Vivado Design Suite User
Guide

High-Level Synthesis

UG902 (v2019.2) January 13, 2020

& XILINX

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG902

& XILINX

Revision History

The following table shows the revision history for this document.

Section Revision Summary

01/13/2020 Version 2019.2

Updated Command Reference. | Updated command.
10/30/2019 Version 2019.2
The HLS Math Library and Fixed-Point Math Functions | Removed Gamma function.

07/12/2019 Version 2019.1

Removing False Dependencies to Improve Loop Pipelining | Clarified information on dependencies.
05/22/2019 Version 2019.1

Optimizing for Throughput Updated information on dataflow and pipelining
throughout section.

Specifying Arrays as Ping-Pong Buffers or FIFOs Updated explanation of ping-pong buffers.

Stable Arrays, set_directive_stable Added information on stable arrays.

Using ap_ctrl_none Inside the Dataflow Added information on using ap_ctrl_none within the
dataflow.

RTL Blackbox, RTL Blackbox JSON File, add_files Added information on the new RTL blackbox feature, added

specifications for the required JSON file, and updated the
add_files command to include the -blackbox option.

Waveform Viewer Added information on the Waveform Viewer.
SSR FFT IP Library Added information on the new super sample data rate (SSR)
FFT.

Added new subsections:

Recommended Flow for Using SSR FFT Fixed Point
Configurations

SSR FFT IP Library Usage

UG902 (v2019.2) January 13, 2020 Www xilinx.com
High-Level Synthesis l Send Feedback l 5

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=2

& XILINX

Table of Contents

REVISION HISTOKY ...ttt sess s sssssssssesssssssssssssssssssssasens 2
Chapter 1: High-Level Synthesis........... e 5
High-Level Synthesis BENETits. ..ottt 5
High-Level SYNthesis BaSIiCS....c.iiiiriiiriereeeeeseee ettt st 6
Understanding VIvado HLS.......couoiiiiienieecccese et sre it aesressae s e sbessvassees 12
USING VIVAAO HLS.....eiiiiiteeseeteeee ettt sttt et et b et saa e ae st e saaebesanesas 19
Data Types for Efficient Hardware..........o.ooieenieeeeeeeeeest ettt 71
ManNaging INtEIrTACES.cuiiirierireee ettt sttt ettt sbe b s se e neen 77
OPtiMIZING the DESIGN..cuiiiiiiiiiiiieiestese ettt ettt s e be s aesbaesbeesaesatesaaessesasassean 118
VerifyiNg the RTL...cuiiiieieeieieciertertete sttt ettt st ettt et et satesseesbesasesaaesesasesanens 177
EXPOrting the RTL DeSIGN...ccuiiiiriieieeienieesieste sttt sttt et saeesbe st st s se s e st essessesanesseens 191
Chapter 2: High-Level Synthesis C Libraries...........cccouvenvneencerernennee. 198
Arbitrary Precision Data TYPes LiDrary.....cc oottt sse e 198
HLS Stream LiDrary ... oottt ettt sttt sae bt s e sne s e 213
HLS Math LiDEary..uco ettt ettt ste e sae e st s aa e ssaeessaessbaesanesnaesssesnseenes 222
HLS VIAO LIDIary.c.cceeiiieieiieieeiesteree ettt sttt sttt saa et st e sasesbessessnesanensans 232
HLS IP LiDIari@S. . cveueeieeiieieiieteteeienettei sttt ettt et sb e bbbttt sae b b 232
HLS Linear AlGebra LiDrary.. ..o oottt st st 264
HLS DSP LIDIAry...ccooieeiieeieiieniieesieeeesteesieesstessieessaeesatessseessseessaessseesssesssessssesssaesssessssessseenns 275
HLS SQL LIDIary ..ottt ettt sttt b b st sttt be b sne e 277
Chapter 3: High-Level Synthesis Coding Styles............cccocouenrnrveneunncnncs 279
UNSUPPOItEd C CONSTIUCES. c..eouiriieiieieieientesteeitrie ettt sttt see b sresbesne s e e seeeens 279
CTESE BONCN..ceieeee ettt 283
FUNCEIONS. ..ttt sttt ettt st st e s bt e st e s be e st e s bt e sasessnnesaneenns 290
RTL BIACKDOX ..ttt st st 292
(0T] o 1 JH PSPPSR RO PPRRTPPP 297
N =)£ T PP P PO PP PP PPPPPRROPRO 305
DAta TYP S . ittt bb e s eab e s b e e s nns 314
C BUIIEIN FUNCEIONS. ...ttt et s sb e s r e s ne e e e e snes 339

UG902 (v2019.2) January 13, 2020 Www xilinx.com
High-Level Synthesis l Send Feedback l 3

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=3

& XILINX

Hardware EffiCient C COTe. ...ttt st 340
C++ Classes and TeMPIAteS.....ui ittt ae e e s ae e ra e sreesaeesanes 358
ASSEITIONS. ..ttt ettt b e s b s e e st ne s e e nneeas 366
SYSEEMC SYNTN@SIS.c.ueiiiiiiiieeteeteee ettt sttt et e b st e st e b e et e saeasseennes 369
Chapter 4: High-Level Synthesis Reference Guide...............ccccoeuuruuue..... 388
ComMMANG REFEIENCE....cuiiiieietetee et sa e 388
GUI REIEIENCE.... ittt ettt s e sat e b e et e sat e b e e b e satesseeneentesns 462
Interface SyNthesis REfErENCe. ...ttt 465
AXI4-Lite Slave C Driver REfEreNCe......cccooivirirerieieieeseseseet ettt 483
HLS VideO FUNCLIONS LIDrary.....oocecieiiinieienienteieetestesiee sttt st sresae st sbaesa e sn e s 496
HLS Linear Algebra Library FUNCLIONS........cociririirieneereeeseeie ettt 496
HLS DSP Library FUNCHIONS.coouiiieeieieeteetesee ettt sttt 505
HLS SQL Library FUNCLIONS.....cceiviiiiiriirieeiestene ettt st ssesiesste st esaeessassesaeessesssesanessans 518
C ArDItrary PreCiSiON TYPES. ... i ettt te sttt st s e saesbesatessaebestessaessesnsesas 521
CH+ ArDitrary PreCiSiON TYPES. ..o ettt sttt sttt et e sse b st sae e sse s e e sae e s nes 535
C++ Arbitrary Precision FiXed-POiNt TYPES.....c.covirireeiieereesee et 555
Comparison of SystemC and Vivado HLS TYPES.....cccecuereriiinieniniienieneeriesreseesiessesseenseens 577
RTL BlACKDOX JSON Fil@....veiiurieecreeeeree et cctee et eeteeeereeeereeeeneeeenaeesneeeessaeessseeessseeesnsneenns 584
Appendix A: Additional Resources and Legal Notices........................... 587
XIlINX RESOUICES.....eeuiiiieieienieeiteitetet ettt ettt et s be sttt et b et e b sbesbe e st et e s e b esbesbene 587
Documentation Navigator and Design HUDS.........ccoceririirieniieeeeeeeeneee et 587
RETEIEINCES. ..ttt ettt et b s bt et et et et e sbesbesse e st et enaeaentans 587
Please Read: Important Legal NOTICES.......cociviiriirienieneeriesiese et sie s s e seeesaessesseens 588

UG902 (v2019.2) January 13, 2020 Www xilinx.com
High-Level Synthesis l Send Feedback l 4

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=4

& XILINX

Chapter 1

High-Level Synthesis

The Xilinx® Vivado® High-Level Synthesis (HLS) tool transforms a C specification into a register
transfer level (RTL) implementation that you can synthesize into a Xilinx field programmable gate
array (FPGA). You can write C specifications in C, C++, or SystemC, and the FPGA provides a
massively parallel architecture with benefits in performance, cost, and power over traditional
processors. This chapter provides an overview of high-level synthesis.

Note: For more information on FPGA architectures and Vivado HLS basic concepts, see the Introduction to
FPGA Design Using High-Level Synthesis (UG998).

High-Level Synthesis Benefits

High-level synthesis bridges hardware and software domains, providing the following primary
benefits:

Improved productivity for hardware designers

Hardware designers can work at a higher level of abstraction while creating high-performance
hardware.

Improved system performance for software designers

Software developers can accelerate the computationally intensive parts of their algorithms on
a new compilation target, the FPGA.

Using a high-level synthesis design methodology allows you to:

Develop algorithms at the C-level

Work at a level that is abstract from the implementation details, which consume development
time.

Verify at the C-level

Validate the functional correctness of the design more quickly than with traditional hardware
description languages.

Control the C synthesis process through optimization directives
Create specific high-performance hardware implementations.

Create multiple implementations from the C source code using optimization directives

UG902 (v2019.2) January 13, 2020 Www xilinx.com
High-Level Synthesis l Send Feedback l s

https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=5

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Explore the design space, which increases the likelihood of finding an optimal implementation.
e Create readable and portable C source code

Retarget the C source into different devices as well as incorporate the C source into new
projects.

High-Level Synthesis Basics

High-level synthesis includes the following phases:

e Scheduling
Determines which operations occur during each clock cycle based on:

Length of the clock cycle or clock frequency
Time it takes for the operation to complete, as defined by the target device
User-specified optimization directives

If the clock period is longer or a faster FPGA is targeted, more operations are completed
within a single clock cycle, and all operations might complete in one clock cycle. Conversely, if
the clock period is shorter or a slower FPGA is targeted, high-level synthesis automatically
schedules the operations over more clock cycles, and some operations might need to be
implemented as multicycle resources.

e Binding

Determines which hardware resource implements each scheduled operation. To implement
the optimal solution, high-level synthesis uses information about the target device.

e Control logic extraction

Extracts the control logic to create a finite state machine (FSM) that sequences the operations
in the RTL design.

High-level synthesis synthesizes the C code as follows:

e Top-level function arguments synthesize into RTL 1/O ports
e C functions synthesize into blocks in the RTL hierarchy

If the C code includes a hierarchy of sub-functions, the final RTL design includes a hierarchy of
modules or entities that have a one-to-one correspondence with the original C function
hierarchy. All instances of a function use the same RTL implementation or block.

e Loops in the C functions are kept rolled by default

UG902 (v2019.2) January 13, 2020 Www xilinx.com
High-Level Synthesis l Send Feedback l 6

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=6

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

When loops are rolled, synthesis creates the logic for one iteration of the loop, and the RTL
design executes this logic for each iteration of the loop in sequence. Using optimization
directives, you can unroll loops, which allows all iterations to occur in parallel. Loops can also
be pipelined, either with a finite-state machine fine-grain implementation (loop pipelining) or
with a more coarse-grain handshake-based implementation (dataflow).

e Arrays in the C code synthesize into block RAM or UltraRAM in the final FPGA design

If the array is on the top-level function interface, high-level synthesis implements the array as
ports to access a block RAM outside the design.

High-level synthesis creates an optimized implementation based on default behavior, constraints,
and any optimization directives you specify. You can use optimization directives to modify and
control the default behavior of the internal logic and 1/O ports. This allows you to generate
variations of the hardware implementation from the same C code.

To determine if the design meets your requirements, you can review the performance metrics in
the synthesis report generated by high-level synthesis. After analyzing the report, you can use
optimization directives to refine the implementation. The synthesis report contains information
on the following performance metrics:

e Area: Amount of hardware resources required to implement the design based on the resources
available in the FPGA, including look-up tables (LUT), registers, block RAMs, and DSP48s.

e Latency: Number of clock cycles required for the function to compute all output values.
e |nitiation interval (II): Number of clock cycles before the function can accept new input data.
e Loop iteration latency: Number of clock cycles it takes to complete one iteration of the loop.

e Loop initiation interval: Number of clock cycles before the next iteration of the loop starts to
process data.

e Loop latency: Number of cycles to execute all iterations of the loop.

Scheduling and Binding Example

The following figure shows an example of the scheduling and binding phases for this code
example:

int foo(char x, char a, char b, char c) {
char vy;

y = x¥*a+b+c;

return y;

}

UG902 (v2019.2) January 13, 2020 Www xilinx.com
High-Level Synthesis l Send Feedback l 7

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=7

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 1: Scheduling and Binding Example

1 2 3
Clock Cycle
- - N
Scheduling
Phase a |
*]
X
+ —
b |
— >
c _ -
_ _ J
(... .. h
Initial Binding Mul AddSub
Phase
AddSub
_ J
(L. N
Target Binding
Phase DSP48 AddSub
.

/
X14220-061518

In the scheduling phase of this example, high-level synthesis schedules the following operations
to occur during each clock cycle:

e First clock cycle: Multiplication and the first addition

e Second clock cycle: Second addition and output generation

Note: In the preceding figure, the square between the first and second clock cycles indicates when an
internal register stores a variable. In this example, high-level synthesis only requires that the output of the
addition is registered across a clock cycle. The first cycle reads x, a, and b data ports. The second cycle
reads data port ¢ and generates output y.

In the final hardware implementation, high-level synthesis implements the arguments to the top-
level function as input and output (I/O) ports. In this example, the arguments are simple data
ports. Because each input variable is a char type, the input data ports are all 8-bits wide. The
function return is a 32-bit int data type, and the output data port is 32-bits wide.

IMPORTANT! The advantage of implementing the C code in the hardware is that all operations finish in a
shorter number of clock cycles. In this example, the operations complete in only two clock cycles. In a central
processing unit (CPU), even this simple code example takes more clock cycles to complete.

In the initial binding phase of this example, high-level synthesis implements the multiplier
operation using a combinational multiplier (Mul) and implements both add operations using a
combinational adder/subtractor (AddSub).

UG902 (v2019.2) January 13, 2020 Www xilinx.com
High-Level Synthesis l Send Feedback l A

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=8

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

In the target binding phase, high-level synthesis implements both the multiplier and one of the
addition operations using a DSP48 resource. The DSP48 resource is a computational block
available in the FPGA architecture that provides the ideal balance of high-performance and
efficient implementation.

Extracting Control Logic and Implementing I/O Ports
Example

The following figure shows the extraction of control logic and implementation of I/O ports for
this code example:

void foo(int in[3], char a, char b, char c, int out[3]) {
int x,vy;
for(int 4 = 0; i < 3; i++) {
x = inf[4];
y = a*x + b + c;
out[i] = y;

}
3

Figure 2: Control Logic Extraction and I/O Port Implementation Example

Clock

—»
y out_data
+ + —»

in_data _
* — out_addr
—»in_addr —» out_ce
| —»in_ce | —» out_we

Finite State Machine (FSM)

© @ O

X14218

UG902 (v2019.2) January 13, 2020 Www xilinx.com
High-Level Synthesis l Send Feedback l 9

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=9

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

This code example performs the same operations as the previous example. However, it performs
the operations inside a for-loop, and two of the function arguments are arrays. The resulting
design executes the logic inside the for-loop three times when the code is scheduled. High-level
synthesis automatically extracts the control logic from the C code and creates an FSM in the RTL
design to sequence these operations. High-level synthesis implements the top-level function
arguments as ports in the final RTL design. The scalar variable of type char maps into a standard
8-bit data bus port. Array arguments, such as in and out, contain an entire collection of data.

In high-level synthesis, arrays are synthesized into block RAM by default, but other options are
possible, such as FIFOs, distributed RAM, and individual registers. When using arrays as
arguments in the top-level function, high-level synthesis assumes that the block RAM is outside
the top-level function and automatically creates ports to access a block RAM outside the design,
such as data ports, address ports, and any required chip-enable or write-enable signals.

The FSM controls when the registers store data and controls the state of any 1/0 control signals.
The FSM starts in the state C0. On the next clock, it enters state C1, then state C¢2, and then
state C3. It returns to state C1 (and C2, C3) a total of three times before returning to state co.

Note: This closely resembles the control structure in the C code for-loop. The full sequence of states are:
co,{Cc1, C2, C3},{cCc1, C2, C3},{C1, C2, C3},andreturnto Co.

The design requires the addition of b and ¢ only one time. High-level synthesis moves the
operation outside the for-loop and into state C0. Each time the design enters state C3, it reuses
the result of the addition.

The design reads the data from in and stores the data in x. The FSM generates the address for
the first element in state C1. In addition, in state C1, an adder increments to keep track of how
many times the design must iterate around states C1, C2, and C3. In state C2, the block RAM
returns the data for in and stores it as variable x.

High-level synthesis reads the data from port a with other values to perform the calculation and
generates the first y output. The FSM ensures that the correct address and control signals are
generated to store this value outside the block. The design then returns to state C1 to read the
next value from the array/block RAM in. This process continues until all outputs are written. The
design then returns to state C0 to read the next values of b and c to start the process again.

Performance Metrics Example

The following figure shows the complete cycle-by-cycle execution for the code in the previous
example, including the states for each clock cycle, read operations, computation operations, and
write operations.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 10

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=10

& XILINX

Chapter 1: High-Level Synthesis

Figure 3: Latency and Initiation Interval Example

L L L L

Cco C1l Cc2
Read B Addr Read
and C in[0] in[0]

C3

Calc.
out[0]

b ¢ Addr x=Data a

Function Latency =9

Y[0]

C3 C1 Cc2 C3 Cco

Calc. Addr Read Calc. Read B

out[1] in[2] in[2] out[2] and C
Addr x=Data a b ¢

Y[1] Y[2]

Function Initiation Interval = 10

\

Loop Iteration Latency = 3

Loop Iteration Interval = 3

\

Loop Latency =9

\

\

\

X14219

The following are performance metrics for this example:

e Latency: It takes the function 9 clock cycles to output all values.

Note: When the output is an array, the latency is measured to the last array value output.

e |I: The Il is 10, which means it takes 10 clock cycles before the function can initiate a new set
of input reads and start to process the next set of input data.

Note: The time to perform one complete execution of a function is referred to as one transaction. In this
example, it takes 11 clock cycles before the function can accept data for the next transaction.

e Loop iteration latency: The latency of each loop iteration is 3 clock cycles.

e Loop ll: The interval is 3.

e Loop latency: The latency is 9 clock cycles.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

[Send Feedback] WWW.ininx.co1n11

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=11

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Understanding Vivado HLS

The Xilinx Vivado HLS tool synthesizes a C function into an IP block that you can integrate into a
hardware system. It is tightly integrated with the rest of the Xilinx design tools and provides
comprehensive language support and features for creating the optimal implementation for your
C algorithm.

Following is the Vivado HLS design flow:

1. Compile, execute (simulate), and debug the C algorithm.

2. Synthesize the C algorithm into an RTL implementation, optionally using user optimization
directives.

Generate comprehensive reports and analyze the design.
4. Verify the RTL implementation using a pushbutton flow.

Package the RTL implementation into a selection of IP formats.

Note: In high-level synthesis, running the compiled C program is referred to as C simulation. Executing the C
algorithm simulates the function to validate that the algorithm is functionally correct.

Inputs and Outputs
The following are Vivado® HLS inputs:

e C function written in C, C++, or SystemC

This is the primary input to Vivado HLS. The function can contain a hierarchy of sub-
functions.

e Constraints

Constraints are required and include the clock period, clock uncertainty, and FPGA target. The
clock uncertainty defaults to 12.5% of the clock period if not specified.

e Directives

Directives are optional and direct the synthesis process to implement a specific behavior or
optimization.

e C test bench and any associated files

Vivado HLS uses the C test bench to simulate the C function prior to synthesis and to verify
the RTL output using C/RTL Cosimulation.

You can add the C input files, directives, and constraints to a Vivado HLS project interactively
using the Vivado HLS graphical user interface (GUI) or using Tcl commands at the command
prompt. You can also create a Tcl file and execute the commands in batch mode.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 1

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=12

& XILINX

The following are Vivado HLS outputs:

Chapter 1: High-

e RTL implementation files in hardware description language (HDL) formats

Level Synthesis

This is the primary output from Vivado HLS. Using Vivado synthesis, you can synthesize the
RTL into a gate-level implementation and an FPGA bitstream file. The RTL is available in the
following industry standard formats:

VHDL (IEEE 1076-2000)
- Verilog (IEEE 1364-2001)

Vivado HLS packages the implementation files as an IP block for use with other tools in the
Xilinx® design flow. Using logic synthesis, you can synthesize the packaged IP into an FPGA

bitstream.

e Report files

This output is the result of synthesis, C/RTL co-simulation, and IP packaging.

The following figure shows an overview of the Vivado HLS input and output files.

Figure 4: Vivado HLS Design Flow

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

Test C Ctt Constraints/
Bench SystemC Directives
Y A Y
C Simulation C Synthesis
Y \J
) d
RTL Vivado HLS VHDL
Adapter Verilog
Y v y
RTL Simulation Packaged IP
y y y
Vivado Svstem Xilinx
Design Ge?:erator Platform
Suite Studio

l Send Feedback l

X14309

www.Xilinx.com
13

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=13

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Test Bench, Language Support, and C Libraries

In any C program, the top-level function is called main (). In the Vivado® HLS design flow, you
can specify any sub-function below main () as the top-level function for synthesis. You cannot
synthesize the top-level function main (). Following are additional rules:

e Only one function is allowed as the top-level function for synthesis.

e Any sub-functions in the hierarchy under the top-level function for synthesis are also
synthesized.

¢ If you want to synthesize functions that are not in the hierarchy under the top-level function
for synthesis, you must merge the functions into a single top-level function for synthesis.

Test Bench

When using the Vivado® HLS design flow, it is time consuming to synthesize a functionally
incorrect C function and then analyze the implementation details to determine why the function
does not perform as expected. To improve productivity, use a test bench to validate that the C
function is functionally correct prior to synthesis.

The C test bench includes the function main () and any sub-functions that are not in the
hierarchy under the top-level function for synthesis. These functions verify that the top-level
function for synthesis is functionally correct by providing stimuli to the function for synthesis
and by consuming its output.

Vivado HLS uses the test bench to compile and execute the C simulation. During the compilation
process, you can select the Launch Debugger option to open a full C-debug environment, which
enables you to analyze the C simulation.

O RECOMMENDED: Because Vivado HLS uses the test bench to both verify the C function prior to synthesis
and to automatically verify the RTL output, using a test bench is highly recommended.

Language Support
Vivado HLS supports the following standards for C compilation/simulation:
e ANSI-C (GCC 4.6)

o C++ (G++4.6)
e SystemC (IEEE 1666-2006, version 2.2)

C, C++, and SystemC Language Constructs

Vivado HLS supports many C, C++, and SystemC language constructs and all native data types
for each language, including float and double types. However, synthesis is not supported for
some constructs, including:

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 14

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=14

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e Dynamic memory allocation

An FPGA has a fixed set of resources, and the dynamic creation and freeing of memory
resources is not supported.

e Operating system (OS) operations

All data to and from the FPGA must be read from the input ports or written to output ports.
OS operations, such as file read/write or OS queries like time and date, are not supported.
Instead, the C test bench can perform these operations and pass the data into the function for
synthesis as function arguments.

For details on the supported and unsupported C constructs and examples of each of the main
constructs, see Chapter 3: High-Level Synthesis Coding Styles.

C Libraries

C libraries contain functions and constructs that are optimized for implementation in an FPGA.
Using these libraries helps to ensure high quality of results (QoR), that is, the final output is a
high-performance design that optimizes resource usage. Because the libraries are provided in C,
C++, or SystemC, you can incorporate the libraries into the C function and simulate them to
verify the functional correctness before synthesis.

Vivado® HLS provides the following C libraries to extend the standard C languages:

e Arbitrary precision data types

e Half-precision (16-bit) floating-point data types

e Math operations

e Xilinx® IP functions, including fast fourier transform (FFT) and finite impulse response (FIR)

e FPGA resource functions to help maximize the use of shift register LUT (SRL) resources

C Library Example

C libraries ensure a higher QoR than standard C types. Standard C types are based on 8-bit
boundaries (8-bit, 16-bit, 32-bit, 64-bit). However, when targeting a hardware platform, it is often
more efficient to use data types of a specific width.

For example, a design with a filter function for a communications protocol requires 10-bit input
data and 18-bit output data to satisfy the data transmission requirements. Using standard C data
types, the input data must be at least 16-bits and the output data must be at least 32-bits. In the
final hardware, this creates a datapath between the input and output that is wider than
necessary, uses more resources, has longer delays (for example, a 32-bit by 32-bit multiplication
takes longer than an 18-bit by 18-bit multiplication), and requires more clock cycles to complete.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 1

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=15

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Using an arbitrary precision data type in this design instead, you can specify the exact bit-sizes to
be specified in the C code prior to synthesis, simulate the updated C code, and verify the quality
of the output using C simulation prior to synthesis. Arbitrary precision data types are provided
for C and C++ and allow you to model data types of any width from 1 to 1024-bit. For example,
you can model some C++ types up to 32768 bits.

Note: Arbitrary precision types are only required on the function boundaries, because Vivado HLS
optimizes the internal logic and removes data bits and logic that do not fanout to the output ports.

Synthesis, Optimization, and Analysis

Vivado® HLS is project based. Each project holds one set of C code and can contain multiple
solutions. Each solution can have different constraints and optimization directives. You can
analyze and compare the results from each solution in the Vivado HLS GUI.

Following are the synthesis, optimization, and analysis steps in the Vivado HLS design process:

Create a project with an initial solution.
Verify the C simulation executes without error.

Run synthesis to obtain a set of results.

> 0 bd e

Analyze the results.

After analyzing the results, you can create a new solution for the project with different
constraints and optimization directives and synthesize the new solution. You can repeat this
process until the design has the desired performance characteristics. Using multiple solutions
allows you to proceed with development while still retaining the previous results.

Optimization
Using Vivado® HLS, you can apply different optimization directives to the design, including:

e Instruct a task to execute in a pipeline, allowing the next execution of the task to begin before
the current execution is complete.

e Specify a latency for the completion of functions, loops, and regions.
e Specify a limit on the number of resources used.

e OQverride the inherent or implied dependencies in the code and permit specified operations.
For example, if it is acceptable to discard or ignore the initial data values, such as in a video
stream, allow a memory read before write if it results in better performance.

e Select the I/0 protocol to ensure the final design can be connected to other hardware blocks
with the same 1/O protocol.

Note: Vivado HLS automatically determines the 1/O protocol used by any sub-functions. You cannot
control these ports except to specify whether the port is registered.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 16

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=16

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

You can use the Vivado HLS GUI to place optimization directives directly into the source code.
Alternatively, you can use Tcl commands to apply optimization directives.

Analysis

When synthesis completes, Vivado® HLS automatically creates synthesis reports to help you
understand the performance of the implementation. In the Vivado HLS GUI, the Analysis
Perspective includes the Performance tab, which allows you to interactively analyze the results in
detail. The following figure shows the Performance view for the Extracting Control Logic and
Implementing /O Ports Example.

Figure 5: Vivado HLS Analysis Example
= Performance - foo % = O

Current Module : foo

lOneration\Control S...| co | c1 | c2 | ¢c3 |
1 c read(read)
2 | b read(read)
3 a read(read)
4 | tmpl(+)
5 HLoop 1
6 exitcond (icmp)
7 i 1(+)
a8 % (read)
9 tmp 6(*)
10 v (+)
11 node 36 (write)

Performance | Resource

The Performance tab shows the following for each state:

e C0: The first state includes read operations on ports a, b, and ¢ and the addition operation.

e C1 and c2: The design enters a loop and checks the loop increment counter and exit
condition. The design then reads data into variable %, which requires two clock cycles. Two
clock cycles are required, because the design is accessing a block RAM, requiring an address in
one cycle and a data read in the next.

e C3: The design performs the calculations and writes output to port y. Then, the loop returns
to the start.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 17

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=17

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

RTL Verification

If you added a C test bench to the project, you can use it to verify that the RTL is functionally
identical to the original C. The C test bench verifies the output from the top-level function for
synthesis and returns zero to the top-level function main () if the RTL is functionally identical.
Vivado® HLS uses this return value for both C simulation and C/RTL co-simulation to determine
if the results are correct. If the C test bench returns a non-zero value, Vivado HLS reports that
the simulation failed. For more information, see Test Bench Requirements.

O TIP: Vivado HLS automatically creates the infrastructure to perform the C/RTL co-simulation and automatically
executes the simulation using one of the following supported RTL simulators:

¢ Vivado Simulator (XSim)
e ModelSim simulator

e VCS

e NCSim

¢ Riviera

e Xcelium

If you select Verilog or VHDL HDL for simulation, Vivado HLS uses the HDL simulator you
specify. The Xilinx® design tools include Vivado Simulator. Third-party HDL simulators require a
license from the third-party vendor. The VCS and NCSim simulators are only supported on the
Linux operating system.

RTL Export

Using Vivado® HLS, you can export the RTL and package the final RTL output files as IP in any of
the following Xilinx® IP formats:

e Vivado IP Catalog

Import into the Vivado IP catalog for use in the Vivado Design Suite.
e System Generator for DSP

Import the HLS design into System Generator.
e Synthesized Checkpoint (.dcp)

Import directly into the Vivado Design Suite the same way you import any Vivado Design
Suite checkpoint.

Note: The synthesized checkpoint format invokes logic synthesis and compiles the RTL implementation
into a gate-level implementation, which is included in the IP package.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 18

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=18

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

For all IP formats except the synthesized checkpoint, you can optionally execute logic synthesis
from within Vivado HLS to evaluate the results of RTL synthesis or implementation. This optional
step allows you to confirm the estimates provided by Vivado HLS for timing and area before
handing off the IP package. These gate-level results are not included in the packaged IP.

Note: Vivado HLS estimates the timing and area resources based on built-in libraries for each FPGA. When
you use logic synthesis to compile the RTL into a gate-level implementation, perform physical placement of
the gates in the FPGA, and perform routing of the inter-connections between gates, logic synthesis might
make additional optimizations that change the Vivado HLS estimates.

Using Vivado HLS

To open Vivado® HLS on a Windows platform, double-click the desktop button as shown in the
following figure.

Figure 6: Vivado HLS GUI Button

Vivado HLS

To invoke Vivado HLS on a Linux platform (or from the Vivado HLS Command Prompt on
Windows) execute the following command at the command prompt.

$ vivado_hls

The Vivado HLS GUI opens as shown in the following figure.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 19

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=19

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 7: Vivado HLS GUI Welcome Page

¢ Vivado HLS E@
File Edit Project Solution Window Help
+| Vivado HLS Welcome Page % = &

=
&

VIVADO'

HLS

Quick Start Recent Projects
proj_dct
o C\Vivado_HLS\My_First_Project\proj_dct
N B B
\ % \ 4
Create New Project Open Project Open Example Project

Documentation

mo

Tutorials User Guide Release Notes Guide

You can use the Quick Start options to perform the following tasks:

e Create New Project: Launch the project setup wizard.
¢ Open Project: Navigate to an existing project or select from a list of recent projects.

e Open Example Project: Open Vivado HLS examples.
You can use the Documentation options to perform the following tasks:

e Tutorials: Opens the Vivado Design Suite Tutorial: High-Level Synthesis (UG871).

e User Guide: Opens this document, the Vivado Design Suite User Guide: High-Level Synthesis
(UG902).

e Release Notes Guide: Opens the Vivado Design Suite User Guide: Release Notes, Installation, and
Licensing (UG973) for the latest software version.

The primary controls for using Vivado HLS are shown in the toolbar in the following figure.
Project control ensures only commands that can be currently executed are highlighted. For
example, synthesis must be performed before C/RTL co-simulation can be executed. The C/RTL
co-simulation toolbar buttons remain gray until synthesis completes.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 20

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;t=vivado+install+guide
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=20

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 8: Vivado HLS Controls

Project
Management Operations Analysis

\ 1 A
| 1 |
File Edit Project Solution Window Help
5, & B 8w aaprpry@ @y e ®
% Debug | | Synthesis |¢" Analysis

\ J
I

Perspectives

In the Project Management section, the buttons are (from left to right):

Create New Project opens the new project wizard.

Project Settings allows the current project settings to be modified.

New Solution opens the new solution dialog box.

Solution Settings allows the current solution settings to be modified.
The next group of toolbar buttons control the tool operation (from left to right):

¢ Index C Source refreshes the annotations in the C source.

¢ Run C Simulation opens the C Simulation dialog box.

e C Synthesis starts C source code in Vivado HLS.

¢ Run C/RTL Cosimulation verifies the RTL output.

e Export RTL packages the RTL into the desired IP output format.

The final group of toolbar buttons are for design analysis (from left to right):

e Open Report opens the C synthesis report or drops down to open other reports.

o Compare Reports allows the reports from different solutions to be compared.

Each of the buttons on the toolbar has an equivalent command in the menus. In addition, Vivado
HLS GUI provides three perspectives. When you select a perspective, the windows automatically
adjust to a more suitable layout for the selected task.

e The Debug perspective opens the C debugger.

e The Synthesis perspective is the default perspective and arranges the windows for performing
synthesis.

e The Analysis perspective is used after synthesis completes to analyze the design in detail. This
perspective provides considerable more detail than the synthesis report.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | ’1

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=21

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Changing between perspectives can be done at any time by selecting the desired perspective
button.

The remainder of this chapter discusses how to use Vivado HLS. The following topics are
discussed:

How to create a Vivado HLS synthesis project.

How to simulate and debug the C code.

How to synthesize the design, create new solutions and add optimizations.
How to perform design analysis.

How to verify and package the RTL output.

How to use the Vivado HLS Tcl commands and batch mode.

This chapter ends with a review of the design examples, tutorials, and resources for more
information.

Creating a New Synthesis Project

To create a new project, click the Create New Project link on the Welcome page, or select the
File > New Project menu command. This opens the project wizard shown in Creating a New
Synthesis Project, which allows you to specify the following:

Project Name: Specifies the project name, which is also the name of the directory in which the

project details are stored.

Location: Specifies where to store the project.

CAUTION! The Windows operating system has a 260-character limit for path lengths, which can affect the
Vivado tools. To avoid this issue, use the shortest possible names and directory locations when creating projects,
defining IP or managed IP projects, and creating block designs.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 2>

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=22

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 9: Project Specification

+ New Vivado HLS Project o [-EES

Project Configuration A

=

T,

Create Vivado HLS project of selected type

Project name: my_proj

Location: C\Vivado_HLS\My_First_Project Browse...

(=]
at
M
~
™

Next = inish Cancel

Selecting the Next > button moves the wizard to the second screen where you can enter details
in the project C source files (Creating a New Synthesis Project).

¢ Top Function: Specifies the name of the top-level function to be synthesized. If you add the C
files first, you can use the Browse button to review the C hierarchy, and then select the top-
level function for synthesis. The Browse button remains grayed out until you add the source
files.

Note: This step is not required when the project is specified as SystemC, because Vivado HLS automatically
identifies the top-level functions.

Use the Add Files button to add the source code files to the project.

i} IMPORTANT! Do not add header files (with the . h suffix) to the project using the Add Files button (or with the
associated add_ £i1es Tcl command).

Vivado HLS automatically adds the following directories to the search path:

e Working directory

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | >3

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=23

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Note: The working directory contains the Vivado HLS project directory.

¢ Any directory that contains C files added to the project

Header files that reside in these directories are automatically included in the project. You must
specify the path to all other header files using the Edit CFLAGS button.

The Edit CFLAGS button specifies the C compiler flags options required to compile the C code.
These compiler flag options are the same used in gcc or g++. C compiler flags include the path
name to header files, macro specifications, and compiler directives, as shown in the following
examples:

o -l/project/source/headers: Provides the search path to associated header files

Note: You must specify relative path names in relation to the working directory not the project
directory.

e -DMACRO_1: Defines macro MACRO_1 during compilation

o -fnested-functions: Defines directives required for any design that contains nested functions

O TIP: For a complete list of supported Edit CFLAGS options, see the Option Summary page (http:/gcc.gnu.org/
onlinedocs/gcc/Option-Summary.html) on the GNU Compiler Collection (GCC) website.

O TIP: You can use $: :env (MY_ENV_VAR) to specify environment variables in CFLAGS. For example, to
include the directory $MY_ENV_VAR/inc1ude for compilation, you can specify - I
$::env(MY_ENV_VAR)/include in CFLAGS.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 24

http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=24

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 10: Project Source Files

4 New Vivado HLS Project = B

Add/Remove Files ‘:I}"Ey
Add/remove C-based source files (design specification)
Top Function: dcﬂ Browse...
Design Files

MName CFLAGS Add Files...
detcpp New File...
Edit CFLAGS...
Remaove

< Back “ Next = Finish Cancel

The next window in the project wizard allows you to add the files associated with the test bench
to the project.

Note: For SystemC designs with header files associated with the test bench but not the design file, you
must use the Add Files button to add the header files to the project.

In most of the example designs provided with Vivado HLS, the test bench is in a separate file
from the design. Having the test bench and the function to be synthesized in separate files keeps
a clean separation between the process of simulation and synthesis. If the test bench is in the
same file as the function to be synthesized, the file should be added as a source file and, as
shown in the next step, a test bench file.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 55

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=25

& XILINX

Chapter 1: High-Level Synthesis

Figure 11: Project Test Bench Files

+ New Vivado HLS Project

Add/Remove Files

Add/remove C-based testbench files (design test)

TestBench Files

MName CFLAGS
dct_test.cpp
indat

out.golden.dat

< Back “ MNext =

rinisn

=Bl =%
.:|"l,_
74

Add Files...
Mew File...
Add Folder...

Cancel

As with the C source files, click the Add Files button to add the C test bench and the Edit

CFLAGS button to include any C compiler options.

In addition to the C source files, all files read by the test bench must be added to the project. In
the example shown in the preceding figure, the test bench opens file in . dat to supply input
stimuli to the design and file out . golden. dat to read the expected results. Because the test
bench accesses these files, both files must be included in the project.

If the test bench files exist in a directory, the entire directory might be added to the project,
rather than the individual files, using the Add Folders button.

If there is no C test bench, there is no requirement to enter any information here and the Next >
button opens the final window of the project wizard, which allows you to specify the details for

the first solution, as shown in the following figure.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

www.Xilinx.com

l Send Feedback l 2

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=26

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 12: Initial Solution Settings

+ | New Vivado HLS Project =0 Eal ™
Solution Configuration

Create Vivado HLS solution for selected technology

Solution Name: solutionl
Clock
Period: 10 Uncertainty:

Part Selection
Part: [Please select part] u

The final window in the new project wizard allows you to specify the details of the first solution:

e Solution Name: Vivado HLS provides the initial default name solutioni, but you can specify
any name for the solution.

e Clock Period: The clock period specified in units of ns or a frequency value specified with the
MHz suffix (For example, 150MHz).

¢ Uncertainty: The clock period used for synthesis is the clock period minus the clock
uncertainty. Vivado HLS uses internal models to estimate the delay of the operations for each
FPGA. The clock uncertainty value provides a controllable margin to account for any increases
in net delays due to RTL logic synthesis, place, and route. If not specified in nanoseconds (ns)
or a percentage, the clock uncertainty defaults to 12.5% of the clock period.

e Part: Click to select the appropriate technology, as shown in the following figure.

UG902 (v2019.2) January 13, 2020

www.xilinx.com
High-Level Synthesis [_send Feedback | 57

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=27

& XILINX

Figure 13: Part Selection

Chapter 1: High-Level Synthesis

¢ Device Selection Dialog

Select: [i Parts_] [| Boardsl

Filter

Product Categaory: | All = | Package: All ;

Family: All = | Speed grade: | All >

Sub-Family: All =~ | Temp grade: |All -

Reset All Filters

Search: =

Part Family Packa.. Speed SLICE LUT FF DsSP BRAM #

& xc7z030ffg676-1 zyng ffge76 -1 19650 78600 157200 400 530

& xc7z030fbv676-3 zyng fove76 -3 19650 78600 157200 400 530 =

& xcTz030fbv676-2 zyng fove7e -2 19650 78600 157200 400 530 il

& xc7z030fbv676-1 zyng fove/e -1 19650 78600 157200 400 530

& xc7z030fbv484-3 zyng fov484 -3 19650 78600 157200 400 530 -
OK l \ Cancel

Select the FPGA to be targeted. You can use the filter to reduce the number of device in the
device list. If the target is a board, specify boards in the top-left corner and the device list is
replaced by a list of the supported boards (and Vivado HLS automatically selects the correct

target device).

Clicking Finish opens the project as shown in the following figure.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l

www.Xilinx.com

28

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=28

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 14: New Project in the Vivado HLS GUI

4 Vivado HLS - my_proj (C:\Vivado_HLS\My_First_Project\my_proj) =
File Edit Project Solution Window Help
g] R CEGRBEOR Y =1 G| &) qﬁDebugSn”zl\m‘jlysis
(75 Explarer i3 W =8 = O | 5= Outline 2 . [Directive = b
4|5 my_proj An outline is not available.
> i Includes

- = Source
+ = Test Bench
. Y= solution1

B Console 2 @] Erors @& Warnings| & Man Page E=s 2B~~~ =
Vivado HLS Consale

my_proj

The Vivado HLS GUI consists of four panes:

e On the left hand side, the Explorer pane lets you navigate through the project hierarchy. A
similar hierarchy exists in the project directory on the disk.

¢ In the center, the Information pane displays files. Files can be opened by double-clicking on
them in the Explorer Pane.

e On the right, the Auxiliary pane shows information relevant to whatever file is open in the
Information pane,

e At the bottom, the Console Pane displays the output when Vivado HLS is running.

Simulating the C Code
Verification in the Vivado® HLS flow can be separated into two distinct processes.

e Pre-synthesis validation that validates the C program correctly implements the required
functionality.

e Post-synthesis verification that verifies the RTL is correct.

Both processes are referred to as simulation: C simulation and C/RTL co-simulation.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 59

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=29

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Before synthesis, the function to be synthesized should be validated with a test bench using C
simulation. A C test bench includes a top-level function main () and the function to be
synthesized. It might include other functions. An ideal test bench has the following attributes:

e The test bench is self-checking and verifies the results from the function to be synthesized are
correct.

¢ |[f the results are correct the test bench returns a value of O to main (). Otherwise, the test
bench should return any non-zero values

Clicking the Run C Simulation toolbar button b opens the C Simulation Dialog box, shown in
the following figure.

Figure 15: C Simulation Dialog Box

¢ C Simulation Dialog &3

C Simulation

bl

Options
Launch Debugger
Build Only
Clean Build

Optimizing Compile

Input Arguments

Do not show this dialog box again.

(014 l ‘ Cancel

If no option is selected in the dialog box, the C code is compiled and the C simulation is
automatically executed. The results are shown in the following figure. When the C code
simulates successfully, the console window displays a message, as shown in the following figure.
The test bench echoes to the console any print f commands used with the message “Test

Passed!”

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 30

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=30

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 16: C Compiled with Build

+ | Vivado HLS - my_proj (CAVivado_HLS\My_First_Projectymy_proj) = o=
File Edit Project Solution Window Help
§ | of =3 | R c@bhE aor-val @y e ®
fd Debug &!‘Analysis
[Explorer 3 = 0 = B8 Outline 5 ™._4 Directive ~ =08
4|5 my_proj An outline is not available.

& Includes
£ Source
= Test Bench

a = solutioni

4 @ constraints
o directives.tcl
@ scripttcl
= csim

& Console 2 9] Errors| & Warnings % b ‘=
Vivado HLS Console
Generating csim.exe
Test passed !
@I [SIM-1] CSim done with @ errors.
@I [LIC-1@1] Checked in feature [HLS]

1 m

my_proj

The other options in the C Simulation dialog box are:

Launch Debugger: This compiles the C code and automatically opens the debug perspective.
From within the debug perspective the Synthesis perspective button (top left) can be used to
return the windows to synthesis perspective.

Build Only: The C code compiles, but the simulation does not run.

Clean Build: Remove any existing executable and object files from the project before
compiling the code.

Optimized Compile: By default the design is compiled with debug information, allowing the
compilation to be analyzed in the debug perspective. This option uses a higher level of
optimization effort when compiling the design but removes all information required by the
debugger. This increases the compile time but should reduce the simulation run time.

Compiler: Allows you to select between using gcc/g++ to compile the code.

If you select the Launch Debugger option, the windows automatically switch to the debug
perspective and the debug environment opens as shown in the following figure. This is a full
featured C debug environment. The step buttons (red box in the following figure) allow you to
step through code, breakpoints can be set and the value of the variables can be directly viewed.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 31

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=31

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 17: C Debug Environment

s Vivado HLS - dct_prj (C:\Vivado_HLS\My._First_Project\dct_prj) o] &
File Edit Project Solution Run Window Help
et BM|EE R BE|&|®

%5 Debug |l | Synthesis & Analysis

%5 Debug &3 . [t Explorer ¥ o IESE = |i® ¥ = O|(t= Variables 2 % Breakpoints| & Registers) = Modules =0
[€] dct_prj.Debug [C/C++ Application] ot B | £3
i C\Vivado_HLS\My_First_Project\dct_prj\solution1\csim\build\csim.exe [4| Name
o® Thread [1] 0 (Suspended : Breakpoint)
= main() at dct_test.cpp:7 0x401398
»d gdb

Type Value

4 {1} 2 4 »

A scripttel | [9 dct_testcpp = B[8= Outline £ A8 e %~"0
1// Copyright (C) 2008 AutoESL Design Technologies, Inc. -

= dcth
2// All rights reserved. e main() :int

A#include "dct.h"
5
I i
% 7int main() {
8 short a[N], b[N];
9 int retval = 9, i; S

4

B Console 52 ¥ Tasks| [2! Problems| © Executables| O Memory
dct_prj.Debug [C/C++ Application] csim.exe

O TIP: Click the Synthesis perspective button to return to the standard synthesis windows.

Reviewing the C Simulation Output

When C simulation completes, a folder csim is created inside the solution folder as shown.

UG902 (v2019.2) January 13, 2020

www.xilinx.com
High-Level Synthesis [_send Feedback | 3

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=32

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 18: C Simulation Output Files

[+ Explorer &2 = 0
4 25 my_proj
+ i Includes
- = Source
» = Test Bench
a4 Y= solutioni
4 & constraints
o directives.tcl
o scripttcl
4 (= csim
4 (= build
mb Csim.exe
csim.mk
indat
Makefile.rules
out.dat
out.golden.dat
@ run_sim.tcl
sim.bat
> = obj
4 = report
=l dct_csim.log

The folder csim/build is the primary location for all files related to the C simulation.

e Any files read by the test bench are copied to this folder.
e The C executable file csim. exe is created and run in this folder.

e Any files written by the test bench are created in this folder.

If the Build Only option is selected in the C simulation dialog box, the file csim. exe is created in
this folder but the file is not executed. The C simulation is run manually by executing this file
from a command shell. On Windows the Vivado® HLS command shell is available through the
start menu.

The folder csim/report contains a log file of the C simulation.

The next step in the Vivado HLS design flow is to execute synthesis.

Synthesizing the C Code
The following topics are discussed in this section:

e Creating an Initial Solution.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 3

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=33

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Reviewing the Output of C Synthesis.

Analyzing the Results of Synthesis.

Creating a New Solution.

Applying Optimization Directives.
Creating an Initial Solution

Use the C Synthesis toolbar button B or the menu Solution > Run C Synthesis to synthesize the
design to an RTL implementation. During the synthesis process messages are echoed to the
console window.

The message include information messages showing how the synthesis process is proceeding:

INFO: [HLS 200-10] Opening and resetting project
'C:/Vivado_HLS/My_First_Project/proj_dct'.

INFO: [HLS 200-10] Adding design file 'dct.cpp' to the project

INFO: [HLS 200-10] Adding test bench file 'dct_test.cpp' to the project
INFO: [HLS 200-10] Adding test bench file 'in.dat' to the project

INFO: [HLS 200-10] Adding test bench file 'out.golden.dat' to the project
INFO: [HLS 200-10] Opening and resetting solution
'C:/Vivado_HLS/My_First_Project/proj_dct/solutionl'.

INFO: [HLS 200-10] Cleaning up the solution database.

INFO: [HLS 200-10] Setting target device to 'xcTkl60tfbg484-1"

INFO: [SYN 201-201] Setting up clock 'default' with a period of 4ns.

]
]
]
]

Within the GUI, some messages may contain links to enhanced information. In the following
example, message XFORM 203-602 is underlined indicating the presence of a hyperlink. Clicking
on this message provides more details on why the message was issued and possible resolutions.
In this case, Vivado® HLS automatically inlines small functions and using the INLINE directive
with the - o f £ option may be used to prevent this automatic inlining.

INFO: [XFORM 203-602] Inlining function 'read_data' into 'dct' (dct.cpp:85)
automatically.

INFO: [XFORM 203-602] Inlining function 'write_data' into 'dct'
(dct.cpp:90) automatically.

When synthesis completes, the synthesis report for the top-level function opens automatically in
the information pane as shown in the following figure.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 34

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=34

& XILINX

Chapter 1: High-Level Synthesis

Figure 19: Synthesis Report

+ | Vivado HLS - dct. _prj (C\Vivado_HLS\My_First_Project\dct_prj)
File Edit Prgject Solution Window Help

Vivado HLS Console

7| of | 5 B B S@wglaap-ydaar|e®
%5 Debug ||+ | Synthesis |5 Analysis
&5 Explorer 3 w7 0|49 scripttel 2] det csynth.rpt i = O/8 Outlin 3 ¥ Directi| — 8
& dct_prj Performance Estimates - i=| General Information
[Includes e :=| Performance Estimates
= Timing (ns; R
£ Source 9 (ns) Timing (ns)
= Test Bench = Summary Latency (clock cycles)
= solution1 Clock Target Estimated Uncertainty E i/ Utilization Estimates
constraints default 10.0 7.18 125 = Summary
i directi & Detail
‘;?l dlrfactlves.tcl = Latency (clock cycles) . =
W scripticl iz| Interface
& csim = Summary = Summary
= build Latency Interval
& report min max min max Pipeline Type
= syn 3959 3959 3960 3960 none
= Detail
Instance
* Loon N
« [T »
& Console 52 . @] Errors| & Warnings w i =70

E=H Scl =<

4 |

{11} 2

Reviewing the Output of C Synthesis

When synthesis completes, the folder syn is now available in the solution folder.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

www.Xilinx.com

l Send Feedback l 35

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=35

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 20: C Synthesis Output Files

[Explorer 2 g = 0
4 25 my_proj
> Y Includes
: = Source
> = Test Bench
a 7= solutioni
+ ¥ constraints
= csim
4 |[= syn
4 = report
=l dct_1d_csynth.rpt
=l dct_2d_csynth.rpt
£l dct_csynth.rpt
> = systemc
4 = verilog
dct_1d_dct_coeff_table_rom.dat
sl dct_1d_dct coeff tablew
i dct_1dwv
s dct_2d_row_outbufy
rrd dct_2dwv
wi dctv

» = vhdl

The syn folder contains four sub-folders. A report folder and one folder for each of the RTL
output formats.

The report folder contains a report file for the top-level function and one for every sub-
function in the design: provided the function was not inlined using the INLINE directive or inlined
automatically by Vivado® HLS. The report for the top-level function provides details on the
entire design.

The verilog, vhdl, and systemc folders contain the output RTL files. The preceding figure
shows the verilog folder expanded. The top-level file has the same name as the top-level
function for synthesis. In the C design there is one RTL file for each function (not inlined). There
might be additional RTL files to implement sub-blocks (block RAM, pipelined multipliers, etc).

ﬁ? IMPORTANT! Xilinx® does not recommend using these files for RTL synthesis. Instead, Xilinx recommends
using the packaged IP output files discussed later in this design flow. Carefully read the text that immediately
follows this note.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 36

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=36

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

In cases where Vivado HLS uses Xilinx IP in the design, such as with floating point designs, the
RTL directory includes a script to create the IP during RTL synthesis. If the files in the syn folder
are used for RTL synthesis, it is your responsibility to correctly use any script files present in
those folders. If the package IP is used, this process is performed automatically by the design
Xilinx tools.

Analyzing the Results of C Synthesis

The two primary features provided to analyze the RTL design are:

e Synthesis reports

e Analysis Perspective

In addition, if you are more comfortable working in an RTL environment, Vivado® HLS creates
two projects during the IP packaging process:

e Vivado Design Suite project
e Vivado IP Integrator project
Synthesis Reports

When synthesis completes, the synthesis report for the top-level function opens automatically in
the information pane. The report provides details on both the performance and area of the RTL
design. The outline tab on the right-hand side can be used to navigate through the report.

The following table explains the categories in the synthesis report.

Table 1: Synthesis Report Categories

Category Description

General Information Details on when the results were generated, the version of
the software used, the project name, the solution name, and
the technology details.

Performance Estimates > Timing The target clock frequency, clock uncertainty, and the
estimate of the fastest achievable clock frequency.

Performance Estimates > Latency > Summary Reports the latency and initiation interval for this block and
any sub-blocks instantiated in this block.

Each sub-function called at this level in the C source is an
instance in this RTL block, unless it was inlined.

The latency is the number of cycles it takes to produce the
output. The initiation interval is the number of clock cycles
before new inputs can be applied.

In the absence of any PIPELINE directives, the latency is one
cycle less than the initiation interval (the next input is read
when the final output is written).

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 37

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=37

Chapter 1: High-Level Synthesis

& XILINX

Table 1: Synthesis Report Categories (cont'd)

Category

Description

Performance Estimates > Latency > Detail

The latency and initiation interval for the instances (sub-
functions) and loops in this block. If any loops contain sub-
loops, the loop hierarchy is shown.

The min and max latency values indicate the latency to
execute all iterations of the loop. The presence of
conditional branches in the code might make the min and
max different.

The Iteration Latency is the latency for a single iteration of
the loop.

If the loop has a variable latency, the latency values cannot
be determined and are shown as a question mark (?). See
the text after this table.

Any specified target initiation interval is shown beside the
actual initiation interval achieved.

The tripcount shows the total number of loop iterations.

Utilization Estimates > Summary

This part of the report shows the resources (LUTS, Flip-
Flops, DSP48s) used to implement the design.

Utilization Estimates > Details > Instance

The resources specified here are used by the sub-blocks
instantiated at this level of the hierarchy.

If the design only has no RTL hierarchy, there are no
instances reported.

If any instances are present, clicking on the name of the
instance opens the synthesis report for that instance.

