
UltraFast Design
Methodology Guide for
the Vivado Design Suite

UG949 (v2019.1) June 26, 2019

See all versions of this document

UG949

UltraFast Design Methodology Guide 2
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary

06/26/2019 Version 2019.1

About the UltraFast Design Methodology Added reference to UltraFast Design Methodology
Timing Closure Quick Reference Guide (UG1292)

SLR Utilization Considerations Updated example.

Auto-Pipelining Considerations Added new section.

Figure 3-24 Updated to show the hierarchy recommendation and
USER_SLR_ASSIGNMENT constraints

Figure 3-62 Added note about safe timing between BUFGCE_DIV
clocks.

Incremental Synthesis Flows Added new section.

Incremental Implementation Flow Modes Added information on automatic incremental
implementation.

Optimization Analysis Added -debug_log option.

Table 5-1 Added Severity column and TIMING-44 and TIMING-45
checks.

Table 5-2 Added Severity column and TIMING-46 check.

Optimizing Paths with Dedicated Blocks and Macro
Primitives

Added optimization options.

Interconnect Congestion Level in the Device Window Added enhanced reporting information.

Choose a High Quality Reference Checkpoint Added information on selecting different timing closed
checkpoints and using incremental synthesis.

Considering Floorplan Added tip about IS_SOFT property.

Using Hard SLR Floorplan Constraints Added tip about IS_SOFT property.

Using Soft SLR Floorplan Constraints Updated XDC constraint example for optimal
placement.

Using SLR Crossing Registers Added USER_SLL_REG property.

Using Auto-Pipelining for SLR Crossings Added new section.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=2

Table of Contents
Chapter 1: Introduction

About the UltraFast Design Methodology . 5
Understanding UltraFast Design Methodology Concepts . 9
Using the Vivado Design Suite . 12
Accessing Additional Documentation and Training. 13

Chapter 2: Board and Device Planning
Overview of Board and Device Planning . 14
PCB Layout Recommendations . 14
Clock Resource Planning and Assignment . 17
I/O Planning Design Flows. 18
Designing with SSI Devices . 24
Designing with HBM Devices. 30
Device Power Aspects and System Dependencies. 34
Configuration . 37

Chapter 3: Design Creation
Overview of Design Creation. 39
Defining a Good Design Hierarchy . 40
RTL Coding Guidelines . 43
Clocking Guidelines . 87
Clock Domain Crossing . 138
Working With Intellectual Property (IP). 143
Working with Constraints . 147

Chapter 4: Implementation
Overview of Synthesis and Implementation . 188
Running Synthesis . 188
Moving Past Synthesis . 192
Implementing the Design . 196

Chapter 5: Design Closure
Overview of Design Closure . 203
UltraFast Design Methodology Guide 3
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=3

Timing Closure . 203
Analyzing and Resolving Timing Violations . 223
Applying Common Timing Closure Techniques . 250
Power Analysis and Optimization. 283
Configuration and Debug . 286

Appendix A: Additional Resources and Legal Notices
Xilinx Resources . 298
Solution Centers. 298
Documentation Navigator and Design Hubs . 298
References . 299
Training Resources. 301
Please Read: Important Legal Notices . 302
UltraFast Design Methodology Guide 4
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=4

Chapter 1

Introduction

About the UltraFast Design Methodology
The Xilinx® UltraFast™ design methodology is a set of best practices intended to help
streamline the design process for today’s devices. The size and complexity of these designs
require specific steps and design tasks to ensure success at each stage of the design.
Following these steps and adhering to the best practices will help you achieve your desired
design goals as quickly and efficiently as possible.

Xilinx provides the following resources to help you take advantage of the UltraFast design
methodology:

• This guide, which describes the various design tasks, analysis and reporting features,
and best practices for design creation and closure.

• UltraFast Design Methodology Quick Reference Guide (UG1231) [Ref 2], which highlights
key design methodology steps in an easy-to-use, double-sided card format.

• UltraFast Design Methodology Timing Closure Quick Reference Guide (UG1292) [Ref 3],
which covers recommendations for closing timing, including running initial design
checks, baselining the design, and resolving timing violations.

• UltraFast Design Methodology Checklist (XTP301) [Ref 4], which is available in the Xilinx
Documentation Navigator and as a standalone spreadsheet. You can use this checklist
to identify common mistakes and decision points throughout the design process.

• Methodology-related design rule checks (DRCs) for each design stage, which are
available using the report_methodology Tcl command in the Vivado® Design Suite.

• UltraFast Design Methodology System-Level Design Flow diagram representing the
entire Vivado Design Suite design flow, which is available in the Xilinx Documentation
Navigator. You can click a design step in the diagram to open related documentation,
collateral, and FAQs to help get you started.

RECOMMENDED: In addition to these resources, Xilinx recommends the UltraFast Embedded Design
Methodology Guide (UG1046) [Ref 5] when working with embedded designs and the UltraFast High
Level Productivity Design Methodology Guide (UG1197) [Ref 6] when developing complex systems
using Vivado IP integrator with C-based IP.
UltraFast Design Methodology Guide 5
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=5

Chapter 1: Introduction
Using This Guide
This guide provides a set of best practices that maximize productivity for both system
integration and design implementation. It includes high-level information, design
guidelines, and design decision trade-offs for the following topics:

• Chapter 2, Board and Device Planning: Covers decisions and design tasks that Xilinx
recommends accomplishing prior to design creation. These include I/O and clock
planning, PCB layout considerations, device capacity and throughput assessment,
alternate device definition, power estimation, and debugging.

• Chapter 3, Design Creation: Covers the best practices for RTL definition, IP
configuration and management, and constraints assignment.

• Chapter 4, Implementation: Covers the options available and best practices for
synthesizing and implementing the design.

• Chapter 5, Design Closure: Covers the various design analysis and implementation
techniques used to close timing on the design or to reduce power consumption. It also
includes considerations for adding debug logic to the design for hardware verification
purposes.

This guide includes references to other documents such as the Vivado Design Suite User
Guides, Vivado Design Suite Tutorials, and Quick-Take Video Tutorials. This guide is not a
replacement for those documents. Xilinx still recommends referring to those documents for
detailed information, including descriptions of tool use and design methodology. For a
listing of reference documents, see Appendix A, Additional Resources and Legal Notices.

Note: This information is designed for use with the Vivado Design Suite, but you can use most of the
conceptual information with the ISE® Design Suite as well.

Using the UltraFast Design Methodology Checklist
To take full advantage of the UltraFast design methodology, use this guide with the
UltraFast Design Methodology Checklist (XTP301) [Ref 4]. The checklist is available from the
Xilinx Documentation Navigator or as a standalone spreadsheet.
UltraFast Design Methodology Guide 6
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=6

Chapter 1: Introduction
The questions in the UltraFast Design Methodology Checklist highlight typical areas in
which design decisions are likely to have downstream impact and draw attention to issues
that are often overlooked or ignored. Each tab in the checklist:

• Targets a specific role within a typical design team.

• Includes common questions and recommended actions to take during each design flow
step, including project planning, board and device planning, IP and submodule design,
and top-level design closure.

• Includes a Documentation and Training section that lists resources related to the design
flow step.

• Provides links to content in this guide or other Xilinx documentation, which offer
guidance on addressing the design concerns raised by the questions.

VIDEO: For a demonstration of the checklist, see the Vivado Design Suite QuickTake Video:
Introducing the UltraFast Design Methodology Checklist.

Using the UltraFast Design Methodology DRCs
The Vivado Design Suite contains a set of methodology-related DRCs you can run using the
report_methodology Tcl command. This command has rules for each of the following
design stages:

• Before synthesis in the elaborated RTL design to validate RTL constructs

• After synthesis to validate the netlist and constraints

• After implementation to validate constraints and timing related concerns.

RECOMMENDED: For maximum effect, run the methodology DRCs at each design stage and address
any issues prior to moving to the next stage.

For more information on the design methodology DRCs, see Running Report Methodology,
and see the report_methodology Tcl command in the Vivado Design Suite Tcl Command
Reference Guide (UG835) [Ref 17].
UltraFast Design Methodology Guide 7
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug835-vivado-tcl-commands.pdf;a=xreport_methodology
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/introducing-ultrafast-design-methodology.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/introducing-ultrafast-design-methodology.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=7

Chapter 1: Introduction
Using the UltraFast Design Methodology System-Level Design
Flow Diagram
The following figure shows the various design steps and features included in the Vivado
Design Suite. From the Xilinx Documentation Navigator Design Hub View, you can access an
interactive version of this graphic in which you can click each step for links to related
resources.

X-Ref Target - Figure 1-1

Figure 1-1: UltraFast Design Methodology System-Level Design Flow

Hardware Bring-Up and Validation

Software DevelopmentSystem Design Entry

Configuring Xilinx and
Third-Party IP

Development Software
and Processor OS

IP Packager – IP Integrator

Configuring IP
Subsystems Embedded Processor Design

RTL
Development

Implementation
Logic Simulation

Partial Reconfiguration Assign Logical and Physical Constraints

Logic Synthesis

Implementation

Timing Closure and Design Analysis

Generate Bitstream, Programming, and Debug

Processor Boot and Debug Export to SDK

C-Based Design
with High-Level

Synthesis

Model-Based Design with
MATLAB® and Simulink® Software

System Generator
for DSP Model Composer
UltraFast Design Methodology Guide 8
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=8

Chapter 1: Introduction
Understanding UltraFast Design Methodology
Concepts
It is important to take the correct approach from the start of your design and to pay
attention to design goals from the early stages, including RTL, clock, pin, and PCB planning.
Properly defining and validating the design at each design stage helps alleviate timing
closure, routing closure, and power usage issues during subsequent stages of
implementation.

Maximizing Impact Early in the Development Cycle
As shown in the following figure, early stages in the design flow (C, C++, and RTL synthesis)
have a much higher impact on design performance, density, and power than the later
implementation stages. Therefore, if the design does not meet timing goals, Xilinx
recommends that you revisit the synthesis stage, including HDL and constraints, rather than
iterating for a solution in the implementation stages only.

X-Ref Target - Figure 1-2

Figure 1-2: Impact of Design Changes Throughout the Flow

HLS
(C, C++)

RTL
Synthesis

opt
Place

physopt

Route

Impact of change
on performance

1000x

10x

1.2x

1.1x

X13423
UltraFast Design Methodology Guide 9
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=9

Chapter 1: Introduction
Validating at Each Design Stage
The UltraFast design methodology emphasizes the importance of monitoring design
budgets, such as area, power, and timing, and correcting the design from early stages as
follows:

• Create optimal RTL constructs with Xilinx templates, and validate your RTL with
methodology DRCs prior to synthesis.

Because the Vivado tools use timing-driven algorithms throughout, the design must be
properly constrained from the beginning of the design flow.

• Perform timing analysis after synthesis.

To specify correct timing, you must analyze the relationship between each master clock
and related generated clocks in the design. In the Vivado tools, each clock interaction is
timed unless explicitly declared as an asynchronous or false path.

• Meet timing using the right constraints before proceeding to the next design stage.

You can accelerate overall timing and implementation convergence by following this
recommendation and by using the interactive analysis environment of the Vivado
Design Suite.

TIP: You can achieve further acceleration by combining these recommendations with the HDL design
guidelines in this guide.
UltraFast Design Methodology Guide 10
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=10

Chapter 1: Introduction
The following figure shows this recommended design methodology.

Synthesis is considered complete when the design goals are met with a positive margin or
a relatively small negative timing margin. For example, if post-synthesis timing is not met,
placement and routing results are not likely to meet timing. However, you can still go ahead
with the rest of the flow even if timing is not met. Implementation tools might be able to
close timing if they can allocate the best resources to the failing paths. In addition,
proceeding with the flow provides a more accurate understanding of the negative slack
magnitude, which helps you determine how much you need to improve the post-synthesis
worst negative slack (WNS). You can use this information when you return to the synthesis
stage with improvements to HDL and constraints.

X-Ref Target - Figure 1-3

Figure 1-3: Design Methodology for Rapid Convergence

Run Synthesis
Review options & HDL code

Define & Refine
Constraints

Timing Acceptable?

Place & Route

Cross-probe
Instances in critical path
In Netlist view and
Elaborated view schematics

N

Y

report_clock_networks
 -> create_clock / create_generated_clock
report_clock_interaction
 -> set_clock_groups / set_false_path
check_timing
 -> I/O delays
report_timing_summary
 -> Timing exceptions

X13422
UltraFast Design Methodology Guide 11
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=11

Chapter 1: Introduction
Taking Advantage of Rapid Validation
This guide also introduces the concept of rapid validation of specific aspects of the system
architecture and micro-architecture as follows:

° In the context of system design, the I/O bandwidth is validated in-system, before
implementing the entire design. Validating I/O bandwidth can highlight the need to
revise system architecture and interface choices before finalizing on I/Os. For more
information, see Interface Bandwidth Validation in Chapter 2.

° As part of design implementation, baselining is used to write the simplest set of
constraints, which can identify internal device timing challenges. Baselining can
identify the need to revise RTL micro-architecture choices before moving to the
implementation phase. For more information, see Baselining the Design in
Chapter 5.

Using the Vivado Design Suite
The Vivado Design Suite has a flexible use model to accommodate various development
flows and different types of designs. For detailed information on how to use the features
within the Vivado Design Suite, see the Vivado Design Suite User Guide: Design Flows
Overview (UG892) [Ref 9] and other Vivado Design Suite documentation.

Managing Vivado Design Suite Sources with a Revision Control
System
Most design teams manage their design sources and results with a commercially available
revision control system. The Vivado Design Suite allows various use models for managing
design and IP data. For more information on using the Vivado tools with a revision control
system, see this link in the Vivado Design Suite User Guide: Design Flows Overview (UG892)
[Ref 9].

Upgrading to New Vivado Design Suite Releases
New releases of the Vivado Design Suite often contain updates to Xilinx IP. Carefully
consider whether you want to upgrade your IP, because upgrading can result in design
changes. In addition, you must follow specific rules when using IP configured with previous
releases going forward. For more information, see this link in the Vivado Design Suite User
Guide: Designing with IP (UG896) [Ref 13].
UltraFast Design Methodology Guide 12
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug892-vivado-design-flows-overview.pdf;a=xUsingSourceControlSystemsWithTheVivadoTool
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug896-vivado-ip.pdf;a=xUpgradingIP
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=12

Chapter 1: Introduction
Accessing Additional Documentation and Training
This guide supplements the information in the Vivado Design Suite documentation,
including user guides, reference guides, tutorials, and QuickTake videos. The Xilinx
Documentation Navigator provides access to the Vivado Design Suite documentation and
support resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.

• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

• At the Linux command prompt, enter: docnav

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

TIP: For quick access to information on different parts of the Vivado IDE, click the Quick Help button
 in the window or dialog box. For detailed information on Tcl commands, enter the command

followed by -help in the Tcl Console.
UltraFast Design Methodology Guide 13
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=13

Chapter 2

Board and Device Planning

Overview of Board and Device Planning
Properly planning the device orientation on the board and assigning signals to specific pins
can lead to dramatic improvements in overall system performance, power consumption,
and design cycle times. Visualizing how the device interacts physically and logically with the
printed circuit board (PCB) enables you to streamline the data flow through the device.

Failing to properly plan the I/O configuration can lead to decreased system performance
and longer design closure times. Xilinx highly recommends that you consider I/O planning
in conjunction with board planning.

For more information, see the following resources:

• Vivado Design Suite User Guide: I/O and Clock Planning (UG899) [Ref 8]

• Vivado Design Suite QuickTake Video: I/O Planning Overview

PCB Layout Recommendations
The layout of the device on the board relative to other components with which it interacts
can significantly impact the I/O planning.

Aligning with Physical Components on the PCB
The orientation of the device on the PCB should first be established. Consider the location
of fixed PCB components, as well as internal device resources. For example, aligning the GT
interfaces on the device package to be as close to the components with which they
interface on the PCB will lead to shorter PCB trace lengths and fewer PCB vias.

A sketch of the PCB including the critical interfaces can often help determine the best
orientation for the FPGA device on the PCB, as well as placement of the PCB components.
Once done, the rest of the FPGA I/O interface can be planned.

High-speed interfaces such as memory can benefit from having very short and direct
connections with the PCB components with which they interface. These PCB traces often
UltraFast Design Methodology Guide 14
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/i-and-o-planning-overview.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=14

Chapter 2: Board and Device Planning
have to be matched length and not use PCB vias, if possible. In these cases, the package
pins closest to the edge of the device are preferred in order to keep the connections short
and to avoid routing out of the large matrix of BGA pins.

The I/O Planning View Layout in the Vivado IDE is useful in this stage for visualizing I/O
connectivity relative to the physical device dimensions, showing both top-side and
bottom-side views.

IMPORTANT: For thermally-challenged designs, be aware of device placement in relation to other
high-power components to minimize thermal coupling and maximize airflow. Avoid placement where
the device is positioned in the exhaust of another high power component or where board heating might
negatively impact the operating temperature. Xilinx recommends thermal simulation to understand
how the placement and environmental conditions can affect the junction temperature of the device.

The following figure shows the I/O Planning view layout.

X-Ref Target - Figure 2-1

Figure 2-1: I/O Planning View Layout
UltraFast Design Methodology Guide 15
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=15

Chapter 2: Board and Device Planning
Power Distribution System
Board designers are faced with a unique task when designing a Power Distribution System
(PDS) for a Xilinx device. Most other large, dense integrated circuits (such as large
microprocessors) come with very specific bypass capacitor requirements. Because these
devices are designed only to implement specific tasks in their hard silicon, their power
supply demands are fixed and fluctuate only within a certain range.

Xilinx devices do not share this property. Devices can implement an almost infinite number
of applications at undetermined frequencies, and in multiple clock domains. For this reason,
it is critical that you refer to the PCB Design Guide [Ref 38] for your device to fully
understand the device PDS.

Key factors to consider during PDS design include:

• Selecting the right voltage regulators to meet the noise and current requirements
based on Power Estimation. For more information, see Power Analysis and Optimization
in Chapter 5.

TIP: Consider adding a shunt resistor to allow the power on each rail to be monitored.

• Consolidating power. For more information, see this link in the UltraScale Architecture
PCB Design User Guide (UG583) [Ref 38].

• Setting up the XADC power supply (Vrefp and Vrefn pins).

• Running power distribution network (PDN) simulation. The recommended amount of
decoupling capacitors in the PCB Design Guide [Ref 38] for your device is based on
specific device utilization and step load. If the device utilization and step load do not
match your design, a PDN simulation is recommended. Running PDN simulations can
help to confirm the exact amount of decoupling capacitors required to guarantee
power supplies that are within the recommended operating range.

For more information on PDN simulation, see the Xilinx White Paper: Simulating FPGA
Power Integrity Using S-Parameter Models (WP411) [Ref 52].

Specific Considerations for PCB Design
The PCB should be designed considering the fastest signal interfacing with the FPGA
device. These high-speed signals are extremely sensitive to trace geometry, vias, loss, and
crosstalk. These aspects become even more prominent for multi-layer PCBs. For high-speed
interfaces perform a signal integrity simulation. A board redesign with improved PCB
material or altered trace geometries may be necessary to obtain the desired performance.
UltraFast Design Methodology Guide 16
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf;a=xPCBPowerDistributionSystemAndMigrationInUltraScalePlusFPGAs
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=16

Chapter 2: Board and Device Planning
Xilinx recommends following these steps when designing your PCB:

1. Review the following device documentation:

° PCB Design Guide [Ref 38] for your device.

° Board design guidelines in the Transceiver User Guide [Ref 42] for your device.

2. Review memory IP and PCIe® design guidelines in the IP product guides.

3. Use the Vivado® tools to validate your I/O planning:

° Run simultaneous switching noise (SSN) analysis.

° Run built-in DRCs.

° Export I/O buffer information specification (IBIS) models.

4. Run signal integrity analysis as follows:

° For gigabit transceivers (GTs), run Spice or IBIS-AMI simulations using channel
parameters.

° For lower performance interfaces, run IBIS simulation to check for issues with
overshoot or undershoot.

5. Use the Xilinx Power Estimator (XPE) with Process set to Maximum to generate an early
estimate of the power consumption for the design.

TIP: You can use the results of this early estimation with the set_operating_conditions
-design_power_budget <Power in Watts> Tcl command to ensure the power budget is checked
during design implementation.

6. Complete and adhere to the schematic checklist for your device.

Clock Resource Planning and Assignment
Xilinx recommends that you select clocking resources as one of the first steps of your
design, well before pinout selection. Your clocking selections can dictate a particular pinout
and can also direct logic placement for that logic, especially for stacked silicon interconnect
(SSI) technology devices. Proper clocking selections can yield superior results. Consider the
following:

• Constraint creation, particularly in large devices with high utilization in conjunction
with clock planning.

• Manual placement of clocking resources if needed for design closure. Clocking
Guidelines in Chapter 3 provides more details on clocking resources, if you need to do
manual placement.
UltraFast Design Methodology Guide 17
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=17

Chapter 2: Board and Device Planning
• Device-specific functionality that might require up-front planning to avoid issues and
take advantage of device features. For information on 7 series features, see this link and
this link in the 7 Series FPGAs Clocking Resources User Guide (UG472) [Ref 41]. For
information on UltraScale™ device features, see this link in the UltraScale Architecture
Clocking Resources User Guide (UG572) [Ref 41].

I/O Planning Design Flows
The Vivado IDE allows you to interactively explore, visualize, assign, and validate the I/O
ports and clock logic in your design. The environment ensures correct-by-construction I/O
assignment. It also provides visualization of the external package pins in correlation with
the internal die pads.

You can visualize the data flow through the device and properly plan I/Os from both an
external and internal perspective. After the I/Os are assigned and configured through the
Vivado IDE, constraints are then automatically created for the implementation tools.

For more information on Vivado Design Suite I/O and clock planning capabilities, see the
following resources:

• Vivado Design Suite User Guide: I/O and Clock Planning (UG899) [Ref 8]

• Vivado Design Suite QuickTake Video: I/O Planning Overview

Types of Vivado Design Suite Projects for I/O Planning
You can perform I/O planning with either of the following types of projects:

• I/O planning project

An I/O planning project is an easy entry point that allows you to specify select I/O
constraints and generate a top-level RTL file from the defined pins.

• RTL project

An RTL project allows synthesis and implementation, which enables more
comprehensive design rule checks (DRCs). An RTL project also allows generation of IP
cores, which is important for memory interface pinout planning and any cores using
GTs.

TIP: You can also start by using an I/O planning project and migrate to an RTL project later.

You can run more comprehensive DRCs on a post-synthesis netlist. The same is true after
implementation and bitstream generation. Therefore, Xilinx recommends using a skeleton
UltraFast Design Methodology Guide 18
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug472_7Series_Clocking.pdf;a=xClockCapableInputPinPlacementRules
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/i-and-o-planning-overview.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug472_7Series_Clocking.pdf;a=xMultiRegionClocking
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug572-ultrascale-clocking.pdf;a=xClockingResources
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=18

Chapter 2: Board and Device Planning
design that includes clocking components and some basic logic to exercise the DRCs. This
builds confidence that the pin definition for the board will not have issues later.

The recommended sign-off process is to run the RTL project through to bitstream
generation to exercise all the DRCs. However, not all design cycles allow enough time for
this process. Often the I/O configuration must be defined before you have synthesizable
RTL. Although the Vivado tools enable pre-RTL I/O planning, the level of DRCs performed
are fairly basic. Alternatively, you can use a dummy top-level design with I/O standards and
pin assignments to help perform DRCs related to banking rules.

Pre-RTL I/O Planning

If your design cycle forces you to define the I/O configuration before you have a
synthesized netlist, take great care to ensure adherence to all relevant rules. The Vivado
tools include a Pin Planning Project environment that allows you to import I/O definitions
using a CSV or XDC format file. You can also create a dummy RTL with just the port
directions defined. Availability of port direction makes simultaneous-switching-noise (SSN)
analysis more accurate as input and output signals have different contributions to SSN.

I/O ports can also be created and configured interactively. Basic I/O bank DRC rules are
provided.

See the PCB Design Guide [Ref 38] for your device to ensure proper I/O configuration. For
more information, see this link in the Vivado Design Suite User Guide: I/O and Clock
Planning (UG899) [Ref 8].

Netlist-Based I/O Planning

The recommended time in the design cycle to assign I/Os and clock logic constraints is after
the design has been synthesized. The clock logic paths are established in the netlist for
constraint assignment purposes. The I/O and clock logic DRCs are also more
comprehensive.

See the PCB Design Guide [Ref 38] for your device to ensure proper I/O configuration. For
more information, see this link in the Vivado Design Suite User Guide: I/O and Clock
Planning (UG899) [Ref 8].

Defining Alternate Devices
It is often difficult to predict the final device size for any given design during initial
planning. Logic can be added or removed during the course of the design cycle, which can
result in the need to change the device size.

The Vivado tools enable you to define alternate devices to ensure that the I/O pin
configuration defined is compatible across all selected devices, as long as the package is
the same.
UltraFast Design Methodology Guide 19
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug899-vivado-io-clock-planning.pdf;a=xPreRTLIOPlanning
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug899-vivado-io-clock-planning.pdf;a=xNetlistIOPlanning
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=19

Chapter 2: Board and Device Planning
IMPORTANT: The device must be in the same package.

To migrate your design with reduced risk, carefully plan the following at the beginning of
the design process: device selection, pinout selection, and design criteria. Take the
following into account when migrating to a larger or smaller device in the same package:
pinout, clocking, and resource management. For more information, see this link in the
Vivado Design Suite User Guide: I/O and Clock Planning (UG899) [Ref 8].

Pin Assignment
Good pinout selection leads to good design logic placement, shorter routes, reduced power
consumption, and improved performance. Good pinout selection is especially important for
large FPGA devices, because a pinout that is spread out can cause related signals to span
longer distances. For more information, see this link in the Vivado Design Suite User Guide:
I/O and Clock Planning (UG899) [Ref 8].

Using Xilinx Tools in Pinout Selection

Xilinx tools assist in interactive design planning and pin selection. These tools are only as
effective as the information you provide them. Tools such as the Vivado design analysis tool
can assist pinout efforts. These tools can graphically display the I/O placement, show
relationships among clocks and I/O components, and provide DRCs to analyze pin
selection.

If a design version is available, a quick top-level floorplan can be created to analyze the
data flow through the device. For more information, see the Vivado Design Suite User Guide:
Design Analysis and Closure Techniques (UG906) [Ref 24].

Required Information

For the tools to work effectively, you must provide as much information about the I/O
characteristics and topologies as possible. You must specify the electrical characteristics,
including the I/O standard, drive, slew, and direction of the I/O.

You must also take into account all other relevant information, including clock topology and
timing constraints. Clocking choices in particular can have a significant influence in pinout
selection and vice versa, as discussed in Clocking Guidelines in Chapter 3.

