l Send Feedback I

67


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=67

& XILINX

Lab 3: Manual and Directed Routing

¢ Assign Routing | &3 |

Routing for net ‘wbOutputData_OBUF[15] will be assigned

Mame

2 CLBLL_LL_AQ
CLBLL_LOGIC_OUTS4

M

Base Tile
CLBLL_L_X2Y51
CLBLL_L_X2Ys1

NE2BEGO INT_L_X2Y51
"2 WR1BEG1 INT_R_X3Y52
"2 WR1BEG2 INT_L_X2Y52
T2 SW2BEG1 INT_R_X1Y52
T IMUX_L34 INT_L_X0Y51
%2 10I_0LOGICT_D1 LIOI3_X0Y51
= LIOLOLOGICT_0Q LIOI3_X0Y51
= LIDLO1 LIOI3_X0Y51

+' Fix Routing

Figure 65: Assign Routing—Odd Nets

You routed the wbOutputData OBUF[14] and wbOutputData_ OBUF[15] nets with the detour
to add the needed delay. You can now run the Report Datasheet command again to examine the
timing for these nets with respect to the lower order bits of the bus.

18. Switch to the Timing Datasheet report window. Notice the information message in the banner of the
window indicating that the report is out of date because the design was modified.

19. In the Timing Datasheet report, click Rerun to update the report with the latest timing information.

20. Select Max/Min Delays for Groups > Clocked by wbClk > wbOutputData[0] to display the
timing info for the wbOutputData bus, as seen in Figure 66.

Implementation www.xilinx.com

UG986 (v2019.2) December 20, 2019

l Send Feedback I 68


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=68

& XILINX

Lab 3: Manual and Directed Routing

Timing

General Infarmation
Input Ports Setup/Hold
Output Ports Clock-te-oul
Setup between Clocks
~ Setup/Hold for Input Buse
~ Clocked by wbClk
whinputData
~ Max/Min Delays for QutpL
~ Clocked by wbClk
whOutputData
~ Max/Min Delays for Groug
~ Clocked by wbClk
whOutputData[0]

Datasheet - timing_2

Pad

# whOutputData[31]
# whOutputData[30]
# whOutputData[29]
# whOutputData[28]
# whOutputData[27]
# whOutputData[26]
# whOutputData[25]
*» whOutputData[24]
*» whOutputData[23]
* whOutputData[22]
* whOutputData[21]
# whOutputData[20]
# whOutputData[19]
# whOutputData[18]
# whOutputData[17]
# whOutputData[16]
# whOutputData[15]
# whOutputData[14]
*» whOutputData[13]
*» whOutputData[12]
* whOutputData[11]
* whOutputData[10]
# whOutputData[9]
# whOutputData[2]
# whOutputData[7]
# whOutputData[6]
# whOutputData[5]
# whOutputData[4]
# whOutputData[3]
*» whOutputData[2]
*» whOutputData[1]
* whOutputData[0]
* whOutputData[0]

Worst Case Summary

Bus Skew: 0.233 nz

o

Max Max
Delay Edge

7.720 Rise
7.697 Rise
7.705 Rise
7.707 Rise
7.715 Rise
7.688 Rise
7.694 Rise
7.695 Rise
7.701 Rise
7.687 Rise
7.691 Rise
7.723 Rise
7.730 Rise
7.678 Rise
7.681 Rise
7.718 Rise
7.987 Rise
7.949 Rise
7.942 Rise
7.891 Rise
7.807 Rise
7.905 Rise
7.914 Rise
7.886 Rise
7.881 Rise
7.915 Rise
7.919 Rise
7.868 Rise
7.874 Rise
7.875 Rise
7.878 Rise
7.911 Rise
7.911 Rise
7.987 Rise

Max Process
Corner

sLOw
sLOw
SLOw
SLOwW
SLOW
SLOW
SLOW
SLOwW
SLOW
SLOW
SLOwW
sLOw
sLOw
SLOw
SLOwW
SLOwW
SLOW
SLOW
SLOwW
SLOW
SLOW
SLOwW
sLow
sLOw
SLOw
SLOw
SLOwW
SLOW
SLOW
SLOwW
SLOwW
SLOW
SLOW
SLow

Min
Delay

3.236
3.213
3.221
3.222
3.228
3.201
3.208
3.208
3.214
3.200
3.203
3.236
3.242
319
3.193
3.231
3.366
3.328
3.336
3.284
3.290
3.297
3.306
3.278
3.274
3.306
331
3.261
3.267
3.269
3.271
3.303
3.303
3.191

O T 2 C 740 @ Max/MinDelays for Groups - Clocked by whClk - wbOutputData[0]
>

Min
Edge
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise

Rise

Min Process
Corner

FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST
FAST

? 0O &a X

Edge
Skew

0.1%0
0.213
0.205
0.204
0.196
0.223
0.217
0.215
0.210
0.224
0.220
0188
0181
0.233
0.230
0.193
0.076
0.038
0.032
0.019
0.014
0.007
0.004
0.025
0.030
0.004
0.003
0.043
0.037
0.035
0.033
0.000
0.000
0.233

Figure 66: Report Datasheet—Improved Routing

You can see from the report that the skew within the rerouted nets, woOutputData[14] and
wbOutputData[15], more closely matches the timing of the lower bits of the output bus,

| Send Feedback l

Implementation

UG986 (v2019.2) December 20, 2019

www.Xilinx.com

69


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=69

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

wbOutputData[13:0]. The skew is within the target of 100 ps of the reference pin
wbOutputData[0].

In Step 6, you copy the same route path to the remaining nets, wbOutputData_OBUF[31:16], to
tighten the timing of the whole wbOutputData bus.

Step 6: Copying Routing to Other Nets

To apply the same fixed route used for net woOutputData_ OBUF[14] to the even index nets, and the
fixed route for wbOutputData_ OBUF[15] to the odd index nets, you can use Tcl For loops as
described in the following steps.

1.
2.

Q

Select the Tcl Console tab.

Set a Tcl variable to store the route path for the even nets and the odd nets:

set even [get _property FIXED ROUTE [get _nets wbOutputData OBUF[14]]]
set odd [get_property FIXED_ROUTE [get_nets wbOutputData_ OBUF[15]1]

Set a Tcl variable to store the list of nets to be routed, containing all high bit nets of the output data
bus, wbOutputData OBUF[16:31]:

for {set i 16} {$i<32} {incr i} {
lappend routeNets [get nets wbOutputData OBUF[$i]]
}

Unroute the specified nets:
route_design -unroute -nets $routeNets

Apply the FIXED_ROUTE property of net wbOutputData_ OBUF[14] to the even nets:

for {set i 16} {$i<32} {incr i 2} {
set_property FIXED_ROUTE $even [get_nets wbOutputData OBUF[$i]]
}

Apply the FIXED_ROUTE property of net woOutputData_OBUF[15] to the odd nets:

for {set i 17} {$i<32} {incr i 2} {
set_property FIXED_ROUTE $odd [get_nets wbOutputData OBUF[$i]]
}

The even and odd nets of the output data bus, as needed, now have the same routing paths, adding
delay to the high order bits. Run the route status report and the datasheet report to validate that
the design is as expected.

In the Tcl Console, type the following command:

report_route_status

TIP: Some routing errors might be reported if the routed design included nets that use some of
the nodes you have assigned to the FIXED_ROUTE properties of the manually routed nets.
Remember you enabled Allow Overlap with Unfixed Nets in the Routing Assignment window.

Implementation www.xilinx.com l Send Feedback I

UG986 (v2019.2) December 20, 2019

70


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=70

v
i; XI I_I NXo Lab 3: Manual and Directed Routing

8. If any routing errors are reported, type the route_design command in the Tcl Console.

The nets with the FIXED_ROUTE property takes precedence over the auto-routed nets.
9. After route_design, repeat the report_route_status command to see the clean report.
10. Examine the output data bus in the Device window, as seen in the following figure:

e All nets from the output registers to the output pins for the upper bits 14-31 of the output bus
wbOutputData have identical fixed routing sections (shown as dashed lines).

e You do not need to fix the LOC and the BEL for the output registers. It was done by the
place_cell command in an earlier step.

Figure 67: Final Routed Design

Having routed all the upper bit nets, wbOutputData_OBUF[31:14], with the detour needed for
added delay, you can now re-examine the timing of output bus.

11. Select the Timing tab in the Results window area.

Notice the information message in the banner of the window indicating that the report is out of
date because timing data has been modified.

12. Click rerun to update the report with the latest timing information.

Implementation www.xilinx.com 71
UGY86 (v2019.2) December 20, 2019 send Feedback



http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=71

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

13. Select the Max/Min Delays for Groups > Clocked by wbClk > wbOutputData[0] section to
display the timing info for the wbOutputData bus.

The clock-to-out timing within all bits of output bus wbOutputData is now closely matched to
within 83 ps.

14. Save the constraints to write them to the target XDC, so that they apply every time you compile the
design.

15. Select File > Constraints > Save to save the placement constraints to the target constraint file,
bft_full _xdc, in the active constraint set, constrs_1.