Utilization Estimates > Details > Memory

The resources listed here are those used in the
implementation of memories at this level of the hierarchy.

Vivado HLS reports a single-port BRAM as using one bank of
memory and reports a dual-port BRAM as using two banks
of memory.

Utilization Estimates > Details > FIFO

The resources listed here are those used in the
implementation of any FIFOs implemented at this level of
the hierarchy.

Utilization Estimates > Details > Shift Register

A summary of all shift registers mapped into Xilinx SRL
components.

Additional mapping into SRL components can occur during
RTL synthesis.

Utilization Estimates > Details > Expressions

This category shows the resources used by any expressions
such as multipliers, adders, and comparators at the current
level of hierarchy.

The bit-widths of the input ports to the expressions are
shown.

Utilization Estimates > Details > Multiplexors

This section of the report shows the resources used to
implement multiplexors at this level of hierarchy.

The input widths of the multiplexors are shown.

Utilization Estimates > Details > Register

A list of all registers at this level of hierarchy is shown here.
The report includes the register bit-widths.

Interface Summary > Interface

This section shows how the function arguments have been
synthesized into RTL ports.

The RTL port names are grouped with their protocol and

source object: these are the RTL ports created when that
source object is synthesized with the stated I/O protocol.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

[Send Feedback] WWW.Xi|inX.CO?I;2

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=38

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Certain Xilinx devices use stacked silicon interconnect (SSI) technology. In these devices, the total
available resources are divided over multiple super logic regions (SLRs). When you select an SSI
technology device as the target technology, the utilization report includes details on both the
SLR usage and the total device usage.

‘11} IMPORTANT! When using SSI technology devices, it is important to ensure that the logic created by Vivado
HLS fits within a single SLR.

A common issue for new users of Vivado HLS is seeing a synthesis report similar to the following
figure. The latency values are all shown as a “?” (question mark).

Figure 21: Synthesis Report

=0 yuv_filter csynth.rpt i3 =g
Performance Estimates

-l Timing (ns)

= Summary

Clock Target Estimated Uncertainty
default 8.00 6.75 1.00

m

-l Latency (clock cycles)
= Summary

Latency Interval
min max min max Type

? ? ? ? none
= Detail
Instance
-l Loop
Latency Initiation Interval
Loop Name min max Iteration Latency achieved target Trip Count Pipelined

- YUV_SCALE_LOOP_X ? ? ? - - ? no
+ YUV_SCALE_LOOPR_Y ? ? 4 - - ? no

Vivado HLS performs analysis to determine the number of iteration of each loop. If the loop
iteration limit is a variable, Vivado HLS cannot determine the maximum upper limit.

In the following example, the maximum iteration of the for-loop is determined by the value of
input num_samples. The value of num_samples is not defined in the C function, but comes
into the function from the outside.

void foo (char num_samples, ...);

void foo (num_samples, ...) {
int 4i;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 39

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=39

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

loop_1l: for(i=0;i< num_samples;i++) {

result = a + b;
}
}

If the latency or throughput of the design is dependent on a loop with a variable index, Vivado
HLS reports the latency of the loop as being unknown (represented in the reports by a question
mark “?").

The TRIPCOUNT directive can be applied to the loop to manually specify the number of loop
iterations and ensure the report contains useful numbers. The -max option tells Vivado HLS the
maximum number of iterations that the loop iterates over and the -min option specifies the
minimum number of iterations performed.

Note: The TRIPCOUNT directive does not impact the results of synthesis.

The tripcount values are used only for reporting, to ensure the reports generated by Vivado HLS
show meaningful ranges for latency and interval. This also allows a meaningful comparison
between different solutions.

If the C assert macro is used in the code, Vivado HLS can use it to both determine the loop limits
automatically and create hardware that is exactly sized to these limits.

Analysis Perspective

In addition to the synthesis report, you can use the Analysis Perspective to analyze the results. To
open the Analysis Perspective, click the Analysis button as shown in the following figure.

Figure 22: Analysis Perspective

(= | IV S

. 45 Debug || Synthesis

= 0

The Analysis Perspective provides both a tabular and graphical view of the design performance
and resources and supports cross-referencing between both views. The following figure shows
the default window configuration when the Analysis Perspective is first opened.

The Module Hierarchy pane provides an overview of the entire RTL design.

e This view can navigate throughout the design hierarchy.

¢ The Module Hierarchy pane shows the resources and latency contribution for each block in
the RTL hierarchy.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 40

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=40

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

The following figure shows the dct design uses six block RAMs, approximately 300 LUTs and has

a

latency of around 3000 clock cycles. Sub-block dct_2b contributes four block RAMs,

approximately 250 LUTs and about 2600 cycle of latency to the total. It is immediately clear that
most of the resources and latency in this design are due to sub-block dct_2d and this block
should be analyzed first.

Figure 23: Analysis Perspective in the Vivado HLS GUI

+* | Vivado HLS - dct_prj (C:\Vivado_HLS\My._First_Project\dct_prj) fo [G]
File Edit Project Solution Window Help
= 71 g &r | &

% Debug |+ | Synthesis |¢=° Analysis |

ERAM DSP FF LUT Latency Interval Pipeline type [

Current Module : dct

e dct 6 1 151 331 2935 2936 none
e dct.2d 4 1 103 247 2644 2644 none loneration\Control S..] co | c1 | c2 | ¢3 | ca
edctld 1 1 50 107 145 145 none 1 ZRD Loop Row
2 exitcondl i(icmp)
3 r(+)
4 =RD Loop Col
5 exitcond i (icmp)
6 c(+)
7 tmp 5 i(+)
8 input load (read)
(] p addrl (+)
10 node 41 (write)
‘ Resource Profile A 11 dct 2d(function)
Pipelined Latency Initiation Interval Iteration Latency Trip count ig 7N§xl'llzzgn§iwi3(i.,.
+ o det - 2035 2936 - - A =i
4 e RD_Loop_Row no 144 - 18 8 15-21 ®WR Loop Col
® RD_Loop_Col no 16 - 2 3
+ o WR_Loop_Row no 144 - 18 8
e WR_Loop_Col no 16 g 2 8

P
Performance JResource

The Performance Profile pane provides details on the performance of the block currently
selected in the Module Hierarchy pane, in this case, the dct block highlighted in the Module
Hierarchy pane.

The performance of the block is a function of the sub-blocks it contains and any logic within
this level of hierarchy. The Performance Profile pane shows items at this level of hierarchy that
contribute to the overall performance.

Performance is measured in terms of latency and the initiation interval. This pane also includes
details on whether the block was pipelined or not.

In this example, you can see that two loops (RD_Loop_Row and WR_Loop_Row) are
implemented as logic at this level of hierarchy and both contain sub-loops and both contribute
144 clock cycles to the latency. Add the latency of both loops to the latency of dct_2d which
is also inside dct and you get the total latency for the dct block.

The Analysis Perspective also allows you to analyze resource usage. The following figure shows
the resource profile and the resource panes.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 41

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=41

& XILINX

Chapter 1: High-Level Synthesis

Figure 24: Analysis Perspective with Resource Profile

¢ Vivado HLS - proj_dct (C\Vivado_HLS\My_First_Project\proj_dct)
File Edit Project Solution Window Help
#l Module Hierarchy =0
BRAM DSP FF LUT Latency Interval Pipeline type
4 o dct 5 1 386 363 6647 6648 none
4 e dct_dct_2d 3 1 267 274 6100 6100 none
e dctdctld 0 1 123 124 345 345 none
£F Performance Profile || Resource Profile & = 8
BRARA DSP FF LUT BitsPO BitsP1 BitsP2 Banks/Depth
4 @ dct 5 1 386 363
» &8 /O Ports(2) 32
- s Instancesl) 3 1 267 274
- B Memories(2) 2 0o 0 32 2
- L. Expressions(12) 0 0 0 52 60 52 0
+ i Registers(20) 119 133
FIFO(0) 0 0o 0 o0 0
: [Multiplexers(10) 0 0 37 32 0
< 1 »

[F=H el =5
i % Debug || Synthesis
=l Synthesis(solution1) = Resource(solutionl) &2 =g
Current Module : dct
[Resaurce\Control Sten| ca | c1 2 |l 3l calces | cal ez
1-3 ¥I/0 Ports
4 FInstances
5 grp dct dct 2d... call
6 FMemory Ports
7 buf 2d out (pl00) call
8 buf 2d in(pl00) call
9 dct coeff tabl... call
10 input r(p0) read
11 buf 2d out (p0) read
12 buf 2d in(p0) write
13 output r(p0) write
14 DExpressions
15 r fu 161 -+
16 | r i phi fu 106 phi_mux
17 exitcondl i fu... icmp
18 tmp 5 i fu 207 +
19 c fu 201 +
20 p addrl fu 216 +
21 ¢ i phi fu 117 phi_mux
22 exitcond i fu 195 icmp
23 r 1 fu 235 +
24 r i2 phi fu 128 phi_mux
25 exitcondl i3 f... icmp
26 c 1 fu 275 +
27 p addr3 fu 285 +
28 tmp 9 i fu 290 +
29 c 16 phi fu 139 phi_mux
30 exitcond i7 fu... icmp
Performance | Resource
= 0

[Properties | [¢ C Source =2

File: C:\Vivado_HLS\My_First_Project\dct.cpp

60RD_Loop_Col

The Resource Profile pane shows the resources used at this level of hierarchy. In this example,
you can see that most of the resources are due to the instances: blocks that are instantiated

inside this block.

You can see by expanding the Expressions that most of the resources at this level of hierarchy are
used to implement adders.

The Resource pane shows the control state of the operations used. In this example, all the adder
operations are associated with a different adder resource. There is no sharing of the adders.
More than one add operation on each horizontal line indicates the same resource is used multiple
times in different states or clock cycles.

The adders are used in the same cycles that are memory accessed and are dedicated to each
memory. Cross correlation with the C code can be used to confirm.

Schedule Viewer

The schedule viewer gives you a detailed view of the synthesized RTL. You can identify any loop
dependencies that are preventing parallelism, timing violations, and data dependencies.

e This viewer can be accessed by navigating to the Analysis view on the right.

UG902 (v2019.2) January 13, 2020

High-Level Synthesis

l Send Feedback l

www.Xilinx.com
42

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=42

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

¢ Navigate through the module hierarchy window to view the scheduling of each individual
block by right-clicking and selecting Open Schedule Viewer. The module hierarchy indicates
directly any Il or timing violation. In case of timing violations, the hierarchy window will also
show the total negative slack observed in a specific module.

Note: Using the window menu buttons allows you to filter in the module hierarchy for blocks exhibiting
Il or timing violations.

In the schedule viewer main window:

e The vertical axis shows the names of operations and loops.

e Operations are in topological order, implying that an operation on line n can only be driven by
operations from a previous line and will only drive inputs of an operation in a later line.

In the example below, only top level functions are shown in the following order:

read_data
dct_2d
write_data

e The solid gray bar on the horizontal axis shows the cycles in consecutive order.

e The vertical dashed line shows proportionally the reserved part of the clock period due to
clock uncertainty. This time is left by the tool for the Vivado back-end processes, like place
and route.

e For each operation, a gray box is shown in the table. In general, the box is sized horizontally
according to the delay of the operation as percentage of the total clock cycle. In case of
function calls, such as in this example, the provided cycle information is equivalent to the op
latency. In this case, the read_data function has an op latency of 1.

e Multi-cycle operations are visualized with a line straight through the box of the op. All

different visualization elements are listed in the Schedule Viewer Legend button “* in the
top right corner of the schedule viewer menu.

e Most importantly, a source location is associated with any operation. Double-clicking on the
operation highlights the source of the operation in the input source code.

For a function call, the provided cycle information is op Latency. In this case, the read_data
function has an op Latency of 1, as shown in the below properties tab.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 23

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=43

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 25: Schedule Viewer

| Module Hierarchy ¥ B ° B | [¢dccpp |2] Synthesis(solution1) = Schedule Viewer({solutionl) &
Negative Slack BRAM DSP FF LUT Latency Ini eline type
- O det - == ﬁ_wl 9 1432|3741 3742 none Current Module : dct
bosdct 2d 3| 1/209| 677/3668 [3668 |none
write_data I ol ol 27] 306!34 |34 none OperaionControl Step ‘ 0 | 1 ' 2 | 1 |
read_data - 0! 0! 24} 30634 134 { none read_data(function) : ‘
det_2d(function)
write_data(function)
& Performance Profile & Resource Profile = 0
Pipelined Latency Rteration Latency Initiation Interval Trip count
® dct - 3741 | 3742
T Properties I3 & Warnings (¢ C Source
Property Value

¢ Navigate to the read_data function in the module hierarchy and identify a loop called
RD_Loop_Row loop.

. This is a pipelined loop and the initiation interval () is explicitly stated in the loop bar. Any
pipelined loop is visualized unfolded, meaning one full iteration is shown in the schedule
viewer. Overlap as defined by Il is marked by a thick clock boundary on the loop marker.

The total latency of a single iteration is equivalent to the number of cycles covered by the
loop marker. In this case, it is 5 cycles (1-5).

e Timing Violation

There is a timing violation in the following figure. The timing violation view can be navigated
to from the selected module hierarchy entry context menu or by using the focus pulldown in
the schedule viewer menu, as shown in the left pane in the following figure.

A timing violation is a path of operations requiring more time than the available clock cycle. To
visualize this, the problematic cycle is visualized with-in an extended cycle representation
where the actual cycle boundary is moved out and an opaque box is shown all belonging to
the same cycle.

By default all dependencies (blue lines) are shown between each operation in the critical
timing path.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | a4

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=44

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 26: Operation Causing Violation

Operation\Control Step | 0 I 1 | 2 | 3 I 4 | 5 |

~ RD_Loop_Row fad - RD_Loop_Row ii=4
r(phi_mux) i
exitcondl(icmp)
r_2(+)
input_load(read)
tmp_9_s(|)
input_load_1(read)
tmp_21(|)
node_43(write)
node_48(write)
tmp_9_1(|)

7]

input_load_3(read)

tmp_23(])
tmp_25(|)
node_53(write)
node_58(write)

i
H
i
i
1
i
tmp_9_3(]) E
i
H
H
i
1
i

input_load_4(read)
tmp_9_4(|)
input_load_S5(read)

e This viewer is capable of displaying general operator dependencies. When selecting an
operation, you can see blue arrows highlighting the specific operator dependency in the
display. This gives you the ability to perform detailed analysis of data dependencies.

tmp_27(|)

#tran 24l —J

¢ Analyzing Il violations are another special focus view. If a module contains such a violation,
the schedule viewer can show the violation through the context menu in the module hierarchy
or the focus drop down in the viewer.

As shown in the following figure, there is a path spawning the complete Il. This implies that a
value needs to be computed before the next iteration can start and the path needs to be
shortened to get a lower Il.

To identify the operations in the source code, double-click on the operation and the source
viewer will appear and identify the root of the object in the source.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 45

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=45

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 27: Timing Violations

Current Module : |:Ic_t > dect_2d > dect_1d4

Operation\Control Step | o | 1 | 2 | 3 | 4 | 5 | 6 | 7 | B | 9 | 10

dst_offset_read(read)
src_offset_read(read)

< DCT_OQuter_Loop - DCT_Outer_Loop
k{phi_mux)
tmp(icmp)
k_1(+)
tmp_45(+)
= DCT_Inner_Loop - DCT_Inner_Loop
n(phi_mux)

tmpl(phi_mux)

tmp_11(icmp)

n_1l{+)

tmp_46(+)

tmp_47(+)

src_load(read)

dct coeff table load(read)

_ _ _| é/
. r--' |

tmp_1(+) %
tmp_12(+)
node_57(write)

o The filter button ¥ in the schedule viewer menu bar allows you to dynamically filter what
operations are shown in the schedule viewer. This can be done by type or by clustered
operations.

Filtering by type allows you to limit what operations get presented based on their
functionality. For example, visualizing only adders, multipliers, and function calls will
remove all of the small operations such as “and” and “or”s.

- Filtering by clusters exploits the fact that the scheduler is able to group basic operations
and then schedule them as one component. The cluster filter setting can be enabled to
color the clusters or even collapse them into one large operation in the viewer. This allows
a more concise view of the schedule.

Dataflow Viewer

If the DATAFLOW directive has been applied to a function, the Analysis Perspective provides a
dataflow viewer which shows the structure of the design. This view gives a representation of the
dataflow graph structure, showing the different processes and the underlying producer-
consumer connections.

In the following figure, the %=1 icon beside the dct function indicates a dataflow view is available.
Right-click the function to open the dataflow view.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 46

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=46

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 28: Dataflow View
I Module Hierarchy HE "0
BRAM DSP FF LUT Latency Interval Pipeline type

4 |E dct 4 i 1506 620 508 375 dataflow
« = Open Schedule Viewer 445 1374 374 none
o “» Open Dataflow Viewer 67 66 66 none

e read data 0 0 29 54 66 66 none

The Analysis Perspective is a highly interactive feature. More information on the Analysis
Perspective can be found in the Design Analysis section of the Vivado Design Suite Tutorial: High-
Level Synthesis (UG871).

O TIP: Remember, even if a Tcl flow is used to create designs, the project can still be opened in the GUI and the
Analysis Perspective used to analyze the design.

Use the Synthesis perspective button to return to the synthesis view.

Generally after design analysis you can create a new solution to apply optimization directives.
Using a new solution for this allows the different solutions to be compared.

Creating a New Solution

The most typical use of Vivado HLS is to create an initial design, then perform optimizations to
meet the desired area and performance goals. Solutions offer a convenient way to ensure the
results from earlier synthesis runs can be both preserved and compared.

A,
Use the New Solution toolbar button ¥ or the menu Project > New Solution to create a new
solution. This opens the Solution Wizard as shown in the following figure.

UG902 (v2019.2) January 13, 2020 Www xilinx.com
High-Level Synthesis [_send Feedback | 47

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=47

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 29: New Solution Wizard

4 Solution Wizard = @
Solution Configuration

Create Vivado HLS solution for selected technology

Solution Name: solution2

Clock

Period: 10 Uncertainty:
Part Selection

Part: Xc7k160tfbg484-1 D

Options

/| Copy directives and constraints from solution: solutionl -

[Finish l | Cancel |

The Solution Wizard has the same options as the final window in the New Project wizard plus an
additional option that allow any directives and customs constraints applied to an existing
solution to be conveniently copied to the new solution, where they can be modified or removed.

After the new solution has been created, optimization directives can be added (or modified if
they were copied from the previous solution). The next section explains how directives can be
added to solutions. Custom constraints are applied using the configuration options and are
discussed in Optimizing the Design.

Applying Optimization Directives

The first step in adding optimization directives is to open the source code in the Information
pane. As shown in the following figure, expand the Source container located at the top of the
Explorer pane, and double-click the source file to open it for editing in the Information pane.

UG902 (v2019.2) January 13, 2020

www.xilinx.com
High-Level Synthesis [_send Feedback | 48

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=48

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 30: Source and Directive

+ Vivado HLS - det_prj (C:\Vivado_HLS\My First Project\dct_prj) = o =<
File Edit Project Solution Window Help
Sk EE X|EE R i c8bhE e k- [~ e | @
#* Debug |/ | Synthesis |2 Analysis
[Explorer & " = O scripttcl [gddct_csynth.rpt [[<) det.cpp 3 = O|[Bz Outlin |# Directi =08
& dct_prj 1 i @ dct_1d
&l Includes f#m‘:l"'de dct.h @ dct_2d
ES - 3
ouree Jvoid det_ld(dct_data_t src[DCT_SIZE], dct_data t dst[DCT_SIZE] @ read data
[£] dct.cpp 5y @ write_data
f= Test Bench 6 unsigned int k, n; @ dct
3 solutionl 7 int tmp; *[1 buf_2d_in
= solution2 8 const dct_data_t dct_coeff_table[DCT_SIZE][DCT_SIZE] = { 1 buf_2d_out
% constraints S#include "dct coeff_table.txt" @ input
W directives.tcl > b @ output
scripticl 12DCT_Quter_Loop:
13 for (k = ©; k < DCT_SIZE; k++) {
1ADCT_Inner_Loop:
15 for(n = @, tmp = @; n < DCT_SIZE; n++) {
16 int coeff = (int)dct_coeff_table[k][n];
17 tmp += src[n] * coeff;
18 }
10 Ar+Tl1 _ NCCOAL CF+me COMCT DTTCY . T
< i P
B Console 2 €] Errors| & Warnings xR = =0
Vivado HLS Consale
Fl ITH S
Writable Smart Insert 78:9

With the source code active in the Information pane, select the Directives tab on the right to
display and modify directives for the file. The Directives tab contains all the objects and scopes in
the currently opened source code to which you can apply directives.

Note: To apply directives to objects in other C files, you must open the file and make it active in the
Information pane.

Although you can select objects in the Vivado HLS GUI and apply directives, Vivado HLS applies
all directives to the scope that contains the object. For example, you can apply an INTERFACE
directive to an interface object in the Vivado HLS GUI. Vivado HLS applies the directive to the
top-level function (scope), and the interface port (object) is identified in the directive. In the
following example, port data_in on function foo is specified as an AXI4-Lite interface:

set_directive_interface -mode s_axilite "foo" adata_in

You can apply optimization directives to the following objects and scopes:

e |nterfaces

When you apply directives to an interface, Vivado HLS applies the directive to the top-level
function, because the top-level function is the scope that contains the interface.

e Functions

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 49

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=49

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

When you apply directives to functions, Vivado HLS applies the directive to all objects within
the scope of the function. The effect of any directive stops at the next level of function
hierarchy. The only exception is a directive that requires a recursive option, such as the
PIPELINE directive that recursively unrolls all loops in the hierarchy.

e |oops

When you apply directives to loops, Vivado HLS applies the directive to all objects within the
scope of the loop. For example, if you apply a LOOP_MERGE directive to a loop, Vivado HLS
applies the directive to any sub-loops within the loop but not to the loop itself.

Note: The loop to which the directive is applied is not merged with siblings at the same level of
hierarchy.

e Arrays

When you apply directives to arrays, Vivado HLS applies the directive to the scope that
contains the array.

e Regions

When you apply directives to regions, Vivado HLS applies the directive to the entire scope of
the region. A region is any area enclosed within two braces. For example:

{

the scope between these braces is a region

}

Note: You can apply directives to a region in the same way you apply directives to functions and loops.

To apply a directive, select an object in the Directives tab, right-click, and select Insert Directive
to open the Directives Editor dialog box. From the drop-down menu, select the appropriate
directive. The drop-down menu only shows directives that you can add to the selected object or
scope. For example, if you select an array object, the drop-down menu does not show the
PIPELINE directive, because an array cannot be pipelined. The following figure shows the
addition of the DATAFLOW directive to the DCT function.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 50

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=50

& XILINX

Figure 31: Adding Directives

Chapter 1: High-Level Synthesis

¢ Vivado HLS - proj_dct (C\Vivado_HLS\My_First_Project\proj_dct)
File Edit Project Solution Window Help
R Bid BER: SR CB G RO B A~ ®@
25 Explorer 5 & = O |[[@ detepp 2 Vivado HLS Directive Editor
PRE i dct 73 for
proj_dc Directive
> ! Includes
- B Source AN } [DATAFLOW -
€ det.cpp Destination
> 03 Test Etench void T} (7) Source File
a = solution1 { _
5 (@ Directive File
- % constraints
- = csim short Options
& sim short
= /7 Re
read_|
dct_2
// wrj
write |
H
4
= Console 2
CDT Build Consold Hep | [cancel || oK
4

=N

45 Debug [| Synthesis |6" Analysis

= B ||g= Outline | 4 Directive i3 =

:

+ @ det_1d
> @ dct_2d
+ @ read_data
> @ write_data
4 @ dct
@ input
@ output
=1 buf_2d_in
=11 buf_2d_out

11

Using Tcl Commands or Embedded Pragmas

In the Vivado HLS Directive Editor dialog box, you can specify either of the following Destination

settings:

e Directive File: Vivado HLS inserts the directive as a Tcl command into the file directives.tcl in

the solution directory.

e Source File: Vivado HLS inserts the directive directly into the C source file as a pragma.

The following table describes the advantages and disadvantages of both approaches.

Table 2: Tcl Commands Versus Pragmas

Directive Format

Advantages

Disadvantages

Directives file (Tcl Command)

Each solution has independent
directives. This approach is ideal for
design exploration.

If any solution is re-synthesized, only
the directives specified in that solution
are applied.

If the C source files are transferred to a
third-party or archived, the
directives.tcl file must be included.

The directives.tcl fileis required if
the results are to be re-created.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

www.Xilinx.com

l Send Feedback l 51

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=51

& XILINX

#

Chapter 1: High-Level Synthesis

Table 2: Tcl Commands Versus Pragmas (cont'd)

Directive Format Advantages Disadvantages
Source Code (Pragma) The optimization directives are If the optimization directives are
embedded into the C source code. embedded in the code, they are
Ideal when the C sources files are automatically applied to every solution
shipped to a third-party as C IP. No when re-synthesized.

other files are required to recreate the
same results.

Useful approach for directives that are
unlikely to change, such as TRIPCOUNT
and INTERFACE.

When specifying values for pragma arguments, you can use literal values (e.g., 1, 55, 3.14), or
pass a macro using #define. The following example shows a pragma with literal values:

#pragma HLS ARRAY_PARTITION variable = k_matrix_val cyclic factor=5

This example uses defined macros:

#define E 5
#pragma HLS ARRAY_PARTITION variable = k_matrix_val cyclic factor=E

IMPORTANT! Do not use user-defined macros to specify values for pragmas as they are not supported.

Pragma Validation

During C synthesis, the tool validates the pragmas on variables, functions, and loops. This
validation also includes pragma conflicts.

For example, when an array is declared, it is mapped to block RAM by default. You can partition
or reshape the array, but these are mutually exclusive options. And if you mistakenly specify the
array partition and reshape on the same variable, the tool errors out and the synthesis fails with
the following message:

WARNING: [XFORM 203-180] Applying partition directive (core.cpp:12:1) and
reshape

directive (core.cpp:13:1) on the same variable 'A' (core.cpp:1l1l) may lead
to

unexpected synthesis behaviors. INFO: [XFORM 203-131] Reshaping array 'A'
(core.cpp:11) in dimension 1 completely. ERROR: [XFORM 203-103] Cannot
partition

array 'A' (core.cpp:11): variable is not an array. ERROR: [HLS 200-70] Pre-
synthesis

failed. command 'ap_source' returned error code

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | e

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=52

& XILINX

Chapter 1: High-Level Synthesis

The following figure shows the DATAFLOW directive being added to the Directive File. The
directives.tcl fileislocated in the solution constraints folder and opened in the

Information pane using the resulting Tcl command.

Figure 32: Adding Tcl Directives

¢ Vivado HLS - proj_dct (C\Vivado_HLS\My_First_Project\proj_dct)
File Edit Source Project Solution Window Help
& & R S8 B RO Py Big. & ®)
[t Explorer = 5* =18 ||[g detepp o directivestcl 2 Vivado HLS Directive Editor
et proj.dct i PHE Directive
a1 Includes
P T .DATAFLOW
. 2014 Xilinx Inc. A
e det.cpp ey S g | Destination
i Test Bench & set_directive Hataflow "dct" Source File
4 7= solutient @ Directive File
4 # constraints Options
o directives.tcl
W scripttcl
& csim
sim
=
<
& Console 2 9] Errors| & Wamings & Man Pag
CDT Build Console [proj_dct]
. Help . Cancel

=N EoR =™
%5 Debug &< Analysis
lirective &2 = 0
»>@
; 5 not available.
= 0

OK

When directives are applied as a Tcl command, the Tcl command specifies the scope or the scope
and object within that scope. In the case of loops and regions, the Tcl command requires that
these scopes be labeled. If the loop or region does not currently have a label, a pop-up dialog box

asks for a label.

The following shows examples of labeled and unlabeled loops and regions.

// Example of a loop with no label

for(i=0; di<3;i++ {

printf(“This is loop WITHOUT a label \n”);
}

// Example of a loop with a label
My_For_Loop:for(i=0; di<3;4i++ {

printf(“This loop has the label My_For_Loop \n”);
}

// Example of a region with no label
{

printf(“The scope between these braces has NO label”

)

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | c3

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=53

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

}

// Example of a NAMED region
My_Region: {

printf(“The scope between these braces HAS the label My_Region”);
}

O TIP: Named loops allow the synthesis report to be easily read. An auto-generated label is assigned to loops
without a label.

The following figure shows the DATAFLOW directive added to the Source File and the resultant
source code open in the information pane. The source code now contains a pragma which
specifies the optimization directive.

Figure 33: Adding Pragma Directives

4 Vivado HLS - proj_dct (C:\Vivado_HLS\My._First_Project\proj_dct) (o[@] =]
File Edit Project Solution Window Help
PHRRi4B DB R CIRIM& % E OB - @ 84 Vivado HLS Directive Editor Debug [+ Synthesis |&=" Analysis
[t5 Explorer 2 = O |[[@ *dectcpp = Ciesrs L Directive i3 = O
4 2 proj_det 75 ¥ [DATAFLOW - €
& Includes 6} 1d
g5 X Destination
: ouree void dct(short input[N], § - 3 2d
[€ detecpp 9 { 1@ Source File | data
» im Test Bench pragma HLS DATAFLO (C) Directive File e_data
4 = solution1 i
: . Options
a & constraints short buf_2d_in[DCT_SIZ LS DATAFLOW
& directives.tcl short buf_2d_out[DCT_ST put
W scripttel utput
& csim P // Read input data. Fil fp2d B
o read_data(input, buf_2d ut_a_in
=)] uf_2d_out
+ = syn dct_2d(buf_2d_in, buf_3
// Write out the result
write_data(buf_2d_out,
2}
o
B Console = @] Errors| & Warnings =
CDT Build Console [proj dct]
Help] I Cancel] [OK -

In both cases, the directive is applied and the optimization performed when synthesis is
executed. If the code was modified, either by inserting a label or pragma, a pop-up dialog box
reminds you to save the code before synthesis.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | c4

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=54

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Applying Optimization Directives to Global Variables

Directives can only be applied to scopes or objects within a scope. As such, they cannot be
directly applied to global variables which are declared outside the scope of any function.

To apply a directive to a global variable, apply the directive to the scope (function, loop or region)
where the global variable is used. Open the directives tab on a scope were the variable is used,
apply the directive and enter the variable name manually in Directives Editor.

Applying Optimization Directives to Class Objects

Optimization directives can be also applied to objects or scopes defined in a class. The difference
is typically that classes are defined in a header file. Use one of the following actions to open the
header file:

e From the Explorer pane, open the Includes folder, navigate to the header file, and double-click
the file to open it.

e From within the C source, place the cursor over the header file (the #include statement), to
open hold down the Ctrl key, and click the header file.

The directives tab is then populated with the objects in the header file and directives can be
applied.

Q CAUTION! Care should be taken when applying directives as pragmas to a header file. The file might be used
by other people or used in other projects. Any directives added as a pragma are applied each time the header
file is included in a design.

Applying Optimization Directives to Templates

To apply optimization directives manually on templates when using Tcl commands, specify the
template arguments and class when referring to class methods. For example, given the following
C++ code:

template <uint32 SIZE, uint32 RATE>
void DES10<SIZE,RATE>::calcRUN() {}

The following Tcl command is used to specify the INLINE directive on the function:

set_directive_inline DES10<SIZE,RATE>::calcRUN

Using #Define with Pragma Directives

Pragma directives do not natively support the use of values specified by the de fine statement.
The following code seeks to specify the depth of a stream using the de fine statement and will
not compile.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | c5

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=55

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Q

TIP: Specify the depth argument with an explicit value.

#include <hls_stream.h>
using namespace hls;

#define STREAM_IN_DEPTH 8
void foo (stream<int> &InStream, stream<int> &OutStream) {

// Illegal pragma
#pragma HLS stream depth=STREAM_IN_DEPTH variable=InStream

// Legal pragma
#pragma HLS stream depth=8 variable=OutStream

3

If #de fine is unnecessary, you can use a constant, such as const int. For example:

const int MY_DEPTH=1024;
#pragma HLS stream variable=my_var depth=MY_DEPTH

You can use macros in the C code to implement this functionality. The key to using macros is to
use a level of hierarchy in the macro. This allows the expansion to be correctly performed. The
code can be made to compile as follows:

#include <hls_stream.h>
using namespace hls;

#define PRAGMA_SUB(x) _Pragma (#x)
#define PRAGMA_HLS(x) PRAGMA_SUB(x)
#define STREAM_IN_DEPTH 8

void foo (stream<int> &InStream, stream<int> &OutStream) {

// Legal pragmas
PRAGMA_HLS (HLS stream depth=STREAM_IN_DEPTH variable=InStream)
#fpragma HLS stream depth=8 variable=OutStream

}

Failure to Satisfy Optimization Directives

When optimization directives are applied, Vivado HLS outputs information to the console (and
log file) detailing the progress. In the following example the PIPELINE directives was applied to
the C function with an II=1 (iteration interval of 1) but synthesis failed to satisfy this objective.

INFO: [SCHED 11] Starting scheduling .

INFO: [SCHED 61] Pipelining function 'array_RAM'.

WARNING: [SCHED 63] Unable to schedule the whole 2 cycles 'load' operation
('d_i_load', array_RAM.c:98) on array 'd_i' within the first cycle (II = 1).

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 56

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=56

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

WARNING: [SCHED 63] Please consider increasing the target initiation
interval of the

pipeline.

WARNING: [SCHED 69] Unable to schedule 'load' operation ('idx_load_2',
array_RAM.c:98) on array 'idx' due to limited memory ports.

INFO: [SCHED 61] Pipelining result: Target II: 1, Final II: 4, Depth: 6.
INFO: [SCHED 11] Finished scheduling.

ﬁ? IMPORTANT! If Vivado HLS fails to satisfy an optimization directive, it automatically relaxes the optimization
target and seeks to create a design with a lower performance target. If it cannot relax the target, it will halt with
an error.

By seeking to create a design which satisfies a lower optimization target, Vivado HLS is able to
provide three important types of information:

o What target performance can be achieved with the current C code and optimization
directives.

e Alist of the reasons why it was unable to satisfy the higher performance target.

e A design which can be analyzed to provide more insight and help understand the reason for
the failure.

In message SCHED - 69, the reason given for failing to reach the target Il is due to limited ports.
The design must access a block RAM, and a block RAM only has a maximum of two ports.

The next step after a failure such as this is to analyze what the issue is. In this example, analyze
line 52 of the code and/or use the Analysis perspective to determine the bottleneck and if the
requirement for more than two ports can be reduced or determine how the number of ports can
be increased.

After the design is optimized and the desired performance achieved, the RTL can be verified and
the results of synthesis packaged as IP.

Verifying the RTL is Correct

Use the C/RTL cosimulation toolbar button */ or the menu Solution > Run C/RTL cosimulation
verify the RTL results.

The C/RTL co-simulation dialog box shown in the following figure allows you to select which
type of RTL output to use for verification (Verilog or VHDL) and which HDL simulator to use for
the simulation.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | i

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=57

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 34: C/RTL Co-Simulation Dialog Box

-] Co-simulation Dialog ®
C/RTL Co-simulation

Verilog/VHDL Simulator Selection

Vivado 54 2

RTL Selection
= Veriog WHDL

| Options

Setup Only

Dump Tace . all =
Optimizing Compile
Feduce Diskspace

Wave Debug

Complied Library Location Browse

Ingust Arguments

Do not show this dialag box again

Cancel oK

When verification completes, the console displays message SIM-1000 to confirm the
verification was successful. The result of any print f commands in the C test bench are echoed
to the console.

INFO: [COSIM 316] Starting C post checking ...
Test passed !
INFO: [COSIM 1000] #*##%*#* C/RTL co-simulation finished: PASS %%

The simulation report opens automatically in the Information pane, showing the pass or fail
status and the measured statistics on latency and II.

ﬁ? IMPORTANT! The C/RTL co-simulation only passes if the C test bench returns a value of zero. Co-simulation
tests the scenarios in the test bench and passes if it returns True or O. If it fails, it returns False or 1.

Reviewing the Output of C/RTL Co-Simulation

A sim directory is created in the solution folder when RTL verification completes. The following
figure shows the sub-folders created.

e The report folders contains the report and log file for each type of RTL simulated.

e A verification folder is created for each type of RTL which is verified. The verification folder is
named verilog or vhdl. If an RTL format is not verified, no folder is created.

e The RTL files used for simulation are stored in the verification folder.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | cg

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=58

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e The RTL simulation is executed in the verification folder.
e Any outputs, such as trace files, are written to the verification folder.

e Folders autowrap, tv, wrap and wrap_pc are work folders used by Vivado HLS. There are
no user files in these folders.

If the Setup Only option was selected in the C/RTL Co-Simulation dialog boxes, an executable is
created in the verification folder but the simulation is not run. The simulation can be manually
run by executing the simulation executable at the command prompt.

Note: For more information on the RTL verification process, see Verifying the RTL.

Figure 35: RTL Verification Output

[Explorer &3 v = O|/E] det_cosim.rpt = =04
a - H - - v]
&= my_proj Cosimulation Report for "dct
! Includes
= Source Result
= Tes;t Benih Latency Interval
a ti
= ;O ution . RTL Status ~ min avg max min avg max
T it
constraints VHDL Pass 2035 2935 2935 2936 2936 2936

= csim
+=sm Verilog Pass 2935 2935 2935 2936 2936 2936
& autowrap SystemC Pass 2935 2935 2935 2936 2936 2936
4= report Export the report(.html) using the Export Wizard
=l dct_cosim.rpt
= systemc
?verilog El Console 2 @] Errors| & Warnings
- & vhdl Vivado HLS Console
SleVSICG @I [SIM-316] Starting C post checking ...
= Test passed !
= verilog @I [SIM-10@8] *** C/RTL co-simulation finished: PASS ***
= vhdl @I [LIC-101] Checked in feature [HLS]
&= wrapc
= wrapc_pc
& syn

Packaging the IP

The final step in the Vivado HLS design flow is to package the RTL output as IP. Use the Export

RTL toolbar button EE or the menu Solution > Export RTL to open the Export RTL dialog box
shown in the following figure.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 5o

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=59

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 36: RTL Export Dialog Box

+ | Export RTL Dialog =

Export RTL

Format Selection

lIP Catalog v‘ lConfiguration...

Options

| Evaluate l‘u’erilog vl

[] Do not show this dialog box again.

[OK l l Cancel

The selections available in the drop-down Format Selection menu depend on the FPGA device
targeted for synthesis.

Reviewing the Output of IP Packaging

The folder imp1 is created in the solution folder when the Export RTL process completes.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | €0

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=60

& XILINX

Chapter 1: High-Level Synthesis

Figure 37: Export RTL Output

[Explorer 2 g = 8
4 25 my_proj
» Y Includes
> = Source
: U= Test Bench
a = solutiont
- 4 constraints
= csim
4= impl
> = ip
> = pcores
: = report
> = sysgen
: = verilog
4 = vhdl
sl dct_1d_dct_coeff tablewvhd
s dct_1d.wvhd
sl dct_2d_row_outbufvhd
st dct_2d.vhd
s detvhd
=l detxdc
W extraction.tcl
= impl.bat
=l projectxpr
i run_vivado.tcl
A settings.tcl
- = project.cache
= project.data
» = sim_tbs
» = sim
> & syn

In all cases the output includes:

e The report folder. If the flow option is selected, the report for Verilog and VHDL synthesis
or implementation is placed in this folder.

e The verilog folder. This contains the Verilog format RTL output files. If the flow option is
selected, RTL synthesis or implementation is performed in this folder.

e The vhd1 folder. This contains the VHDL format RTL output files. If the flow option is
selected, RTL synthesis or implementation is performed in this folder.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l

www.Xilinx.com
61

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=61

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

‘11} IMPORTANT! Xilinx does not recommend directly using the files in the verilogor vhdi folders for your own
RTL synthesis project. Instead, Xilinx recommends using the packaged IP output files discussed next. Please
carefully read the text that immediately follows this note.

In cases where Vivado HLS uses Xilinx IP in the design, such as with floating point designs, the
RTL directory includes a script to create the IP during RTL synthesis. If the files in the verilog
or vhd1 folders are copied out and used for RTL synthesis, it is your responsibility to correctly
use any script files present in those folders. If the package IP is used, this process is performed
automatically by the design Xilinx tools.

The Format Selection drop-down determines which other folders are created. The following
formats are provided: IP Catalog, System Generator for DSP, and Synthesized Checkpoint (. dcp).

Table 3: RTL Export Selections

Format Selection Sub-Folder Comments

IP Catalog ip Contains a ZIP file which can be added to the Vivado IP Catalog. The
ip folder also contains the contents of the ZIP file (unzipped).

This option is not available for FPGA devices older than 7 series or
Zynqg-7000 SoC.

System Generator for DSP sysgen This output can be added to the Vivado edition of System Generator
for DSP.

This option is not available for FPGA devices older than 7 series or
Zyng-7000 SoC.

Synthesized Checkpoint (.dcp) | ip This option creates Vivado checkpoint files which can be added
directly into a design in the Vivado Design Suite.

This option requires RTL synthesis to be performed. When this
option is selected, the £1ow option and setting syn is automatically
selected.

The output includes an HDL wrapper you can use to instantiate the
IP into an HDL file.

Example Vivado RTL Project

The Export RTL process automatically creates a Vivado RTL project. For hardware designers more
familiar with RTL design and working in the Vivado RTL environment, this provides a convenient
way to analyze the RTL.

As shown in the preceding figure, a project.xpr file is created in the verilog and vhd1l folders.
This file can be used to directly open the RTL output inside the Vivado Design Suite.

If C/RTL co-simulation has been executed in Vivado HLS, the Vivado project contains an RTL test
bench and the design can be simulated.

The Vivado RTL project has the RTL output from Vivado HLS as the top-level design. Typically,
this design should be incorporated as IP into a larger Vivado RTL project. This Vivado project is
provided solely as a means for design analysis and is not intended as a path to implementation.

UG902 (v2019.2) January 13, 2020 Www xilinx.com
High-Level Synthesis [_send Feedback | 2

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=62

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Example IP Integrator Project

If IP Catalog is selected as the output format, the output folder imp1l/ip/example is created.
This folder contains an executable (ipi_example.bat Or ipi_example.csh)which can be
used to create a project for IP Integrator.

To create the IP Integrator project, execute the ipi_example. * file at the command prompt
then open the Vivado IPI project file which is created.

Archiving the Project

To archive the Vivado HLS project to an industry-standard ZIP file, select File > Archive. Use the
Archive Name option to name the specified ZIP file. You can modify the default settings as
follows:

e By default, only the current active solution is archived. To ensure all solutions are archived,
deselect the Active Solution Only option.

e By default, the archive contains all of the output results from the archived solutions. If you
want to archive the input files only, deselect the Include Run Results option.

Using the Command Prompt and Tcl Interface

On Windows the Vivado HLS Command Prompt can be invoked from the start menu: Xilinx
Design Tools = Vivado 2018.x = Vivado HLS = Vivado HLS 2018.x Command Prompt.

On Windows and Linux, using the - i option with the vivado_h1ls command opens Vivado HLS

in interactive mode. Vivado HLS then waits for Tcl commands to be entered.

$ vivado_hls -i [-1 <log_file>]

vivado_hls>

By default, Vivado HLS creates a vivado_hls. log file in the current directory. To specify a
different name for the log file, the -1 <log_file> option can be used.

The help command is used to access documentation on the commands. A complete list of all
commands is provided using:

vivado_hls> help

Help on any individual command is provided by using the command name.

vivado_hls> help <command>

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 63

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=63

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Any command or command option can be completed using the auto-complete feature. After a
single character has been specified, pressing the tab key causes Vivado HLS to list the possible
options to complete the command or command option. Entering more characters improves the
filtering of the possible options. For example, pressing the tab key after typing “open” lists all
commands that start with “open”.

vivado_hls> open <press tab key>
open

open_project

open_solution

Selecting the Tab Key after typing open_p auto-completes the command open_project,
because there are no other possible options.

Type the exit command to quit interactive mode and return to the shell prompt:

vivado_hls> exit

Additional options for Vivado HLS are:

e vivado_hls -p:open the specified project

e vivado_hls -nosplash:open the GUI without the Vivado HLS splash screen

e vivado_hls -r:return the path to the installation root directory

e vivado_hls -s:return the type of system (for example: Linux, Win)

e vivado_hls -v:return the release version number.

Commands embedded in a Tcl script are executed in batch mode with the - f <script_file>

option.

$ vivado_hls -f script.tcl

All the Tcl commands for creating a project in GUI are stored in the script . tcl file within the
solution. If you wish to develop Tcl batch scripts, the script . tc1l file is an ideal starting point.

Understanding the Windows Command Prompt

On the Windows OS, the Vivado HLS Command prompt is implemented using the Minimalist
GNU for Windows (minGW) environment, that allows both standard Windows DOS commands
to be used and/or a subset of Linux commands.

The following figure shows that both (or either) the Linux 1s command and the DOS dir
command is used to list the contents of a directory.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | c4

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=64

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 38: Vivado HLS Command Prompt

" Vivado HLS Command Prompt

C:\Uivado_HLS\My_First_Project>dir
Uolume in drive C is 0SDisk
Uolume Serial Number is 2E06-09DE

Directory of C:\Uivado_HLS\My_First_Project

10:49 AM <DIR>
10:49 AM <DIR> ..
B4:28 PH 2,232 det.cpp
B5:48 PH 346 dct.h
03:23 PH 302 dct.tcl
03:13 PH 455 dct_coeff_table.txt
03:33 PH 1,284 dect_test.cpp
03:13 PH 13,595 in.dat
05:28 PH 2,537 Makefile
03:13 PH 386 out.golden.dat
8 File(s) 21,137 bytes
2 Dir(s) 43,358,687,232 bytes free

C:\Vivado_HLS\My_First_Project>ls
Makefile dct.h dct_coeff_table.txt in.dat
det.cpp det.tcl det_test.cpp out.golden.dat

C:\Uivado_HLS\My_First_Project>

Be aware that not all Linux commands and behaviors are supported in the minGW environment.
The following represent some known common differences in support:

e The Linux which command is not supported.

e Linux paths in a Makefile expand into minGW paths. In all Makefile files, replace any Linux
style path name assignments such as FOO :=:/ with versions in which the path name is
guoted such as FOO := “:/” to prevent any path substitutions.

Improving Runtime and Capacity

If the issue is with C/RTL co-simulation, refer to the reduce_diskspace option discussed in
Verifying the RTL. The remainder of this section reviews issues with synthesis runtime.

Vivado HLS schedules operations hierarchically. The operations within a loop are scheduled, then
the loop, the sub-functions and operations with a function are scheduled. Runtime for Vivado
HLS increases when:

e There are more objects to schedule.

e There is more freedom and more possibilities to explore.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis |_send Feedback | €5

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=65

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Vivado HLS schedules objects. Whether the object is a floating-point multiply operation or a
single register, it is still an object to be scheduled. The floating-point multiply may take multiple
cycles to complete and use many resources to implement but at the level of scheduling it is still
one object.

Unrolling loops and partitioning arrays creates more objects to schedule and potentially increases
the runtime. Inlining functions creates more objects to schedule at this level of hierarchy and also
increases runtime. These optimizations may be required to meet performance but be very careful
about simply partitioning all arrays, unrolling all loops and inlining all functions: you can expect a
runtime increase. Use the optimization strategies provided earlier and judiciously apply these
optimizations.

If the arrays must be partitioned to achieve performance, consider using the
throughput_driven option for config_array_partition to only partition the arrays
based on throughput requirements.

If the loops must be unrolled, or if the use of the PIPELINE directive in the hierarchy above has
automatically unrolled the loops, consider capturing the loop body as a separate function. This
will capture all the logic into one function instead of creating multiple copies of the logic when
the loop is unrolled: one set of objects in a defined hierarchy will be scheduled faster. Remember
to pipeline this function if the unrolled loop is used in pipelined region.

The degrees of freedom in the code can also impact runtime. Consider Vivado HLS to be an
expert designer who by default is given the task of finding the design with the highest
throughput, lowest latency and minimum area. The more constrained Vivado HLS is, the fewer
options it has to explore and the faster it will run. Consider using latency constraints over scopes
within the code: loops, functions or regions. Setting a LATENCY directive with the same
minimum and maximum values reduces the possible optimization searches within that scope.

Finally, the config_schedule configuration controls the effort level used during scheduling.
This generally has less impact than the techniques mentioned above, but it is worth considering.
The default strategy is set to Med ium.

If this setting is set to Low, Vivado HLS will reduce the amount of time it spends on trying to
improve on the initial result. In some cases, especially if there are many operations and hence
combinations to explore, it may be worth using the low setting. The design may not be ideal but
it may satisfy the requirements and be very close to the ideal. You can proceed to make progress
with the low setting and then use the default setting before you create your final result.

With a run strategy set to High, Vivado HLS uses additional CPU cycles and memory, even after
satisfying the constraints, to determine if it can create an even smaller or faster design. This
exploration may, or may not, result in a better quality design but it does take more time and
memory to complete. For designs that are just failing to meet their goals or for designs where
many different optimization combinations are possible, this could be a useful strategy. In general,
it is a better practice to leave the run strategies at the Medium default setting.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | €6

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=66

& XILINX

Chapter 1: High-Level Synthesis

Design Examples and References

Tutorials

Tutorials are available in the Vivado Design Suite Tutorial: High-Level Synthesis (UG871). The
following table shows a list of the tutorial exercises.

Table 4: Vivado HLS Tutorial Exercises

Tutorial Exercise

Description

Vivado HLS Introductory Tutorial

An introduction to the operation and primary features of
Vivado HLS using an FIR design.

C Validation

This tutorial uses a Hamming window design to explain C
simulation and using the C debug environment to validate
your C algorithm.

Interface Synthesis

Exercises on how to create various types of RTL interface
ports using interface synthesis.

Arbitrary Precision Types

Shows how a floating-point winding function is
implemented using fixed-point arbitrary precision types to
produce more optimal hardware.

Design Analysis

Shows how the Analysis perspective is used to improve the
performance of a DCT block.

Design Optimization

Uses a matrix multiplication example to show how an
algorithm in optimized. This tutorial demonstrates how
changes to the initial might be required for a specific
hardware implementation.

RTL Verification

How to use the RTL verification features and analyze the RTL
signals waveforms.

Using HLS IP in IP Integrator

Shows how two HLS pre and post processing blocks for an
FFT can be connected to an FFT IP block using IP integrator.

Using HLS IP in a Zyng-7000 SoC Processor Design

Shows how the CPU can be used to control a Vivado HLS
block through the AXI4-Lite interface and DMA streaming
data from DDR memory to and from a Vivado HLS block.
Includes the CPU source code and required steps in SDK.

Using HLS IP in System Generator for DSP

A tutorial on how to use an HLS block and inside a System
Generator for DSP design.

Design Examples

To open the Vivado HLS design examples from the Welcome Page, click Open Example Project.
In the Examples wizard, select a design from the Design Examples folder.

Note: The Welcome Page appears when you invoke the Vivado HLS GUI. You can access it at any time by

selecting Help = Welcome.

You can also open the design examples directly from the Vivado Design Suite installation area:

Vivado_HLS\2018.x\examples\design.

The following table provides a description for each design example.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

[Send Feedback] WWW.Xi|inX.CO6n;

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=67

& XILINX

Table 5: Vivado HLS Design Examples

Chapter 1: High-Level Synthesis

Design Example

Description

2D_convolution_with_linebuffer

2D convolution implemented using hls::streams and a line
buffer to conserve resources.

FFT > fft_ifft

Inverse FFT using FFT IP.

FFT > fft_single

Single 1024 point forward FFT with pipelined streaming I/O.

FIR > fir_2ch_int

FIR filter with 2 interleaved channels.

FIR > fir_3stage

FIR chain with 3 FIRs connected in series: Half band FIR to
Half band FIR to a square root raise cosine (SRRC) FIR.

FIR > fir_config

FIR filter with coefficients updated using the FIR CONFIG
channel.

FIR > fir_srrc

SRRC FIR filter.

__builtin_ctz Priority encoder (32- and 64-bit versions) implemented
using gcc built-in ‘count trailing zero’ function.

axi_lite AXI4-Lite interface.

axi_master AXI4 master interface.

axi_stream_no_side_channel_data

AXI4-Stream interface with no side-channel data in the C
code.

axi_stream_side_channel_data

AXI4-Stream interfaces using side-channel data.

dds > dds_mode_fixed

DDS IP created with both phase offset and phase increment
used in fixed mode.

dds > dds_mode_none

DDS IP created with phase offset in fixed mode and no
phase increment (mode=none).

dsp > atan2

arctan function from the HLS DSP library.

dsp > awgn

Additive white Gaussian noise (awgn) function from the HLS
DSP library.

dsp > cmpy_complex

Fixed-point complex multiplier using complex data types.

dsp > cmpy_scalar

Fixed-point complex multiplier using separate scalar data
types for the real and imaginary components.

dsp > convolution_encoder

Convolution_encoder function from the HLS DSP library,
which performs convolutional encoding of an input data
stream based on user-defined convolution codes and
constraint length.

dsp > nco Numerically controlled oscillator (NCO) function from the
HLS DSP library.
dsp > sqrt Fixed-point coordinate rotation digital computer (CORDIC)

implementation of the square root function from the HLS
DSP library.

dsp > viterbi_decoder

Viterbi decoder from the HLS DSP library.

fp_mul_pow?2

Efficient (area and timing) floating point multiplication
implementation using power-of-two, which uses a small
adder and some optional limit checks instead of a floating-
point core and DSP resources.

fxp_sqrt

Square-root implementation for ap_fixed types
implemented in a bit-serial, fully pipelineable manner.

hls_stream

Multirate dataflow (8-bit I/O, 32-bit data processing and
decimation) design using hls::stream.

linear_algebra > cholesky

Parameterized Cholesky function.

linear_algebra > cholesky_alt

Alternative Cholesky implementation.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

[Send Feedback] WWW.Xi|inX.CO6n§

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=68

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Table 5: Vivado HLS Design Examples (cont'd)

Design Example Description
linear_algebra > cholesky_alt_inverse Cholesky function with a customized trait class to select
different implementations.
linear_algebra > cholesky_complex Cholesky function with a complex data type.
linear_algebra > cholesky_inverse Parameterized Cholesky Inverse function.
linear_algebra > implementation_targets Implementation target examples.