For IP that have I/O requirements, such as transceivers, PCIe, and memory interfaces, you
must configure the IP prior to completing I/O pin assignment, as described in Pinout
Selection. For more information on specifying the electrical characteristics for an I/O, see
this link in the Vivado Design Suite User Guide: I/O and Clock Planning (UG899) [Ref 8].
UltraFast Design Methodology Guide 20
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug899-vivado-io-clock-planning.pdf;a=xDefiningAlternateCompatibleParts
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug899-vivado-io-clock-planning.pdf;a=xIOPinPlanning
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug899-vivado-io-clock-planning.pdf;a=xDefiningAndConfiguringIOPorts
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=20

Chapter 2: Board and Device Planning
Pinout Selection
Xilinx recommends careful pinout selection for some specific signals as discussed below.

Interface Data, Address, and Control Pins

Group the same interface data, address, and control pins into the same bank. If you cannot
group these components into the same bank, group them into adjacent banks. For SSI
technology devices, adjacent banks must also be located within the same super logic region
(SLR).

Interface Control Signals

Place the following interface control signals in the middle of the data buses they control
(clocking, enables, resets, and strobes).

Very High Fanout, Design-Wide Control Signals

Place very high fanout, design-wide control signals towards the center of the device.

For SSI technology devices, place the signals in the SLR located in the middle of the SLR
components they drive.

Configuration Pins

To design an efficient system, you must choose the FPGA configuration mode that best
matches the system requirements. Factors to consider include:

• Using dedicated vs. dual purpose configuration pins.

Each configuration mode dedicates certain FPGA pins and can temporarily use other
multi-function pins during configuration only. These multi-function pins are then
released for general use when configuration is completed.

• Using configuration mode to place voltage restrictions on some FPGA I/O banks.

• Choosing suitable terminations for different configuration pins.

• Using the recommended values of pull-up or pull-down resistors for configuration pins.

RECOMMENDED: Even though configuration clocks are slow speed, perform signal integrity analysis on
the board to ensure clean signals.
UltraFast Design Methodology Guide 21
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=21

Chapter 2: Board and Device Planning
There are several configuration options. Although the options are flexible, there is often an
optimal solution for each system. Consider the following when choosing the best
configuration option:

• Setup

• Speed

• Cost

• Complexity

See Configuration. For more information on FPGA configuration options, see Vivado Design
Suite User Guide: Programming and Debugging (UG908) [Ref 27].

Memory Interfaces

Additional I/O pin planning steps are required when using Xilinx Memory IP. After the IP is
customized, you then assign the top-level IP ports to physical package pins in either the
elaborated or synthesized design in the Vivado IDE. All of the ports associated with each
Memory IP are group together into an I/O Port Interface for easier identification and
assignment. A Memory Bank/Byte Planner is provided to assist you with assigning Memory
I/O pin groups to byte lanes on the physical device pins. For more information, see this link
in the Vivado Design Suite User Guide: I/O and Clock Planning (UG899) [Ref 8].

Take care when assigning memory interfaces and try to limit congestion as much as
possible, especially with devices that have a center I/O column. Bunching memory
interfaces together can create routing bottlenecks across the device. The Xilinx Zynq-7000
SoC and 7 Series Devices Memory Interface User Guide (UG586) [Ref 49] and the LogiCORE IP
UltraScale Architecture-Based FPGAs Memory Interface Solutions Product Guide (PG150)
[Ref 50] contain design and pinout guidelines. Be sure that you follow the trace length
match recommendations in these guides, verify that the correct termination is used, and
validate the pinout in by running the DRCs after memory IP I/O assignment.

Gigabit Transceivers (GTs)

Gigabit transceivers (GTs) have specific pinout requirements, and you must consider the
following:

• Sharing of reference clocks

• Sharing of PLLs within a quad

• Placement of hard blocks, such as PCIe, and their proximity to transceivers

• In SSI technology devices, crossing of SLR boundaries

Xilinx recommends that you use the GT wizard to generate the core. Alternatively, you can
use the Xilinx IP core for the protocol. For pinout recommendations, see the related product
guide.
UltraFast Design Methodology Guide 22
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug899-vivado-io-clock-planning.pdf;a=xIOPlanningForUltraScaleMemoryIP
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=22

Chapter 2: Board and Device Planning
For clock resource balancing, the Vivado placer attempts to constrain loads clocked by GT
output clocks (TXOUTCLK or RXOUTCLK) next to the GTs sourcing the clocks. For SSI
technology devices, if the GTs are located in the clock regions adjacent to another SLR, the
routing resources required for signals entering or exiting SLLs have to compete with the
routing resources required by the GT output clock loads. Therefore, GTs located in clock
regions next to SLR crossings might reduce the available routing connections to and from
the SLL crossings available in those clock regions.

High Speed I/O

HP (high-performance) and HR (high-range) banks have difference in the speed with which
they can transmit and receive signals. Depending upon the I/O speed you need, choose
between HP or HR banks.

Internal VREF and DCI Cascade Constraints

Based on the settings for DCI Cascade and Internal VREF, you can free up pins to be used for
regular I/Os. These settings also ensure that related DRC checks are run to validate the
legality of the constraints. For more information, see the SelectIO Resources User Guide
[Ref 40] for your device.

Interface Bandwidth Validation
Create small connectivity designs to validate each interface on the FPGA. These small
designs exercise only the specific hardware interface, which enables the following:

• Full DRC checks on pinout, clocking, and timing

• Hardware test design when the board is returned

• Rapid implementation through the Vivado tools, providing the fastest way to debug
the interface

There are multiple options to assist in generating test data for these interfaces. For some of
the interface IP cores, the Vivado tools can provide the test designs:

• IBERT for SerDes

• Example design within IP cores

TIP: If a test design does not exist, consider using AXI traffic generators.

You might need to create a separate design for a system-level test in a production
environment. Usually, this is a single design that includes tested interfaces and optionally
includes processors. You can construct this design using the small connectivity designs to
take advantage of design reuse. Although this design is not required early in the flow, it can
UltraFast Design Methodology Guide 23
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=23

Chapter 2: Board and Device Planning
enable better DRC checks and early software development, and you can quickly create it
using the Vivado IP integrator.

Designing with SSI Devices

SSI Pinout Considerations
When planning pinouts for components that are located in a particular SLR, place the pins
into the same SLR. For example, when using the device DNA information as a part of an
external interface, place the pins for that interface in the master SLR in which the
DNA_PORT exists. Additional considerations include the following:

• Group all pins of a particular interface into the same SLR.

• For signals driving components in multiple SLRs, place those signals in the middle SLR.

• Balance CCIO or CMT components across SLRs.

• Reduce SLR crossings.

Super Logic Region (SLR)
A super logic region (SLR) is a single device die slice contained in an SSI technology device.
Each SLR contains a subset of device resources, such as CLBs, block RAMs, DSP tiles, and
GTs, with a similar structure to non-SSI devices.

Multiple SLR components are stacked vertically and connected through an interposer to
create an SSI technology device. The bottom SLR is SLR0, and subsequent SLR components
are named incrementally as they ascend vertically. For example, the XC7V2000T device
includes four SLR components. The bottom SLR is SLR0, the SLR directly above SLR0 is SLR1,
the SLR directly above SLR1 is SLR2, and the top SLR is SLR3.

Note: The Xilinx tools clearly identify SLR components in the graphical user interface (GUI) and in
reports.
UltraFast Design Methodology Guide 24
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=24

Chapter 2: Board and Device Planning
SLR Nomenclature
Understanding SLR nomenclature for your target device is important in:

• Pin selection

• Floorplanning

• Analyzing timing and other reports

• Identifying where logic exists and where that logic is sourced or destined

You can use the Vivado Tcl command get_slrs to get specific information about SLRs for
a particular device. For example, use the following commands:

° llength [get_slrs] to obtain the number of SLRs in the device

° get_slrs -of_objects [get_cells my_cell] to get the SLR in which
my_cell is placed

Master Super Logic Region
Every SSI technology device has a single master SLR. The master SLR contains the primary
configuration logic that initiates configuration of the device and all other SLR components.
The master SLR contains the circuitry that is used for configuration, DNA_PORT, and
EFUSE_USER. When using these components, the place and route tools can assign
associated pins and logic to the appropriate SLR. In general, no additional intervention is
required.

TIP: To query which SLR is the master SLR in the Vivado Design Suite, you can enter the
get_slrs -filter IS_MASTER Tcl command.

Silicon Interposer
The silicon interposer is a passive layer in the SSI technology device, which routes the
following between SLR components:

• Configuration

• Global clocking

• General interconnect
UltraFast Design Methodology Guide 25
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=25

Chapter 2: Board and Device Planning
Super Long Line (SLL) Routes
Super Long Line (SLL) routes connect signals from one SLR to another inside the device.

TIP: To determine the number of available SLLs between SLRs, use SLR properties. For example:
get_property NUM_TOP_SLLS [get_slrs SLR0]
get_property NUM_BOT_SLLS [get_slrs SLR1]

Propagation Limitations
TIP: For high-speed propagation across SLRs, be sure to register signals that cross SLR boundaries.

SLL signals are the only data connections between SLR components.

The following do not propagate across SLR components:

• Carry chains

• DSP cascades

• Block RAM address cascades

• Other dedicated connections, such as DCI cascades and block RAM cascades

The tools normally take this limit on propagation into account. To ensure that designs route
properly and meet your design goals, you must also take this limit into account when you:

• Build a very long DSP cascade and manually place such logic near SLR boundaries

• Specify a pinout for the design

SLR Utilization Considerations
The Vivado implementation tools use a special algorithm to partition logic into multiple
SLRs. For challenging designs, you can improve timing closure for designs that target SSI
technology devices using the following guidelines.

To improve timing closure and compile times, you can use Pblocks to assign logic to each
SLR and validate that individual SLRs do not have excessive utilization across all fabric
resource types. For example, a design with block RAM utilization of 70% might cause issues
with timing closure if the block RAM resources are not balanced across SLRs and one SLR is
using over 85% block RAM.
UltraFast Design Methodology Guide 26
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=26

Chapter 2: Board and Device Planning
The following example utilization report for a vu160 shows that the overall block RAM
utilization is 56% with 59% in SLR0, 40% in SLR1, and 58% in SLR2. The block RAM
utilization is evenly distributed across SLRs with reasonable utilization in each SLR, which
allows the Vivado implementation commands more flexibility to meet timing.

Xilinx recommends assigning block RAM and DSP groups to SLR Pblocks to minimize SLR
crossings of shared signals. For example, an address bus that fans out to a group of block

X-Ref Target - Figure 2-2

Figure 2-2: Block RAM Section in Utilization Report
X-Ref Target - Figure 2-3

Figure 2-3: SLR Section in Utilization Report
UltraFast Design Methodology Guide 27
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=27

Chapter 2: Board and Device Planning
RAMs that are spread out over multiple SLRs can make timing closure more difficult to
achieve, because the SLR crossing incurs additional delay for the timing critical signals.

Device resource location or user I/O selection anchors IP to SLRs, for example, GT, ILKN,
PCIe, and CMAC dedicated block or memory interface controllers. Xilinx recommends the
following:

• Pay special attention to dedicated block location and pinout selection to avoid data
flow crossing SLR boundaries multiple times.

• Keep tightly interconnected modules and IPs within the same SLR. If that is not
possible, you can add pipeline registers to allow the placer more flexibility to find a
good solution despite the SLR crossing between logic groups.

• Keep critical logic within the same SLR. By ensuring that main modules are properly
pipelined at their interfaces, the placer is more likely to find SLR partitions with
flip-flop to flip-flop SLR crossings.

In the following figure, a memory interface that is constrained to SLR0 needs to drive user
logic in SLR1. An AXI4-Lite slave interface connects to the memory IP backend, and the
well-defined boundary between the memory IP and the AXI4-Lite slave interface provides a
good transition from SLR0 to SLR1.

SLR Crossing for Wide Buses
When data flow requirements require that wide buses cross SLRs, use pipelining strategies
to improve timing closure and alleviate routing congestion of long resources. For wide

X-Ref Target - Figure 2-4

Figure 2-4: Memory Interface in SLR0 Driving User Logic in SLR1
UltraFast Design Methodology Guide 28
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=28

Chapter 2: Board and Device Planning
buses operating above 250 MHz, Xilinx recommends using at least three pipeline stages to
cross an SLR: one at the top, one at the bottom, and one in the middle of the SLR. Additional
pipeline stages might be required for very high performance buses or when traversing
horizontal as well as vertical distances.

The following figure illustrates a worst case crossing for a vu190-2 device. This example
starts at an Interlaken dedicated block in the bottom left of SLR0 to a packet monitor block
assigned to the top right of SLR2. Without pipeline registers for the data bus to and from
the packet monitor, the design misses the 300 MHz timing requirement by a wide margin.

X-Ref Target - Figure 2-5

Figure 2-5: Data Path Crossing SLR without Pipeline Flip-Flop
UltraFast Design Methodology Guide 29
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=29

Chapter 2: Board and Device Planning
However, adding seven pipeline stages to aid in the traversal from SLR0 to SLR2 allows the
design to meet timing. It also reduces the use of vertical and horizontal long routing
resources, as shown in the following figure.

TIP: Use the AXI Register Slice IP or your custom auto-pipelining IP to close timing on wide buses
across SLRs. For more information, see Auto-Pipelining Considerations in Chapter 3.

Designing with HBM Devices
Virtex® UltraScale+™ HBM devices incorporate 4 GB high-bandwidth memory (HBM) stacks
adjacent to the device die. Using SSI technology, the device communicates to the HBM
stacks through memory controllers that connect through the silicon interposer at the
bottom of the device. Each Virtex UltraScale+ HBM device contains one or two 4 GB HBM
stacks, resulting in up to 8 GB of HBM per device. The device includes 32 HBM AXI interfaces
used to communicate with the HBM. The flexible addressing feature that is provided by a
built-in switch allows for any of the 32 HBM AXI interface to access any memory address on
either one or both of the HBM stacks. This flexible connection between the device and the
HBM stacks is helpful for floorplanning and timing closure.

X-Ref Target - Figure 2-6

Figure 2-6: Data Path Crossing SLR with Pipeline Flip-Flop Added
UltraFast Design Methodology Guide 30
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=30

Chapter 2: Board and Device Planning
The following figure shows the Virtex UltraScale+ HBM vu37p device adjacent to a Virtex
UltraScale+ vu13p device. In the vu37p device, the bottom two SLRs of the vu13p device are
replaced by the HBM stacks (SLR0 in the vu13p device) and an SLR that contains the 32 HBM
AXI interfaces (SLR1 in the vu13p device). The top two SLRs of the vu13p and vu37p device
are identical.

X-Ref Target - Figure 2-7

Figure 2-7: Device View of the vu13p and vu37p

vu13p vu37p

CMAC

ILKN

PCIE

PCIEC

HBM AXI

X21195-051419
UltraFast Design Methodology Guide 31
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=31

Chapter 2: Board and Device Planning
In the vu37p device, the SLR0 contains 4 PCIE4C sites, 2 ILKNE4 sites, and the 32 HBM AXI
interfaces. The 4 PCIE4C sites in the Virtex UltraScale+ HBM SLR0 are unique because they
allow for the Cache Coherent Interconnect for Accelerators (CCIX) protocol using PCIe Gen3
x 16 when VCCINT is at 0.72V.

Placement Considerations when Using HBM Devices

Pipelining Considerations for Crossing SLRs

The pipeline considerations for crossing SLRs in Virtex UltraScale+ HBM devices are the
same as for other UltraScale and UltraScale+ SSI technology devices. For general
recommendations for SSI technology devices, see SLR Crossing for Wide Buses.

Paths from fabric logic in SLR2 to the HBM AXI Interfaces in SLR0 often require five or more
pipeline stages to meet timing. Thoughtful design planning of Virtex UltraScale+ HBM
devices can reduce the need for additional pipeline stages and reduce routing congestion.
The following figure shows an example of SLR crossings to the HBM AXI Interfaces from
SLR2.

RECOMMENDED: Xilinx recommends keeping the paths from SLR2 and SLR1 vertically aligned to their
respective HBM AXI interfaces to avoid crossing the device diagonally.

TIP: Use auto-pipelining (e.g., AXI Register Slice IP) to ensure timing closure between the HBM
interfaces and any SLR at 450 MHz. For more information, see Auto-Pipelining Considerations in
Chapter 3.

X-Ref Target - Figure 2-8

Figure 2-8: SLR0 of a Virtex UltraScale+ HBM vu37p Device

ILKNE4

CMACE4

PCIE4

PCIE4C

HBM AXI
UltraFast Design Methodology Guide 32
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=32

Chapter 2: Board and Device Planning
Resource Planning within SLR0

Proper management of the HBM AXI Interfaces and other logic within the SLR0 can provide
optimal quality of results (QoR) and minimize routing congestion. Following are some
common design planning considerations for the SLR0 in HBM devices:

• For designs that heavily utilize the HBM AXI interfaces, budget for lower overall fabric
utilization of non-HBM logic in SLR0 to better accommodate the resources required for
the HBM AXI interfaces.

• Using MIG IP in the SLR0 might result in timing closure challenges for HBM AXI
interfaces located near the I/O columns of the device. When using MIG IP, consider
using the I/O columns located in SLR2 or SLR1.

• Be aware of address ranges and the physical location of the HBM AXI interfaces that
can impact the latency and bandwidth of the design. To optimize the performance of
the HBM, utilize the physical HBM AXI interfaces on the same device side as the
addressed HBM stack.

X-Ref Target - Figure 2-9

Figure 2-9: HBM Sub-Optimal Design Planning (left) versus Optimal Design Planning (right)

X21196-071618
UltraFast Design Methodology Guide 33
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=33

Chapter 2: Board and Device Planning
PCIE4C to HBM AXI paths within SLR0

To achieve optimal timing QoR and minimize routing congestion when designing with HBM
and PCIE4C, Xilinx recommends using the PCIE4C sites that are farthest away from the 32
HBM AXI interface in SLR0. In the following figure, these sites are PCIE4CE4_X0Y1 and
PCIE4CE4_X1Y1 indicated by the green arrows.

Device Power Aspects and System Dependencies
When planning the PCB, you must take power into consideration:

• The device and the user design create system power supply and heat dissipation
requirements.

• Power supplies must be able to meet maximum power requirements and the device
must remain within the recommended voltage and temperature operating conditions
during operation. Power estimation and thermal modeling might be required to ensure
that the device stays within these limits.

• Plan for the consolidation of power rails and their impact on power domain switching.

For these reasons, you must understand the power and cooling requirements of the device.
These must be designed on the board.

X-Ref Target - Figure 2-10

Figure 2-10: Recommended PCIE4C Sites in SLR0 of a Virtex UltraScale+ HBM vu37p Device
UltraFast Design Methodology Guide 34
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=34

Chapter 2: Board and Device Planning
Power Supply Paths on Devices
Multiple power supplies are required to power a device. Some of this power must be
provided in a specific sequence. Consider the use of power monitoring or sequencing
circuitry to provide the correct power-on sequence to the device and GTs as well as any
additional active components on the board. More complex environments might benefit
from the use of a microcontroller or system and power management bus such as SMBUS or
PMBUS to control the power and reset process. Specific details regarding on/off
sequencing can be found in the device data sheet. For more information on supply
consolidation and topologies, see the PCB Design Guide [Ref 38] for your device.

The separate sources provide the required power for the different device resources. This
allows different resources to work at different voltage levels for increased performance or
signal strength, while preserving a high immunity to noise and parasitic effects.

Power Modes
A device goes through several power phases from power up to power down with varying
power requirements.

Power-On

Power-on power is the transient spike current that occurs when power is first applied to the
device. This current varies for each voltage supply and depends on the device construction,
the ability of the power supply source to ramp up to the nominal voltage, and the device
operating conditions, such as temperature and sequencing between the different supplies.

Spike currents are not a concern in modern device architectures when the proper power-on
sequencing guidelines are followed.

Startup Power

Startup power is the power required during the initial bring-up and configuration of the
device. This power generally occurs over a very short period of time and thus is not a
concern for thermal dissipation. However, current requirements must still be met. In most
cases, the active current of an operating design will be higher and thus no changes are
necessary. However, for lower-power designs where active current can be low, a higher
current requirement during this time may be necessary. Xilinx Power Estimator (XPE) can be
used to understand this requirement. When Process is set to Maximum, the current
requirement for each voltage rail will be specified to either the operating current or the
startup current, whichever is higher. XPE will display the current value in blue if the startup
current is the higher value.
UltraFast Design Methodology Guide 35
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=35

Chapter 2: Board and Device Planning
Standby Power

Standby power (also called design static power) is the power supplied when the device is
configured with your design and no activity is applied externally or generated internally.

Standby power represents the minimum continuous power that the supplies must provide
while the design operates.

Active Power

Active power (also called design dynamic power) is the power required while the device is
running your application. Active power includes standby power (all static power), plus
power generated from the design activity (design dynamic power). Active power is
instantaneous and varies at each clock cycle depending on the input data pattern and the
design internal activity.

Environmental Factors Impacting Power
In addition to the design itself, environmental factors affect power. These factors influence
the voltage and the junction temperature of the device, which impacts the power
dissipation. For details, see this link in the Vivado Design Suite User Guide: Power Analysis
and Optimization (UG907) [Ref 25].

Power Rail Consolidation Impacting Power
To take advantage of the power management switching of power domains, your design
must keep some discrete power rails. This allows individual rails to be powered off with the
power domain switching logic. For more information, see this link in the UltraScale
Architecture PCB Design User Guide (UG583) [Ref 38].

Power Models Accuracy
The accuracy of the characterization data embedded in the tools evolves over time to reflect
the device availability or manufacturing process maturity. For details, see this link in the
Vivado Design Suite User Guide: Power Analysis and Optimization (UG907) [Ref 25].
UltraFast Design Methodology Guide 36
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug907-vivado-power-analysis-optimization.pdf;a=xSystemLevelPowerReduction
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug907-vivado-power-analysis-optimization.pdf;a=xDeviceCharacterization
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf;a=xPCBPowerDistributionSystemAndMigrationInUltraScalePlusFPGAs
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=36

Chapter 2: Board and Device Planning
Device Power and the Overall System Design Process
From project conception to completion, various aspects of the design process affect power.
For details, see this link in the Vivado Design Suite User Guide: Power Analysis and
Optimization (UG907) [Ref 25].

TIP: During the design process, you can compare the total power of the design to the power budget
using the set_operating_conditions -design_power_budget <Power in Watts> Tcl
command. If the power budget is exceeded, early intervention is the easiest way to correct design
power.

Worst Case Power Analysis Using Xilinx Power Estimator (XPE)
Xilinx recommends designing the board for worst-case power. For details, see this link in the
Vivado Design Suite User Guide: Power Analysis and Optimization (UG907) [Ref 25].

Configuration
Configuration is the process of loading application-specific data into the internal memory
of the FPGA device.

Because Xilinx FPGA configuration data is stored in CMOS configuration latches (CCLs), the
configuration data is volatile and must be reloaded each time the FPGA device is powered
up.

Xilinx FPGA devices can load themselves through configuration pins from an external
nonvolatile memory device. They can also be configured by an external smart source, such
as a:

• Microprocessor

• DSP processor

• Microcontroller

• Personal Computer (PC)

• Board tester

Board Planning should consider configuration aspects up front, which makes it easier to
configure as well as debug.

Each device family has a Configuration User Guide [Ref 39] that is the primary resource for
detailed information about each of the supported configuration modes and their trade-offs
on pin count, performance, and cost.
UltraFast Design Methodology Guide 37
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug907-vivado-power-analysis-optimization.pdf;a=xFPGAPowerAndTheOverallDesignProcess
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug907-vivado-power-analysis-optimization.pdf;a=xEstimatingPowerInTheXilinxPowerEstimator
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=37

Chapter 2: Board and Device Planning
Board Design Tips
When designing a board, it is important to consider which interfaces and pins will assist
with debug capability beyond configuration. For example, Xilinx recommends that you
ensure the JTAG interface is accessible even when the interface is not the primary
configuration mode. The JTAG interface allows you to check the device ID and device DNA
information, and you can use the interface to enable indirect flash programming solutions
during prototyping.

In addition, signals such as the INIT_B and DONE are critical for FPGA configuration debug.
The INIT_B signal has multiple functions. It indicates completion of initialization at
power-up and can indicate when a CRC error is encountered. Xilinx recommends that you
connect the INIT_B and DONE signals to LEDs using LED drivers and pull-ups. For
recommended pull-up values, see the Configuration User Guide [Ref 39] for your device.

The Schematic Checklists [Ref 53] include these recommendations along with other key
suggestions. Use these checklists to identify and check recommended board-level pin
connections.
UltraFast Design Methodology Guide 38
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=38

Chapter 3

Design Creation

Overview of Design Creation
After planning your device I/O, planning how to lay out your PCB, and deciding on your use
model for the Vivado® Design Suite, you can begin creating your design. Design creation
includes:

• Planning the hierarchy of your design

• Identifying the IP cores to use and customize in your design

• Creating the custom RTL for interconnect logic and functionality for which a suitable IP
is not available

• Creating timing, power, and physical constraints

• Specifying additional constraints, attributes, and other elements used during synthesis
and implementation

When creating your design, the main points to consider include:

• Achieving the desired functionality

• Operating at the desired frequency

• Operating with the desired degree of reliability

• Fitting within the silicon resource and power budget

Decisions made at this stage affect the end product. A wrong decision at this point can
result in problems at a later stage, causing issues throughout the entire design cycle.
Spending time early in the process to carefully plan your design helps to ensure that you
meet your design goals and minimize debug time in lab.
UltraFast Design Methodology Guide 39
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=39

Chapter 3: Design Creation
Defining a Good Design Hierarchy
The first step in design creation is to decide how to partition the design logically. The main
factor when considering hierarchy is to partition a part of the design that contains a specific
function. This allows a specific designer to design a piece of IP in isolation as well as
isolating a piece of code for reuse.

However, defining a hierarchy based on functionality only does not take into account how
to optimize for timing closure, runtime, and debugging. The following additional
considerations made during hierarchy planning also help in timing closure.

Add I/O Components Near the Top Level
Where possible, add I/O components near the top level for design readability. When you
infer a component, you provide a description of the function you want to accomplish. The
synthesis tool then interprets the HDL code to determine which hardware components to
use to perform the function. Components that can be inferred are simple single-ended I/O
(IBUF, OBUF, OBUFT and IOBUF) and single data rate registers in the I/O.

I/O components that need to be instantiated, such as differential I/O (IBUFDS, OBUFDS) and
double data-rate registers (IDDR, ODDR, ISERDES, OSERDES), should also be instantiated
near the top level. When you instantiate a component, you add an instance of that
component to your HDL file. Instantiation gives you full control over how the component is
used. Therefore, you know exactly how the logic will be used.

Insert Clocking Elements Near the Top Level
Inserting the clocking elements towards the top level allows for easier clock sharing
between modules. This sharing may result in fewer clocking resources needed, which helps
in resource utilization, improved performance, and power.

Aside from the module the clocks are created in, clock paths should only drive down into
modules. Any paths that go through (down from top and then back to top) can create a
delta cycle problem in VHDL simulation that is difficult and time consuming to debug.