The synthesis and implementation will go out-of-date since constraints were updated. You can force
the design to update by clicking on Details in tool bar, since new constraints are already applied.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

72


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=72

& XILINX

Lab 3: Manual and Directed Routing

Timing
Q = = C
General Infermation
Input Ports Setup/Hold
Output Ports Clock-to-oul
Setup between Clocks
~ Setup/Hold for Input Buse
~ Clocked by wbClk
whlnputData
~ Max/Min Delays for Outpu
~ Clocked by wbClk
whQutputData
~ Max/Min Delays for Groug
~ Clocked by wbClk
whOutputData[0]

Datasheet - timing_2

Pad

L 3 whOutputData[0]
L 3 whOutputData[31]
L 3 whOutputData[30]
* whOutputData[29]
* whOutputData[28]
* whOutputData[27]
* whOutputData[26]
# whOutputData[25]
# whOutputData[24]
# whOutputData[23]
# whOutputData[22]
# whOutputData[21]
# whOutputData[20]
# whOutputData[19]
# whOutputData[18]
# whOutputData[17]
# whOutputData[16]
# whOutputData[15]
# whOutputData[14]
# whOutputData[13]
# whOutputData[12]
# whOutputData[11]
# whOutputData[10]
# whOutputData[9]
# whOutputData[8]
# whOutputData[7]
'3 whOutputData[£]
'3 whOutputData[ 3]
* whOutputData[4]
* whOutputData[3]
'3 whOutputData[2]
L 3 whOutputData[1]
L 3 whOutputData[0]

Worst Case Summary

Bus Skew: 0,083 ns

Max
Delay

7.911
7.984
7.961
7.969
7970
7978
7.951
7.938
7.939
7.965
7.93
7.935
7.986
7.9%4
7.942
7.945
7.981
7.987
7.949
7.942
7.891
7.897
7.905
7.914
7.886
7.881
7915
7919
7.868
7.874
7.875
7.878
7.911
7.904

Mazx Max Process

Edge Corner
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise ~ SLOW
Rise ~ SLOW
Rise ~ SLOW
Rise ~ SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW
Rise  SLOW

Min
Delay

3.303
3.366
3.343
3.351
3.351
3.357
3.331
3.338
3.338
334
3.330
3.333
3.365
3.371
3.320
3.323
3.360
3.366
3.328
3.336
3.284
3.290
3.297
3.306
3.278
3.274
3.306
331
3.261
3.267
3.269
327
3.303
3.261

Min
Edge
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise
Rise

Rise

”4 O, @ Max/Min Delays for Groups - Clocked by wbClk - wbOutputData[0]
3

? 0O a X

Min Process  Edge

Corner Skew

FAST 0.000
FAST 0.073
FAST 0.050
FAST 0.058
FAST 0.059
FAST 0.067
FAST 0.041
FAST 0.047
FAST 0.043
FAST 0.054
FAST 0.040
FAST 0.044
FAST 0.076
FAST 0.083
FAST 0.031
FAST 0.034
FAST 0.070
FAST 0.076
FAST 0.038
FAST 0.032
FAST 0.019
FAST 0.014
FAST 0.007
FAST 0.004
FAST 0.025
FAST 0.030
FAST 0.004
FAST 0.008
FAST 0.043
FAST 0.037
FAST 0.035
FAST 0.033
FAST 0.000
FAST 0.083

Implementation

Figure 68: Report Datasheet—Final

UG986 (v2019.2) December 20, 2019

www.Xilinx.com

| Send Feedback l

73


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=73

v
i; XI I_I NX@ Lab 3: Manual and Directed Routing

Conclusion

In this lab, you did the following:
e Analyzed the clock skew on the output data bus using the Report Datasheet command.
e Used manual placement techniques to improve the timing of selected nets.

e Used the Assign Manual Routing Mode in the Vivado IDE to precisely control the routing of a
net.

e Used the FIXED_ROUTE property to copy the relative fixed routing among similar nets to
control the routing of the critical portion of the nets.

Implementation www.xilinx.com

UG986 (v2019.2) December 20, 2019 | Send Feedback |

74


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=74

& XILINX

Lab 4: Vivado ECO Flow

Introduction

In this lab, you will learn how to use the Vivado® Engineering Change Order (ECO) flow to modify your
design post implementation, implement the changes, run reports on the changed netlist, and generate
programming files.

For this lab, you will use the design file that is included with this guide and is targeted at the Kintex®
UltraScale® KCU105 Evaluation Platform. For instructions on locating the design files, see Locating
Design Files for Lab 4.

A block diagram of the design is shown in the following figure.

MMM |Lclock (100MHz) <28:.0>

VIO
- <28:25>
Reset
I . ; : count=3:0=
Pause State Machine - 23?;2'0' 4'b0,count<3:0> LEDs<7:0>
Toggle — 14—}

mult<7:0>

Figure 69: Block Diagram of the Design

In this design, a mixed-mode clock manager (MMCM) is used to synthesize a 100 MHz clock from the
300 MHz clock provided by the board.

A 29-bit counter is used to divide the clock down further. The 4 most significant bits of the counter
form the count<3:0> signal that is 0-extended to 8 bits and drives the 8 on-board LEDs through an
8-bit 2-1 mux.

The count<3:0> signal is also squared using a multiplier, and the product drives the other 8 inputs of
the mux. A Toggle signal controls the mux select and either drives the LEDs (shown in the following
figure) with the counter value or the multiplier output.

A Pause signal allows you to stop the counter, and a Reset signal allows you to reset the design. The
Toggle, Pause, and Reset signals can either be controlled from on-board buttons shown in Figure 70
or a VIO in the Hardware Manager as shown in Figure 71. The VIO also allows you to observe the status
of the LEDs. The following figures show the location of the push-buttons and the LEDs on the KCU105
board and a Hardware Manager dashboard. These allow you to control the push button and observe
the LEDs through the VIO.

Implementation www.xilinx.com 75
UGY86 (v2019.2) December 20, 2019 send Feedback



http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=75

& XILINX

Lab 4: Vivado ECO Flow

1 xlnzzzllf ’3

il

"
N

!

hw_vios — 0 a X
hw_vio_1 ? 0O X
2l T ¢ =
SQ Mame Value Acti..  Directi.. VIO
E ~ g count_out_OBUF[7:0] [U]100 Input hw_vio_1
% I count_out_OBUF... Q Input hw_vio_1
a8 I count_out_OBUF... [+ ] Input hw_vio_1
I count_out_OBUF... Q Input hw_vio_1
I count_out_OBUF... Q Input hw_vio_1
I count_out_OBUF... Q Input hw_vio_1
I count_out_OBUF... [+ ] Input hw_vio_1
I count_out_OBUF... Q Input hw_vio_1
I count_out_OBUF... Q Input hw_vio_1
a pause_vio_out IIl Output hw_vio_1
La reset vio_out |I| Output hw_vio_1
‘a toggle_vio_out IIl Output hw_vio_1
La yio_select Output hw_vio_1
Figure 71: VIO Dashboard
Implementation www.xilinx.com

UG986 (v2019.2) December 20, 2019

l Send Feedback l

76


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=76

v
i; XI I_I NX@ Lab 4: Vivado ECO Flow

Step 1: Creating a Project Using the Vivado New Project
Wizard

To create a project, use the New Project wizard to name the project, to add RTL source files and
constraints, and to specify the target device.

1. Open the Vivado Design Suite integrated development environment (IDE).
2. In the Getting Started page, click Create Project to open the New Project wizard.
3. Click Next.
4. In the Project Name page, do the following:
a. Name the new project project_ECO_lab.
b. Provide the project location C:/Vivado_Tutorial.
¢. Ensure that Create project subdirectory is selected.
d. Click Next.
5. Inthe Project Type page, do the following:
a. Specify the Type of Project to create as RTL Project.
b. Leave the Do not specify sources at this time check box unchecked.
c. Click Next.
6. Inthe Add Sources page, do the following:
a. Set the Target Language to Verilog.
b. Click Add Files.
c. Inthe Add Source Files dialog box, navigate to the /src/l1ab4 directory.
d. Select all Verilog source files.

e. Click OK.

—h

Verify that the files are added.
Click Add Files.

5w

In the Add Source Files dialog box, navigate to the /src/l1ab4/ 1P directory.

Select all of the XCI source files and click OK.
j. Verify that the files are added and Copy sources into project is selected.
k. Click Next.

7. In the Add Constraints dialog box, do the following:

a. Click the Add button +A, and then select Add Files.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback



http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=77

v
i; XI I_I NXQ Lab 4: Vivado ECO Flow

b. Navigate to the /src/lab4 directory and select ECO_kcu105.xdc.
c. Click Next.
8. In the Default Part page, do the following:
a. Select Boards and then select Kintex-UltraScale KCU105 Evaluation Platform.
b. Click Next.

9. Review the New Project Summary page. Verify that the data appears as expected, per the steps
above.

10. Click Finish.
Note: It might take a moment for the project to initialize.

11. In the Sources window in the Vivado IDE, expand top to see the source files for this lab.

Sources ? 0O a X
Q = ¢ + o
~ Design Sources (1)
g top (top.y) (3)
» FFO clk 0 el wiz_0 (cll wiz 0xci)
» TFO wio_inst_0:vio_0 (vio_O.uxci)
w8 my_mult_0: multiplier (multy)
v Constraints (1)
~ constrs_1 (1)
gy ECO_keul05.xde
» Simulation Sources (1)

Hierarchy IF Sources Libraries Compile Order

Figure 72: Sources Window

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

78


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=78

v
i; XI I_I NX@ Lab 4: Vivado ECO Flow

Step 2: Synthesizing, Implementing, and Generating the
Bitstream

1. In the Flow Navigator, under Program and Debug, click Generate Bitstream.
This synthesizes, implements, and generates a bitstream for the design.
The No Implementation Results Available dialog box appears.