For details, see Optimizing the Linear Algebra Functions.

linear_algebra > matrix_multiply Parameterized matrix multiply function.

linear_algebra > matrix_multiply_alt Alternative matrix multiply function.

linear_algebra > qr_inverse Parameterized QR Inverse function.

linear_algebra > qrf Parameterized QRF function.

linear_algebra > qrf_alt Alternative parameterized QRF function.

linear_algebra > svd Parameterized SVD function.

linear_algebra > svd_pairs Parameterized SVD function with alternative “pairs” SVD
implementation.

loop_labels > loop_label Loop with a label.

loop_labels > no_loop_label Loop without a label.

memory_porting_and_ii Initiation interval improved using array partitioning
directives.

perfect_loop > perfect Perfect loop.

perfect_loop > semi_perfect Semi-perfect loop.

rom_init_c Array coded using a sub-function to guarantee a ROM

implementation.

window_fn_float Single-precision floating point windowing function. C++
template class example with compile time selection
between Rectangular (none), Hann, Hamming, or Gaussian
windows.

window_fn_fxpt Fixed-point windowing function. C++ template class
example with compile time selection between Rectangular
(none), Hann, Hamming, or Gaussian windows.

Coding Examples

The Vivado HLS coding examples provide examples of various coding techniques. These are small
examples intended to highlight the results of Vivado HLS synthesis on various C, C++, and
SystemC constructs.

To open the Vivado HLS coding examples from the Welcome Page, click Open Example Project.
In the Examples wizard, select a design from the Coding Style Examples folder.

Note: The Welcome Page appears when you invoke the Vivado HLS GUI. You can access it at any time by
selecting Help = Welcome.

You can also open the design examples directly from the Vivado Design Suite installation area:
Vivado_HLS\2018.x\examples\coding.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | €9

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=69

& XILINX

Chapter 1: High-Level Synthesis

The following table provides a description for each coding example.

Table 6: Vivado HLS Coding Examples

Coding Example

Description

apint_arith

Using C ap_cint types.

apint_promotion

Highlights the casting required to avoid integer promotion
issues with C ap_cint types.

array_arith

Using arithmetic in interface arrays.

array_FIFO

Implementing a FIFO interface.

array_mem_bottleneck

Demonstrates how access to arrays can create a
performance bottleneck.

array_mem_perform

A solution for the performance bottleneck shown by
example array_mem_bottleneck.

array_RAM

Implementing a block RAM interface.

array_ROM

Example demonstrating how a ROM is automatically
inferred.

array_ROM_math_init

Example demonstrating how to infer a ROM in more
complex cases.

cpp_ap_fixed

Using C++ ap_int types.

cpp_ap_int_arith

Using C++ ap_int types for arithmetic.

cpp_FIR

An example C++ design using object orientated coding style.

cpp_math

An example floating point math design that shows how to
use a tolerance in the test bench when comparing results
for operations that are not IEEE exact.

cpp_template

C++ template example.

func_sized Fixing the size of operation by defining the data widths at
the interface.

hier_func An example of adding files as test bench and design files.

hier_func2 An example of adding files as test bench and design files. An
example of synthesizing a lower-level block in the hierarchy.

hier_func3 An example of combining test bench and design functions
into the same file.

hier_func4 Using the pre-defined macro __SYNTHESIS__ to prevent code

being synthesized.

Only use the __SYNTHESIS__ macro in the code to be
synthesized. Do not use this macro in the test bench,
because it is not obeyed by C simulation or C RTL co-
simulation.

loop_functions

Converting loops into functions for parallel execution.

loop_imperfect

An imperfect loop example.

loop_max_bounds

Using a maximum bounds to allow loops be unrolled.

loop_perfect

A perfect loop example.

loop_pipeline

Example of loop pipelining.

loop_sequential

Sequential loops.

loop_sequential_assert

Using assert statements.

loop_var

A loop with variable bounds.

malloc_removed

Example on removing mallocs from the code.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

[Send Feedback] WWW.Xi|inX.CO7I’1(’1)

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=70

& XILINX

Table 6: Vivado HLS Coding Examples (cont'd)

Chapter 1: High-Level Synthesis

Coding Example

Description

pointer_arith

Pointer arithmetic example.

pointer_array

An array of pointers.

pointer_basic

Basic pointer example.

pointer_cast_native

Pointer casting between native C types.

pointer_double

Pointer-to-Pointer example.

pointer_multi

An example of using multiple pointer targets.

pointer_stream_better

Example showing how the volatile keyword is used on
interfaces.

pointer_stream_good

Multi-read pointer example using explicit pointer arithmetic.

sc_combo_method

SystemC combinational design example.

sc_FIFO_port

SystemC FIFO port example.

sc_multi_clock

SystemC example with multiple clocks.

sc_RAM_port

SystemC block RAM port example.

sc_sequ_cthread

SystemC sequential design example.

struct_port

Using structs on the interface.

sum_io

Example of top-level interface ports.

types_composite

Composite types.

types_float_double

Float types to double type conversion.

types_global

Using global variables.

types_standard

Example with standard C types.

types_union

Example with unions.

Data Types for Efficient Hardware

C-based native data types are all on 8-bit bounda

ries (8, 16, 32, 64 bits). RTL buses

(corresponding to hardware) support arbitrary data lengths. Using the standard C data types can
result in inefficient hardware. For example the basic multiplication unit in an FPGA is the DSP48
macro. This provides a multiplier which is 18*18-bit. If a 17-bit multiplication is required, you
should not be forced to implement this with a 32-bit C data type: this would require three DSP48

macros to implement a multiplier when only one i

The advantage of arbitrary precision data types is

s required.

that they allow the C code to be updated to

use variables with smaller bit-widths and then for the C simulation to be re-executed to validate
the functionality remains identical or acceptable. The smaller bit-widths result in hardware

operators which are in turn smaller and faster. Th
FPGA and for the logic to execute at higher clock

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

is is in turn allows more logic to be place in the
frequencies.

[Send Feedback] WWW.ininx.co7n11

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=71

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Advantages of Hardware Efficient Data Types

The following code performs some basic arithmetic operations:

#include "types.h'

void apint_arith(dinA_t inA, dinB_t inB, dinC_t inC, dinD_t inD,
doutl_t *outl, dout2_t *out2, dout3_t *out3, doutd4d_t *out4d

)
// Basic arithmetic operations
*outl = 4inA * inB;
*out2 = inB + dinA;
*out3 = inC / dinA;

*out4 = inD % 4inA;

The data types dinA_t, dinB_t, etc. are defined in the header file types . h. It is highly
recommended to use a project wide header file such as types . h as this allows for the easy
migration from standard C types to arbitrary precision types and helps in refining the arbitrary
precision types to the optimal size.

If the data types in the above example are defined as:

typedef char dinA_t;

typedef short dinB_t;

typedef int dinC_t;

typedef long long dinD_t;
typedef int doutl_t;

typedef unsigned int dout2_t;
typedef int32_t dout3_t;
typedef inté64_t dout4_t;

The design gives the following results after synthesis:

+ Timing (ns):
* Summary:

o e - - - o m o - - e e o +
| Clock | Target| Estimated| Uncertaintyl
o mm——— - - 4o - o m - o e o +
|default | 4.00| 3.85| 0.501I
foccoc—oo= Hoccoooo foccoocccoo= focccc—oc=ooo +

+ Latency (clock cycles):
* Summary:

4o - 4o - - + - - FRp o mm——— - - +
| Latency | Interval | Pipelinel
| min | max | min | max | Type |
4o - - 4o - - - + - - FH o mm——— - - +
| 66 | 66 | 67| 67| none |
Hoco== +-——— - Hocooo Hocooo Hoccoc—oo= +
* Summary
e e e e oo o e - - [o mm—— - - o mm—— - - +
| Name | BRAM_18K| DSP48E| 1718 LUT |

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | >

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=72

& XILINX

o mmm e - m - +
|Expression |
|FIFO |
|Instance |
|[Memory |
I[Multiplexer |
|Register |
foccccoocococco—cooo +
|[Total |
o mmm e - m - +
|Available |
o e m e oo +
|Utilization (%) |
foccccoocococco—cooo +

17920

7

Chapter 1: High-Level Synthesis

If the width of the data is not required to be implemented using standard C types but in some
width which is smaller, but still greater than the next smallest standard C type, such as the

following,

typedef inté dinA_t
typedef
typedef
typedef
typedef
typedef
typedef

typedef

uintl3 dout
int22 dout3
int6 dout4_

’

intl2 dinB_t;
int22 dinC_t;
int33 dinD_t;
intl1l8 doutl_t;

2_t;
_t;
t

The results after synthesis shown an improvement to the maximum clock frequency, the latency
and a significant reduction in area of 75%.

+ Timing (ns):
* Summary:

o - - - +--=-
| Clock | Tar
o e —— o - +-— -
|default | 4
o m - - FR——

+ Latency
* Summary:

m

|Expression
|FIFO

| Instance
|[Memory
[Multiplexer
|Register

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

coofocccoocoooo +
get| Estimated]|
c—odc—co=—=co== +
00| 3.49|
—e—foc======== +

(clock cycles):

o +
Interval |
in | max |
e — - +
36| 36|
coodooo=c +
————————— +
BRAM_18K|
————————— +
- |

- |

-

- |

- |

-
————————— +

Pipeline |

Type

Uncertaintyl

0.50]|
|
|
———————— +
FF |
———————— +
0l
-
4764 |
-
-
6 |
———————— +

www.Xilinx.com
73

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=73

& XILINX

|Total
e e e e e e o o oo

|Available

+ -+ — + —

Chapter 1: High-Level Synthesis

0l 11 4770 | 4573 |
————————— B e e
650 | 600 | 202800 | 101400 |
————————— R e T i
0l ~0 | 2| 4|
————————— R e e -

The large difference in latency between both design is due to the division and remainder
operations which take multiple cycles to complete. Using accurate data types, rather than force

fitting the design into standard C data types, results in a higher quality FPGA implementation: the
same accuracy, running faster with less resources.

Overview of Arbitrary Precision Integer Data Types

Vivado® HLS provides integer and fixed-point arbitrary precision data types for C, C++ and
supports the arbitrary precision data types that are part of SystemC.

Table 7: Arbitrary Precision Data Types

Language

Integer Data Type

Required Header

C

[u]int<W> (1024 bits)

#include “ap_cint.h”

C++

ap_[u]int<w> (1024 bits)
Can be extended to 32K bits wide.

#include “ap_int.h”

C++

ap_[ulfixed<w,I,Q,0,N>

#include “ap_fixed.h”

System C

sc_[u]int<W> (64 bits)
sc_[u]bigint<w> (512 bits)

#include “systemc.h”

System C

sc_[u]fixed<W,I,Q,0,N>

#define SC_INCLUDE_FX
[#define SC_FX_EXCLUDE_OTHER]
#include “systemc.h”

The header files which define the arbitrary precision types are also provided with Vivado® HLS as
a standalone package with the rights to use them in your own source code. The package,
xilinx_hls_lib_<release_number>. tgz is provided in the include directory in the
Vivado® HLS installation area. The package does not include the C arbitrary precision types
defined in ap_cint . h. These types cannot be used with standard C compilers - only with

Vivado® HLS.

Arbitrary Precision Integer Types with C

For the C language, the header file ap_cint . h defines the arbitrary precision integer data types
[ulint. To use arbitrary precision integer data types in a C function:

e Add header file ap_cint . h to the source code.

e Change the bit types to intN or uintN, where N is a bit-size from 1 to 1024.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l

www.Xilinx.com

74

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=74

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

&

Arbitrary Precision Types with C++

For the C++ language ap_[u]int data types the header file ap_int . h defines the arbitrary
precision integer data type. To use arbitrary precision integer data types in a C++ function:

e Add header file ap_int . h to the source code.

e Change the bit types to ap_int<N> or ap_uint<N>, where N is a bit-size from 1 to 1024.

The following example shows how the header file is added and two variables implemented to use
9-bit integer and 10-bit unsigned integer types:

#include "ap_int.h"

void foo_top () {
ap-int<9> wvarl; // 9-bit
ap-uint<10> var2; // 10-bit unsigned

The default maximum width allowed for ap_[u]int data types is 1024 bits. This default may be
overridden by defining the macro AP _INT_MAX_W with a positive integer value less than or
equal to 32768 before inclusion of the ap_int . h header file.

CAUTION! Setting the value of AP_ INT_MAX_Wtoo high can cause slow software compile and run times.

CAUTION! ROM Synthesis can take a long time when using APFixed :. Changing it to int results in a quicker
synthesis. For example:

static ap_fixed<32> al[32][depth] =
Can be changed to:

static int al[32][depth] =

The following is an example of overriding AP_INT_MAX_W:

#define AP_INT_MAX_W 4096 // Must be defined before next line
#include "ap_dint.h"

ap_-int<4096> very_wide_var;

Arbitrary Precision Types with SystemC

The arbitrary precision types used by SystemC are defined in the systemc . h header file that is
required to be included in all SystemC designs. The header file includes the SystemC sc_int<>,

sc_uint<>, sc_bigint<>and sc_biguint<> types.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 75

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=75

& XILINX

Chapter 1: High-Level Synthesis

Overview of Arbitrary Precision Fixed-Point Data

Types

Fixed-point data types model the data as an integer and fraction bits. In this example the Vivado
HLS ap_fixed type is used to define an 18-bit variable with 6 bits representing the numbers
above the binary point and 12-bits representing the value below the decimal point. The variable
is specified as signed, the quantization mode is set to round to plus infinity. Since the overflow
mode is not specified, the default wrap-around mode is used for overflow.

#include <ap_fixed.h>

ap_fixed<18,6,AP_RND > my_type;

When performing calculations where the variables have different number of bits or different
precision, the binary point is automatically aligned.

The behavior of the C++/SystemC simulations performed using fixed-point matches the resulting
hardware. This allows you to analyze the bit-accurate, quantization, and overflow behaviors using

fast C-level simulation.

Fixed-point types are a useful replacement for floating point types which require many clock
cycle to complete. Unless the entire range of the floating-point type is required, the same
accuracy can often be implemented with a fixed-point type resulting in the same accuracy with

smaller and faster hardware.

A summary of the ap_fixed type identifiers is provided in the following table.

Table 8: Fixed-Point Identifier Summary

Identifier Description
W Word length in bits
I The number of bits used to represent the integer value (the number of bits above the
binary point)
Q Quantization mode

This dictates the behavior when greater precision is generated than can be defined by
smallest fractional bit in the variable used to store the result.

SystemC Types ap_fixed Types Description

SC_RND AP_RND Round to plus infinity

SC_RND_ZERO AP_RND_ZERO Round to zero

SC_RND_MIN_INF AP_RND_MIN_INF Round to minus infinity

SC_RND_INF AP_RND_INF Round to infinity

SC_RND_CONV AP_RND_CONV Convergent rounding

SC_TRN AP_TRN Truncation to minus infinity
(default)

SC_TRN_ZERO AP_TRN_ZERO Truncation to zero

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

[Send Feedback] WWW.Xi|inX.CO7I’2

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=76

& XILINX

Table 8: Fixed-Point Identifier Summary (cont'd)

Chapter 1: High-Level Synthesis

> &

Identifier Description

0 Overflow mode.
This dictates the behavior when the result of an operation exceeds the maximum (or
minimum in the case of negative numbers) value which can be stored in the result variable.
SystemC Types ap_fixed Types Description
SC_SAT AP_SAT Saturation
SC_SAT_ZERO AP_SAT_ZERO Saturation to zero
SC_SAT_SYM AP_SAT_SYM Symmetrical saturation
SC_WRAP AP_WRAP Wrap around (default)
SC_WRAP_SM AP_WRAP_SM Sign magnitude wrap

around
N This defines the number of saturation bits in the overflow wrap modes.

The default maximum width allowed for ap_[u] fixed data types is 1024 bits. This default may
be overridden by defining the macro AP_INT_MAX_W with a positive integer value less than or
equal to 32768 before inclusion of the ap_int . h header file.

CAUTION! Setting the value of AP_ INT_MAX_ wtoo High may cause slow software compile and run times.

CAUTION! ROM synthesis can be slow when: static APFixed_2_2 CAcode_sat[32]
[CACODE_LEN] = .Changing APFixedto int results in a faster synthesis: static int
CAcode_sat[32][CACODE_LEN] =

The following is an example of overriding AP_INT _MAX_W:

#define AP_INT_MAX_W 4096 // Must be defined before next line
#include "ap_fixed.h'

ap-fixed<4096> very_wide_var;
Arbitrary precision data types are highly recommend when using Vivado HLS. As shown in the

earlier example, they typically have a significant positive benefit on the quality of the hardware
implementation.

Managing Interfaces

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

In C based design, all input and output operations are performed, in zero time, through formal
function arguments. In an RTL design these same input and output operations must be
performed through a port in the design interface and typically operates using a specific /O
(input-output) protocol.

Vivado HLS supports the following solution for specifying the type of I/O protocol used:

[Send Feedback] WWW.Xi|inX.CO7n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=77

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e Interface Synthesis, where the port interface is created based on efficient industry standard
interfaces.

Interface Synthesis

When the top-level function is synthesized, the arguments (or parameters) to the function are
synthesized into RTL ports. This process is called interface synthesis.

Interface Synthesis Overview

The following code provides a comprehensive overview of interface synthesis.

#include "sum_dio.h"
dout_t sum_io(din_t 4inl, din_t in2, dio_t #*sum) {
dout_t temp;

*sum
temp

inl + 4in2 + *sum;
inl + 4in2;

return temp;

}
The above example includes:

e Two pass-by-value inputs in1 and in?2.
e A pointer sum that is both read from and written to.

e A function return, the value of temp.

With the default interface synthesis settings, the design is synthesized into an RTL block with the
ports shown in the following figure.

Figure 39: RTL Ports After Default Interface Synthesis

-
ap_ctr| [pm— || = ap_ctr

— ap_start
— <ap_done

B Yepldle Vivade'™ HLS a retum[El‘{J]-—Da return[31:0]
— <ap_ready i . f |

sum_o[31:0] % sum_n[31:0]
:E:':: I:E :E::: ’ sum_o_ap_vid[0:0] me———{"% sum_o_ap_vld[0:0]
in1[31:0] el [31:0]
in2[31:0] a2 [31:0]
sum_j[31:0] [p————emsum_i[31:0]

Vivado HLS creates three types of ports on the RTL design:

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 78

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=78

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e Clock and Reset ports: ap_clk and ap_rst.

e Block-Level interface protocol. These are shown expanded in the preceding figure: ap_start,
ap_done, ap_ready,and ap_idle.

e Port Level interface protocols. These are created for each argument in the top-level function
and the function return (if the function returns a value). In this example, these ports are: in1,
in2, sum_1i, sum_o, sum_o_ap-vld, and ap_return.

Clock and Reset Ports
If the design takes more than 1 cycle to complete operation.

A chip-enable port can optionally be added to the entire block using Solution = Solution
Settings = General and config_interface configuration.

The operation of the reset is controlled by the config_rtl configuration.

Block-Level Interface Protocol

By default, a block-level interface protocol is added to the design. These signal control the block,
independently of any port-level I/O protocols. These ports control when the block can start
processing data (ap_start), indicate when it is ready to accept new inputs (ap_ready) and
indicate if the design is idle (ap_id1e) or has completed operation (ap_done).

Port-Level Interface Protocol

The final group of signals are the data ports. The I/O protocol created depends on the type of C
argument and on the default. After the block-level protocol has been used to start the operation
of the block, the port-level 10 protocols are used to sequence data into and out of the block.

By default input pass-by-value arguments and pointers are implemented as simple wire ports
with no associated handshaking signal. In the above example, the input ports are therefore
implemented without an 1/0 protocol, only a data port. If the port has no I/O protocol, (by
default or by design) the input data must be held stable until it is read.

By default output pointers are implemented with an associated output valid signal to indicate
when the output data is valid. In the above example, the output port is implemented with an
associated output valid port (sum_o_ap_vld) which indicates when the data on the port is valid
and can be read. If there is no /O protocol associated with the output port, it is difficult to know
when to read the data. It is always a good idea to use an 1/O protocol on an output.

Function arguments which are both read from and writes to are split into separate input and
output ports. In the above example, sum is implemented as input port sum_1i and output port
sum_o with associated I/O protocol port sum_o_ap_v1d.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 29

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=79

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

If the function has a return value, an output port ap_return is implemented to provide the
return value. When the design completes one transaction - this is equivalent to one execution of
the C function - the block-level protocols indicate the function is complete with the ap_done
signal. This also indicates the data on port ap_return is valid and can be read.

Note: The return value to the top-level function cannot be a pointer.

For the example code shown the timing behavior is shown in the following figure (assuming that
the target technology and clock frequency allow a single addition per clock cycle).

Figure 40: RTL Port Timing with Default Synthesis

B

;

ap_start | |_/
I ——
ap_idle : : 4{
ap_ready i i
ap_done : i
|
|

e

[I [

Data Outputs —y—r(Write Data Outputs }—v—
[| r . . T r [

| | | | |

I

[

| ! \ |
T T T T ™ return T
| | | | | _'J |

[

|

[

|

| [

Data Inputs I—'—l—(Read Data Inputs t
| [| [|
[

|

|

| [

| |

[[

e The design starts when ap_start is asserted High.
e The ap_idile signal is asserted Low to indicate the design is operating.

e The input data is read at any clock after the first cycle. Vivado HLS schedules when the reads
occur. The ap_ready signal is asserted high when all inputs have been read.

e When output sum is calculated, the associated output handshake (sum_o_ap_v1d) indicates
that the data is valid.

e When the function completes, ap_done is asserted. This also indicates that the data on
ap_return is valid.

e Port ap_idle is asserted High to indicate that the design is waiting start again.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 20

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=80

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Interface Synthesis 1/0 Protocols

The type of interfaces that are created by interface synthesis depends on the type of C
argument, the default interface mode, and the INTERFACE optimization directive. The following
figure shows the interface protocol mode you can specify on each type of C argument. This
figure uses the following abbreviations:

e D: Default interface mode for each type.

Note: If you specify an illegal interface, Vivado HLS issues a message and implements the default
interface mode.

e |: Input arguments, which are only read.
e O: Output arguments, which are only written to.

e |/O: Input/Output arguments, which are both read and written.

Figure 41: Data Type and Interface Synthesis Support

Argument
Type

HLS:

Scalar Array Pointer or Reference
Stream

Interface Mode Input Return | 1/0 (0] | 1/0 (0] I and O

ap_ctrl_none

ap_ctrl_hs D

ap_ctrl_chain

axis

s_axilite

m_axi

ap_none D D

ap_stable

ap_ack

ap_vld D

ap_ovld D

ap_hs

ap_memory D D D

bram

ap_fifo D

ap_bus

I:' Supported D = Default Interface |:| Not Supported
X14293

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis |_send Feedback | 81

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=81

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Full details on the interface protocols, including waveform diagrams, are included in Interface
Synthesis Reference. The following provides an overview of each interface mode.

Block-Level Interface Protocols

The block-level interface protocols are ap_ctrl_none,ap_ctrl_hs,and ap_ctrl_chain.
These are specified, and can only be specified, on the function or the function return. When the
directive is specified in the GUI, it will apply these protocols to the function return. Even if the
function does not use a return value, the block-level protocol may be specified on the function
return.

The ap_ctrl_hs mode described in the previous example is the default protocol. The
ap_ctrl_chain protocolis similarto ap_ctr1_hs but has an additional input port
ap_continue that provides back pressure from blocks consuming the data from this block. If
the ap_continue portis logic O when the function completes, the block will halt operation and
the next transaction will not proceed. The next transaction will only proceed when the
ap_continue is asserted to logic 1.

The ap_ctrl_none mode implements the design without any block-level 1/O protocol.

If the function return is also specified as an AXI4-Lite interface (s_axilite) all the ports in the
block-level interface are grouped into the AXI4-Lite interface. This is a common practice when
another device, such as a CPU, is used to configure and control when this block starts and stops
operation.

Port-Level Interface Protocols: AXI4 Interfaces

The AXI4 interfaces supported by Vivado HLS include the AXI4-Stream (axis), AXI4-Lite
(s_axilite), and AXI4 master (m_ax1i) interfaces, which you can specify as follows:

e AXIl4-Stream interface: Specify on input arguments or output arguments only, not on input/
output arguments.

o AXI4-Lite interface: Specify on any type of argument except streams. You can group multiple
arguments into the same AXI4-Lite interface.

e AXI4 master interface: Specify on arrays and pointers (and references in C++) only. You can
group multiple arguments into the same AXI4 interface.

Port-Level Interface Protocols: No I/O Protocol

The ap_none and ap_stable modes specify that no I/O protocol be added to the port. When
these modes are specified the argument is implemented as a data port with no other associated
signals. The ap_none mode is the default for scalar inputs. The ap_stable mode is intended
for configuration inputs that only change when the device is in reset mode.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 8

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=82

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Port-Level Interface Protocols: Wire Handshakes

Interface mode ap_hs includes a two-way handshake signal with the data port. The handshake is
an industry standard valid and acknowledge handshake. Mode ap_v1d is the same but only has a
valid port and ap_ack only has a acknowledge port.

Mode ap_ov1d is for use with in-out arguments. When the in-out is split into separate input and
output ports, mode ap_none is applied to the input port and ap_v1d applied to the output port.
This is the default for pointer arguments that are both read and written.

The ap_hs mode can be applied to arrays that are read or written in sequential order. If Vivado
HLS can determine the read or write accesses are not sequential, it will halt synthesis with an
error. If the access order cannot be determined, Vivado HLS will issue a warning.

Port-Level Interface Protocols: Memory Interfaces

Array arguments are implemented by default as an ap_memory interface. This is a standard
block RAM interface with data, address, chip-enable, and write-enable ports.

An ap_memory interface may be implemented as a single-port of dual-port interface. If Vivado
HLS can determine that using a dual-port interface will reduce the initial interval, it will
automatically implement a dual-port interface. The RESOURCE directive is used to specify the
memory resource and if this directive is specified on the array with a single-port block RAM, a
single-port interface will be implemented. Conversely, if a dual-port interface is specified using
the RESOURCE directive and Vivado HLS determines this interface provides no benefit it will
automatically implement a single-port interface.

The bram interface mode is functional identical to the ap_memory interface. The only difference
is how the ports are implemented when the design is used in Vivado IP Integrator:

e An ap_memory interface is displayed as multiple and separate ports.

e A bram interface is displayed as a single grouped port which can be connected to a Xilinx
block RAM using a single point-to-point connection.

If the array is accessed in a sequential manner an ap_fifo interface can be used. As with the
ap_hs interface, Vivado HLS will halt if it determines the data access is not sequential, report a
warning if it cannot determine if the access is sequential or issue no message if it determines the
access is sequential. The ap_fifo interface can only be used for reading or writing, not both.

The ap_bus interface can communicate with a bus bridge. The interface does not adhere to any
specific bus standard but is generic enough to be used with a bus bridge that in-turn arbitrates
with the system bus. The bus bridge must be able to cache all burst writes.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 83

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=83

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Interface Synthesis and Structs

Structs on the interface are by default decomposed into their member elements and ports are
implemented separately for each member element. Each member element of the struct will be
implemented, in the absence of any INTERFACE directive.

Arrays of structs are implemented as multiple arrays, with a separate array for each member of
the struct.

The DATA_PACK optimization directive is used for packing all the elements of a struct into a
single wide vector. This allows all members of the struct to be read and written to
simultaneously. The member elements of the struct are placed into the vector in the order they
appear in the C code: the first element of the struct is aligned on the LSB of the vector and the
final element of the struct is aligned with the MSB of the vector. Any arrays in the struct are
partitioned into individual array elements and placed in the vector from lowest to highest, in
order.

Note: The DATA_PACK optimization does not support packing structs which contain other structs.

Care should be taken when using the DATA_PACK optimization on structs with large arrays. If an
array has 4096 elements of type int, this will result in a vector (and port) of width
4096*32=131072 bits. Vivado HLS can create this RTL design, however it is very unlikely that
logic synthesis will be able to route this during the FPGA implementation.

The single wide-vector created by using the DATA_PACK directive allows more data to be
accessed in a single clock cycle. This is the case when the struct contains an array. When data
can be accessed in a single clock cycle, Vivado HLS automatically unrolls any loops consuming
this data, if doing so improves the throughput. The loop can be fully or partially unrolled to create
enough hardware to consume the additional data in a single clock cycle. This feature is controlled
using the config_unroll command and the option tripcount_threshold. In the following
example, any loops with a tripcount of less than 16 will be automatically unrolled if doing so
improves the throughput.

config_unroll -tripcount_threshold 16

Note: Structs are only supported for the AXIM interface if the struct is packed using the DATA_PACK
optimization.

If a struct port using DATA_PACK is to be implemented with an AXI4 interface you may wish to
consider using the DATA_PACK -byte_pad option. The -byte_pad option is used to
automatically align the member elements to 8-bit boundaries. This alignment is sometimes
required by Xilinx IP. If an AXI4 port using DATA_PACK is to be implemented, refer to the
documentation for the Xilinx IP it will connect to and determine if byte alignment is required.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 84

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=84

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

For the following example code, the options for implementing a struct port are shown in the
following figure.

typedef structf{
intl2 A;
intl18 B[4];
int6 C;
} my_data;

void foo(my_data *a)

e By default, the members are implemented as individual ports. The array has multiple ports
(data, addr, etc.)

e Using DATA_PACK results in a single wide port.

e Using DATA_PACK with struct_1level byte padding aligns the entire struct to the next 8-
bit boundary.

e Using DATA_PACK with field_level byte padding aligns each struct member to the next
8-bit boundary.

e The maximum bit-width of any port or bus created by data packing is 8192 bits.

Figure 42: DATA_PACK -byte_pad Alignment Options

Struct Port Implementation

c

6-bit o T T o Yme T om
DATA_PACK optimization
89... Single packed vector [89:0]
O o [e | o | o0 |
6-bit 18- blt 18- blt 18- blt 18- blt 12- blt
DATA_PACK optimization with byte_pad on the struct_level
95... Single packed vector / port [95:0]
o
-
6-bit 6-bit 18- blt 18- blt 18- blt 18- blt 12- blt
DATA_PACK optimization with byte_pad on the field_level
119... Single packed vector / port [119:0] .0
c EW - IEEH c I c Il © EEE ©
————Ppd——P4——— Pt P4 P4t P4 Pt P4 4P
6-bit 6-bit 6-bit 18-bit 6-bit 18-bit 6-bit 18-bit 6-bit 18-bit 4-bit 12-bit

X14292

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | g5

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=85

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

If a struct contains arrays, those arrays can be optimized using the ARRAY_PARTITION
directive to partition the array or the ARRAY_RESHAPE directive to partition the array and re-
combine the partitioned elements into a wider array. The DATA_PACK directive performs a
similar operation as ARRAY_RESHAPE and combines the reshaped array with the other
elements in the struct.

A struct cannot be optimized with DATA_PACK and then partitioned or reshaped. The
DATA_PACK, ARRAY_PARTITION, and ARRAY_RESHAPE directives are mutually exclusive.

Interface Synthesis and Multi-Access Pointers

Using pointers which are accessed multiple times can introduce unexpected behavior after
synthesis. In the following example pointer d_i is read four times and pointer d_o is written to
twice: the pointers perform multiple accesses.

#include "pointer_stream_bad.h"

void pointer_stream_bad (dout_t *d_o, din_t *d_1i) {
din_t acc = 0;
acc += *d_i;
acc += *d_i;
*d_o = acc;
acc += *d_i;
acc += *d_i;
*d_o = acc;

}

After synthesis this code will result in an RTL design which reads the input port once and writes
to the output port once. As with any standard C compiler, Vivado HLS will optimize away the
redundant pointer accesses. To implement the above code with the “anticipated” 4 reads on d_i
and 2 writes to the d_o the pointers must be specified as volatile as shown in the next
example.

#include "pointer_stream_better.h"

void pointer_stream_better (volatile dout_t *d_o, volatile din_t *d_i) {
din_t acc = 0;
acc += *d_1i;
acc += *d_i;
*d_o = acc;
acc += *d_1i;
acc += *d_i;
*d_o = acc;

3

Even this C code is problematic. Indeed, using a test bench, there is no way to supply anything
but a single value to d_1i or verify any write to d_o other than the final write. Although multi-
access pointers are supported, it is highly recommended to implement the behavior required
using the hls: :stream class. Details on the hls: : st ream class are in HLS Stream Library.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 86

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=86

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Specifying Interfaces

Interface synthesis is controlled by the INTERFACE directive or by using a configuration setting.
To specify the interface mode on ports, select the port in the GUI Directives tab and right-click
the mouse to open the Vivado HLS Directive Editor as shown in the following figure.

Figure 43: Specifying Port Interfaces

[= - [Py . = ==
Vivado HLS Directive Editor o= Outline | (i Directive
4 @ fir
Type
4y
Directive: |INTERFACE - @ c
Destination Y
=[] i
Source File {1 shift_reg

W e
% Shift_A L
@) Directive File E Ift_Accum_Loop

Options

mode (optional): ap_hs -

register:

depth (optional):

port (required): X

offset (optional):

metadata (optional}:

| Help | | Cancel | [Ok l

In the Vivado HLS Directives Editor, set the following options:

e mode
Select the interface mode from the drop-down menu.
e register

If you select this option, all pass-by-value reads are performed in the first cycle of operation.
For output ports, the register option guarantees the output is registered. You can apply the
register option to any function in the design. For memory, FIFO, and AXI4 interfaces, the
register option has no effect.

e depth

This option specifies how many samples are provided to the design by the test bench and how
many output values the test bench must store. Use whichever number is greater.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 87

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=87

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Note: For cases in which a pointer is read from or written to multiple times within a single transaction,
the depth option is required for C/RTL co-simulation. The depth option is not required for arrays or
when using the hls::stream construct. It is only required when using pointers on the interface.

If the depth option is set too small, the C/RTL co-simulation might deadlock as follows:

1. The input reads might stall waiting for data that the test bench cannot provide.

2. The output writes might stall when trying to write data, because the storage is full.
e port

This option is required. By default, Vivado HLS does not register ports.

Note: To specify a block-level 1/O protocol, select the top-level function in the Vivado HLS GUI, and
specify the port as the function return.

e offset

This option is used for AXI4 interfaces.

To set the interface configuration, select Solution = Solution Settings = General =
config_interface. You can use configuration settings to:

e Add a global clock enable to the RTL design.

e Remove dangling ports, such as those created by elements of a struct that are not used in the
design.

e Create RTL ports for any global variables.

Any C function can use global variables: those variables defined outside the scope of any
function. By default, global variables do not result in the creation of RTL ports: Vivado HLS
assumes the global variable is inside the final design. The config_inter face configuration
setting expose_global instructs Vivado HLS to create a ports for global variables.

Interface Synthesis for SystemC

In general, interface synthesis is not supported for SystemC designs. The I/O ports for SystemC
designs are fully specified in the SC_MODULE interface and the behavior of the ports fully
described in the source code. Interface synthesis is provided to support:

Memory block RAM interfaces
e AXIl4-Stream interfaces
o AXIl4-Lite interfaces

e AXI4 master interfaces

The processes for performing interface synthesis on a SystemC design is different from adding
the same interfaces to C or C++ designs.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 88

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=88

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e Memory block RAM and AXI4 master interfaces require the SystemC data port is replaced
with a Vivado HLS port.

e AXIl4-Stream and AXI4-Lite slave interfaces only require directives but there is a different
process for adding directives to a SystemC design.

Applying Interface Directives with SystemC

When adding directives as pragmas to SystemC source code, the pragma directives cannot be
added where the ports are specified in the SC_MODULE declaration, they must be added inside
a function called by the SC_MODULE.

When adding directives using the GUI:

e Open the C source code and directives tab.
e Select the function which requires a directive.
e Right-click with the mouse and the INTERFACE directive to the function.

The directives can be applied to any member function of the SC_MODULE, however it is a good
design practice to add them to the function where the variables are used.

Block RAM Memory Ports

Given a SystemC design with an array port on the interface:

SC_MODULE (my_design) {
//”RAM” Port
sc_uint<20> my_array[256];

The port my_array is synthesized into an internal block RAM, not a block RAM interface port.

Including the Vivado HLS header file ap_mem_1if . h allows the same port to be specified as an
ap_mem_port<data_width, address_bits> port. The ap_mem_port data typeis
synthesized into a standard block RAM interface with the specified data and address bus-widths
and using the ap_memory port protocol.

#include "ap_mem_if.h"

SC_MODULE (my_design) {

//”RAM” Port

ap_mem_port<sc_uint<20>,sc_uint<8>, 256> my_array;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 89

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=89

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

When an ap_mem_port is added to a SystemC design, an associated ap_mem_chn must be
added to the SystemC test bench to drive the ap_mem_port. In the test bench, an ap_mem_chn
is defined and attached to the instance as shown:

#include "ap_mem_if.h"
ap_mem_chn<int,int, 68> bus_mem;

// Instantiate the top-level module
my_design U_dut (“U_dut”)
U_dut.my_array.bind(bus_mem) ;

The header file ap_mem_if . h is located in the include directory located in the Vivado HLS
installation area and must be included if simulation is performed outside Vivado HLS.

SystemC AXI4-Stream Interface

An AXI4-Stream interface can be added to any SystemC ports that are of the sc_fifo_in or
sc_fifo_out type. The following shows the top-level of a typical SystemC design. As is typical,
the SC_MODULE and ports are defined in a header file:

SC_MODULE (sc_FIFO_port)
{
//Ports
sc_in <bool> clock;
sc_in <bool> reset;
sc_in <bool> start;
sc_out<bool> done;
sc_fifo_out<int> dout;
sc_fifo_in<int> din;

//Variables
int share_mem[100];
bool write_done;

//Process Declaration
void Prcl();
void Prc2();

//Constructor
SC_CTOR(sc_FIFO_port)

{

//Process Registration
SC_CTHREAD (Prcl,clock.pos());
reset_signal_dis(reset,true);

SC_CTHREAD (Prc2,clock.pos());
reset_signal_is(reset,true);

}

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 90

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=90

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

To create an AXI4-Stream interface the RESOURCE directive must be used to specify the ports
are connected an AXI4-Stream resource. For the example interface shown above, the directives
are shown added in the function called by the SC_MODULE: ports din and dout are specified
to have an AXI4-Stream resource.

#include "sc_FIFO_port.h"

void sc_FIFO_port::Prcl()
{
//Initialization
write_done = false;

wait () ;

while(true)

{
while (!start.read()) wait();
write_done = false;

for(int 4=0;i<100; di++)

share_mem[i] = 1i;
write_done = true;
wait();

1 //end of while(true)

void sc_FIFO_port::Prc2()
{
#pragma HLS resource core=AXI4Stream variable=din
f#pragma HLS resource core=AXI4Stream variable=dout
//Initialization
done = false;

wait () ;

while(true)

{

while (!start.read()) wait();
wait();
while (!write_done) wait();

for(int 1i=0;i<100; di++)

{
}

dout.write(share_mem[i]+din.read());

done = true;
wait () ;
1 //end of while(true)
}

When the SystemC design is synthesized, it results in an RTL design with standard RTL FIFO

ports. When the design is packaged as IP using the Export RTL toolbar button EE the output is a
design with an AXI4-Stream interfaces.

UG902 (v2019.2) January 13, 2020

www.xilinx.com
High-Level Synthesis [_send Feedback | 91

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=91

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

SystemC AXI4-Lite Interface

An AXI4-Lite slave interface can be added to any SystemC ports of type sc_in or sc_out. The
following example shows the top-level of a typical SystemC design. In this case, as is typical, the
SC_MODULE and ports are defined in a header file:

SC_MODULE(sc_sequ_cthread) {
//Ports

sc_in <bool> clk;

sc_in <bool> reset;

sc_in <bool> start;
sc_in<sc_uint<1l6> > a;
sc_in<bool> en;
sc_out<sc_uint<l6> > sum;
sc_out<bool> vl1d;

//Variables
sc_uint<l6> acc;

//Process Declaration
void accum();

//Constructor
SC_CTOR(sc_sequ_cthread) {

//Process Registration
SC_CTHREAD (accum,clk.pos());
reset_signal_dis(reset,true);
}

1

To create an AXI4-Lite interface the RESOURCE directive must be used to specify the ports are
connected to an AXI4-Lite resource. For the example interface shown above, the following
example shows how ports start, a, en, sum and v1d are grouped into the same AXI4-Lite
interface s1vo0: all the ports are specified with the same bus_bundle name and are grouped
into the same AXI4-Lite interface.

#include "sc_sequ_cthread.h"

void sc_sequ_cthread::accum(){

//Group ports into AXI4 slave slvO

ffpragma HLS resource core=AXT4LiteS metadata="-bus_bundle slv0"
variable=start

#pragma HLS resource core=AXI4LiteS metadata="-bus_bundle slv0" variable=a
ffpragma HLS resource core=AXTI4LiteS metadata="-bus_bundle slv0" variable=en
#pragma HLS resource core=AXI4LiteS metadata="-bus_bundle slv0" variable=sum

#pragma HLS resource core=AXI4LiteS metadata="-bus_bundle slv0" variable=vld

//Initialization
acc=0;
sum.write(0) ;
vld.write(false);
wait();

// Process the data
while(true) {

// Wait for start
wait () ;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 92

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=92

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

while (!start.read()) wait();

// Read if valid input available
if (en) {

acc = acc + a.read();
sum.write(acc) ;

vld.write(true) ;

} else {

vld.write(false);

}

1

3

When the SystemC design is synthesized, it results in an RTL design with standard RTL ports.

When the design is packaged as IP using Export RTL toolbar button EE the output is a design
with an AXI4-Lite interface.

SystemC AXI4 Master Interface

In most standard SystemC designs, you have no need to specify a port with the behavior of the
Vivado HLS ap_bus I/O protocol. However, if the design requires an AXI4 master bus interface
the ap_bus I/O protocol is required.

To specify an AXI4 master interface on a SystemC design:

o Use the Vivado HLS type AXTI4M_bus_port to create an interface with the ap_bus I/O
protocol.

e Assign an AXI4M resource to the port.

The following example shows how an AXI4M_bus_port called bus_if is added to a SystemC
design.

e The header file AXI4_if.h must be added to the design.

e The portis defined as AXI4M_bus_port<type>, where type specifies the data type to be
used (in this example, an sc_fixed type is used).

Note: The data type used in the AXI4M_bus_port must be multiples of 8-bit. In addition, structs are not
supported for this data type.

#include "systemc.h'
#include "AXI4_if.h"
#include "tlm.h"

using namespace tlm;

#define DT sc_fixed<32, 8>

SC_MODULE (dut)
{
//Ports
sc_in<bool> clock; //clock input
sc_in<bool> reset;
sc_in<bool> start;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 93

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=93

& XILINX

sc_out<int> dout;

AXT4M_bus_port<sc_fixed<32, 8> > bus_if;

//Variables

//Constructor

SC_CTOR(dut)

//:bus_if ("bus_if")

{
//Process Registration
SC_CTHREAD (P1,clock.pos());

reset_signal_is(reset,true);

Chapter 1: High-Level Synthesis

The following shows how the variable bus_1if can be accessed in the SystemC function to

produce standard or burst read and write operations.

//Process Declaration
void P1() {

3

//Initialization
dout .write(10) ;
int addr = 10;
DT tmp[10];
wait();

while (!start.read()) wait();
// Port read
tmp[0] = bus_if->read(addr);

// Port burst read
bus_if->burst_read(addr,2, tmp) ;

// Port write
bus_if->write(addr, tmp);

// Port burst write
bus_if->burst_write(addr,2,tmp);

dout .write(tmp[O0].to_int());
addr+=2;
wait () ;

}

When the port class AXT4M_bus_port is used in a design, it must have a matching HLS bus
interface channel h1s_bus_chn<start_addr > inthe test bench, as shown in the following
example:

#include <systemc.h>
#include "tlm.h"
using namespace tlm;

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l

www.Xilinx.com
94

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=94

& XILINX

#include "hls_bus_if.h"
#include "AE_clock.h"
#include "driver.h"

#ifdef __RTL_SIMULATION__
#include "dut_rtl_wrapper.h"
#define dut dut_rtl_wrapper

#else

#include "dut.h"

#endif

int sc_main (int argc , char
{

*argv[])

Chapter 1: High-Level Synthesis

sc_report_handler::set_actions("/IEEE_Std_1666/deprecated",

SC_DO_NOTHING) ;
sc_report_handler::set_act
sc_report_handler::set_act

SC_LOG) ;
sc_report_handler::set_act

// hls_bus_chan<type>
// bus_variable(“name”, st

/7

ions(SC_ID_LOGIC_X_TO_BOOL_, SC_LOG);
ions(SC_ID_VECTOR_CONTAINS_LOGIC_VALUE_,

ions(SC_ID_OBJECT_EXISTS_, SC_LOG);

art_addr,

end_addr)

hls_bus_chn<sc_fixed<32, 8> > bus_mem("bus_mem",0,1024);

sc_signal<bool>
sc_signal<bool>
sc_signal<bool>
sc_signal<int>

AE_Clock
dut U_dut ("U_dut");
driver U_driver("U_dri

U_AE_Clock.reset(reset);
U_AE_Clock.clk(s_clk);

U_dut.clock(s_clk);
U_dut.reset(reset) ;
U_dut.start(start);
U_dut .dout (dout) ;
U_dut.bus_if(bus_mem) ;

U_driver.clk(s_clk);
U_driver.start(start) ;
U_driver.dout (dout) ;
int end_time = 8000;

cout << "INFO: Simulating

// start simulation
sc_start(end_time, SC_NS)

return U_driver.ret;

1

s_clk;
reset;
start;
dout ;

U_AE_Clock("U_AE_Clock",

ver");

" << endl;

>

The synthesized RTL design contains an interface with the ap_bus 1/O protocol.

When the AXI4M_bus_port class is used, it results in an RTL design with an ap_bus interface.
When the design is packaged as IP using Export RTL the output is a design with an AXI4 master

port.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

[Send Feedback] WWW.Xi|inX.C09n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=95

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Using AXI4 Interfaces

AXI4-Stream Interfaces

An AXI4-Stream interface can be applied to any input argument and any array or pointer output
argument. Since an AXI4-Stream interface transfers data in a sequential streaming manner it
cannot be used with arguments that are both read and written. An AXI4-Stream interface is
always sign-extended to the next byte. For example, a 12-bit data value is sign-extended to 16-
bit.

AXl4-Stream interfaces are always implemented as registered interfaces to ensure no
combinational feedback paths are created when multiple HLS IP blocks with AXI-Stream
interfaces are integrated into a larger design. For AXI-Stream interfaces, four types of register
modes are provided to control how the AXI-Stream interface registers are implemented.

Forward: Only the TDATA and TVALID signals are registered.

Reverse: Only the TREADY signal is registered.
e Both: All signals (TDATA, TREADY and TVALID) are registered. This is the default.

e Off: None of the port signals are registered.

The AXI-Stream side-channel signals are considered to be data signals and are registered
whenever TDATA is registered.

O RECOMMENDED: When connecting HLS generated IP blocks with AXI4-Stream interfaces at least one
interface should be implemented as a registered interface or the blocks should be connected via an AX14-Stream
Register Slice.

There are two basic ways to use an AXI4-Stream in your design.

e Use an AXI4-Stream without side-channels.

e Use an AXI4-Stream with side-channels.

This second use model provides additional functionality, allowing the optional side-channels
which are part of the AXI4-Stream standard, to be used directly in the C code.

AXI4-Stream Interfaces without Side-Channels

An AXI4-Stream is used without side-channels when the function argument does not contain any
AXIl4 side-channel elements. The following example shown a design where the data type is a
standard C int type. In this example, both interfaces are implemented using an AXI4-Stream.

void example(int A[50], int B[50]) {
//Set the HLS native interface types
#pragma HLS INTERFACE axis port=A
ffpragma HLS INTERFACE axis port=B

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 9

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=96

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

}

After synthesis, both arguments are implemented with a data port and the standard AXI4-Stream
TVALID and TREADY protocol ports as shown in the following figure.

Figure 44: AXI4-Stream Interfaces Without Side-Channels

p
ap_ctrl [p—] || 4-ap_ctr

A =A

— MA_TVALID Vivade™ HLS i
B_TVALIDM —
— 4A_TREADY
B_TREADYH

A_TDATA[31:0] ’

ap_clk [x——=ap_clk
ap_rst_n[_»——=ap rst.n

B_TDATA[31:0]» f=

Multiple variables can be combined into the same AXI4-Stream interface by using a struct and
the DATA_PACK directive. If an argument to the top-level function is a struct, Vivado HLS by
default partitions the struct into separate elements and implements each member of the struct as
a separate port. However, the DATA_PACK directive may be used to pack the elements of a
struct into a single wide-vector, allowing all elements of the struct to be implemented in the
same AXI4-Stream interface.

AXI4-Stream Interfaces with Side-Channels

Side-channels are optional signals which are part of the AXI4-Stream standard. The side-channel
signals may be directly referenced and controlled in the C code using a struct, provided the
member elements of the struct match the names of the AXI4-Stream side-channel signals. The
AXI-Stream side-channel signals are considered data signals and are registered whenever TDATA
is registered. An example of this is provided with Vivado HLS. The Vivado HLS include
directory contains the file ap_axi_sdata.h. This header file contains the following structs:

#include "ap_int.h"
#include “ap_axi_sdata,h”

template<int D,int U,int TI,int TD>
struct ap-_axisf{
ap_int<D> data;
ap-uint<D/8> keep;
ap-uint<D/8> strb;
ap_uint<U> user;
ap_uint<l> last;
ap-uint<TI> id;
ap_uint<TD> dest;
53

template<int D,int U,int TI,int TD>

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 97

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=97

& XILINX

struct ap_axiuf{
data;
keep;
strb;
user;
last;
id;
dest;

ap_uint<D>

ap-uint<D/8>
ap-uint<D/8>

ap_uint<U>
ap_uint<l>
ap-uint<TI
ap_uint<TD
b3

>
>

Chapter 1: High-Level Synthesis

Both structs contain as top-level members, variables whose names match those of the optional
AXIl4-Stream side-channel signals. Provided the struct contains elements with these names, there
is no requirement to use the header file provided. You can create your own user defined structs.
Since the structs shown above use ap_int types and templates, this header file is only for use in

C++ designs.

Note: The valid and ready signals are mandatory signals in an AXI4-Stream and will always be implemented
by Vivado HLS. These cannot be controlled using a struct.

The following example shows how the side-channels can be used directly in the C code and
implemented on the interface. In this example a signed 32-bit data type is used.

#include '"ap_axi_sdata.h'

void example(ap_axis<32,2,5,6> A[50],

//Map ports to Vivado HLS interfaces
#pragma HLS INTERFACE axis port=A
#pragma HLS INTERFACE axis port=B

int i;

H
— 0

.data
.keep
.strb
.user
.last

R

adie=AlvsAlvsBlveBlveilve i)

—

o onononon ||'

i++)1{

.data.to_int() + 5;
.keep;
.strb;
.user;
.last;

ap_axis<32,2,5,6> B[50]){

After synthesis, both arguments are implemented with data ports, the standard AXI4-Stream
TVALID and TREADY protocol ports and all of the optional ports described in the struct.

UG902 (v2019.2) January 13, 2020

High-Level Synthesis

[Send Feedback] WWW.Xi|inX.C09n§

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=98

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 45: AXI4-Stream Interfaces With Side-Channels

-

ap_ctrl [pm—|| 4= ap_ctrl

— FA_TVALID =
B_TVALIDF =—
— 4A_TREADY
B_TREADYA ~—
= A _TDATA[31:0]
B_TDATA[31:0]w =
= WA _TDEST[5:0] [vwado™His
B_TDEST[5:0]p =
= A _TKEEP[3:0]
B_TKEEP[3:0]p ==
= pA_TSTRB[3:0]
B_TSTRE[3:0]w =
= A _TUSER[1:0]
B_TUSER[1:0]p =
= A _TLAST[0:0]
B_TLAST[0:0]p ==
p-A_TID[4:0]
B_TID[4:0]» =

ap_clk [y—=ap_clk
ap_rst_n[_x—=ap_rst_n

Packing Structs into AXI4-Stream Interfaces

There is a difference in the default synthesis behavior when using structs with AXI4-Stream
interfaces. The default synthesis behavior for struct is described in Interface Synthesis and
Structs.

When using AXI4-Stream interfaces without side-channels and the function argument is a struct:

e Vivado HLS automatically applies the DATA_PACK directive and all elements of the struct are
combined into a single wide-data vector. The interface is implemented as a single wide-data
vector with associated TVALID and TREADY signals.

e If the DATA_PACK directive is manually applied to the struct, all elements of the struct are
combined into a single wide-data vector and the AXI alighnment options to the DATA_PACK
directive may be applied. The interface is implemented as a single wide-data vector with
associated TVALID and TREADY signals.

When using AXI4-Stream interfaces with side-channels, the function argument is itself a struct
(AXI-Stream struct). It can contain data which is itself a struct (data struct) along with the side-
channels:

¢ Vivado HLS automatically applies the DATA_PACK directive to the data struct and all elements
of the data struct are combined into a single wide-data vector. The interface is implemented
as a single wide-data vector with associated side-channels, TVALID and TREADY signals.

e [f the DATA_PACK directive is manually applied to the data struct, all elements of the data
struct are combined into a single wide-data vector and the AXI alignment options to the
DATA_PACK directive may be applied. The interface is implement as a single wide-data vector
with associated side-channels, TVALID and TREADY signals.

e [f the DATA_PACK directive is applied to AXI-Stream struct, the function argument, the data
struct and the side-channel signals are combined into a single wide-vector. The interface is
implemented as a single wide-data vector with TVALID and TREADY signals.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 99

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=99

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

AXI4-Lite Interface

You can use an AXIl4-Lite interface to allow the design to be controlled by a CPU or
microcontroller. Using the Vivado HLS AXI4-Lite interface, you can:

e Group multiple ports into the same AXI4-Lite interface.
e OQOutput C driver files for use with the code running on a processor.