Register Data Paths at Logical Boundaries
Register the outputs of hierarchical boundaries to contain critical paths within a single
module or boundary. Consider registering the inputs also at the hierarchical boundaries. It
is always easier to analyze and repair timing paths which lie within a module, rather than a
path spanning multiple modules. Any paths that are not registered at hierarchy boundaries
should be synthesized with hierarchy rebuilt or flat to allow cross hierarchy optimization.
Registering the datapaths at logical boundaries helps to retain traceability (for debug)
UltraFast Design Methodology Guide 40
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=40

Chapter 3: Design Creation
through the design process because cross hierarchical optimizations are kept to a minimum
and logic does not move across modules.

Address Floorplanning Considerations
A floorplan ensures that cells belonging to a specific portion in the design netlist are placed
at particular locations on the device. You can use manual floorplanning to accomplish the
following:

• Partition logic to a particular SLR when using SSI technology devices.

• Close timing on a design when timing is not met using standard flows.

If the cells are not contained within a level of hierarchy, all objects must be included
individually in the floorplan constraint. If synthesis changes the names of these objects, you
must update the constraints. A good floorplan is contained at the hierarchy level, because
this requires only a one line constraint.

Floorplanning is not always required. Floorplan only when necessary.

For more information on floorplanning, see this link in the Vivado Design Suite User Guide:
Design Analysis and Closure Techniques (UG906) [Ref 24].

RECOMMENDED: Although the Vivado tools allow cross hierarchy floorplans, these require more
maintenance. Avoid cross hierarchy floorplans where possible.

Optimize Hierarchy for Functional and Timing Debug
As discussed earlier in this section, keeping the critical path within the same hierarchical
boundary is helpful in debugging and meeting timing requirements. Similarly, for functional
debug (and modification) purposes, signals that are related should be kept in the same
hierarchy. This allows the related signals to be probed and modified with relative ease, as
signal names optimized by synthesis are easier to trace when contained in a single level of
hierarchy.

Apply Attributes at the Module Level
Applying attributes at the module level can keep code tidier and more scalable. Instead of
having to apply an attribute at the signal level, you can apply the attribute at the module
level and have the attribute propagated to all signals declared in that region. Applying
attributes at the module level also allows you to override global synthesis options. For this
reason, it is sometimes advantageous to add a level of hierarchy in order to apply module
level constraints in the RTL.

CAUTION! Some attributes (e.g., DONT_TOUCH) do not propagate from a module to all the signals
inside the module.
UltraFast Design Methodology Guide 41
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xFloorplanning
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=41

Chapter 3: Design Creation
Optimize Hierarchy for Advanced Design Techniques
Advanced design techniques such as bottom-up synthesis, partial reconfiguration, and
out-of-context design require planning at the hierarchical level. The design must choose the
appropriate level of hierarchy for the technique being used. These techniques are not
covered in this version of the document. For more information, see this link in the Vivado
Design Suite User Guide: Hierarchical Design (UG905) [Ref 23].

Example of Upfront Hierarchical Planning for High Speed DSP
Designs
The following example is not applicable to all designs, but demonstrates what can be done
with hierarchy. DSP designs generally allow latency to be added to the design. This allows
registers to be added to them to be optimized for performance. In addition, registers can
be used to allow for placement flexibility. This is important because at high speed, you
cannot traverse the die in one clock cycle. Adding registers can allow hard-to-reach areas to
be used. The following figure shows how effective hierarchy planning results in faster
timing closure.

X-Ref Target - Figure 3-1

Figure 3-1: Effective Hierarchy Planning Example

placement_flexibility_wrapper_i

floorplanning_wrapper_i

DSP_i

DSP
Algorithm

attribute KEEP_HIERARCHY = “yes”

attribute SHREG_EXRACT = “no”

CE

DATA_OUT

VALID_OUT

DATA_IN

VALID_IN

X13500
UltraFast Design Methodology Guide 42
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug905-vivado-hierarchical-design.pdf;a=xDesignConsiderations
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=42

Chapter 3: Design Creation
There are three levels of hierarchy in this part of the design:

• DSP_i

In the DSP_i algorithm block, both the inputs and outputs are registered. Because
registers are plentiful in an FPGA device, it is preferable to use this method to improve
the timing budget.

• floorplanning_wrapper_i

In floorplanning_wrapper_i, there is a CE signal. CE signals are typically
heavily-loaded and can present a timing challenge. They should be included in a
floorplan. By creating a floorplanning wrapper, this module can be manually
floorplanned later if needed.

In addition, KEEP_HIERARCHY has been added at the module level to ensure that
hierarchy is preserved for floorplanning regardless of any other global synthesis
options.

• placement_flexibility_wrapper_i

In placement_flexibility_wrapper_i, the DATA_IN, VALID_IN, DATA_OUT and
VALID_OUT signals are registered. Because these signals are not intended to be part of
the floorplan, they are outside floorplanning_wrapper_i. If they were in the
floorplan, they would not be able to fulfill the requirement for placement flexibility.

In addition, more registers can be added later as long as both DATA_IN + VALID_IN or
DATA_OUT and VALID_OUT are treated as pairs. If more registers are added, the
synthesis tool may infer SRLs which will force all registers into one component and not
help placement flexibility. To prevent this, SHREG_EXTRACT has been added at the
module level and set to NO.

RTL Coding Guidelines
You can create custom RTL to implement glue logic functions as well as functions without
suitable IP. For optimal results, follow the coding guidelines in this section. For additional
guidelines, see this link in the Vivado Design Suite User Guide: Synthesis (UG901) [Ref 19].

Using Vivado Design Suite HDL Templates
Use the Vivado Design Suite Language Templates when creating RTL or instantiating
Xilinx® primitives. The Language Templates include recommended coding constructs for
proper inference to the Xilinx device architecture. Using the Language Templates can ease
the design process and lead to improved results. To open the Language Templates from the
UltraFast Design Methodology Guide 43
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug901-vivado-synthesis.pdf;a=xHDLCodingTechniques
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=43

Chapter 3: Design Creation
Vivado IDE, select the Language Templates option in the Flow Navigator, and select the
desired template.

Control Signals and Control Sets
A control set is the grouping of control signals (set/reset, clock enable and clock) that drives
any given SRL, LUTRAM, or register. For any unique combination of control signals, a unique
control set is formed. The reason this is an important concept is registers within a 7 series
slice all share common control signals and thus only registers with a common control set
may be packed into the same slice. For example, if a register with a given control set has just
one register as a load, the other seven registers in the slice it occupies will be unusable.

Designs with several unique control sets may have many wasted resources as well as fewer
options for placement, resulting in higher power and lower performance. Designs with
fewer control sets have more options and flexibility in terms of placement, generally
resulting in improved results.

In UltraScale™ devices, there is more flexibility in control set mapping within a CLB. Resets
that are undriven do not form part of the control set as the tie off is generated locally within
the slice. However, it is good practice to limit unique control sets to give maximum
flexibility in placement of a group of logic.

Resets

Resets are one of the more common and important control signals to take into account and
limit in your design. Resets can significantly impact your design’s performance, area, and
power.

Inferred synchronous code may result in resources such as:

• LUTs

• Registers

• Shift Register LUTs (SRLs)

• Block or LUT Memory

• DSP48 registers

The choice and use of resets can affect the selection of these components, resulting in less
optimal resources for a given design. A misplaced reset on an array can mean the difference
between inferring one block RAM, or inferring several thousand registers.

Asynchronous resets described at the input or output of a multiplier might result in
registers placed in the slice(s) rather than the DSP block. In these and other situations, the
amount of resources is impacted. Overall power and performance can also be significantly
impacted. In most cases, this impacts performance. It also has a negative impact on device
utilization and power consumption.
UltraFast Design Methodology Guide 44
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=44

Chapter 3: Design Creation
When and Where to Use a Reset

Xilinx devices have a dedicated global set/reset signal (GSR). This signal sets the initial value
of all sequential cells in hardware at the end of device configuration.

If an initial state is not specified, sequential primitives are assigned a default value. In most
cases, the default value is zero. Exceptions are the FDSE and FDPE primitives that default to
a logic one. Every register will be at a known state at the end of configuration. Therefore, it
is not necessary to code a global reset for the sole purpose of initializing a device on power
up.

Xilinx highly recommends that you take special care in deciding when the design requires a
reset, and when it does not. In many situations, resets might be required on the control path
logic for proper operation. However, resets are generally less necessary on the data path
logic. Limiting the use of resets:

• Limits the overall fanout of the reset net.

• Reduces the amount of interconnect necessary to route the reset.

• Simplifies the timing of the reset paths.

• Results in many cases in overall improvement in performance, area, and power.

RECOMMENDED: Evaluate each synchronous block, and attempt to determine whether a reset is
required for proper operation. Do not code the reset by default without ascertaining its real need.

Functional simulation should easily identify whether a reset is needed or not.

For logic in which no reset is coded, there is much greater flexibility in selecting the FPGA
resources to map the logic.

The synthesis tool can then pick the best resource for that code in order to arrive at a
potentially superior result by considering, for example:

• Requested functionality

• Performance requirements

• Available device resources

• Power

Synchronous Reset vs. Asynchronous Reset

If a reset is needed, Xilinx recommends code synchronous resets. Synchronous resets have
many advantages over asynchronous resets.

• Synchronous resets can directly map to more resource elements in the FPGA device
architecture.
UltraFast Design Methodology Guide 45
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=45

Chapter 3: Design Creation
• Asynchronous resets also impact the performance of the general logic structures. As all
Xilinx FPGA general-purpose registers can program the set/reset as either
asynchronous or synchronous, it can be perceived that there is no penalty in using
asynchronous resets. That assumption is often wrong. If a global asynchronous reset is
used, it does not increase the control sets. However, the need to route this reset signal
to all register elements increases timing complexity.

• If using asynchronous reset, remember to synchronize the deassertion of the
asynchronous reset.

• Synchronous resets give more flexibility for control set remapping when higher density
or fine tuned placement is needed. A synchronous reset may be remapped to the data
path of the register if an incompatible reset is found in the more optimally placed Slice.
This can reduce wire length and increase density where needed to allow proper fitting
and improved performance.

• Asynchronous resets might require multicycle assertion to ensure a circuit is properly
reset and stable. When properly timed, synchronous resets do not have this
requirement.

• Use synchronous resets if asynchronous resets have a greater probability of upsetting
memory contents to block RAMs, LUTRAMs, and SRLs during reset assertion.

• Some resources such as the DSP48 and block RAM have only synchronous resets for the
register elements within the block. When asynchronous resets are used on register
elements associated with these elements, those registers may not be inferred directly
into those blocks without impacting functionality.

Reset Coding Example One: Multiplier with Asynchronous Reset

The following example illustrates the importance of using registers with synchronous resets
for the logic targeting the dedicated DSP resources. Figure 3-2 shows a 16x16 bits
DSP48-based multiplier using pipeline registers with asynchronous reset. Synthesis must
use regular fabric registers for the input stages, as well as an external register and 32 LUT2s
(red markers) to emulate the asynchronous reset on the DSP output (DSP48 P registers are
enabled but not connected to reset). This costs an extra 65 registers and 32 LUTs, and the
DSP48 ends up with the configuration (AREG/BREG=0, MREG=0, PREG=1).
UltraFast Design Methodology Guide 46
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=46

Chapter 3: Design Creation
By simply changing the reset definition as shown in the following figure, such that the
multiplier pipeline registers use a synchronous reset, synthesis can take advantage of the
DSP48 internal registers (AREG/BREG=1, MREG=1, PREG=1).

Due to saving fabric resources and taking advantage of all DSP48 internal registers, the
design performance and power efficiency are optimal.

X-Ref Target - Figure 3-2

Figure 3-2: Multiplier with Pipeline Registers Using Asynchronous Resets

X-Ref Target - Figure 3-3

Figure 3-3: Changing Asynchronous Reset into Synchronous Reset on Multiplier
UltraFast Design Methodology Guide 47
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=47

Chapter 3: Design Creation
Reset Coding Example Two: Multiplier with Synchronous Reset

To take advantage of the existing DSP primitive features, the preceding example can be
rewritten with a change from asynchronous reset to synchronous reset as follows.

In this circuit, the DSP48 primitive is inferred with all pipeline registers packed within the
DSP primitive (AREG/BREG=1, MREG=1, PREG=1).

The implementation of the second coding example has the following advantages over the
first coding example:

• Optimal resource usage

• Better performance and lower power

• Lower number of endpoints

In addition, the second coding example is more concise.

Issues When Trying to Eliminate Reset in HDL Code

When optimizing the code to eliminate reset, commenting out the conditions within the
reset declaration does not create the desired structures and instead creates issues. For
example, the following figure shows three pipeline stages with asynchronous reset used for
each. If you attempt to eliminate the reset condition for two of the pipeline stages by
commenting out the code with the reset condition, the asynchronous reset becomes
enabled (inverted logic of rst).

X-Ref Target - Figure 3-4

Figure 3-4: Multiplier with Pipeline Registers (Synchronous Reset)
UltraFast Design Methodology Guide 48
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=48

Chapter 3: Design Creation
The optimal way to remove the resets is to create separate sequential logic procedures with
one for reset conditions and the other for non-reset conditions, as shown in the following
figure.

TIP: When using a reset, make sure that all registers in the procedural statement are reset.

Clock Enables

When used properly, clock enables can significantly reduce design power with little impact
on area or performance. However, when clock enables are used improperly, they can lead to:

• Increased area

• Decreased density

• Increased power

• Reduced performance

In many designs with a large number of control sets, low fanout clock enables might be the
main contributor to the number of control sets.

X-Ref Target - Figure 3-5

Figure 3-5: Commenting Out Code with Reset Conditions

X-Ref Target - Figure 3-6

Figure 3-6: Separate Procedural Statements for Registers With and Without Reset

CE CE CLR
UltraFast Design Methodology Guide 49
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=49

Chapter 3: Design Creation
Creating Clock Enables

Clock enables are created when an incomplete conditional statement is coded into a
synchronous block. A clock enable is inferred to retain the last value when the prior
conditions are not met. When this is the desired functionality, it is valid to code in this
manner. However, in some cases when the prior conditional values are not met, the output
is a don’t care. In that case, Xilinx recommends closing off the conditional (that is, use an
else clause), with a defined constant (that is, assign the signal to a one or a zero).

In most implementations, this does not result in added logic, and avoids the need for a
clock enable. The exception to this rule is in the case of a large bus when inferring a clock
enable in which the value is held can help in power reduction. The basic premise is that
when small numbers of registers are inferred, a clock enable can be detrimental because it
increases control set count. However, in larger groups, it can become more beneficial and is
recommended.

Reset and Clock Enable Precedence

In Xilinx FPGA devices, all registers are built to have set/reset take precedence over clock
enable, whether an asynchronous or synchronous set/reset is described. In order to obtain
the most optimal result, Xilinx recommends that you always code the set/reset before the
enable (if deemed necessary) in the if/else constructs within a synchronous block.
Coding a clock enable first forces the reset into the data path and creates additional logic.

For information on clocking, see Clocking Guidelines.

Controlling Enable/Reset Extraction with Synthesis Attributes

You can force control set mapping by applying the DIRECT_RESET / DIRECT_ENABLE /
EXTRACT_RESET / EXTRACT_ENABLE attributes as needed to handle the mapping of control
sets for a given structure.

When the design includes a synchronous reset/enable, synthesis creates a logic cone
mapped through the CE/R/S pins when the load is equal to or above the threshold set by
the -control_set_opt_threshold synthesis switch, or creates a logic cone that maps
through the D pin if below the threshold. The default thresholds are:

• 7 series devices: 4

• UltraScale devices: 2

Using DIRECT_ENABLE and DIRECT_RESET

To use control set mapping you can apply attributes to the nets connected to enable/reset
signals, which will force synthesis to use the CE/R pin.
UltraFast Design Methodology Guide 50
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=50

Chapter 3: Design Creation
In the following figure, the enable signal (en) is only connected to one flip-flop. Therefore,
the synthesis engine connected the en signal to the FDRE/D pin cone of logic. Note that the
CE pin is tied to logic 1.

To override this default behavior, you can use the DIRECT_ENABLE attribute. For example,
the following figure shows how to connect the enable signal (en) to the CE pin of the
register by adding the DIRECT_ENABLE attribute to the port/signal.

X-Ref Target - Figure 3-7

Figure 3-7: Clock Enable Implementation Using Datapath Logic

X-Ref Target - Figure 3-8

Figure 3-8: Dedicated Clock Enable Implementation Using direct_enable
UltraFast Design Methodology Guide 51
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=51

Chapter 3: Design Creation
The following figure shows RTL code in which either global_rst or int_rst can reset
the register. By default, both are mapped to the reset pin cone of logic.

You can use the DIRECT_RESET attribute to specify which reset signal to connect to the
register reset pin. For example, the following figure shows how to use the DIRECT_RESET
attribute to connect only the global_rst signal to the register FDRE/R pin and connect
the int_rst signal to the FDRE/D cone of logic.

X-Ref Target - Figure 3-9

Figure 3-9: Multiple Reset Conditions Mapped Through Datapath Logic

X-Ref Target - Figure 3-10

Figure 3-10: Dedicated Reset Pin Usage Using DIRECT_RESET Attribute
UltraFast Design Methodology Guide 52
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=52

Chapter 3: Design Creation
Pushing the Logic from the Control Pin to the Data Pin

During analysis of critical paths, you might find multiple paths ending at control pins. You
must analyze these paths to determine if there is a way to push the logic into the datapath
without incurring penalties, such as extra logic levels. There is less delay in a path to the D
pin than CE/R/S pins given the same levels of logic because there is a direct connection
from the output of the last LUT to the D input of the FF. The following coding examples
show how to push the logic from the control pin to the data pin of a register.

In the following example, the enable pin of dout_reg[0] has 2 logic levels, and the data pin
has 0 logic levels. In this situation, you can improve timing by moving the enable logic to
the D pin by setting the EXTRACT_ENABLE attribute to “no” on the dout register definition
in the RTL file.

X-Ref Target - Figure 3-11

Figure 3-11: Critical Path Ending at Control Pin (Enable) of a Register
UltraFast Design Methodology Guide 53
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=53

Chapter 3: Design Creation
The following example shows how to separate the combinational and sequential logic and
map the complete logic in to the datapath. This pushes the logic into the D pin, which still
has 2 logic levels.

You can achieve the same structure by setting the EXTRACT_ENABLE attribute to “no.” For
more information on the EXTRACT_ENABLE attribute, see the Vivado Design Suite User
Guide: Synthesis (UG901) [Ref 19].

Tips for Control Signals

• Check whether a global reset is really needed.

• Avoid asynchronous control signals.

• Keep clock, enable, and reset polarities consistent.

• Do not code a set and reset into the same register element.

• If an asynchronous reset is absolutely needed, remember to synchronize its
deassertion.

X-Ref Target - Figure 3-12

Figure 3-12: Critical Path Ending at Data Pin of a Register (Disabling Enable Extraction)
UltraFast Design Methodology Guide 54
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=54

Chapter 3: Design Creation
Know What You Infer
Your code finally has to map onto the resources present on the device. Make an effort to
understand the key arithmetic, storage, and logic elements in the architecture you are
targeting. Then, as you code the functionality of the design, anticipate the hardware
resources to which the code will map. Understanding this mapping gives you an early
insight into any potential problem.

The following examples demonstrate how understanding the hardware resources and
mapping can help make certain design decisions:

• For larger than 4-bit addition, subtraction and add-sub, a carry chain is generally used
and one LUT per 2-bit addition is used (that is, an 8-bit by 8-bit adder uses 8 LUTs and
the associated carry chain). For ternary addition or in the case where the result of an
adder is added to another value without the use of a register in between, one LUT per
3-bit addition is used (that is, an 8-bit by 8-bit by 8-bit addition also uses 8 LUTs and
the associated carry chain).

If more than one addition is needed, it may be advantageous to specify registers after
every two levels of addition to cut device utilization in half by allowing a ternary
implementation to be generated.

• In general, multiplication is targeted to DSP blocks. Signed bit widths less than 18x25
(18x27 in UltraScale devices) map into a single DSP Block. Multiplication requiring
larger products may map into more than one DSP block. DSP blocks have pipelining
resources inside them.

Pipelining properly for logic inferred into the DSP block can greatly improve
performance and power. When a multiplication is described, three levels of pipelining
around it generates best setup, clock-to-out, and power characteristics. Extremely light
pipelining (one-level or none) may lead to timing issues and increased power for those
blocks, while the pipelining registers within the DSP lie unused.

• Two SRLs with depths of 16 bits or less can be mapped into a single LUT, and single
SRLs up to 32 bits can also be mapped into a single LUT.

• For conditional code resulting in standard MUX components:

° A 4-to-1 MUX can be implemented into a single LUT, resulting in one logic level.

° An 8-to-1 MUX can be implemented into two LUTs and a MUXF7 component, still
resulting in effectively one logic (LUT) level.

° A 16-to-1 MUX can be implemented into four LUTs and a combination of MUXF7
and MUXF8 resources, still resulting in effectively one logic (LUT) level.

A combination of LUTs, MUXF7, and MUXF8 within the same CLB/slice structure results in a
very small combinational delay. Hence, these combinations are considered as equivalent to
only one logic level. Understanding this code can lead to better resource management, and
can help in better appreciating and controlling logic levels for the data paths.
UltraFast Design Methodology Guide 55
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=55

Chapter 3: Design Creation
For general logic, take into account the number of unique inputs for a given register. From
that number, an estimation of LUTs and logic levels can be achieved. In general, 6 inputs or
fewer always results in a single logic level. Theoretically, two levels of logic can manage up
to 36 inputs. However, for all practical purposes, you should assume that approximately 20
inputs is the maximum that can be managed with two levels of logic. In general, the larger
the number of inputs and the more complex the logic equation, the more LUTs and logic
levels are required.

IMPORTANT: Check the availability of hardware resources and how efficiently they are being utilized
early in the design cycle to enable easier modifications. This approach yields better results than waiting
until late in the design cycle during timing closure.

Inferring RAM and ROM

RAM and ROM may be specified in multiple ways. Each has advantages and disadvantages.

• Inference

Advantages:

° Highly portable

° Easy to read and understand

° Self-documenting

° Fast simulation

Disadvantages:

° Might not have access to all RAM configurations available

° Might produce less optimal results

Because inference usually gives good results, it is the recommended method, unless a
given use is not supported, or it is not producing adequate results in performance, area,
or power. In that case, explore other methods.

When inferring RAM, Xilinx recommends that you use the HDL Templates provided in
the Vivado tools. As mentioned earlier, using asynchronous reset impacts RAM
inference, and should be avoided. See Using Vivado Design Suite HDL Templates.
UltraFast Design Methodology Guide 56
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=56

Chapter 3: Design Creation
• Xilinx Parameterizable Macros (XPMs)

Advantages:

° Portable between Xilinx device families

° Fast simulation

° Support for asymmetric width

° Predictable QoR

Disadvantages:

° Limited to supported XPM options

XPMs are built on inference using fixed templates that you cannot modify. Therefore,
they can guarantee QoR and can support features that standard inference does not.
When standard inference does not support the features required, Xilinx recommends
you use XPMs instead.

Note: When you compile simulation libraries using compile_simlib, XPMs are automatically
compiled. For more information, see the Vivado Design Suite User Guide: Logic Simulation
(UG900) [Ref 15].

• Direct Instantiation of RAM Primitives

Advantages:

° Highest level control over implementation

° Access to all capabilities of the block

Disadvantages:

° Less portable code

° Wordier and more difficult to understand functionality and intent

• Core from IP Catalog

Advantages:

° Generally more optimized result when using multiple components

° Simple to specify and configure

Disadvantages:

° Less portable code

° Core management
UltraFast Design Methodology Guide 57
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=57

Chapter 3: Design Creation
Performance Considerations When Implementing RAM

In order to efficiently infer memory elements, consider these factors affecting performance:

• Using Dedicated Blocks or Distributed RAMs

RAMs can be implemented in either the dedicated block RAM or within LUTs using
distributed RAM. The choice not only impacts resource selection, but can also
significantly impact performance and power.

In general, the required depth of the RAM is the first criterion. Memory arrays described
up to 64 bits deep are generally implemented in LUTRAMs, where depths of 32 bits and
less are mapped 2 bits per LUT and depths up to 64-bits can be mapped one bit per LUT.
Deeper RAMs can also be implemented in LUTRAM depending on available resources
and synthesis tool assignment.

Memory arrays deeper than 256 bits are generally implemented in block memory. Xilinx
FPGA devices have the flexibility to map such structures in different width and depth
combinations. You should be familiar with these configurations in order to understand
the number and structure of block RAMs used for larger memory array declarations in
the code.

• Using the Output Pipeline Register

Using an output register is required for high performance designs, and is recommended
for all designs. This improves the clock to output timing of the block RAM. Additionally,
a second output register is beneficial, as slice output registers have faster clock to out
timing than a block RAM register. Having both registers has a total read latency of 3.
When inferring these registers, they should be in the same level of hierarchy as the RAM
array. This allows the tools to merge the block RAM output register into the primitive.

• Using the Input Pipeline Register

When RAM arrays are large and mapped across many primitives, they can span a
considerable area of the die. This can lead to performance issues on address and control
lines. Consider adding an extra register after the generation of these signals and before
the RAMs. To further improve timing, use phys_opt_design later in the flow to
replicate this register. Registers without logic on the input will replicate more easily.
UltraFast Design Methodology Guide 58
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=58

Chapter 3: Design Creation
Scenarios Preventing Block RAM Output Register Inference

Xilinx recommends that the memory and the output registers are all inferred in a single
level of hierarchy, because this is the easiest method to ensure inference is as intended.
There are two scenarios that will infer a block RAM output register. The first one is when an
extra register exists on the output, and the second is when the read address register is
retimed across the memory array. This can only happen using single port RAM. This is
illustrated below:

Certain deviations from these examples can prevent the inference of the output register.

X-Ref Target - Figure 3-13

Figure 3-13: RAM with Extra Read Register for Block RAM Output Register Inference
X-Ref Target - Figure 3-14

Figure 3-14: View of RAM Before Address Register Retiming
UltraFast Design Methodology Guide 59
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=59

Chapter 3: Design Creation
Checking for Multi-Fanout on the Output of Read Data Registers

The fanout of the data output bits from the memory array must be 1 for the second register
to be absorbed by the RAM primitive. This is illustrated in the following figure.

Checking for Reset Signals on the Address/Read Data Registers

Memory arrays should not be reset. Only the output of the RAM can tolerate a reset. The
reset must be synchronous in order for inference of the output register into the RAM
primitive. An asynchronous reset will cause the register to not be inferred into the RAM
primitive. Additionally, the output signal can only be reset to 0.

The following figure highlights an example of what to avoid in order to ensure correct
inference of RAMs and output registers.

X-Ref Target - Figure 3-15

Figure 3-15: Multiple Fanout Preventing Block RAM Output Register Inference

X-Ref Target - Figure 3-16

Figure 3-16: Checking for Reset On Address/Read Data Registers
UltraFast Design Methodology Guide 60
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=60

Chapter 3: Design Creation
Checking for Feedback Structures in Registers

Make sure that registers do not have feedback logic, in the example below, since the adder
requires the current value of register, this logic cannot be retimed and packed in to a block
RAM. The resultant circuit is a block RAM without output registers (DOA_REG and DOB_REG
set to '0').