2. Click Yes.

After bitstream generation completes, the Bitstream Generation Completed dialog box appears.
Open Implemented Design is selected by default.

3. Click OK.

4. Inspect the Timing Summary report and make sure that all timing constraints have been met.

Timing ?2 -0a
Q = = Design Timing Summary
General Information -
Timer Setlings Setup Hold Pulse Width
Design Timing Summary Worst Negative Slack (WNS). 6.410ns Worst Hold Slack (WHS). 0.004 ns Worst Pulse Width Slack (WPWS): 0.666 ns
Clock Summary (4) Total Negative Slack (TNS):  0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width MNegative Slack (TPWS): 0.000 ns
* '@ CheckTiming (11) Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0
» -
Intra-Clock Paths Total Number of Endpoints: 4842 Total Number of Endpoints: 4842 Total Number of Endpoints 2749

Intar-Clock Paths

5 Other Path Groups All user specified timing constraints are met.

User lgnared Paths

Timing Summary - impl_1 (saved)

Figure 73: Timing Summary Report

You can use the generated bitstream programming file to download your design into the target FPGA
device using the Hardware Manager. For more information, see the Vivado Design Suite User Guide:
Programming and Debugging (UG908).

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=79

& XILINX b4

Vivado ECO Flow

Step 3: Validating the Design on the Board

This step is optional, but will help you understand the ECO modifications that you will make in

Step 4: Making the ECO Modifications.
1. From the main menu, select Flow > Open Hardware Manager.

The Hardware Manager window opens.

¢ project ECO_|ab - [C/Data/Vivado_Tutorialfproject ECO_lab/project_ECC_labxpr] | [} || [=] H 23
File  Edit Flow Tools Window Layout Wiew  Help Quick Access write_bitstream Complete ~
E‘ P‘ o X Default Layout w

Flow Navigator S S HARDWARE MANAGER - unconnected ? X

v PROJECT MANAGER @ No hardware target is open. Open target

'ﬂ- Settings
Hardware ?_D0CE X
Add Sources
&
Language Templates
F IP catalog
¥ P INTEGRATOR
Create Block Design Mo content
Open Block Design
Generate Block Design
~  SIMULATION
Run Simulation Properties 2?2 _ 00O X
&
v RTL AMALYSIS
> Open Elaborated Design
v SYNTHESIS
P Run syntnesis Select an objectto see properties
» Open Synthesized Design
¥ IMPLEMEMNTATION
P Run Implementation
> Open Implemented Design TclConsole X Messages | Serial /O Links | Serial 'O Scans 2 _00O
Q = = I B E @
~ PROGRAM AND DEBUG !
" ¢ Finished scamning sources &
Vi Generate Bitstream | INFO: [IP_Flow 19-234] Refreshing IP repositories
~ Open Hardware Manager 3 INFO: [IP_Flow 19-1704] No user IP repositories specified
. INFO: [IP_Flow 19-2313] Loaded Vivado IPF repository 'C:/{ilinw/Vivado/2017.1/data/ip'.
Open Target open_project: Time (2): cpu = 00:00:18 ; elapsed = 00:00:10 . Memory (MB): peak = 1154.746 ; gain = 219.867
. update_compile order -fileset sources 1
Program Device | open_hw b
< ?
\dd Configuration Memary Device - -
Figure 74: Hardware Manager Window
2. Connect to a hardware target Using hw_server.
O TIP: For more information about different ways to connect to a hardware target, refer to

the Vivado Design Suite User Guide: Programming and Debugging (UG908).

Implementation www.xilinx.com
UG986 (v2019.2) December 20, 2019

| Send Feedback I

80


http://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=80

Lab 4: Vivado ECO Flow

& XILINX

HARDWARE MANAGER - |ocalhostixilink_tcfiDigilenti210251845167

Hardware hw_ila_1
= ¥ > »
Q un bl Dashboard Options Waveform - hw_ila_1
Name Status - -
. Q = = a + > r » BB @ Q N ¢ MM T &
~ E localhost (1) Connecled
~ @ xilinx_tcfDigilenti21 02518451 Open v B xckud40_0 ILA Status: Idle
~ {8 xcku040_0 (3) Programmed ¥/ hwdlat (u_la

2 SysMon (System Monitor

+| Status

nt_out_OBUF_1[7:0]

Settings

7
hw_vio_1 (vio_inst_0; OK - Qutputs F nt_out_pre|
V| Trigger Setuj
 hw_jla_1 (u_ila_ Idie a9 . W mul_out_pre[7 0]
~ Capture Setup
¥ Waveform
hw_vio_1 (vio_inst
SysMon (System M
< >
Hardware Device Properties
8 xckuo40_0 &
MName: xcku040_0
Part xcku040
Status - hw_ila_1 Trigger Setup - hr
ID code: 13822003
IR length & > > » H L ] D,
Status Programmed B
Programming file: | labiproject_ECO_lab.runs/impl_1#tc Core status
lddle Wiaiting for Triager Fost-Trigger Full i
Probes file cf_ECO_lab runsfimpl_1/debug_ne Pressthe 4 bu e
User chain count. 4 ~ Capture status
2 Window 1 of 1 Window sample 0 0f 1024  Total sample 0 of 1024 ~
General ~ Properties A > < 5
Tcl Console
QT £ I B O

refresh hw device [lindex [get hw devices xcku0d40 0] 0]
INFO: [Labtools 27-230z] Dewice xckuD40 (JTAG device index = 0) iz programued with a desigm that has 1 ILA core(s).

INFO: [Labtools 27-230z] Dewice xckuD40 (JTAG device index = 0) is programued with a desigm that has 1 VIO core(s).

INFO: [Labtools 27-1889] Uploading output probe values for VIO core [hy wio 1]

display hw_ila_data [ get_hw_ila dava hw_ila data_l -of_objects [get_hv_ilas -of_chjects [wet_hw_devices xckud40_0] -filter {CELL NAME=-u_ila_07}]]

INFO: [Labtools 27-3304] ILA Vaveforn data saved to file C:/Data/Vivado Tutorial/project ECO_leb/project ECO_lab.hu/backup/hw_ila data l.ila. Use Tcl command 'import hw ila data' or Vivado

< >

Figure 75: Use hw_server to Connect to a Hardware Target

3. In the Vivado Flow Navigator, under Program and Debug, click Program Device.

The Program Device dialog box opens.

¢ Program Cevice x

Select a bitstream programming file and download it to your hardware device. You can optionally
select a debug probes file that corresponds to the debug cores contained in the bitstream ‘
programming file.

Bitstream file: ivado_Tutaorialiproject_ECO_labl/project ECO_lab. runsfiimpl_1itop. bit

(]3]

Debug probes file: | storial/project_ECO_labiproject_ECO_lab.runs/impl_1/debug_nets.Itx

+' Enable end of startup check

g

Figure 76: Program Device Dialog Box

Implementation www.xilinx.com

UG986 (v2019.2) December 20, 2019

| Send Feedback I


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=81

v
(A XI I_I NXQ Lab 4: Vivado ECO Flow

4. Navigate to the Bitstream file and Debug Probes file.
5. Click Program.

Now that the FPGA is configured, you can use the on-board buttons and the on-board LEDs to
control and observe the hardware. Press the Pause button to pause the counter. Press the Toggle
button to select between the count and the multiplier result. Press the Reset button to reset the
counter.

Figure 77: On-Board Push Buttons and LEDs

Alternatively, you can use the VIO to control and observe the hardware.

If the following warning message appears, select one of the alternatives suggested in the message.

WARNING: [Labtools 27-1952] VIO hw_probe OUTPUT_VALUE properties for hw_vio(s)
[hw_vio 1] differ from output values in the VIO core(s).
Resolution:
To synchronize the hw_probes properties and the VIO core outputs choose one of
the following alternatives:

1) Execute the command "Commit Output Values to VIO Core®, to write down the
hw_probe values to the core.

2) Execute the command "Refresh Input and Output Values from VIO Core®, to
update the hw_probe properties with the core values.

3) First restore initial values in the core with the command "Reset VIO Core
Outputs®, and then execute the command "Refresh Input and Output Values from VIO
Core-™.

+

6. Select the hw_vios tab in the dashboard and click the Add button "+ to add probes.
The Add Probes dialog box opens.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

82


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=82

& XILINX

- o
.

Search:

Add Probes

Probes for hw_vio_1 (5)

~ 8E hw_vio_1

» g count_out_OBLUF[T:0]
La pause_vio_out

La reset_vio_out

La toggle_vio_out

La vio_select

Cancel

Figure 78: Add Probes Dialog Box

7. Select all of the probes for hw_vio_1 and click OK.

Lab 4: Vivado ECO Flow

8. In the hw_vios dashboard, select count_out_OBUF[7:0], then right-click and select Radix

Unsigned Decimal.