Note: This provides a set of C application program interface (API) functions, which allows you to easily
control the hardware from the software. This is useful when the design is exported to the IP Catalog.

The following example shows how Vivado HLS implements multiple arguments, including the
function return, as an AXl4-Lite interface. Because each directive uses the same name for the
bundle option, each of the ports is grouped into the same AXI4-Lite interface.

void example(char *a, char *b, char *c)

{
fpragma HLS INTERFACE s_axilite port=return bundle=BUS_A

#pragma HLS INTERFACE s_axilite port=a bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=b bundle=BUS_A
fpragma HLS INTERFACE s_axilite port=c bundle=BUS_A offset=0x0400

#pragma HLS INTERFACE ap_vld port=b

¥c += ¥g + *bh:

3

Note: If you do not use the bund1le option, Vivado HLS groups all arguments specified with an AXI4-Lite
interface into the same default bundle and automatically names the port.

You can also assign an |/O protocol to ports grouped into an AXI4-Lite interface. In the example
above, Vivado HLS implements port b as an ap_v1d interface and groups port b into the AXI4-
Lite interface. As a result, the AXI4-Lite interface contains a register for the port b data, a register
for the output to acknowledge that port b was read, and a register for the port b input valid
signal.

Each time port b is read, Vivado HLS automatically clears the input valid register and resets the
register to logic O. If the input valid register is not set to logic 1, the data in the b data register is
not considered valid, and the design stalls and waits for the valid register to be set.

O RECOMMENDED: For ease of use during the operation of the design, Xilinx recommends that you do not
include additional I/0O protocols in the ports grouped into an AXl4-Lite interface. However, Xilinx recommends
that you include the block-level I/O protocol associated with the return port in the AXI4-Lite interface.

You cannot assign arrays to an AXI4-Lite interface using the bram interface. You can only assign
arrays to an AXI4-Lite interface using the default ap_memory interface. You also cannot assign
any argument specified with ap_stable I/O protocol to an AXI4-Lite interface.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 100

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=100

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Since the variables grouped into an AXI-Lite interface are function arguments, which themselves
cannot be assigned a default value in the C code, none of the registers in an AXI-Lite interface
may be assigned a default value. The registers can be implemented with a reset with the
config_rtl command, but they cannot be assigned any other default value.

By default, Vivado HLS automatically assigns the address for each port that is grouped into an
AXI4-Lite interface. Vivado HLS provides the assigned addresses in the C driver files. For more
information, see C Driver Files. To explicitly define the address, you can use the o f fset option,
as shown for argument c in the example above.

Sﬁ? IMPORTANT! In an AXI4-Lite interface, Vivado HLS reserves addresses 0Ox0000 through 0x000C for the
block-level 1/0 protocol signals and interrupt controls.

After synthesis, Vivado HLS implements the ports in the AXI4-Lite port, as shown in the
following figure. Vivado HLS creates the interrupt port by including the function return in the
AXl4-Lite interface. You can program the interrupt through the AXI4-Lite interface. You can also
drive the interrupt from the following block-level protocols:

e ap_done: Indicates when the function completes all operations.

e ap_ready: Indicates when the function is ready for new input data.

You can program the interface using the C driver files.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 101

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=101

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 46: AXI4-Lite Slave Interfaces with Grouped RTL Ports

| e=s_axi_BUS_A

= ps_axi_BUS_A_AWADDR[5:0]

— ps_axi_BUS_A_AWVALID

— d4s_axi_BUS_A_AWREADY

— s_axi_BUS_A_WDATA[31:0]

= Js_axi_BUS_A_WSTRB[3:0]

— ps_axi_BUS_A_WVALID

— 4s_axi_BUS_A_WREADY

— 4s_axi_BUS_A_BRESP[1:0]

— «s_axi_BUS_A_BVALID] ,
interrupt

— Ws_axi_BUS_A_BREADY g

= s_axi_BUS_A_ARADDR[5:0]

— s_axi_BUS_A_ARVALID

— 4s_axi_BUS_A_ARREADY

— 4s_axi_BUS_A_RDATA[31:0]

— 4s_axi_BUS_A_RRESP[1:0]

— 4s_axi_BUS_A_RVALID

— ps_axi_BUS_A_RREADY

—ap_clk

—ap_rst_n

Control Clock and Reset in AXI4-Lite Interfaces

By default, Vivado HLS uses the same clock for the AXI4-Lite interface and the synthesized
design. Vivado HLS connects all registers in the AXI4-Lite interface to the clock used for the
synthesized logic (ap_c1k).

Optionally, you can use the INTERFACE directive c1ock option to specify a separate clock for
each AXI4-Lite port. When connecting the clock to the AXI4-Lite interface, you must use the
following protocols:

e AXI4-Lite interface clock must be synchronous to the clock used for the synthesized logic
(ap_c1k). Thatis, both clocks must be derived from the same master generator clock.

e AXI4-Lite interface clock frequency must be equal to or less than the frequency of the clock
used for the synthesized logic (ap_c1k).

If you use the c1ock option with the interface directive, you only need to specify the clock
option on one function argument in each bundle. Vivado HLS implements all other function
arguments in the bundle with the same clock and reset. Vivado HLS names the generated reset
signal with the prefix ap_rst_ followed by the clock name. The generated reset signal is active
Low independent of the config_rt1 command.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 102

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=102

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

The following example shows how Vivado HLS groups function arguments a and b into an AXI4-
Lite port with a clock named AXI_c1k1 and an associated reset port.

// Default AXI-Lite interface implemented with independent clock called
AXT_clkl

fpragma HLS interface s_axilite port=a clock=AXI_clkl

#pragma HLS interface s_axilite port=b

In the following example, Vivado HLS groups function arguments c and d into AXI4-Lite port
CTRL1 with a separate clock called AXI_c1k2 and an associated reset port.

// CTRL1 AXI-Lite bundle implemented with a separate clock (called AXI_clk2)
#pragma HLS interface s_axilite port=c bundle=CTRL1 clock=AXI_clk2
#pragma HLS interface s_axilite port=d bundle=CTRL1

C Driver Files

When an AXI4-Lite slave interface is implemented, a set of C driver files are automatically
created. These C driver files provide a set of APIs that can be integrated into any software
running on a CPU and used to communicate with the device via the AXlI4-Lite slave interface.

The C driver files are created when the design is packaged as IP in the IP Catalog.

Driver files are created for standalone and Linux modes. In standalone mode the drivers are used
in the same way as any other Xilinx standalone drivers. In Linux mode, copy all the C files (.c) and
header files (.h) files into the software project.

The driver files and API functions derive their name from the top-level function for synthesis. In
the above example, the top-level function is called “example”. If the top-level function was
named “DUT” the name “example” would be replaced by “DUT” in the following description. The
driver files are created in the packaged IP (located in the imp1 directory inside the solution).

Table 9: C Driver Files for a Design Named example

File Path Usage Mode Description

data/example.mdd Standalone Driver definition file.

data/example.tcl Standalone Used by SDK to integrate the software
into an SDK project.

src/xexample_hw.h Both Defjnes address offsets for all internal
registers.

src/xexample.h Both API definitions

src/xexample.c Both Standard API implementations

src/xexample_sinit.c Standalone Initialization API implementations

src/xexample_linux.c Linux Initialization API implementations

src/Makefile Standalone Makefile

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 103

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=103

& XILINX

In file xexample.h, two structs are defined.

Chapter 1: High-Level Synthesis

e XExample_Config: This is used to hold the configuration information (base address of each

AXl4-Lite slave interface) of the IP instance.

o XExample: This is used to hold the IP instance pointer. Most APIs take this instance pointer as

the first argument.

The standard APl implementations are provided in files xexample.c, xexample_sinit.c,
xexample_linux.c, and provide functions to perform the following operations.

Initialize the device

Read/write to the registers

Control the device and query its status

Set up, monitor, and control the interrupts

The following table lists each of the API function provided in the C driver files.

Table 10: C Driver API Functions

API Function

Description

XExample_Initialize

This API will write value to InstancePtr which then can be
used in other APIs. It is recommended to call this API to
initialize a device except when an MMU is used in the
system.

XExample_Cfglnitialize

Initialize a device configuration. When a MMU is used in the
system, replace the base address in the XDut_Config
variable with virtual base address before calling this
function. Not for use on Linux systems.

XExample_LookupConfig

Used to obtain the configuration information of the device
by ID. The configuration information contain the physical
base address. Not for user on Linux.

XExample_Release

Release the uio device in linux. Delete the mappings by
munmap: the mapping will automatically be deleted if the
process terminated. Only for use on Linux systems.

XExample_Start

Start the device. This function will assert the ap_start port
on the device. Available only if there is ap_start porton
the device.

XExample_IsDone

Check if the device has finished the previous execution: this
function will return the value of the ap_done port on the
device. Available only if there is an ap_done port on the
device.

XExample_IsIdle

Check if the device is in idle state: this function will return
the value of the ap_idle port. Available only if there is an
ap_idle port on the device.

XExample_IsReady

Check if the device is ready for the next input: this function
will return the value of the ap_ready port. Available only if
there is an ap_ready port on the device.

XExample_Continue

Assert port ap_continue. Available only if there is an
ap_continue port on the device.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

www.Xilinx.com
l Send Feedback l 104

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=104

& XILINX

Table 10: C Driver API Functions (cont'd)

Chapter 1: High-Level Synthesis

API Function

Description

XExample_EnableAutoRestart

Enables “auto restart” on device. When this is set the device
will automatically start the next transaction when the
current transaction completes.

XExample_DisableAutoRestart

Disable the “auto restart” function.

XExample_Set_ARG

Write a value to port ARG (a scalar argument of the top
function). Available only if ARG is input port.

XExample_Set_ARG_vld

Assert port ARG_vld. Available only if ARG is an input port
and implemented with an ap_hs or ap_vld interface
protocol.

XExample_Set_ARG_ack

Assert port ARG_ack. Available only if ARG is an output port
and implemented with an ap_hs or ap_ack interface
protocol.

XExample_Get_ARG

Read a value from ARG. Only available if port ARG is an
output port on the device.

XExample_Get_ARG_vid

Read a value from ARG_vld. Only available if port ARG is an
output port on the device and implemented with an ap_hs
or ap_vld interface protocol.

XExample_Get_ARG_ack

Read a value from ARG_ack. Only available if port ARG is an
input port on the device and implemented with an ap_hs or
ap_ack interface protocol.

XExample_Get_ARG_BaseAddress

Return the base address of the array inside the interface.
Only available when ARG is an array grouped into the AXI4-
Lite interface.

XExample_Get_ARG_HighAddress

Return the address of the uppermost element of the array.
Only available when ARG is an array grouped into the AXI4-
Lite interface.

XExample_Get_ARG_TotalBytes

Return the total number of bytes used to store the array.
Only available when ARG is an array grouped into the AXI4-
Lite interface.

If the elements in the array are less than 16-bit, Vivado HLS
groups multiple elements into the 32-bit data width of the
AXI4-Lite interface. If the bit width of the elements exceeds
32-bit, Vivado HLS stores each element over multiple
consecutive addresses.

XExample_Get_ARG_BitWidth

Return the bit width of each element in the array. Only
available when ARG is an array grouped into the AXI4-Lite
interface.

If the elements in the array are less than 16-bit, Vivado HLS
groups multiple elements into the 32-bit data width of the
AXI4-Lite interface. If the bit width of the elements exceeds
32-bit, Vivado HLS stores each element over multiple
consecutive addresses.

XExample_Get_ARG_Depth

Return the total number of elements in the array. Only
available when ARG is an array grouped into the AXI4-Lite
interface.

If the elements in the array are less than 16-bit, Vivado HLS
groups multiple elements into the 32-bit data width of the
AXI4-Lite interface. If the bit width of the elements exceeds
32-bit, Vivado HLS stores each element over multiple
consecutive addresses.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l WWW.Xi|inX.C$(;1;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=105

& XILINX

Table 10: C Driver API Functions (cont'd)

Chapter 1: High-Level Synthesis

API Function

Description

XExample_Write_ARG_Words

Write the length of a 32-bit word into the specified address
of the AXI4-Lite interface. This API requires the offset
address from BaseAddress and the length of the data to be
stored. Only available when ARG is an array grouped into
the AXI4-Lite interface.

XExample_Read_ARG_Words

Read the length of a 32-bit word from the array. This API
requires the data target, the offset address from
BaseAddress, and the length of the data to be stored. Only
available when ARG is an array grouped into the AXI4-Lite
interface.

XExample_Write_ARG_Bytes

Write the length of bytes into the specified address of the
AXI4-Lite interface. This API requires the offset address from
BaseAddress and the length of the data to be stored. Only
available when ARG is an array grouped into the AXI4-Lite
interface.

XExample_Read_ARG_Bytes

Read the length of bytes from the array. This API requires
the data target, the offset address from BaseAddress, and
the length of data to be loaded. Only available when ARG is
an array grouped into the AXI4-Lite interface.

XExample_InterruptGlobalEnable

Enable the interrupt output. Interrupt functions are
available only if there is ap_start.

XExample_InterruptGlobalDisable

Disable the interrupt output.

XExample_InterruptEnable

Enable the interrupt source. There may be at most 2
interrupt sources (source 0 for ap_done and source 1 for
ap_ready)

XExample_InterruptDisable

Disable the interrupt source.

XExample_InterruptClear

Clear the interrupt status.

XExample_InterruptGetEnabled

Check which interrupt sources are enabled.

XExample_InterruptGetStatus

Check which interrupt sources are triggered.

i} IMPORTANT! The C driver APIs always use an unsigned 32-bit type (U32). You might be required to cast the

data in the C code into the expected type.

C Driver Files and Float Types

C driver files always use a data 32-bit unsigned integer (U32) for data transfers. In the following
example, the function uses float type arguments a and r 1. It sets the value of a and returns the

value of r1:

float caculate(float a, float *rl)
{

#pragma HLS INTERFACE ap_vld register port=rl

#pragma HLS INTERFACE s_axilite port=a

#pragma HLS INTERFACE s_axilite port=rl
#pragma HLS INTERFACE s_axilite port=return

*r]l = 0.5f%*a;
return (a>0) ;

}

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l WWW'X“mX'C,?(;g

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=106

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

After synthesis, Vivado HLS groups all ports into the default AXI4-Lite interface and creates C
driver files. However, as shown in the following example, the driver files use type U32:

// API to set the value of A

void XCaculate_SetA(XCaculate *InstancePtr, u32 Data) {
Xil_AssertVoid(InstancePtr != NULL) ;
Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY) ;
XCaculate_WriteReg(InstancePtr->Hls_periph_bus_BaseAddress,

XCACULATE_HLS_PERIPH_BUS_ADDR_A_DATA, Data);

}

// API to get the value of R1
u32 XCaculate_GetR1l(XCaculate *InstancePtr) {

u32 Data;
Xil_AssertNonvoid(InstancePtr != NULL) ;
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY) ;

Data = XCaculate_ReadReg(InstancePtr->Hls_periph_bus_BaseAddress,
XCACULATE_HLS_PERIPH_BUS_ADDR_R1_DATA) ;
return Data;

3

If these functions work directly with float types, the write and read values are not consistent
with expected float type. When using these functions in software, you can use the following
casts in the code:

float a=3.0f,rl;
u32 ua,url;

// cast float “a” to type U32
XCaculate_SetA(&calculate, *((u32%*)&a));
url=XCaculate_GetR1(&caculate) ;

// cast return type U32 to float type for “rl”
rl=%*((float*)&url) ;

Controlling Hardware

The hardware header file xexample_hw. h (in this example) provides a complete list of the
memory mapped locations for the ports grouped into the AXI4-Lite slave interface.

// 0x00 : Control signals

// bit 0 - ap_start (Read/Write/SC)

// bit 1 - ap_-done (Read/COR)

// bit 2 - ap_idle (Read)

// bit 3 - ap_ready (Read)

// bit 7 - auto_restart (Read/Write)

// others - reserved

// 0x04 : Global Interrupt Enable Register

// bit 0 - Global Interrupt Enable (Read/Write)
// others - reserved

// 0x08 : IP Interrupt Enable Register (Read/Write)
// bit 0 - Channel 0 (ap_-done)

// bit 1 - Channel 1 (ap_ready)

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 107

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=107

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

// 0x0c : IP Interrupt Status Register (Read/TOW)

// bit 0 - Channel 0 (ap_done)
// others - reserved

// 0x10 : Data signal of a

// bit 7~0 - a[7:0] (Read/Write)
// others - reserved

// 0x14 : reserved
// 0x18 : Data signal of b

// bit 7~0 - b[7:0] (Read/Write)
// others - reserved

// Oxlc : reserved

// 0x20 : Data signal of c_i

// bit 7~0 - c¢_i[7:0] (Read/Write)
// others - reserved

// 0x24 : reserved
// 0x28 : Data signal of c_o

// bit 7~0 - c_o[7:0] (Read)

// others - reserved

// O0x2c : Control signal of c_o

// bit 0 - c_o_ap_vld (Read/COR)
// others - reserved

// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH =
Clear on
Handshake)

To correctly program the registers in the AXI4-Lite slave interface, there is some requirement to
understand how the hardware ports operate. The block will operate with the same port protocols
described in Interface Synthesis.

For example, to start the block operation the ap_start register must be set to 1. The device
will then proceed and read any inputs grouped into the AXI4-Lite slave interface from the
register in the interface. When the block completes operation, the ap_done, ap_idle and
ap_ready registers will be set by the hardware output ports and the results for any output ports
grouped into the AXI4-Lite slave interface read from the appropriate register.

The implementation of function argument c in the example above also highlights the importance
of some understanding how the hardware ports are operate. Function argument c is both read
and written to, and is therefore implemented as separate input and output ports c_1i and c_o, as
explained in Interface Synthesis.

The first recommended flow for programing the AXI4-Lite slave interface is for a one-time
execution of the function:

e Use the interrupt function to determine how you wish the interrupt to operate.

e Load the register values for the block input ports. In the above example this is performed
using API functions XExample_Set_a, XExample_Set_b,and XExample_Set_c_1i.

e Setthe ap_start bitto 1 using XExample_Start to start executing the function. This
register is self-clearing as noted in the header file above. After one transaction, the block will
suspend operation.

o Allow the function to execute. Address any interrupts which are generated.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 108

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=108

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e Read the output registers. In the above example this is performed using API functions
XExample_Get_c_o_v1d, to confirm the data is valid, and XExample_Get_c_o.

Note: The registers in the AXI4-Lite slave interface obey the same 1/O protocol as the ports. In this case,
the output valid is set to logic 1 to indicate if the data is valid.

e Repeat for the next transaction.

The second recommended flow is for continuous execution of the block. In this mode, the input
ports included in the AXI4-Lite slave interface should only be ports which perform configuration.
The block will typically run must faster than a CPU. If the block must wait for inputs, the block
will spend most of its time waiting:

e Use the interrupt function to determine how you wish the interrupt to operate.

e Load the register values for the block input ports. In the above example this is performed
using APl functions XExample_Set_a, XExample_Set_a and XExample_Set_c_i.

e Set the auto-start function using APl XExample_EnableAutoRestart

e Allow the function to execute. The individual port I/O protocols will synchronize the data
being processed through the block.

e Address any interrupts which are generated. The output registers could be accessed during
this operation but the data may change often.

e Use the API function XExample_DisableAutoRestart to prevent any more executions.
e Read the output registers. In the above example this is performed using API functions

XExample_Get_c_o and XExample_Set_c_o_v1d.

Controlling Software

The API functions can be used in the software running on the CPU to control the hardware block.
An overview of the process is:

e Create an instance of the HW instance

e Look Up the device configuration

¢ |Initialize the Device

e Set the input parameters of the HLS block

e Start the device and read the results

An abstracted versions of this process is shown below. Complete examples of the software
control are provided in the Zyng-7000 SoC tutorials.

#include "xexample.h' // Device driver for HLS HW block
#include "xparameters.h"

// HLS HW instance
XExample HlsExample;
XExample_Config *ExamplePtr

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 109

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=109

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

int main() {
int res_hw;

// Look Up the device configuration

ExamplePtr = XExample_LookupConfig(XPAR_XEXAMPLE_O_DEVICE_ID) ;
if (!ExamplePtr) {

print ("ERROR: Lookup of accelerator configuration failed.\n\r");
return XST_FAILURE;

}

// Initdialize the Device
status = XExample_CfgInitialize(&HlsExample, ExamplePtr);

if (status != XST_SUCCESS) {
print ("ERROR: Could not dinitialize accelerator.\n\r");
exit(-1);

}

//Set the input parameters of the HLS block
XExample_Set_a(&HlsExample, 42);
XExample_Set_b(&HlsExample, 12);
XExample_Set_c_i(&HlsExample, 1);

// Start the device and read the results
XExample_Start (&HlsExample) ;

do {
res_hw = XExample_Get_c_o(&HlsExample) ;
} while (XExample_Get_c_o(&HlsExample) == 0); // wait for valid data output

print("Detected HLS peripheral complete. Result received.\n\r");

Customizing AXI4-Lite Slave Interfaces in IP Integrator

When an HLS RTL design using an AXI4-Lite slave interface is incorporated into a design in
Vivado IP Integrator, you can customize the block. From the block diagram in IP Integrator, select
the HLS block, right-click with the mouse button and select Customize Block.

The address width is by default configured to the minimum required size. Modify this to connect
to blocks with address sizes less than 32-bit.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 110

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=110

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 47: Customizing AXI4-Lite Slave Interfaces in IP Integrator

iF Re-customize IP =

N
Example (1.0) ﬂ‘:_}
iﬂ Documentation |2 IP Location

| 2 Ll s Component Name hls_bd_0_hls_ip_0_0

s axi BUS A (AXI4Lite Slave Interface)
Address width | 6] [6..32]

0K]| Cancel

AXI4 Master Interface

You can use an AXI4 master interface on array or pointer/reference arguments, which Vivado
HLS implements in one of the following modes:

¢ Individual data transfers

e Burst mode data transfers

With individual data transfers, Vivado HLS reads or writes a single element of data for each
address. The following example shows a single read and single write operation. In this example,
Vivado HLS generates an address on the AXI interface to read a single data value and an address
to write a single data value. The interface transfers one data value per address.

void bus (dint *d) {
static int acc = 0;

acc += *d;
*d = acc;

3

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | "1

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=111

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

With burst mode transfers, Vivado HLS reads or writes data using a single base address followed
by multiple sequential data samples, which makes this mode capable of higher data throughput.
Burst mode of operation is possible when you use the C memcpy function or a pipelined for
loop.

Note: The C memcpy function is only supported for synthesis when used to transfer data to or from a top-
level function argument specified with an AXI4 master interface.

The following example shows a copy of burst mode using the memc py function. The top-level
function argument a is specified as an AXI4 master interface.

void example(volatile int *a){

#pragma HLS INTERFACE m_axi depth=50 port=a
#pragma HLS INTERFACE s_axilite port=return

//Port a is assigned to an AXI4 master interface

int 1i;
int buff[50];

//memcpy creates a burst access to memory
memcpy (buff, (const int*)a,50%*sizeof(dint)) ;

for(i=
buffli
}

0; 1 < 50; di++){
] = buffl[i] + 100;

memcpy((int *)a,buff,50*sizeof(int));

}

When this example is synthesized, it results in the interface shown in the following figure.

Note: In this figure, the AXI4 interfaces are collapsed.

Figure 48: AX14 Interface

| dhs_axi_AXILIteS [v.-ns

ap_clk ‘
ap_rst_n

m_axi_gmem32 5p
interrupt

The following example shows the same code as the preceding example but uses a for loop to
copy the data out:

void example(volatile int *a){

#pragma HLS INTERFACE m_axi depth=50 port=a
#pragma HLS INTERFACE s_axilite port=return

//Port a is assigned to an AXI4 master interface

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 112

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=112

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

int 1i;
int buff[50];

//memcpy creates a burst access to memory
memcpy (buff, (const int*)a,50%*sizeof(dint));

for (i
buffl
}

0; 41 < 50; di++){
]

il = buffli] + 100;

for(i=0; i < 50; di++){
#pragma HLS PIPELINE
alil = buffl[il;

}
3

When using a for loop to implement burst reads or writes, follow these requirements:

Pipeline the loop

Access addresses in increasing order

Do not place accesses inside a conditional statement

For nested loops, do not flatten loops, because this inhibits the burst operation

Note: Only one read and one write is allowed in a for loop unless the ports are bundled in different AXI
ports. The following example shows how to perform two reads in burst mode using different AXI
interfaces.

In the following example, Vivado HLS implements the port reads as burst transfers. Port a is
specified without using the bund1le option and is implemented in the default AXI interface. Port
b is specified using a named bundle and is implemented in a separate AXI interface called
dZ2_port.

void example(volatile int *a, int *b){

#pragma HLS INTERFACE s_axilite port=return
#pragma HLS INTERFACE m_axi depth=50 port=a
#pragma HLS INTERFACE m_axi depth=50 port=b bundle=d2_port

int i
int buff[50];

//copy data in

for(i=0; i < 50; di++){
#fpragma HLS PIPELINE
buffli]l = alil + blil;
}

Note: Structs are only supported for the AXIM interface if the struct is packed using the DATA_PACK
optimization.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 13

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=113

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Controlling AXI4 Burst Behavior

An optimal AXI4 interface is one in which the design never stalls while waiting to access the bus,
and after bus access is granted, the bus never stalls while waiting for the design to read/write. To
create the optimal AXI4 interface, the following options are provided in the INTERFACE directive
to specify the behavior of the bursts and optimize the efficiency of the AXI4 interface.

Some of these options use internal storage to buffer data and may have an impact on area and
resources:

e latency: Specifies the expected latency of the AXI4 interface, allowing the design to initiate
a bus request a number of cycles (latency) before the read or write is expected. If this figure it
too low, the design will be ready too soon and may stall waiting for the bus. If this figure is too
high, bus access may be granted but the bus may stall waiting on the design to start the
access.

e max_read_burst_length: Specifies the maximum number of data values read during a
burst transfer.

e num_read_outstanding: Specifies how many read requests can be made to the AXI4 bus,
without a response, before the design stalls. This implies internal storage in the design, a FIFO
of size: num_read_outstanding™max_read_burst_length*word_size.

e max_write_burst_length: Specifies the maximum number of data values written during a
burst transfer.

e num_write_outstanding: Specifies how many write requests can be made to the AXI4
bus, without a response, before the design stalls. This implies internal storage in the design, a
FIFO of size: num_read_outstanding*max_read_burst_length*word_size

The following example can be used to help explain these options:

#pragma HLS interface m_axi port=input offset=slave bundle=gmemO
depth=1024%1024%16/(512/8)

latency=100

num_read_outstanding=32

num_write_outstanding=32

max_read_burst_length=16

max_write_burst_length=16

The interface is specified as having a latency of 100. Vivado HLS seeks to schedule the request
for burst access 100 clock cycles before the design is ready to access the AXI4 bus. To further
improve bus efficiency, the options num_write_outstanding and num_read_outstanding
ensure the design contains enough buffering to store up to 32 read and write accesses. This
allows the design to continue processing until the bus requests are serviced. Finally, the options
max_read_burst_lengthandmax_write_burst_length ensure the maximum burst size
is 16 and that the AXI4 interface does not hold the bus for longer than this.

These options allow the behavior of the AXI4 interface to be optimized for the system in which it
will operate. The efficiency of the operation does depend on these values being set accuracy.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 14

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=114

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Creating an AXI4 Interface with 64-bit Address Capability

By default, Vivado HLS implements the AXI4 port with a 32-bit address bus. Optionally, you can
implement the AXI4 interface with a 64-bit address bus using the m_axi_addré4 interface
configuration option as follows:

1. Select Solution > Solution Settings.
2. In the Solution Settings dialog box, click the General category, and click Add.

3. Inthe Add Command dialog box, select config_interface, and enable m_axi_addré4.

i} IMPORTANT! When you select the m_axi_addré4 option, Vivado HLS implements all AXI4 interfaces in the
design with a 64-bit address bus.

Controlling the Address Offset in an AXI4 Interface

By default, the AXI4 master interface starts all read and write operations from address
0x00000000. For example, given the following code, the design reads data from addresses
0x00000000 to 0x000000c7 (50 32-bit words, gives 200 bytes), which represents 50 address
values. The design then writes data back to the same addresses.

void example(volatile int *a){

#pragma HLS INTERFACE m_axi depth=50 port=a
#pragma HLS INTERFACE s_axilite port=return bundle=AXILiteS

int 1i;
int buffl[50];

memcpy (buff, (const int*)a,50%sizeof(int));

for(i=0; i < 50; di++){

buff[i] = buff[i] + 100;

}

memcpy((int *)a,buff,50%sizeof(int));

}

To apply an address offset, use the -o f fset option with the INTERFACE directive, and specify
one of the following options:

e off: Does not apply an offset address. This is the default.

e direct: Adds a 32-bit port to the design for applying an address offset.

e slave:Adds a 32-bit register inside the AXI4-Lite interface for applying an address offset.
In the final RTL, Vivado HLS applies the address offset directly to any read or write address

generated by the AXI4 master interface. This allows the design to access any address location in
the system.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 115

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=115

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

If you use the s1ave option in an AXl interface, you must use an AXI4-Lite port on the design
interface. Xilinx recommends that you implement the AXI4-Lite interface using the following
pragma:

#pragma HLS INTERFACE s_axilite port=return

In addition, if you use the s1ave option and you used several AXI4-Lite interfaces, you must
ensure that the AXI master port offset register is bundled into the correct AXI4-Lite interface. In
the following example, port a is implemented as an AXI master interface with an offset and AXI4-
Lite interfaces called AXT_Lite_1and AXI_Lite_2:

#fpragma HLS INTERFACE m_axi port=a depth=50 offset=slave
#pragma HLS INTERFACE s_axilite port=return bundle=AXI_Lite_1
#pragma HLS INTERFACE s_axilite port=b bundle=AXI_Lite_2

The following INTERFACE directive is required to ensure that the offset register for port a is
bundled into the AXI4-Lite interface called AXI_Lite_1:

#fpragma HLS INTERFACE s_axilite port=a bundle=AXI_Lite_1

Customizing AXI4 Master Interfaces in IP Integrator

When you incorporate an HLS RTL design that uses an AXI4 master interface into a design in the
Vivado IP Integrator, you can customize the block. From the block diagram in IP Integrator, select
the HLS block, right-click, and select Customize Block to customize any of the settings provided.

A complete description of the AXI4 parameters is provided in this link in the Vivado Design Suite:
AX| Reference Guide (UG1037).

The following figure shows the Re-Customize IP dialog box for the design shown below. This
design includes an AXI4-Lite port.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 116

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf;a=xAXI4AndAXI4LiteSignals
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=116

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 49: Customizing AXI4 Master Interfaces in IP Integrator

1 F Re-customize IP @
Example (1.0) :lj
ﬁﬂ Documentation |5 IP Location
Sz Lz e Component Name | hls_bd_0_hls_ip_0_1 -
i s axi AXILiteS (AXI4Lite Slave Interface)
Address width | 5] [5..32]
m axi gmem32 (AXI4 Master Interface)
ID width 1 [1..32]
Data width 32 -
AWWUSER width 1 [1..1024]
WUSER width 1 [1..1024] =
BUSER width 1 [1..1024]
ARUSER width 1 [1..1024]
RUSER width 1 [1..1024]
Base address of target slave 0x00000000
USER value 0x00000000
PROT value "oog"
CACHE value "0011"
4 S 4 -
OK] | Cancel

Managing Interfaces with SSI Technology Devices

Certain Xilinx devices use stacked silicon interconnect (SSI) technology. In these devices, the total
available resources are divided over multiple super logic regions (SLRs). The connections between
SLRs use super long line (SSL) routes. SSL routes incur delays costs that are typically greater than
standard FPGA routing. To ensure designs operate at maximum performance, use the following
guidelines:

e Register all signals that cross between SLRs at both the SLR output and SLR input.
¢ You do not need to register a signal if it enters or exits an SLR via an 1/O buffer.

e Ensure that the logic created by Vivado HLS fits within a single SLR.

Note: When you select an SSI technology device as the target technology, the utilization report includes
details on both the SLR usage and the total device usage.

If the logic is contained within a single SLR device, Vivado HLS provides a register_io option
tothe config_interface command. This option provides a way to automatically register all
block inputs, outputs, or both. This option is only required for scalars. All array ports are
automatically registered.

The settings for the register_io option are:

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 117

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=117

& XILINX

o f f: None of the input or outputs are registered.

Chapter 1: High-Level Synthesis

e scalar_in: Allinputs are registered.

e scalar_out: All outputs are registered.

e scalar_all: All input and outputs are registered.

Note: Using the register_io option with block-level floorplanning of the RTL ensures that logic targeted
to an SSI technology device executes at the maximum clock rate.

Optimizing the Design

This section outlines the various optimizations and techniques you can use to direct Vivado HLS
to produce a micro-architecture that satisfies the desired performance and area goals.

The following table lists the optimization directives provided by Vivado HLS.

Table 11: Vivado HLS Optimization Directives

Directive Description
ALLOCATION Specify a limit for the number of operations, cores or functions used. This can force the
sharing or hardware resources and may increase latency
ARRAY_MAP Combines multiple smaller arrays into a single large array to help reduce block RAM

resources.

ARRAY_PARTITION

Partitions large arrays into multiple smaller arrays or into individual registers, to improve
access to data and remove block RAM bottlenecks.

ARRAY_RESHAPE

Reshape an array from one with many elements to one with greater word-width. Useful for
improving block RAM accesses without using more block RAM.

CLOCK For SystemC designs multiple named clocks can be specified using the create_clock
command and applied to individual SC_MODULEs using this directive.

DATA_PACK Packs the data fields of a struct into a single scalar with a wider word width.

DATAFLOW Enables task level pipelining, allowing functions and loops to execute concurrently. Used to
optimize throughouput and/or latency.

DEPENDENCE Used to provide additional information that can overcome loop-carried dependencies and

allow loops to be pipelined (or pipelined with lower intervals).

EXPRESSION_BALANCE

Allows automatic expression balancing to be turned off.

FUNCTION_INSTANTIATE

Allows different instances of the same function to be locally optimized.

INLINE

Inlines a function, removing function hierarchy at this level. Used to enable logic
optimization across function boundaries and improve latency/interval by reducing function
call overhead.

INTERFACE Specifies how RTL ports are created from the function description.

LATENCY Allows a minimum and maximum latency constraint to be specified.

LOOP_FLATTEN Allows nested loops to be collapsed into a single loop with improved latency.
LOOP_MERGE Merge consecutive loops to reduce overall latency, increase sharing and improve logic

optimization.

LOOP_TRIPCOUNT

Used for loops which have variables bounds. Provides an estimate for the loop iteration
count. This has no impact on synthesis, only on reporting.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l WWW'X“mX'C%n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=118

& XILINX

Chapter 1: High-Level Synthesis

Table 11: Vivado HLS Optimization Directives (cont'd)

Directive Description

OCCURRENCE Used when pipelining functions or loops, to specify that the code in a location is executed
at a lesser rate than the code in the enclosing function or loop.

PIPELINE Reduces the initiation interval by allowing the overlapped execution of operations within a
loop or function.

PROTOCOL This commands specifies a region of the code to be a protocol region. A protocol region can
be used to manually specify an interface protocol.

RESET This directive is used to add or remove reset on a specific state variable (global or static).

RESOURCE Specify that a specific library resource (core) is used to implement a variable (array,
arithmetic operation or function argument) in the RTL.

STREAM Specifies that a specific array is to be implemented as a FIFO or RAM memory channel
during dataflow optimization. When using hls::stream, the STREAM optimization directive is
used to override the configuration of the hls::stream.

TOP The top-level function for synthesis is specified in the project settings. This directive may be
used to specify any function as the top-level for synthesis. This then allows different
solutions within the same project to be specified as the top-level function for synthesis
without needing to create a new project.

UNROLL Unroll for-loops to create multiple instances of the loop body and its instructions that can
then be scheduled independently.

In addition to the optimization directives, Vivado HLS provides a number of configuration
settings. Configurations settings are used to change the default behavior of synthesis. The
configuration settings are shown in the following table.

Table 12: Vivado HLS Configurations

GUI Directive

Description

Config Array Partition

This configuration determines how arrays are partitioned, including global arrays and if the
partitioning impacts array ports.

Config Bind

Determines the effort level to use during the synthesis binding phase and can be used to
globally minimize the number of operations used.

Config Compile

Controls synthesis specific optimizations such as the automatic loop pipelining and floating
point math optimizations.

Config Dataflow

This configuration specifies the default memory channel and FIFO depth in dataflow
optimization.

Config Interface

This configuration controls I/O ports not associated with the top-level function arguments
and allows unused ports to be eliminated from the final RTL.

Config RTL

Provides control over the output RTL including file and module naming, reset style and FSM
encoding.

Config Schedule

Determines the effort level to use during the synthesis scheduling phase and the verbosity
of the output messages

Details on how to apply the optimizations and configurations is provided in Applying
Optimization Directives. The configurations are accessed using the menu Solution = Solution
Settings = General and selecting the configuration using the Add button.

The optimizations are presented in the context of how they are typically applied on a design.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l WWW'X“mX'C%n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=119

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

The Clock, Reset and RTL output are discussed together. The clock frequency along with the
target device is the primary constraint that drives optimization. Vivado HLS seeks to place as
many operations from the target device into each clock cycle. The reset style used in the final
RTL is controlled, along setting such as the FSM encoding style, using the config_rtl
configuration.

The primary optimizations for optimizing for throughput are presented together in the manner in
which they are typically used: pipeline the tasks to improve performance, improve the flow of
data between tasks, and optimize structures to improve address issues which may limit
performance.

Optimizing for latency uses the techniques of latency constraints and the removal of loop
transitions to reduce the number of clock cycles required to complete.

A focus on how operations are implemented - controlling the number of operations and how
those operations are implemented in hardware - is the principal technique for improving the area.

In addition to the pragmas and directives, Vivado HLS provides a way to integrate an existing
optimized RTL into the HLS design flow. See RTL Blackbox for more information.

Clock, Reset, and RTL Output

Specifying the Clock Frequency

For C and C++ designs only a single clock is supported. The same clock is applied to all functions
in the design.

For SystemC designs, each SC_MODULE may be specified with a different clock. To specify
multiple clocks in a SystemC design, use the -name option of the create_clock command to
create multiple named clocks and use the CLOCK directive or pragma to specify which function
contains the SC_MODULE to be synthesized with the specified clock. Each SC_MODULE can
only be synthesized using a single clock: clocks may be distributed through functions, such as
when multiple clocks are connected from the top-level ports to individual blocks, but each
SC_MODULE can only be sensitive to a single clock.

The clock period, in ns, is set in the Solutions > Solutions Setting. Vivado HLS uses the concept
of a clock uncertainty to provide a user defined timing margin. Using the clock frequency and
device target information Vivado HLS estimates the timing of operations in the design but it
cannot know the final component placement and net routing: these operations are performed by
logic synthesis of the output RTL. As such, Vivado HLS cannot know the exact delays.

To calculate the clock period used for synthesis, Vivado HLS subtracts the clock uncertainty from
the clock period, as shown in the following figure.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 120

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=120

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

#

Figure 50: Clock Period and Margin

| Clock Period |

A
\

L

i<— Clock Uncertainty

Effective Clock Period
used by Vivado HLS

Margin for Logic
Synthesis and P&R

X14263-061318

This provides a user specified margin to ensure downstream processes, such as logic synthesis
and place & route, have enough timing margin to complete their operations. If the FPGA device is
mostly utilized the placement of cells and routing of nets to connect the cells might not be ideal
and might result in a design with larger than expected timing delays. For a situation such as this,
an increased timing margin ensures Vivado HLS does not create a design with too much logic
packed into each clock cycle and allows RTL synthesis to satisfy timing in cases with less than
ideal placement and routing options.

By default, the clock uncertainty is 12.5% of the cycle time. The value can be explicitly specified
beside the clock period.

Vivado HLS aims to satisfy all constraints: timing, throughput, latency. However, if a constraints
cannot be satisfied, Vivado HLS always outputs an RTL design.

If the timing constraints inferred by the clock period cannot be met Vivado HLS issues message
SCHED-644, as shown below, and creates a design with the best achievable performance.

@W [SCHED-644] Max operation delay (<operation_name> 2.39ns) exceeds the
effective
cycle time

Even if Vivado HLS cannot satisfy the timing requirements for a particular path, it still achieves
timing on all other paths. This behavior allows you to evaluate if higher optimization levels or
special handling of those failing paths by downstream logic syntheses can pull-in and ultimately
satisfy the timing.

IMPORTANT! It is important to review the constraint report after synthesis to determine if all constraints is
met: the fact that Vivado HLS produces an output design does not guarantee the design meets all performance
constraints. Review the “Performance Estimates” section of the design report.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 121

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=121

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

The option relax_ii_for_timing of the config_schedule command can be used to
change the default timing behavior. When this option is specified, Vivado HLS automatically
relaxes the Il for any pipeline directive when it detects a path is failing to meet the clock period.
This option only applies to cases where the PIPELINE directive is specified without an Il value
(and an lI=1 is implied). If the 1l value is explicitly specified in the PIPELINE directive, the
relax_ii_for_timing option has no effect.

A design report is generated for each function in the hierarchy when synthesis completes and
can be viewed in the solution reports folder. The worse case timing for the entire design is
reported as the worst case in each function report. There is no need to review every report in the
hierarchy.

If the timing violations are too severe to be further optimized and corrected by downstream
processes, review the techniques for specifying an exact latency and specifying exact
implementation cores before considering a faster target technology.

Specifying the Reset

Typically the most important aspect of RTL configuration is selecting the reset behavior. When
discussing reset behavior it is important to understand the difference between initialization and
reset.

Initialization Behavior

In C, variables defined with the static qualifier and those defined in the global scope, are by
default initialized to zero. Optionally, these variables may be assigned a specific initial value. For
these type of variables, the initial value in the C code is assigned at compile time (at time zero)
and never again. In both cases, the same initial value is implemented in the RTL.

e During RTL simulation the variables are initialized with the same values as the C code.

e The same variables are initialized in the bitstream used to program the FPGA. When the
device powers up, the variables will start in their initialized state.

The variables start with the same initial state as the C code. However, there is no way to force a
return to this initial state. To return to their initial state the variables must be implemented with a
reset.

i} IMPORTANT! Top-level function arguments may be implemented in an AXI4-Lite interface. Since there is no
way to provide an initial value in C/C++ for function arguments, these variable cannot be initialized in the RTL
as doing so would create an RTL design with different functional behavior from the C/C++ code which would
fail to verify during C/RTL co-simulation.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 122

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=122

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Controlling the Reset Behavior

The reset port is used in an FPGA to return the registers and block RAM connected to the reset
port to an initial value any time the reset signal is applied. The presence and behavior of the RTL
reset port is controlled using the config_rt1 configuration shown in the following figure. To
access this configuration, select Solution = Solution Settings = General - Add = config_rtl.

Figure 51: RTL Configurations

h éSqution Settings (solution2) [z |
i = a a
BiGeneml Configuration Settings
B+ Synthesis
| Cosimulation Commands
1 Export I —
] Sciiee
Command: .
Parameters
encoding lauto v‘
header
prefix
reset lcontrol - ‘
reset_async [
reset_level lhigh v‘
(0]4 H Cancel ‘ B
[(0]4 l l Cancel ‘

The reset settings include the ability to set the polarity of the reset and whether the reset is
synchronous or asynchronous but more importantly it controls, through the reset option, which
registers are reset when the reset signal is applied.

7:} IMPORTANT! When AXI4 interfaces are used on a design the reset polarity is automatically changed to active-
Low irrespective of the setting in the con fig_ rt 1 configuration. This is required by the AXI4 standard.

The reset option has four settings:

e none: No reset is added to the design.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 123

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=123

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e control: This is the default and ensures all control registers are reset. Control registers are
those used in state machines and to generate 1/O protocol signals. This setting ensures the
design can immediately start its operation state.

e state: This option adds a reset to control registers (as in the control setting) plus any registers
or memories derived from static and global variables in the C code. This setting ensures static
and global variable initialized in the C code are reset to their initialized value after the reset is
applied.

e all: This adds a reset to all registers and memories in the design.

Finer grain control over reset is provided through the RESET directive. If a variable is a static or
global, the RESET directive is used to explicitly add a reset, or the variable can be removed from
those being reset by using the RESET directive’s o £ £ option. This can be particularly useful when
static or global arrays are present in the design.

i} IMPORTANT! Is is important when using the reset state or a1l option to consider the effect on arrays.

Initializing and Resetting Arrays

Arrays are often defined as static variables, which implies all elements be initialized to zero, and
arrays are typically implemented as block RAM. When reset options state or a1l are used, it
forces all arrays implemented as block RAM to be returned to their initialized state after reset.
This may result in two very undesirable conditions in the RTL design:

e Unlike a power-up initialization, an explicit reset requires the RTL design iterate through each
address in the block RAM to set the value: this can take many clock cycles if N is large and
require more area resources to implement.

e Avreset is added to every array in the design.

To prevent placing reset logic onto every such block RAM and incurring the cycle overhead to
reset all elements in the RAM:

e Use the default control reset mode and use the RESET directive to specify individual static
or global variables to be reset.

e Alternatively, use reset mode state and remove the reset from specific static or global
variables using the o f £ option to the RESET directive.

RTL Output

Various characteristics of the RTL output by Vivado HLS can be controlled using the
config_rt1l configuration shown in in the above figure.

e Specify the type of FSM encoding used in the RTL state machines.

e Add an arbitrary comment string, such as a copyright notice, to all RTL files using the -
header option.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 124

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=124

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e Specify a unique name with the pre fix option which is added to all RTL output file names.

e Force the RTL ports to use lower case names.

The default FSM coding is style is onehot. Other possible options are auto, binary,and gray.
If you select auto, Vivado HLS implements the style of encoding using the onehot default, but
Vivado Design Suite might extract and re-implement the FSM style during logic synthesis. If you
select any other encoding style (binary, onehot, gray), the encoding style cannot be re-
optimized by Xilinx logic synthesis tools.

The names of the RTL output files are derived from the name of the top-level function for
synthesis. If different RTL blocks are created from the same top-level function, the RTL files will
have the same name and cannot be combined in the same RTL project. The pre fix option
allows RTL files generated from the same top-level function (and which by default have the same
name as the top-level function) to be easily combined in the same directory. The
lower_case_name option ensures the only lower case names are used in the output RTL. This
option ensures the 10 protocol ports created by Vivado HLS, such as those for AXI interfaces, are
specified as s_axis_<port>_tdata in the final RTL rather than the default port name of
s_axis_<port>_TDATA.

Optimizing for Throughput

Use the following optimizations to improve throughput or reduce the initiation interval.

Function and Loop Pipelining

Pipelining allows operations to happen concurrently: each execution step does not have to
complete all operations before it begins the next operation. Pipelining is applied to functions and
loops. The throughput improvements in function pipelining are shown in the following figure.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 125

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=125

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 52: Function Pipelining Behavior

void func(...) {

op_Read; RD
op_Compute;
op_Wiite

[S e [

- > -~
3 cycles 1 cycle
RD RD RD
- RD
2 cycles -
2 cycles
(A) Without Function Pipelining (B) With Function Pipelining

X14269

Without pipelining, the function in the above example reads an input every 3 clock cycles and
outputs a value after 2 clock cycles. The function has an initiation interval (Il) of 3 and a latency
of 3. With pipelining, for this example, a new input is read every cycle (II=1) with no change to
the output latency.

Loop pipelining allows the operations in a loop to be implemented in an overlapping manner. In
the following figure, (A) shows the default sequential operation where there are 3 clock cycles
between each input read (I1=3), and it requires 8 clock cycles before the last output write is
performed.

In the pipelined version of the loop shown in (B), a new input sample is read every cycle (l1=1)
and the final output is written after only 4 clock cycles: substantially improving both the Il and
latency while using the same hardware resources.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 126

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=126

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 53: Loop Pipelining

void func(m,n,o0) {
for (i=2;i>=0;i--) {
op_Read;
op_Compute; I
op_Write; I
}
}
-
3 cycles 1 cycle
» - R0
8 cycles Ro
P
4 cycles
(A) Without Loop Pipelining (B) With Loop Pipelining

X14277

Functions or loops are pipelined using the PIPELINE directive. The directive is specified in the
region that constitutes the function or loop body. The initiation interval defaults to 1 if not
specified but may be explicitly specified.

Pipelining is applied only to the specified region and not to the hierarchy below. However, all
loops in the hierarchy below are automatically unrolled. Any sub-functions in the hierarchy below
the specified function must be pipelined individually. If the sub-functions are pipelined, the
pipelined functions above it can take advantage of the pipeline performance. Conversely, any
sub-function below the pipelined top-level function that is not pipelined might be the limiting
factor in the performance of the pipeline.

There is a difference in how pipelined functions and loops behave.

¢ In the case of functions, the pipeline runs forever and never ends.

¢ In the case of loops, the pipeline executes until all iterations of the loop are completed.

This difference in behavior is summarized in the following figure.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 127

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=127

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 54: Function and Loop Pipelining Behavior

Pipelined Function Pipelined Loop
L L L L

RD1 RD1 X CMP

RD2 RD2 RD2
RON
» Execute Function
» Execute Next > »-——
> Execute Next Execute Loop Execute Next
Loop

Pipelined Function 1/0 Accesses Pipelined Loop 1/0 Accesses
RDO RD1 RD2 RDN RDO RD1 RD2 RDN RDO RD1 RD2

X14302

The difference in behavior impacts how inputs and outputs to the pipeline are processed. As
seen in the figure above, a pipelined function will continuously read new inputs and write new
outputs. By contrast, because a loop must first finish all operations in the loop before starting the
next loop, a pipelined loop causes a “bubble” in the data stream; that is, a point when no new
inputs are read as the loop completes the execution of the final iterations, and a point when no
new outputs are written as the loop starts new loop iterations.

Rewinding Pipelined Loops for Performance

To avoid issues shown in the previous figure, the PIPELINE pragma has an optional command
rewind. This command enables the overlap of the iterations of successive calls to the rewind
loop, when this loop is the outermost construct of the top function or of a dataflow process (and
the dataflow region is called multiple times).

The following figure shows the operation when the rewind option is used when pipelining a
loop. At the end of the loop iteration count, the loop starts to re-execute. While it generally re-
executes immediately, a delay is possible and is shown and described in the GUI.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 128

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=128

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 55: Loop Pipelining with Rewind Option

Loop for(=Li<Nii+4){] [s B

op_Read; RD R CMP| WRO
op_Compute; RD1
op_Write; AR CMPY WR2

} RON, L AN

Execute Loop N 1o/ CMP| WRO

RD1
oA CMP | WR2

RN CMPY WRN

-
-

Execute Next Loop
X14303

Note: If a loop is used around a DATAFLOW region, Vivado HLS automatically implements it to allow
successive iterations to overlap. See Exploiting Task Level Parallelism: Dataflow Optimization for more
information.

Flushing Pipelines

Pipelines continue to execute as long as data is available at the input of the pipeline. If there is no
data available to process, the pipeline will stall. This is shown in the following figure, where the
input data valid signal goes low to indicate there is no more data. Once there is new data
available to process, the pipeline will continue operation.

Figure 56: Loop Pipelining with Stall

LIttt ritri

Input Data Valid
RDO
IR CMP S WR1
RD2
RDN

X14305

In some cases, it is desirable to have a pipeline that can be “emptied” or “flushed”. The f1ush
option is provided to perform this. When a pipeline is “flushed” the pipeline stops reading new
inputs when none are available (as determined by a data valid signal at the start of the pipeline)
but continues processing, shutting down each successive pipeline stage, until the final input has
been processed through to the output of the pipeline.

Automatic Loop Pipelining

The config_compile configuration enables loops to be pipelined automatically based on the
iteration count. This configuration is accessed through the menu Solution > Solution Settings >
General > Add > config_compile.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 129

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=129

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

The pipeline_loops option sets the iteration limit. All loops with an iteration count below
this limit are automatically pipelined. The default is 0: no automatic loop pipelining is performed.

Given the following example code:

for (y = 0; y < 480; y++) {
for (x = 0; x < 640; x++) {
for (4 = 0; i < 5; di++) {

// do something 5 times

If the pipeline_loops optionis set to 6, the innermost for loop in the above code snippet
will be automatically pipelined. This is equivalent to the following code snippet:

for (y = 0; y < 480; y++) {
for (x = 0; x < 640; x++)
for (4 = 0; i < 5; di++)

f#fpragma HLS PIPELINE II=1
// do something 5 times

{
{

o
}
3

If there are loops in the design for which you do not want to use automatic pipelining, apply the
PIPELINE directive with the o f £ option to that loop. The o f £ option prevents automatic loop
pipelining.

ﬁ IMPORTANT! Vivado HLS applies the config_compile pipeline_loops option after performing all
user-specified directives. For example, if Vivado HLS applies a user-specified UNROLL directive to a loop, the
loop is first unrolled, and automatic loop pipelining cannot be applied.

Addressing Failure to Pipeline

When a function is pipelined, all loops in the hierarchy below are automatically unrolled. This is a
requirement for pipelining to proceed. If a loop has variable bounds it cannot be unrolled. This
will prevent the function from being pipelined.