Mapping Memories to UltraRAM Blocks

UltraRAM is a 4Kx72 memory block with two ports using a single clock. This primitive is only
available in certain UltraScale+™ devices. In these devices, UltraRAM is included in addition
to block RAM resources.

UltraRAM can be used in your design using one of the following methods:

• Rely on synthesis to infer UltraRAMs by setting the ram_style = "ultra" attribute
on a memory declaration in HDL.

• Instantiate Xilinx XPM_MEMORY primitives.

• Instantiate UltraRAM UNISIM primitives.

The following code example shows the instantiation of XPM memory and is available in the
HDL Language templates. Highlighted parameters MEMORY_PRIMITIVE and
READ_LATENCY are the key parameters to infer memory as UltraRAM for high
performance.

• MEMORY_PRIMITIVE = "ultra" specifies the memory is to be inferred as UltraRAM.

• READ_LATENCY defines the number of pipeline registers present on the output of the
memory.

Larger memories are mapped to an UltraRAM matrix consisting of multiple UltraRAM cells
configured as row x column structures.

A matrix can be created with single or multiple columns based on the depth. The current
default threshold for URAM column height is 8 and it can be controlled with the attribute
CASCADE_HEIGHT.

X-Ref Target - Figure 3-17

Figure 3-17: Check the Presence of Feedback on Registers Around the RAM Block
UltraFast Design Methodology Guide 61
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=61

Chapter 3: Design Creation
The difference between single column and multiple column UltraRAM matrix is as follows:

• Single column UltraRAM matrix uses the built-in hardware cascade without fabric logic.

• Multiple column UltraRAM matrix uses built-in hardware cascade within each column,
plus some fabric logic for connecting the columns. Extra pipelining may be required to
maintain performance. This is inferred by increasing the read latency. Vivado
automatically packs these registers into UltraRAM as required.

The example above uses a 32 K x 72 memory configuration, which uses eight URAMs. To
increase performance of the UltraRAM, more pipelining registers should be added to the
cascade chain. This is achieved by increasing the read latency integer.

For more information on inferring UltraRAM in Vivado synthesis, see this link in the Vivado
Design Suite User Guide: Synthesis (UG901) [Ref 19].

X-Ref Target - Figure 3-18

Figure 3-18: Specifying UltraRAM in RTL Code (via XPM)
UltraFast Design Methodology Guide 62
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug901-vivado-synthesis.pdf;a=xInferringUltraRAMInVivadoSynthesis
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=62

Chapter 3: Design Creation
Coding for Optimal DSP and Arithmetic Inference

The DSP blocks within the Xilinx FPGA devices can perform many different functions,
including:

• Multiplication

• Addition and subtraction

• Comparators

• Counters

• General logic

The DSP blocks are highly pipelined blocks with multiple register stages allowing for
high-speed operation while reducing the overall power footprint of the resource. Xilinx
recommends that you fully pipeline the code intended to map into the DSP48, so that all
pipeline stages are utilized. To allow the flexibility of use of this additional resource, a set
condition cannot exist in the function for it to properly map to this resource.

DSP48 slice registers within Xilinx devices contain only resets, and not sets. Accordingly,
unless necessary, do not code a set (value equals logic 1 upon an applied signal) around
multipliers, adders, counters, or other logic that can be implemented within a DSP48 slice.
Additionally, avoid asynchronous resets, since the DSP slice only supports synchronous
reset operations. Code resulting in sets or asynchronous resets may produce sub-optimal
results in terms of area, performance, or power.

Many DSP designs are well-suited for the Xilinx architecture. To obtain best use of the
architecture, you must be familiar with the underlying features and capabilities so that
design entry code can take advantage of these resources.

The DSP48 blocks use a signed arithmetic implementation. Xilinx recommends code using
signed values in the HDL source to best match the resource capabilities and, in general,
obtain the most efficient mapping. If unsigned bus values are used in the code, the
synthesis tools may still be able to use this resource, but might not obtain the full bit
precision of the component due to the unsigned-to-signed conversion.

If the target design is expected to contain a large number of adders, Xilinx recommends
that you evaluate the design to make greater use of the DSP48 slice pre-adders and
post-adders. For example, with FIR filters, the adder cascade can be used to build a systolic
filter rather than using multiple successive add functions (adder trees). If the filter is
symmetric, you can evaluate using the dedicated pre-adder to further consolidate the
function into both fewer LUTs and flip-flops and also fewer DSP slices as well (in most cases,
half the resources).

If adder trees are necessary, the 6-input LUT architecture can efficiently create ternary
addition (A + B + C = D) using the same amount of resources as a simple 2-input addition.
This can help save and conserve carry logic resources. In many cases, there is no need to use
these techniques.
UltraFast Design Methodology Guide 63
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=63

Chapter 3: Design Creation
By knowing these capabilities, the proper trade-offs can be acknowledged up front and
accounted for in the RTL code to allow for a smoother and more efficient implementation
from the start. In most cases, Xilinx recommends inferring DSP resources

For more information about the features and capabilities of the DSP48 slice, and how to
best leverage this resource for your design needs, see the 7 Series DSP48E1 Slice User Guide
(UG479) [Ref 45] and UltraScale Architecture DSP Slice User Guide (UG579) [Ref 46].

Coding Shift Registers and Delay Lines

In general, a shift register is characterized by some or all of the following control and data
signals:

• Clock

• Serial input

• Asynchronous set/reset

• Synchronous set/reset

• Synchronous/asynchronous parallel load

• Clock enable

• Serial or parallel output

Xilinx FPGA devices contain dedicated SRL16 and SRL32 resources (integrated in LUTs).
These allow efficiently implemented shift registers without using flip-flop resources.
However, these elements support only LEFT shift operations, and have a limited number of
I/O signals:

• Clock

• Clock Enable

• Serial Data In

• Serial Data Out

In addition, SRLs have address inputs (A3, A2, A1, A0 inputs for SRL16) determining the
length of the shift register. The shift register may be of a fixed static length, or it may be
dynamically adjusted.

In dynamic mode each time a new address is applied to the address pins, the new bit
position value is available on the Q output after the time delay to access the LUT.
Synchronous and asynchronous set/reset control signals are not available in the SRL
primitives. However, if your RTL code includes a reset, the Xilinx synthesis tool infers
additional logic around the SRL to provide the reset functionality.

To obtain the best performance when using SRLs, Xilinx recommends that you implement
the last stage of the shift register in the dedicated Slice register. The Slice registers have a
UltraFast Design Methodology Guide 64
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=64

Chapter 3: Design Creation
better clock-to-out time than SRLs. This allows some additional slack for the paths sourced
by the shift register logic. Synthesis tools will automatically infer this register unless this
resource is instantiated or the synthesis tool is prevented from inferring such a register
because of attributes or cross hierarchy boundary optimization restrictions.

Xilinx recommends that you use the HDL coding styles represented in the Vivado Design
Suite HDL Templates.

When using registers to obtain placement flexibility in the chip, turn off SRL inference using
the attribute:

SHREG_EXTRACT = “no”

For more information about synthesis attributes and how to specify those attributes in the
HDL code, see the Vivado Design Suite User Guide: Synthesis (UG901) [Ref 19].

Initialization of All Inferred Registers, SRLs, and Memories

The GSR net initializes all registers to the specified initial value in the HDL code. If no initial
value is supplied, the synthesis tool is at liberty to assign the initial state to either zero or
one. Vivado synthesis generally defaults to zero with a few exceptions such as one-hot state
machine encodings.

Any inferred SRL, memory, or other synchronous element may also have an initial state
defined that will be programmed into the associated element upon configuration.

Xilinx highly recommends that you initialize all synchronous elements accordingly.
Initialization of registers is completely inferable by all major FPGA synthesis tools. This
lessens the need to add a reset for the sole purpose of initialization, and makes the RTL
code more closely match the implemented design in functional simulation, as all
synchronous element start with a known value in the FPGA device after configuration.

Initial state of the registers and latches VHDL coding example one:

signal reg1 : std_logic := ‘0’; -- specifying register1 to start as a zero
signal reg2 : std_logic := ‘1’; -- specifying register2 to start as a one
signal reg3 : std_logic_vector(3 downto 0):=“1011”; -- specifying INIT value for
4-bit register

Initial state of the registers and latches Verilog coding example one:

reg register1 = 1’b0; // specifying regsiter1 to start as a zero
reg register2 = 1’b1; // specifying register2 to start as a one
reg [3:0] register3 = 4’b1011; //specifying INIT value for 4-bit register
UltraFast Design Methodology Guide 65
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=65

Chapter 3: Design Creation
Initial state of the registers and latches Verilog coding example two

Another possibility in Verilog is to use an initial statement:

reg [3:0] register3;
initial begin
register3= 4’b1011;

end

Deciding When to Instantiate or Infer

Xilinx recommends that you have an RTL description of your design; and that you let the
synthesis tool do the mapping of the code into the resources available in the FPGA device.
In addition to making the code more portable, all inferred logic is visible to the synthesis
tool, allowing the tool to perform optimizations between functions. These optimizations
include logic replications; restructuring and merging; and retiming to balance logic delay
between registers.

Synthesis Tool Optimization

When device library cells are instantiated, synthesis tools do not optimize them by default.
Even when instructed to optimize the device library cells, synthesis tools generally cannot
perform the same level of optimization as with the RTL. Therefore, synthesis tools typically
only perform optimizations on the paths to and from these cells but not through the cells.

For example, if an SRL is instantiated and is part of a long path, this path might become a
bottleneck. The SRL has a longer clock-to-out delay than a regular register. To preserve the
area reduction provided by the SRL while improving its clock-to-out performance, an SRL of
one delay less than the actual desired delay is created, with the last stage implemented in
a regular flip-flop.

When Instantiation Is Desirable

Instantiation may be desirable when the synthesis tool mapping does not meet the timing,
power, or area constraints; or when a particular feature within an FPGA device cannot be
inferred.

With instantiation, you have total control over the synthesis tool. For example, to achieve
better performance, you can implement a comparator using only LUTs, instead of the
combination of LUT and carry chain elements usually chosen by the synthesis tool.

Sometimes instantiation may be the only way to make use of the complex resources
available in the device. This can be due to:

• HDL Language Restrictions

For example, it is not possible to describe double data rate (DDR) outputs in VHDL
because it requires two separate processes to drive the same signal.
UltraFast Design Methodology Guide 66
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=66

Chapter 3: Design Creation
• Hardware Complexity

It is easier to instantiate the I/O SerDes elements than to create synthesizable
description.

• Synthesis Tools Inference Limitations

For example, synthesis tools currently do not have the capability to infer the hard FIFOs
from RTL descriptions. Therefore, you must instantiate them.

If you decide to instantiate a Xilinx primitive, see the appropriate User Guide and
Libraries Guide for the target architecture to fully understand the component
functionality, configuration, and connectivity.

In case of both inference as well as instantiation, Xilinx recommends that you use the
instantiation and language templates from the Vivado Design Suite language templates.

TIPS:
- Infer functionality whenever possible.
- When synthesized RTL code does not meet requirements, review the requirements before replacing

the code with device library component instantiations.
- Consider the Vivado Design Suite language templates when writing common Verilog and VHDL

behavioral constructs or if necessary instantiating the desired primitives.

Coding Styles to Improve Performance
For high performance designs, the coding techniques discussed in this section (Coding
Styles to Improve Performance) can mitigate possible timing hazards.

High Fanouts in Critical Paths

High fanout nets are much easier to deal with early in the design process. What constitutes
too high of a fanout is often dictated by performance requirements and the construction of
the paths. You can use the following techniques to address issues with high fanout nets.

RECOMMENDED: Identify high fanout nets using the report_high_fanout_nets Tcl command
after synthesis. Monitor the impact of these nets on design performance as you progress through the
implementation process.

Reduce Loads in Portions of the Design That Do Not Require It

For high fanout control signals, evaluate whether all coded portions of the design require
that net. Reducing the number of loads can greatly reduce timing problems.
UltraFast Design Methodology Guide 67
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=67

Chapter 3: Design Creation
Use Register Replication

Register replication can increase the speed of critical paths by making copies of registers to
reduce the fanout of a given signal. This gives the implementation tools more flexibility in
placing and routing the different loads and associated logic. Synthesis tools use this
technique extensively.

Most synthesis tools use a fanout threshold limit to automatically determine whether to
duplicate a register. Lowering this global threshold allows automatic duplication of high
fanout nets. However, it does not allow control over which registers are duplicated or how
their loads are grouped. In addition, the global replication mechanism does not assess
timing slack accurately, which can lead to unnecessary replicated cells, logic utilization
increase, and potentially higher power consumption.

Often, a better approach to reducing fanout is to use a balanced tree for the high fanout
signals. Consider manually replicating registers based on the design hierarchy, because the
cells included in a hierarchy are often placed together. For example, in the balanced reset
tree shown in the following figure, the high fanout reset FF RST2 is replicated in RTL to
balance the fanout across the different modules. If required, physical synthesis can perform
further replication to improve WNS based on placement information.

TIP: To preserve the duplicate registers in synthesis, use a KEEP attribute instead of DONT_TOUCH. A
DONT_TOUCH attribute prevents further optimization during physical optimization later in the
implementation flow.

Note: If a LUT1 rather than a register is replicated, it indicates that an attribute or constraint is
applied incorrectly.
UltraFast Design Methodology Guide 68
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=68

Chapter 3: Design Creation
RECOMMENDED: Using MAX_FANOUT attributes on global high fanout signals leads to sub-optimal
replication similar to when the global fanout limit is lowered in synthesis. For this reason, Xilinx
recommends only using MAX_FANOUT inside the hierarchies on local signals with medium to low
fanout.

Do not replicate registers used for synchronizing signals that cross clock domains. The
presence of the ASYNC_REG attribute on these registers prevents the tool from replicating
these registers. If the synchronizing chain has a very high fanout and replication must meet

X-Ref Target - Figure 3-19

Figure 3-19: High Fanout Reset Transformed to Balanced Reset Tree

rst_gen_inst

RST1
1

RST2
1

block_A

block_B

block_C

block_D

block_E

20000

10000

3000

7000 6000

1000

rst_gen_inst

RST1
1

RST2
1

block_A

block_B

block_C

block_D

block_E

RST2
1

10000

RST2
2

3000

RST2
3

6000

RST2
4

1000

X20034-110617
UltraFast Design Methodology Guide 69
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=69

Chapter 3: Design Creation
timing, add an extra register after the synchronization chain that does not have the
ASYNC_REG constraint.

The following table provides guidelines on the number of fanouts that might be acceptable
for your design.

TIP: If the timing reports indicate that high-fanout signals are limiting the design performance,
consider replicating the signals using the implementation tool options, such as
opt_design -hier_fanout_limit, place_design, and phys_opt_design.

TIP: When replicating registers, consider using a naming convention for the registers, such as
<original_name>_a, <original_name>_b, etc., to make it easier to understand intent of the
replication and easier to maintain the RTL code.

Pipelining Considerations

Another way to increase performance is to restructure long datapaths with several levels of
logic and distribute them over multiple clock cycles. This method allows for a faster clock
cycle and increased data throughput at the expense of latency and pipeline overhead logic
management.

Because FPGA devices contain many registers, the additional registers and overhead logic
are usually not an issue. However, the datapath spans multiple cycles, and you must make
special considerations for the rest of the design to account for the added path latency.

Table 3-1: Fanout Guidelines for Medium Performance 7 Series Devices

Condition Fanout > 5000 Fanout > 200 Fanout > 100

Low Frequency
1 to 125 MHZ

Few logic levels between
synchronous logic

<13 levels of logic at
maximum frequency

N/A N/A

Medium
Frequency
125 to 250 MHz

If the design does not
meet timing, you might
need to reduce fanout
and/or logic levels.

<6 levels of logic at
maximum frequency.
(Driver and load types
impact performance.)

N/A

High Frequency
> 250 MHz

Not recommended for
most designs.

Small number of logic
levels is typically
necessary for higher
speeds.

Advance pipelining
methods required.
Careful logic replication.
Compact functions. Low
logic levels required.
(Driver and load types
impact performance.)
UltraFast Design Methodology Guide 70
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=70

Chapter 3: Design Creation
Consider Pipelining for SSI Devices

When designing high performance register-to-register connections for SLR boundary
crossings, the appropriate pipelining must be described in the HDL code and controlled at
synthesis. This ensures that the Shift Register LUT (SRL) inference and other optimizations
do not occur in the logic path that must cross an SLR boundary. Modifying the code in this
manner along with appropriate use of Pblocks defines where the SLR boundary crossing
occurs.

Consider Pipelining Up Front

Considering pipelining up front rather than later on can improve timing closure. Adding
pipelining at a later stage to certain paths often propagates latency differences across the
circuit. This can make one seemingly small change require a major redesign of portions of
the code.

Identifying pipelining opportunities early in the design can often significantly improve
timing closure, implementation runtime (due to easier-to-solve timing problems), and
device power (due to reduced switching of logic).

Check Inferred Logic

As you code your design, be aware of the logic being inferred. Monitor the following
conditions for additional pipelining considerations:

• Cones of logic with large fanin

For example, code that requires large buses or several combinational signals to
compute an output

• Blocks with restricted placement or slow clock-to-out or large setup requirements

For example, block RAMs without output registers or arithmetic code that is not
appropriately pipelined

• Forced placement that causes long routes

For example, a pinout that forces a route across the chip might require pipelining to
allow for high-speed operation

• Logic comprised of large XOR functions

Large XOR functions often have high switch rates that can generate large dynamic
power dissipation. Pipelining these functions can reduce switching, which positively
impacts power consumption of the described circuit.
UltraFast Design Methodology Guide 71
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=71

Chapter 3: Design Creation
In the following figure the clock speed is limited by:

• Clock-to out-time of the source flip-flop

• Logic delay through four levels of logic

• Routing associated with the four function generators

• Setup time of the destination register

The following figure is an example of the same data path shown in Figure 3-20. Because the
flip-flop is contained in the same slice as the function generator, the clock speed is limited
by the clock-to-out time of the source flip-flop, the logic delay through one level of logic,
one routing delay, and the setup time of the destination register. In this example, the
system clock runs faster after pipelining than before pipelining.

Determine Whether Pipelining is Needed

A commonly used pipelining technique is to identify a large combinatorial logic path, break
it into smaller paths, and introduce a register stage between these paths, ideally balancing
each pipeline stage.

To determine whether a design requires pipelining, identify the frequency of the clocks and
the amount of logic distributed across each of the clock groups. You can use the
report_design_analysis Tcl command with the -logic_level_distribution
option to determine the logic-level distribution for each of the clock groups.

X-Ref Target - Figure 3-20

Figure 3-20: Before Pipelining Diagram

D Q

LUT LUT LUT LUT D Q

Slow_Clock
X13429

X-Ref Target - Figure 3-21

Figure 3-21: After Pipelining Diagram

D Q LUT LUT LUT LUT
D Q

Fast_Clock

D Q D Q D Q

X13430
UltraFast Design Methodology Guide 72
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=72

Chapter 3: Design Creation
TIP: The design analysis report also highlights the number of paths with zero logic levels, which you
can use to determine where to make modifications in your code.

Balance Latency

To balance the latency by adding pipeline stages, add the stage to the control path and not
the data path. The data path includes wider buses, which increases the number of flip-flop
and register resources used.

For example, if you have a 128-bit data path, 2 stages of registers, and a requirement of 5
cycles of latency, inserting 3 register stages results in an extra 3 x 128 = 384 flip-flops.
Alternatively, you can use registers to control logic to enable the data path. Use 5 stages of
single-bit registers to control the enable signal of datapath flip-flops and multicycle path
timing exceptions accordingly.

Note: This example is only possible for certain designs. For example, in cases where there is a fanout
from the intermediate data path flip-flops, having only 2 stages does not work.

RECOMMENDED: The optimal LUT:FF ratio in an FPGA is 1:1. Designs with significantly more FFs will
increase unrelated logic packing into slices, which will increase routing complexity and can degrade
QoR.

Balance Pipeline Depth and SRL Usage

When there are deep register pipelines, map as many registers as possible into the SRLs to
avoid significant increases in register utilization. For example, a 9-deep pipeline for a data
width of 32 results in 9 registers for each bit, which uses 32 x 9 = 288 registers. Mapping the
same structure to SRLs uses 32 SRLs. Each SRL has address pins A4 through A0 connected
to 5’b01000 to implement a depth of 9 stages.

There are multiple ways to infer SRLs during synthesis, including the following:

• SRL

• REG -> SRL

• SRL -> REG

• REG -> SRL -> REG

You can create these structures using the srl_style attribute in the RTL code as follows:

• (* srl_style = “srl” *)

• (* srl_style = “reg_srl” *)

• (* srl_style = “srl_reg” *)

• (* srl_style = “reg_srl_reg” *)
UltraFast Design Methodology Guide 73
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=73

Chapter 3: Design Creation
A common mistake is to use different enable/reset control signals in deeper pipeline stages.
Following is an example of a reset used in a 9-deep pipeline stage with the reset connected
to the third, fifth, and eighth pipeline stages. With this structure, the tools map the pipeline
stages to registers only, because there is a reset pin on the SRL primitive.

FF->FF->FF(reset) -> FF->FF(reset)->FF->FF->FF(reset)->FF

To take advantage of SRL inference:

• Ensure there are no resets for the pipeline stages.

• Analyze whether the reset is really required.

• Use the reset on one flip-flop (for example, on the first or last stage of the pipeline).

Avoid Unnecessary Pipelining

For highly utilized designs, too much pipelining can lead to sub-optimal results. For
example, unnecessary pipeline stages increase the number of flip-flops and routing
resources, which might limit the place and route algorithms if the utilization is high.

Note: If there are many paths with 0/1 levels of logic, check to make sure this is intentional.

Consider Pipelining Macro Primitives

Based on the target architecture, dedicated primitives such as block RAMs and DSPs can
work at over 500 MHz if enough pipelining is used. For high frequency designs, Xilinx
recommends using all of the pipelines within these blocks.

Auto-Pipelining Considerations

You can optionally insert additional pipeline registers during placement to address timing
closure challenges on specific buses and interfaces.

Using the AXI Register Slice in Auto-Pipelining Mode

The AXI Register Slice IP core is typically used for adding pipeline registers between
memory mapped or streaming AXI interfaces to help close timing. For larger devices, such
as SSI devices, adding the right amount of pipelining without overly increasing the register
utilization and the application latency is a common challenge. To simplify the pipeline
insertion task and allow the Vivado placer more flexibility, you can use the auto-pipeline
optimization feature for the AXI Register Slice IP core. When this feature is enabled, a
special physical synthesis phase (between the floorplanning and global placer phases)
inserts and places the additional pipeline stages based on setup timing slack and SLR
distance. The AXI Register Slice IP core remains compliant with the AXI handshake protocol
despite the increased latency due to the use of small FIFOs.

You can enable this feature in the IP Configuration Wizard. Set the Register Slice Options
(REG_*) to Multi SLR Crossing. In addition, set the Use timing-driven pipeline insertion for
UltraFast Design Methodology Guide 74
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=74

Chapter 3: Design Creation
all Multi-SLR channels option to 1 to enable auto-pipelining. The following figure shows an
example.

Using Auto-Pipelining on Custom Interfaces

Auto-pipelining is not limited to the AXI Register Slice IP. You can also control
auto-pipelining on custom interfaces using the properties shown in the following table,
which are specified in the RTL.

X-Ref Target - Figure 3-22

Figure 3-22: Example AXI Register Slice IP Settings to Enable Auto-Pipelining Feature
UltraFast Design Methodology Guide 75
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=75

Chapter 3: Design Creation
All nets that belong to the same AUTOPIPELINE_GROUP must have an equal number of
pipeline registers inserted on each tagged signal. Following are additional considerations:

• If an AUTOPIPELINE_GROUP does not reference an AUTOPIPELINE_INCLUDE group, the
number of pipeline stages inserted into the AUTOPIPELINE_GROUP must be between 0
and the AUTOPIPELINE_LIMIT.

• If an AUTOPIPELINE_GROUP references an AUTOPIPELINE_INCLUDE group, the sum of
the pipeline stages inserted into the AUTOPIPELINE_GROUP and the
AUTOPIPELINE_INCLUDE group must be between 0 and the AUTOPIPELINE_LIMIT.

When you specify the AUTOPIPELINE_GROUP, AUTOPIPELINE_LIMIT, and
AUTOPIPELINE_INCLUDE properties on a register in RTL, the Vivado tools automatically
propagate the properties to the net directly connected to the output of the register.

For best QoR, Xilinx recommends the following:

• Only apply the AUTOPIPELINE_* properties to registers with no clock enable and no
reset control signals.

• Create distinct hierarchies for both sides of the interface, and apply a different
USER_SLR_ASSIGNMENT with a different string to each side. The strings must not be
SLR<n>. The soft floorplanning constraints guide the Vivado placer to move the two
groups of registers to different SLRs as needed to improve QoR. For example, if
hierarchy hierA includes the source registers, and hierB includes the destination
registers, you must add the following constraints:

set_property USER_SLR_ASSIGNMENT apSrcGrpA [get_cells hierA]

Table 3-2: Datapath and Control Path Properties

Property Name Object Format/Range Description

AUTOPIPELINE_MODULE hierarchical
cell

Boolean Establishes a separate name-space
for all group names defined
throughout sub-hierarchies. This
property must be used when a
module with auto-pipelining
properties is instantiated several
times in the design.

AUTOPIPELINE_GROUP net String (case-insensitive) Establishes the auto-pipeline group
name of signals that must receive an
equal number of auto-inserted
pipeline flip-flops.

AUTOPIPELINE_INCLUDE String (case-insensitive) Specifies the name of another
AUTOPIPELINE_GROUP to include
when applying the
AUTOPIPELINE_LIMIT

AUTOPIPELINE_LIMIT 0 < integer <= 24 Defines the maximum number of
auto-inserted pipeline flip-flops for
associated groups
UltraFast Design Methodology Guide 76
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=76

Chapter 3: Design Creation
set_property USER_SLR_ASSIGNMENT apDstGrpB [get_cells hierB]

IMPORTANT: The auto-pipelining feature changes the latency of the design. Therefore, you must
ensure the functionality remains correct for the specified AUTOPIPELINE_LIMIT range. If the handshake
circuitry is required, you must add appropriate logic, such as a FIFO, with enough depth to support
backpressure without losing data. The Vivado tools do not verify the correctness of the design logic.

Note: For the best timing QoR results, the auto-pipeline properties must be set on registers without
clock enable or reset logic.

The following figure shows how the auto-pipeline properties are used in the AXI Register
Slice RTL.

The following logic diagram shows one AXI channel of the AXI Register Slice with nets
tagged with auto-pipeline properties.

X-Ref Target - Figure 3-23

Figure 3-23: Example of Auto-Pipelining RTL Property Usage
UltraFast Design Methodology Guide 77
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=77

Chapter 3: Design Creation
Reviewing the Auto-Pipelining Implementation Results

The following tables are printed in the Vivado log file during the floorplanning phase of
place_design:

• Summary of Latency Increase due to Auto-Pipeline Insertion: This table details the
number of pipeline stages inserted for each group.