Figure 79: Selecting Radix > Unsigned Decimal

Implementation
UG986 (v2019.2) December 20, 2019

hw_ila_1 » | hw_vios x
hw_vio_1
gQ = = —
=2
S | Name Value Acti.. Directi...
s
@ | » B ] ut
= Debug Probe Properties. .
= a tput
a8 g * Ted tput
1a LED... tput
ta Radix v
Activity Persistence 3
Rename.. .
Mame 4
Remave
Exportto Spreadsheet...

www.Xilinx.com

VIO
hw_vio_1
hw_wio_1
hw_vio_1
hw_wio_1
Binary
Octal

Hex

Unsigned Decim%

Signed Decimal

| Send Feedback I

83


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=83

& XILINX

9.

Lab 4: Vivado ECO Flow

In the hw_vios dashboard, select count_out_OBUF[7:0], then right-click and select LED.
The Select LED Colors dialog box opens.

-

¢ SelectLED Colors | &3 |

Low Value Color: © Red v

High Value Color: @ Green ~

Figure 80: Select LED Colors Dialog Box

10. Select Red for the Low Value Color and Green for the High Value Color.
11. Click OK.

Implementation www.xilinx.com

UG986 (v2019.2) December 20, 2019 | Send Feedback |

84


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=84

v
i; XI I_I NXQ Lab 4: Vivado ECO Flow

12. In the hw_vios dashboard, select pause_vio_out, reset_vio_out, and toggle_vio_out, then right-click
and select Active-High Button.

hw_ila_1 »* | hw_wvios b4
hw_wio_1

2/Q = € -
=2
8 Mame Yalue Acti..  Directi.. VIO
=
E » i count_out_OBUF[7:0] [UI1 Input hw_vio_1
% La pause_vio_out [Bl O - Output hw_vio_1
[
] La reset_vio_out [B]l O A 0] Debug Probe Properties...

la i -

toggle_vio_out [Bl O o] *  Tex
La vio_select [B] O - o]}

ﬁc’[iv]};High Button
Active-Low Button

Toagale Button

Mame b
Remave

Exportto Spreadsheet..

Figure 81: Selecting Active-High Button

13. In the hw_vios dashboard, select vio_select and select Toggle Button.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=85

& XILINX

Lab 4: Vivado ECO Flow

hw_ila_1 » | hw_vios x

hw_vio_1
g1Q = £ —
2
S | Name Value Acti.. Direct...
]
’g? » g count_out_OBUF[7:0] U121 Input
= .
§ ‘a pause_vio_out III Output
= Ta reset_vio_out |I| Output

‘a toggle_vio_out III Output

La vio_select rmLn - P vk
Debug Probe Properties. .

®  Text
Active-High Button
Active-Low Button

Togg&ﬁuﬂon

Rename...

Mame
Remaove

Exportto Spreadsheet. ..

Figure 82: Selecting Toggle Button

14. Expand count_out_OBUF[7:0] to view the VIO LEDs.

Now that the VIO is set up, you are ready to analyze the design.

VIO

hw_vio_1
hw_wio_1
hw_vio_1
hw_wio_1

e yio_1

15. Toggle the vio_select button to control the hardware from the VIO.

16. Press the pause_vio_out button to pause the counter.

17. Press the toggle_vio_out button to select between the count and the multiplier result.

18. Press the reset_vio_out button to reset the counter.

Implementation www.xilinx.com
UG986 (v2019.2) December 20, 2019

| Send Feedback I

86


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=86

& XILINX

Implementation

Yalue Acti...
[U1100

hw_vios
hw_wio_1

g1Q = = -

=

;Q Mame

E ~ i count_out_OBUF[7:0]

% I count_out_OBUF...

at I count_out_QBUF...
I count_out_OBUF...
I count_out_QBUF...
I count_out_OBUF...
I count_out_QBUF...
I count_out_OBUF...
I count_out_QBUF...

La pause_vio_out
La reset_vio_out

La toggle_vio_out

La vio_select

—*HHHOODOOODO

Directi...

Input
Input
Input
Input
Input
Input
Input
Input
Input
Output
Output
Output
Qutput

?

Lab 4: Vivado ECO Flow

— 0 & X

VIO

hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1
hw_vio_1

hw_vio_1

Figure 83: hw_vios Toggle Button Window

UG986 (v2019.2) December 20, 2019

www.Xilinx.com

| Send Feedback I

87


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=87

& XILINX

Lab 4: Vivado ECO Flow

Step 4: Making the ECO Modifications

1. In the Flow Navigator, select the Project Manager.
2. In the Design Runs window, right-click on impl_1 and select Open Run Directory.

3. The run directory opens in a file browser, as seen in the following figure. The run directory contains
the routed checkpoint (top_routed.dcp) to be used for the ECO flow.

O TIP: In a project-based design, the Vivado Design Suite saves intermediate
implementation results as design checkpoints in the implementation runs directory.
When you re-run implementation, the previous results are deleted. Save the router
checkpoint to a new directory to preserve the modified checkpoint.

BN
“ Home Share View -]
n D & cut ] x _L I3 New item - | #open~ EH setectan
=l Wi Copy path * £ Easy access - v Edit Select none
Copy FPaste Move Copy Delete Rename  Mew Properties
[#] Paste shorteut tor 1o & folder S @History 3 Invert selection
Clipboard Organize Hew Open Select
« “ 4 > ThisPC » OSDisk(C) » Vivado_Tutorial > project ECO_lab » project ECO_lab.runs > impl_1 v O | Searchimpl £
O Name b Date modified Type Size @

s Quick access R :
4 top_placed 10/31/2 Vivado Checkpoin... 2,427 KB
&3 This pc [ top_power_routed RPT File 11 KB
& Network " top_power_routed.rpx RPX File 2,299 KB
] top_power_summary_routed.pb PB File 1 KB
| top_route_status.pb PB File 1KB
[ top_route_status RPT File 1KB
s top_routed Vivado Checkpoin... 2,768 KB
] top_timing_summary_routed pb PB File 1 KB
[ top_timing_summary_routed RPT File 625 KB
] top_timing_summary_routed.rpx RPX File 549 KB
] top_utilization_placed.pb PB File 1 KB
[& top_utilization_placed RPT File 11 KB
B usage statistics webtalk Firefox HTML Doc.. 62 KB
| usage_statistics_webtalk XML Document 97 KB
] vivedojou . JOUFile 1 KB
] vivadopb PB File 1 KB
1 write_bitstream.pb . PBFile TKB

65items  1item selected 2.70 MB

Figure 84: Implementation Run Directory

4. Create a new directory named ECO in the original C:/Vivado_Tutorial/project ECO_lab
project directory, and copy the top_routed.dcp file from the implementation runs directory to

that newly created directory.
5. From the main menu, select File > Checkpoint > Open.

The Open Checkpoint dialog box opens.

6. Navigate to C:/Vivado_Tutorial/project_ECO_lab/ECO and select the top_routed.dcp

checkpoint.

A dialog box opens, asking whether to close the current project.

7. Click Yes.

8. From the main menu, select Layout > ECO.

Implementation
UG986 (v2019.2) December 20, 2019

www.Xilinx.com

l Send Feedback I

88


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=88

& XILINX

The ECO Layout is selected. The ECO Navigator is displayed on the left of the layout (highlighted in
red in the following figure). It provides access to netlist commands, run steps, report and analysis
tools, and commands to save changes and generate programming files.

Lab 4: Vivado ECO Flow

The Scratch Pad in the center of the layout (highlighted in red in the following figure) tracks netlist
changes, as well as place and route status for cells, pins, ports, and nets.

Note: ECOs only work on design checkpoints. The ECO layout is only available after you have opened
a design checkpoint in the Vivado IDE.

File
=
4

Edit Flow  Tools

CHECKPOINT DESIGN - xcku040-fiva11
P—

Window

¢ top_routed.dcp - [C;/Data/NVivado_Tutorial/project_ECO_|ab/ECO/top_routed.dep]

Layout Quick Access

o H O O #

56-2-e

View Help

ECO Navigator —
Edit
Create Net
Create Cell
Create Port
Create Pin
Connect Net
Disconnect Net
Replace Debug Probes
Place Cell

Unplace Cell

Run
Check ECO
Optimize Logical Design
Place Design
COptimize Physical Design

Route Design

Report

Edit Timing Constraints
9 Report Timing Summary
I Report Clock Networks

Report Clock Interaction

Scratch Pad x Properties | Netlist - oo

Q T = |4 LR IR

Con  PnR

Schematic

X Device

Q a ¥ B O

x | Package

ObjectName

c

92 Cells  131/0 Ports

(== =]

244 Nets -3

ey -

) ot
T[T

Report DRC
Report Utilization

& Report Powar

Program

Save Checkpoint As
M Generate Bitstrzam
[® write Debug Probes

Open Hardware Manager

Tcl Console X Messages 110 Ports

Q T = I B B @

4 total of 96 instances were transformed.