Static Variables

Static variables are used to keep data between loop iterations, often resulting in registers in the
final implementation. If this is encountered in pipelined functions, vivado_h1ls might not be
able to optimize the design sufficiently, which would result in initiation intervals longer than
required.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 130

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=130

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

The following is a typical example of this situation:

function_fool()

{
static bool change = 0
if (condition_xyz){
change = x; // store

}
y = change; // load

If vivado_h1ls cannot optimize this code, the stored operation requires a cycle and the load
operation requires an additional cycle. If this function is part of a pipeline, the pipeline has to be
implemented with a minimum initiation interval of 2 as the static change variable creates a loop-
carried dependency.

One way the user can avoid this is to rewrite the code, as shown in the following example. It
ensures that only a read or a write operation is present in each iteration of the loop, which
enables the design to be scheduled with 11=1.

function_readstream()

{

static bool change 0
bool change_temp =
if (condition_xyz)

{

0;

change = x; // store
change_temp = x;

}

else

{
change_temp = change; // load

}

y = change_temp;

Partitioning Arrays to Improve Pipelining

A common issue when pipelining functions is the following message:

INFO: [SCHED 204-61] Pipelining loop 'SUM_LOOP'.

WARNING: [SCHED 204-69] Unable to schedule 'load' operation ('mem_load_2',
bottleneck.c:62) on array 'mem' due to limited memory ports.

WARNING: [SCHED 204-69] The resource limit of core:RAM:mem:p0O is 1, current
assignments:

WARNING: [SCHED 204-69] 'load' operation ('mem_load', bottleneck.c:62)
on array

'mem ',

WARNING: [SCHED 204-69] The resource limit of core:RAM:mem:pl is 1, current
assignments:

WARNING: [SCHED 204-69] 'load' operation ('mem_load_1',
bottleneck.c:62) on array
'mem "',

INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 131

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=131

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

In this example, Vivado HLS states it cannot reach the specified initiation interval (ll) of 1
because it cannot schedule a 10ad (read) operation (mem_load_2) onto the memory because of
limited memory ports. The above message notes that the resource limit for "core : RAM:mem: p0
is 1" which is used by the operation mem_1oad on line 62. The 2nd port of the block RAM also
only has 1 resource, which is also used by operation mem_1oad_1. Due to this memory port
contention, Vivado HLS reports a final Il of 2 instead of the desired 1.

This issue is typically caused by arrays. Arrays are implemented as block RAM which only has a
maximum of two data ports. This can limit the throughput of a read/write (or load/store)
intensive algorithm. The bandwidth can be improved by splitting the array (a single block RAM
resource) into multiple smaller arrays (multiple block RAMs), effectively increasing the number of
ports.

Arrays are partitioned using the ARRAY_PARTITION directive. Vivado HLS provides three types
of array partitioning, as shown in the following figure. The three styles of partitioning are:

¢ block: The original array is split into equally sized blocks of consecutive elements of the
original array.

e cyclic: The original array is split into equally sized blocks interleaving the elements of the
original array.

o complete: The default operation is to split the array into its individual elements. This
corresponds to resolving a memory into registers.

Figure 57: Array Partitioning
_-M Co T T — Twaen]
| N2 | o [N2 | N1 |

[0 T 1 [2 [. [n~3][nNz][nN1]-|cyclic

[o]
complete
[onoie >
[1]

X14251

For block and cyclic partitioning the factor option specifies the number of arrays that are
created. In the preceding figure, a factor of 2 is used, that is, the array is divided into two smaller
arrays. If the number of elements in the array is not an integer multiple of the factor, the final
array has fewer elements.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 132

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=132

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

When partitioning multi-dimensional arrays, the dimension option is used to specify which
dimension is partitioned. The following figure shows how the dimension option is used to
partition the following example code:

void foo (...) {
int my_array[10][6]1([4];

}

The examples in the figure demonstrate how partitioning dimension 3 results in 4 separate arrays
and partitioning dimension 1 results in 10 separate arrays. If zero is specified as the dimension, all
dimensions are partitioned.

Figure 58: Partitioning Array Dimensions

my_array_0[10][6]

my_array[10][6][4] —ppartition dimension3 ~ —pw My_array_1[10][6]
my_array_2[10][6]
my_array_3[10][6]

my_array_0[6][4]
my_array[10][6][4] —partition dimension 1 —p My_array_1[6][4]
my_array_2[6][4]
my_array_3[6][4]
my_array_4[6][4]
my_array_5[6][4]
my_array_6[6][4]
my_array_7[6][4]
my_array_8[6][4]
my_array_9[6][4]
my_array[10][6][4] —mpartition dimension 0 —p 10x6x4 = 240 registers

X14304

Automatic Array Partitioning

The config_array_partition configuration determines how arrays are automatically
partitioned based on the number of elements. This configuration is accessed through the menu
Solution = Solution Settings = General = Add = config_array_partition.

The partition thresholds can be adjusted and partitioning can be fully automated with the
throughput_driven option. When the throughput_driven option is selected, Vivado HLS
automatically partitions arrays to achieve the specified throughput.

Dependencies with Vivado HLS
Vivado HLS constructs a hardware datapath that corresponds to the C source code.

When there is no pipeline directive, the execution is sequential so there are no dependencies to
take into account. But when the design has been pipelined, the tool needs to deal with the same
dependencies as found in processor architectures for the hardware that Vivado HLS generates.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 133

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=133

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Typical cases of data dependencies or memory dependencies are when a read or a write occurs
after a previous read or write.

e A read-after-write (RAW), also called a true dependency, is when an instruction (and data it
reads/uses) depends on the result of a previous operation.

11:t=a*b;
12:c=t+1;

The read in statement 12 depends on the write of t in statement I1. If the instructions are
reordered, it uses the previous value of t.

e A write-after-read (WAR), also called an anti-dependence, is when an instruction cannot
update a register or memory (by a write) before a previous instruction has read the data.

1:b=t+a;
12:t=3;

The write in statement 12 cannot execute before statement |1, otherwise the result of b is
invalid.

e A write-after-write (WAW) is a dependence when a register or memory must be written in
specific order otherwise other instructions might be corrupted.

11:t=a*b;
12:c=t+1;
. 13:t=1;

The write in statement I3 must happen after the write in statement 1. Otherwise, the
statement 12 result is incorrect.

e Aread-after-read has no dependency as instructions can be freely reordered if the variable is
not declared as volatile. If it is, then the order of instructions has to be maintained.

For example, when a pipeline is generated, the tool needs to take care that a register or memory
location read at a later stage has not been modified by a previous write. This is a true
dependency or read-after-write (RAW) dependency. A specific example is:

int top(int a, int b) {
int t,c;

I1: t
I2: c
retu

}

a * b;
t + 1;
rn c;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 134

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=134

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Statement I2 cannot be evaluated before statement I1 completes because there is a
dependency on variable t. In hardware, if the multiplication takes 3 clock cycles, then 12 is
delayed for that amount of time. If the above function is pipelined, then VHLS detects this as a
true dependency and schedules the operations accordingly. It uses data forwarding optimization
to remove the RAW dependency, so that the function can operate at Il =1.

Memory dependencies arise when the example applies to an array and not just variables.

int top(int a) {
int r=1,rnext,m,i,out;
static int mem[256];
Ll: for(i=0;i<=254;i++) {
#pragma HLS PIPELINE II=1
I1: m =r ¥ a; mem[i+1l] = m; // line 17
I12: rnext = mem([il; r = rnext; // line 8
}

return r;

}

In the above example, scheduling of loop 1.1 leads to a scheduling warning message:

WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint

(IT = 1,

distance = 1)

between 'store' operation (top.cpp:7) of variable 'm', top.cpp:7 on array
'mem' and

'load' operation ('rnext', top.cpp:8) on array 'mem'.

INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

There are no issues within the same iteration of the loop as you write an index and read another

one. The two instructions could execute at the same time, concurrently. However, observe the
read and writes over a few iterations:

// Iteration for 4i=0

I1: m =r * a; mem[1l] = m; // line 7
12: rnext = mem[O0]; r = rnext; // line 8

// Iteration for di=1

I1: m =r * a; mem[2] = m; // line 7
12: rnext = mem([1l]; r = rnext; // line 8

// Iteration for 4i=2

I1: m =r * a; mem[3] = m; // line 7
12: rnext = mem([2]; r = rnext; // line 8

When considering two successive iterations, the multiplication result m (with a latency = 2) from
statement I1 is written to a location that is read by statement 12 of the next iteration of the
loop into rnext. In this situation, there is a RAW dependence as the next loop iteration cannot
start reading mem [i] before the previous computation's write completes.

UG902 (v2019.2) January 13, 2020

www.xilinx.com
High-Level Synthesis [_send Feedback | 135

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=135

iv XI LI NX Chapter 1: High-Level Synthesis
A ®

Figure 59: Dependency Example

-0 read write
N rnext=mem][0] mem[0+1]=m
i1 read write

rnext=mem|[1] mem[1+1]=m

Note that if the clock frequency is increased, then the multiplier needs more pipeline stages and
increased latency. This will force 1l to increase as well.

Consider the following code, where the operations have been swapped, changing the
functionality.

int top(int a) {
int r,m,di;
static int mem[256];
Ll: for(4i=0;4i<=254;i++) {
#pragma HLS PIPELINE II=1
I1: r = mem[i]; // line T
I2: m =1 * a , mem[i+1l]=m; // line 8
}
return r;

}

The scheduling warning is:

INFO: [SCHED 204-61] Pipelining loop 'L1'.
WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint
(IT = 1,

distance = 1)

between 'store' operation (top.cpp:8) of variable 'm', top.cpp:8 on array
'mem'

and 'load' operation ('r', top.cpp:7) on array 'mem'.

WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint
(IT = 2,

distance = 1)

between 'store' operation (top.cpp:8) of variable 'm', top.cpp:8 on array
'mem'

and 'load' operation ('r', top.cpp:7) on array 'mem'.

WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint
(IT = 3,

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 136

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=136

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

distance = 1)

between 'store' operation (top.cpp:8) of variable 'm', top.cpp:8 on array
'mem'’

and 'load' operation ('r' top.cpp:7) on array 'mem'.

INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 4, Depth: 4.

Observe the continued read and writes over a few iterations:

Iteration with i=0

I1: r = mem([O0]; // line 7
I12: m =1 *¥ a , mem[1l]=m; // line 8
Iteration with i=1

I1: r = mem([1]; // line 7
I12: m =1 *¥ a , mem[2]=m; // line 8
Iteration with i=2

I1: r = mem([2]; // line 7
I12: m =1 *¥ a , mem[3]=m; // line 8

A longer Il is needed because the RAW dependence is via reading r from mem[1], performing
the multiplication, and writing to mem [i+11].

Removing False Dependencies to Improve Loop Pipelining

False dependencies are dependencies that arise when the compiler is too conservative. These
dependencies do not exist in the real code, but cannot be determined by the compiler. These
dependencies can prevent loop pipelining.

The following example illustrates false dependencies. In this example, the read and write
accesses are to two different addresses in the same loop iteration. Both of these addresses are
dependent on the input data, and can point to any individual element of the hist array. Because
of this, Vivado HLS assumes that both of these accesses can access the same location. As a
result, it schedules the read and write operations to the array in alternating cycles, resulting in a
loop Il of 2. However, the code shows that hist[o1d] and hist [val] can never access the
same location because they are in the else branch of the conditional if (0o1d == wval).

void histogram(int in[INPUT SIZE], int hist[VALUE SIZE]) f

int acc = 0;
int i, wval;
int old in[0];

for(i = 0; i < INPUT SIZE; i++)
{
#pragma HLS PIPELINE II-=1

val = in[i];
if(old == val)
{
acc = acc + 1;
}
else
{
hist[old] = acc;
acc = hist([val] + 1;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 137

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=137

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

old = wval;
}

histlold] = acc;

To overcome this deficiency, you can use the DEPENDENCE directive to provide Vivado HLS
with additional information about the dependencies.

void histogram(int in[INPUT SIZE], int hist[VALUE SIZE]) {
int acc = 0;
int i, wval;
int old = in([0];
#pragma HLS DEPENDENCE variable=hist intra RAW false
for(i = 0; i < INPUT SIZE; di++)
{
#pragma HLS PIPELINE II=1

val = in[i];
if(old == wval)
{
acc = acc + 1;
1
else
{
hist[old] = acc;
acc = hist([vall] + 1;
}
old = val;
}
histlold] = acc;

Note: Specifying a FALSE dependency, when in fact the dependency is not FALSE, can result in incorrect
hardware. Be sure dependencies are correct (TRUE or FALSE) before specifying them.

When specifying dependencies there are two main types:
¢ Inter: Specifies the dependency is between different iterations of the same loop.

If this is specified as FALSE it allows Vivado HLS to perform operations in parallel if the
pipelined or loop is unrolled or partially unrolled and prevents such concurrent operation
when specified as TRUE.

¢ Intra: Specifies dependence within the same iteration of a loop, for example an array being
accessed at the start and end of the same iteration.

When intra dependencies are specified as FALSE, Vivado HLS may move operations freely
within the loop, increasing their mobility and potentially improving performance or area.
When the dependency is specified as TRUE, the operations must be performed in the order
specified.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 138

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=138

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Scalar Dependencies

Some scalar dependencies are much harder to resolve and often require changes to the source
code. A scalar data dependency could look like the following:

while (a != b) {
if (a > b) a -= b;
else b -= a;

}

The next iteration of this loop cannot start until the current iteration has calculated the updated
the values of a and b, as shown in the following figure.

Figure 60: Scalar Dependency

i \

1= > - 1= > o

X14288

If the result of the previous loop iteration must be available before the current iteration can
begin, loop pipelining is not possible. If Vivado HLS cannot pipeline with the specified initiation
interval, it increases the initiation internal. If it cannot pipeline at all, as shown by the above
example, it halts pipelining and proceeds to output a non-pipelined design.

Optimal Loop Unrolling to Improve Pipelining

By default, loops are kept rolled in Vivado HLS. These rolled loops generate a hardware resource
which is used by each iteration of the loop. While this creates a resource efficient block, it can
sometimes be a performance bottleneck.

Vivado HLS provides the ability to unroll or partially unroll for-loops using the UNROLL directive.

The following figure shows both the advantages of loop unrolling and the implications that must
be considered when unrolling loops. This example assumes the arrays a[i], b[il, and
c[41] are mapped to block RAMs. This example shows how easy it is to create many different
implementations by the simple application of loop unrolling.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 139

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=139

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 61: Loop Unrolling Details

void top(..){ ..
for_mult:for (i=3;i>0;i--) {
a[i] = b[i] * c[i];
}
}
Iterations
|
Rolled Loop Partially Unrolled Loop Unrolled Loop
o Read b[3] Read b[2] Read b[1] Read b|[0] Read b[3] Read b[1] Read b[3]
5 Read c[3] Read c[2] Read c[1] Read c[0] Read c[3] Read c[1] Read c[3]
E Read b|[2] Read b[0] Read b|[2]
§ L L] e —— Read of2]
| Writea[3]] Writeal2] | Writeal1] | Writealo] | Read b{1]
I Read c[1]
-]] Read bl0]
EITYUM | Readclo
ool
I
I
I
| Writeal3] |
| Writeal2] |
| Writeal1] |
\/ | Write alo] |

X14278-040419

¢ Rolled Loop: When the loop is rolled, each iteration is performed in separate clock cycles. This
implementation takes four clock cycles, only requires one multiplier and each block RAM can
be a single-port block RAM.

¢ Partially Unrolled Loop: In this example, the loop is partially unrolled by a factor of 2. This
implementation required two multipliers and dual-port RAMs to support two reads or writes
to each RAM in the same clock cycle. This implementation does however only take 2 clock
cycles to complete: half the initiation interval and half the latency of the rolled loop version.

¢ Unrolled loop: In the fully unrolled version all loop operation can be performed in a single
clock cycle. This implementation however requires four multipliers. More importantly, this
implementation requires the ability to perform 4 reads and 4 write operations in the same
clock cycle. Because a block RAM only has a maximum of two ports, this implementation
requires the arrays be partitioned.

To perform loop unrolling, you can apply the UNROLL directives to individual loops in the design.
Alternatively, you can apply the UNROLL directive to a function, which unrolls all loops within
the scope of the function.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 140

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=140

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

If a loop is completely unrolled, all operations will be performed in parallel if data dependencies
and resources allow. If operations in one iteration of the loop require the result from a previous
iteration, they cannot execute in parallel but will execute as soon as the data is available. A
completely unrolled and fully optimized loop will generally involve multiple copies of the logic in
the loop body.

The following example code demonstrates how loop unrolling can be used to create an optimized
design. In this example, the data is stored in the arrays as interleaved channels. If the loop is
pipelined with 11=1, each channel is only read and written every 8th block cycle.

// Array Order : o 1 2 3 4 5 6 T 8 9 10 etc. 16

etc. ..

// Sample Order: A0 BO CO DO EO FO GO HO Al B1 C2 etc. A2

etc. ..

// Output Order: A0 BO CO DO EO FO GO HO AO+Al1 BO+B1l CO0+C2 etc. AO+Al1+A2
etc. ..

#define CHANNELS 8
#define SAMPLES 400
#define N CHANNELS * SAMPLES

void foo (dout_t d_out[N], din_t d_in[N]) {
int i, rem;

// Store accumulated data
static dacc_t acc[CHANNELS] ;

// Accumulate each channel
For_Loop: for (i=0;4i<N;i++) {
rem=1%CHANNELS ;

acc[rem] = acclrem] + d_in[il];
d_out[i] = acclrem];

}
1

Partially unrolling the loop by a factor of 8 will allow each of the channels (every 8th sample) to
be processed in parallel (if the input and output arrays are also partitioned in a cyc1lic manner
to allow multiple accesses per clock cycle). If the loop is also pipelined with the rewind option,
this design will continuously process all 8 channels in parallel if called in a pipelined fashion (i.e.,
either at the top, or within a dataflow region).

void foo (dout_t d_out[N], din_t d_in[N]) {
ffpragma HLS ARRAY_PARTITION variable=d_i cyclic factor=8 dim=1 partition
#pragma HLS ARRAY_PARTITION variable=d_o cyclic factor=8 dim=1 partition

int i, rem;

// Store accumulated data
static dacc_t acc[CHANNELS];

// Accumulate each channel
For_Loop: for (4i=0;4i<N;di++) {
#pragma HLS PIPELINE rewind
#pragma HLS UNROLL factor=8

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 141

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=141

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

rem=1%CHANNELS ;

accl[rem] acclrem] + d_inl[il;
d_out[il acclrem] ;

}
1

Partial loop unrolling does not require the unroll factor to be an integer multiple of the maximum
iteration count. Vivado HLS adds an exit checks to ensure partially unrolled loops are functionally
identical to the original loop. For example, given the following code:

for(int 4 = 0; 4 < N; 4di++) {
alil = bl[i] + cl[i];

}

Loop unrolling by a factor of 2 effectively transforms the code to look like the following example
where the break construct is used to ensure the functionality remains the same:

for(int 4 = 0; 4 < N; i += 2) {
aldi] = bldi] + cldi];
if (i+1 >= N) break:
ali+1] = bli+1] + cl[i+1];

}

Because N is a variable, Vivado HLS may not be able to determine its maximum value (it could be
driven from an input port). If the unrolling factor, which is 2 in this case, is an integer factor of the
maximum iteration count N, the skip_exit_check option removes the exit check and
associated logic. The effect of unrolling can now be represented as:

This helps minimize the area and simplify the control logic.

Exploiting Task Level Parallelism: Dataflow Optimization

The dataflow optimization is useful on a set of sequential tasks (e.g., functions and/or loops), as
shown in the following figure.

Figure 62: Sequential Functional Description

- »in out »{in out in out
In tmp tmp out
function_1 ca function_N

Y
\ 4

X14290

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 142

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=142

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

The above figure shows a specific case of a chain of three tasks, but the communication structure
can be more complex than shown.

Using this series of sequential tasks, dataflow optimization creates an architecture of concurrent
processes, as shown below. Dataflow optimization is a powerful method for improving design
throughput and latency.

Figure 63: Parallel Process Architecture

Interface Process_1 Channel . Channel Process_N Interface

TOP

X14282

The following figure shows how dataflow optimization allows the execution of tasks to overlap,
increasing the overall throughput of the design and reducing latency.

In the following figure and example, (A) represents the case without the dataflow optimization.
The implementation requires 8 cycles before a new input can be processed by func_A and 8
cycles before an output is written by func_cC.

For the same example, (B) represents the case when the dataflow optimization is applied.
func _A can begin processing a new input every 3 clock cycles (lower initiation interval) and it
now only requires 5 clocks to output a final value (shorter latency).

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 143

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=143

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 64: Dataflow Optimization

void top (a,b,c,d) {
func_A(a,b,il); func_A
func_B(c,i1,i2);
func_C(iz.d)
return d;
}
- > -
8 cycles 3 cycles
func_A func_A func_A
- 8 cycles o - 5 cycles o
(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

X14266

This type of parallelism cannot be achieved without incurring some overhead in hardware. When
a particular region, such as a function body or a loop body, is identified as a region to apply the
dataflow optimization, Vivado HLS analyzes the function or loop body and creates individual
channels that model the dataflow to store the results of each task in the dataflow region. These
channels can be simple FIFOs for scalar variables, or ping-pong (PIPO) buffers for non-scalar
variables like arrays. Each of these channels also contain signals to indicate when the FIFO or the
ping-pong buffer is full or empty. These signals represent a handshaking interface that is
completely data driven. By having individual FIFOs and/or ping-pong buffers, Vivado HLS frees
each task to execute at its own pace and the throughput is only limited by availability of the input
and output buffers. This allows for better interleaving of task execution than a normal pipelined
implementation but does so at the cost of additional FIFO or block RAM registers for the ping-
pong buffer. The preceding figure illustrates the structure that is realized for the dataflow region
for the same example in the following figure.

Figure 65: Structure Created During Dataflow Optimization

data —10000 I | ” >0000 000 _L data

~{000d RSN 000 =
\

ap_done

ap_start)
FIFOs or Ping-Pong Buffers

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 144

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=144

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Dataflow optimization potentially improves performance over a statically pipelined solution. It
replaces the strict, centrally-controlled pipeline stall philosophy with more flexible and
distributed handshaking architecture using FIFOs and/or ping-pong buffers. Dataflow
optimization is not limited to a chain of processes, but can be used on any DAG structure. It can
produce two different forms of overlapping: within an iteration if processes are connected with
FIFOs, and across different iterations via PIPOs and FIFOs.

Canonical Forms

Vivado HLS transforms the region to apply the DATAFLOW optimization. Xilinx recommends
writing the code inside this region (referred to as the canonical region) using canonical forms.
There are two main canonical forms for the dataflow optimization:

1. The canonical form for a function where functions are not inlined.

void dataflow(InputO, Inputl, OutputO, Outputl)

{

#pragma HLS dataflow

UserDataType CO, C1l, C2;

funcl(read InputO, read Inputl, write CO, write C1);
func2(read CO, read Cl, write C2);

func3(read C2, write OutputO, write Outputl);

}
2. Dataflow inside a loop body.
For the for loop (where no function inside is inlined), the integral loop variable should have:
Initial value declared in the loop header and set to O.

a
b. The loop condition is a positive numerical constant or constant function argument.

Increment by 1.

o

d. Dataflow pragma needs to be inside the loop.

void dataflow(InputO, Inputl, OutputO, Outputl)
{
for (dnt 4 = 0; i < N; di++)
{
#pragma HLS dataflow
UserDataType CO, C1l, C2;
funcl(read InputO, read Inputl, write CO, write C1);
func2(read CO, read CO, read Cl, write C2);
func3(read C2, write OutputO, write Outputl) ;
}
}

Canonical Body

Inside the canonical region, the canonical body should follow these guidelines:

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 145

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=145

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

1. Use a local, non-static scalar or array/pointer variable, or local static stream variable. A local
variable is declared inside the function body (for dataflow in a function) or loop body (for
dataflow inside a loop).

2. A sequence of function calls that pass data forward (with no feedback), from a function to
one that is lexically later, under the following conditions:

a. Variables (except scalar) can have only one reading process and one writing process.

b. Use write before read (producer before consumer) if you are using local variables, which
then become channels.

c. Use read before write (consumer before producer) if you are using function arguments.
Any intra-body anti-dependencies must be preserved by the design.

d. Function return type must be void.
e. No loop-carried dependencies among different processes via variables.

¢ Inside the canonical loop (i.e., values written by one iteration and read by a following
one).

e Among successive calls to the top function (i.e., inout argument written by one
iteration and read by the following iteration).

Dataflow Checking

Vivado HLS has a dataflow checker which, when enabled, checks the code to see if it is in the
recommended canonical form. Otherwise it will emit an error/warning message to the user. By
default this checker is set to warning. You can set the checker to error or disable it by
selecting o f £ in the strict mode of the config_dataflow TCL command:

config_dataflow -strict_mode (off | error | warning)

Dataflow Optimization Limitations

The DATAFLOW optimization optimizes the flow of data between tasks (functions and loops),
and ideally pipelined functions and loops for maximum performance. It does not require these
tasks to be chained, one after the other, however there are some limitations in how the data is
transferred.

The following behaviors can prevent or limit the overlapping that Vivado® HLS can perform with
DATAFLOW optimization:

¢ Single-producer-consumer violations
e Bypassing tasks

e Feedback between tasks

e Conditional execution of tasks

e Loops with multiple exit conditions

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 146

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=146

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

‘11} IMPORTANT! If any of these coding styles are present, Vivado HLS issues a message describing the situation.

Note: The dataflow viewer in the Analysis Perspective may be used to view the structure when the
DATAFLOW directive is applied.

Single-producer-consumer Violations

For Vivado HLS to perform the DATAFLOW optimization, all elements passed between tasks
must follow a single-producer-consumer model. Each variable must be driven from a single task
and only be consumed by a single task. In the following code example, temp1 fans out and is
consumed by both Loop2 and Loop3. This violates the single-producer-consumer model.

void foo(int data_in[N], int scale, int data_outl[N], int data_out2[N]) {

int templ[N];

Loopl: for(int 4 = 0; i < N; d++) {
templ[i] = data_in[i] * scale;

}

Loop2: for(int j = 0; j < N; Jj++) {
data_outl[j] = templ[j] * 123;

}

Loop3: for(int k = 0; k < N; k++) {
data_out2[k] = templl[k] * 456;

}

}

A modified version of this code uses function Sp1it to create a single-producer-consumer
design. In this case, data flows from Loop1 to function Sp1it and thento Loop2 and Loop3.
The data now flows between all four tasks, and Vivado HLS can perform the DATAFLOW
optimization.

void Split (4in[N], outl[N], out2[N]) {
// Duplicated data
Ll:for(int 4i=1;i<N;i++) {

outl[i] = din[dil;
out2[i] = dinldil];
}
}
void foo(int data_in[N], int scale, int data_outl[N], int data_out2[N]) {

int templ([N], temp2[N]. temp3[N];
Loopl: for(int 4 = 0; i < N; di++) {
templ[i] = data_in[i] * scale;

}

Split(templ, temp2, temp3);

Loop2: for(int j = 0; j < N; j++) {
data_outl[j] = temp2[j] * 123;

}

Loop3: for(
data_out2[k
}

int k = 0; k < N; k++) {
I = temp3[k] * 456;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 147

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=147

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Bypassing Tasks

In addition, data should generally flow from one task to another. If you bypass tasks, this can
reduce the performance of the DATAFLOW optimization. In the following example, Loop1
generates the values for temp1 and temp2. However, the next task, Loop2, only uses the value
of templ. The value of temp?2 is not consumed until after Loop2. Therefore, temp2 bypasses
the next task in the sequence, which can limit the performance of the DATAFLOW optimization.

void foo(int data_in[N], int scale, int data_outl[N], int data_out2[N]) {

int templ[N], temp2[N]. temp3[N];

Loopl: for(int i = 0; i < N; 4i++) {
templ[i] = data_in[di] * scale;
temp2[i] = data_in[i] >> scale;

}
Loop2: for(int j = 0; j < N; j++) {
temp3[j] = templ[j] + 123;
}
Loop3: for(int k = 0; k < N; k++) {
data_out[k] = temp2[k] + temp3[k];
}

}

Because the loop iteration limits are all the same in this example, you can modify the code so
that Loop2 consumes temp?2 and produces temp4 as follows. This ensures that the data flows
from one task to the next.

void foo(int data_in[N], int scale, int data_outl[N], int data_out2[N]) {

int templ[N], temp2[N]. temp3[N], temp4[N];
Loopl: for(int 4 = 0; i < N; 4i++) {

templ[i] = data_in[i] * scale;
temp2[i] = data_in[di] >> scale;

}

Loop2: for(int j = 0; j < N; J++) {
temp3[j] = templ[j] + 123;

temp4[j] = temp2[j];

}
Loop3: for(int k = 0; k < N; k++) {
data_out[k] = temp4[k] + temp3[k];
}

}

Feedback Between Tasks

Feedback occurs when the output from a task is consumed by a previous task in the DATAFLOW
region. Feedback between tasks is not permitted in a DATAFLOW region. When Vivado HLS
detects feedback, it issues a warning, depending on the situation, and might not perform the
DATAFLOW optimization.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 148

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=148

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Conditional Execution of Tasks

The DATAFLOW optimization does not optimize tasks that are conditionally executed. The
following example highlights this limitation. In this example, the conditional execution of Loop1
and Loop2 prevents Vivado HLS from optimizing the data flow between these loops, because
the data does not flow from one loop into the next.

void foo(int data_inl[N], int data_out[N], int sel) {

int templ([N], temp2[N];

if (sel) {

Loopl: for(int 4 = 0; i < N; 4++) {
templ[i] = data_in[4i] * 123;
temp2[i] = data_in[dil];

}

} else {

Loop2: for(int j = 0; j < N; Jj++) {
templ[j] = data_in[j] * 321;
temp2[j] = data_in[3j];

}
}
Loop3: for(int k = 0; k < N; k++) {
data_out[k] = templl[k] * temp2[k];
}

}

To ensure each loop is executed in all cases, you must transform the code as shown in the
following example. In this example, the conditional statement is moved into the first loop. Both
loops are always executed, and data always flows from one loop to the next.

void foo(int data_in[N], int data_out[N], int sel) {

int templ[N], temp2[N];

Loopl: for(int 4 = 0; i < N; 4i++) {
if (sel) {

templ[i] = data_in[di] * 123;

}1 else {

templ[i] = data_in[4i] * 321;

}
}
Loop2: for(int j = 0; j < N; Jj++) {
temp2[j] = data_in[j];
}
Loop3: for(int k = 0; k < N; k++) {
data_out[k] = templl[k] * temp2[k];
}

}

Loops with Multiple Exit Conditions

Loops with multiple exit points cannot be used in a DATAFLOW region. In the following example,
Loop2 has three exit conditions:

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 149

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=149

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e An exit defined by the value of N; the loop will exit when k>=N.
¢ An exit defined by the break statement.
e An exit defined by the continue statement.

#include "ap_cint.h"
ffdefine N 16

typedef int8 din_t;

typedef intl5 dout_t;
typedef uint8 dsc_t;
typedef uintl dsel_t;

void multi_exit(din_t data_in[N], dsc_t scale, dsel_t select, dout_t
data_out[N]) {
dout_t templ[N], temp2[N];

int i, k;

Loopl: for(i = 0; 4 < N; 4i++) {
templ[i] = data_in[i] * scale;
temp2[i] = data_in[i] >> scale;

}

Loop2: for(k

0; k < N; k++) {
switch(select {

case data_out[k] = templl[k] + temp2[k];
defaul break;

)
0:

case 1: continue;
t:

}
}
}

Because a loop’s exit condition is always defined by the loop bounds, the use of break or
continue statements will prohibit the loop being used in a DATAFLOW region.

Finally, the DATAFLOW optimization has no hierarchical implementation. If a sub-function or
loop contains additional tasks that might benefit from the DATAFLOW optimization, you must
apply the DATAFLOW optimization to the loop, the sub-function, or inline the sub-function.

Note: std::complex cannot be directly used inside the DATAFLOW region. They should be defined as native
data types and type casted inside the producer.

#dataflow
float A[N][2];
prod (A, in);
cons (out,A);

Producer(std::complex &)

{
}
Configuring Dataflow Memory Channels

Vivado HLS implements channels between the tasks as either ping-pong or FIFO buffers,
depending on the access patterns of the producer and the consumer of the data:

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 150

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=150

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e For scalar, pointer, and reference parameters, Vivado HLS implements the channel as a FIFO.

¢ |f the parameter (producer or consumer) is an array, Vivado HLS implements the channel as a
ping-pong buffer or a FIFO as follows:

If Vivado HLS determines the data is accessed in sequential order, Vivado HLS implements
the memory channel as a FIFO channel of depth 2.

. If Vivado HLS is unable to determine that the data is accessed in sequential order or
determines the data is accessed in an arbitrary manner, Vivado HLS implements the
memory channel as a ping-pong buffer, that is, as two block RAMs each defined by the
maximum size of the consumer or producer array.

Note: A ping-pong buffer ensures that the channel always has the capacity to hold all samples
without a loss. However, this might be an overly conservative approach in some cases.

To explicitly specify the default channel used between tasks, use the config_dataflow
configuration. This configuration sets the default channel for all channels in a design. To reduce
the size of the memory used in the channel and allow for overlapping within an iteration, you can
use a FIFO. To explicitly set the depth (i.e., number of elements) in the FIFO, use the
-fifo_depth option.

Specifying the size of the FIFO channels overrides the default approach. If any task in the design
can produce or consume samples at a greater rate than the specified size of the FIFO, the FIFOs
might become empty (or full). In this case, the design halts operation, because it is unable to read
(or write). This might result in or lead to a stalled, deadlock state.

Note: If a deadlocked situation is created, you will only see this when executing C/RTL co-simulation or
when the block is used in a complete system.

When setting the depth of the FIFOs, Xilinx recommends initially setting the depth as the
maximum number data values transferred (e.g., the size of the array passed between tasks),
confirming the design passes C/RTL co-simulation, and then reducing the size of the FIFOs and
confirming C/RTL co-simulation still completes without issues. If RTL co-simulation fails, the size
of the FIFO is likely too small to prevent stalling or a deadlock situation.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 151

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=151

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Specifying Arrays as Ping-Pong Buffers or FIFOs

All arrays are implemented by default as ping-pong to enable random access. These buffers can
also be sized if needed. For example, in some circumstances, such as when a task is being
bypassed, a performance degradation is possible. To mitigate this affect on performance, you can
give more slack to the producer and consumer by increasing the size of these buffers by using
the STREAM directive as shown below.

void top (...) {
#pragma HLS dataflow
int A[1024];
fpragma HLS stream off variable=A depth=3

producer (A, B, ..); // producer writes A and B
middle (B, C, ...); // middle reads B and writes C
consumer (A, C, ..);: // consumer reads A and C

In the interface, arrays are automatically specified as streaming if an array on the top-level
function interface is set as interface type ap_fifo, axis or ap_hs, it is automatically set as
streaming.

Inside the design, all arrays must be specified as streaming using the STREAM directive if a FIFO
is desired for the implementation.

Note: When the STREAM directive is applied to an array, the resulting FIFO implemented in the hardware
contains as many elements as the array. The -depth option can be used to specify the size of the FIFO.

The STREAM directive is also used to change any arrays in a DATAFLOW region from the default
implementation specified by the config_dataflow configuration.

o [ftheconfig_dataflowdefault_channel issetas ping-pong, any array can be
implemented as a FIFO by applying the STREAM directive to the array.

Note: To use a FIFO implementation, the array must be accessed in a streaming manner.

o Iftheconfig_dataflowdefault_channel issetto FIFO or Vivado HLS has
automatically determined the data in a DATAFLOW region is accessed in a streaming manner,
any array can still be implemented as a ping-pong implementation by applying the STREAM
directive to the array with the - o £ £ option.

i} IMPORTANT! To preserve the accesses, it might be necessary to prevent compiler optimizations (dead code
elimination particularly) by using the volatile qualifier.

When an array in a DATAFLOW region is specified as streaming and implemented as a FIFO, the
FIFO is typically not required to hold the same number of elements as the original array. The
tasks in a DATAFLOW region consume each data sample as soon as it becomes available. The
config_dataflow command with the - fifo_depth option or the STREAM directive with
the -depth can be used to set the size of the FIFO to the minimum number of elements
required to ensure flow of data never stalls. If the -o f £ option is selected, the -o f £ option sets
the depth (number of blocks) of the ping-pong. The depth should be at least 2.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 159

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=152

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Specifying Compiler-FIFO Depth

Start Propagation

The compiler might automatically create a start FIFO to propagate a start token to an internal
process. Such FIFOs can sometimes be a bottleneck for performance, in which case you can
increase the default size (fixed to 2) with the following command:

config_dataflow -start_fifo_depth <value>

If an unbounded slack between producer and consumer is needed, and internal processes can run
forever, fully and safely driven by their inputs or outputs (FIFOs or PIPOs), these start FIFOs can
be removed, at user's risk, locally for a given dataflow region with the pragma:

#fpragma HLS DATAFLOW disable_start_propagation

Scalar Propagation

The compiler automatically propagates some scalars from C/C++ code through scalar FIFOs
between processes. Such FIFOs can sometimes be a bottleneck for performance or cause
deadlocks, in which case you can set the size (the default value is set to - fi fo_depth) with the
following command:

config_dataflow -scalar_fifo_depth <value>

Stable Arrays

The stable pragma can be used to mark input or output variables of a dataflow region. Its effect is
to remove their corresponding synchronizations, assuming that the user guarantees this removal
is indeed correct.

void dataflow_region(int A[...],
#pragma HLS stable variable=A
#pragma HLS dataflow

procl(...);

proc2 (A, ...);

Without the stable pragma, and assuming that A is read by proc2, then proc2 would be part
of the initial synchronization (via ap_start), for the dataflow region where it is located. This
means that proc1 would not restart until proc 2 is also ready to start again, which would
prevent dataflow iterations to be overlapped and induce a possible loss of performance. The
stable pragma indicates that this synchronization is not necessary to preserve correctness.

In the previous example, without the stable pragma, and assuming that A is read by proc2 as
proc2 is bypassing the tasks, there will be a performance loss.

With the stable pragma, the compiler assumes that:

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 153

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=153

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e if Aisread by proc2, then the memory locations that are read will not be overwritten, by any
other process or calling context, while dataflow_region is being executed.

o if Ais written by proc2, then the memory locations written will not be read, before their
definition, by any other process or calling context, while dataflow_region is being
executed.

A typical scenario is when the caller updates or reads these variables only when the dataflow
region has not started yet or has completed execution.

Using ap_ctrl_none Inside the Dataflow

The ap_ctrl_none block-level I/O protocol avoids the rigid synchronization scheme implied by
the ap_ctrl_hs and ap_ctrl_chain protocols. These protocols require that all processes in
the region are executed exactly the same number of times in order to better match the

C behavior.

However, there are situations where, for example, the intent is to have a faster process that
executes more frequently to distribute work to several slower ones.

For any dataflow region (except "dataflow-in-loop"), it is possible to specify
#pragma HLS interface ap_ctrl_none port=return
as long as all the following conditions are satisfied:

e The region and all the processes it contains communicates only via FIFOs (hls::stream,
streamed arrays, AXIS); that is, excluding memories.

o All the parents of the region, up to the top level design, must fit the following requirements:

They must be dataflow regions (excluding "dataflow-in-loop").

They must all specify ap_ctrl_none.

This means that none of the parents of a dataflow region with ap_ctrl_none in the hierarchy
can be:

e A sequential or pipelined FSM

e A dataflow region inside a for loop ("dataflow-in-loop")

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 154

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=154

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

The result of this pragma is that ap_ctrl_chain is not used to synchronize any of the
processes inside that region. They are executed or stalled based on the availability of data in their
input FIFOs and space in their output FIFOs. For example:

void region(...) {

#pragma HLS dataflow

#pragma HLS interface ap_ctrl_none port=return
hls::stream<int> outStreaml, outStream?2;
demux(inStream, outStreaml, outStream?2) ;
workerl(outStreaml, ...);
worker2 (outStream2,);

In this example, demux can be executed twice as frequently as worker1 and worker2. For
example, it can have =1 while worker1 and worker2 can have l1=2, and still achieving a global
I1=1 behavior.

Note:

e Non-blocking reads may need to be used very carefully inside processes that are executed less
frequently to ensure that C simulation works.

e The pragma is applied to a region, not to the individual processes inside it.

e Deadlock detection must be disabled in co-simulation. This can be done with the
-disable_deadlock_detection option in cosim_design.

Optimizing for Latency

Using Latency Constraints

Vivado HLS supports the use of a latency constraint on any scope. Latency constraints are
specified using the LATENCY directive.

When a maximum and/or minimum LATENCY constraint is placed on a scope, Vivado HLS tries
to ensure all operations in the function complete within the range of clock cycles specified.

The latency directive applied to a loop specifies the required latency for a single iteration of the
loop: it specifies the latency for the loop body, as the following examples shows:

Loop_A: for (4i=0; 4i<N; di++) {

#pragma HLS latency max=10
..Loop Body. ..

}

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 155

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=155

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

If the intention is to limit the total latency of all loop iterations, the latency directive should be
applied to a region that encompasses the entire loop, as in this example:

Region_All_Loop_A: {
#pragma HLS latency max=10
Loop_A: for (i=0; 4i<N; di++)
{
. .Loop Body. ..

}
3

In this case, even if the loop is unrolled, the latency directive sets a maximum limit on all loop
operations.

If Vivado HLS cannot meet a maximum latency constraint it relaxes the latency constraint and
tries to achieve the best possible result.

If a minimum latency constraint is set and Vivado HLS can produce a design with a lower latency
than the minimum required it inserts dummy clock cycles to meet the minimum latency.
Merging Sequential Loops to Reduce Latency

All rolled loops imply and create at least one state in the design FSM. When there are multiple
sequential loops it can create additional unnecessary clock cycles and prevent further
optimizations.

The following figure shows a simple example where a seemingly intuitive coding style has a
negative impact on the performance of the RTL design.

Figure 66: Loop Directives

void top (a[4],b[4],c[4],d[4]...) { (A) Without Loop (B) With Loop
Merging Merging
de:forﬁ=3j>=0ﬁ-0 ccoocooooooh
if (d[i]) 1 cycle
a[i] = b[i] + c[i];
} Ml e 4 cycles 1 cycle
Sub: for (i=3;i>=0;i-) { @ ——————————-- /
if (1d[i]) 1 cycle C’% cycle
a[i] = b[i] - c[i;
Yy _____
.. 4 cycles
}
1 cycle
1 cycle \

X14276

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 156

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=156

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

In the preceding figure, (A) shows how, by default, each rolled loop in the design creates at least
one state in the FSM. Moving between those states costs clock cycles: assuming each loop
iteration requires one clock cycle, it take a total of 11 cycles to execute both loops:

e 1 clock cycle to enter the ADD loop.

e 4 clock cycles to execute the add loop.

e 1 clock cycle to exit ADD and enter SUB.
e 4 clock cycles to execute the SUB loop.

e 1 clock cycle to exit the SUB loop.

e For a total of 11 clock cycles.

In this simple example it is obvious that an else branch in the ADD loop would also solve the
issue but in a more complex example it may be less obvious and the more intuitive coding style
may have greater advantages.

The LOOP_MERGE optimization directive is used to automatically merge loops. The
LOOP_MERGE directive will seek so to merge all loops within the scope it is placed. In the above
example, merging the loops creates a control structure similar to that shown in (B) in the
preceding figure, which requires only 6 clocks to complete.

Merging loops allows the logic within the loops to be optimized together. In the example above,
using a dual-port block RAM allows the add and subtraction operations to be performed in
parallel.

Currently, loop merging in Vivado HLS has the following restrictions:

e [f loop bounds are all variables, they must have the same value.

¢ If loops bounds are constants, the maximum constant value is used as the bound of the
merged loop.

e Loops with both variable bound and constant bound cannot be merged.

e The code between loops to be merged cannot have side effects: multiple execution of this
code should generate the same results (a=b is allowed, a=a+1 is not).

e Loops cannot be merged when they contain FIFO accesses: merging would change the order
of the reads and writes from a FIFO: these must always occur in sequence.

Flattening Nested Loops to Improve Latency

In a similar manner to the consecutive loops discussed in the previous section, it requires
additional clock cycles to move between rolled nested loops. It requires one clock cycle to move
from an outer loop to an inner loop and from an inner loop to an outer loop.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 157

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=157

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

In the small example shown here, this implies 200 extra clock cycles to execute loop Outer.

void foo_top { a, b, c, d} {

éﬁéer: while(3j<100)

Inner: while(i<6) // 1 cycle to enter dinner
iééP_BODY

j.)/ 1 cycle to exit dinner

}
o

Vivado HLS provides the set_directive_loop_flatten command to allow labeled perfect and semi-
perfect nested loops to be flattened, removing the need to re-code for optimal hardware
performance and reducing the number of cycles it takes to perform the operations in the loop.

e Perfect loop nest: Only the innermost loop has loop body content, there is no logic specified
between the loop statements and all the loop bounds are constant.

¢ Semi-perfect loop nest:: Only the innermost loop has loop body content, there is no logic
specified between the loop statements but the outermost loop bound can be a variable.

For imperfect loop nests, where the inner loop has variables bounds or the loop body is not
exclusively inside the inner loop, designers should try to restructure the code, or unroll the loops
in the loop body to create a perfect loop nest.

When the directive is applied to a set of nested loops it should be applied to the inner most loop
that contains the loop body.

set_directive_loop_flatten top/Inner

Loop flattening can also be performed using the directive tab in the GUI, either by applying it to
individual loops or applying it to all loops in a function by applying the directive at the function
level.

Optimizing for Area

Data Types and Bit-Widths

The bit-widths of the variables in the C function directly impact the size of the storage elements
and operators used in the RTL implementation. If a variables only requires 12-bits but is specified
as an integer type (32-bit) it will result in larger and slower 32-bit operators being used, reducing
the number of operations that can be performed in a clock cycle and potentially increasing
initiation interval and latency.

e Use the appropriate precision for the data types.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 158

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=158

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e Confirm the size of any arrays that are to be implemented as RAMs or registers. The area
impact of any over-sized elements is wasteful in hardware resources.

e Pay special attention to multiplications, divisions, modulus or other complex arithmetic
operations. If these variables are larger than they need to be, they negatively impact both area
and performance.

Function Inlining

Function inlining removes the function hierarchy. A function is inlined using the INLINE directive.
Inlining a function may improve area by allowing the components within the function to be
better shared or optimized with the logic in the calling function. This type of function inlining is
also performed automatically by Vivado HLS. Small functions are automatically inlined.

Inlining allows functions sharing to be better controlled. For functions to be shared they must be
used within the same level of hierarchy. In this code example, function foo_top calls foo twice
and function foo_sub.

foo_sub (p, q) {
int ql1 = q + 10;
foo(pl,q); // foo_3

}
void foo_top { a, b, c, d} {

foo(a,b); //foo_1
foo(a,c); //foo_2
foo_sub(a,d);

}...

Inlining function foo_sub and using the ALLOCATION directive to specify only 1 instance of
function foo is used, results in a design which only has one instance of function foo: one-third

the area of the example above.

foo_sub (p, q) {

#pragma HLS INLINE
int gl = g + 10;
foo(pl,q):; // foo_3

}
void foo_top { a, b, c, d} {
#pragma HLS ALLOCATION instances=foo limit=1 function

foo(a,b); //foo_1
foo(a,c); //foo_2
foo_sub(a,d) ;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 159

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=159

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

The INLINE directive optionally allows all functions below the specified function to be
recursively inlined by using the recursive option. If the recursive option is used on the top-
level function, all function hierarchy in the design is removed.

The INLINE o f £ option can optionally be applied to functions to prevent them being inlined. This
option may be used to prevent Vivado HLS from automatically inlining a function.

The INLINE directive is a powerful way to substantially modify the structure of the code without
actually performing any modifications to the source code and provides a very powerful method
for architectural exploration.

Mapping Many Arrays into One Large Array

When there are many small arrays in the C Code, mapping them into a single larger array typically
reduces the number of block RAM required.

Each array is mapped into a block RAM or UltraRAM, when supported by the device. The basic
block RAM unit provide in an FPGA is 18K. If many small arrays do not use the full 18K, a better
use of the block RAM resources is map many of the small arrays into a larger array. If a block
RAM is larger than 18K, they are automatically mapped into multiple 18K units. In the synthesis
report, review Utilization Report > Details > Memory for a complete understanding of the block
RAMs in your design.

The ARRAY_MAP directive supports two ways of mapping small arrays into a larger one:

e Horizontal mapping: this corresponds to creating a new array by concatenating the original
arrays. Physically, this gets implemented as a single array with more elements.

o Vertical mapping: this corresponds to creating a new array by concatenating the original
words in the array. Physically, this gets implemented by a single array with a larger bit-width.

Horizontal Array Mapping

The following code example has two arrays that would result in two RAM components.

void foo (...) {
int8 arrayl[M];
intl12 array2[N];

loop_1: for(i=0;i<M;di++) {
arrayl[di] = 0
array2[i] =

}...

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 160

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=160

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Arrays arrayl and array2 can be combined into a single array, specified as array3 in the
following example:

void foo (...) {

int8 arrayl[M];

intl12 array2[N];
#pragma HLS ARRAY_MAP variable=arrayl instance=array3 horizontal
ffpragma HLS ARRAY_MAP variable=array2 instance=array3 horizontal

loop-1: for(i=0;i<M;i++) {
arrayl([i] = 2
array2[i] =

}...

In this example, the ARRAY_MAP directive transforms the arrays as shown in the following
figure.

Figure 67: Horizontal Mapping

arrayl[M] [0][1 [[m2][m1]
aray2[N] [o || 1 | .. | N2 [N1 |
Longer array
(horizontal expansion)
with more elements
aray3M+N] | O | 1 | .. JIm2][ma]] o | 1 | .. [N2 [N1 |

X14274

When using horizontal mapping, the smaller arrays are mapped into a larger array. The mapping
starts at location O in the larger array and follows in the order the commands are specified. In the
Vivado HLS GUI, this is based on the order the arrays are specified using the menu commands. In
the Tcl environment, this is based on the order the commands are issued.

When you use the horizontal mapping shown in the following figure, the implementation in the
block RAM appears as shown in the following figure.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 161

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=161

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 68: Memory for Horizontal Mapping

RAM1P

N-1 A M+N-1

N-2

1

0 Addresses
M-1
M-2
1
0 0

MSB LSB

X14280

The o f fset option to the ARRAY_MAP directive is used to specify at which location
subsequent arrays are added when using the horizontal option. Repeating the previous
example, but reversing the order of the commands (specifying array2 then array1) and adding
an of fset, as shown below:

void foo (...) {
int8 arrayl[M];
intl1l2 array2[N];
#pragma HLS ARRAY_MAP variable=array2 instance=array3 horizontal
#pragma HLS ARRAY_MAP variable=arrayl instance=array3 horizontal offset=2
loop_1: for(i=0;i<M;di++) {
arrayl([i] = 2
array2[i] =

}...
j..

This results in the transformation shown in the following figure.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 162

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=162

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 69: Horizontal Mapping with Offset

araylM] | o J| 1 [.. JIm2] m1]
amay2[N] [0 f[1 f[.. [N2 [N1 |
Longer array
(horizontal expansion)
with more elements
amay3N+2+M] | 0 f| 1 f[.. f[N2][N1 Jlotffozf o |f 1 || .. |[m2][m1]
—_—
Offset of 2 from the end

of array2 elements
X14273

After mapping, the newly formed array, array3 in the above examples, can be targeted into a
specific block RAM or UltraRAM by applying the RESOURCE directive to any of the variables
mapped into the new instance.

Although horizontal mapping can result in using less block RAM components and therefore
improve area, it does have an impact on the throughput and performance as there are now fewer
block RAM ports. To overcome this limitation, Vivado HLS also provides vertical mapping.

Mapping Vertical Arrays

In vertical mapping, arrays are concatenated by to produce an array with higher bit-
widths.Vertical mapping is applied using the vertical option to the INLINE directive. The following
figure shows how the same example as before transformed when vertical mapping mode is
applied.

void foo (...) {
int8 arrayl([M];
intl2 array2[N];
f#pragma HLS ARRAY _MAP variable=array2 instance=array3 vertical
#pragma HLS ARRAY_MAP variable=arrayl instance=array3 vertical
loop_1: for(i=0;i<M;i++) {
arrayl[di] = 0
array2[i] =

}...

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 163

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=163

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 70: Vertical Mapping

araylM] | o [1 || [[M2 |[m1 |
array2[N] | 0 [1 [[[[N2 || N1
Vertical expansion
with more bits
MSB
array3[N] 0 | 1 | | M-2 | M-1 |
o [t] | [[_ N2 f[N1 f|isB

X14312

In vertical mapping, the arrays are concatenated in the order specified by the command, with the
first arrays starting at the LSB and the last array specified ending at the MSB. After vertical
mapping the newly formed array, is implemented in a single block RAM component as shown in
the following figure.

RAM1P
N-1 A N1
M-1 N-2
M-2
Addresses
1 1
0 0 0
MSB LSB
X14281-061218

Array Mapping and Special Considerations

i} IMPORTANT! The object for an array transformation must be in the source code prior to any other directives
being applied.

To map elements from a partitioned array into a single array with horizontal mapping, the
individual elements of the array to be partitioned must be specified in the ARRAY_MAP
directive. For example, the following Tcl commands partition array accum and map the resulting
elements back together.

#pragma HLS array_partition variable=m_accum cyclic factor=2 dim=1
#pragma HLS array_partition variable=v_accum cyclic factor=2 dim=1
#pragma HLS array_map variable=m_accum[0] instance=_accum horizontal

#pragma HLS array_map variable=v_accum[0] instance=mv_accum horizontal
#pragma HLS array_map variable=m_accum[1l] instance=mv_accum_1 horizontal
#pragma HLS array_map variable=v_accum[1l] instance=mv_accum_1 horizontal

It is possible to map a global array. However, the resulting array instance is global and any local
arrays mapped onto this same array instance become global. When local arrays of different
functions get mapped onto the same target array, then the target array instance becomes global.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 164

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=164

& XILINX

Chapter 1: High-Level Synthesis

Array function arguments may only be mapped if they are arguments to the same function.