• Summary of Physical Synthesis Optimizations: This table shows the total number of
inserted pipeline registers and the number of auto-pipeline groups optimized
(Optimized Cells/Nets).

X-Ref Target - Figure 3-24

Figure 3-24: Auto-Pipelining Logic Diagram
UltraFast Design Methodology Guide 78
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=78

Chapter 3: Design Creation
The following figure shows an example of the Summary of Latency Increase Due to
Auto-Pipeline Insertion table.

The following figure shows an example of the Summary of Physical Synthesis Optimizations
table.

The inserted pipeline registers can be retrieved based on their names as follows:

<origCellName>_psap and <origCellName>_psap_<N>

The following figure shows the path from SLR2 to SLR0 where nine pipeline stages were
automatically inserted during place_design.

X-Ref Target - Figure 3-25

Figure 3-25: Example of Summary of Latency Increase Due to Auto-Pipeline Insertion Table

X-Ref Target - Figure 3-26

Figure 3-26: Summary of Physical Synthesis Options for Auto Pipeline Table

X-Ref Target - Figure 3-27

Figure 3-27: Schematic View of Auto-Pipeline Inserted Registers
UltraFast Design Methodology Guide 79
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=79

Chapter 3: Design Creation
The following figure shows the same example in the Device view.

Coding Styles to Improve Power
Coding styles to improve power include:

Gate Clock or Data Paths

Gating the clock or data paths is a common technique to stop transition when the results of
these paths are not used. Gating a clock stops all driven synchronous loads and prevents
data path signal switching and glitches from continuing to propagate.

Power optimization (power_opt_design) can automatically generate signal gating logic
to reduce switching activity. However, you have information about the application, data
flow, and dependencies that is not available to the tool, which only you can specify.

Maximize Gating Elements

Maximize the number of elements affected by the gating signal. For example, it is more
power efficient to gate a clock domain at its driving source than to gate each load with a
clock enable signal.

Use Clock Enable Pins of Dedicated Clock Buffers

When gating or multiplexing clocks to minimize activity or clock tree usage, use the clock
enable ports of dedicated clock buffers. Inserting LUTs or using other methods to gate-off
clock signals is not efficient for power and timing.

X-Ref Target - Figure 3-28

Figure 3-28: Device View of Auto-Pipeline Inserted Registers
UltraFast Design Methodology Guide 80
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=80

Chapter 3: Design Creation
Use Case Block When Priority Encoder Not Needed

When a priority encoding is not needed, use a case block instead of an if-then-else block or
ternary operator.

Inefficient coding example

if (reg1)
 val = reg_in1;
else if (reg2)
 val = reg_in2;
else if (reg3)
 val = reg_in3;
else val = reg_in4;

Correct coding example

(* parallel_case *) casex ({reg1, reg2, reg3})
1xx: val = reg_in1 ;
01x: val = reg_in2 ;
001: val = reg_in3 ;
default: val = reg_in4 ;
endcase

Performance/Power Trade-off for Block RAMs
There are multiple ways of breaking a memory configuration to serve a particular
requirement. The requirement for a particular design can be performance, power, or a
mixture of both.

The following example highlights the different structures that can be generated to achieve
your requirements. Synthesis can limit the cascading of the block RAM for the
performance/power trade-off using the CASCADE_HEIGHT attribute, for UltraScale and
later devices. The usage and arguments for the attribute are described in the Vivado Design
Suite User Guide: Synthesis (UG901) [Ref 19].
UltraFast Design Methodology Guide 81
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=81

Chapter 3: Design Creation
The following figure shows an example of 32Kx32 memory configuration for higher
performance (timing).

In this implementation, all block RAMs are always enabled (for each read or write) and
consume more power.

The following figure shows an example of cascading all the block RAMs for low power.

In this implementation, because one block RAM at a time is selected (from each unit), the
dynamic power contribution is almost half. UltraScale device block RAMs have a dedicated
cascade MUX and routing structure that allows the construction of wide, deep memories
requiring more than one block RAM primitive to be built in a very power efficient
configuration.

X-Ref Target - Figure 3-29

Figure 3-29: RTL Representation of 32Kx32 Using 32Kx1 and CASCADE_HEIGHT=1

X-Ref Target - Figure 3-30

Figure 3-30: RTL Representation of 32Kx32 Using 1Kx32 and CASCADE_HEIGHT=32
UltraFast Design Methodology Guide 82
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=82

Chapter 3: Design Creation
The following figure shows an example of how to limit the cascading and gain both power
and performance at the same time, often with no trade-off in performance.

Because 8 block RAMs are selected at a time in this implementation, the dynamic power
contribution is better than for the high performance structure, but not as good as for the
low power structure. The advantage with this structure compared to a low power structure
is that it uses only 4 block RAMs in the cascaded path, which has impact on the target
frequency when compared to 32 block RAMs in the critical path for the low power structure.

Decomposing Deeper Memory Configurations for Balanced
Power and Performance
When working with deeper memory configurations, you can use the RAM_DECOMP
synthesis attribute in the RTL to reduce power by improving memory composition. When
the RAM_DECOMP attribute is applied to a memory array, the memory logic is mapped to
a wider array of block RAM primitives. To balance power and performance, you can control
cascading using the CASCADE_HEIGHT attribute along with the RAM_DECOMP attribute.
This approach requires more address decoding logic but helps to reduce the number of
block RAMs that are enabled for each read operation, which helps to reduce power.

X-Ref Target - Figure 3-31

Figure 3-31: RTL Representation of 32Kx32 Using 8Kx4 and CASCADE_HEIGHT=4
UltraFast Design Methodology Guide 83
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=83

Chapter 3: Design Creation
For example, the following figure shows a 32x16K memory configuration.

If you apply the following attributes:

ram_decomp = "power"

cascade_height = 4

16 RAMB36E2 is inferred and the memory is decomposed as follows:

• The base primitive is 32x1K.

• 4 block RAMs are cascaded to create a 32x4K configuration.

• 4 parallel structures create a 16K deep memory.

• The outputs are multiplexed to generate the output data.

X-Ref Target - Figure 3-32

Figure 3-32: 32x16K Memory Configuration

X-Ref Target - Figure 3-33

Figure 3-33: Generated Structure for 32x16K Memory Configuration Example Using
CASCADE_HEIGHT and RAM_DECOMP Attributes

X19283-050517
UltraFast Design Methodology Guide 84
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=84

Chapter 3: Design Creation
The following RTL code example shows the use of the CASCADE_HEIGHT and
RAM_DECOMP attributes.

If you apply only the ram_decomp = "power" attribute, 16 RAMB36E2 is inferred and the
memory is decomposed as follows:

• The base primitive is 32x1K.

• 8 block RAMs are cascaded to create a 32x8K configuration.

• 2 parallel structures create a 16K deep memory.

• The outputs are multiplexed into a 2:1 MUX to generate the output data.

X-Ref Target - Figure 3-34

Figure 3-34: RTL Code for 32x16K Memory Configuration Using the CASCADE_HEIGHT and
RAM_DECOMP Attributes

X-Ref Target - Figure 3-35

Figure 3-35: Generated Structure for 32x16K Memory Configuration Using the RAM_DECOMP Attribute

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

32x1K

2:1 MUX

32

32

32

0 1 6 7

X19284-050517
UltraFast Design Methodology Guide 85
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=85

Chapter 3: Design Creation
The following RTL code example shows the use of the RAM_DECOMP attribute.

If you use only the RAM_DECOMP attribute, the overall power savings is similar to using
both the RAM_DECOMP and CASCADE_HEIGHT attributes together, because only one block
RAM is active at a time. Creating a 4-deep cascaded block RAM chain is better for
performance when compared to an 8-deep cascaded block RAM chain.

For more information, see this link in the Vivado Design Suite User Guide: Synthesis (UG901)
[Ref 19].

Running RTL DRCs
A set of RTL DRC rules identify potential coding issues with your HDL. You can perform
these checks on the elaborated views, which you can open by clicking Open Elaborated
Design in the Flow Navigator. You can run these DRC checks by selecting RTL Analysis >
Report Methodology in the Flow Navigator or by executing report_methodology at the
Tcl command prompt.

X-Ref Target - Figure 3-36

Figure 3-36: RTL Code for 32x16K Memory Configuration Using the RAM_DECOMP Attribute
UltraFast Design Methodology Guide 86
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug901-vivado-synthesis.pdf;a=xSupportedAttributes
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=86

Chapter 3: Design Creation
Clocking Guidelines
Each FPGA architecture has some dedicated resources for clocking. Understanding the
clocking resources for your FPGA architecture can allow you to plan your clocking to best
utilize those resources. Most designs might not need you to be aware of these details.
However, if you can control the placement and have a good idea of the fanout on each of
the clocking domains, you can explore alternatives based on the following clocking details.
If you decide to exploit any of these clocking resources, you need to explicitly instantiate
the corresponding clocking element.

UltraScale Device Clocking
UltraScale devices have a different clocking structure from previous device architectures,
which blurs the line between global versus regional clocking. UltraScale devices do not have
regional clock buffers like 7 series devices and instead use a common buffer and clock
routing structure whether the loads are local/regional or global.

UltraScale devices feature smaller clock regions of a fixed size across devices, and the clock
regions no longer span half of the device width in the horizontal direction. The number of
clock regions per row varies per UltraScale device. Each clock region contains a clock
network routing that is divided into 24 vertical and horizontal routing tracks and 24 vertical
and horizontal distribution tracks. The following figure shows a device with 36 clock regions
(6 columns x 6 rows). The equivalent 7 Series device has 12 clock regions (2 columns x 6
rows).
UltraFast Design Methodology Guide 87
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=87

Chapter 3: Design Creation
X-Ref Target - Figure 3-37

Figure 3-37: UltraScale Device Clock Region Tiles
UltraFast Design Methodology Guide 88
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=88

Chapter 3: Design Creation
The clocking architecture is designed so that only the clock resources necessary to connect
clock buffers and loads for a given placement are used, and no resource is wasted in clock
regions with no loads. The efficient clock resource utilization enables support for more
design clocks in the architecture while improving clock characteristics for performance and
power. Following are the main categories of clock types and associated clock structures
grouped by their driver and use:

• High-Speed I/O Clocks

These clocks are associated with the high-speed SelectIO™ interface bit slice logic,
generated by the PLL, and routed via dedicated, low-jitter resources to the bit slice logic
for high-speed I/O interfaces. In general, this clocking structure is created and
controlled by Xilinx IP, such as memory IP or the High Speed SelectIO Wizard, and is not
user specified.

• General Clocks

These clocks are used in most clock tree structures and can be sourced by a GCIO
package pin, an MMCM/PLL, or fabric logic cells (not generally suggested). The general
clocking network must be driven by BUFGCE/BUFGCE_DIV/BUFGCTRL buffers, which are
available in any clock region that contains an I/O column. Any given clock region can
support up to 24 unique clocks, and most UltraScale devices can support over 100 clock
trees depending on their topology, fanout, and load placement.

• Gigabit Transceiver (GT) Clocks

Transmit, receive, and reference clocks of gigabit transceivers (GTH or GTY) use
dedicated clocking in the clock regions that include the GTs. You can use GT clocks to
achieve the following:

° Drive the general clocking network using the BUFG_GT buffers to connect any loads
in the fabric

° Share clocks across several transceivers in the same or different Quad

Clock Primitives

Most clocks enter the device through a global clock-capable I/O (GCIO) pin. These clocks
directly drive the clock network via a clock buffer or are transformed by a PLL or MMCM
located in the clock management tile (CMT) adjacent to the I/O column.
UltraFast Design Methodology Guide 89
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=89

Chapter 3: Design Creation
The CMT contains the following clocking resources:

• Clock generation blocks

° 2 PLLs

° 1 MMCM

• Global clock buffers

° 24 BUFGCEs

° 8 BUFGCTRLs

° 4 BUFGCE_DIVs

Note: Clocking resources in CMTs that are adjacent to I/O columns with unbonded I/Os are available
for use.

The GT user clocks drive the global clock network via BUFG_GT buffers. There are 24
BUFG_GT buffers per clock region adjacent to the GTH/GTY columns.

Following is summary information for each of the UltraScale device clock buffers:

• BUFGCE

The most commonly used buffer is the BUFGCE. This is a general clock buffer with a
clock enable/disable feature equivalent to the 7 series BUFHCE.

• BUFGCE_DIV

The BUFGCE_DIV is useful when a simple division of the clock is required. It is considered
easier to use and more power efficient than using an MMCM or PLL for simple clock
division. When used properly, it can also show less skew between clock domains as
compared to an MMCM or PLL when crossing clock domains. The BUFGCE_DIV is often
used as replacement for the BUFR function in 7 series devices. However, because the
BUFGCE_DIV can drive the global clock network, it is considered more capable than the
BUFR component.

• BUFGCTRL (also BUFGMUX)

The BUFGCTRL can be instantiated as a BUFGMUX and is generally used when
multiplexing two or more clock sources to a single clock network. As with the BUFGCE
and BUFGCE_DIV, it can drive the clock network for either regional or global clocking.

• BUFG_GT

When using clocks generated by GTs, the BUFG_GT clock buffer allows connectivity to
the global clock network. In most cases, the BUFG_GT is used as a regional buffer with
its loads placed in one or two adjacent clock regions. The BUFG_GT has built-in dynamic
clock division capability that you can use in place of an MMCM for clock rate changes.
UltraFast Design Methodology Guide 90
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=90

Chapter 3: Design Creation
You can use the Clock Utilization Report in the Vivado IDE to visually analyze clocking
resource utilization and clock routing. The following figure shows the clock resource
utilization per clock region overlaid in the Device window. For more information on this
report, see the Vivado Design Suite User Guide: Design Analysis and Closure Techniques
(UG906) [Ref 24].

For more information on the BUFGCE, BUFGCE_DIV, and BUFGCTRL buffers, see the
UltraScale Architecture Clocking Resources User Guide (UG572) [Ref 41]. For details on
connectivity and use of the BUFG_GT buffer, see the appropriate UltraScale Architecture
Transceiver User Guide [Ref 42].

Global Clock Buffer Connectivity and Routing Tracks

Each of the 24 BUFGCE buffers in a clock region can only drive a specific clock routing track.
However, the BUFGCTRL and BUFGCE_DIV outputs can use any of the 24 tracks by going
through a MUX structure. Each BUFGCE_DIV shares the input connectivity with a specific
BUFGCE site, and each BUFGCTRL shares input connectivity with two specific BUFGCE sites.

X-Ref Target - Figure 3-38

Figure 3-38: Clock Utilization Report
UltraFast Design Methodology Guide 91
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=91

Chapter 3: Design Creation
Consequently, when BUFGCE_DIV or BUFGCTRL buffers are used in the clock region, use of
the BUFGCE buffers is limited. The following figure shows the bottom 6 BUFGCE in a clock
region, which are replicated 4 times within a clock region.

Note: A global clock net is assigned to a specific track ID in the device for all the vertical, horizontal
routing, and distribution resources the clock uses. A clock cannot change track IDs unless the clock
goes through another clock buffer.

X-Ref Target - Figure 3-39

Figure 3-39: BUFGCE, BUFGCE_DIV, and BUFGCTRL Shared Inputs and Output Muxing
UltraFast Design Methodology Guide 92
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=92

Chapter 3: Design Creation
Clock Routing, Root, and Distribution

To properly understand the clocking capacity of an UltraScale device and the clocking
utilization of a design, it is important to know how the clock routes use the dedicated
routing resources:

• From the clock buffer to the clock root, the clock signal goes through one or several
segments of vertical and horizontal routing. Each segment must use the same track ID
(between 0 and 23).

• At the clock root, the clock signal transitions from the routing track to the distribution
track with the same track ID. To reduce skew, the clock root is usually in the clock
region located in the center of the clock window. The clock window is the rectangular
area that includes all the clock regions where the clock net loads are placed. For skew
optimization reasons, the Vivado IDE might move the clock root to off center.

• From the clock root to the CLB columns where the loads are located, the clock signal
travels on the vertical distribution (both up and down the device as needed) and then
onto the horizontal distribution (both to the left and right as needed).

• The CLB columns are split into two halves, which are located above and below the
horizontal distribution resources. Each half of the CLB column contains several leaf
clock routing resources that can be reached by any of the horizontal distribution tracks.

In some cases, a clock buffer can directly drive onto the clock distribution track. This usually
happens when the clock root is located in the same clock region as the clock buffer or when
the clock buffer only drives non-clock pins (for example, high fanout nets).

Because clock routing resources are segmented, only the routing and distribution segments
used to traverse a clock region or to reach a load in a clock region are consumed.
UltraFast Design Methodology Guide 93
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=93

Chapter 3: Design Creation
The following figure shows how a clock buffer located in clock region X2Y1 reaches its loads
placed inside the clock window, which is formed by a rectangle of clock regions from X1Y3
to X5Y5.

X-Ref Target - Figure 3-40

Figure 3-40: UltraScale Device Clock Routing from Driver to Loads
UltraFast Design Methodology Guide 94
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=94

Chapter 3: Design Creation
In the following figure, a routed device view shows an example of a global clock that spans
most of the device. The clock buffer driving the network is highlighted in blue in clock
region X2Y0 and drives onto the horizontal routing in that clock region. The net then
transitions from the horizontal routing onto the vertical routing in clock region X2Y0
reaching the clock root in clock region X2Y5. All clock routing is highlighted in blue. The
clock root is highlighted in red in the clock region X2Y5. From the clock root in X2Y5, the net
transitions onto the vertical distribution and then the horizontal distribution to the clock
leaf pins. The distribution layer and the leaf clock routing resources in the CLB columns are
highlighted in red.

X-Ref Target - Figure 3-41

Figure 3-41: Routed Device View of a Routed Clock Network
UltraFast Design Methodology Guide 95
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=95

Chapter 3: Design Creation
Clock Tree Placement and Routing

During the following phases, the Vivado placer determines the placement of MMCM/PLLs,
global clock buffers, and the clock root while honoring the physical XDC constraints:

1. I/O and clock placement

The placer places I/O buffers and MMCM/PLLs based on connectivity rules and user
constraints. The placer assigns clock buffers to clock regions but not to individual sites
unless constrained using the LOC property. For details, see Table 3-3. Only the clock
buffers that only drive non-clock loads can move to a different clock region later in the
flow based on the placement of their driver and loads.

Any placer error at this phase is due to conflicting connectivity rules, user constraints, or
both. The log file shows extensive information about the possible root cause of the
error, which you must review in detail to make the appropriate design or constraint
change.

2. SLR partitioning (SSI technology devices only) and global placement

The placer performs the initial clock tree implementation based on early driver and load
placements. Each clock net is associated with a clock window. The excessive overlap of
clock windows can lead to placer errors due to anticipated clock routing contention.

When a clock partitioning error occurs, the log file shows the last clock budgeting
solution for each clock net as well as the number of unique clock nets present in each
clock region. Review the log file in detail to determine which clocks to remove from the
overutilized clock regions. You can remove clocks using the following methods:

° Reduce the number of clocks in the design by combining identical synchronous
clocks, removing unnecessary MMCM feedback clocks, or consolidating lower
fanout clocks with high fanout clocks.

° Move clock primitives to different clock regions, especially those without
connectivity-based placement rules.

° Add floorplanning constraints on clock loads to keep clocks with smaller fanout
closer to their driver or away from the highly utilized clock regions.

The placer refines the clock tree implementation several times to help improve timing
QoR. For example, during the later placement optimization phases, the placer analyzes
each challenging clock to determine a better clock root location.

3. Clock tree pre-routing

The placer guides the subsequent implementation steps and provides accurate delay
estimates for post-place timing analysis.
UltraFast Design Methodology Guide 96
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=96

Chapter 3: Design Creation
After placement, the Vivado tools can modify the clock tree implementation as follows:

• The Vivado physical optimizer can replicate and move cells to clock regions without
associated clocks.

• The Vivado router can make adjustments to improve timing QoR and legalize the clock
routing. The Vivado router can also modify the clock root location to improve timing
QoR when you use the Explore routing directive.

The following table summarizes the placement rules for the main clock topologies and how
constraints affect these rules.

Table 3-3: Topologies with and without Placement Rules

Constrained Source Unconstrained Destination Behavior

GCIO BUFGCE, BUFGCTRL, BUFGCE_DIV,
PLL/MMCM

Automatically placed in same clock
region.

PLL/MMCM BUFGCE, BUFGCTRL, BUFGCE_DIV Automatically placed in same clock
region.

GT*_CHANNEL BUFG_GT Automatically placed in same clock
region.

BUFGCTRL BUFGCTRL Automatically placed in same clock
region.
Note: You can override placement
within same clock region using the
CLOCK_REGION constraint.

BUFG* BUFG* Unpredictable placement of
unconstrained destination BUFG.

Recommend constraining
destination BUFG* using the
CLOCK_REGION constraint.
Note: This excludes BUFGCTRL ->
BUFGCTRL.

BUFG* MMCM/PLL Unpredictable placement of
unconstrained destination
MMCM/PLL.

Recommend constraining
MMCM/PLL using a LOC constraint.

Recommend
CLOCK_DEDICATED_ROUTE
constraint when the route spans
adjacent or multiple clock regions.
UltraFast Design Methodology Guide 97
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=97

Chapter 3: Design Creation
Clocking Capability

Clock planning must be based on the total number of high fanout clocks and low fanout
clocks in the target device.

High Fanout Clocks

A high fanout clock spans almost an entire SLR of an SSI technology device or almost all
clock regions of a monolithic device. The following figure shows a high fanout clock that
spans almost an entire SLR with the BUFGCE driver shown in red.

Note: Using more than 24 clocks in a design might cause issues that require special design
considerations or other up-front planning.

IMPORTANT: In ZHOLD and BUF_IN compensation modes, the MMCM feedback clock path matches the
CLKOUT0 clock path in terms of routing track, clock root location, and distribution tracks. Therefore,
the feedback clock can be considered a high fanout clock when the clock buffer and clock root are far
apart. For more information on MMCM compensation mechanism, see I/O Timing with MMCM
ZHOLD/BUF_IN Compensation.

X-Ref Target - Figure 3-42

Figure 3-42: High Fanout Clock Spanning an SLR
UltraFast Design Methodology Guide 98
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=98

Chapter 3: Design Creation
Low Fanout Clocks

In most cases, a low fanout clock is a clock net that is connected to less than 5,000 clock
pins, which are placed in 3 or fewer horizontally adjacent clock regions. The clock routing,
clock root, and clock distribution are all contained within the localized area.

In some cases, the placer is expected to identify a low fanout clock but fails. This can be
caused by design size, device size, or physical XDC constraints, such as a LOC constraint or
Pblock, which prevent the placer from placing the loads in a local area. To address this issue,
you might need to guide the tool by manually creating a Pblock or modifying the existing
physical constraints.

Clocks driven by BUFG_GTs are an example of a low fanout clock. The Vivado placer
automatically identifies these clock nets and contains the loads to the clock regions
adjacent to the GT interface. The following figure shows a low fanout clock contained in two
clock regions with the BUFG_GT driver shown in red.

TIP: To contain a low fanout clock to a single clock region, you can use the CLOCK_LOW_FANOUT XDC
constraint. For more information, see Using the CLOCK_LOW_FANOUT Constraint.

X-Ref Target - Figure 3-43

Figure 3-43: Low Fanout Clock Contained in Two Clock Regions
UltraFast Design Methodology Guide 99
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=99

Chapter 3: Design Creation
Balanced Utilization of High and Low Fanout Clocks

UltraScale devices support more clocks than previous Xilinx FPGA families. This enables a
wide range of clocking utilization scenarios, such as the following:

• 24 clocks or less

Unless conflicting user constraints exist, all clocks can be treated as high fanout clocks
without risking placement or routing contention.

• Almost 300 clocks

For a design that targets a device with 6 clock region rows and includes only low fanout
clocks with each clock included in 3 clock regions at most, the following clocks are
required: 6 rows x 2 clock windows per row x 24 clocks per region = 288 clocks.

Low fanout clock windows do not have a fixed size but are usually between 1 and 3 clock
regions. High fanout clocks rarely span the entire device or an entire SLR.

The following method shows how to balance high fanout clocks and low fanout clocks,
assuming that a few low fanout clocks come from I/O interfaces and most from GT
interfaces. You can apply the same method for each SSI technology device SLR.

• High fanout clocks

° Up to 12 for monolithic devices

° Up to 24 for SSI technology devices (assuming some high fanout clocks are only
present in 1 SLR)

• Low fanout clocks

° Up to 12 plus 8 per GT utilized Quad

° Alternatively, up to 12 plus 6 per GT interface (group of GT channels that share the
RXUSRCLK and TXUSRCLK)

Clock Constraints

Physical XDC constraints drive the implementation of clock trees and control the use of high
fanout clocking resources. Because UltraScale device clocking is more flexible than clocking
with previous architectures and includes additional architectural constraints, it is important
to understand how to properly constrain your clocks for implementation.
UltraFast Design Methodology Guide 100
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=100

Chapter 3: Design Creation
Using LOC Constraints for IO/MMCM/PLL/GT

To constrain clocks, you can assign placement constraints as follows:

• On a clock input at the I/O port

Assigning a PACKAGE_PIN constraint for a clock on a GCIO or assigning a LOC to an IOB
affects the clock network. The MMCM/PLL and clock buffers directly connected to the
input port must be placed in the same clock region.

• On an MMCM or PLL

The clock buffers directly connected to the MMCM or PLL outputs and the input clock
ports connected to the MMCM or PLL inputs are automatically placed in the same clock
region. If an input clock port and an MMCM or PLL are directly connected and
constrained to different clock regions, you must manually insert a clock buffer and set a
CLOCK_DEDICATED_ROUTE constraint on the net connected to the MMCM or PLL.

• On a GT*_CHANNEL or IBUFDS_GTE3 cell

The BUFG_GTs driven by the cell are placed in the same clock region.

CAUTION! Xilinx does not recommended using LOC constraints on the clock buffer cells. This method
forces the clock onto a specific track ID, which can result in placement that cannot be legally routed.
Only use LOC constraints to place high fanout clock buffers in UltraScale devices when you understand
the entire clock tree of the design and when placement is consistent in the design. Even after taking
these precautions, collisions might occur during implementation due to design or constraint changes.

Using the CLOCK_REGION Property on Clock Buffers

You can use the CLOCK_REGION constraint to assign a clock buffer to a clock region without
specifying a site. This gives the placer more flexibility when optimizing all the clock trees
and when determining the appropriate buffer sites to successfully route all clocks.

You can also use a CLOCK_REGION constraint to provide guidance on the placement of
cascaded clock buffers or clock buffers driven by non-clocking primitives, such as fabric
logic.

In the following example, the XDC constraint assigns the clkgen/clkout2_buf clock
buffer to the CLOCK_REGION X2Y2.

set_property CLOCK_REGION X2Y2 [get_cells clkgen/clkout2_buf]

Note: In most cases, the clock buffers are directly driven by input clock ports, MMCMs, PLLs, or
GT*_CHANNELs that are already constrained to a clock region. If this is the case, the clock buffers are
automatically placed in the same clock region, and you do not need to use the CLOCK_REGION
constraint.
UltraFast Design Methodology Guide 101
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=101

Chapter 3: Design Creation
Using a Pblock to Restrict Clock Buffer Placement

When a clock buffer does not need to be placed in a specific clock region, you can use a
Pblock to specify a range of clock regions. For example, use a Pblock when a BUFGCTRL is
needed to multiplex two clocks that are located in different areas. You can assign the
BUFGTRL to a Pblock that includes the clock regions between the two clock drivers and let
the placer identify a valid placement.