Package Pins

CFGLUTS = CFGLUTS (SRLC32E, SRL1GE): 88 instances
IBUF => IBUF (INBUF, IBUFCTRL): 3 instances
IBUFDS => IBUFDS (DIFFINEUF, IEUFCTRL): 1 instances

! INFO: [Project 1-604] Checkpoint was created with Vivado v2017.1 (64-bit) build 1829291
" open_checkpedint: Time (2): cpu = 00:00:46 ; elapsed = 00:00:25 . Memory (MB): pesk = 1816.148 ; gain =

G

RAM3IZHLG => RAM3ZMLG (RAMS32, RANS32, RAMD3Z, RAMD32, RAMD32, RAMD3Z, RAMD3Z, RAMD32, RAMD3IZ, RAND3Z,

RAMD32,

1007.074

RAMD3Z, RAMD3Z, RAMD3Z,

w&;& el

RAMD3Z, RAMD32): 4 instances

Figure 85: ECO Layout

To illustrate the capabilities of the ECO flow, you next change the functionality of the multiplier from
a square of count[3:0] to a multiply by two.

Implementation www.xilinx.com

UG986 (v2019.2) December 20, 2019

| Send Feedback I


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=89

v
i; XI I_I NXQ Lab 4: Vivado ECO Flow

9. From the Tcl Console, type the following command:

mark_objects -color blue [get cells my mult O]

TIP: To make it easier to locate objects that are included in the ECO modifications, it helps to
mark or highlight the objects with different colors.

Schematic ?7 0 a X

-

o]
o
¥

C  92cells 13V0Pors 244 Nets o

o[ el

:

ki

Figure 86: Schematic with Multiplier Marked

10. Zoom into the multiplier in the schematic window and select the in2[3:0] pins.

Alternatively, you can type the following command in the Tcl Console:
select_objects [get _pins my mult _0/in2[*]]

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=90

& XILINX

11. Click the Disconnect Net button in the Edit section of the Vivado ECO Navigator. The net is
disconnected from the pins in the schematic.

Lab 4: Vivado ECO Flow

Schematic ? -0 a X
- @ a X = O = C o2Cells 13U0Pos 244 Nets o

5
|
my_mult 0 E—

in1[3:0] out[7:0] ¥
P & 4
nfc  in2[3:0] |
multiplier

6
|
< > K

Figure 87: Schematic with Net Disconnected from Pins in2[3:0]

The Tcl Console reproduces the disconnect_net command that you just executed in the ECO
Navigator. This is useful if you want to replay your ECO changes later by opening the original
checkpoint and sourcing a Tcl script with the ECO commands.

| discomnect_net -objects
' disconnect net -objects
. endogroup

[1list
[list

{my_mult O0/ina[1]1]
fomy wult 0/inZ[0]}]

Tcl Console ? 0O e X
Q = = I B E @

E mark_ohjects -color blue [get_cells my_mult_0] -~
| startgroup

E dizconnect_net -obhjects [list {my_mult 0/ inz[3]1]

. disconnect net -objects [list {my mult 0/inZ[Z2]}]

Implementation

Figure 88: Tcl Console Showing Executed ECO Commands

www.Xilinx.com

UG986 (v2019.2) December 20, 2019

| Send Feedback l

91


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=91

v
i; XI I_I NX@ Lab 4: Vivado ECO Flow

The Scratch Pad is populated with the 4 nets divClk_reg[28:25] that you disconnected and the
multiplier input pins my_mult_0/in2[3:0]. Note the following in the Scratch Pad:

e The Scratch Pad connectivity column (Con) shows a check mark next to the

divClk_reg[28:25] nets, indicating that they are still connected to the other multiplier
inputs.

e Themy mult_0/in2[3:0] pins do not show a check mark next to them because they no
longer have nets connected.

e The Place and Route (PnR) column is unchecked for everything, indicating that the
changes have not yet been implemented on the device.

Scratch Pad — 0 a X
Q T & = + &
Con  PnR Object Name
~ B my_mult_0fin2

2 my_mult_0/in2[3]

2 my_mult_0/in2[2]

2 my_mult_0/in2[1]

2 my_mult_0/in2[0]
~ IF divClk_reg

I divClk_reg[25]

I divClk_req[26]

I divClk_reg[27]

I divClk_rea[28]

L4 4 44

Figure 89: Scratch Pad Showing Status of ECO

12. In the Scratch Pad, select the {my_mult_0/in2[3], my_mult_0/in2[2], and my_mult_0/in2[0]} pins.
13. In the Edit section of the Vivado ECO Navigator, click Connect Net.

The Connect Net dialog box opens.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

92


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=92

& XILINX

ECO Nawvigator

Edit
Create Met
Create Cell
Create Port
Create Pin
Caonnect Met
Disconnect Met
Replace Debug Probes
Flace Cell

Unplace Cell

Run
Check ECO
Optimize Logical Design
Flace Design

Optimize Physical Design

Prata Nacinn

Lab 4: Vivado ECO Flow

Scratch Pad »® Cell Pin Properties Netlist
Q = = =4 +
Con  PnR Object Name

~ B my_mult_0fin2
2 my_mult_0/in2[3]
2 my_mult_0iin2[2]
2 my_mult_0/in2[1]
2 my_mult_0/in2[0]
~ IF divClk_reg
I divClk_reg[25]
I divClk_req[26]
I divClk_reg[27]
I divClk_rea[28]

L 46 4 4 4

— oo

Figure 90: Connect Selected Pins

14. In the Connect Net dialog box, select <const0> from the GROUND section.

Implementation

UG986 (v2019.2) December 20, 2019

www.Xilinx.com

| Send Feedback l

93


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=93

v
i; XI I_I NXQ Lab 4: Vivado ECO Flow

Connect selected pins or ports with a net.

Hierarchy: W E'

Net or Bus:
Search: -

GLOBAL_CLOCK oy
| CLK
GROUND
| =const0=
| GMND_2
POWER
| =const1=
SIGMNAL
| count_out
| & count_out_OBUF
| & count_out_pre
| divClk_req
| & mul_out_pre
# mult_out_pre_pre
[ p_1_in__0
| sl_iportQ
| sl_iport1_o_1
| sl_oportd

I ommmdd 1 o4

|

Figure 91: Connect Net Dialog Box

15. Click OK.
<constO0> is added to the Scratch Pad.
16. Collapse the <const0> signal.

The three pins that you connected now show check marks in the Connectivity column of the Scratch
Pad.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=94

v
(A XI I_I NXQ Lab 4: Vivado ECO Flow

Scratch Pad — 0O a1 X
Q = s 4 + o
Con  PnR Object Name
o ~ I divClk_reg
o I divClk_reg[25)]
o I divClk_reg[26]
o I divClk_reg[27]
o I divClk_reg[28]
v B my_mult_0/in2
o o O my_mult_0fin2[3]
J 2 my_mult_0/in2[2)
2 my_mult_0/in2[1]
J J 2 my_mult_0/in2[0]
v » I =constD=

Figure 92: Scratch Pad Showing <const0> Connected to Pins

17. In the Scratch Pad, select the my_mult_0/in2[1] pin.
18. Click Connect Net.

The Connect Net dialog box opens.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=95

v
i; XI I_I NXQ Lab 4: Vivado ECO Flow

19. In the Connect Net dialog box, select <const1> from the POWER section.

r — — — — —

’

Connect selected pins or ports with a net.

Hierarchy: w E'

Net or Bus:
Search: -

GLOBAL_CLOCK o
| CLK
GROUNMD
| =const0=
| GMD_2
POWER
| =consti=
SIGMNAL
. count_out
| & count_out_OBUF
| & count_out_pre
| divClk_reg
| & mul_out_pre
# muli_out_pre_pre
[p_1_in__0
| sl_iportQ
| sl_iporti_o_1
| sl_oportQ

I ommedd o4

|

Figure 93: Connect Net Dialog Box
20. Click OK.
<constl> is added to the Scratch Pad.

21. Collapse the <const1> signal.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=96

v
(A XI I_I NXQ Lab 4: Vivado ECO Flow

The pin that you connected now shows check marks in the Connectivity column of the Scratch Pad.

Scratch Pad — 0 a X
Q T & 4 + = &
PnR Object Name
I divCli_reg
I divClk_reg[25]
I divClk_reg[26]
I divClk_reg[27]
I divClk_reg[28]
» I <constl=
~ B my_mult_0/in2
2 my_mult_0/in2[3]
2 my_mult_0/in2[2]
2 my_mult_o/in2[1]
2 my_mult_0/in2[0]

o
o
Y

<

L 4L LA LALA4A444
L 4 4L L 4

» I =constl=

Figure 94: Scratch Pad Showing <constl> Connected to Pin

22. Select the my_mult_0/1n2 pin in the Scratch Pad.

This command highlights the pins in the currently open Schematic view window, and shows the
updated connections.

Note: Make sure that the Autofit Selection Q toggle button is highlighted in the Schematic window
so you can see the entire path, as shown in the following figure.

Scratch Pad »* Bus Pin Properties | Netlist — oo Device ¥ | Package *  Schematic * 200
Q = 5 = - 0 - @ @ M o |9 = (O 92Cells 13U0Ports 244 Mets k-2
Con PnR  ObjectName wt“
< ~ AT divClk_reg
< T divCIk_rag[28]
< T divClk_reg[26] mul_ot
V] T divCIk_regl27] Fo=22r4
v I divClk_reg[28] oy
5 i Fo=1
4 > [ <constd= — !
< & v B my_mul0in2 —( y_tutt 0 B RO
v vy @ my_mult_0/in2[3] o in1[3:0] 0 out[7:0] # |
) v @ my_mult_0/in2[2] [ [ V=B001 In2[3:0 mul o
v J D my_mult_0fin2[1] l multiplier —
v v @ my_mult_0/in2[0] - Fost [
-I » I <constl> 5 @ Fost ||
¥ FO=53 ;
mul_ot
ro-ems |
FO=41
7 d Fo=1 | L
< > K

Figure 95: Resulting Schematic After Applying ECO Flow

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

97


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=97

v
i; XI I_I NXQ Lab 4: Vivado ECO Flow

23.