Array Reshaping

The ARRAY_RESHAPE directive combines ARRAY_PARTITIONING with the vertical mode of
ARRAY_MAP and is used to reduce the number of block RAM while still allowing the beneficial
attributes of partitioning: parallel access to the data.

Given the following example code:

void foo (...

{

)
int arrayl[N];
int array2[N];
int array3[N];

ffpragma HLS ARRAY_RESHAPE variable=arrayl block factor=2 dim=1
#pragma HLS ARRAY_RESHAPE variable=array2 cycle factor=2 dim=1
#pragma HLS ARRAY_RESHAPE variable=array3 complete dim=1

}

The ARRAY_RESHAPE directive transforms the arrays into the form shown in the following

figure.

Figure 71: Array Reshaping

array1[N]
MSB
o T 1121 - [Ne[N2 [NT] W> s
array2[N]
: MSB
O I A I < I S R R > e
array3[N] MSB
o T 1T 27T . IN3]N2]N1] |comp|ete >
LSB

array4[N/2]
N/2
0 1

N-2 N-1

(N/2-1)

array5[N/2]

1 N-3
0 2

N-1
N-2

array6[1]
N-1
N-2

1
0

X14307

The ARRAY_RESHAPE directive allows more data to be accessed in a single clock cycle. In cases
where more data can be accessed in a single clock cycle, Vivado HLS may automatically unroll
any loops consuming this data, if doing so will improve the throughput. The loop can be fully or
partially unrolled to create enough hardware to consume the additional data in a single clock
cycle. This feature is controlled using the config_unroll command and the option
tripcount_threshold. In the following example, any loops with a tripcount of less than 16
will be automatically unrolled if doing so improves the throughput.

config_unroll -tripcount_threshold 16

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l

www.Xilinx.com
165

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=165

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Function Instantiation

Function instantiation is an optimization technique that has the area benefits of maintaining the
function hierarchy but provides an additional powerful option: performing targeted local
optimizations on specific instances of a function. This can simplify the control logic around the
function call and potentially improve latency and throughput.

The FUNCTION_INSTANTIATE directive exploits the fact that some inputs to a function may be
a constant value when the function is called and uses this to both simplify the surrounding
control structures and produce smaller more optimized function blocks. This is best explained by
example.

Given the following code:

void foo_sub(bool mode) {
#pragma HLS FUNCTION_INSTANTIATE variable=mode
if (mode) {
// code segment 1
1 else {
// code segment 2
}
}

void fool(){

#pragma HLS FUNCTION_INSTANTIATE variable=select
foo_sub(true) ;

foo_sub(false) ;

}

It is clear that function foo_sub has been written to perform multiple but exclusive operations
(depending on whether mode is true or not). Each instance of function foo_sub is implemented
in an identical manner: this is great for function reuse and area optimization but means that the
control logic inside the function must be more complex.

The FUNCTION_INSTANTIATE optimization allows each instance to be independently
optimized, reducing the functionality and area. After FUNCTION_INSTANTIATE optimization,
the code above can effectively be transformed to have two separate functions, each optimized
for different possible values of mode, as shown:

void foo_subl() {
// code segment 1
}

void foo_subl() {
// code segment 2
}

void A(){
B1();
B2();

}

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 166

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=166

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

If the function is used at different levels of hierarchy such that function sharing is difficult
without extensive inlining or code modifications, function instantiation can provide the best
means of improving area: many small locally optimized copies are better than many large copies
that cannot be shared.

Controlling Hardware Resources
During synthesis, Vivado HLS performs the following basic tasks:

e First, elaborates the C, C++ or SystemC source code into an internal database containing
operators.

The operators represent operations in the C code such as additions, multiplications, array
reads, and writes.

e Then, maps the operators on to cores which implement the hardware operations.

Cores are the specific hardware components used to create the design (such as adders,
multipliers, pipelined multipliers, and block RAM).

Control is provided over each of these steps, allowing you to control the hardware
implementation at a fine level of granularity.

Limiting the Number of Operators

Explicitly limiting the number of operators to reduce area may be required in some cases: the
default operation of Vivado HLS is to first maximize performance. Limiting the number of
operators in a design is a useful technique to reduce the area: it helps reduce area by forcing
sharing of the operations.

The ALLOCATION directive allows you to limit how many operators, or cores or functions are
used in a design. For example, if a design called foo has 317 multiplications but the FPGA only
has 256 multiplier resources (DSP48s). The ALLOCATION directive shown below directs Vivado
HLS to create a design with maximum of 256 multiplication (mul) operators:

dout_t array_arith (dio_t d[317]) {
static int acc;
int 1i;
#pragma HLS ALLOCATION instances=mul limit=256 operation
for (4=0;4<317;i++) {
#pragma HLS UNROLL
acc += acc * d[i];

}

rerun acc;

}

Note: If you specify an ALLOCATION limit that is greater than needed, Vivado HLS attempts to use the
number of resources specified by the limit, or the maximum necessary, which reduces the amount of
sharing.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 167

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=167

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

You can use the type option to specify if the ALLOCATION directives limits operations, cores, or
functions. The following table lists all the operations that can be controlled using the
ALLOCATION directive.

Table 14: Vivado HLS Operators

Operator Description
add Integer Addition
ashr Arithmetic Shift-Right
dadd Double-precision floating point addition
dcmp Double -precision floating point comparison
ddiv Double -precision floating point division
dmul Double -precision floating point multiplication
drecip Double -precision floating point reciprocal
drem Double -precision floating point remainder
drsqrt Double -precision floating point reciprocal square root
dsub Double -precision floating point subtraction
dsqrt Double -precision floating point square root
fadd Single-precision floating point addition
fcmp Single-precision floating point comparison
fdiv Single-precision floating point division
fmul Single-precision floating point multiplication
frecip Single-precision floating point reciprocal
frem Single-precision floating point remainder
frsqrt Single-precision floating point reciprocal square root
fsub Single-precision floating point subtraction
fsqrt Single-precision floating point square root
icmp Integer Compare
Ishr Logical Shift-Right
mul Multiplication
sdiv Signed Divider
shl Shift-Left
srem Signed Remainder
sub Subtraction
udiv Unsigned Division
urem Unsigned Remainder

Globally Minimizing Operators

The ALLOCATION directive, like all directives, is specified inside a scope: a function, a loop or a
region. The config_bind configuration allows the operators to be minimized throughout the
entire design.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 168

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=168

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

The minimization of operators through the design is performed using the min_op option in the
config_bind configuration. An any of the operators listed in the previous table can be limited
in this fashion.

After the configuration is applied it applies to all synthesis operations performed in the solution:
if the solution is closed and re-opened the specified configuration still applies to any new
synthesis operations.

Any configurations applied with the config_bind configuration can be removed by using the
reset option or by using open_solution -reset to open the solution.

Controlling the Hardware Cores

When synthesis is performed, Vivado HLS uses the timing constraints specified by the clock, the
delays specified by the target device together with any directives specified by you, to determine
which core is used to implement the operators. For example, to implement a multiplier operation
Vivado HLS could use the combinational multiplier core or use a pipeline multiplier core.

The cores which are mapped to operators during synthesis can be limited in the same manner as
the operators. Instead of limiting the total number of multiplication operations, you can choose
to limit the number of combinational multiplier cores, forcing any remaining multiplications to be
performed using pipelined multipliers (or vice versa). This is performed by specifying the
ALLOCATION directive type option to be core.

The RESOURCE directive is used to explicitly specify which core to use for specific operations. In
the following example, a 2-stage pipelined multiplier is specified to implement the multiplication

for variable The following command informs Vivado HLS to use a 2-stage pipelined multiplier for
variable c. It is left to Vivado HLS which core to use for variable d.

int foo (int a, int b) {
int c, d;
#pragma HLS RESOURCE variable=c latency=2
@
d

w'b;
‘C;

¥*

a
a

return d;

3

In the following example, the RESOURCE directives specify that the add operation for variable
temp and is implemented using the AddsSub_DSP core. This ensures that the operation is
implemented using a DSP48 primitive in the final design - by default, add operations are
implemented using LUTs.

void apint_arith(dinA_t inA, dinB_t inB,
doutl_t *outl
)

dout2_t temp;
#pragma HLS RESOURCE variable=temp core=AddSub_DSP

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 169

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=169

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

temp = inB + dinA;
*outl = temp;

The 1ist_core command is used to obtain details on the cores available in the library. The
list_core canonly be used in the Tcl command interface and a device must be specified using
the set _part command. If a device has not been selected, the command does not have any
effect.

The -operation option of the 1ist_core command lists all the cores in the library that can
be implemented with the specified operation.The following table lists the cores used to
implement standard RTL logic operations (such as add, multiply, and compare).

Table 15: Functional Cores

Core Description

AddSub This core is used to implement both adders and subtractors.

AddSubnS N-stage pipelined adder or subtractor. Vivado HLS determines how many
pipeline stages are required.

AddSub_DSP This core ensures that the add or sub operation is implemented using a DSP48
(Using the adder or subtractor inside the DSP48).

DivnS N-stage pipelined divider.

DSP48 Multiplications with bit-widths that allow implementation in a single DSP48

macrocell. This can include pipelined multiplications and multiplications grouped
with a pre-adder, post-adder, or both. This core can only be pipelined with a
maximum latency of 4. Values above 4 saturate at 4.

Mul Combinational multiplier with bit-widths that exceed the size of a standard
DSP48 macrocell.

Multipliers that can be implemented with a single DSP48 macrocell are mapped
to the DSP48 core.

MulnS N-stage pipelined multiplier with bit-widths that exceed the size of a standard
DSP48 macrocell.

Multiplications which are >= 10 bits are implemented on a DSP48 macro cell.
Multiplication lower than this limit are implemented using LUTs. Multipliers that
can be implemented with a single DSP48 macrocell are mapped to the DSP48
core.

Mul_LUT Multiplier implemented with LUTs.

Note: This only applies to C POD (plain old data) types. This cannot be used with
Vivado HLS types (ap_int, ap_fixed, etc).

In addition to the standard cores, the following floating point cores are used when the operation
uses floating-point types. Refer to the documentation for each device to determine if the
floating-point core is supported in the device.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 170

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=170

& XILINX

Table 16: Floating Point Cores

Chapter 1: High-Level Synthesis

Core

Description

FAddSub_nodsp

Floating-point adder or subtractor implemented without any DSP48 primitives.

FAddSub_fulldsp

Floating-point adder or subtractor implemented using only DSP48s primitives.

FDiv

Floating-point divider.

FExp_nodsp

Floating-point exponential operation implemented without any DSP48 primitives.

FExp_meddsp

Floating-point exponential operation implemented with balance of DSP48
primitives.

FExp_fulldsp

Floating-point exponential operation implemented with only DSP48 primitives.

FLog_nodsp

Floating-point logarithmic operation implemented without any DSP48 primitives.

FLog_meddsp

Floating-point logarithmic operation with balance of DSP48 primitives.

FLog_fulldsp Floating-point logarithmic operation with only DSP48 primitives.
FMul_nodsp Floating-point multiplier implemented without any DSP48 primitives.
FMul_meddsp Floating-point multiplier implemented with balance of DSP48 primitives.
FMul_fulldsp Floating-point multiplier implemented with only DSP48 primitives.
FMul_maxdsp Floating-point multiplier implemented the maximum number of DSP48

primitives.

FRSqrt_nodsp

Floating-point reciprocal square root implemented without any DSP48 primitives.

FRSqrt_fulldsp

Floating-point reciprocal square root implemented with only DSP48 primitives.

FRecip_nodsp

Floating-point reciprocal implemented without any DSP48 primitives.

FRecip_fulldsp

Floating-point reciprocal implemented with only DSP48 primitives.

FSqrt

Floating-point square root.

DAddSub_nodsp

Double precision floating-point adder or subtractor implemented without any
DSP48 primitives.

DAddSub_fulldsp

Double precision floating-point adder or subtractor implemented using only
DSP48s primitives.

DDiv

Double precision floating-point divider.

DExp_nodsp

Double precision floating-point exponential operation implemented without any
DSP48 primitives.

DExp_meddsp

Double precision floating-point exponential operation implemented with balance
of DSP48 primitives.

DExp_fulldsp Double precision floating-point exponential operation implemented with only
DSP48 primitives.
DLog_nodsp Double precision floating-point logarithmic operation implemented without any

DSP48 primitives.

DLog_meddsp

Double precision floating-point logarithmic operation with balance of DSP48
primitives.

DLog_fulldsp Double precision floating-point logarithmic operation with only DSP48 primitives.

DMul_nodsp Double precision floating-point multiplier implemented without any DSP48
primitives.

DMul_meddsp Double precision floating-point multiplier implemented with a balance of DSP48
primitives.

DMul_fulldsp Double precision floating-point multiplier implemented with only DSP48
primitives.

DMul_maxdsp Double precision floating-point multiplier implemented with a maximum number

of DSP48 primitives.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l WWW'X“mX'C,(ID;?

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=171

& XILINX

Chapter 1: High-Level Synthesis

Table 16: Floating Point Cores (cont'd)

Core Description
DRSqrt Double precision floating-point reciprocal square root.
DRecip Double precision floating-point reciprocal.
DSqrt Double precision floating-point square root.

HAddSub_nodsp

Half-precision floating-point adder or subtractor implemented without DSP48
primitives.

HDiv Half-precision floating-point divider.

HMul_nodsp Half-precision floating-point multiplier implemented without DSP48 primitives.

HMul_fulldsp Half-precision floating-point multiplier implemented with only DSP48 primitives.

HMul_maxdsp Half-precision floating-point multiplier implemented with a maximum number of
DSP48 primitives.

HSqrt Half-precision floating-point square root.

The following table lists the cores used to implement storage elements, such as registers or

memories.

Table 17: Storage Cores

Core Description

FIFO A FIFO. Vivado HLS determines whether to implement this in the RTL with a block
RAM or as distributed RAM.

FIFO_ BRAM A FIFO implemented with a block RAM.

FIFO_LUTRAM A FIFO implemented as distributed RAM.

FIFO_SRL A FIFO implemented as with an SRL.

RAM_1P A single-port RAM. Vivado HLS determines whether to implement this in the RTL
with a block RAM or as distributed RAM.

RAM_1P_BRAM A single-port RAM implemented with a block RAM.

RAM_1P_LUTRAM A single-port RAM implemented as distributed RAM.

RAM_1P_URAM A single port RAM implemented using Ultra RAM.

RAM_2P A dual-port RAM that allows read operations on one port and both read and
write operations on the other port. Vivado HLS determines whether to
implement this in the RTL with a block RAM or as distributed RAM.

RAM_2P_BRAM A dual-port RAM implemented with a block RAM that allows read operations on

one port and both read and write operations on the other port.

RAM_2P_LUTRAM

A dual-port RAM implemented as distributed RAM that allows read operations on
one port and both read and write operations on the other port.

RAM_2P_URAM

A dual-port RAM implemented as a Ultra RAM that allows read operations on one
port and both read and write operations on the other port.

RAM_S2P_BRAM

A dual-port RAM implemented with a block RAM that allows read operations on
one port and write operations on the other port.

RAM_S2P_LUTRAM

A dual-port RAM implemented as distributed RAM that allows read operations on
one port and write operations on the other port.

RAM_S2P_URAM

A dual-port RAM implemented with Ultra RAM that allows read operations on
one port and write operations on the other port.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l WWW'X“mX'C%n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=172

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Table 17: Storage Cores (cont'd)

Core Description

RAM_T2P_BRAM A true dual-port RAM with support for both read and write on both ports
implemented with a block RAM.

RAM_T2P_URAM A true dual-port RAM with support for both read and write on both ports
implemented with Ultra RAM

ROM_1P A single-port ROM. Vivado HLS determines whether to implement this in the RTL
with a block RAM or with LUTs.

ROM_1P_BRAM A single-port ROM implemented with a block RAM.

ROM_nP_BRAM A multi-port ROM implemented with a block RAM. Vivado HLS automatically
determines the number of ports.

ROM_1P_LUTRAM A single-port ROM implemented with distributed RAM.

ROM_nP_LUTRAM A multi-port ROM implemented with distributed RAM. Vivado HLS automatically
determines the number of ports.

ROM_2P A dual-port ROM. Vivado HLS determines whether to implement this in the RTL
with a block RAM or as distributed ROM.

ROM_2P_BRAM A dual-port ROM implemented with a block RAM.

ROM_2P_LUTRAM A dual-port ROM implemented as distributed ROM.

The resource directives uses the assigned variable as the target for the resource. Given the code,
the RESOURCE directive specifies the multiplication for out 1 is implemented with a 3-stage
pipelined multiplier.

void fool(...) {
#pragma HLS RESOURCE variable=outl latency=3

// Basic arithmetic operations

*outl = inA ¥ inB;
*outZ2 = inB + inA;
*out3 = inC / dinA;

*out4 = inD % dinA;

If the assignment specifies multiple identical operators, the code must be modified to ensure
there is a single variable for each operator to be controlled. For example if only the first
multiplication in this example (inA * inB) is to be implemented with a pipelined multiplier:

*outl = inA ¥ inB * inC;

The code should be changed to the following with the directive specified on the Result_tmp
variable:

#pragma HLS RESOURCE variable=Result_tmp latency=3
Result_tmp = inA * inB;
*outl = Result_tmp * inC;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 173

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=173

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Globally Optimizing Hardware Cores

The config_bind configuration provides control over the binding process. The configuration
allows you to direct how much effort is spent when binding cores to operators. By default Vivado
HLS chooses cores which are the best balance between timing and area. The config_bind
influences which operators are used.

config_bind -effort [low | medium | high] -min_op <list>

The config_bind command can only be issued inside an active solution. The default run
strategies for the binding operation is medium.

o Low Effort: Spend less timing sharing, run time is faster but the final RTL may be larger. Useful
for cases when the designer knows there is little sharing possible or desirable and does not
wish to waste CPU cycles exploring possibilities.

¢ Medium Effort: The default, where Vivado HLS tries to share operations but endeavors to
finish in a reasonable time.

¢ High Effort: Try to maximize sharing and do not limit run time. Vivado HLS keeps trying until
all possible combinations of sharing is explored.

Optimizing Logic

Controlling Operator Pipelining

Vivado HLS automatically determines the level of pipelining to use for internal operations. You
can use the RESOURCE directive with the -1atency option to explicitly specify the number of
pipeline stages and override the number determined by Vivado HLS.

RTL synthesis might use the additional pipeline registers to help improve timing issues that might
result after place and route. Registers added to the output of the operation typically help
improve timing in the output datapath. Registers added to the input of the operation typically
help improve timing in both the input datapath and the control logic from the FSM.

The rules for adding these additional pipeline stages are:

e [f the latency is specified as 1 cycle more than the latency decided by Vivado HLS, Vivado HLS
adds new output registers to the output of the operation.

e [f the latency is specified as 2 more than the latency decided by Vivado HLS, Vivado HLS adds
registers to the output of the operation and to the input side of the operation.

e [f the latency is specified as 3 or more cycles than the latency decided by Vivado HLS, Vivado
HLS adds registers to the output of the operation and to the input side of the operation.
Vivado HLS automatically determines the location of any additional registers.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 174

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=174

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

You can use the config_core configuration to pipeline all instances of a specific core used in
the design that have the same pipeline depth. To set this configuration:

1. Select Solutions = Solution Settings.
2. In the Solution Settings dialog box, select the General category, and click Add.

3. Inthe Add Command dialog box, select the config_core command, and specify the
parameters.

For example, the following configuration specifies that all operations implemented with the
DSP48 core are pipelined with a latency of three, which is the maximum latency allowed by
this core:

config_core DSP48 -latency 3

The following configuration specifies that all block RAM implemented with the
RAM_1P_BRAM core are pipelined with a latency of three:

config_core RAM_1P_BRAM -latency 3

i} IMPORTANT! Vivado HLS only applies the core configuration to block RAM with an explicit RESOURCE
directive that specifies the core used to implemented the array. If an array is implemented using a default core,
the core configuration does not affect the block RAM.

Optimizing Logic Expressions

During synthesis several optimizations, such as strength reduction and bit-width minimization are
performed. Included in the list of automatic optimizations is expression balancing.

Expression balancing rearranges operators to construct a balanced tree and reduce latency.

e For integer operations expression balancing is on by default but may be disabled.

e For floating-point operations, expression balancing is off by default but may be enabled.

Given the highly sequential code using assignment operators such as += and *= in the following
example:

data_t foo_top (data_t a, data_t b, data_t c, data_t d)
{

data_t sum;

sum = 0;
sum += a;
sum += b;
sum += C;
sum += d;

B

return sum;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 175

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=175

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Without expression balancing, and assuming each addition requires one clock cycle, the complete
computation for sum requires four clock cycles shown in the following figure.

Figure 72: Adder Tree

sum

X14250-061318

However additions a+b and c +d can be executed in parallel allowing the latency to be reduced.
After balancing the computation completes in two clock cycles as shown in the following figure.
Expression balancing prohibits sharing and results in increased area.

Figure 73: Adder Tree After Balancing

X14249

For integers, you can disable expression balancing using the EXPRESSION_BALANCE
optimization directive with the o f £ option. By default, Vivado HLS does not perform the
EXPRESSION_BALANCE optimization for operations of type float or double. When
synthesizing f1oat and double types, Vivado HLS maintains the order of operations performed
in the C code to ensure that the results are the same as the C simulation. For example, in the
following code example, all variables are of type float or double. The values of 01 and 02 are
not the same even though they appear to perform the same basic calculation.

A=B*C; A=B*F;
D=E*F; D=E*C;
01=A*D 02=A*D;

This behavior is a function of the saturation and rounding in the C standard when performing
operation with types float or double. Therefore, Vivado HLS always maintains the exact order
of operations when variables of type float or double are present and does not perform
expression balancing by default.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 176

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=176

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

You can enable expression balancing with f1oat and double types using the configuration
config_compile option as follows:

1. Select Solution > Solution Settings.
2. In the Solution Settings dialog box, click the General category, and click Add.

3. Inthe Add Command dialog box, select config_compile, and enable
unsafe_math_operations.

With this setting enabled, Vivado HLS might change the order of operations to produce a more
optimal design. However, the results of C/RTL cosimulation might differ from the C simulation.

The unsafe_math_operations feature also enables the no_signed_zeros optimization.
The no_signed_zeros optimization ensures that the following expressions used with float and
double types are identical:

x - 0.0 = x;
x + 0.0 = x;
0.0 - x = -x;
x - x = 0.0;
x*¥0.0 = 0.0;

Without the no_signed_zeros optimization the expressions above would not be equivalent
due to rounding. The optimization may be optionally used without expression balancing by
selecting only this option in the config_compile configuration.

O TIP: When the unsafe_math_operations and no_signed_zero optimizations are used, the RTL implementation
will have different results than the C simulation. The test bench should be capable of ignoring minor differences
in the result: check for a range, do not perform an exact comparison.

Verifying the RTL

Post-synthesis verification is automated through the C/RTL co-simulation feature which reuses
the pre-synthesis C test bench to perform verification on the output RTL.

Automatically Verifying the RTL

C/RTL co-simulation uses the C test bench to automatically verify the RTL design. The
verification process consists of three phases, shown in the following figure.

e The C simulation is executed and the inputs to the top-level function, or the Device-Under-
Test (DUT), are saved as “input vectors”.

e The “input vectors” are used in an RTL simulation using the RTL created by Vivado HLS. The
outputs from the RTL are save as “output vectors”.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 177

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=177

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

¢ The “output vectors” from the RTL simulation are applied to C test bench, after the function
for synthesis, to verify the results are correct. The C test bench performs the verification of
the results.

The following messages are output by Vivado HLS to show the progress of the verification.

C simulation:

[SIM-14] Instrumenting C test bench (wrapc)
[SIM-302] Generating test vectors(wrapc)

At this stage, since the C simulation was executed, any messages written by the C test bench will
be output in console window or log file.

RTL simulation:

[SIM-333] Generating C post check test bench

[SIM-12] Generating RTL test bench

[SIM-323] Starting Verilog simulation (Issued when Verilog is the RTL
verified)

[SIM-322] Starting VHDL simulation (Issued when VHDL is the RTL verified)

At this stage, any messages from the RTL simulation are output in console window or log file.

C test bench results checking:

[SIM-316] Starting C post checking

[SIM-1000] C/RTL co-simulation finished: PASS (If test bench returns a 0)
[SIM-4] C/RTL co-simulation finished: FAIL (If the test bench returns non-
zero)

The importance of the C test bench in the C/RTL co-simulation flow is discussed below.

Figure 74: RTL Verification Flow

WrapC Simulation RTL Simulation Post-Checking
Simulation
Test Bench E—— > AutoTB v out dat > Test Bench
Result Result
Checking Checking
puT RTL Module

X14311

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 178

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=178

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

The following is required to use C/RTL co-simulation feature successfully:

e The test bench must be self-checking and return a value of O if the test passes or returns a
non-zero value if the test fails.

e The correct interface synthesis options must be selected.
e Any 3rd-party simulators must be available in the search path.

e Any arrays or structs on the design interface cannot use the optimization directives or
combinations of optimization directives listed in Unsupported Optimizations for Cosimulation.

Test Bench Requirements

To verify the RTL design produces the same results as the original C code, use a self-checking
test bench to execute the verification. The following code example shows the important features
of a self-checking test bench:

int main () {
int ret=0;

// Execute (DUT) Function
// Write the output results to a file

// Check the results
ret = system('"diff --brief -w output.dat output.golden.dat");

if (ret != 0) {
printf("Test failed 11I\n");
ret=1;

1 else {

printf("Test passed !\n");
}

return ret;

3

This self-checking test bench compares the results against known good results in the
output.golden.dat file.

There are many ways to perform this checking. This is just one example.
In the Vivado HLS design flow, the return value to function main() indicates the following:

e Zero: Results are correct.

¢ Non-zero value: Results are incorrect.

Note: The test bench can return any non-zero value. A complex test bench can return different values
depending on the type of difference or failure. If the test bench returns a non-zero value after C simulation
or C/RTL co-simulation, Vivado HLS reports an error and simulation fails.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 179

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=179

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

O RECOMMENDED: Because the system environment (for example, Linux, Windows, or Tcl) interprets the return
value of the ma in () function, it is recommended that you constrain the return value to an 8-bit range for
portability and safety.

Q CAUTION! You are responsible for ensuring that the test bench checks the results. If the test bench does not
check the results but returns zero, Vivado HLS indicates that the simulation test passed even though the results
were not actually checked. Even if the output data is correct and valid, Vivado HLS reports a simulation failure if
the test bench does not return the value zero to function main ().

Interface Synthesis Requirements

To use the C/RTL cosimulation feature to verify the RTL design, at least one of the following
conditions must be true:

e Top-level function must be synthesized using an ap_ctrl_hs or ap_ctrl_chain block-
level interface.

e Design must be purely combinational.
e Top-level function must have an initiation interval of 1.

e Interface must be all arrays that are streaming and implemented with ap_hs or axis
interface modes.

Note: The hls: : stream variables are automatically implemented as ap_fifo interfaces.

If at least one of these conditions is not met, C/RTL co-simulation halts with the following
message:

@E [SIM-345] Cosim only supports the following 'ap_ctrl_none' designs: (1)
combinational designs; (2) pipelined design with task interval of 1; (3)
designs with

array streaming or hls_stream ports.

@E [SIM-4] #*#*%* C/RTL co-simulation finished: FAIL *#%*

ﬁ? IMPORTANT! If the design is specified to use the block-level IO protocol ap_ctrl_none and the design contains
any hls::stream variables which employ non-blocking behavior, C/RTL co-simulation is not guaranteed to
complete.

If any top-level function argument is specified as an AXI-Lite interface, the function return must
also be specified as an AXI-Lite interface.

RTL Simulator Support

After ensuring that the preceding requirements are met, you can use C/RTL co-simulation to
verify the RTL design using Verilog or VHDL. The default simulation language is Verilog.
However, you can also specify VHDL. While the default simulator is Vivado Simulator (XSim), you
can use any of the following simulators to run C/RTL co-simulation:

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 180

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=180

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e Vivado Simulator (XSim)
e ModelSim simulator

e VCS simulator

e NC-Sim simulator

¢ Riviera simulator

e Xcelium

ﬁ? IMPORTANT! To verify an RTL design using the third-party simulators (for example, ModelSim, VCS, Riviera),
you must include the executable to the simulator in the system search path, and the appropriate license must
be available. See the third-party vendor documentation for details on configuring these simulators.

‘11} IMPORTANT! When verifying a SystemC design, you must select the ModelSim simulator and ensure it
includes C compiler capabilities with appropriate licensing.

Unsupported Optimizations for Cosimulation

The automatic RTL verification does not support cases where multiple transformations that are
performed upon arrays or arrays within structs on the interface.

In order for automatic verification to be performed, arrays on the function interface, or array
inside structs on the function interface, can use any of the following optimizations, but not two
or more:

e Vertical mapping on arrays of the same size
e Reshape
e Partition

e Data Pack on structs

Verification by C/RTL co-simulation cannot be performed when the following optimizations are
used on top-level function interface:

e Horizontal Mapping

e \Vertical Mapping of arrays of different sizes

e Data Pack on structs containing other structs as members

e Conditional access on the AXIS with register slice enabled is not supported

e Mapping arrays to streams.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 181

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=181

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Simulating IP Cores

When the design is implemented with floating-point cores, bit-accurate models of the floating-
point cores must be made available to the RTL simulator. This is automatically accomplished if
the RTL simulation is performed using Verilog and VHDL using the Xilinx Vivado Simulator.

For supported HDL 3rd-party simulators, the Xilinx floating point library must be pre-compiled
and added to the simulator libraries. The following example steps demonstrate how the floating
point library may be compiled in verilog for use with the VCS simulator:

1. Open Vivado (not Vivado HLS) and issue the following command in the Tcl console window:
compile_simlib -simulator vcs_mx -family all -language verilog

2. This command creates floating-point library in the current directory.

3. Refer to the Vivado console window for directory name, example . /rev3_1

This library may then be referred to from within Vivado HLS:

cosim_design -trace_level all -tool vcs -compiled_library_dir/
<path_to_compile_library>/rev3_1

Using C/RTL Co-Simulation

To perform C/RTL co-simulation from the GUI, click the C/RTL Cosimulation toolbar button ¥
This opens the simulation wizard window shown in the following figure.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 182

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=182

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 75: C/RTL Co-Simulation Wizard

' Co-simulation Dialog]
C/RTL Co-simulation

VerilogvHDL Simulalor Selection

Wivado 50 o

RTL S&lsctian
= Wenlog WHDL

Dpleons

Setup Only

Dump Tace . all -
Optimkzing Compile
Reduce Diskspace

Wave Debug

Compifed Library Location Browse

Ingeust Arguments

Do not show this dialog bax again

cancel (] 4

Select the RTL that is simulated (Verilog or VHDL). The drop-down menu allows the simulator to
be selected.

Following are the options:

e Setup Only: This creates all the files (wrappers, adapters, and scripts) required to run the
simulation but does not execute the simulator. The simulation can be run in the command
shell from within the appropriate RTL simulation folder <solution_name>/sim/<RTL>.

e Dump Trace: This generates a trace file for every function, which is saved to the
<solution>/sim/<RTL> folder. The drop-down menu allows you to select which signals are
saved to the trace file. You can choose to trace all signals in the design, trace just the top-level
ports, or trace no signals. For details on using the trace file, see the documentation for the
selected RTL simulator.

e Optimizing Compile: This ensures a high level of optimization is used to compile the C test
bench. Using this option increases the compile time but the simulation executes faster.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 183

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=183

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

e Reduce Disk Space: The flow shown above saves the results for all transactions before
executing RTL simulation. In some cases, this can result in large data files. The
reduce_diskspace option can be used to execute one transaction at a time and reduce the
amount of disk space required for the file. If the function is executed N times in the C test
bench, the reduce_diskspace option ensure N separate RTL simulations are performed.
This causes the simulation to run slower.

e Compiled Library Location: This specifies the location of the compiled library for a third-party
RTL simulator.

If you are simulating with a third-party RTL simulator and the design uses IP, you must use an
RTL simulation model for the IP before performing RTL simulation. To create or obtain the RTL
simulation model, contact your IP provider.

¢ Input Arguments: This allows the specification of any arguments required by the test bench.

Executing RTL Simulation
Vivado HLS executes the RTL simulation in the project sub-directory: <SOLUTION>/sim/<RTL>
where

e SOLUTION is the name of the solution.
e RTL is the RTL type chosen for simulation.

Any files written by the C test bench during co-simulation and any trace files generated by the
simulator are written to this directory. For example, if the C test bench save the output results for
comparison, review the output file in this directory and compare it with the expected results.

Verification of Directives

C/RTL co-simulation automatically verifies aspects of the DEPENDENCE and DATAFLOW
directives.

If the DATAFLOW directive is used to pipeline tasks, it inserts channels between the tasks to
facilitate the flow of data between them. It is typical for the channels to be implemented with
FIFOs and the FIFO depth specified using the STREAM directive or the config_dataflow
command. If a FIFO depth is sized too small, the RTL simulation can stall. For example, if a FIFO
is specified with a depth of 2 but the producer task writes three values before any data values
are read by the consumer task, the FIFO blocks the producer. In some conditions this can cause
the entire design to stall.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 184

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=184

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

C/RTL co-simulation issues a message, as shown below, indicating the channel in the
DATAFLOW region is causing the RTL simulation to stall.

L1170 00 7777077777777 7777777777777 777777777777 77777777777777777777777777777
/
// ERROR!!! DEADLOCK DETECTED at 1292000 ns! SIMULATION WILL BE STOPPED! //

L1770 00 7777777777777 7777777777777 777777777 7777777777777777777777777777777777
/

L1177 77777777777 777777777
// Dependence cycle 1:
// (1): Process: hls_fft_lkxburst.fft_rank_rad2_nr_man_9_U0

// Channel: hls_fft_lkxburst.stage_chan_inl1_0_V_s_U, FULL
// Channel: hls_fft_lkxburst.stage_chan_inl_1_V_s_U, FULL
// Channel: hls_fft_lkxburst.stage_chan_inl1_0_V_1_U, FULL
// Channel: hls_fft_lkxburst.stage_chan_inl1_1_V_1_U, FULL
// (2): Process: hls_fft_lkxburst.fft_rank_rad2_nr_man_6_U0

// Channel: hls_fft_lkxburst.stage_chan_inl_2_V_s_U, EMPTY
// Channel: hls_fft_lkxburst.stage_chan_inl1_2_V_1_U, EMPTY

L1170 777777777777 7777777777
// Totally 1 cycles detected!

L1777 77777 77777777777 777777777777777777777777777777777777777

In this case, review the implementation of the channels between the tasks and ensure any FIFOs
are large enough to hold the data being generated.

In a similar manner, the RTL test bench is also configured to automatically confirm false
dependencies specified using the DEPENDENCE directive. This indicates the dependency is not
false and must be removed to achieve a functionally valid design.

Analyzing RTL Simulations

When the C/RTL cosimulation completes, the simulation report opens and shows the measured
latency and Il. These results may differ from the values reported after HLS synthesis which are
based on the absolute shortest and longest paths through the design. The results provided after
C/RTL cosimulation show the actual values of latency and Il for the given simulation data set
(and may change if different input stimuli is used).

In non-pipelined designs, C/RTL Cosimulation measures latency between ap_start and
ap_done signals. The Il is 1 more than the latency, because the design reads new inputs 1 cycle
after all operations are complete. The design only starts the next transaction after the current
transaction is complete.

In pipelined designs, the design might read new inputs before the first transaction completes, and
there might be multiple ap_start and ap_ready signals before a transaction completes. In this
case, C/RTL cosimulation measures the latency as the number of cycles between data input
values and data output values. The Il is the number of cycles between ap_ready signals, which
the design uses to requests new inputs.

Note: For pipelined designs, the Il value for C/RTL cosimulation is only valid if the design is simulated for
multiple transactions.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 185

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=185

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Optionally, you can review the waveform from C/RTL cosimulation using the Open Wave Viewer
toolbar button. To view RTL waveforms, you must select the following options before executing
C/RTL cosimulation:

e Verilog/VHDL Simulator Selection: Select Vivado Simulator. For Xilinx 7 series and later
devices, you can alternatively select Auto.

e Dump Trace: Select all or port.

When C/RTL cosimulation completes, the Open Wave Viewer toolbar button opens the RTL
waveforms in the Vivado IDE.

Note: When you open the Vivado IDE using this method, you can only use the waveform analysis features,
such as zoom, pan, and waveform radix.

Waveform Viewer

The Waveform Viewer visualizes all the processes inside a design. This visualization is divided
into two sections:

e HLS process summary

Contains a hierarchical representation of the activity report of all the processes. For example,
both the dataflow and sequential processes contained within the generated RTL.

e Dataflow analysis

Provides detailed activity information about the tasks inside the dataflow region.

Visualizing the active processes within the HLS design allows detailed profiling of process activity
and length within each activation of the top module. These visualization helps analyze individual
process performance as well as the overall concurrent execution of independent processes.

Processes dominating the overall execution have the highest potential to improve performance,
provided process execution time can be reduced. This visualization is available during co-
simulation for Vivado simulator. Enable it by selecting the Wave Debug option in the Co-
simulation Dialog window.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 186

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=186

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 76: Enabling Wave Debug

[/ | Co-simulation Dialog x

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

Vivado Sit £

RTL Selection
@ Verilog - VHDL

Options
[] Setup Only

Dump Trace _a_I_I :
[1 Optimizing Compile
[] Reduce Diskspace
v |Wave Debug

Compiled Library Location Browse...

Input Arguments |

[] Do not show this dialog box again.

cancel | oK |

The viewer is divided into the following segments:
e HLS Process summary

- DUT name: <name>

. Function: <function name>
o Dataflow Analysis

- DUT name: <name>

- Function: <function name>

- Dataflow/Pipeline Activity: This shows the number of parallel executions of the function
when implemented as a dataflow process.

. Active Iterations: This shows the currently active iterations of the dataflow. The number of
rows is dynamically incremented to accommodate for the visualization of any concurrent
execution.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 187

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=187

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

StallNoContinue: This is a stall signal that tells if there were any output stalls experienced
by the dataflow processes (the function is done, but it has not received a continue from the
adjacent dataflow process).

RTL Signals: The underlying RTL control signals that interpret the transaction view of the
dataflow process

Figure 77: Waveform Viewer

Debugging C/RTL Cosimulation

When C/RTL cosimulation completes, Vivado HLS typically indicates that the simulations passed
and the functionality of the RTL design matches the initial C code. When the C/RTL cosimulation
fails, Vivado HLS issues the following message:

@E [SIM-4] #%** C/RTL co-simulation finished: FAIL ##*=%*
Following are the primary reasons for a C/RTL cosimulation failure:

¢ Incorrect environment setup

e Unsupported or incorrectly applied optimization directives

e Issues with the C test bench or the C source code

To debug a C/RTL cosimulation failure, run the checks described in the following sections. If you

are unable to resolve the C/RTL cosimulation failure, see Xilinx Support for support resources,
such as answers, documentation, downloads, and forums.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis |_send Feedback | 188

https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=188

& XILINX

Setting up the Environment

Chapter 1: High-Level Synthesis

Check the environment setup as shown in the following table.

Table 18: Debugging Environment Setup

Questions

Actions to Take

Are you using a third-party simulator?

Ensure the path to the simulator executable is specified in
the system search path.

When using the Vivado simulator, you do not need to
specify a search path.

Are you running Linux?

Ensure that your setup files (for example .cshrc

or .bashrc) do not have a change directory command.
When C/RTL cosimulation starts, it spawns a new shell
process. If there is a cd command in your setup files, it
causes the shell to run in a different location and eventually
C/RTL cosimulation fails.

Optimization Directives

Check the optimization directives as shown in the following table.

Table 19: Debugging Optimization Directives

Questions

Actions to Take

Are you using the DEPENDENCE directive?

Remove the DEPENDENCE directives from the design to see
if C/RTL cosimulation passes. If cosimulation passes, it likely
indicates that the TRUE or FALSE setting for the
DEPENDENCE directive is incorrect.

Does the design use volatile pointers on the top-level
interface?

Ensure the DEPTH option is specified on the INTERFACE
directive. When volatile pointers are used on the interface,
you must specify the number of read/writes performed on
the port in each transaction or each execution of the C
function.

Are you using FIFOs with the DATAFLOW optimization?

Check to see if C/RTL cosimulation passes with the standard
ping-pong buffers.

Check to see if C/RTL cosimulation passes without
specifying the size for the FIFO channels. This ensures that
the channel defaults to the size of the array in the C code.

Reduce the size of the FIFO channels until C/RTL
cosimulation stalls. Stalling indicates a channel size that is
too small. Review your design to determine the optimal size
for the FIFOs. You can use the STREAM directive to specify
the size of individual FIFOs.

Are you using supported interfaces?

Ensure you are using supported interface modes. For
details, see Interface Synthesis Requirements.

Are you applying multiple optimization directives to arrays
on the interface?

Ensure you are using optimizations that are designed to
work together. For details, see Unsupported Optimizations
for Cosimulation.

Are you using arrays on the interface that are mapped to
streams ?

To use interface-level streaming (the top-level function of
the DUT), use hls::stream.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l WWW'X“mX'C,(IDSn;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=189

& XILINX

C Test Bench and C Source Code

Chapter 1: High-Level Synthesis

Check the C test bench and C source code as shown in the following table.

Table 20: Debugging the C Test Bench and C Source Code

Questions

Actions to Take

Does the C test bench check the results and return the value
0 (zero) if the results are correct?

Ensure the C test bench returns the value 0 for C/RTL
cosimulation. Even if the results are correct, the C/RTL
cosimulation feature reports a failure if the C test bench
fails to return the value 0.

Is the C test bench creating input data based on a random
number?

Change the test bench to use a fixed seed for any random
number generation. If the seed for random number
generation is based on a variable, such as a time-based
seed, the data used for simulation is different each time the
test bench is executed, and the results are different.

Are you using pointers on the top-level interface that are
accessed multiple times?

Use a volatile pointer for any pointer that is accessed
multiple times within a single transaction (one execution of
the C function). If you do not use a volatile pointer,
everything except the first read and last write is optimized
out to adhere to the C standard.

Does the C code contain undefined values or perform out-
of-bounds array accesses?

Confirm all arrays are correctly sized to match all accesses.
Loop bounds that exceed the size of the array are a
common source of issues (for example, N accesses for an
array sized at N-1).

Confirm that the results of the C simulation are as expected
and that output values were not assigned random data
values.

Consider using the industry-standard Valgrind application
outside of the Vivado HLS design environment to confirm
that the C code does not have undefined or out-of-bounds
issues.

It is possible for a C function to execute and complete even
if some variables are undefined or are out-of-bounds. In the
C simulation, undefined values are assigned a random
number. In the RTL simulation, undefined values are
assigned an unknown or X value.

Are you using floating-point math operations in the design?

Check that the C test bench results are within an acceptable
error range instead of performing an exact comparison. For
some of the floating point math operations, the RTL
implementation is not identical to the C. For details, see
Verification and Math Functions.

Ensure that the RTL simulation models for the floating-point
cores are provided to the third-party simulator. For details,
see Simulating IP Cores.

Are you using Xilinx IP blocks and a third-party simulator?

Ensure that the path to the Xilinx IP HDL models is provided
to the third-party simulator.

Are you using the hls: :stream construct in the design that
changes the data rate (for example, decimation or
interpolation)?

Analyze the design and use the STREAM directive to
increase the size of the FIFOs used to implement the
hls::stream.

By default, an hls: :streamisimplemented as a FIFO with
a depth of 2. If the design results in an increase in the data
rate (for example, an interpolation operation), a default
FIFO size of 2 might be too small and cause the C/RTL
cosimulation to stall.

www.Xilinx.com

UG902 (v2019.2) January 13, 2020

High-Level Synthesis 190

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=190

& XILINX

Chapter 1: High-Level Synthesis

Table 20: Debugging the C Test Bench and C Source Code (cont'd)

Questions

Actions to Take

Are you using very large data sets in the simulation?

Use the reduce_diskspace option when executing C/RTL
cosimulation. In this mode, Vivado HLS only executes 1
transaction at a time. The simulation might run marginally
slower, but this limits storage and system capacity issues.

The C/RTL cosimulation feature verifies all transaction at
one time. If the top-level function is called multiple times
(for example, to simulate multiple frames of video), the data
for the entire simulation input and output is stored on disk.
Depending on the machine setup and OS, this might cause
performance or execution issues.

Exporting the RTL Design

The final step in the Vivado HLS flow is to export the RTL design as a block of Intellectual
Property (IP) which can be used by other tools in the Xilinx design flow. The RTL design can be
packaged into the following output formats:

e |P Catalog formatted IP for use with the Vivado Design Suite

e System Generator for DSP IP for use with Vivado System Generator for DSP

¢ Synthesized Checkpoint (.dcp)

The following table shows the formats you can export with details about each.

Table 21: RTL Export Selections

Format Selection

Subfolder

Comments

IP Catalog

ip

Contains a ZIP file which can be added to the Vivado IP
Catalog. The ip folder also contains the contents of the ZIP
file (unzipped).

This option is not available for FPGA devices older than 7-
series or Zyng-7000 SoC.

System Generator for DSP

sysgen

This output can be added to the Vivado edition of System
Generator for DSP.

This option is not available for FPGA devices older than 7-
series or Zyng-7000 SoC.

Synthesized Checkpoint (.dcp)

ip

This option creates Vivado checkpoint files which can be
added directly into a design in the Vivado Design Suite.
This option requires RTL synthesis to be performed. When
this option is selected, the f1ow option with setting syn is
automatically selected.

The output includes an HDL wrapper you can use to
instantiate the IP into an HDL file.

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l WWW'X“mX'C,(ID;?

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=191

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

In addition to the packaged output formats, the RTL files are available as standalone files (not
part of a packaged format) in the verilog and vhd1l directories located within the
implementation directory <project_name>/<solution_name>/impl.

In addition to the RTL files, these directories also contain project files for the Vivado Design
Suite. Opening the file project.xpr causes the design (Verilog or VHDL) to be opened in a Vivado
project where the design may be analyzed. If C/RTL Cosimulation was executed in the Vivado
HLS project, the C/RTL C/RTL Cosimulation files are available inside the Vivado project.

Synthesizing the RTL

When Vivado HLS reports on the results of synthesis, it provides an estimation of the results
expected after RTL synthesis: the expected clock frequency, the expected number of registers,
LUTs and block RAMs. These results are estimations because Vivado HLS cannot know what
exact optimizations RTL synthesis performs or what the actual routing delays will be, and hence
cannot know the final area and timing values.

Before exporting a design, you have the opportunity to execute logic synthesis and confirm the
accuracy of the estimates. The flow option shown the following figure invokes RTL synthesis
with the syn option or RTL synthesis and implementation with the imp1 option. during the
export process and synthesizes the RTL design to gates or the placed and routed implementation.

The RTL synthesis option is provided to confirm the reported estimates. In most cases, these RTL
results are not included in the packaged IP.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 192

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=192

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 78: Export RTL Dialog Box

4 Export RTL Dialog [

Export RTL

Format Selection

‘IP Catalog - ‘ | Configuration...
Options

V| Flow |syn v|

JIRTL |Verilog - |

Do not show this dialog box again.

0K] ‘ Cancel

For most export formats, the RTL synthesis is executed in the verilog or vhdl directories,
whichever HDL was chosen for RTL synthesis using the drop-down menu in the preceding figure,
but the results of RTL synthesis are not included in the packaged IP.

Note: Synthesized Checkpoint (. dcp), a design checkpoint, is always exported as synthesized RTL. The
flow option may be used to evaluate the results of synthesis or implementation, but the exported package
always contains a synthesized netlist.

Packaging IP Catalog Format

Upon completion of synthesis and RTL verification, open the Export RTL dialog box by clicking
the Export RTL toolbar button EE‘
Select the IP Catalog format in the Format Selection section.

The Configuration options allow the following identification tags to be embedded in the
exported package. These fields can be used to help identify the packaged RTL inside the Vivado
IP Catalog.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 193

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=193

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

The Configuration information is used to differentiate between multiple instances of the same
design when the design is loaded into the IP Catalog. For example, if an implementation is
packaged for the IP Catalog and then a new solution is created and packaged as IP, the new
solution by default has the same name and configuration information. If the new solution is also
added to the IP Catalog, the IP Catalog will identify it as an updated version of the same IP and
the last version added to the IP Catalog will be used.

An alternative method is to use the pre fix option in the config_rt1 configuration to rename
the output design and files with a unique prefix.

If no values are provided in the configuration setting the following values are used:

¢ Vendor: xilinx.com

e Library: his

e Version: 1.0

e Description: An IP generated by Vivado HLS

o Display Name: This field is left blank by default
e Taxonomy: This field is left blank by default

After the packaging process is complete, the.zip file archive in directory <project_name>/
<solution_name>/impl/ip can be imported into the Vivado IP catalog and used in any Vivado
design (RTL or IP Integrator).

Software Driver Files

For designs that include AXI4-Lite slave interfaces, a set of software driver files is created during
the export process. These C driver files can be included in a SDK C project and used to access
the AXI4-Lite slave port.

The software driver files are written to directory <project_name>/<solution_name>/impl/ip/
drivers and are included in the package .zip archive. Refer to AXI4-Lite Interface for details on the
C driver files.

Exporting IP to System Generator

Upon completion of synthesis and RTL verification, open the Export RTL dialog box by clicking
the Export RTL toolbar button EE

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 104

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=194

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

Figure 79: Export RTL to System Generator

s Export RTL Dialog e

Export RTL
por &

Format Selection

‘System Generator for DSP b
Options

v | Flow |5yn v|

7IRTL |Verilog -

Do not show this dialog box again.

OK l | Cancel

If post-place-and-route resource and timing statistic for the IP block are desired then select the
Flow option and select the desired RTL language.

Pressing OK generates the IP package. This package is written to the <project_name>/
<solution_name>/impl/sysgen directory. And contains everything need to import the design to
System Generator.

If the Flow option was selected, RTL synthesis is executed and the final timing and resources
reported but not included in the IP package. See the RTL synthesis section above for more details
on this process.

Importing the RTL into System Generator

A Vivado HLS generated System Generator package may be imported into System Generator
using the following steps:

1. Inside the System Generator design, right-click and use option XilinxBlockAdd to instantiate
new block.

2. Scroll down the list in dialog box and select Vivado HLS.

3. Double-click on the newly instantiated Vivado HLS block to open the Block Parameters
dialog box.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 195

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=195

iv Xl Ll NX Chapter 1: High-Level Synthesis
A 0

4. Browse to the solution directory where the Vivado HLS block was exported. Using the
example, <project_name>/<solution_name>/impl/sysgen, browse to the <project_name>/
<solution_name> directory and select apply.

Optimizing Ports

If any top-level function arguments are transformed during the synthesis process into a
composite port, the type information for that port cannot be determined and included in the
System Generator IP block.

The implication for this limitation is that any design that uses the reshape, mapping or data
packing optimization on ports must have the port type information, for these composite ports,
manually specified in System Generator.

To manually specify the type information in System Generator, you should know how the
composite ports were created and then use slice and reinterpretation blocks inside System
Generator when connecting the Vivado HLS block to other blocks in the system.

For example:

e If three 8-bit in-out ports R, G and B are packed into a 24-bit input port (RGB_in) and a 24-bit
output port (RGB_out) ports.

After the IP block has been included in System Generator:

e The 24-bit input port (RGB_in) would need to be driven by a System Generator block that
correctly groups three 8-bit input signals (Rin, Gin and Bin) into a 24-bit input bus.

e The 24-bit output bus (RGB_out) would need to be correctly split into three 8-bit signals
(Rout, Bout and Gout).

See the System Generator documentation for details on how to use the slice and reinterpretation
blocks for connecting to composite type ports.

Exporting a Synthesized Checkpoint

Upon completion of synthesis and RTL verification, open the Export RTL dialog box by clicking
the Export RTL toolbar button EE

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 196

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=196

& XILINX

Chapter 1: High-Level Synthesis

Figure 80: Export RTL to Synthesized Checkpoint

» | Export RTL Dialog 5

&
Export RTL

Format Selection

Synthesized Checkpoint (.dcp) VI

Options

Evaluate |Verilog vl

[Do not show this dialog box again.

[OK l l Cancel

When the design is packaged as a design checkpoint IP, the design is first synthesized before

being packaged.

Selecting OK generates the design checkpoint package. This package is written to the
<project_name>/<solution_name>/impl/ip directory. The design checkpoint files can
be used in a Vivado Design Suite project in the same manner as any other design checkpoint.

UG902 (v2019.2) January 13, 2020 [send Feedback] WWW.ininx.c$9n;

High-Level Synthesis

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=197

& XILINX

Chapter 2

High-Level Synthesis C Libraries

Vivado® HLS C libraries allow common hardware design constructs and function to be easily
modeled in C and synthesized to RTL. The following C libraries are provided with Vivado HLS:

e Arbitrary Precision Data Types Library
e HLS Stream Library

e HLS Math Library

e HLS Video Library

e HLSIP Library

e HLS Linear Algebra Library

e HLS DSP Library

You can use each of the C libraries in your design by including the library header file. These
header files are located in the inc1ude directory in the Vivado HLS installation area.

IMPORTANT! The header files for the Vivado HLS C libraries do not have to be in the include path if the design
is used in Vivado HLS. The paths to the library header files are automatically added.

Arbitrary Precision Data Types Library

C-based native data types are on 8-bit boundaries (8, 16, 32, 64 bits). RTL buses (corresponding
to hardware) support arbitrary lengths. HLS needs a mechanism to allow the specification of
arbitrary precision bit-width and not rely on the artificial boundaries of native C data types: if a
17-bit multiplier is required, you should not be forced to implement this with a 32-bit multiplier.

Vivado® HLS provides both integer and fixed-point arbitrary precision data types for C, C++ and
supports the arbitrary precision data types which are part of SystemC.