Note: Xilinx does not recommend using a Pblock for a single clock region.

Using the USER_CLOCK_ROOT Property on a Clock Net

You can use the USER_CLOCK_ROOT property to force the clock root location of a clock
driven by a clock buffer. Specifying the USER_CLOCK_ROOT property influences the design
placement, because it impacts both insertion delay and skew by modifying the clock
routing. The USER_CLOCK_ROOT value corresponds to a clock region, and you must set the
property on the net segment directly driven by the high fanout clock buffer. Following is an
example:

set_property USER_CLOCK_ROOT X2Y3 [get_nets clkgen/wbClk_o]

X-Ref Target - Figure 3-44

Figure 3-44: USER_CLOCK_ROOT Applied on the Net Segment Driven by the Clock Buffer
UltraFast Design Methodology Guide 102
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=102

Chapter 3: Design Creation
After placement, you can use the CLOCK_ROOT property to query the actual clock root as
shown in the following example. The CLOCK_ROOT reports the assigned root whether it was
user assigned or automatically assigned by the Vivado tools.

get_property CLOCK_ROOT [get_nets clkgen/wbClk_o]

=> X2Y3

Another way to review the clock root assignments of your implemented design is to use the
report_clock_utilization Tcl command. For example:

report_clock_utilization [-clock_roots_only]

The following figure shows this report.

Using the CLOCK_DELAY_GROUP Constraint on Several Clock Nets

You can use the CLOCK_DELAY_GROUP constraint to match the insertion delay of multiple,
related clock networks driven by different clock buffers. This constraint is commonly used
to minimize skew on synchronous CDC timing paths between clocks originating from the
same MMCM or PLL source. You must set the CLOCK_DELAY_GROUP constraint on the net
segment directly connected to the clock buffer. The following example shows the
clk1_net and clk2_net clock nets, which are directly driven by the clock buffers:

set_property CLOCK_DELAY_GROUP grp12 [get_nets {clk1_net clk2_net}]

For more information on using this constraint on paths between clocks, see Synchronous
CDC.

Using the CLOCK_DEDICATED_ROUTE Constraint

The CLOCK_DEDICATED_ROUTE constraint is typically used when driving from a clock buffer
in one clock region to an MMCM or PLL in another clock region. By default, the
CLOCK_DEDICATED_ROUTE constraint is set to TRUE, and the buffer/MMCM or PLL pair
must be placed in the same clock region.

The following table summarizes the different CLOCK_DEDICATED_ROUTE constraint values,
use, and behavior.

X-Ref Target - Figure 3-45

Figure 3-45: report_clock_utilization Clock Root Assignments
UltraFast Design Methodology Guide 103
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=103

Chapter 3: Design Creation

Ul 104
UG

ty to the net driven directly by a port.

Behavior
lock buffer and MMCM/PLLs must be placed in
e clock region.
e ensures the net is routed using only global

sources.

PLLs must be placed in a clock region in the same
column.
e ensures the net is routed using only global

sources.
mal results, Xilinx recommends using a LOC
nt on the MMCM/PLL to control placement of the
PLL within in the same vertical column.

PLLs can be placed in any clock region with
e resources.
e ensures the net is routed using only global

sources.
mal results, Xilinx recommends using a LOC
nt on the MMCM/PLL to control placement of the
PLL within the device.

uted using fabric and global clock resources.
 adversely affect the timing and performance of
k network.
NT: For UltraScale devices,
DICATED_ROUTE=FALSE must only be used when
mally routed with global clock resources needs to
with fabric resources for special design reasons.
traFast Design Methodology Guide
949 (v2019.1) June 26, 2019 www.xilinx.com

Note: When working with UltraScale devices, do not apply the CLOCK_DEDICATED_ROUTE proper
Instead, apply the CLOCK_DEDICATED_ROUTE property to the output of the IBUF.

Table 3-4: UltraScale Device CLOCK_DEDICATED_ROUTE Constraint Summary

Value Use

TRUE Default value on clock nets • Global c
the sam

• This valu
clock re

SAME_CMT_COLUMN Net driven by a global clock buffer or the output of an IBUF

Examples:
set_property CLOCK_DEDICATED_ROUTE SAME_CMT_COLUMN \

[get_nets -of [get_pins BUFGCE_inst/O]]

set_property CLOCK_DEDICATED_ROUTE SAME_CMT_COLUMN \

[get_nets -of [get_pins IBUF_inst/O]]

• MMCM/
vertical

• This valu
clock re

• For opti
constrai
MMCM/

ANY_CMT_COLUMN Net driven by a global clock buffer

Examples:
set_property CLOCK_DEDICATED_ROUTE ANY_CMT_COLUMN \

[get_nets -of [get_pins BUFGCE_inst/O]]

set_property CLOCK_DEDICATED_ROUTE ANY_CMT_COLUMN \

[get_nets -of [get_pins BUFGCE_DIV_inst/O]]

set_property CLOCK_DEDICATED_ROUTE ANY_CMT_COLUMN \

[get_nets -of [get_pins BUFGCTRL_inst/O]]

• MMCM/
availabl

• This valu
clock re

• For opti
constrai
MMCM/

FALSE Clock net not driven by a global clock buffer but part of the clock network (for
example, nets driven by the output of an IBUF or nets directly connected to output
clock pins of an MMCM)

Examples:
set_property CLOCK_DEDICATED_ROUTE FALSE \

[get_nets -of [get_pins MMCME4_ADV_inst/CLKOUT0]]

set_property CLOCK_DEDICATED_ROUTE FALSE \

[get_nets -of [get_pins IBUF_inst/O]]

• Net is ro
• This can

the cloc
IMPORTA
CLOCK_DE
a clock nor
be routed

https://www.xilinx.com

Chapter 3: Design Creation
When driving from a clock buffer in one clock region to a MMCM or PLL in a vertically
adjacent clock region, you must set the CLOCK_DEDICATED_ROUTE to BACKBONE for 7
series devices or to SAME_CMT_COLUMN for UltraScale devices. This prevents
implementation errors and ensures that the clock is routed with global clock resources only.
The following example and figure show a clock buffer driving two PLLs in vertically adjacent
clock regions.

set_property CLOCK_DEDICATED_ROUTE SAME_CMT_COLUMN [get_nets -of [get_pins BUFG_inst_0/O]]

set_property LOC PLLE3_ADV_X0Y0 [get_cells PLLE3_ADV_inst_0]

set_property LOC PLLE3_ADV_X0Y4 [get_cells PLLE3_ADV_inst_1]

X-Ref Target - Figure 3-46

Figure 3-46: CLOCK_DEDICATED_ROUTE Constraint Set to SAME_CMT_COLUMN
UltraFast Design Methodology Guide 105
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=105

Chapter 3: Design Creation
When driving from a clock buffer to other clock regions that are not vertically adjacent, you
must set the CLOCK_DEDICATED_ROUTE to FALSE for 7 series devices or to
ANY_CMT_COLUMN for UltraScale devices. This prevents implementation errors and
ensures that the clock is routed with global clock resources only. The following example and
figure show a BUFGCE driving two PLLs that are not located on the same clock region
column as the input buffer.

set_property CLOCK_DEDICATED_ROUTE ANY_CMT_COLUMN [get_nets -of [get_pins BUFG_inst_0/O]]

set_property LOC PLLE3_ADV_X1Y0 [get_cells PLLE3_ADV_inst_0]

set_property LOC PLLE3_ADV_X1Y4 [get_cells PLLE3_ADV_inst_1]

Using the CLOCK_LOW_FANOUT Constraint

You can use the CLOCK_LOW_FANOUT constraint to contain the loads of a clock buffer in a
single clock region. CLOCK_LOW_FANOUT is set on the clock net segment directly driven by
the global clock buffer, and the fanout of the global clock buffer must be less than 2,000
loads.

Note: CLOCK_LOW_FANOUT takes lower precedence when used in conjunction with other clocking
constraints. If CLOCK_LOW_FANOUT is in conflict with other clock constraints, such as
USER_CLOCK_ROOT, CLOCK_DELAY_GROUP, or CLOCK_DEDICATED_ROUTE, CLOCK_LOW_FANOUT is
not obeyed.

X-Ref Target - Figure 3-47

Figure 3-47: CLOCK_DEDICATED_ROUTE Set to ANY_CMT_COLUMN
UltraFast Design Methodology Guide 106
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=106

Chapter 3: Design Creation
The following example shows the CLOCK_LOW_FANOUT constraint used to drive a clock
network with less than 2,000 loads and contain it in a single clock region. The input clock
port, clkIn has a PACKAGE_PIN assignment to a GCIO located in the CLOCK_REGION X2Y0
and drives a PLLE3_ADV. The PLLE3_ADV drives a global clock buffer that subsequently
drives the clock network with 1379 loads. The loads of the global clock buffer are all placed
in the CLOCK_REGION X2Y0.

PACKAGE_PIN AF9 - IOBank 64 - CLOCK_REGION X2Y0

set_property PACKAGE_PIN AF9 [get_ports clkIn]

set_property IOSTANDARD LVCMOS18 [get_ports clkIn]

set_property CLOCK_LOW_FANOUT TRUE [get_nets -of [get_pins clkOut0_bufg_inst/O]]

Clocking Topology Recommendations

Xilinx recommends using simple clock tree topologies with the minimum number of clock
buffers required for the design. Using extra clock buffers requires more routing tracks,
which can lead to placement errors or routing conflicts in clock regions where the clock
routing requirement is high and is close to the maximum capacity.

Following are clocking topology recommendations for BUFGCE/BUFGCTRL/BUFGCE_DIV
connectivity.

X-Ref Target - Figure 3-48

Figure 3-48: CLOCK_LOW_FANOUT Example in Device Window and Schematic Window
UltraFast Design Methodology Guide 107
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=107

Chapter 3: Design Creation
Parallel Clock Buffers

Use parallel clock buffers to achieve the following:

• Ensure predictable placement across implementation runs

When the parallel clock buffers are directly driven by the same input clock port, MMCM,
PLL, or GT*_CHANNEL, the buffers are always placed in the same clock region as their
driver regardless of the netlist changes or logic placement variation.

• Match the insertion delays between parallel branches of the clock tree

Xilinx recommends parallel buffers over cascaded clock buffers, especially when there
are synchronous paths between the branches. When using cascaded buffers, the clock
insertion delay is not matched between the branches of the clock trees even when using
the CLOCK_DELAY_GROUP or USER_CLOCK_ROOT constraints. This can result in high
clock skew, which makes timing closure challenging if not impossible.

The following figure shows three parallel BUFGCE buffers driven by the MMCM CLKOUT0
port.

X-Ref Target - Figure 3-49

Figure 3-49: Parallel BUFGCE on MMCM Output
UltraFast Design Methodology Guide 108
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=108

Chapter 3: Design Creation
Cascaded Clock Buffers

In general, Xilinx does not recommend using cascaded buffers to artificially increase the
delay and reduce the skew between unrelated clock trees branches. Unlike connections
between BUFGCTRLs, other clock buffer connections do not have a dedicated path in the
architecture. Therefore, the relative placement of clock buffers is not predictable, and all
placement rules take precedence over placing unconstrained cascaded buffers.

However, you can use cascaded clock buffers to achieve the following:

• Route the clock to another clock buffer located in a different clock region

This method is typical when using a clock multiplexer for clocks generated by MMCMs
located in different clock regions. Although one of the MMCMs can directly drive the
BUFGCTRL (BUFGMUX), the other MMCM requires an intermediate clock buffer to route
the clock signal to the other region. The following figure shows an example.

X-Ref Target - Figure 3-50

Figure 3-50: Routing the Clock to Another Clock Region

Clock Region 1

Clock Region 2

X15518-111215
UltraFast Design Methodology Guide 109
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=109

Chapter 3: Design Creation
• Balance the number of clock buffer levels across the clock tree branches when there is a
synchronous path between those branches

For example, consider an MMCM clock called clk0 that drives both group A (sequential
cells driven via a BUFGCTRL located in a different clock region) and group B (sequential
cells). To better match the delay between the branches, insert a BUFGCE for group B and
place it in the same clock region as the BUFGCTRL. This ensures that the synchronous
paths between group A and group B have a controlled amount of skew. The following
figure shows an example.

Note: The Vivado logic optimization command opt_design is not aware of the timing
relationship between timing clocks and clock network branches. As a result, opt_design
removes as many cascaded or redundant clock buffers as possible. In this example, opt_design
removes BUFGCE_inst_1 unless you set a DONT_TOUCH="TRUE" property on it. If there are only
asynchronous paths between the clock tree branches, the branches do not need to be balanced
as long as there is proper synchronization circuitry on the receiving clock domain.

• Build clock multiplexers as described in Clock Multiplexing.

X-Ref Target - Figure 3-51

Figure 3-51: Balancing Clock Trees for Synchronous Paths Between Clock Regions

Group A

Group B

Clock Region 1

Clock Region 2

S
ynchronous P

aths
UltraFast Design Methodology Guide 110
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=110

Chapter 3: Design Creation
To reduce the variation of insertion delays and skew, Xilinx recommends the following when
using cascaded clock buffers:

• Keep the cascaded buffers in the same or adjacent clock regions.

• When clock tree branches are balanced, assign all the clock buffers of the same level to
the same clock region.

Note: If absolutely required, Xilinx recommends using two cascaded BUFGCTRLs instead of
cascaded BUFGCEs. Using dedicated routing, you can cascade two adjacent BUFGCTRLs with
minimum delay when both BUFGCTRLs are placed inside the same clock region.

Clock Multiplexing

You can build a clock multiplexer using a combination of parallel and cascaded BUFGCTRLs.
The placer finds the optimal placement based on the clock buffer site availability. If
possible, the placer places BUFGCTRLs in adjacent sites to take advantage of the dedicated
cascade paths. If that is not possible, the placer will attempt to place the BUFGCTRLs from
the same level in the adjacent clock regions.

The following figure shows a 4:1 MUX with balanced cascading. The first level of BUFGCTRL
buffers are both placed in the directly adjacent sites (X0Y2, X0Y0) of the last BUFGCTRL
(X0Y1). This configuration ensures a comparable insertion delay for all the clocks reaching
the last BUFGCTRL. You can use an equivalent structure for a 3:1 MUX.
UltraFast Design Methodology Guide 111
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=111

Chapter 3: Design Creation
X-Ref Target - Figure 3-52

Figure 3-52: 4:1 MUX Using Parallel BUFGCTRL
UltraFast Design Methodology Guide 112
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=112

Chapter 3: Design Creation
When creating a 5:1 or larger clock MUX structure, it is common to create a symmetrical
clock structure as shown in the following figure. However, this is a sub-optimal solution,
because each BUFGCTRL only has one cascade path to the two adjacent BUFGCTRLs, which
does not provide minimal delay for all connections between the BUFGCTRLs.

X-Ref Target - Figure 3-53

Figure 3-53: Non-Recommended 8:1 Balanced Clock MUX Structure
UltraFast Design Methodology Guide 113
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=113

Chapter 3: Design Creation
To support larger clock multiplexers (from 5:1 to 8:1 MUX), Xilinx recommends using
cascaded BUFGCTRL buffers as shown in the following figure. This figure shows an optimal
8:1 MUX that uses 7 BUFGCTRL buffers.

Note: When using wide BUFGCTRL-based clock multiplexers, the clock insertion delays cannot be
balanced because some paths are longer than other paths in hardware. Therefore, this method is
recommended for multiplexing asynchronous clocks only.

PLL/MMCM Feedback Path and Compensation Mode

PLLs do not support delay compensation and always operate in INTERNAL compensation
mode, which means they do not need a feedback path. Similarly, MMCMs set to INTERNAL
compensation mode do not need a feedback path. In both cases, the Vivado tools do not
always automatically remove unnecessary feedback clock buffers. You must remove the
clock buffers manually to reduce the amount of high fanout clock resource utilization. This
is especially important for designs with high clocking usage where clock contention might
occur.

When the MMCM compensation is set to ZHOLD or BUF_IN, the placer assigns the same
clock root to the nets driven by the feedback buffer and by all buffers directly connected to
the CLKOUT0 pin. This ensures that the insertion delays are matched so that the I/O ports
and the sequential cells connected to CLKOUT0 are phase-aligned and hold time is met at
the device interface. The Vivado tools consider all the loads of these nets to optimally
define the clock root.

X-Ref Target - Figure 3-54

Figure 3-54: 8:1 MUX Using Cascaded BUFGCTRL
UltraFast Design Methodology Guide 114
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=114

Chapter 3: Design Creation
The Vivado tools do not automatically match the insertion delay with the other MMCM
outputs. To match the insertion delay for the nets driven by other MMCM output buffers,
use the following properties:

• CLOCK_DELAY_GROUP

Apply the same CLOCK_DELAY_GROUP property value to the nets directly driven by
feedback clock buffer, the CLKOUT0 buffers, and the other MMCM output buffers as
needed. This is the preferred method.

• USER_CLOCK_ROOT

If you need to force a specific clock root, use the same USER_CLOCK_ROOT property
value on the nets driven by the feedback clock buffer, the CLKOUT0 buffers, and the
other MMCM output buffers as needed.

BUFG_GT Divider

The BUFG_GT buffers can drive any loads in the fabric and include an optional divider you
can use to divide the clock from the GT*_CHANNEL. This eliminates the need to use an extra
MMCM or BUFG_DIV to divide the clock.

SelectIO Clocking

The UltraScale device SelectIO primitives have maximum skew requirements between clock
pins. Using the optimal clocking topology for the SelectIO primitives prevents maximum
skew violations, improves interface timing between the UltraScale device and the fabric
logic, and uses fewer clocking resources.

ISERDESE3 and IDDRE1 Clocking

For ISERDESE3 and IDDRE1 clocking in UltraScale and UltraScale+ devices, maximum skew
requirements exist between the clock and inverted clock pins. To meet the maximum skew
requirements, Xilinx recommends using a single net for the clock and inverted clock pins
when using the local inversion.

In the following figure, the left side shows a sub-optimal configuration that uses the
CLKOUT0B output of the MMCM. The right side of the figure shows the optimal
configuration that uses the local inversion on the CLK_B and CB pins of the ISERDESE3 and
IDDRE1. Using the optimal configuration guarantees that the maximum skew requirement
is met while using fewer global clock resources.
UltraFast Design Methodology Guide 115
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=115

Chapter 3: Design Creation
OSERDESE3 Clocking

For OSERDESE3 clocking in UltraScale and UltraScale+ devices, maximum skew
requirements exist between the high-speed clock and divided clock pins. To meet the
maximum skew requirements, Xilinx recommends using parallel global clock buffers where
one of the global clock buffers is a BUFGCE_DIV. This removes the additional clock
uncertainty between the two outputs of the MMCM.

In the following figure, the left side shows a sub-optimal configuration that uses two
separate outputs of the MMCM. The right side of the figure shows the optimal
configuration that uses a single MMCM output and the BUFGCE_DIV cell, which provides
the divided clock using the BUFGCE_DIVIDE property.

Note: The high-speed clock does not need to be driven by a BUFGCE. Alternatively, you can use
BUFGCE_DIV with a BUFGCE_DIVIDE property setting of 1.

X-Ref Target - Figure 3-55

Figure 3-55: Sub-Optimal to Optimal Clocking Topologies for ISERDESE3 and IDDRE1

X-Ref Target - Figure 3-56

Figure 3-56: Sub-Optimal to Optimal Clocking Topologies for OSERDESE3
UltraFast Design Methodology Guide 116
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=116

Chapter 3: Design Creation
I/O Timing with MMCM ZHOLD/BUF_IN Compensation

ZHOLD compensation indicates that the MMCM is configured to provide a negative hold
for all I/O registers of an entire I/O column. When a clock capable I/O (CCIO) drives a single
MMCM that is configured in ZHOLD compensation mode, the placer will attempt to place
the MMCM with the CCIO in the same clock region. In this case, the CCIO can drive the
MMCM directly without going through a BUFG. This allows the ZHOLD compensation of the
MMCM to remain in effect.

However, if a CCIO drives an MMCM configured in ZHOLD mode in addition to another
MMCM, logic optimization will attempt to legalize the clock routing to the MMCMs by
inserting a BUFG after the CCIO. Because the MMCM with ZHOLD compensation is no
longer driven directly by a CCIO, the compensation is changed to BUF_IN. To avoid this,
ensure that the CCIO drives the MMCM configured in ZHOLD mode directly and drives the
additional MMCM through a BUFG. In addition, set the CLOCK_DEDICATED_ROUTE property
for the net driven by the BUFG to ANY_CMT_COLUMN.

Because the clock insertion delay varies with the clock root locations and the clock root
placement depends on placement of the loads, there might be variability between runs. This
variability affects the timing inside the FPGA as well as the I/O timing.

When dealing with high-frequency I/Os, you might want more control over the I/O timing
and less variability between runs. One way to achieve this is to force the clock root
placement. You can run the tool in automated mode and look at the clock root region. If the
I/O timing is satisfactory, you can force the clock root placement on the buffer nets
associated with I/O timing. To determine the placement of the clock roots, use the
report_clock_utilization [-clock_roots_only] Tcl command.

In the following example, the I/O ports are located in the X0Y0 region. The Vivado placer
determined the placement of the clock roots in X1Y2 based on the I/O placement as well as
placement of other loads.

The following summary shows the I/O timing when the clock root is unconstrained.

X-Ref Target - Figure 3-57

Figure 3-57: Clock Utilization Summary with Unconstrained Clock Root

X-Ref Target - Figure 3-58

Figure 3-58: Timing Summary with Unconstrained Clock Root
UltraFast Design Methodology Guide 117
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=117

Chapter 3: Design Creation
In the following example, the clock roots are moved next to the I/O registers in X0Y0, which
reduces the clock insertion delays and timing pessimism and therefore, improves the I/O
timing.

The following summary shows the I/O timing when the clock root is moved.

Synchronous CDC

When the design includes synchronous CDC paths between clocks that originate from the
same MMCM/PLL, you can use the following techniques to better control the clock insertion
delays and skew and therefore, the slack on those paths.

IMPORTANT: If the CDC paths are between clocks that originate from different MMCM/PLLs, the clock
insertion delays across the MMCMs/PLLs are more difficult to control. In this case, Xilinx recommends
that you treat these clock domain crossings as asynchronous and make design changes accordingly.

When a path is timed between two clocks that originate from different output pins of the
same MMCM/PLL, the MMCM/PLL phase error adds to the clock uncertainty for the path.
For designs using high clock frequencies, the phase error can cause issues with timing
closure both for setup and hold.

The following figure shows an example of paths both with and without the phase error. Path
1 is a CDC path clocked by two buffers connected to the same MMCM output and does not
include the phase error. Path 2 is clocked by two clocks that originate from two different
MMCM outputs and does include the phase error.

X-Ref Target - Figure 3-59

Figure 3-59: Clock Utilization Summary with User Constrained Clock Root

X-Ref Target - Figure 3-60

Figure 3-60: Timing Summary with User Constrained Clock Root
UltraFast Design Methodology Guide 118
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=118

Chapter 3: Design Creation
When two synchronous clocks from the same MMCM/PLL have a simple period ratio (/2 /4
/8), you can prevent the phase error between the two clock domains using a single
MMCM/PLL output connected to two BUFGCE_DIV buffers. The BUFGCE_DIV buffer
performs the clock division (/1 /2 /4 /8). Other ratios are possible (/3 /5 /7) but this requires
modifying the clock duty cycle and making mixed edge timing paths more challenging.

Note: Because the BUFGCE and BUFGCE_DIV do not have the same cell delays, Xilinx recommends
using the same clock buffer for both synchronous clocks (two BUFGCE or two BUFGCE_DIV buffers).

X-Ref Target - Figure 3-61

Figure 3-61: MMCM and Phase Error
UltraFast Design Methodology Guide 119
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=119

Chapter 3: Design Creation
The following figure shows two BUFGCE_DIVs that divide the CLKOUT0 clock by 1 and by 2
respectively.

IMPORTANT: To ensure safe timing between parallel BUFGCE_DIV cells where the BUFGCE_DIVIDE
property is set to a value greater than 1, both buffers must use the same enable signal (CE) and the
same reset signal (RST). Otherwise, the divided clocks might become phase shifted from one another in
hardware, which is not reported by the Vivado tools.

To automatically balance several clocks that originate from the same MMCM or PLL, set the
same CLOCK_DELAY_GROUP property value on the nets driven by the clock buffers that
need to be balanced. Following are additional recommendation:

• Avoid setting the CLOCK_DELAY_GROUP constraint on too many clocks, because this
stresses the clock placer resulting in sub-optimal solutions or errors.

• Review the critical synchronous CDC paths in the Timing Summary Report to determine
which clocks must be delay matched to meet timing.

• Limit the use of the CLOCK_DELAY_GROUP on groups of synchronous clocks with tight
requirements and with identical clocking topologies.

IMPORTANT: Xilinx recommends using the Clocking Wizard for creating optimal clocking structures,
which use a mix of BUFGCEs and BUFGCE_DIVs along with related clock grouping constraints.

GT Interface Clocking

Each GT interface requires several clocks, including some clocks that are shared across
bonded GT*_CHANNEL cells located in one or several GT quads. UltraScale devices provide
up to 128 GT*_CHANNEL sites, which can lead to the use of several hundreds of clocks in a
design. Most GT clocks have a low fanout with loads placed locally in the clock region next

X-Ref Target - Figure 3-62

Figure 3-62: MMCM Synchronous CDC with BUFGCE_DIVs Connected to One MMCM Output
UltraFast Design Methodology Guide 120
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=120

Chapter 3: Design Creation
to the associated GT*_CHANNEL. Some GT clocks drive loads across the entire device and
require the utilization of clock routing resource in many clock regions. The UltraScale
architecture includes the following enhancements to efficiently support the high number of
GT clocks required.

BUFG_GT with Dynamic Divider

In UltraScale devices, the BUFG_GT buffer simplifies GT clocking. Because the BUFG_GT
includes dynamic division capabilities, MMCMs are no longer required to perform simple
integer divides on GT output clocks. This saves clocking resources and provides an
improved low skew clock path when both a divided GT*_CHANNEL output clock and
full-rate clock are required.

You can use the BUFG_GT global clock buffer for GT interfaces where the user logic operates
at half the clock frequency of the internal PCS logic or for PCIe® interfaces where the
GT*_CHANNEL needs to generate multiple clock frequencies for user_clk, sys_clk, and
pipe_clk. The following figure compares clocking requirements between 7 series and
UltraScale devices for a single-lane GT interface where the frequency of TXUSRCLK2 is equal
to half of the frequency of TXUSRCLK.