24.
25.

When you observe the count signal on the LEDs, you only use 4 bits. The upper 4 bits are padded
with zeroes.

Now, you will use the ECO flow to observe counter bit 24 on LED 7. The first step is to analyze the
logic that drives count_out_reg[3].

From the Tcl Console, type the following command:
select objects [get cells count out[3]_i_ 1]

This lets you quickly identify the LUT3 that drives the count_out_reg[3] register, which drives
LED 3. The inputs are:

o mul_out_pre_reg[3] for pin I0
0 count_out_pre_reg[3] for pinI1
0 tog_state_reg for pin I2
Click the Cell Properties tab to view the cell properties and select the Truth Table tab.

Click Edit LUT Equation to view the equation for the LUT3. Note the LUT equation:
O=11& '1I2 + 10 & 12

26. Click Cancel to close the window.
ScratchPad  Cell Properties  x  Netlist ? 00 Device % Package * Schematic x 200
fl count_out[3]_i_1 - o - @ a N W& T = (C 92Cells 13V0OPos 244 Mets -
2 1M 10 0=M&N2+I0&I2 ] e i
B TORE x_m ot _ut_regi1] ps
0 0 0 0 N - cond_off 1] i_1 !
0 o 1 o ol aut pre megld] :I . B % @
R 3 FORE =
o 1 1 1 R count_out_regi2] ::"“j
1.0 0 0 T . %J
10 1 1 e AP oS OBUFTAL
1 1 0 0 s o .y e
11 1 1 FOFE et COUFLE
o OBUF
ot _out_OBUF[7] i
@
o " euF
mail_cuf_pe_megld]
oot aut regid]
s
wunl_ouf4]i_1 il
- | _
ul_aut_pre mgls) - FoRE
count_out_regs]
g ° et a5 i 1 e e
A p fio_a} s °
.................................................................. o ] B R
Froperties Fower  Mets  CellPins  Truth Table = < Cnl ol st 5
Figure 96: LUT3 Driving count_out_reg[3]
27. From the Tcl Console, type the following command:

select objects [get cells count out[7]_i_ 1]

Implementation www.xilinx.com l Send Feedback I

UG986 (v2019.2) December 20, 2019

98


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=98

& XILINX

ScratchPad  Cell Properties 3¢ Netlist ?_00G
il count_out[7]_i_1 - o
1T 10 O=10&N1

0 0 0

0 1 0

1 o 0

1 1 1

Edit LUT Equation

Power  Mets CellPins | Truth Table =

Lab 4: Vivado ECO Flow

Device % Package ® Schematic x 200
- Q e H k(& ¢ = & 02Cells 13UOPos 244 Nets o
U< — ~
FDRE
mul_out_pre_reg[6]
FO=2274 | count_out_reg[6]
PO | e a FO=3 ¥ 6 FO=274 |
B Fo1] count_out[6]_i_1 PO | e Fos4 6
W Foss | o FO M g L= Fo=1 Q
8 i FO=3 ‘ H i FO=53 R
FDRE
LuT2
FDRE
mul_out_pre_reg[7]
FO=2274 count_out[7]_i_1 count_out_reg[7]
c FO=9 Fo=1
FO=41 10 o FO=2274
CEQF&.?‘@'? 7  Foss ] c
W Fo-1 | w L Foszr | o romt Ay 7
fi FO=53 R LuTz Fo1 | Q
i FO=53 R
FDRE
FDRE
> K

Figure 97: LUT2 Driving count_out_reg[7]

Implementation
UG986 (v2019.2) December 20, 2019

www.Xilinx.com

| Send Feedback l


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=99

v
i; XI I_I NX@ Lab 4: Vivado ECO Flow

This command selects the LUT2 that drives the count_out_reg[7] register, which drives LED 7 on
the KCU105 board. The only inputs are tog_state_reg for pin 10 and mul_out_pre_reg[7]
for pin 11. You need to replace the LUT2 with a 3-input LUT and connect the output of counter
register divClk_reg[24] to the additional input pin.

28. In the Vivado ECO Navigator, under Edit, click Create Cell.
The Create Cell dialog box opens.
a. Inthe Cell name field, enter ECO_LUTS.
b. In the Search field, enter LUT3.

c. Select LUT3 as the cell type and copy the LUT equation 0O=11 & 12 + 10 & 12 from cell
count_out[3]_i_ 1.

d. Click OK.
ECO_LUT3 is added to the Scratch Pad and the schematic.

e. Right-click the newly added ECO_LUT3 cell in the Scratch Pad, then select Mark and the color
red.

Note: Marking the ECO_LUT3 cell makes it easier to locate.

Implementation www.xilinx.com 100
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=100

v
i; XI I_I NX@ Lab 4: Vivado ECO Flow

Create a cell or an array of cells at a specified level of hierarchy.

Hierarchy: L IZI

Cell name: ECO_LUT3

Create array:

Cell type
Search: LUT3 (1 match)
LUT3
LUT Equation: O=11 &2 +10 & 12 |E|
Location:

Create hierarchical cell

Cell reference name:

Figure 98: Create Cell Dialog Box

Because you copied the LUT equation from cell count_out[3]_i_1, the nets must be hooked up in
the same order, with the following connections:

e Netmul_out_pre[7] connected to pin 10
e NetdivClk_reg_n_0_[24] connected to pin I1
¢ Net tog_state connected to pin 12 of ECO_LUT3

29. Locate the tog_state net driven by the tog_state_reg register in the schematic and select it.
Alternatively you can select the net from the Tcl Console by running the following command:

select_objects [get _nets tog_state]

Implementation www.xilinx.com 101
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=101

& XILINX

30. Connect the 12 pin of the newly added ECO_LUTS3 cell by doing the following:

a.

b. Click Connect Net.

Lab 4: Vivado ECO Flow

Hold down the CTRL key and select pin 12 in the Scratch Pad. This selects pin 12 in addition to
the already selected tog_state net.

Scratch Pad % Cell Pin Properties Netlist = ] Device % | Package »  Schematic x ?O0
Q T & 4 + ] - @ a X b |© 93Cells 130 Ports 244 Nets -]
w v oA
Con  PnR ObjectMame = = =
L mul_out_pre_reg[5] B Fo= 11 o ! E FU{J'
-I ~ I divCik_reg - FO=3 [
— FO2774 | = F
v I divClk_reg[24] Fost1 [ oo o g LUT3
< T divCIk_reg|26] - a - count
5 % Fom D count_out[1]_i_1 —
o4 I divClk_rag[27] i Fosss | o 1 W FOs 1 Fo=22m4 |
v I divCIk_reg[28] 1 § FO=3 FO=1 FO=27
11 o] cl
v » I =const0= FDRE FO |, ‘ FO=1 ] 5
v o~ B my_mul_0in2 i mul_out_pre_reg[6] LUT3 W Fo53 R
v @ my_mult_0/in2(3] Fo=27m L e ECO LUT3 F
-I ) 2 my_mult_oin2[2] . FO= | e o o & o ne g
¢ D my_mult_0fin2{1] 5 @ Fos1 | ne | n@o e count
FO=53 & —
v v D my_mult_0/in2(0] o R "z Fom |
< » I =constl= FDRE LT3 FO=27 |
~ 4 ECO_LUT3 | out 7 count_out[2]_i_1 ‘ o
mul_out_pre_re ¢ FO= i FO=
ao _out_pre_reg 2 i FO=3 10 ‘ i FO=53 R
- Fo22m | 2 A Fos | o i L
FO=41 FO=3 F
o —— CE gl e 7 12
1 L Bl LUT3 count_
L2 ¥ BE >

Figure 99: Scratch Pad and Schematic Showing ECO_LUT3 Added

31. Locate the mul_out_pre[7] net in the schematic and select it.

Alternatively, you can select the net from the Tcl Console by executing the following command:
select_objects [get_nets mul_out_pre[7]]

32. Connect the 10 pin of the newly added ECO_LUTS3 cell by doing the following:

a. Hold down the CTRL key and select pin 10 in the Scratch Pad. This selects pin 10 in addition to
the already selected mul_out_pre[7] net.

b. Click Connect Net.
33. Locate the divClk_reg_n_0_[24] net in the schematic and select it.

Alternatively, you can select the net from the Tcl Console by executing the following command:
select_objects [get_nets divClk_reg_n_0_[24]]

34. Connect the 11 pin of the newly added ECO_LUTS3 cell by doing the following:

a. Hold down the CTRL key and select pin 11 from the Scratch Pad. This selects pin 11 in addition
to the already selected divClk_reg_n_0_[24] net.

b. Click Connect Net.

Next, you need to connect the updated logic function implemented in the newly created LUT3 to
the D input of count_out_reg[7]. The first step is to delete the LUT2 that was previously
connected to the D input.