The advantage of arbitrary precision data types is that they allow the C code to be updated to
use variables with smaller bit-widths and then for the C simulation to be re-executed to validate
the functionality remains identical or acceptable.

Related Information
Floats and Doubles

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 198

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=198

& XILINX

Using Arbitrary Precision Data Types

Chapter 2: High-Level Synthesis C Libraries

Vivado® HLS provides arbitrary precision integer data types that manage the value of the integer
numbers within the boundaries of the specified width, as shown in the following table.

Table 22: Integer Data Types

Language Integer Data Type Required Header
C [u]int<precision> (1024 bits) gcc #include “ap_cint.n"”
C++ ap_[ulint<w> (1024 bits) #include “ap_int.n"
System C sc_[u]int<W> (64 bits) #include “systemc.h”

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

sc_[u]bigint<w> (512 bits)

The header files define the arbitrary precision types are also provided with Vivado HLS as a
standalone package with the rights to use them in your own source code. The package,
xilinx_hls_lib_<release_number>.tggz, is provided in the include directory in the
Vivado HLS installation area.

Arbitrary Integer Precision Types with C

For the C language, the header file ap_cint . h defines the arbitrary precision integer data types

[ulint.

Note: The package xilinx_hls_lib_<release_number>. tgz does notinclude the C arbitrary
precision types defined in ap_cint . h. These types cannot be used with standard C compilers, only with
the Vivado HLS cpcc compiler.

To use arbitrary precision integer data types in a C function:

e Add header file ap_cint . h to the source code.

e Change the bit types to intN for signed types or uintN for unsigned types, where N is a bit
size from 1 to 1024.

The following example shows how the header file is added and two variables implemented to use
9-bit integer and 10-bit unsigned integer types:

#include '"ap_cint.h"
void foo_top () {

// 9-bit
// 10-bit unsigned

int9 varl;
uintl0 wvar2;

www.Xilinx.com

l Send Feedback l 199

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=199

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Arbitrary Integer Precision Types with C++

The header file ap_int . h defines the arbitrary precision integer data type for the C++
ap_[u]int data types. To use arbitrary precision integer data types in a C++ function:

e Add header file ap_int . h to the source code.

e Change the bit types to ap_int<N> for signed types or ap_uint<N> for unsigned types,
where N is a bit-size from 1 to 1024.

The following example shows how the header file is added and two variables implemented to use
9-bit integer and 10-bit unsigned integer types:

#include '"ap_dint.h"

void foo_top () {
ap-int<9> wvarl; // 9-bit
ap-uint<10> wvar?2; // 10-bit unsigned

Arbitrary Precision Integer Types with SystemC

The arbitrary precision types used by SystemC are defined in the systemc . h header file that is
required to be included in all SystemC designs. The header file includes the SystemC sc_int<>,
sc_uint<>, sc_bigint<>and sc_biguint<> types.

Arbitrary Precision Fixed-Point Data Types

In Vivado HLS, it is important to use fixed-point data types, because the behavior of the C++/
SystemC simulations performed using fixed-point data types match that of the resulting
hardware created by synthesis. This allows you to analyze the effects of bit-accuracy,
quantization, and overflow with fast C-level simulation.

Vivado HLS offers arbitrary precision fixed-point data types for use with C++ and SystemC
functions as shown in the following table.

Table 23: Fixed-Point Data Types

Language Fixed-Point Data Type Required Header
C -- Not Applicable -- -- Not Applicable --
C++ ap_[u]fixed<w,I,Q,0,N> #include “ap_fixed.h”
System C sc_[u]fixed<W,L,Q,0,N> #define SC_INCLUDE_FX
[#define SC_FX_EXCLUDE_OTHER]
#include “systemc.h”

These data types manage the value of real (non-integer) numbers within the boundaries of a
specified total width and integer width, as shown in the following figure.

UG902 (v2019.2) January 13, 2020

www.xilinx.com
High-Level Synthesis [_send Feedback | 500

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=200

& XILINX

Chapter 2: High-Level Synthesis C Libraries

Figure 81: Fixed-Point Data Type

MSB

LSB

0 -1 -B

Fixed-Point Identifier Summary

Binary point
W=1+B

X14268

The following table provides a brief overview of operations supported by fixed-point types.

Table 24: Fixed-Point Identifier Summary

Identifier Description

w Word length in bits: The number of bits used to represent the integer value (the number of bits above

I the decimal point)

Q Quantization mode: This dictates the behavior when greater precision is generated than can be
defined by smallest fractional bit in the variable used to store the result.
SystemC Types ap_fixed Types Description
SC_RND AP_RND Round to plus infinity
SC_RND_ZERO AP_RND_ZERO Round to zero
SC_RND_MIN_INF AP_RND_MIN_INF Round to minus infinity
SC_RND_INF AP_RND_INF Round to infinity
SC_RND_CONV AP_RND_CONV Convergent rounding
SC_TRN AP_TRN Truncation to minus infinity

(default)

SC_TRN_ZERO AP_TRN_ZERO Truncation to zero

(0] Overflow mode: This dictates the behavior when the result of an operation exceeds the maximum (or
minimum in the case of negative numbers) possible value that can be stored in the variable used to
store the result.
SystemC Types ap_fixed Types Description
SC_SAT AP_SAT Saturation
SC_SAT_ZERO AP_SAT_ZERO Saturation to zero
SC_SAT_SYM AP_SAT SYM Symmetrical saturation
SC_WRAP AP_WRAP Wrap around (default)
SC_WRAP_SM AP_WRAP_SM Sign magnitude wrap around

N This defines the number of saturation bits in overflow wrap modes.

UG902 (v2019.2) January 13, 2020

High-Level Synthesis

l Send Feedback l

www.Xilinx.com
201

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=201

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Example Using ap_fixed

In this example the Vivado HLS ap_fixed type is used to define an 18-bit variable with 6 bits
representing the numbers above the decimal point and 12-bits representing the value below the
decimal point. The variable is specified as signed, the quantization mode is set to round to plus
infinity and the default wrap-around mode is used for overflow.

#include <ap_fixed.h>

ap_fixed<18,6,AP_RND > my_type;

Example Using sc_fixed

In this sc_fixed example, a 22-bit variable is shown with 21 bits representing the numbers
above the decimal point: enabling only a minimum accuracy of 0.5. Rounding to zero is used,
such that any result less than 0.5 rounds to O and saturation is specified.

#define SC_INCLUDE_FX
#define SC_FX_EXCLUDE_OTHER
#include <systemc.h>

sc_fixed<22,21,SC_RND_ZERO, SC_SAT> my_type;

C Arbitrary Precision Integer Data Types

The native data types in C are on 8-bit boundaries (8, 16, 32 and 64 bits). RTL signals and
operations support arbitrary bit-lengths. Vivado HLS provides arbitrary precision data types for C
to allow variables and operations in the C code to be specified with any arbitrary bit-widths: for
example, 6-bit, 17-bit, and 234-bit, up to 1024 bits.

Vivado HLS also provides arbitrary precision data types in C++ and supports the arbitrary
precision data types that are part of SystemC. These types are discussed in the respective C++
and SystemC coding.

Advantages of C Arbitrary Precision Data Types
The primary advantages of arbitrary precision data types are:

e Better quality hardware

If, for example, a 17-bit multiplier is required, you can use arbitrary precision types to require
exactly 17 bits in the calculation.

Without arbitrary precision data types, a multiplication such as 17 bits must be implemented
using 32-bit integer data types. This results in the multiplication being implemented with
multiple DSP48 components.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 502

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=202

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

e Accurate C simulation and analysis

Arbitrary precision data types in the C code allows the C simulation to be executed using
accurate bit-widths and for the C simulation to validate the functionality (and accuracy) of the
algorithm before synthesis.

For the C language, the header file ap_cint . h defines the arbitrary precision integer data types
[ulint#W. For example:

e int8 represents an 8-bit signed integer data type.

e uint234 represents a 234-bit unsigned integer type.

The ap_cint .h fileis located in the directory $HLS_ROOT/include, where $HLS_ROOT is the
Vivado HLS installation directory.

The code shown in the following example is a repeat of the Basic Arithmetic code example
shown in Standard Types. In both examples, the data types in the top-level function to be
synthesized are specified as dinA_t, dinB_t, etc.

#include "apint_arith.h"

void apint_arith(din_A inA, din_B inB, din_C 4inC, din_D inD,
out_1 *outl, dout_2 *out2, dout_3 *out3, dout_4 *out4d
)

// Basic arithmetic operations

*outl = 4inA * inB;
*out2 = inB + dinA;
*out3 = inC / dinA;
*out4 = inD % 4inA;

3

The real difference between the two examples is in how the data types are defined. To use
arbitrary precision integer data types in a C function:

e Add header file ap_cint . h to the source code.

e Change the native C types to arbitrary precision types: intN or uintN, where N is a bit size
from 1 to 1024.

The data types are defined in the header apint_arith.h. See the following example compared
with the Basic Arithmetic example in Standard Types:

e The input data types have been reduced to represent the maximum size of the real input data.
For example, 8-bit input inA is reduced to 6-bit input.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 503

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=203

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

¢ The output types have been refined to be more accurate. For example, out 2 (the sum of inA
and inB) needs to be only 13-bit, not 32-bit.

#include <stdio.h>
#include ap_cint.h

// Previous data types
//typedef char dinA_t;
//typedef short dinB_t;
//typedef int dinC_t;

//typedef long long dinD_t;
//typedef int doutl_t;
//typedef unsigned int doutZ_t;
//typedef int32_t dout3_t;
//typedef int64_t dout4_t;

typedef inté6 dinA_t;
typedef intl2 dinB_t;
typedef int22 dinC_t;
typedef int33 dinD_t;

typedef intl8 doutl_t;
typedef uintl3 dout2_t;
typedef int22 dout3_t;
typedef inté6 dout4_t;

void apint_arith(dinA_t inA,dinB_t inB,dinC_t inC,dinD_t 4inD,doutl_t
*outl,dout2_t *out2,dout3_t *out3,doutd4_t *out4d) ;

Synthesizing the preceding example results in a design that is functionally identical to the Basic
Arithmetic example shown in Standard Types (given data in the range specified by the preceding
example). The final RTL design is smaller in area and has a faster clock speed, because smaller bit-
widths result in reduced logic.

The function must be compiled and validated before synthesis.

Validating Arbitrary Precision Types in C

To create arbitrary precision types, attributes are added to define the bit-sizes in file ap_cint . h.
Standard C compilers such as gcc compile the attributes used in the header file, but they do not
know what the attributes mean. This results in computations that do not reflect the bit-accurate
behavior of the code. For example, a 3-bit integer value with binary representation 100 is treated
by gcc (or any other third-party C compiler) as having a decimal value 4 and not -4.

Note: This issue is only present when using C arbitrary precision types. There are no such issues with C++
or SystemC arbitrary precision types.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 04

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=204

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Vivado HLS solves this issue by automatically using its own built-in C compiler apcc, when it
recognizes arbitrary precision C types are being used. This compiler is gcc compatible but
correctly interprets arbitrary precision types and arithmetic. You can invoke the apcc compiler at
the command prompt by replacing “gcc” with “apcc”.

$ apcc -o foo_top foo_top.c tb_foo_top.c
$./foo_top

When arbitrary precision types are used in C, the design can no longer be analyzed using the
Vivado HLS C debugger. If it is necessary to debug the design, Xilinx recommends one of the
following methodologies:

e Usethe printf or fprintf functions to output the data values for analysis.

e Replace the arbitrary precision types with native C types (int, char, short, etc). This approach
helps debug the operation of the algorithm itself but does not help when you must analyze
the bit-accurate results of the algorithm.

e Change the C function to C++ and use C++ arbitrary precision types for which there are no
debugger limitations.

Integer Promotion

Take care when the result of arbitrary precision operations crosses the native 8, 16, 32 and 64-
bit boundaries. In the following example, the intent is that two 18-bit values are multiplied and
the result stored in a 36-bit number:

#include '"ap_cint.h"

intl®& a,b;
int36 tmp;

tmp = a * b;
Integer promotion occurs when using this method. The result might not be as expected.
In integer promotion, the C compiler:

e Promotes the multiplication inputs to the native integer size (32-bit).
e Performs multiplication, which generates a 32-bit result.

e Assigns the result to the 36-bit variable tmp.

This results in the behavior and incorrect result shown in the following figure.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 505

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=205

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Figure 82: Integer Promotion

Result in Hex

el el lo o] essas
o [oJfodfolfxfo]fo]fo]fo]esse

Multiplication Result 4294967296

resuttpromotea ozzbit [J 0 [0][0][0][o][o][o] 4
me [o]fo]fo][o]felfolfo]lo]le] ©

X14232

Because Vivado HLS produces the same results as C simulation, Vivado HLS creates hardware in
which a 32-bit multiplier result is sign-extended to a 36-bit result.

To overcome the integer promotion issue, cast operator inputs to the output size. The following
example shows where the inputs to the multiplier are cast to 36-bit value before the
multiplication. This results in the correct (expected) results during C simulation and the expected
36-bit multiplication in the RTL.

The following example shows casting to avoid integer promotion.

#include "ap_cint.h"

typedef intl8 din_t;
typedef int36 dout_t;

dout_t apint_promotion(din_t a,din_t b) {
dout_t tmp;

tmp = (dout_t)a * (dout_t)b;
return tmp;

}

Casting to avoid integer promotion issue is required only when the result of an operation is
greater than the next native boundary (8, 16, 32, or 64). This behavior is more typical with
multipliers than with addition and subtraction operations.

There are no integer promotion issues when using C++ or SystemC arbitrary precision types.

C Arbitrary Precision Integer Types: Reference Information
C Arbitrary Precision Types provides information on:

e Techniques for assigning constant and initialization values to arbitrary precision integers
(including values greater than 64-bit).

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 206

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=206

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

e A description of Vivado HLS helper functions, such as printing, concatenating, bit-slicing and
range selection functions.

e A description of operator behavior, including a description of shift operations (a negative shift
values, results in a shift in the opposite direction).

C++ Arbitrary Precision Integer Types

The native data types in C++ are on 8-bit boundaries (8, 16, 32 and 64 bits). RTL signals and
operations support arbitrary bit-lengths.

Vivado HLS provides arbitrary precision data types for C++ to allow variables and operations in
the C++ code to be specified with any arbitrary bit-widths: 6-bit, 17-bit, 234-bit, up to 1024 bits.

O TIP: The default maximum width allowed is 1024 bits. You can override this default by defining the macro
AP_INT_MAX_Wwith a positive integer value less than or equal to 32768 before inclusion of the ap_int. h
header file.

C++ supports use of the arbitrary precision types defined in the SystemC standard. Include the
SystemC header file systemc . h, and use SystemC data types.

Arbitrary precision data types have are two primary advantages over the native C++ types:

e Better quality hardware: If for example, a 17-bit multiplier is required, arbitrary precision types
can specify that exactly 17-bit are used in the calculation.

Without arbitrary precision data types, such a multiplication (17-bit) must be implemented
using 32-bit integer data types and result in the multiplication being implemented with
multiple DSP48 components.

e Accurate C++ simulation/analysis: Arbitrary precision data types in the C++ code allows the C
++ simulation to be performed using accurate bit-widths and for the C++ simulation to
validate the functionality (and accuracy) of the algorithm before synthesis.

The arbitrary precision types in C++ have none of the disadvantages of those in C:

e C++ arbitrary types can be compiled with standard C++ compilers (there is no C++ equivalent
of apcc).

e C++ arbitrary precision types do not suffer from Integer Promotion Issues.

It is not uncommon for users to change a file extension from . c to . cpp so the file can be
compiled as C++, where neither of these issues are present.

For the C++ language, the header file ap_int . h defines the arbitrary precision integer data
types ap_ (u) int<W>. For example, ap_int<8> represents an 8-bit signed integer data type
and ap_uint<234> represents a 234-bit unsigned integer type.

The ap_int . h fileis located in the directory $HLS_ROOT/include, where $HLS_ROOT is the
Vivado HLS installation directory.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 507

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=207

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

The code shown in the following example is a repeat of the code shown in the Basic Arithmetic
example in Standard Types. In this example the data types in the top-level function to be
synthesized are specified as dinA_t, dinB_t ...

#include '"cpp_ap_int_arith.h"

void cpp-ap_int_arith(din_A 4inA, din_B inB, din_C inC, din_D inD,
dout_1 *outl, dout_2 *out2, dout_3 *out3, dout_4 *out4

) 1

// Basic arithmetic operations

*outl = inA ¥ inB;
*out2 = inB + 4nA;
*out3 = inC / 4inA;
*out4 = inD % d4nA;

}

In this latest update to this example, the C++ arbitrary precision types are used:

e Add header file ap_int . h to the source code.

e Change the native C++ types to arbitrary precision types ap_int<N> or ap_uint<N>, where
N is a bit-size from 1 to 1024 (as noted above, this can be extended to 32K-bits if required).

The data types are defined in the header cpp_ap_int_arith.h.

Compared with the Basic Arithmetic example in Standard Types, the input data types have simply
been reduced to represent the maximum size of the real input data (for example, 8-bit input inA
is reduced to 6-bit input). The output types have been refined to be more accurate, for example,
out 2, the sum of inA and inB, need only be 13-bit and not 32-bit.

The following example shows basic arithmetic with C++ arbitrary precision types.

#ifndef _CPP_AP_INT_ARITH_H_
#define _CPP_AP_INT_ARITH_H_

#include <stdio.h>
#include "ap_int.h"

#define N 9

// Old data types

//typedef char dinA_t;
//typedef short dinB_t;
//typedef int dinC_t;

//typedef long long dinD_t;
//typedef int doutl_t;
//typedef unsigned int doutZ2_t;
//typedef int32_t dout3_t;
//typedef int64_t dout4_t;

typedef ap_int<6> dinA_t;
typedef ap_int<l12> dinB_t;
typedef ap_int<22> dinC_t;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 508

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=208

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

typedef ap_int<33> dinD_t;

typedef ap_int<18> doutl_t;
typedef ap_uint<1l3> dout2_t;
typedef ap_int<22> dout3_t;
typedef ap_int<6> dout4_t;

void cpp_ap_int_arith(dinA_t inA,dinB_t inB,dinC_t inC,dinD_t 4inD,doutl_t
*outl,dout2_t ¥out2,dout3_t *out3,dout4_t *out4d);

#endif

If C++ Arbitrary Precision Integer Types is synthesized, it results in a design that is functionally
identical to Standard Types and Advantages of C Arbitrary Precision Data Types. It keeps the test
bench as similar as possible to Advantages of C Arbitrary Precision Data Types, rather than use
the C++ cout operator to output the results to a file, the built-in ap_int method . to_int () is
used to convert the ap_int results to integer types used with the standard fprint £ function.

fprintf(fp, %d*%d=%d; %d+%d=%d; %d/%d=%d; %d mod %d=%d;\n,
inA.to_int (), inB.to_int(), outl.to_int
inB.to_int (), 4dnA.to_int(), out2.to_int
inC.to_int (), 4dnA.to_int(), out3.to_int
inD.to_int () (), outd4.to_int

)

, inA.to_int

C++ Arbitrary Precision Integer Types: Reference Information

For comprehensive information on the methods, synthesis behavior, and all aspects of using the
ap_ (u)int<N> arbitrary precision data types, see C++ Arbitrary Precision Types. This section
includes:

e Techniques for assigning constant and initialization values to arbitrary precision integers
(including values greater than 1024-bit).

e A description of Vivado HLS helper methods, such as printing, concatenating, bit-slicing and
range selection functions.

¢ A description of operator behavior, including a description of shift operations (a negative shift
values, results in a shift in the opposite direction).

C++ Arbitrary Precision Fixed-Point Types

C++ functions can take advantage of the arbitrary precision fixed-point types included with
Vivado HLS. The following figure summarizes the basic features of these fixed-point types:

e The word can be signed (ap_fixed) or unsigned (ap_ufixed).
e A word with of any arbitrary size w can be defined.

e The number of places above the decimal point I, also defines the number of decimal places in
the word, W- I (represented by B in the following figure).

e The type of rounding or quantization (Q) can be selected.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 509

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=209

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

e The overflow behavior (0 and N) can be selected.

Figure 83: Arbitrary Precision Fixed-Point Types

ap_[u]fixed<w,1,Q,0,N>

!

Binary point: W=1+B

X14233

O TIP: The arbitrary precision fixed-point types can be used when header file ap_ fixed. his included in the
code.

Arbitrary precision fixed-point types use more memory during C simulation. If using very large
arrays of ap_[u] fixed types, refer to the discussion of C simulation in Arrays.

The advantages of using fixed-point types are:

e They allow fractional number to be easily represented.

e When variables have a different number of integer and decimal place bits, the alignment of
the decimal point is handled.

e There are numerous options to handle how rounding should happen: when there are too few
decimal bits to represent the precision of the result.

e There are numerous options to handle how variables should overflow: when the result is
greater than the number of integer bits can represent.

These attributes are summarized by examining the code in the example below. First, the header
file ap_fixed.hisincluded. The ap_fixed types are then defined using the typedef
statement:

A 10-bit input: 8-bit integer value with 2 decimal places.

A 6-bit input: 3-bit integer value with 3 decimal places.

A 22-bit variable for the accumulation: 17-bit integer value with 5 decimal places.

A 36-bit variable for the result: 30-bit integer value with 6 decimal places.

The function contains no code to manage the alignment of the decimal point after operations are
performed. The alignment is done automatically.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 510

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=210

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

The following code sample shows ap_fixed type.

#include "ap_fixed.h"

typedef ap_ufixed<10,8, AP_RND, AP_SAT> dinl_t;
typedef ap_fixed<6,3, AP_RND, AP_WRAP> din2_t;

typedef ap_fixed<22,17, AP_TRN, AP_SAT> dint_t;
typedef ap_fixed<36,30> dout_t;

dout_t cpp-ap_-fixed(dinl_t d_inl, din2_t d_in2) {

static dint_t sum;
sum += d_dinl;
return sum ¥* d_in?2;

}

Using ap_ (u) fixed types, the C++ simulation is bit accurate. Fast simulation can validate the
algorithm and its accuracy. After synthesis, the RTL exhibits the identical bit-accurate behavior.

Arbitrary precision fixed-point types can be freely assigned literal values in the code. This is
shown in the test bench (see the example below) used with the example above, in which the
values of in1 and in2 are declared and assigned constant values.

When assigning literal values involving operators, the literal values must first be cast to

ap_ (u) fixed types. Otherwise, the C compiler and Vivado HLS interpret the literal as an
integer or float/double type and may fail to find a suitable operator. As shown in the
following example, in the assignment of in1 = inl + dinl_t(0.25),theliteral 0.25 is cast
toan ap_fixed type.

#include <cmath>
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;
#include "ap_fixed.h"

typedef ap_ufixed<10,8, AP_RND, AP_SAT> dinl_t;
typedef ap_fixed<6,3, AP_RND, AP_WRAP> din2_t;

typedef ap_fixed<22,17, AP_TRN, AP_SAT> dint_t;
typedef ap_fixed<36,30> dout_t;

dout_t cpp-ap_fixed(dinl_t d_inl, din2_t d_in2);
int main()

{

ofstream result;

dinl_t 4inl = 0.25;

din2_t in2 = 2.125;

dout_t output;

int retval=0;

result.open(result.dat);
// Persistent manipulators
result << right << fixed << setbase(10) << setprecision(15);

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 11

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=211

& XILINX

= 0; i <=

for (4int i

{
output

result
result
result
result
result

inl =
in2 =

}

<<
<<
<<
<<
<<

inl
in?2

<<
<<
<<
<<

250 ;

cpp-ap_fixed(inl,in2) ;

i;

inl;
in?2;
output;

+ dinl_t(0.25);
din2_t(0.125);

result.close();

i++)

Chapter 2: High-Level Synthesis C Libraries

// Compare the results file with the golden results

retval

if (retval

= 0) {

printf(Test failed

retval
} else

=1;
{

printf(Test passed

}

// Return 0 if the test passes

return retval;

Fixed-Point Identifier Summary

system(diff

--brief

111\n) ;

'\n) ;

-w result.dat result.golden.dat);

The following table shows the quantization and overflow modes.

O TIP: Quantization and overflow modes that do more than the default behavior of standard hardware arithmetic
(wrap and truncate) result in operators with more associated hardware. It costs logic (LUTs) to implement the
more advanced modes, such as round to minus infinity or saturate symmetrically.

Table 25: Fixed-Point Identifier Summary

smallest fractional bit in the variable used to store the result.

Identifier Description
W Word length in bits
I The number of bits used to represent the integer value (the number of bits above the decimal point)
Q Quantization mode dictates the behavior when greater precision is generated than can be defined by

Mode Description
AP_RND Rounding to plus infinity
AP_RND_ZERO Rounding to zero

AP_RND_MIN_INF

Rounding to minus infinity

AP_RND_INF Rounding to infinity

AP_RND_CONV Convergent rounding

AP_TRN Truncation to minus infinity (default)
AP_TRN_ZERO Truncation to zero

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l WWW'X“mX'C;n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=212

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Table 25: Fixed-Point Identifier Summary (cont'd)

Identifier Description

O Overf!ow mode dictates the behavior when more bits are generated than the variable to store the result
contains.
Mode Description
AP_SAT Saturation
AP_SAT ZERO Saturation to zero
AP_SAT_SYM Symmetrical saturation
AP_WRAP Wrap around (default)
AP_WRAP_SM Sign magnitude wrap around

N The number of saturation bits in wrap modes.

C++ Arbitrary Precision Fixed-Point Types: Reference Information

For comprehensive information on the methods, synthesis behavior, and all aspects of using the
ap_ (u) fixed<N> arbitrary precision fixed-point data types, see C++ Arbitrary Precision Fixed-
Point Types. This section includes:

e Techniques for assigning constant and initialization values to arbitrary precision integers
(including values greater than 1024-bit).

e A detailed description of the overflow and saturation modes.

e A description of Vivado HLS helper methods, such as printing, concatenating, bit-slicing and
range selection functions.

e A description of operator behavior, including a description of shift operations (a negative shift
values, results in a shift in the opposite direction).

IMPORTANT! For the compiler to process, you must use the appropriate header files for the language.

HLS Stream Library

Streaming data is a type of data transfer in which data samples are sent in sequential order
starting from the first sample. Streaming requires no address management.

Modeling designs that use streaming data can be difficult in C. The approach of using pointers to
perform multiple read and/or write accesses can introduce issues, because there are implications
for the type qualifier and how the test bench is constructed.

Vivado HLS provides a C++ template class h1s: : st ream<> for modeling streaming data
structures. The streams implemented with the hls: : st ream<> class have the following
attributes.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 513

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=213

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

e Inthe Ccode,an hls: :stream<> behaves like a FIFO of infinite depth. There is no
requirement to define the size of an hls: :stream<>.

e They are read from and written to sequentially. That is, after data is read from an
hls::stream<>, it cannot be read again.

e Anhls::stream<> on the top-level interface is by default implemented with an ap_fifo
interface.

e Anhls::stream<> internal to the design is implemented as a FIFO with a depth of 2. The
optimization directive STREAM is used to change this default size.

This section shows how the hls: : stream<> class can more easily model designs with
streaming data. The topics in this section provide:

e An overview of modeling with streams and the RTL implementation of streams.
e Rules for global stream variables.

e How to use streams.

e Blocking reads and writes.

¢ Non-Blocking Reads and writes.

e Controlling the FIFO depth.

Note: The hls: : stream class should always be passed between functions as a C++ reference argument.
For example, &my_stream.

71\\\7 IMPORTANT! The hls: :streamclass is only used in C++ designs. Array of streams is not supported.

C Modeling and RTL Implementation

Streams are modeled as an infinite queue in software (and in the test bench during RTL co-
simulation). There is no need to specify any depth to simulate streams in C++. Streams can be
used inside functions and on the interface to functions. Internal streams may be passed as
function parameters.

Streams can be used only in C++ based designs. Each h1s: : st ream<> object must be written
by a single process and read by a single process.

If an hls: :streamis used on the top-level interface, it is by default implemented in the RTL as
a FIFO interface (ap_f1ifo) but may be optionally implemented as a handshake interface
(ap_hs) or an AXI-Stream interface (ax1is).

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 14

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=214

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

If an hls: :streamis used inside the design function and synthesized into hardware, it is
implemented as a FIFO with a default depth of 2. In some cases, such as when interpolation is
used, the depth of the FIFO might have to be increased to ensure the FIFO can hold all the
elements produced by the hardware. Failure to ensure the FIFO is large enough to hold all the
data samples generated by the hardware can result in a stall in the design (seen in C/RTL co-
simulation and in the hardware implementation). The depth of the FIFO can be adjusted using
the STREAM directive with the depth option. An example of this is provided in the example
design hls_stream.

ﬁ? IMPORTANT! Ensure h1s : : streamvariables are correctly sized when used in the default non-DATAFLOW
regions.

Ifan hls: :streamis used to transfer data between tasks (sub-functions or loops), you should
immediately consider implementing the tasks in a DATAFLOW region where data streams from
one task to the next. The default (hon-DATAFLOW) behavior is to complete each task before
starting the next task, in which case the FIFOs used to implement the hls: : st ream variables
must be sized to ensure they are large enough to hold all the data samples generated by the
producer task. Failure to increase the size of the hls: : st ream variables results in the error
below:

ERROR: [XFORM 203-733] An internal stream xxxx.xxxx.V.user.V' with default
size 1is

used in a non-dataflow region, which may result in deadlock. Please
consider to

resize the stream using the directive 'set_directive_stream' or the 'HLS
stream'

pragma.

This error informs you that in a non-DATAFLOW region (the default FIFOs depth is 2) may not be
large enough to hold all the data samples written to the FIFO by the producer task.

Global and Local Streams

Streams may be defined either locally or globally. Local streams are always implemented as
internal FIFOs. Global streams can be implemented as internal FIFOs or ports:

e Globally-defined streams that are only read from, or only written to, are inferred as external
ports of the top-level RTL block.

¢ Globally-defined streams that are both read from and written to (in the hierarchy below the
top-level function) are implemented as internal FIFOs.

Streams defined in the global scope follow the same rules as any other global variables.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 15

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=215

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Using HLS Streams

Touse hls: :stream<> objects, include the header file hls_stream.h. Streaming data
objects are defined by specifying the type and variable name. In this example, a 128-bit unsigned
integer type is defined and used to create a stream variable called my _wide_stream.

#include "ap_dint.h"
#include "hls_stream.h"

typedef ap_uint<128> uintl28_t; // 128-bit user defined type
hls::stream<uintl28_t> my_wide_stream; // A stream declaration

Streams must use scoped naming. Xilinx recommends using the scoped hls: : naming shown in
the example above. However, if you want to use the h1s namespace, you can rewrite the
preceding example as:

#include <ap_int.h>
#include <hls_stream.h>
using namespace hls;

typedef ap_uint<128> uintl28_t; // 128-bit user defined type
stream<uintl128_t> my_wide_stream; // hls:: no longer required

Given a stream specified as hls: : st ream<T>, the type T may be:

e Any C++ native data type
e A Vivado HLS arbitrary precision type (for example, ap_int<>, ap_ufixed<>)

o A user-defined struct containing either of the above types

Note: General user-defined classes (or structures) that contain methods (member functions) should not be
used as the type (T) for a stream variable.

Streams may be optionally named. Providing a name for the stream allows the name to be used in
reporting. For example, Vivado HLS automatically checks to ensure all elements from an input
stream are read during simulation. Given the following two streams:

stream<uint8_t> bytestr_inl;
stream<uint8_t> bytestr_in2("input_stream2") ;

Any warning on elements left in the streams are reported as follows, where it is clear which
message relates to bytetr_in2:

WARNING: Hls::stream 'hls::stream<unsigned char>.1' contains leftover data,
which

may result in RTL simulation hanging.

WARNING: Hls::stream 'input_stream2' contains leftover data, which may
result in RTL

simulation hanging.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 16

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=216

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

When streams are passed into and out of functions, they must be passed-by-reference as in the
following example:

void stream_function (
hls::stream<uint8_t> &strm_out,
hls::stream<uint8_t> &strm_in,

uintl6_t strm_len

)

Vivado HLS supports both blocking and non-blocking access methods.

e Non-blocking accesses can be implemented only as FIFO interfaces.

e Streaming ports that are implemented as ap_fifo ports and that are defined with an AXI4-
Stream resource must not use non-blocking accesses.

A complete design example using streams is provided in the Vivado HLS examples. Refer to the
hls_stream example in the design examples available from the GUI welcome screen.

Blocking Reads and Writes

The basic accesses to an hls: : st ream<> object are blocking reads and writes. These are
accomplished using class methods. These methods stall (block) execution if a read is attempted
on an empty stream FIFO, a write is attempted to a full stream FIFO, or until a full handshake is
accomplished for a stream mapped to an ap_hs interface protocol.

A stall can be observed in C/RTL co-simulation as the continued execution of the simulator
without any progress in the transactions. The following shows a classic example of a stall
situation, where the RTL simulation time keeps increasing, but there is no progress in the inter or
intra transactions:

// RTL Simulation : "Inter-Transaction Progress" ['"Intra-Transaction
Progress"] @

"Simulation Time"

L1177 7777777777777 7777777777777 777777777777 7777777777777777777777
/17777

// RTL Simulation : O / 1 [0.00%] @ "110000"

// RTL Simulation : 0 / 1 [0.00%] @ "202000"

// RTL Simulation : 0 / 1 [0.00%] @ "404000"

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 517

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=217

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Blocking Write Methods

In this example, the value of variable src_var is pushed into the stream.

// Usage of void write(const T & wdata)

hls::stream<int> my_stream;
int src_var = 42;

my_stream.write(src_var);

The << operator is overloaded such that it may be used in a similar fashion to the stream
insertion operators for C++ stream (for example, iostreams and filestreams). The
hls::stream<> object to be written to is supplied as the left-hand side argument and the

value to be written as the right-hand side.

// Usage of void operator << (T & wdata)

hls::stream<int> my_stream;
int src_var = 42;

my_stream << src_var;

Blocking Read Methods

This method reads from the head of the stream and assigns the values to the variable dst _var.

// Usage of void read(T &rdata)

hls::stream<int> my_stream;
int dst_var;

my_stream.read(dst_var);

Alternatively, the next object in the stream can be read by assigning (using for example =, +=) the
stream to an object on the left-hand side:

// Usage of T read(void)
hls::stream<int> my_stream;

int dst_var = my_stream.read() ;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 518

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=218

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

The '>>' operator is overloaded to allow use similar to the stream extraction operator for C++
stream (for example, iostreams and filestreams). The hls: : stream is supplied as the LHS
argument and the destination variable the RHS.

// Usage of void operator >> (T & rdata)

hls::stream<int> my_stream;
int dst_var;

my_stream >> dst_var;

Non-Blocking Reads and Writes

Non-blocking write and read methods are also provided. These allow execution to continue even
when a read is attempted on an empty stream or a write to a full stream.

These methods return a Boolean value indicating the status of the access (t rue if successful,
false otherwise). Additional methods are included for testing the status of an hls: :stream<>
stream.

i} IMPORTANT! Non-blocking behavior is only supported on interfaces using the ap_ i fo protocol. More
specifically, the AXI-Stream standard and the Xilinx ap_hs 10 protocol do not support non-blocking accesses.

During C simulation, streams have an infinite size. It is therefore not possible to validate with C
simulation if the stream is full. These methods can be verified only during RTL simulation when
the FIFO sizes are defined (either the default size of 1, or an arbitrary size defined with the
STREAM directive).

71\\\7 IMPORTANT! If the design is specified to use the block-level /O protocol ap_ctrl_none and the design contains
any hls::stream variables that employ non-blocking behavior, C/RTL co-simulation is not guaranteed to
complete.

Non-Blocking Writes

This method attempts to push variable src_var into the stream my_stream, returning a
boolean t rue if successful. Otherwise, false is returned and the queue is unaffected.

// Usage of void write_nb(const T & wdata)

hls::stream<int> my_stream;
int src_var = 42;

if (my_stream.write_nb(src_var)) {
// Perform standard operations

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 19

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=219

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

1 else {
// Write did not occur
return;

3

Fullness Test

bool full(void)

Returns t rue, if and only if the hls: : st ream<> object is full.

// Usage of bool full(void)
hls::stream<int> my_stream;
int src_var = 42;

bool stream_full;

stream_full = my_stream.full();

Non-Blocking Read

bool read_nb(T & rdata)

This method attempts to read a value from the stream, returning t rue if successful. Otherwise,
false is returned and the queue is unaffected.
// Usage of void read_nb(const T & wdata)

hls::stream<int> my_stream;
int dst_var;

if (my_stream.read_nb(dst_var)) {
// Perform standard operations

1 else {
// Read did not occur

return;

3

Emptiness Test

bool empty(void)
Returns true if the hls: : stream<> is empty.

// Usage of bool empty(void)
hls::stream<int> my_stream;
int dst_var;

bool stream_empty;

stream_empty = my_stream.empty();

UG902 (v2019.2) January 13, 2020

www.xilinx.com
High-Level Synthesis [_send Feedback | 520

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=220

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

The following example shows how a combination of non-blocking accesses and full/empty tests
can provide error handling functionality when the RTL FIFOs are full or empty:

#include "hls_stream.h"
using namespace hls;

typedef struct {

short data;
bool valid;
bool invert;

} input_interface;

bool invert(stream<input_interface>& in_data_1,
stream<input_interface>& in_data_2,
stream<short>& output
)
input_interface in;
bool full_n;

// Read an input value or return
if (!in_data_1l.read_nb(in))
if (!in_data_2.read_nb(in))
return false;

// If the valid data is written, return not-full (full_n) as true
if (in.valid) {
if (4in.invert)

full_n = output.write_nb(~in.data);
else
full_n = output.write_nb(in.data);

}

return full_n;

}

Controlling the RTL FIFO Depth

For most designs using streaming data, the default RTL FIFO depth of 2 is sufficient. Streaming
data is generally processed one sample at a time.

For multirate designs in which the implementation requires a FIFO with a depth greater than 2,
you must determine (and set using the STREAM directive) the depth necessary for the RTL
simulation to complete. If the FIFO depth is insufficient, RTL co-simulation stalls.

Because stream objects cannot be viewed in the GUI directives pane, the STREAM directive
cannot be applied directly in that pane.

Right-click the function in which an h1ls: : st ream<> object is declared (or is used, or exists in
the argument list) to:

e Select the STREAM directive.

e Populate the variable field manually with name of the stream variable.
Alternatively, you can:

e Specify the STREAM directive manually inthe directives.tc1 file, or

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | o1

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=221

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

e Additasapragmain source.

C/RTL Co-Simulation Support

The Vivado HLS C/RTL co-simulation feature does not support structures or classes containing
hls::stream<> members in the top-level interface. Vivado HLS supports these structures or
classes for synthesis.

typedef struct {
hls::stream<uint8_t> a;
hls::stream<uintlé6_t> b;
} strm_strct_t;

void dut_top(strm_strct_t indata, strm_strct_t outdata) { 1

These restrictions apply to both top-level function arguments and globally declared objects. If
structs of streams are used for synthesis, the design must be verified using an external RTL
simulator and user-created HDL test bench. There are no such restrictions on hls: :stream<>
objects with strictly internal linkage.

HLS Math Library

The Vivado HLS Math Library (h1s_math.h) provides support for the synthesis of the standard
C (math.h)and C++ (cmath.h) libraries and is automatically used to specify the math
operations during synthesis. The support includes floating point (single-precision, double-
precision and half-precision) for all functions and fixed-point support for some functions.

The hls_math.h library can optionally be used in C++ source code in place of the standard C++
math library (cmath . h), but it cannot be used in C source code. Vivado HLS will use the
appropriate simulation implementation to avoid accuracy difference between C simulation and
C/RTL co-simulation.

HLS Math Library Accuracy

The HLS math functions are implemented as synthesizable bit-approximate functions from the
hls_math.h library. Bit-approximate HLS math library functions do not provide the same
accuracy as the standard C function. To achieve the desired result, the bit-approximate
implementation might use a different underlying algorithm than the standard C math library
version. The accuracy of the function is specified in terms of ULP (Unit of Least Precision). This
difference in accuracy has implications for both C simulation and C/RTL co-simulation.

The ULP difference is typically in the range of 1-4 ULP.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 529

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=222

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

e [f the standard C math library is used in the C source code, there may be a difference between
the C simulation and the C/RTL co-simulation due to the fact that some functions exhibit a
ULP difference from the standard C math library.

o If the HLS math library is used in the C source code, there will be no difference between the C
simulation and the C/RTL co-simulation. A C simulation using the HLS math library, may
however differ from a C simulation using the standard C math library.

In addition, the following seven functions might show some differences, depending on the C
standard used to compile and run the C simulation:

e copysign
e fpclassify
e isinf

e isfinite
e isnan

e isnormal

e signbit

C90 mode

Only isinf, isnan, and copysign are usually provided by the system header files, and they
operate on doubles. In particular, copysign always returns a double result. This might result in
unexpected results after synthesis if it must be returned to a float, because a double-to-float
conversion block is introduced into the hardware.

€99 mode (-std=c99)

All seven functions are usually provided under the expectation that the system header files will
redirect themto __isnan(double) and __isnan(float). The usual GCC header files do not
redirect isnormal, but implement it in terms of fpclassify.

C++ Using math.h
All seven are provided by the system header files, and they operate on doubles.

copysign always returns a double result. This might cause unexpected results after synthesis if
it must be returned to a float, because a double-to-float conversion block is introduced into the
hardware.

C++ Using cmath
Similar to C99 mode (-std=c99), except that:

e The system header files are usually different.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 523

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=223

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

e The functions are properly overloaded for:

float(). snan(double)

isinf (double)

copysign and copysignf are handled as built-ins even when using namespace std;.

C++ Using cmath and namespace std
No issues. Xilinx recommends using the following for best results:

e -std=c99 forC

e _fno-builtin for Cand C++

Note: To specify the C compile options, such as -std=c99, use the Tcl command add_files with the -
c flags option. Alternatively, use the Edit CFLAGs button in the Project Settings dialog box.

The HLS Math Library

The following functions are provided in the HLS math library. Each function supports half-
precision (type half), single-precision (type f1loat)and double precision (type double).

i} IMPORTANT! For each function func listed below, there is also an associated half-precision only function
named half_ func and single-precision only function named func £ provided in the library.

When mixing half-precision, single-precision and double-precision data types, check for common
synthesis errors to prevent introducing type-conversion hardware in the final FPGA
implementation.

Trigonometric Functions

acos acospi asin asinpi
atan atan2 atan2pi cos
cospi sin sincos sinpi
tan tanpi

Hyperbolic Functions

acosh asinh atanh cosh

sinh tanh

Exponential Functions

exp exp10 exp2 expm1
frexp Idexp modf

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 24

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=224

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Logarithmic Functions

ilogb log log10 log1p

Power Functions

cbrt hypot pow rsqrt
sqrt

Error Functions

erf erfc

Rounding Functions

ceil floor llrint llround
Irint Iround nearbyint rint
round trunc

Remainder Functions

fmod remainder remquo

Floating-point

copysign nan nextafter nexttoward

Difference Functions

fdim fmax fmin maxmag

minmag

Other Functions

abs divide fabs fma

fract mad recip

Classification Functions

fpclassify isfinite isinf isnan

isnormal signbit

Comparison Functions

isgreater isgreaterequal isless islessequal

islessgreater isunordered

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 5ot

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=225

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Relational Functions

all any bitselect isequal

isnotequal isordered select

Fixed-Point Math Functions
Fixed-point implementations are also provided for the following math functions.

All fixed-point math functions support ap_[ulfixed and ap_[u]int data types with following bit-
width specification,

1. ap_fixed<W, I>wherel<=33 and W-I<=32

2. ap_ufixed<W, I>where |<=32 and W-1<=32
3. ap_int<I> where I<=33
4

ap_uint<I> where [<=32

Trigonometric Functions

cos sin tan acos asin atan atan2 sincos

cospi sinpi

Hyperbolic Functions

cosh sinh tanh acosh asinh atanh

Exponential Functions

exp frexp modf exp2 expm1

Logarithmic Functions

log log10 ilogb log1p

Power Functions

pow sqrt rsqrt cbrt hypot

Error Functions

erf erfc

Rounding Functions

ceil floor trunc round rint nearbyint

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 526

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=226

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Floating Point

nextafter nexttoward

Difference Functions

erf erfc fdim fmax fmin maxmag minmag

Other Functions

fabs recip abs fract divide

Classification Functions

signbit

Comparison Functions

isgreater isgreaterequal isless islessequal islessgreater

Relational Functions

isequal isnotequal any all bitselect

The fixed-point type provides a slightly-less accurate version of the function value, but a smaller
and faster RTL implementation.

The methodology for implementing a math function with a fixed-point data types is:

1. Determine if a fixed-point implementation is supported.
2. Update the math functions to use ap_fixed types.

3. Perform C simulation to validate the design still operates with the required precision. The C
simulation is performed using the same bit-accurate types as the RTL implementation.

4. Synthesize the design.

For example, a fixed-point implementation of the function sin is specified by using fixed-point
types with the math function as follows:

#include "hls_math.h"
#include "ap_fixed.h"

ap-fixed<32,2> my_input, my_output;

my_input = 24.675;
my_output = sin(my_input) ;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 527

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=227

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

When using fixed-point math functions, the result type must have the same width and integer
bits as the input.

Verification and Math Functions

If the standard C math library is used in the C source code, the C simulation results and the
C/RTL co-simulation results may be different: if any of the math functions in the source code
have an ULP difference from the standard C math library it may result in differences when the
RTL is simulated.

If the h1s_math.h library is used in the C source code, the C simulation and C/RTL co-
simulation results are identical. However, the results of C simulation using hls_math.h are not
the same as those using the standard C libraries. The hl1s_math. h library simply ensures the C
simulation matches the C/RTL co-simulation results. In both cases, the same RTL implementation
is created. The following explains each of the possible options which are used to perform
verification when using math functions.

Verification Option 1: Standard Math Library and Verify Differences

In this option, the standard C math libraries are used in the source code. If any of the functions
synthesized do have exact accuracy the C/RTL co-simulation is different than the C simulation.
The following example highlights this approach.

#include <cmath>
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

typedef float data_t;

data_t cpp-_math(data_t angle) {
data_t s = sinf(angle);
data_t ¢ = cosf(angle);
return sqrtf(s*s+c*c);

}

In this case, the results between C simulation and C/RTL co-simulation are different. Keep in
mind when comparing the outputs of simulation, any results written from the test bench are
written to the working directory where the simulation executes:

o Cshnubﬁon:Fdder<project>/<solution>/cSim/build

e C/RTL co-simulation: Folder <project>/<solution>/sim/<RTL>

where <project> is the project folder, <solution> is the name of the solution folder and <RTL> is
the type of RTL verified (verilog or vhdl). The following figure shows a typical comparison of the
pre-synthesis results file on the left-hand side and the post-synthesis RTL results file on the right-
hand side. The output is shown in the third column.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 528

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=228

& XILINX

Chapter 2: High-Level Synthesis C Libraries

Figure 84: Pre-Synthesis and Post-Synthesis Simulation Differences

"1 0
2 1L
3 2
4 3.
5 i)
6 .
7 13
g 7.
9 B
10]
11 10
12 15
13 L2
14 L3
15 4
16 15
17 L6
1g L7
19 s
20 e
21 20
22 21
23 (22
24 [23
25 (24
26 5
27 b.
28 BT
29 8.
30 9.

result.dat
.000000000000000 0.0055999%9776483 - 000000000000000
.000000000000000 0.105959993403554 - 000000000000000
.000000000000000 0. 209999923443459 - 000000000000000
000000000000000 0. 310000002384186 000000000000000
000000000000000 0.402929996423721 000000000000000
000000000000000 0. 509999990463257 000000000000000
000000000000000 0. 610000014305115 . 395355
000000000000000 0. 7100000381465973 1.000000000000000
000000000000000 0. 610000061988831 1.000000000000000
.000000000000000 0.910000085830688 1. 000000000000000
. 000000000000000 1.010000109672546 . 000000000000000
.000000000000000 1.110000133514404
.000000000000000 1, 210000157356262
. 000000000000000 1.310000181198120 .909009940395355
. 000000000000000 1,410000205039978 1. 000000000000000
. 000000000000000 1.51000022B8881836 1.000000000000000
. 000000000000000 1.610000252723654 1.000000000000000
. 000000000000000 1. 710000276565552 1.000000000000000
. 000000000000000 1.810000300407410 1. 000000000000000
.000000000000000 1,910000324249268 . 999999940395355
. 000000000000000 2,010000228881836 0, 999999240395355
000000000000000 2,110000133514404 1, 000000000000000
. 000000000000000 2,210000038146973 1, 000000000000000
. 000000000000000 2,309999542779541 1.000000000000000
. 000000000000000 2.409999847412109 1.000000000000000
000000000000000 2.509999752044678 1.000000000000000
000000000000000 2. 609999656677246 1.000000000000000
000000000000000 2, 709999561309814 0. 999999940395355
000000000000000 2 809999465242383 1, 000000000000000
000000000000000 2,909999370574951 1. 000000000000000

proj_cpp_math.prjfsolution] fsimfsystemciresult.dat

000000000000000
Qoooooooooooonoo
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
Q0oooooooooaonoo
. 000000000000000
. 000000000000000
. 000000000000000
. 000000000000000
. 000000000000000
. 000000000000000
. 00ooo0ooDooDOOD
17.000000000000000
18.000000000000000
119, 000000000000000
20,000000000000000
21,000000000000000
22, 000000000000000
23.000000000000000
24.000000000000000
25.000000000000000
26.000000000000000
127, 000000000000000
28.000000000000000
29,000000000000000

B 000 1 1 s LR D
=l et

e
& Lopa

-
o

oooooooooo

00598959557 7483
1059859584 03554
209990903443489
310000002384188
4009999964 23721
509995930463257
610000014305115
T10000038146973
8610000061988831
5910000085830688
010000109672546
110000133514404
210000157356262
310000181198120
410000205039978
510000228881836
610000252723694
710000276565552
410000300407410
910000324249268
010000228881836
110000133514404
210000038146973
309999942779541
409959847412109
509959752044676
605999965667 T240
T09989561309814
8099004p5042383
909989370574951

59 B0 DS 03 03 19 B3 B3 B3 B3I bbb b b b ek ek s

_DoooooooooDooon
_DoooooooooDooon
- 000000000000000
000000000000000
000000000000000
000000000000000
 DDO0OODD000000D
1. 000000000000000
1. 000000000000000
1. 000000000000000
1.000000000000000

900909040395 355
000000000000000
000000000000000
000000000000000
000o0000000DoO00DoD
000000000000000

000000000000000
000000000000000
000000000000000
000000000000000
000000000000000D
000000000000000

0
0
1
1
1
1
1.
1.d
0.
1
1.
1.
1.
1.
1.
1
1
1.

000000000000000

The results of pre-synthesis simulation and post-synthesis simulation differ by fractional
amounts. You must decide whether these fractional amounts are acceptable in the final RTL
implementation.

The recommended flow for handling these differences is using a test bench that checks the
results to ensure that they lie within an acceptable error range. This can be accomplished by
creating two versions of the same function, one for synthesis and one as a reference version. In

this example, only function cpp_math is synthesized.

#include
#include
#include
#include
#include

<cmath>

<fstream>
<iostream>
<iomanip>
<cstdlib>
using namespace std;

typedef float data_t;

data_t cpp-math(data_t angle) {

data_t s =
data_t c =

sinf(angle) ;
cosf(angle) ;

return sqrtf(s*s+c*c);

}

data_t cpp_math_sw(data_t angle) {

data_t s =
data_t c =

sinf(angle) ;
cosf(angle) ;

return sqrtf(s*s+c*c);

}

S

UG902 (v2019.2) January 13, 2020
High-Level Synthesi

l Send Feedback l

00000000000000
999099940395355

(100000000000000
000000000000000

www.Xilinx.com

229

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=229

Chapter 2: High-Level Synthesis C Libraries

& XILINX

The test bench to verify the design compares the outputs of both functions to determine the
difference, using variable d1if £ in the following example. During C simulation both functions
produce identical outputs. During C/RTL co-simulation function cpp_math produces different
results and the difference in results are checked.

int main() {

data_t angle = 0.01;

data_t output, exp_output, diff;
int retval=0;
for (data_t i = 0; i <= 250; 4i++) {

output = cpp_math(angle);
exp_output = cpp_math_sw(angle) ;

// Check for differences

diff = ((exp_output > output) ? exp_output - output output -
exp_output) ;

if (diff > 0.0000005) {

printf("Difference %.10f exceeds tolerance at angle %.10f \n", diff,
angle) ;

retval=1;

}

angle = angle + .1;

}

if (retval != 0) {

printf("Test failed 11I\n");

retval=1;

} else {

printf("Test passed !\n");

}
// Return 0 if the test passes
return retval;

3

If the margin of difference is lowered to 0.00000005, this test bench highlights the margin of
error during C/RTL co-simulation:

Difference 0.0000000596 at angle 1.1100001335
Difference 0.0000000596 at angle 1.2100001574
Difference 0.0000000596 at angle 1.5100002289
Difference 0.0000000596 at angle 1.6100002527

etc..

When using the standard C math libraries (math.h and cmath . h) create a “smart” test bench to
verify any differences in accuracy are acceptable.

Verification Option 2: HLS Math Library and Validate Differences

An alternative verification option is to convert the source code to use the HLS math library. With
this option, there are no differences between the C simulation and C/RTL co-simulation results.
The following example shows how the code above is modified to use the hls_math.h library.

www.Xilinx.com
230

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=230

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Note: This option is only available in C++.

e Include the h1s_math.h header file.
e Replace the math functions with the equivalent h1s: : function.