X-Ref Target - Figure 3-63

Figure 3-63: Clocking Requirements Comparison

Design in
FPGA

Design in
UltraScale

Architecture

+1

+2
UltraFast Design Methodology Guide 121
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=121

Chapter 3: Design Creation
You can use any output clock of the GT*_CHANNELs within a Quad or any reference clock
generated by an IBUFDS_GTE3/ODIV2 pin within a Quad to drive any of the 24 BUFG_GT
buffers located in the same clock region. A BUFG_GT_SYNC is always required to
synchronize reset and clear of BUFG_GTs driven by a common clock source.

Note: The Vivado tools automatically insert the BUFG_GT_SYNC primitive if it is not present in the
design.

Some applications still require the use of an MMCM to generate complex non-integer clock
division of the GT output clocks or the IBUFDS_GTE3/ODIV2 reference clock. In these cases,
a BUFG_GT must directly drive the MMCM. By default, the placer tries to place the MMCM
on the same clock region row as the BUFG_GT. If other MMCMs try to use the same MMCM
site, you must verify that the automated MMCM placement is still as close as possible to the
BUFG_GT to avoid wasting clocking resources due to long routes.

Single Quad vs. Multi-Quad Interface

In a multi-channel interface, a master channel can generate [RT]XUSRCLK[2] for all the
GT*CHANNELs of the interface. If a multi-channel interface spans multiple quads, the
maximum allowed distance for a GT*CHANNEL from the reference clock source is 2 clock
regions above and below.
UltraFast Design Methodology Guide 122
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=122

Chapter 3: Design Creation
The following figure shows a multi-quad interface. The GT*CHANNELs are marked in yellow,
the TXUSRCLK is highlighted in blue, and the TXUSRCLK2 is highlighted in red. The
BUFG_GTs driving both TXUSRCLK and TXUSRCLK2 are located in the center quad and are
marked in blue and red.

X-Ref Target - Figure 3-64

Figure 3-64: TXUSRCLK/TXUSRCLK2 Clock Routing for a Multi-Quad Interface
UltraFast Design Methodology Guide 123
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=123

Chapter 3: Design Creation
If the GT interface is contained within a single Quad, the placer treats the BUFG_GT clocks
as local clocks. In this case, the placer attempts to place the BUFG_GT clock loads in the
clock regions horizontally adjacent to the BUFG_GT, starting with the clock region that
contains the BUFG_GT and potentially using up to half the width of the device.

To override the placer regional clock constraint, assign any of the BUFG_GT clock loads to a
Pblock. The following figure shows a single-quad interface. The GT*CHANNELs are marked
in yellow, the TXUSRCLK is highlighted in blue, and the TXUSRCLK2 is highlighted in red. All
the TXUSRCLK2 loads are placed in the same clock region as the GT*CHANNELs.

[RT]XUSRCLK/[RT]XUSRCLK2 Skew Matching

When [RT]XUSRCLK2 operates at half the frequency of [RT]XUSRCLK (i.e., separate
BUFG_GTs with divide by 1 and divide by 2), a tight skew requirement exists between the
[RT]XUSRCLK/[RT]XUSRCLK2 pair at each GT*CHANNEL of a GT interface. To meet the skew
requirement, GT*CHANNELs can be a maximum of 2 clock regions above or below the
master channel that generates the [RT]XUSRCLK/[RT]XUSRCLK2 pair. In addition, the placer
tightly controls skew as follows:

• Assigns the BUFG_GT pairs to the upper or lower 12 BUFG_GTs in a Quad

• Assigns the clock root for both clocks to the clock region containing the BUFG_GTs

X-Ref Target - Figure 3-65

Figure 3-65: TXUSRCLK/TXUSRCLK2 Clock Routing for a Single-Quad Interface
UltraFast Design Methodology Guide 124
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=124

Chapter 3: Design Creation
RECOMMENDED: To avoid skew violations, Xilinx highly recommends following this clocking topology
when [RT]XUSRCLK2 operates at half the frequency of [RT]XUSRCLK.

Integrated Block for PCI Express CORECLK/PIPECLK/USERCLK Skew Matching

The UltraScale Integrated Block for PCI Express® requires three clocks: CORECLK, USERCLK,
and PIPECLK. The three clocks are sourced by BUFG_GTs driven by the TXOUTCLK pin of one
of the GT*_CHANNELs of the physical interface. A tight skew requirement exists between
the CORCLK and PIPECLK pins and the CORECLK and USERCLK pins. To meet the skew
requirement, the placer tightly controls skew as follows:

• Assigns the BUFG_GTs that drive the three PCIe clocks in groups to the upper or lower
12 BUFG_GTs in a Quad

• Assigns the clock root for all three clocks to the same clock region

Note: For more information on PCIe clocking requirements, see the UltraScale Architecture Gen3
Integrated Block for PCI Express LogiCORE IP Product Guide (PG156) [Ref 43].

7 Series Device Clocking
Note: This section uses Virtex®-7 clocking resources as an example. The clocking resources for
Virtex-6 devices are similar. If you are using a different architecture, see the Clocking Resources Guide
[Ref 41] for your device.

Virtex-6 and Virtex-7 devices contain thirty-two global clock buffers known as BUFGs.
BUFGs can serve most clocking needs for designs with less demanding needs in terms of
number of clocks, design performance, and clocking control. Global clocking resources
include BUFG, BUFGCE, BUFGMUX, and BUFGCTRL primitives, which each have their own
features. For more information on the features of these global clock components, see the
Clocking Resources Guide [Ref 41] and Libraries Guide [Ref 31] for your device.

RECOMMENDED: If clocking demands exceed the number of BUFGs, or if better overall clocking
characteristics are desired, analyze the clocking needs against the available clocking resources, and
select the best resource for the task.

In addition to global clocking resources, regional clocking resources are also available,
which allow tighter control of clock networks. Regional clocking resources include the
Horizontal Clock Region Buffers (BUFH, BUFHCE), Regional Clock Buffer (BUFR), I/O Clock
Buffer (BUFIO), and Multi-Regional Clock Buffer (BUFMR). For more information on the
features of these regional clock components, see the Clocking Resources Guide [Ref 41] and
Libraries Guide [Ref 31] for your device.

Using Horizontal Clock Region Buffers for Clock Gating

You can use the Horizontal Clock Region Buffer (BUFHCE) in conjunction with BUFGs to
perform a medium-grained clock gating function. For portions of a clock domain ranging
UltraFast Design Methodology Guide 125
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=125

Chapter 3: Design Creation
from a few hundred to a few thousand loads in which you want to stop clocking
intermittently, the BUFHCE can be an effective clocking resource. A BUFG can drive multiple
BUFHCEs in the same or different clock regions, which allows you to individually control
clocking in several low clock skew domains.

When used independently, all loads connected to the BUFH must reside in the same clock
region. This makes it well-suited for very high-speed, more fine-grained (fewer loads)
clocking needs. BUFHCE can be used to achieve medium-grained clock-gating within the
specific clock region. You must ensure that the resources driven by the BUFH do not exceed
the available resources in the clock region and that no other conflicts exist.

The phase relationship might be different between the BUFH and clock domains driven by
BUFGs, other BUFHs, or any other clocking resource. The single exception is when two
BUFHs are driven to horizontally adjacent regions. In this case, the skew between left and
right clock regions when both BUFHs driven by the same clock source should have a very
controlled phase relationship in which data may safely cross the two BUFH clock domains.
BUFHs can be used to gain access to MMCMs or PLLs in opposite regions to a clock input
or GT. However, care must be taken in this approach to ensure that the MMCM or PLL is
available.

Additional Clocking Considerations for SSI Devices

In general, all clocking considerations mentioned above also apply to SSI technology
devices. However, there are additional considerations when targeting these devices due to
their construction. When using a BUFMR, it cannot drive clocking resources across an SLR
boundary. Accordingly, Xilinx recommends that you place the clocks driving BUFMRs into
the bank or clocking region in the center clock region within an SLR. This gives access to all
three clock regions on the left or right side of the SLR.

In terms of global clocking, for designs requiring sixteen or fewer global clocks (BUFGs), no
additional considerations are necessary. The tools automatically assign BUFGs in a way to
avoid any possible contention. When more than sixteen (but fewer than thirty-two) BUFGs

X-Ref Target - Figure 3-66

Figure 3-66: Horizontal Clock Region Buffers

Gated
Logic

Non-gated
Logic

BUFHCE
BUFG

Enable

Clock

CE

OI

OI

X13496
UltraFast Design Methodology Guide 126
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=126

Chapter 3: Design Creation
are required, some consideration to pin selection and placement must be done in order to
avoid any chance of contention of resources based on global clocking line contention
and/or placement of clock loads.

As in all other Xilinx 7 series devices, Clock-Capable I/Os (CCIOs) and their associated Clock
Management Tile (CMT) have restrictions on the BUFGs they can drive within the given SLR.
CCIOs in the top or bottom half of the SLR can drive BUFGs only in the top or bottom half
of the SLR (respectively). For this reason, pin and associated CMT selection should be done
in a way in which no more that sixteen BUFGs are required in either the top or bottom half
of all SLRs collectively. In doing so, the tools can automatically assign all BUFGs in a way to
allow all clocks to be driven to all SLRs without contention.

For designs that require more than thirty-two global clocks, Xilinx recommends that you
explore using BUFRs and BUFHs for smaller clock domains to reduce the number of needed
global clock domains. BUFRs with the use of a BUFMR to drive resources within three clock
regions that encompasses one-half of an SLR (approximately 250,000 logic cells in a
Virtex-7 class SLR). Horizontally adjacent clock regions may have both left and right BUFH
buffers driven in a low-skew manner enabling a clocking domain of one-third of an SLR
(approximately 167,000 logic cells).

Using these resources when possible not only leads to fewer considerations for clocking
resource contention, but many times improves overall placement, resulting in improved
performance and power.

If more than thirty-two global clocks are needed that must drive more than half of an SLR
or to multiple SLRs, it is possible to segment the BUFG global clocking spines. Isolation
buffers exist on the vertical global clock lines at the periphery of the SLRs that allow use of
two BUFGs in different SLRs that occupy the same vertical global clocking track without
contention. To make use of this feature, more user control and intervention is required. In
the figure below, BUFG0 through BUFG2 in the three SLRs have been isolated, and hence
have independent clocks within their respective SLRs. On the other hand, the BUFG31 line
has not been isolated. Hence, the same BUFG31 (located in SLR2 in the figure) drives the
clock lines in all the 3 SLRs - and BUFG31 located in other SLRs should be disabled.

Careful selection and manual placement (LOCs) must be used for the BUFGs. Additionally, all
loads for each clock domain must be manually grouped and placed in the appropriate SLR
to avoid clocking contention. If all global clocks are placed and all loads managed in a way
to not create any clocking contention and allow the clock to reach all loads, this can allow
greater use of the global clocking resources beyond thirty-two.
UltraFast Design Methodology Guide 127
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=127

Chapter 3: Design Creation
X-Ref Target - Figure 3-67

Figure 3-67: Optional Isolation on Clock Lines for SSI Devices

X14051
UltraFast Design Methodology Guide 128
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=128

Chapter 3: Design Creation
Clock Skew for Global Clocking Resources in SSI Technology
Devices
Clock skew in any large FPGA device may represent a significant portion of the overall
timing budget for a given path. Too much clock skew may not only represent issues with
maximum clock speed, but may also manifest itself into stringent hold time requirements.
Having multiple die in a device worsens the process portion of the PVT equation, but is
managed by the Xilinx assembly process in which only die of similar speed are packaged
together.

Even with that extra action, the Xilinx timing tools accounts for these differences as a part
of the timing report. During path analysis, these aspects are analyzed as a part of the setup
and hold calculations, and are reported as a part of the path delay against the specified
requirements. No additional user calculations or consideration are necessary for SSI
technology devices, because the timing analysis tools consider these factors in their
calculations.

Skew can increase if using the top or bottom SLR as the delay-differential is higher among
points farther away from each other. For this reason, Xilinx recommends for global clocks
that must drive more than one SLR to be placed into the center SLR. This allows a more even
distribution of the overall clocking network across the part resulting in less overall clock
skew.

When targeting UltraScale devices, there is less repercussion to clock placement. However,
it is still highly suggested to place the clock source as close as possible to the central point
of the clock loads to reduce clock insertion delay and improve clock power.

Designing the Clock Structure
Now that you understand the major considerations for clocking decisions, let us see how
you can achieve the desired clocking for your design.

Inference

Without user intervention, Vivado synthesis automatically specifies a global buffer (BUFG)
for all clock structures up to the maximum allowed in an architecture (unless otherwise
specified or controlled by the synthesis tool). As discussed above, the BUFG provides a
well-controlled, low-skew network suitable for most clocking needs. Nothing additional is
required unless your design clocking exceeds the number or capabilities of BUFGs in the
part.

Applying additional control of the clocking structure, however, may prove to show better
characteristics in terms of jitter, skew, placement, power, performance, or other
characteristics.
UltraFast Design Methodology Guide 129
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=129

Chapter 3: Design Creation
Synthesis Constraints and Attributes

A simple way to control clocking resources is to use the CLOCK_BUFFER_TYPE synthesis
constraint or attribute. Synthesis constraints may be used to:

• Prevent BUFG inference.

• Replace a BUFG with an alternative clocking structure.

• Specify a clock buffer where one would not exist otherwise.

Using synthesis constraints allows this type of control without requiring any modification to
the code.

Attributes can be placed in either of the following locations:

• Directly in the HDL code, which allows them to persist in the code

• As constraints in the XDC file, which allows this control without any changes needed to
the source HDL code

Use of IP

Certain IP assists in the creation of the clocking structures. Clocking Wizard and I/O Wizard
specifically can assist in the selection and creation of the clocking resources and structure,
including:

• BUFG

• BUFGCE

• BUFGCE_DIV (UltraScale devices)

• BUFGCTRL

• BUFIO (7 series devices)

• BUFR (7 series devices)

• Clock modifying blocks such as:

° Mixed Mode Clocking Manager (MMCM)

° Phase Lock Loop (PLL) components

More complex IP such as memory Interface Generator (MIG), PCIe, or Transceiver Wizard
may also include clocking structures as part of the overall IP. This may provide additional
clocking resources if properly taken into account. If not taken into account, it may limit
some clocking options for the remainder of the design.
UltraFast Design Methodology Guide 130
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=130

Chapter 3: Design Creation
Xilinx highly recommends that, for any instantiated IP, the clocking requirements,
capabilities and resources are well understood and leveraged where possible in other
portions of the design.

For more information, see Working With Intellectual Property (IP).

Instantiation

The most low-level and direct method of controlling clocking structures is to instantiate the
desired clocking resources into the HDL design. This allows you to access all possible
capabilities of the device and exercise absolute control over them. When using BUFGCE,
BUFGMUX, BUFHCE, or other clocking structure that requires extra logic and control,
instantiation is generally the only option. However, even for simple buffers, sometimes the
quickest way to obtain a desired result is to be direct and instantiate it into your design.

An effective style to manage clocking resources (especially when instantiating) is to contain
the clocking resources in a separate entity or module instantiated at the top or near the top
of the code. By having it at the top-level of code, it may more easily be distributed to
multiple modules in your design.

Be aware of where clocking resources can and should be shared. Creating redundant
clocking resources is not only a waste of resources, but generally consume more power,
create more potential conflicts and placement decisions resulting in longer overall
implementation tool runtimes and potentially more complex timing situations. This is
another reason why having the clocking resources near the top module is important.

TIP: You can use Vivado HDL templates to instantiate specific clocking primitives. See Using Vivado
Design Suite HDL Templates.
UltraFast Design Methodology Guide 131
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=131

Chapter 3: Design Creation
Controlling the Phase, Frequency, Duty-Cycle, and Jitter of the
Clock
This section provides techniques for fine-tuning the clock characteristics.

Using Clock Modifying Blocks (MMCM and PLL)

You can use an MMCM or PLL to change the overall characteristics of an incoming clock. An
MMCM is most commonly used to remove the insertion delay of the clock (phase align the
clock to the incoming system synchronous data) or for conditioning and controlling the
clock characteristics, such as:

• Creating tighter control of phase

• Filtering jitter in the clock

• Changing the clock frequency

• Correcting or changing the clock duty cycle

To use the MMCM or PLL, several attributes must be coordinated to ensure that the MMCM
is operating within specifications and delivering the desired clocking characteristics on its
output. For this reason, Xilinx highly recommends that you use the Clocking Wizard to
properly configure this resource.

You can also directly instantiate the MMCM or PLL, which allows even greater control.
However, be sure to use the proper settings to avoid causing the following issues:

• Increasing clock uncertainty due to increased jitter

• Building incorrect phase relationships

• Making timing closure more difficult

IMPORTANT: When using the Clocking Wizard to configure the MMCM or PLL, the Clocking Wizard by
default attempts to configure the MMCM for low output jitter using reasonable power characteristics.

Depending on your goals, you can change the settings in the Clocking Wizard to further
minimize jitter and thus, improve timing at the cost of higher power. Alternatively, you can
reduce power but increase output jitter.

While using MMCM or PLL, be sure to do the following:

• Do not leave any inputs floating. Relying on synthesis or other optimization tools to tie
off the floating values is not recommended, because the values might be different than
expected.

• Connect RST to the user logic, so that it can be asserted by logic controlled by a
reliable clocking source. Grounding of RST can cause problems if the clock is
interrupted.
UltraFast Design Methodology Guide 132
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=132

Chapter 3: Design Creation
• Use LOCKED output in the implementation of reset. For example, hold the synchronous
logic clocked from the PLL in reset until LOCKED is asserted. The LOCKED signal must
be synchronized before it is used in a synchronous portion of the design. Xilinx
recommends adding LOCKED to a processor map so it is visible when debugging.

• Confirm the connectivity between CLKFBIN and CLKFBOUT. The BUFG only needs to be
included in the feedback path if the PLL/MMCM output clock needs to be phase
aligned with the input reference clock, for example, when using ZHOLD compensation
mode.

• To avoid the MMCM or PLL phase error timing penalty on synchronous clock domain
crossing paths in UltraScale devices, use BUFGCE_DIVs instead of BUFGCE. For details,
see Synchronous CDC.

RECOMMENDED: Explore the different settings within the Clocking Wizard to ensure that the most
desirable configuration is created based on your overall design goals.

Using IDELAYs on Clocks to Control Phase

For 7 series devices, if only minor phase adjustments are necessary, you can use IDELAY or
ODELAY (instead of MMCM or PLL) to add additional delay. This increases the phase offset
of the clock in relation to any associated data. When using UltraScale devices, you cannot
use an IDELAY on an input clock source. Therefore, if phase manipulation is necessary, Xilinx
recommends using an MMCM.

Using Gated Clocks
Xilinx devices include dedicated clock networks that can provide a large-fanout, low-skew
clocking resource. Fine-grained clock gating techniques included in the HDL code can
disrupt the functionality and prevent efficient use of the dedicated clocking resources.
Therefore, when writing HDL to target a device, Xilinx does not recommend that you code
clock gating constructs into the clock path. Instead, control clocking by using coding
techniques to infer clock enables in order to stop portions of the design, either for
functionality or power reasons.
UltraFast Design Methodology Guide 133
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=133

Chapter 3: Design Creation
Converting Clock Gating to Clock Enable

If the code already contains clock gating constructs, or if it is intended for a different
technology that requires such coding styles, Xilinx recommends that you use a synthesis
tool that can remap gates placed within the clock path to clock enables in the data path.
Doing so allows for a better mapping to the clocking resources; and simplifies the timing
analysis of the circuit for data entering and exiting the gated domain. For example, use the
-gated_clock_conversion auto option with Vivado synthesis to attempt automatic
conversion to register clock enable logic. For the complex gated clock structures, use the
GATED_CLOCK attribute in the RTL code to guide Vivado synthesis.

Gating the Clock Buffer

When larger portions of the clock network can be shut down for periods of time, you can
enable or disable the clock network using a BUFGCE or BUFGCTRL. In addition, when
targeting UltraScale devices, you can gate the BUFGCE_DIV and BUFG_GT. For 7 series
devices, you can also use the BUFHCE, BUFR, and BUFMRCE to gate the clock.

When a clock can be slowed down during periods of time, you can also use these buffers
with additional logic to periodically enable the clock net. Alternatively, you can use a
BUFGMUX or BUFGCTRL to switch the clock source from a faster clock signal to a slower
clock.

Any of these techniques can effectively reduce dynamic power. However, depending on the
requirements and clock topology, one technique may prove more effective than another.
For example, in 7 series devices:

• A BUFR might work best if it is an externally generated clock (under 450 MHz) that is
only needed to source up to three clock regions.

• For Virtex-7 devices, a BUFMRCE might also be needed to use this technique with more
than one clock region (but only up to three vertically adjacent regions).

• A BUFHCE is better suited for higher-speed clocks that can be contained in a single
clock region. Although a BUFGCE may span the device and is the most flexible
approach, it might not be the best choice for the greatest power savings.
UltraFast Design Methodology Guide 134
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=134

Chapter 3: Design Creation
Controlling and Synchronizing Device Startup

After the device completes configuration, a sequence of events occurs in which the device
completes the configuration state and enters into general operation. In most configuration
sequences, one of the last steps is the deassertion of the Global Set Reset (GSR), followed
by the deassertion of the Global Enable (GWE) signal. When this happens, the design is in a
known initial state and is then released for operation.

If this release point is not synchronized to the given clock domain or if the clock is
operating at a faster time than the GWE can safely be released, portions of the design can
go into an unknown state. For some designs, this does not matter. In other designs, this can
cause the design to become unstable or to incorrectly process the initial data set.

If the design must start up in a known state, Xilinx recommends that you take action to
control the start-up synchronization process using any of the following methods:

• Use instantiated clock buffer components with clock enable capability. Delay the reset
release by as many cycles as needed before enabling the design clock. The following
example shows how to delay the first design clock edge after the reset is released in an
UltraScale device. By setting ASYNC_REG=TRUE on the synchronizer registers, all
registers are placed in a single SLICE and therefore, do not need to be driven by a
global clock resource. To prevent clock buffer insertion on the synchronizer clock, use
the CLOCK_BUFFER_TYPE=NONE property on the input clock port.

X-Ref Target - Figure 3-68

Figure 3-68: Reset Synchronization and Delay for Safe Clock Startup Example

Synchronizer/Reset
Delay Clock

Design Clock
X18183-110716
UltraFast Design Methodology Guide 135
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=135

Chapter 3: Design Creation
• When using an MMCM, you can select the Safe Clock Startup option from the
Clocking Wizard to ensure that design clocks are enabled only after they are stable and
reliable. The following example shows the synchronization stages of an UltraScale
device MMCM LOCKED signal connected to the CE pin of the BUFGCE, which drives the
user logic. A second BUFGCE is connected in parallel to the high fanout BUFGCE (user
clock) and is dedicated to the logic controlling the BUFGCE/CE pin. This topology helps
timing closure on the BUFGCE/CE in UltraScale devices by minimizing the clock skew
between the synchronizer and the BUFGCE pin.

TIP: If the MMCM or PLL compensation mode is set to ZHOLD or BUF_IN, all clocks from CLKOUT0 are
grouped with the feedback clock and use the same CLOCK_ROOT. If this introduces timing violations on
BUFGCE/CE, create a CLOCK_DELAY_GROUP constraint between the high fanout clock and the
feedback clock only. Optionally, you can also set a USER_CLOCK_ROOT constraint on the low fanout
clock net to the same clock region as the MMCM. For 7 series devices, the second clock buffer is usually
not needed for helping timing closure due to the different clocking architecture.

• Use clock enables, local reset (synchronized), or both, on critical parts of the design,
such as a state machine, to ensure that the start-up of those portions of the design are
controlled and known.

X-Ref Target - Figure 3-69

Figure 3-69: UltraScale Device MMCM Safe Clock Startup Example

High Fanout Clock (routed to several or all clock regions)

Low Fanout Clock (routed within MMCM clock region)
X18185-110816
UltraFast Design Methodology Guide 136
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=136

Chapter 3: Design Creation
Avoiding Local Clocks
Local clocks are clock nets routed with regular fabric resources instead of dedicated global
clocking resources. In most cases, the Vivado synthesis and Vivado logic optimization tools
insert clock buffers where mandated by the architecture or for clock nets with more than 30
clock loads. Local clocks typically occur when:

• A global clock is divided by a counter implemented with fabric logic

• Clock gating conversion is not able to remove all LUTs from the clock path

• Too many clock buffers are used in 7 series devices

Note: UltraScale devices have more clock buffers than 7 series devices, and high utilization of
low fanout clock buffers is usually not a concern.

In general, avoid using local clocks. Local clocks introduce several challenges to the
implementation tools:

• Unpredictable clock skew, leading to difficult timing closure

• Increase of low to medium fanout nets that are processed with special care by the
router, leading to potential routability problems

TIP: If local clocks introduce QoR problems, try floorplanning the clock driver and loads to a small area
using a Pblock. Use report_clock_utilization to identify the location of the local clocks, review
the clock placement, and decide on how to reduce their number or impact.

Creating an Output Clock
An effective way to forward a clock out of an FPGA device for clocking devices external to
the FPGA device, is to use an ODDR component. By tying one of the inputs high and the
other low, you can easily create a well controlled clock in terms of phase relationship and
duty cycle (for example, by holding D1 to 0 and the D2 pin to 1, you can achieve a 180
degree phase shift). By utilizing the set/reset and clock enable, you also have control over
stopping the clock and holding it at a certain polarity for sustained amounts of time.

If further phase control is necessary for an external clock, an MMCM or PLL can be used
with external feedback compensation and/or coarse or fine grained, fixed or variable phase
compensation. This allows great control over clock phase and propagation times to other
devices simplifying external timing requirements from the device.
UltraFast Design Methodology Guide 137
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=137

Chapter 3: Design Creation
Clock Domain Crossing
The clock domain crossing (CDC) circuits in the design directly impact design reliability. You
can design your own circuits, but the Vivado Design Suite must recognize the circuit and
you must apply the ASYNC_REG attributes correctly. Xilinx provides XPMs to ensure correct
circuit design, including:

• Driving specific features in place_design that reduce mean time between failures
(MTBF) on synchronization circuits.

• Ensuring recognition by report_synchronizer_mtbf.

• Avoiding report_cdc errors and warnings, which typically show up late in the design
cycle when iterations are longer.

TIP: For CDC violations that can be safely ignored, you can use the waiver mechanism to waive the
violations. For details, see this link in the Vivado Design Suite User Guide: Design Analysis and Closure
Techniques (UG906) [Ref 24].

A CDC circuit is required when crossing between two asynchronous clocks or when
attempting to relax timing between two synchronous clocks by adding false path
constraints. When using XPMs, you can select a single-bit or a multi-bit bus to cross
between the domains.
UltraFast Design Methodology Guide 138
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xGeneratingAndWaivingDesignChecks
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=138

Chapter 3: Design Creation
Single-Bit CDC
The following figure shows the decisions required when using a single-bit crossing.

Note: For more information on the different single-bit synchronizers, see the Libraries Guide
[Ref 31] for your device.

X-Ref Target - Figure 3-70

Figure 3-70: Single-Bit CDC Decision Tree

Single-Bit CDC

Reset signal?

Asynchronous?

Use
XPM_CDC_SYNC_RST

Use
XPM_CDC_ASYNC_RST

Yes

No Yes

Is it a pulse?