Implementation www.xilinx.com 102

UG986 (v2019.2) December 20, 2019

l Send Feedback I


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=102

v
i; XI I_I NXQ Lab 4: Vivado ECO Flow

35. Select the LUT2 count_out[7]_i_1 in the schematic window.

Alternately, you can select it by executing the following command in the Tcl Console:
select_objects [get_cell count_out[7] _i_1]

36. In the main toolbar, click the Delete button X to delete the selected cell.

37. Select the net connected to the D input of the count_out_reg[7] register in the schematic
window.

Alternatively you can select the net from the Tcl Console by executing the following command:
select _objects [get nets count_out[7] _i_1 n 0]

38. Connect the O pin of the newly added ECO_LUT3 cell by doing the following:
a. Hold down the CTRL key and select pin O from the Scratch Pad.
b. Click Connect Net.

¢ top_routed.dcp - [C/Data/Vivado_Tutorial /project_ECO_lab/ECO/top_routed.dcp]

Eile  Edit Flow Tools Window  Layout Wiew  Help Quick Atcess
= b « B X o H © & & ¥
CHECKPOINT DESIGN * - xcku040-ffval156-2-2
ECO Navigator —_ Scratch Pad » Net Properties Netlist - 0o Device % | Package » | Schematic X
Edit Q = £ = - & - @ a ¥ ¥ © 4+ = C 92cells 13U0Pors 244 Nets
I
Create Net Con  PnR  Object Name R . _:‘J_' Loy
v ~ [ tog_state E I vy | :l—l L
I
Create Cell v ¢ D count_outi4]_I_110 | f :D— L':ﬁ— -
Create Port v D count_out[5]_i_1110 [ S ; . o _in:'—
. v | [ count_out[§]_i_110 | :|_|
Creats Pin — —_—_—
v > ECO_LUT3M2 } 1 ] :‘:]—
Connect Net i L ]
-I v D tog_state_i_1/10
mriawsgs
D 1 Nat Y 4 4 2 count_out[0]_i_112
isconnact Me Y _-—|
v o [ count_out[1]_i_112
Replace Debug Probes wrt o mid
v < @ count_out[2]_i_1/2 T e e 4“]_
Place Cell v [ count_out[3]_i_112 )’Ei] =
Unplace Cell 7 < T tog_state_reg/0 . 1 _‘l]”—
v ~ I divClk_reg_n_0_[24]
Run v v < divClk_reg[24)Q T e
Check ECO v -I 2 divClk_reg[24]_i_1/s[0] :|::|__
v D ECO_LUT3M
Optirnize Lagical Design < ~ I counl_oulf7]_i_1_n_D
Place Design v vl 2 count_out_reg[7)D .l <

Figure 100: Connecting ECO_LUT3 Output

The ECO modifications are complete.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

103


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=103

v
i; XI I_I NX@ Lab 4: Vivado ECO Flow

Step 5: Implementing the ECO Changes

Before you place and route the updates, you need to check for any illegal logical connections or other
logical issues introduced during the ECO that would prevent a successful implementation of your
changes.

1. In the Vivado ECO Navigator, under Run, click Check ECO.
The following figure shows the messages generated by the ECO DRC.

e The two Critical Warnings are due to the partially routed signals that are a result of the ECO and
will be cleaned up during incremental place and route.

e The Warning message is due to nets in the debug hub instance that do not drive any loads. This
Warning can be ignored.

e No other warnings were issued and you are ready to implement the changes.

DRC ? 0O a X
Q T = i H v 2 Critical Warnings ¥ 1 Warning Hide Al
Mame Severity 1 Details

~ @ AllViolations (3)
~ @ Implementation (3)
~ @ Routing (3)
~ @ Chip Level (3)
A4 RTSTAT-5 (1)
RTSTAT #1 Critical Warning 6 net(s) have a partial antenna. The problem bus(es) andior net(s) are divCllk req, mul out pre[7], tog state.

~ RTSTAT-6 (1)
RTSTAT #1 Critical Warning 6 net(s) have a partial conflict. The problem bus{es) andior net{s) are divCllk req, GLOBAL_LOGICO, GLOBAL_LOGICY .
~ RTSTAT-10 (1)

RTSTAT #1 Warning 27 net(s) have no routable loads. The problem bus(es) and/or net(s) are aempty fwft i, ctl req, ctl req en 2[1], ctl req er
] »

drc_1 (3 violations)

Figure 101: Check ECO DRC Messages

Because you added additional logic, you need to place the logic using the incremental place, and
then route the updated net connections using incremental route.

2. In the Vivado ECO Navigator, under Run, click Place Design.

The Place Design dialog box opens, allowing you to specify additional options for the
place_design command. For this exercise, do not specify additional options.

3. Click OK.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

104


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=104

v
i; XI I_I NX@ Lab 4: Vivado ECO Flow

¢ Place Design | &3

Run design placement with the specified
options. ‘

Options:

Figure 102: Place Design Dialog Box

4. Vivado runs the incremental placer.

At the end of the place_design step, the incremental Placement Summary is displayed in the Tcl

Console.
R T +
| Incremental Flacement Summary
e et e e E e et +
| Type | Count | Percentage |
R T +
| Total instances | 4880 | 100.00 |
| Beused instances | 4878 | 99,98 |
| Hon-reused instances [ 2 | 0.04 |
| Hew | 1] 0.02 |
[ Discarded illegal placement due to netlist changes | 1] 0.02 |
R T +
| Incremental PFlacement Buntime Summary
e et e e E e et +
| Imitialization time{elapsed secs3) | 4.08 |
| Incremental Placer time(elapsed secs) | T.259 |
R T +

Figure 103: Post-Place Incremental Reuse Summary

The incremental placement summary shows that the following two cells did not have their previous
placement reused:

0 The new ECO_LUTS3 cell, which had to be placed from scratch

0 The count_out_reg[7] cell, which had to get updated placement due to the placement of the
ECO_LUT3 driving it

5. In the Vivado ECO Navigator, under Run, click Route Design.

Implementation www.xilinx.com 105
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=105

v
i; XI I_I NX@ Lab 4: Vivado ECO Flow

The Route Design dialog box opens.

Depending on selection, route all or a portion
of a design. '

® [ncremental Route

|

Figure 104: Route Design Dialog Box

Depending on your selection, you have four options to route the ECO changes:
0 Incremental Route: This is the default option.
0 Route selected pin: This option limits the route operation to the selected pin.
0 Route selected non-Power nets: This option routes only the selected signal nets.
0 Route selected Power nets: This option routes only the selected VCC/GND nets.
In this case, the best choice is to route the changes you made incrementally.
6. Select Incremental Route.
7. Click OK.

At the end of the route_design step, the incremental Routing Reuse Summary displays in the Tcl
Console.

| Type Count | Percentage |
|Fully reused nets | 376l 99,89 |
|Partially reused nets | 31 0.08 |
|Hon-reused nets | 1] 0.03 |

Figure 105: Post-Route Incremental Reuse Summary

Most of the nets did not require any routing and have been fully reused.

Implementation www.xilinx.com 106
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=106

v
i; XI I_I NX@ Lab 4: Vivado ECO Flow

TIP: It is a good idea to run report_route_status dfter the route operation to
make sure all the nets have been routed and none have any routing issues. This is
especially true if you only routed selected pins or selected nets and want to make sure
you have not missed any routes.

8. Inthe Tcl Console, run the report_route_status command.

The Design Route Status looks similar to the following status.

Design Route Status

# nets

$ 0of logical MELS.eeesssmsssnnsnsnnsnnnmnnns : S5le0 =
$ of nets not needing routing..coewes s : 1363 =

# of internally routed NetS...eee.. : 1308 =

# of nets with no loads....cveewana. : 537 =

# of routable NELS....csanssssnasannnnas : 37487 =

2 of fully routed Net3. e cvnnnnnnns : 3797 =

# of nets with routing erroES.ccecccsas : 0=

Figure 106: Design Route Status Post Implementation

Before you generate a bitstream, run the ECO DRCs on the design.

9. In the ECO Navigator, click Check ECO. Make sure no Critical Warnings are generated.

DRC
Q=€ |G M 1) 1 Waming Hade Al
HName Details
All Violalions
Impdernentaiion
Routing
Chip Levet
RTSTAT-10 (1
Rrsar gy 210K Nave N0 routabie oads. The EobIem bus(es) andior n4lls) are 2emoty M | ci feq, Yl 180 o0 211} CB 160 ¢0 211L M BECHN Cahure, M DSCIN OfCK M DSCIN (MRS FAm emoty | am Rl |10 (51 recill & DECan bms, § Cagor olt
3 dador ol14) 3 dacdr oi15] 3 dadce ol161 (e frst 15 of 19 Ested)
dre_1 {1 violatican)

Figure 107: Post Implementation Check ECO Results

10. In the Vivado ECO Navigator, under Program, click Save Checkpoint As.

The Save Checkpoint As dialog box opens and you can specify a name for the checkpoint file to
write to disk.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

107


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=107

v
i; XI I_I NXQ Lab 4: Vivado ECO Flow

11. Click OK to save a checkpoint file with your changes.

Create a checkpoint file that contains the netlist, XDC constraints, and the physical
database.