#include <cmath>
#include "hls_math.h"
#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

typedef float data_t;

data_t cpp_math(data_t angle) {
data_t s = hls::sinf(angle);
data_t ¢ = hls::cosf(angle);
return hls::sqrtf(s*s+c*c);

}

Verification Option 3: HLS Math Library File and Validate
Differences

Including the HLS math library file 1ib_hlsm.cpp as a design file ensures Vivado HLS uses the
HLS math library for C simulation. This option is identical to option2 however it does not require
the C code to be modified.

The HLS math library file is located in the src directory in the Vivado HLS installation area.
Simply copy the file to your local folder and add the file as a standard design file.

Note: This option is only available in C++.

As with option 2, with this option there is now a difference between the C simulation results
using the HLS math library file and those previously obtained without adding this file. These
difference should be validated with C simulation using a “smart” test bench similar to option 1.

Common Synthesis Errors

The following are common use errors when synthesizing math functions. These are often (but not
exclusively) caused by converting C functions to C++ to take advantage of synthesis for math
functions.

C++ cmath.h

If the C++ cmath . h header file is used, the floating point functions (for example, sinf and
cosf) can be used. These result in 32-bit operations in hardware. The cmath . h header file also
overloads the standard functions (for example, sin and cos) so they can be used for float and
double types.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 531

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=231

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

C math.h

If the Cmath. h library is used, the single-precision functions (for example, sinf and cos) are
required to synthesize 32-bit floating point operations. All standard function calls (for example,
sin and cos) result in doubles and 64-bit double-precision operations being synthesized.

Cautions

When converting C functions to C++ to take advantage of math . h support, be sure that the new
C++ code compiles correctly before synthesizing with Vivado HLS. For example, if sqrt £ () is
used in the code with math . h, it requires the following code extern added to the C++ code to
support it:

#include <math.h>
extern “C” float sqrtf(float);

To avoid unnecessary hardware caused by type conversion, follow the warnings on mixing double
and float types discussed in Floats and Doubles.

HLS Video Library

i} IMPORTANT! The Vivado® HLS video libraries have been moved to the Xilinx® GitHub and can be found here:
https://github.com/Xilinx/xfopencv

HLS IP Libraries

Vivado HLS provides C++ libraries to implement a number of Xilinx IP blocks. The C libraries
allow the following Xilinx IP blocks to be directly inferred from the C++ source code ensuring a
high-quality implementation in the FPGA.

Table 26: HLS IP Libraries

Library Header File Description

his_fft.h Allows the Xilinx LogiCORE IP FFT to be simulated in C and implemented
using the Xilinx LogiCORE block.

hls_ssrlib.h Allows a fully synthesizable Super Sample date Rate (SSR) FFT to process
multiple input samples for every clock cycle.

hls_fir.h Allows the Xilinx LogiCORE IP FIR to be simulated in C and implemented
using the Xilinx LogiCORE block.

hls_dds.h Allows the Xilinx LogiCORE IP DDS to be simulated in C and implemented
using the Xilinx LogiCORE block.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 532

https://github.com/Xilinx/xfopencv
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=232

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Table 26: HLS IP Libraries (cont'd)

Library Header File Description

ap_shift_reg.h Provides a C++ class to implement a shift register which is implemented
directly using a Xilinx SRL primitive.

FFT IP Library

The Xilinx FFT IP block can be called within a C++ design using the library hl1s_fft . h. This
section explains how the FFT can be configured in your C++ code.

O RECOMMENDED: Xilinx highly recommends that you review the Fast Fourier Transform LogiCORE IP Product
Guide (PG109) for information on how to implement and use the features of the IP.

To use the FFT in your C++ code:

Include the hl1s_fft.h library in the code
Set the default parameters using the pre-defined struct hls: :ip_fft::params_t
Define the run time configuration

Call the FFT function

LA N

Optionally, check the run time status

The following code examples provide a summary of how each of these steps is performed. Each
step is discussed in more detail below.

First, include the FFT library in the source code. This header file resides in the include directory in
the Vivado HLS installation area which is automatically searched when Vivado HLS executes.

#include "hls_fft.h"

Define the static parameters of the FFT. This includes such things as input width, number of
channels, type of architecture. which do not change dynamically. The FFT library includes a
parameterization struct hls: :ip_fft: :params_t, which can be used to initialize all static
parameters with default values.

In this example, the default values for output ordering and the widths of the configuration and
status ports are over-ridden using a user-defined struct parami based on the pre-defined struct.

struct paraml : hls::ip_fft::params_t {
static const unsigned ordering_opt
static const unsigned config_width
static const unsigned status_width

hls::ip_fft::natural_order;
FFT_CONFIG_WIDTH;
FFT_STATUS_WIDTH;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 533

https://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=233

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Define types and variables for both the run time configuration and run time status. These values
can be dynamic and are therefore defined as variables in the C code which can change and are
accessed through APlIs.

typedef hls::ip_fft::config_t<paraml> config_t;
typedef hls::ip_fft::status_t<paraml> status_t;
config_t fft_configl;
status_t fft_statusl;

Next, set the run time configuration. This example sets the direction of the FFT (Forward or
Inverse) based on the value of variable “direction” and also set the value of the scaling schedule.

fft_configl.setDir(direction) ;
fft_configl.setSch(0x2AB) ;

Call the FFT function using the HLS namespace with the defined static configuration (param1 in
this example). The function parameters are, in order, input data, output data, output status and
input configuration.

hls::fft<paraml> (xnl, xk1, &fft_statusl, &fft_configl);

Finally, check the output status. This example checks the overflow flag and stores the results in
variable “ovflo”.

*ovflo = fft_statusl->getOvflol();

Design examples using the FFT C library are provided in the Vivado HLS examples and can be
accessed using menu option Help = Welcome = Open Example Project = Design Examples =
FFT.

FFT Static Parameters

The static parameters of the FFT define how the FFT is configured and specifies the fixed
parameters such as the size of the FFT, whether the size can be changed dynamically, whether
the implementation is pipelined or radix_4_burst_io.

The hls_fft.h header file defines astruct hls::ip_fft::params_t which can be used to
set default values for the static parameters. If the default values are to be used, the
parameterization struct can be used directly with the FFT function.

hls::fft<hls::ip_fft::params_t >
(xnl, xk1, &fft_statusl, &fft_configl);

A more typical use is to change some of the parameters to non-default values. This is performed
by creating a new user-defined parameterization struct based on the default parameterization
struct and changing some of the default values.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 34

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=234

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

In the following example, a new user struct my_f ft _config is defined with a new value for the
output ordering (changed to natural_order). All other static parameters to the FFT use the default
values.

struct my_fft_config : hls::ip_fft::params_t {
static const unsigned ordering_opt = hls::ip_fft::natural_order;

1

hls::fft<my_fft_config >
(xnl, xkl1, &fft_statusl, &fft_configl);

The values used for the parameterization struct hls: :ip_fft::params_t are explained in
FFT Struct Parameters. The default values for the parameters and a list of possible values are
provided in FFT Struct Parameter Values .

O RECOMMENDED: Xilinx highly recommends that you review the LogiCORE IP Fast Fourier Transform Product
Guide (PG109) for details on the parameters and the implication for their settings.

FFT Struct Parameters

Table 27: FFT Struct Parameters

Parameter Description

input_width Data input port width.

output_width Data output port width.

status_width Output status port width.

config_width Input configuration port width.

max_nfft The size of the FFT data set is specified as 1 << max_nfft.

has_nfft Determines if the size of the FFT can be run time
configurable.

channels Number of channels.

arch_opt The implementation architecture.

phase_factor_width Configure the internal phase factor precision.

ordering_opt The output ordering mode.

ovflo Enable overflow mode.

scaling_opt Define the scaling options.

rounding_opt Define the rounding modes.

mem_data Specify using block or distributed RAM for data memory.

mem_phase_factors Specify using block or distributed RAM for phase factors
memory.

mem_reorder Specify using block or distributed RAM for output reorder
memory.

stages_block_ram Defines the number of block RAM stages used in the

implementation.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 535

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=xfft;v=latest;d=pg109-xfft.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=235

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Table 27: FFT Struct Parameters (cont'd)

Parameter Description

mem_hybrid When block RAMs are specified for data, phase factor, or
reorder buffer, mem_hybrid specifies where or not to use a
hybrid of block and distributed RAMs to reduce block RAM
count in certain configurations.

complex_mult_type Defines the types of multiplier to use for complex
multiplications.

butterfly_type Defines the implementation used for the FFT butterfly.

When specifying parameter values which are not integer or boolean, the HLS FFT namespace
should be used.

For example, the possible values for parameter butterfly_type in the following table are
use_luts and use_xtremedsp_slices. The values used in the C program should be
butterfly_type = hls::ip_fft::use_luts and butterfly_type =

hls::ip_fft::use_xtremedsp_slices.

FFT Struct Parameter Values

The following table covers all features and functionality of the FFT IP. Features and functionality
not described in this table are not supported in the Vivado HLS implementation.

Table 28: FFT Struct Parameter Values

Parameter C Type Default Value Valid Values

input_width unsigned 16 8-34

output_width unsigned 16 input_width to (input_width +
max_nfft + 1)

status_width unsigned 8 Depends on FFT
configuration

config_width unsigned 16 Depends on FFT
configuration

max_nfft unsigned 10 3-16

has_nfft bool false True, False

channels unsigned 1 1-12

arch_opt unsigned pipelined_streaming_io automatically_select

pipelined_streaming_io
radix_4_burst_io
radix_2_burst_io
radix_2_lite_burst_io

phase_factor_width unsigned 16 8-34
ordering_opt unsigned bit_reversed_order bit_reversed_order
natural_order
ovflo bool true false
true

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 536

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=236

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Table 28: FFT Struct Parameter Values (cont'd)

Parameter C Type Default Value Valid Values

scaling_opt unsigned scaled scaled
unscaled
block_floating_point

rounding_opt unsigned truncation truncation
convergent_rounding

mem_data unsigned block_ram block_ram
distributed_ram

mem_phase_factors unsigned block_ram block_ram
distributed_ram

mem_reorder unsigned block_ram block_ram
distributed_ram

stages_block_ram unsigned (max_nfft<10)20: 0-11
(max_nfft - 9)

mem_hybrid bool false false
true
complex_mult_type unsigned use_mults_resources use_luts

use_mults_resources
use_mults_performance

butterfly_type unsigned use_luts use_luts
use_xtremedsp_slices

FFT Runtime Configuration and Status

The FFT supports runtime configuration and runtime status monitoring through the configuration
and status ports. These ports are defined as arguments to the FFT function, shown here as
variables fft_statusland fft_configl:

hls::fft<paraml> (xnl, xk1, &fft_statusl, &fft_configl);

The runtime configuration and status can be accessed using the predefined structs from the FFT
C library:

e hls:ip_fft::config_t<parami>
e hls:ip_fft::status_t<param1>

Note: In both cases, the struct requires the name of the static parameterization struct, shown in these
examples as param1. Refer to the previous section for details on defining the static parameterization
struct.

The runtime configuration struct allows the following actions to be performed in the C code:

e Set the FFT length, if runtime configuration is enabled

e Set the FFT direction as forward or inverse

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 537

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=237

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

e Set the scaling schedule
The FFT length can be set as follows:

typedef hls::ip_fft::config_t<paraml> config_t;
config_t fft_configl;

// Set FFT length to 512 => log2(512) =>9
fft_configl-> setNfft(9);

IMPORTANT! The length specified during runtime cannot exceed the size defined by max_n £ £t in the static
configuration.

The FFT direction can be set as follows:

typedef hls::ip_fft::config_t<paraml> config_t;
config_t fft_configl;

// Forward FFT

fft_configl->setDir(1);

// Inverse FFT

fft_configl->setDir(0);

The FFT scaling schedule can be set as follows:

typedef hls::ip_fft::config_t<paraml> config_t;
config_t fft_configl;
fft_configl->setSch(0x2AB) ;

The output status port can be accessed using the pre-defined struct to determine:

¢ If any overflow occurred during the FFT

e The value of the block exponent

The FFT overflow mode can be checked as follows:

typedef hls::ip_fft::status_t<paraml> status_t;
status_t fft_statusl;

// Check the overflow flag

bool *ovflo = fft_statusl->getOvflol();

i} IMPORTANT! After each transaction completes, check the overflow status to confirm the correct operation of
the FFT.

And the block exponent value can be obtained using:

typedef hls::ip_fft::status_t<paraml> status_t;
status_t fft_statusl;

// Obtain the block exponent

unsigned int *blk_exp = fft_statusl-> getBlkExp();

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 538

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=238

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Using the FFT Function

The FFT function is defined in the HLS namespace and can be called as follows:

hls::fft<STATIC_PARAM> (
INPUT_DATA_ARRAY,
OUTPUT_DATA_ARRAY,
OUTPUT_STATUS,
INPUT_RUN_TIME_CONFIGURATION) ;

The STATIC_PARAM is the static parameterization struct that defines the static parameters for
the FFT.

Both the input and output data are supplied to the function as arrays (INPUT_DATA_ARRAY and
OUTPUT_DATA_ARRAY). In the final implementation, the ports on the FFT RTL block will be
implemented as AXI4-Stream ports. Xilinx recommends always using the FFT function in a region
using dataflow optimization (set_directive_dataflow), because this ensures the arrays are
implemented as streaming arrays. An alternative is to specify both arrays as streaming using the
set_directive_stream command.

i} IMPORTANT! The FFT cannot be used in a region which is pipelined. If high-performance operation is required,
pipeline the loops or functions before and after the FFT then use dataflow optimization on all loops and
functions in the region.

The data types for the arrays can be float or ap_fixed.

typedef float data_t;
complex<data_t> xn[FFT_LENGTH] ;
complex<data_t> xk[FFT_LENGTH] ;

To use fixed-point data types, the Vivado HLS arbitrary precision type ap_fixed should be used.

#include "ap_fixed.h"

typedef ap_fixed<FFT_INPUT_WIDTH,1> data_in_t;

typedef ap_fixed<FFT_OUTPUT_WIDTH,FFT_OUTPUT_WIDTH-FFT_INPUT_WIDTH+1>
data_out_t;

#include <complex>

typedef hls::x_complex<data_in_t> cmpxData;

typedef hls::x_complex<data_out_t> cmpxDataOut;

In both cases, the FFT should be parameterized with the same correct data sizes. In the case of
floating point data, the data widths will always be 32-bit and any other specified size will be
considered invalid.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 539

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=239

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

ﬁ? IMPORTANT! The input and output width of the FFT can be configured to any arbitrary value within the
supported range. The variables which connect to the input and output parameters must be defined in
increments of 8-bit. For example, if the output width is configured as 33-bit, the output variable must be
defined as a 40-bit variable.

The multichannel functionality of the FFT can be used by using two-dimensional arrays for the
input and output data. In this case, the array data should be configured with the first dimension
representing each channel and the second dimension representing the FFT data.

typedef float data_t;
static complex<data_t> xn[CHANNEL] [FFT_LENGTH] ;
static complex<data_t> xk[CHANELL][FFT_LENGTH] ;

The FFT core consumes and produces data as interleaved channels (for example, chO-data0, ch1-
data0, ch2-data0, etc, chO-datal, ch1l-datal, ch2-data2, etc.). Therefore, to stream the input or
output arrays of the FFT using the same sequential order that the data was read or written, you
must fill or empty the two-dimensional arrays for multiple channels by iterating through the
channel index first, as shown in the following example:

cmpxData in_fft [FFT_CHANNELS] [FFT_LENGTH] ;
cmpxData out_fft[FFT_CHANNELS][FFT_LENGTH] ;

// Write to FFT Input Array
for (unsigned i = 0; i < FFT_LENGTH; 4i++) {
for (unsigned j = 0; j < FFT_CHANNELS; ++3j) {
in_fft[j]l[i] = 4in.read().data;
1
}

// Read from FFT Output Array

for (unsigned i = 0; i < FFT_LENGTH; i++) {
for (unsigned j = 0; j < FFT_CHANNELS; ++3j) {
out.data = out_fft[jl[4i];

3
}

Design examples using the FFT C library are provided in the Vivado HLS examples and can be
accessed using menu option Help = Welcome = Open Example Project = Design Examples =
FFT.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 240

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=240

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

SSR FFT IP Library

Overview

Vivado HLS offers a fully synthesizable Super Sample data Rate (SSR) FFT with a systolic
architecture to process multiple input samples for every clock cycle. The number of samples
processed in parallel per cycle is denoted by the SSR factor. This FFT is implemented as a C++
templated function whose structure can be parametrized through template parameter which is a
C++ struct of type ssr_fft_default_params. A new structure can be defined by extending
default structure and over writing members constants as follows:

struct ssr_fft_fix_params:ssr_fft_default_params

{
static const int N=1024;
static const int R=4;
static const scaling_mode_enum scaling_mode=SSR_FFT_GROW_TO_MAX_WIDTH;
static const fft_output_order_enum output_data_order=SSR_FFT_NATURAL;
static const int twiddle_table_word_length=18;
static const int twiddle_table_intger_part_length=2;

b3

The structure above defines:

¢ N: Size or length of transform

R: The number of samples to be processed in parallel
¢ scaling_mode: The scaling mode as enumeration type

e output_data_order: Output data order which decided if data will be in natural order or digit
reversed transposed order

o twiddle_table_word_length: Defines total number of bits to be used for storing twiddle table
factors

o twiddle_table_intger_part_length: The number of integer bit used for storing integer part of
twiddles

The user defined C++ struct can be used as a template parameter when calling FFT as shown
below:

hls::ssr_fft::fft<ssr_fft_fix_params>(...);

Performance

The FFT throughput (initiation interval) can be calculated as L/R where R is the SSR value and L
is the number of samples to be transformed. The possible values for R (SSR values) are: 2,4,8,16.
These values allow for a Fmax range of 300-550 MHz when targeting the slowest of UltraScale+
speedgrade devices.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | a1

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=241

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Data Types

The FFT is based on fixed point data types (std: : complex<ap_fixed<>>)which are used for
synthesis and implementation. It is otherwise possible to use floating points for simulation.

For the best results, limiting the data bit width to 27 bits (integer + fraction) as it maps directly
onto a single DSP block. Larger inputs can be used but may lead to slower Fmax and worse
utilization. Finally, note that the complex exponential/twiddle factor storage is on 18 bit (16F+2I
Bits). The selection of 18-bit is made keeping in view the multipliers available on DSP blocks on
Xilinx FPGAs which have 18x27 bit multipliers.

Managing the Data Bit Growth During the FFT Stages:

The FFT supports three different modes to manage bit growth between FFT stages. These three
modes can be used to allow bit growth in every stage, or use scaling in every stage without any
bit growth, or allow bit growth until 27 bits and then start using scaling. The detailed description
as follows:

e SSR_FFT_GROW_TO_MAX_WIDTH: When the scaling_mode constant in the parameter
structure is set to SSR_FFT_GROW_TO_MAX_WIDTH, it specifies growth from stage to stage,
starting from the first stage to a specified max bit width. The output bit width grows until 27
bits and then saturates. The output bit width grows by log2(R) bits in every stage, and then
maxes outs at 27 bits to keep the butterfly operation mapping to DSPs. This option is useful
when the initial input bit width is less than 27 bits.

e SSR_FFT_SCALE: When the scaling_mode constant in the parameter structure is set to
SSR_FFT_SCALE, it enables scaling on outputs in every stage. Output is scaled in every stage
and loses precision. An FFT with size L and Radix=SSR=R has logR(L) stages. This option is
useful when the input bit width is already close to 27 bits and it is required that output does
not grow beyond 27 bits to map multiplications to DSPs.

e SSR_FFT_NO_SCALE: When the scaling_mode constant in the parameter structure is set
to SSR_FFT_NO_SCALE, the bit growth is allowed in every stage and the output grows
unbounded by log2(R) in every stage. This setting can be useful when high precision is
required. However, if the output bit width grows beyond 27 bits, the multiplication might not
map to DSPs only, but also start using FPGA fabric logic in combination; this might worsen the
clock speed and resource utilization.

Recommended Flow for Using SSR FFT Fixed Point Configurations

SSR FFT supports multiple scaling modes and provides options to define input bit-widths and bit-
width required to store exponential values (sin/cos in look-up tables). The signal to noise ratio
that defines the quality of output signal depends on the choice of these different parameters and
also on the quantization scheme used for converting real valued continuous signal or float point
signal to fixed point. The range and the resolution of the signal, essentially the integer bits and
the fraction bits, should be selected carefully to have good signal-to-noise ratio (SNR) at the
output of the FFT. Following is the recommended flow for working with SSR FFT HLS IP.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 42

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=242

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Start with Float Model of SSR FFT

Currently, SSR FFT can be used with ap_fixed<>, float, and double types. The following table list
the support for synthesis and simulation.

Table 29: SSR FFT Type Support

Type Supported for Synthesis Supported for Simulation
std::complex < ap_fixed <> > YES YES
std::complex<float> NO YES
std::complex<double> NO YES

The recommended starting point is to start with float/double inner typein std: :complex<>
and verify the SNR against a reference model, such as the Matlab/Python/Octave/Simulink -
whichever modeling language or tools are used by generating golden test vectors. The
synthesizable version of the SSR FFT currently only supports ap_fixed<> inner type, so the next
step is to start experimenting with a fixed point model.

Fixed Point Modeling and Implementation
Starting with Fixed Point Model

Once working with fixed point model, the recommended scaling mode to start is
SSR_FFT_NO_SCALING. The input bit-widths should be selected as follows.

Create an initial fixed point model with type ap_fixed<WL, IL>.The overallinput type is
std::complex <ap_fixed<WL, IL>,essentially storingreal and imaginary parts of the
input.

The parts are:

e IL:Integer bits, selected based on the input range

e WL: Word Length= IL + FL, where FL is the Fraction Bit Width, selected based on input
resolution

In this case, SSR FFT internally does not use any scaling because of scaling mode selection;
therefore, no potential scaling errors will be seen at the output. With scaling mode set to no
scaling, you can experiment with other fixed point parameters such as integer bits and fraction
bits used to represent the input samples. The simplistic approach would be to select bits required
to represent the input based on the input range and resolution but depending on the other input
characteristic user can optimize these bit widths.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 243

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=243

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Selecting Bit Widths for Inputs

The selection of input bit width depends on the input data characteristics and the required
resolution, and is a data-dependent choice essentially depending on range and resolution of the
test data. For simulation purposes, you can select an arbitrarily large number of bits for
representing integer and fraction bits. For implementation, you must make an optimal choice
keeping in mind the required SNR.

The recommended strategy is to do the following:

e Keep the scaling mode fixed to SSR_FFT_NO_SCALING.

¢ Modify the input bits for integer and fraction representation by observing the signal to noise
ratio at the output of SSR FFT.

e Reduce the bit widths such that the output SNR requirement is met by the minimum required
bits.

Once the SNR requirements are met, you can proceed to other fixed point optimizations, such as
bits required to store complex exponential tables and SSR FFT output scaling options.

Twiddle Factor or Sine/Cosine Lookup Table Quantization

You can change the number of bits used to quantize the sin/cos table (twiddle factors/complex
exponentials). The recommended setting is total 18 bits and 2 bits for the fraction. This setting
ensures that during multiplication, the twiddle/sin/cos input can map to the 18-bit input of the
DSP block in Xilinx® FPGAs. The model can synthesize and work for other large bit widths, but
performance might be worse because of multiplication operations not mapping to a single DSP
block and being implemented using multiple DSP blocks and/or FPGA fabric.

The twiddle factor width reduction can be useful when the initial setting for twiddle factor
storage is larger than 18 bits. By default, it is set to use 18 bits with 2 bits reserved for the signed
integer part. The 2 bits are essentially needed to accurately represent a -1 value in the table.

Choosing the Best Scaling Mode

After the choice for input bit width and twiddle factors is made with no scaling, which gives
acceptable SNR or root mean square (RMS) error at the output of fixed point SSR FFT, you can
start to experiment with the choice of scaling modes. Three different scaling modes are available
with SSR FFT. The recommended strategy is to start with SSR_FFT_NO_SCALING. If there is an
acceptable SNR/RMS error at the output, switch to SSR_FFT_GROW_TO_MAX_WIDTH. If there is
still an acceptable SNR/RMS error, switch to SSR_FFT_SCALE.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | a4

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=244

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

SSR_FFT_NO_SCALING

This is the recommended mode to start with. It performs no scaling but the output bit width
grows in every stage by 1og2(R=SSR). For example, if the size of FFT is N=64 and SSR=R=4 is
selected, then SSR FFT has log4 (64) = 3 stages. If the input bit width is W, the output bit width is
W+3*2=W+6. Therefore, the output would have grown by 1o0gR(N)*log2(R) bits.

SSR_FFT_NO_SCALING preserves the accuracy of the computation, but at maximum hardware
cost. The SSR FFT computation is done in stages with one stage feeding the next stage, so
essentially it is chain of stages.

One of the downfalls of uncontrolled bit growth is that at some point, at a certain stage when
output widths of one stage increase beyond a limit where multiplication starts not to map to DSP
blocks on the FPGA, the design performance in terms of speed may fall considerably. For
example, for a given design with logR(N) * log2(R) + Input Bit Width(IL+FL) > max(DSP
Block Multiplier Inputs), you might consider using one of the other two available scaling
schemes. For Xilinx DSP48 blocks with 18x27 multipliers for FPGA devices with DSP48 blocks,
the condition will be logR(N) * log2(R) + Input Bit Width > 27.

SSR_FFT_GROW_TO_MAX WIDTH

In this mode, a hybrid approach is used. Initially the bit growth is allowed if there is any room for
growth. If in the starting FFT stages, the output bit-widths are smaller than what can be mapped
to DSP blocks, it allows the bit growth. When the bit width grows beyond what can be mapped
to DSP blocks, it will start scaling the output.

SSR_FFT_SCALE

When you know that for a given FFT size N and SSR factor, the output will grow beyond a limit
which DSP multiplier blocks cannot handle on a given FPGA device, you have the option to set
the scaling on for every stage by selecting the SSR_FFT_SCALE option. This option scales the
output in every stage by right shifting the output by log2 (SSR=R) in every stage.

The recommended flow only provides a guideline for creating a fixed point model and discusses
options available for it in SSR FFT. Depending on the design SNR/RMS requirements the user is
required to carefully select all these parameters keeping in view different performance and
SNR/RMS requirements for given application.

SSR FFT IP Library Usage

The SSR FFT can be used in a C++ design using the 1ibrary hls_ssr_1ib.h library. This

section gives usage examples and explains some other interface level details for use in C++ based
HLS design.

To use the SSR FFT IP library:

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 45

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=245

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

1. Include the “hls_ssr_lib.h"” header:
#include <hls_ssr_1lib.h>
2. Define a C++ struct that extends ssr_fft_default_params:

struct ssr_fft_params:ssr_fft_default_params

{
static const int N-SSR_FFT_L;

static const int R=SSR_FFT_R;
static const scaling_mode_enum
scaling_mode=SSR_FFT_GROW_TO_MAX_WIDTH;

static const fft_output_order_enum
output_data_order=SSR_FFT_NATURAL;

static const int twiddle_table_word_length=18;

static const int twiddle_table_intger_part_length=2;

1
3. Call SSR FFT as follows:

hls::ssr_fft::fft<ssr_fft_params>(inD,outD) ;

where inD and outD are 2-dimensional complex arrays of ap_fixed, float or double type,
synthesis and simulation use is already explained in the previous table. The I/O arrays can be
declared as follows:

¢ Fixed Point Type: First define input type, then using type traits calculate output type
based on ssr_fft_params struct (output type calculation takes in consideration scaling
mode based bit-growth and input bit-widths)

typedef std::complex< ap_fixed<l1l6,8> > I_TYPE;
typedef
hls::ssr_fft::ssr_fft_output_type<ssr_fft_params,I_TYPE>::t_ssr_fft_out

O_TYPE;
I_TYPE inD[SSR_FFT_R][SSR_FFT_L/SSR_FFT_R];
O_TYPE outD [R][L/R];

Here SSR_FFT_R: define SSR factor and SSR_FFT_L defines the size of FFT transform.

¢ Float/Double Type: First define double/float input type, then using type traits calculate
output type based on ssr_fft_params struct. For float types the output type
calculation will return the same type as input.

typedef std::complex< float/double > I_TYPE;

typedef
hls::ssr_fft::ssr_fft_output_type<ssr_fft_params,I_TYPE>::t_ssr_fft_out

O_TYPE;

I_TYPE inD[SSR_FFT_R][SSR_FFT_L/SSR_FFT_R];

O_TYPE outD[SSR_FFT_R][SSR_FFT_L/SSR_FFT_R];

SSR FFT input Array Reading and Writing Considerations

After synthesis, SSR FFT HLS IP maps to a streaming block with FIFO interface at both the input
and output, as shown in the following figure:

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 46

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=246

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Figure 85: SSR FFT HLS IP After Synthesis

SO SO
S1 S1
S2 S2
Super Sample
S3 Rate FFT S3
° °
° ()
° °
Sn Sn

| X22903-051619

During synthesis, HLS pragmas placed inside IP description will map the 2-dimensions inside the
I/0 arrays to time and a wide-stream. It uses the HLS STREAM pragma for the second
dimension. For the first dimension, it uses pragmas for data packing, partitioning and reshaping
to create a single wide stream.

If input and output arrays are declared as the following:

I_TYPE inD[R][L/R];
O_TYPE outD[R][L/R];

The dimensions with size L/R will be mapped to time and dimension, with size R mapped to one
stream which is R-wide. This mapping places some constraints on how these arrays can be read
and written by consumers and producers while writing C++ design using SSR FFT. These
constraints stem from the physical mapping of array dimensions to time and parallel wide-
accesses. The read and write on SSR FFT I/O arrays can be performed as follows:

1. The input should be written in a nested loop as follows, with loop accessing the first
dimension to be the inner loop. The outer loop should access the time/2nd dimension:

for(int t=0;t<L/R;t++)
{

for (int r=0; r <R : r++)

{
3

inD[rllt] = ... ;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 47

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=247

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

2. The output should be read in a similar fashion as follows:

for(int t=0;t<L/R;t++)
{
for (int r=0; r <R : r++)

{
}

= outD[r][t]
}

3. If the SSR FFT IP is facing another HLS IP in the input chain or output chain, the inner loop
doing reading and writing should be unrolled.

SSR FFT Usage in Dataflow Region, Streaming Non-Streaming Connections

SSR FFT internally heavily relies on HLS dataflow optimization. The potential use case for SSR
FFT could interconnect with FFT input or output in two ways:

e Streaming Connection

e Non-Streaming Connections

Streaming Connection

In the case of streaming connection at the input, the scenario should look like as shown in the
following code snippet:

#pragma HLS DATAFLOW

in_dummy_proc (..., fft_in);
hls:ssr_fft::fft<ssr_fft_params>(fft_in, fft_out)
out_dummy_proc(fft_out,)

The constraint for input producer is that it should produce a wide stream. The constraint for
output consumers is that it should consume a wide stream. These constraints are also described
in previous sections.

Non-Streaming Connection

The current version of the SSR FFT does not support non-streaming connection at the output
and input. However, it can be enabled by placing adapters at the input/output as required, which
can convert stream to different interfaces. For example, the following code snippet is an input
adapter that maps streaming interface to memory based interface:

template < type name TYPE, int R, int L >
void fft_dinput_adapter (TYPE inDatal[R]J[L/R], TYPE outDataStream[R][L/R])
{
#pragma HLS INLINE off
#pragma HLS DATA_PACK variable=inData
#pragma HLS ARRAY_RESHAPE variable=inData complete dim=1
for(int t=0; t<L/R; t++)

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 248

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=248

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

{
#pragma HLS PIPELINE II=1
for (int r = 0; r< R; ++r)

{
}

outDataStream [r][t] = inDatalrl[t];

// Usage of Adapter at input side:

#pragma HLS DATAFLOW
in_proc_memory_based(...,in_data_mem_based)
fft_input_adapter<TYPE_NAME,R,L>(in_data_mem_based,

fft_in_stream_based) ;
hls:ssr_fft::fft<ssr_fft_params>(fft_in_stream_based,

fft_out_strema_based)
out_dummy_proc(fft_out_stream_based,)

Note: The adapter for the output side can be constructed using a similar method.

FIR Filter IP Library

The Xilinx FIR IP block can be called within a C++ design using the library h1s_fir.h. This
section explains how the FIR can be configured in your C++ code.

O RECOMMENDED: Xilinx highly recommends that you review the FIR Compiler LogiCORE IP Product Guide
(PG149) for information on how to implement and use the features of the IP.

To use the FIR in your C++ code:

1. Include the hls_fir.h library in the code.

2. Set the static parameters using the pre-defined struct hls: :ip_fir: :params_t.
3. Call the FIR function.
4

Optionally, define a run time input configuration to modify some parameters dynamically.

The following code examples provide a summary of how each of these steps is performed. Each
step is discussed in more detail below.

First, include the FIR library in the source code. This header file resides in the include directory in
the Vivado HLS installation area. This directory is automatically searched when Vivado HLS
executes. There is no need to specify the path to this directory if compiling inside Vivado HLS.

#include "hls_fir.h"

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 549

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=latest;d=pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=249

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Define the static parameters of the FIR. This includes such static attributes such as the input
width, the coefficients, the filter rate (single, decimation, hilbert). The FIR library includes a
parameterization struct hls: :ip_fir: :params_t which can be used to initialize all static
parameters with default values.

In this example, the coefficients are defined as residing in array coe f f_vec and the default
values for the number of coefficients, the input width and the quantization mode are over-ridden
using a user a user-defined struct myconfig based on the pre-defined struct.

struct myconfig : hls::ip_fir::params_t {

static const double coeff_vec[sg_fir_srrc_coeffs_len];
static const unsigned num_coeffs = sg_fir_srrc_coeffs_len;
static const unsigned input_width = INPUT_WIDTH;
static const unsigned quantization = hls::ip_fir::quantize_only;

1

Create an instance of the FIR function using the HLS namespace with the defined static
parameters (myconfig in this example) and then call the function with the run method to
execute the function. The function arguments are, in order, input data and output data.

static hls::FIR<paraml> firl;
firl.run(fir_in, fir_out);

Optionally, a run time input configuration can be used. In some modes of the FIR, the data on
this input determines how the coefficients are used during interleaved channels or when
coefficient reloading is required. This configuration can be dynamic and is therefore defined as a
variable. For a complete description of which modes require this input configuration, refer to the
FIR Compiler LogiCORE IP Product Guide (PG149).

When the run time input configuration is used, the FIR function is called with three arguments:
input data, output data and input configuration.

// Define the configuration type
typedef ap_uint<8> config_t;

// Define the configuration variable
config_t fir_config = 8;

// Use the configuration in the FFT
static hls::FIR<paraml> firl;
firl.run(fir_in, fir_out, &fir_config);

Design examples using the FIR C library are provided in the Vivado HLS examples and can be
accessed using menu option Help = Welcome = Open Example Project = Design Examples =
FIR.

FIR Static Parameters

The static parameters of the FIR define how the FIR IP is parameterized and specifies non-
dynamic items such as the input and output widths, the number of fractional bits, the coefficient
values, the interpolation and decimation rates. Most of these configurations have default values:
there are no default values for the coefficients.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 550

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=latest;d=pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=250

& XILINX

Chapter 2: High-Level Synthesis C Libraries

The hls_fir.h header file definesa struct hls::ip_fir::params_t that can be used to
set the default values for most of the static parameters.

i} IMPORTANT! There are no defaults defined for the coefficients. Therefore, Xilinx does not recommend using
the pre-defined struct to directly initialize the FIR. A new user defined struct which specifies the coefficients
should always be used to perform the static parameterization.

In this example, a new user struct my_config is defined and with a new value for the
coefficients. The coefficients are specified as residing in array coe f f _vec. All other parameters

to the FIR use the default values.

struct myconfig : hls::ip_fir::params_t {
static const double coeff_vec[sg_fir_srrc_coeffs_len];

} .

firl.run(fir_in, fir_out);

static hls::FIR<myconfig> firl;

FIR Static Parameters describes the parameters used for the parametrization struct
hls::ip_fir::params_t. FIR Struct Parameter Values provides the default values for the

parameters and a list of possible values.

O RECOMMENDED: Xilinx highly recommends that you refer to the FIR Compiler LogiCORE IP Product Guide
(PG149) for details on the parameters and the implication for their settings.

FIR Struct Parameters

Table 30: FIR Struct Parameters

Parameter

Description

input_width

Data input port width

input_fractional_bits

Number of fractional bits on the input port

output_width

Data output port width

output_fractional_bits

Number of fractional bits on the output port

coeff_width

Bit-width of the coefficients

coeff_fractional_bits

Number of fractional bits in the coefficients

num_coeffs Number of coefficients
coeff_sets Number of coefficient sets
input_length Number of samples in the input data

output_length

Number of samples in the output data

num_channels

Specify the number of channels of data to process

total_num_coeff

Total number of coefficients

coeff_vec[total_num_coeff]

The coefficient array

filter_type

The type implementation used for the filter

rate_change

Specifies integer or fractional rate changes

interp_rate

The interpolation rate

decim_rate

The decimation rate

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

l Send Feedback l WWW'X“mX'C;;?

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=latest;d=pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=251

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Table 30: FIR Struct Parameters (cont'd)

Parameter Description
zero_pack_factor Number of zero coefficients used in interpolation
rate_specification Specify the rate as frequency or period
hardware_oversampling_rate Specify the rate of over-sampling
sample_period The hardware oversample period
sample_frequency The hardware oversample frequency
quantization The quantization method to be used
best_precision Enable or disable the best precision
coeff_structure The type of coefficient structure to be used
output_rounding_mode Type of rounding used on the output
filter_arch Selects a systolic or transposed architecture
optimization_goal Specify a speed or area goal for optimization
inter_column_pipe_length The pipeline length required between DSP columns
column_config Specifies the number of DSP48 column
config_method Specifies how the DSP48 columns are configured
coeff_padding Number of zero padding added to the front of the filter

When specifying parameter values that are not integer or boolean, the HLS FIR namespace
should be used.

For example the possible values for rate_change are shown in the following table to be
integer and fixed_fractional. The values used in the C program should be
rate_change = hls::ip_fir::integer and rate_change =

hls::dip_fir::fixed_fractional.

FIR Struct Parameter Values

The following table covers all features and functionality of the FIR IP. Features and functionality
not described in this table are not supported in the Vivado HLS implementation.

Table 31: FIR Struct Parameter Values

Parameter C Type Default Value Valid Values
input_width unsigned 16 No limitation
input_fractional_bits unsigned 0 Limited by size of

input_width
output_width unsigned 24 No limitation
output_fractional_bits unsigned 0 Limited by size of

output_width
coeff_width unsigned 16 No limitation
coeff_fractional_bits unsigned 0 Limited by size of

coeff_width
num_coeffs bool 21 Full

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 559

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=252

& XILINX

Chapter 2: High-Level Synthesis C Libraries

Table 31: FIR Struct Parameter Values (cont'd)

Parameter C Type Default Value Valid Values

coeff_sets unsigned 1 1-1024

input_length unsigned 21 No limitation

output_length unsigned 21 No limitation

num_channels unsigned 1 1-1024

total_num_coeff unsigned 21 num_coeffs * coeff_sets

coeff_vec[total_num_coeff] double array None Not applicable

filter_type unsigned single_rate single_rate, interpolation,
decimation, hilbert_filter,
interpolated

rate_change unsigned integer integer, fixed_fractional

interp_rate unsigned 1 1-1024

decim_rate unsigned 1 1-1024

zero_pack_factor unsigned 1 1-8

rate_specification unsigned period frequency, period

hardware_oversampling_rate | unsigned 1 No Limitation

sample_period bool 1 No Limitation

sample_frequency unsigned 0.001 No Limitation

quantization unsigned integer_coefficients integer_coefficients,
quantize_only,
maximize_dynamic_range

best_precision unsigned false false
true

coeff_structure unsigned non_symmetric inferred, non_symmetric,
symmetric,
negative_symmetric,
half_band, hilbert

output_rounding_mode unsigned full_precision full_precision, truncate_|sbs,
non_symmetric_rounding_do
wn,
non_symmetric_rounding_up
symmetric_rounding_to_zero
symmetric_rounding_to_infin
ity,
convergent_rounding_to_eve
n,
convergent_rounding_to_odd

filter_arch unsigned systolic_multiply_accumulate | systolic_multiply_accumulate,
transpose_multiply_accumul
ate

optimization_goal unsigned area area, speed

inter_column_pipe_length unsigned 4 1-16

column_config unsigned 1 Limited by number of
DSP48s used

config_method unsigned single single, by_channel

UG902 (v2019.2) January 13, 2020
High-Level Synthesis

www.Xilinx.com

l Send Feedback l 253

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=253

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Table 31: FIR Struct Parameter Values (cont'd)

Parameter C Type Default Value Valid Values

coeff_padding bool false false
true

Using the FIR Function

The FIR function is defined in the HLS namespace and can be called as follows:

// Create an instance of the FIR

static hls::FIR<STATIC_PARAM> firl;

// Execute the FIR instance firl
firl.run(INPUT_DATA_ARRAY, OUTPUT_DATA_ARRAY) ;

The STATIC_PARAM is the static parameterization struct that defines most static parameters for
the FIR.

Both the input and output data are supplied to the function as arrays (INPUT_DATA_ARRAY and
OUTPUT_DATA_ARRAY). In the final implementation, these ports on the FIR IP will be
implemented as AXI4-Stream ports. Xilinx recommends always using the FIR function in a region
using the dataflow optimization (set _directive_dataflow), because this ensures the arrays
are implemented as streaming arrays. An alternative is to specify both arrays as streaming using
the set_directive_stream command.

ﬁ? IMPORTANT! The FIR cannot be used in a region which is pipelined. If high-performance operation is required,
pipeline the loops or functions before and after the FIR then use dataflow optimization on all loops and
functions in the region.

The multichannel functionality of the FIR is supported through interleaving the data in a single
input and single output array.

e The size of the input array should be large enough to accommodate all samples: num_channels
* input_length.

e The output array size should be specified to contain all output samples: num_channels *
output_length.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 4

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=254

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

The following code example demonstrates, for two channels, how the data is interleaved. In this
example, the top-level function has two channels of input data (din_1, din_q) and two
channels of output data (dout_1, dout _q). Two functions, at the front-end (fe) and back-end
(be) are used to correctly order the data in the FIR input array and extract it from the FIR output
array.

void dummy_fe(din_t din_i[LENGTH], din_t din_q[LENGTH], din_t
out [FIR_LENGTH]) {
for (unsigned i = 0; i < LENGTH; ++1i) {
out[2#*i] = din_dil[di];
out[2#*i + 1] = din_qldil;
}

}
void dummy_be(dout_t in[FIR_LENGTH], dout_t dout_i[LENGTH], dout_t

dout_q[LENGTH]) {

for(unsigned i = 0; i < LENGTH; ++1i) {
dout_i[i] = in[2*4i];
dout_qgli] = dinl[2*i+1];

}
}
void fir_top(din_t din_i[LENGTH], din_t din_q[LENGTH],
dout_t dout_i[LENGTH], dout_t dout_gq[LENGTH]) {

din_t fir_in[FIR_LENGTH] ;
dout_t fir_out[FIR_LENGTH] ;
static hls::FIR<myconfig> firl;

dummy_fe(din_i, din_g, fir_in);
firl.run(fir_in, fir_out) ;
dummy_be(fir_out, dout_i, dout_q);

Optional FIR Runtime Configuration

In some modes of operation, the FIR requires an additional input to configure how the
coefficients are used. For a complete description of which modes require this input configuration,
refer to the FIR Compiler LogiCORE IP Product Guide (PG149).

This input configuration can be performed in the C code using a standard ap_int.h 8-bit data
type. In this example, the header file fir_top . h specifies the use of the FIR and ap_fixed
libraries, defines a number of the design parameter values and then defines some fixed-point
types based on these:

#include "ap_fixed.h"
#include "hls_fir.h"

const unsigned FIR_LENGTH = 23

const unsigned INPUT_WIDTH = 16;

const unsigned INPUT_FRACTIONAL_BITS = O;
const unsigned OUTPUT_WIDTH = 24;

const unsigned OUTPUT_FRACTIONAL_BITS = 0;
const unsigned COEFF_WIDTH = 16;

const unsigned COEFF_FRACTIONAL_BITS = O0;
const unsigned COEFF_NUM = T7;

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | S5c

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=fir_compiler;v=latest;d=pg149-fir-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=255

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

const unsigned COEFF_SETS = 3;

const unsigned INPUT_LENGTH = FIR_LENGTH;

const unsigned OUTPUT_LENGTH = FIR_LENGTH;

const unsigned CHAN_NUM = 1;

typedef ap_fixed<INPUT_WIDTH, INPUT_WIDTH - INPUT_FRACTIONAL_BITS> s_data_t;
typedef ap_fixed<OUTPUT_WIDTH, OUTPUT_WIDTH - OUTPUT_FRACTIONAL_BITS>
m_data_t;

typedef ap_uint<8> config_t;

In the top-level code, the information in the header file is included, the static parameterization
struct is created using the same constant values used to specify the bit-widths, ensuring the C
code and FIR configuration match, and the coefficients are specified. At the top-level, an input
configuration, defined in the header file as 8-bit data, is passed into the FIR.

#include "fir_top.h"

struct paraml : hls::ip_fir::params_t {
static const double coeff_vec[total_num_coeff];
static const unsigned input_length = INPUT_LENGTH;
static const unsigned output_length = OUTPUT_LENGTH;
static const unsigned num_coeffs = COEFF_NUM;
static const unsigned coeff_sets = COEFF_SETS;

b3

const double paraml::coeff_vec[total_num_coeff] =
{6,0,-4,-3,5,6,-6,-13,7,44,64,44,7,-13,-6,6,5,-3,-4,0,61;

void dummy_fe(s_data_t in[INPUT_LENGTH], s_data_t out[INPUT_LENGTH],
config_t* config_in, config_t* config_out)

{
*config_out = *config_in;
for(unsigned i = 0; i < INPUT_LENGTH; ++1)
out[i] = inlil;
1
void dummy_be(m_data_t in[OUTPUT_LENGTH], m_data_t out [OUTPUT_LENGTH])
{
for(unsigned i = 0; i < OUTPUT_LENGTH; ++i)
out[i] = inlil;
1
// DUT

void fir_top(s_data_t in[INPUT_LENGTH],
m_data_t out [OUTPUT_LENGTH],
config_t* config)

s_data_t fir_in[INPUT_LENGTH] ;
m_data_t fir_out[OUTPUT_LENGTH] ;
config_t fir_config;

// Create struct for config
static hls::FIR<paraml> firl;

// Dataflow process
dummy_fe(in, fir_in, config, &fir_config);
firl.run(fir_din, fir_out, &fir_config);
dummy_be(fir_out, out);

//jse=s=secsssecssoecspscesoseesossessomessoosssooese

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 56

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=256

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Design examples using the FIR C library are provided in the Vivado HLS examples and can be
accessed using menu option Help = Welcome = Open Example Project = Design Examples =
FIR.

DDS IP Library

You can use the Xilinx Direct Digital Synthesizer (DDS) IP block within a C++ design using the
hls_dds.h library. This section explains how to configure DDS IP in your C++ code.

O RECOMMENDED: Xilinx highly recommends that you review the LogiCORE IP DDS Compiler Product Guide
(PG141) for information on how to implement and use the features of the IP.

i} IMPORTANT! The C IP implementation of the DDS IP core supports the fixed mode for the Phase_Increment
and Phase_Offset parameters and supports the none mode for Phase_Offset, but it does not support
programmable and streaming modes for these parameters.

To use the DDS in the C++ code:

1. Include the his_dds.h library in the code.
2. Set the default parameters using the pre-defined struct hls: :ip_dds: :params_t.

3. Call the DDS function.

First, include the DDS library in the source code. This header file resides in the include directory
in the Vivado HLS installation area, which is automatically searched when Vivado HLS executes.

#include "hls_dds.h"

Define the static parameters of the DDS. For example, define the phase width, clock rate, and
phase and increment offsets. The DDS C library includes a parameterization struct
hls::ip_dds: :params_t, Which is used to initialize all static parameters with default values.
By redefining any of the values in this struct, you can customize the implementation.

The following example shows how to override the default values for the phase width, clock rate,
phase offset, and the number of channels using a user-defined struct parami, which is based on
the existing predefined struct hls::ip_dds: :params_t:

struct paraml : hls::ip_dds::params_t {

static const unsigned Phase_Width = PHASEWIDTH;
static const double DDS_Clock_Rate = 25.0;
static const double PINC[16];

static const double POFF[16];

53

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 557

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dds_compiler;v=latest;d=pg141-dds-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=257

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Create an instance of the DDS function using the HLS namespace with the defined static
parameters (for example, param1). Then, call the function with the run method to execute the
function. Following are the data and phase function arguments shown in order:

static hls: :DDS<configl> ddsl;
ddsl.run(data_channel, phase_channel);

To access design examples that use the DDS C library, select Help = Welcome = Open Example
Project = Design Examples — DDS.

DDS Static Parameters

The static parameters of the DDS define how to configure the DDS, such as the clock rate, phase
interval, and modes. The hls_dds.h header file definesan hls::ip_dds: :params_t struct,
which sets the default values for the static parameters. To use the default values, you can use the
parameterization struct directly with the DDS function.

static hls::DDS< hls::ip_dds::params_t > ddsl;
ddsl.run(data_channel, phase_channel);

The following table describes the parameters for the hls: :ip_dds: :params_t
parameterization struct.

O RECOMMENDED: Xilinx highly recommends that you review the DDS Compiler LogiCORE IP Product Guide
(PG141) for details on the parameters and values.

Table 32: DDS Struct Parameters

Parameter Description
DDS_Clock_Rate Specifies the clock rate for the DDS output.
Channels Specifies the number of channels. The DDS and phase

generator can support up to 16 channels. The channels are
time-multiplexed, which reduces the effective clock
frequency per channel.

Mode_of_Operation Specifies one of the following operation modes:

Standard mode for use when the accumulated phase can be
truncated before it is used to access the SIN/COS LUT.

Rasterized mode for use when the desired frequencies and
system clock are related by a rational fraction.

Modulus Describes the relationship between the system clock
frequency and the desired frequencies.

Use this parameter in rasterized mode only.

Spurious_Free_Dynamic_Range Specifies the targeted purity of the tone produced by the
DDS.
Frequency_Resolution Specifies the minimum frequency resolution in Hz and

determines the Phase Width used by the phase
accumulator, including associated phase increment (PINC)
and phase offset (POFF) values.

UG902 (v2019.2) January 13, 2020 www xilinx.com
High-Level Synthesis [_send Feedback | 558

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=dds_compiler;v=latest;d=pg141-dds-compiler.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=258

& XILINX

Table 32: DDS Struct Parameters (cont'd)

Chapter 2: High-Level Synthesis C Libraries

Parameter

Description

Noise_Shaping

Controls whether to use phase truncation, dithering, or
Taylor series correction.

Phase_Width

Sets the width of the following:

PHASE_OUT field withinm_axis_phase_tdata

Phase field within s_axis_phase_tdata whenthe DDS is
configured to be a SIN/COS LUT only

Phase accumulator

Associated phase increment and offset registers

Phase field in s_axis_config_tdata

For rasterized mode, the phase width is fixed as the number
of bits required to describe the valid input range [0,
Modulus-1], that is, log2 (Modulus-1) rounded up.

Output_Width

Sets the width of SINE and COSINE fields within
m_axis_data_tdata. The SFDR provided by this parameter
depends on the selected Noise Shaping option.

Phase_Increment

Selects the phase increment value.

Phase_Offset

Selects the phase offset value.

Output_Selection

Sets the output selection to SINE, COSINE, or both in the
m_axis_data_tdata bus.

Negative_Sine

Negates the SINE field at run time.

Negative_Cosine

Negates the COSINE field at run time.

Amplitude_Mode

Sets the amplitude to full range or unit circle.

Memory_Type

Controls the implementation of the SIN/COS LUT.

Optimization_Goal

Controls whether the implementation decisions target
highest speed or lowest resource.

DSP48_Use

Controls the implementation of the phase accumulator and
addition stages for phase offset, dither noise addition, or
both.

Latency_Configuration

Sets the latency of the core to the optimum value based
upon the Optimization Goal.

Latency

Specifies the manual latency value.

Output_Form

Sets the output form to two’s complement or to sign and
magnitude. In general, the output of SINE and COSINE is in
two’s complement form. However, when quadrant
symmetry is used, the output form can be changed to sign
and magnitude.

PINC[XIP_DDS_CHANNELS_MAX]

Sets the values for the phase increment for each output
channel.

POFF[XIP_DDS_CHANNELS_MAX]

Sets the values for the phase offset for each output channel.

DDS Struct Parameter Values

The following table shows the possible values for the hls::ip_dds: :params_t

parameterization struct parameters.

UG902 (v2019.2) January 13, 2020

High-Level Synthesis

www.Xilinx.com
l Send Feedback l 259

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG902&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2019.2&docPage=259

iv Xl Ll NX Chapter 2: High-Level Synthesis C Libraries
A 0

Table 33: DDS Struct Parameter Values

Parameter C Type Default Value Valid Values
DDS_Clock_Rate double 20.0 Any double value
Channels unsigned 1 1to 16
Mode_of_Operation unsigned XIP_DDS_MOO_CONVENTIO | XIP_DDS_MOO_CONVENTIO
NAL NAL truncates the

accumulated phase.

XIP_DDS_MOOQO_RASTERIZED
selects rasterized mode.

Modulus unsigned 200 129 to 256
Spurious_Free_Dynamic_Ran | double 20.0 18.0 to 150.0

ge

Frequency_Resolution double 10.0 0.000000001 to 125000000
Noise_Shaping unsigned XIP_DDS_NS_NONE XIP_DDS_NS_NONE produces

phase truncation DDS.

XIP_DDS_NS_DITHER uses
phase dither to improve
SFDR at the expense of
increased noise floor.

XIP_DDS_NS_TAYLOR
interpolates sine/cosine
values using the otherwise
discarded bits from phase
truncation

XIP_DDS_NS_AUTO
automatically determines
noise-shaping.

Phase_Width u