Checkpointfile: C:Vivado_Tutorial/project ECO_labiECO/checkpaint_1.dcp III

Figure 108: Saving ECO Modifications to a New Checkpoint

12. In the Vivado ECO Navigator, under Program, click Generate Bitstream.
The Generate Bitstream dialog box opens.

You can specify a name for a Bit file and select the desired options for the write_bitstream
operation.

13. Click OK to generate a bitstream with your changes.

Create a programming file from the current design

Bit File :/Vivado_Tutorial/project_ECO_lab/ECO/project_top_routed.bit E'

Options

»

-raw_hitfile

-mask_file

-no_binary_bitfile
-bin_file

-readback_file

-logic_location_file

-verbose

<

Select an option above to see a description of it

Figure 109: Generate Bitstream Dialog Box

Implementation www.xilinx.com 108
UGY86 (v2019.2) December 20, 2019 send Feedback



http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=108

v
i; XI I_I NX@ Lab 4: Vivado ECO Flow

14. In the Vivado ECO Navigator, under Program, click Write Debug Probes.
The Write Debug Probes dialog box opens.

Write debug probes to afile.

File Mame: wado_Tutorial/project_ ECO_lab/ECO/probes_1.11 |I|

| Overwrite

Figure 110: Write Debug Probes Dialog Box

You can specify a name for a .Itx file for your debug probes.
15. Click OK to generate debug probes file (LTX).

This command allows you to generate a new .Itx file for your debug probes. If you made changes to
your debug probes using the Replace Debug Probes command, you need to save the updated
information to a new debug probes file to reflect the changes in the Vivado Hardware Manager

16. Follow the instructions in Step 3: Validating the Design on the Board to download the generated
bitstream programming file and debug probes file into the target FPGA device using the Hardware
Manager to check your ECO modifications.

Step 6: Replacing Debug Probes

Another powerful feature of the Vivado ECO flow is the ability to replace debug probes on a previously
inserted Debug Hub. After the debug probes have been replaced, a new LTX file can be generated that
contains the updated debug probe information.

To replace a debug probe in your previously modified design, do the following:
1. From the main menu, select File > Checkpoint > Open.

The Open Checkpoint dialog box opens.

Implementation www.xilinx.com 109
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=109

v
i; XI I_I NX@ Lab 4: Vivado ECO Flow

[

Lookin: ECO v toaldi,s mXC [

4 checkpoint_1.dep
¢ top_routed.dcp

Recent Directories

C:Vivado_Tutoriallproject ECO_lab/ECO ~

File Preview

File: checkpoint_1.dcp

Directory: C:Vivada_Tutorialipraject_ECO_lab/ECO
Created: Today at 12:05 PM

Accessed: Today at 12:05 PM

Modified: Today at 11:57 AM

Size: 27 MB

Type: Checkpoint design

Owner: XLNX\gpocklas

Filename:  checkpoint_1.dcp

Files of type: | Vivado Checkpoint Files (.dcp) v

Figure 111: Open Checkpoint Dialog Box

2. Browse to the C:/Data/Vivado_Tutorial/project_ECO_lab/ECO directory and select the
previously saved checkpoint_1.dcp file.

3. Close any previously open checkpoints.

4. From the main menu, select Layout > ECO.

5. Inthe Vivado ECO Navigator, under Edit, click Replace Debug Probes.
The Replace Debug Probes dialog box opens.

In this example, you will replace the net reset_vio that is connected to probe4 of u_ila_0 with
the net toggle_vio.

6. Scroll to the bottom of the probes for u_ila_0 in the Replace Debug Probes dialog and click the
reset_vio net name in the Probe column to select it.

7. Click the Edit Probes button 7 .

Implementation www.xilinx.com 110
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=110

& XILINX

Lab 4: Vivado ECO Flow

Use the Edit Probes button to replace one or more debug probes. To reflect these
changes in the Vivado Hardware Manager, regenerate the debug probes file (LTX).

| =7 +t 3
Search:
Name Probe
@ Cho [" & count_out_pre[0] -~
@ Cch1 [" & count_out_pre[1]
@Ch2 # count_out_pre[2]
@cha # count_out_pre[3]
~ @ probe2 (3)
@ Cho & mul_out_pre[0]
@ch & mul_out_pre[1] _
@chz2 & mul_out_pre[2) 5
@ ch3 & mul_out_pre[3] ;
@ Ccha & mul_out_pre[4] '
@chs # mul_out_pre[5]
@cChé # mul_out_pre[6]
@ Chy mul_out_pre[7]
~ W probe3 (1)
@Ccho & pause_vio
~ W probed (1)
@ Cho reset_vio
~ W probe5 (1)
@cCho state ~

Probes changed: 0

Figure 112: Replace Debug Probes Dialog Box

The Choose Nets window opens.

Implementation www.xilinx.com

UG986 (v2019.2) December 20, 2019

Cancel

| Send Feedback I

111


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=111

v
i; XI I_I NX@ Lab 4: Vivado ECO Flow

8. Choose a new net to connect to the debug probe probe4 by doing the following:
a. Type toggle_vio in the search field of the Choose Nets dialog box.
b. Click Find.
c. Select the toggle vio net, and move it to the Selected names section.

d. Click OK.

|’

Choose nets to replace existing probes.

Properties

NAME ~ | | contains ~ | toggle_vio +

Regular expression |+ Search hierarchically |+ Display unique nets

Of objects: E

Found: 2 Selected: 1 of1 FL
toggle_vio

X togole_vio
# toggle_vio_out

Figure 113: Choose Nets Dialog Box

9. In the Replace Debug Probes dialog box, click OK.

10. Repeat steps 5 through 14 of Step 5: Implementing the ECO Changes to generate an updated
design checkpoint, bitstream file, and probes file (LTX).

The updated debug probes file has the reset_vio net for probe4 replaced with net
toggle_vio, which you can verify when you program the device with the updated bit file and
debug probes file.

Implementation www.xilinx.com 112
UGY86 (v2019.2) December 20, 2019 send Feedback


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=112

v
i; XI I_I NXo Lab 4: Vivado ECO Flow

hw_ila_1

Dashboard Options

Waveform - hw_ila_1
Q + =2 » » B B @ @ I = 4 M = 2 o

ILA Status:ldle

e _ila_1

Name
" count_out_OBUF_1[7:0] | 06
"™ count_out_pre[3:0]
B mul_out_pre[7:0]

Settings- h

1 state
% toggle_vio

Status - hw_ila_1

Updated at: 20

Trigger Setup - hw_ila_1 Capture Setup - hw_ila_1

Figure 114: ILA Waveform with Update Debug Probes

Conclusion

In this lab, you did the following:

e Made changes to the previously implemented design using the Vivado ECO flow.
e Implemented the changes using incremental place and route.
e Generated a bitstream and probes file with your changes to configure the FPGA.

e Used the Replace Debug Probes command to switch the sources for debug probes in the
design.

Implementation www.xilinx.com | Send Feedback I

UG986 (v2019.2) December 20, 2019

113


http://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=113

& XILINX

Legal Notices

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS 1S" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort,
including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in
connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss
or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party)
even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no
obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not
reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and
conditions of Xilinx’s limited warranty, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP
cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or
intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products
in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS,
THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A
SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING
LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2012-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zyng, and other designated brands included herein
are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Implementation www.xilinx.com
UGY86 (v2019.2) December 20, 2019 send Feedback

114


http://www.xilinx.com/
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG986&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Implementation&releaseVersion=2019.2&docPage=114

	Vivado Design Suite Tutorial: Implementation
	Revision History
	Table of Contents
	Implementation Tutorial
	Overview
	Tutorial Design Description
	Hardware and Software Requirements
	Preparing the Tutorial Design Files
	Locating Design Files for Labs 1-3
	Locating Design Files for Lab 4


	Lab 1: Using Implementation Strategies
	Introduction
	Step 1: Opening the Example Project
	Step 2: Creating Additional Implementation Runs
	Step 3: Analyzing Implementation Results
	Step 4: Tightening Timing Requirements
	Conclusion

	Lab 2: Using Incremental Implementation
	Introduction
	Step 1: Opening the Example Project
	Step 2: Viewing the Incremental Heading in the Design Runs Window
	Step 3: Turning on Incremental Implementation
	Step 4: Compiling the Reference Design
	Step 5: Making Incremental Changes
	Step 6: Rerunning the Synthesis and Implementation
	Conclusion

	Lab 3: Manual and Directed Routing
	Introduction
	Step 1: Opening the Example Project
	Step 2: Performing Place and Route on the Design
	Step 3: Analyzing Output Bus Timing
	Step 4: Improving Bus Timing through Placement
	Step 5: Using Manual Routing to Reduce Clock Skew
	Step 6: Copying Routing to Other Nets
	Conclusion

	Lab 4: Vivado ECO Flow
	Introduction
	Step 1: Creating a Project Using the Vivado New Project Wizard
	Step 2: Synthesizing, Implementing, and Generating the Bitstream
	Step 3: Validating the Design on the Board
	Step 4: Making the ECO Modifications
	Step 5: Implementing the ECO Changes
	Step 6: Replacing Debug Probes
	Conclusion

	Legal Notices
	Please Read: Important Legal Notices