Use
XPM_CDC _PULSE

Yes

Use
XPM_CDC_SINGLE

No

No
UltraFast Design Methodology Guide 139
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=139

Chapter 3: Design Creation
Multi-Bit CDC
The following figure shows the decisions required when using a multi-bit crossing.

Note: For more information on the different multi-bit synchronizers, see the Libraries Guide [Ref 31]
for your device.

X-Ref Target - Figure 3-71

Figure 3-71: Multi-Bit CDC Decision Tree

Multi-Bit CDC

Is the data
known to be

 static?

Do not add CDC circuits
Manage CDC using waivers for

report_cdc

Yes

Is the data
buffered?

Is a transfer
required every
clock cycle?

Use
XPM_FIFO_ASYNC

Yes

Yes

No

No

Is the data a
counter?

Use
XPM_CDC_GRAY

Must all data bits
be received on the same

cycle?
Use

XPM_CDC_HANDSHAKE
Use

XPM_CDC_ARRAY_SINGLE

No Yes

No

No

Yes
UltraFast Design Methodology Guide 140
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=140

Chapter 3: Design Creation
Optimizing for MTBF
The total MTBF of a design is a function of:

• Synchronizer MTBF

• Device failure in time (FIT) rate due to single-event upsets (SEUs)

Note: The device FIT rate due to SEUs largely depends on process and device size.

The synchronizer MTBF is design dependent and varies with the following:

• Number of asynchronous CDC points

• Number of synchronizer stages at each crossing point

• Frequency of the destination FF

• Toggle rate of the source

Selecting the Correct Value for the DEST_SYNC_FF Parameter

The DEST_SYNC_FF parameter sets the number of metastability protection registers when
using an XPM CDC module. The value of this register influences MTBF, design size, and
latency at the crossing point. Selecting the correct value of this register is an iterative
process that requires the following:

1. Run the design through the Vivado Design Suite implementation flow.

2. Based on your targeted device, do one of the following:

° For 7 series devices, select the default value for DEST_SYNC_FF. This is a
conservative approach to meeting typical reliability requirements. For critical
designs, conduct further analysis.

° For UltraScale devices, run the report_synchonizer_mtbf command, which
reports the MTBF for the entire design. By iterating through the flow as shown in
the following figure, you can find a suitable trade-off between MTBF, latency, and
resources.

Note: You can also use this iterative process for a user CDC circuit in which the ASYNC_REG attribute
is correctly applied to all the synchronization registers.
UltraFast Design Methodology Guide 141
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=141

Chapter 3: Design Creation
Constraining the Design Correctly
XPM CDCs provide their own set_max_delay -datapath_only constraints. XPM CDCs
are not compatible with the set_clock_groups constraint, which has a higher
precedence and will overwrite the constraints in the XPM. For more information, see
Defining Clock Groups and CDC Constraints.

X-Ref Target - Figure 3-72

Figure 3-72: Synchronizer MTBF Optimization Flow for UltraScale Device

Determine XPM
synchronizer stages

Need to improve
MTBF?

Set DEST_SYNC_FF
starting with default

value

Increase DEST_SYNC_FF
parameter on XPM_CDC

Implement Design

Run report_synchronizer_mtbf

Yes

Finalize
DEST_SYNC_FF

Need to
improve resource

or latency?

No

No

Decrease DEST_SYNC_FF
parameter on XPM_CDC

Yes
UltraFast Design Methodology Guide 142
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=142

Chapter 3: Design Creation
Working With Intellectual Property (IP)
Pre-validated Intellectual Property (IP) cores significantly reduce design and validation
efforts, and ensure a large advantage in time-to-market. See the following resources for
more information on working with IP:

• Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 13]

• Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
[Ref 29]

• Vivado Design Suite QuickTake Video: Configuring and Managing Reusable IP in Vivado

Planning IP Requirements
Planning IP requirements is one of the most important stages of any new project:

• Evaluate the IP options available from Xilinx or third-party partners against required
functionality and other design goals. For example:

° Is custom logic more desirable compared to an available IP core?

° Does it make sense to package a custom design for reuse in multiple projects in an
industry standard format?

• Consider the interfaces that are required such as, memory, network, and peripherals.

IMPORTANT: To ensure that the tools process the IP-specific constraints properly, add the .xci or .xcix IP
source files to the project. Do not use the IP-generated output DCP files as project sources when
working with IP.

AMBA AXI
Xilinx has standardized IP interfaces on the open AMBA® 4 AXI4 interconnect protocol. This
standardization eases integration of IP from Xilinx and third-party providers, and maximizes
system performance. Xilinx worked with Arm to define the AXI4, AXI4-Lite, and AXI4-Stream
specifications for efficient mapping into its FPGA device architectures.

AXI is targeted at high performance, high clock frequency system designs, and is suitable
for high-speed interconnects. AXI4-Lite is a light-weight version of AXI4, and is used mostly
for accessing control and status registers.

AXI-Stream is used for unidirectional streaming of data from Master to Slave. This is
typically used for DSP, Video and Communications applications.
UltraFast Design Methodology Guide 143
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/configuring-managing-reusable-ip-vivado.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=143

Chapter 3: Design Creation
Vivado Design Suite IP Catalog
The IP Catalog is a single location for Xilinx-supplied IP. In the IP Catalog, you can find IP
cores for embedded systems, DSP, communication, interfaces, and more.

From the IP Catalog, you can explore the available IP cores, and view the Product Guide,
Change Log, Product Web page, and Answer Records for any IP.

You can access and customize the cores in the IP Catalog through the GUI or Tcl shell. You
can also use Tcl scripts to automate the customization of IP cores.

Custom IP

Xilinx uses the industry standard IP-XACT format for delivery of IP, and provides tools (IP
Packager) to package custom IP. Accordingly, you can also add your own customized IP to
the catalog and create IP repositories that can be shared in a team or across a company. IP
from third-party providers can also be added to this catalog, provided it is packaged in IP
Packager, even if it is already in the IP-XACT format.

Selecting IP from the IP Catalog

All Xilinx and third-party vendor IP is categorized based on applications such as
communications and networking; video and image processing; and automotive and
industrial. Use this categorization to browse the catalog to see which IP is available for your
area of interest.

A majority of the IP in the IP Catalog is free. However, some high value IP has an associated
cost and requires a license. The IP Catalog informs you about whether or not the IP requires
purchase, as well as the status of the license. To select an IP from the catalog, consider the
following key features, based on your design requirements, and what the specific IP offers:

• Silicon Resources required by this IP (found in the respective IP Product Guide)

• Is this IP supported in the device and speed grade being considered (the selection of
the IP often drives the speed grade decision)? If supported, what is the max achievable
throughput and Fmax?

• External interface standards, needed for your design to talk to its companion chip on
board:

° Industry-standard interfaces such as Ethernet, PCIe interfaces, etc.

° Memory interfaces - number of memory interfaces, including their size and
performance.

° Xilinx proprietary interfaces such as Aurora

Note: You can also choose to design your own custom interface.

• On-chip bus protocol supported by the IP (Application interface)
UltraFast Design Methodology Guide 144
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=144

Chapter 3: Design Creation
• On-chip bus protocol, needed for interaction with the rest of your design. Examples:

° AXI4

° AXI4-Lite

° AXI4-Stream

• If multiple protocols are involved, bridging IP cores might have to be chosen using
infrastructure IP from the IP Catalog. Examples:

° AXI-AHB bridge

° AXI-AXI interconnect

° AXI-PCIe bridge

° AXI-PLB bridge

Customizing IP
IP can be customized through the GUI or through Tcl scripts.

• Using the Customization GUI

• Using a Tcl Script

Using the Customization GUI

Using the graphical interface is the easiest way to find, research, and customize IP. Each IP
is customized with its own set of tabs or pages. Related configuration options are grouped
together. An example of a customization window is shown in the following figure. A unique
customization of an IP can be created, which is represented in an XCI file. From this, the
various output products of an IP can be created.
UltraFast Design Methodology Guide 145
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=145

Chapter 3: Design Creation
Using a Tcl Script

Almost every GUI action results in the issuance of a Tcl command. The creation of an IP
including the setting of all the customization options can be performed in a Tcl script
without user interaction.

You would need to know the names of the configuration options, and the values to which
they can be set. Typically, you first perform the customization through the GUI, and then
create the script from that. Once you see the resulting Tcl script, you can easily modify the
script for your needs, such as changing data sizes.

Tcl script based IP creation is useful for automation, for example working with version
control system. For information about source management and revision control, see this
link in the Vivado Design Suite User Guide: Design Flows Overview (UG892) [Ref 9].

IP Versions and Revision Control
When IP is customized, the tool creates an XCI file containing all the selected
parameterization values. Each Vivado IDE version supports only one version of an IP. Xilinx
recommends that you use this latest IP version. If you use an older IP version, you must save
all the output products for the older version. For information about source management

X-Ref Target - Figure 3-73

Figure 3-73: Customization Window for an IP
UltraFast Design Methodology Guide 146
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug892-vivado-design-flows-overview.pdf;a=xUsingSourceControlSystemsWithTheVivadoTool
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=146

Chapter 3: Design Creation
and revision control, see this link in the Vivado Design Suite User Guide: Design Flows
Overview (UG892) [Ref 9].

IMPORTANT: For memory IP in 7 series devices, a PRJ file is created in addition to the XCI file. When
using revision control with 7 series memory IP, keep the PRJ file in the same directory as the XCI file.

Working with Constraints

Organizing the Design Constraints
Design constraints define the requirements that must be met by the compilation flow in
order for the design to be functional in hardware. For more complex designs, they also
define guidance for the tools to help with convergence and closure. Not all constraints are
used by all steps in the compilation flow. For example, physical constraints are used only
during the implementation steps (that is, by the placer and the router).

Because synthesis and implementation algorithms are timing-driven, creating proper
timing constraints is essential. Over-constraining or under-constraining your design makes
timing closure difficult. You must use reasonable constraints that correspond to your
application requirements. For more information on constraints, see the following resources:

• Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)
[Ref 24]

• Applying Design Constraints video tutorials available from the Vivado Design Suite
Video Tutorials page on the Xilinx website

The constraints are usually organized by category, by design module, or both, in one or
many files. Regardless of how you organize them, you must understand their overall
dependencies and review their final sequence once loaded in memory. For example,
because timing clocks must be defined before they can be used by any other constraints,
you must make sure that their definition is located at the beginning of your constraint file,
in the first set of constraint files loaded in memory, or both.

Recommended Constraint Files

There are many ways to organize your constraints depending on the size and complexity of
your project. Following are a few suggestions.
UltraFast Design Methodology Guide 147
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug892-vivado-design-flows-overview.pdf;a=xGeneratingIPOutputProducts
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=147

Chapter 3: Design Creation
Simple Design

For a simple design with a small team of designers:

• 1 file for all constraints

• 1 file for physical + 1 file for timing

• 1 file for physical + 1 file for timing (synthesis) + 1 file for timing (implementation)

Complex Design

For a complex design with IP cores or several designer teams:

• 1 file for top-level timing + 1 file for top-level physical + 1 file per IP/major block

Validating the Read Sequence

Once you have settled on the organization of your project constraint files, you must
validate the read sequence of the files depending on the content of the files. In Project
Mode, you can modify the constraint file sequence in the Vivado IDE or by using the
reorder_files Tcl command. In Non-Project Mode, the sequence is directly defined by
the read_xdc (for XDC files) and source (for constraints generated by Tcl scripts)
commands in your compilation flow Tcl script.

Recommended Constraints Sequence

The constraints language (XDC) is based on Tcl syntax and interpretation rules. Like Tcl, XDC
is a sequential language:

• Variables must be defined before they can be used. Similarly, timing clocks must be
defined before they can be used in other constraints.

• For equivalent constraints that cover the same paths and have the same precedence,
the last one applies.
UltraFast Design Methodology Guide 148
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=148

Chapter 3: Design Creation
When considering the priority rules above, the timing constraints should overall use the
following sequence:

Timing Assertions Section
Primary clocks
Virtual clocks
Generated clocks
Delay for external MMCM/PLL feedback loop
Clock Uncertainty and Jitter
Input and output delay constraints
Clock Groups and Clock False Paths

Timing Exceptions Section
False Paths
Max Delay / Min Delay
Multicycle Paths
Case Analysis
Disable Timing

When multiple XDC files are used, you must pay particular attention to the clock definitions
and validate that the dependencies are ordered correctly.

The physical constraints can be located anywhere in any constraint file.

Creating Synthesis Constraints

Synthesis takes the RTL description of the design and transforms it into an optimized
technology mapped netlist by using timing-driven algorithms. The quality of the results is
affected by the quality of the RTL code and the constraints provided. At this point of the
compilation flow, the net delay modeling is approximate and does not reflect placement
constraints or complex effects such as congestion. The main objective is to obtain a netlist
which meets timing, or fails by a small amount, with realistic and simple constraints.

The synthesis engine accepts all XDC commands, but only some have a real effect:

• Timing constraints related to setup/recovery analysis influence the QoR:

° create_clock / create_generated_clock

° set_input_delay / set_output_delay

° set_clock_groups / set_false_path / set_max_delay /
set_multicycle_path

• Timing constraints related to hold and removal analysis are ignored during synthesis:

° set_min_delay / set_false_path -hold / set_multicycle_path
-hold
UltraFast Design Methodology Guide 149
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=149

Chapter 3: Design Creation
• RTL attributes forces decisions made by the mapping and optimization algorithms.
Following are a few examples:

° DONT_TOUCH / KEEP / KEEP_HIERARCHY / MARK_DEBUG

° MAX_FANOUT

° RAM_STYLE / ROM_STYLE / USE_DSP48 / SHREG_EXTRACT

° FULL_CASE / PARALLEL_CASE (Verilog RTL only)

Note: The same attribute can also be set as a property from an XDC file. Using XDC-based
constraints is convenient for influencing the synthesis results only in some cases without
changing the RTL.

• Physical constraints are ignored (LOC, BEL, Pblocks)

Synthesis constraints must use names from the elaborated netlist, preferably ports and
sequential cells. During elaboration, some RTL signals can disappear and it is not possible
to attach XDC constraints to them. In addition, due to the various optimizations after
elaboration, nets or logical cells are merged into the various technology primitives such as
LUTs or DSP blocks. To know the elaborated names of your design objects, click Open
Elaborated Design in the Flow Navigator and browse to the hierarchy of interest.

Some registers are absorbed into RAM blocks and some levels of the hierarchy can
disappear to allow cross-boundary optimizations.

Any elaborated netlist object or level of hierarchy can be preserved by using a
DONT_TOUCH, KEEP, KEEP_HIERARCHY, or MARK_DEBUG constraint, at the risk of degrading
timing or area QoR.

Finally, some constraints can conflict and cannot be respected by synthesis. For example, if
a MAX_FANOUT attribute is set on a net that crosses multiple levels of hierarchy, and some
hierarchies are preserved with DONT_TOUCH, the fanout optimization will be limited or
fully prevented.

IMPORTANT: Unlike during implementation, RTL netlist objects that are used for defining timing
constraints can be optimized away by synthesis to allow better QoR. This is usually not a problem as
long as the constraints are updated and validated for implementation. But if needed, you can preserve
any object by using the DONT_TOUCH constraint so that the constraints will apply during both
synthesis and implementation.

Once synthesis has completed, Xilinx recommends that you review the timing and
utilization reports to validate that the netlist quality meets the application requirements
and can be used for implementation.
UltraFast Design Methodology Guide 150
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=150

Chapter 3: Design Creation
Creating Implementation Constraints

The implementation constraints must accurately reflect the requirements of the final
application. Physical constraints such as I/O location and I/O standard are dictated by the
board design, including the board trace delays, as well as the design internal requirements
derived from the overall system requirements. Before you proceed to implementation,
Xilinx highly recommends that you validate the correctness and accuracy of all your
constraints. An improper constraint will likely contribute to degradation of the
implementation QoR and can lower the confidence level in the timing signoff quality.

In many cases, the same constraints can be used during synthesis and implementation.
However, because the design objects can disappear or have their name changed during
synthesis, you must verify that all synthesis constraints still apply properly with the
implementation netlist. If this is not the case, you must create an additional XDC file
containing the constraints that are valid for implementation only.

Creating Block-Level Constraints

When working on a multi-team project, it is convenient to create individual constraint files
for each major block of the top-level design. Each of these blocks is usually developed and
validated separately before the final integration into one or many top-level designs.

The block-level constraints must be developed independently from the top-level
constraints, and must be as generic as possible so that they can be used in various contexts.
In addition, these constraints must not affect any logic that is beyond the block boundaries.

When implementing a sub-block it is desirable to have the full clocking network included in
timing analysis to ensure accurate skew and clock domain crossing analysis. This might
require an HDL wrapper containing the clocking components and an additional constraint
file to replicate top level clocking constraints. It is used only in the timing validation of the
sub-module.

For more information on constraints scoping as well as rules, guidelines, and mechanisms
for loading the block-level constraints into the top-level design, see this link in the Vivado
Design Suite User Guide: Using Constraints (UG903) [Ref 21].

Defining Timing Constraints in Four Steps
The process of defining good constraints is broken into the four major steps shown in the
following figure. The steps follow the timing constraints precedence and dependency rules,
as well as the logical way of providing information to the timing engine to perform the
analysis.
UltraFast Design Methodology Guide 151
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug903-vivado-using-constraints.pdf;a=xConstraintsScoping
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=151

Chapter 3: Design Creation
• The first two steps refer to the timing assertions where the default timing path
requirements are derived from the clock waveforms and I/O delay constraints.

• During the third step, relationships between the asynchronous/exclusive clock domains
that share at least one logical path are reviewed. Based on the nature of the
relationships, clock groups or false path constraints are entered to ignore the timing
analysis on these paths.

• The last step corresponds to the timing exceptions, where the designer can decide to
alter the default timing path requirements by ignoring, relaxing or tightening them
with specific constraints.

Constraints creation is associated with constraints identification and constraints validation
tasks that are only possible with the various reports generated by the timing engine. The
timing engine only works with a fully mapped netlist, for example, after synthesis. While it
is possible to enter constraints with an elaborated netlist, it is recommended to create the
first set of constraints with the post-synthesis netlist so that analysis and reports on the
constraints can be performed interactively.

X-Ref Target - Figure 3-74

Figure 3-74: Steps for Developing Timing Constraints

Create Clocks
(Primary/Virtual/Generated)

(External Feedback/Uncertainty)

XDC:
 create_clock
 create_generated_clock
 set_system_jitter
 set_input_jitter
 set_clock_uncertainty
 set_external_delay

Reports:
 Clock Networks
 Check Timing

Input/Output Delays
(System/Source Synchronous)

XDC:
 set_input_delay
 set_output_delay

Reports:
 Check Timing
 Report Timing

Clock Groups and CDC
(Asynchronous/Exclusive)

XDC:
 set_clock_groups
 set_false_path

Reports:
 Clock Interaction
 Check Timing

Timing Exceptions
(Ignore/Max/Min)

XDC:
 set_false_path
 set_min/max_delay
 set_multicycle_path
 set_case_analysis
 set_disable_timing

Reports:
 Timing Summary
 Report Timing

X13445
UltraFast Design Methodology Guide 152
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=152

Chapter 3: Design Creation
When creating timing constraints for a new design or completing existing constraints, Xilinx
recommends using the Timing Constraints Wizard to quickly identify missing constraints
for the first three steps in Figure 3-74. The Timing Constraints Wizard follows the
methodology described in this section to ensure the design constraints are safe and reliable
for proper timing closure. You can find more information on the Timing Constraints Wizard
in Vivado Design Suite User Guide: Using Constraints (UG903) [Ref 21].

The following sections describe in detail the four steps described above:

• Defining Clock Constraints

• Constraining Input and Output Ports

• Defining Clock Groups and CDC Constraints

• Specifying Timing Exceptions

Refer to each section for a detailed methodology and use case when you are at the
appropriate step in the constraint creation process.

Defining Clock Constraints
Clocks must be defined first so that they can be used by other constraints. The first step of
the timing constraint creation flow is to identify where the clocks must be defined and
whether they must be defined as primary clock or a generated clock.

IMPORTANT: When defining a clock with a specific name (-name option), you must verify that the
clock name is not already used by another clock constraint or an existing auto-generated clock. The
Vivado Design Suite timing engine issues a message when a clock name is used in several clock
constraints to warn you that the first clock definition is overridden. When the same clock name is used
twice, the first clock definition is lost as well as all constraints referring to that name and entered
between the two clock definitions. Xilinx recommends that you avoid overriding clock definitions unless
no other constraints are impacted and all timing paths remain constrained.

Identifying Clock Sources

The unconstrained clock sources can be identified in the design by the following two
reports:

• Clock Networks Report

• Check Timing Report

Clock Networks Report

Both constrained and unconstrained clock source points are listed in two separate
categories. For each unconstrained source point, you must identify whether a primary clock
or a generated clock must be defined.
UltraFast Design Methodology Guide 153
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=153

Chapter 3: Design Creation
% report_clock_networks

Unconstrained Clocks
Clock sysClk (endpoints: 15633 clock, 0 nonclock)
Port sysClk

Clock TXOUTCLK (endpoints: 148 clock, 0 nonclock)
GTXE2_CHANNEL/TXOUTCLK
(mgtEngine/ROCKETIO_WRAPPER_TILE_i/gt0_ROCKETIO_WRAPPER_TILE_i/gtxe2_i)

Clock Q (endpoints: 8 clock, 0 nonclock)
FDRE/Q (usbClkDiv2_reg)

Check Timing Report

The no_clock check reports the groups of active leaf clock pins with no clock definition.
Each group is associated with a clock source point where a clock must be defined in order
to clear the issue.

% check_timing -override_defaults no_clock

1. checking no_clock

 There are 15633 register/latch pins with no clock driven by root clock pin: sysClk
(HIGH)

There are 148 register/latch pins with no clock driven by root clock pin:
mgtEngine/ROCKETIO_WRAPPER_TILE_i/gt0_ROCKETIO_WRAPPER_TILE_i/gtxe2_i/TXOUTCLK
(HIGH)

There are 8 register/latch pins with no clock driven by root clock pin:
usbClkDiv2_reg/C (HIGH)

With check_timing, the same clock source pin or port can appear in several groups
depending on the topology of the entire clock tree. In such case, creating a clock on the
recommended source pin or port will resolve the missing clock definition for all the
associated groups.

For more information, see Checking That Your Design is Properly Constrained in Chapter 5.

Creating Primary Clocks

A primary clock is a clock that defines a timing reference for your design and that is used
by the timing engine to derive the timing path requirements and the phase relationship
with other clocks. Their insertion delay is calculated from the clock source point (driver
pin/port where the clock is defined) to the clock pins of the sequential cells to which it fans
out.

For this reason, it is important to define the primary clocks on objects that correspond to
the boundary of the design, so that their delay, and indirectly their skew, can be accurately
computed.
UltraFast Design Methodology Guide 154
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=154

Chapter 3: Design Creation
Typical primary clock roots are:

• Input Ports

• Gigabit Transceiver Output Pins in 7 Series Devices

• Certain Hardware Primitive Output Pins

Input Ports

Constraint example:

create_clock -name SysClk -period 10 -waveform {0 5} [get_ports sysclk]

In this example, the waveform is defined to have a 50% duty cycle. The -waveform
argument is shown above to illustrate its usage and is only necessary to define a clock with
a duty cycle other than 50%. For a differential clock input buffer, the primary clock only
needs to be defined on the P-side of the pair.

Gigabit Transceiver Output Pins in 7 Series Devices

Gigabit transceiver output pin, for example, a recovered clock:

X-Ref Target - Figure 3-75

Figure 3-75: create_clock for Input Ports

IBUF

D Q

Recommended primary clock
source point: sysclk port

sysclk BUFG

REGA
D Q

REGB
Data Path

X13446

X-Ref Target - Figure 3-76

Figure 3-76: create_clock on a Primitive Pin

D Q

Recommended primary clock
source point: gt0/TXOUTLK

REGA

D Q

REGB
Data Path

CLKFBIN CLKFBOUT
CLKIN1 CLKOUT0

CLKOUT1

mmcm0

txclk
TXOUTCLK

gt0

X13447
UltraFast Design Methodology Guide 155
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=155

Chapter 3: Design Creation
Constraint example:

create_clock -name txclk -period 6.667 [get_pins gt0/TXOUTCLK]

RECOMMENDED: For designs that target 7 series devices, Xilinx recommends also defining the GT
incoming clocks, because the Vivado tools calculate the expected clocks on the GT output pins and
compare these clocks with the user created clocks. If the clocks differ or if the incoming clocks to the GT
are missing, the tools issue a methodology check warning.

Note: For designs that target UltraScale devices, Xilinx does not recommend defining a primary
clock on the output of GTs, because GT clocks are automatically derived when the related board input
clocks are defined.

Certain Hardware Primitive Output Pins

The output pin of certain hardware primitives, for example, BSCANE2, which does not have
a timing arc from an input pin of the same primitive.

IMPORTANT: No primary clock should be defined in the transitive fanout of another primary clock
because this situation does not correspond to any hardware reality. It will also prevent proper timing
analysis by preventing the complete clock insertion delay calculation. Any time this situation occurs,
the constraints must be revisited and corrected.

The following figure shows an example in which the clock clk1 is defined in the transitive
fanout of the clock clk0. clk1 overrides clk0 starting at the output of BUFG1, where it is
defined. Therefore, the timing analysis between REGA and REGB will not be accurate
because of the invalid skew computation between clk0 and clk1.

X-Ref Target - Figure 3-77

Figure 3-77: Clock Path Broken Due to a Missing Timing Arc

D Q

instB

OUTIN

instA

IBUFsysclk

Recommended primary clock
source point: instA/OUT

X
no arc

X13448
UltraFast Design Methodology Guide 156
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=156

Chapter 3: Design Creation
Creating Generated Clocks

A generated clock is a clock derived from another existing clock called the master clock. It
usually describes a waveform transformation performed on the master clock by a logic
block. Because the generated clock definition depends on the master clock characteristics,
the master clock must be defined first. For explicitly defining a generated clock, the
create_generated_clock command must be used.

Auto-Derived Clocks

Most generated clocks are automatically derived by the Vivado Design Suite timing engine
which recognizes the Clock Modifying Blocks (CMB) and the transformation they perform
on the master clocks.

In the Xilinx 7 series device family, the CMBs are:

• MMCM*/ PLL*

• BUFR

• PHASER*

In the Xilinx UltraScale device family, the CMBs are:

• MMCM* / PLL*

• BUFG_GT / BUFGCE_DIV

• GT*_COMMON / GT*_CHANNEL / IBUFDS_GTE3

• BITSLICE_CONTROL / RX*_BITSLICE

• ISERDESE3

X-Ref Target - Figure 3-78

Figure 3-78: create_clock in the Fanout of Another Clock is Not Recommended

IBUF

D Q

NOT RECOMMENDED

sysclk BUFG0

REGA REGB
Data Path

D Q

BUFG1

create_clock –name clk1 –period 10 [get_pins BUFG1/0]

create_clock –name clk0 –period 10 [get_ports sysclk]
X13449
UltraFast Design Methodology Guide 157
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=157

Chapter 3: Design Creation
For any other combinatorial cell located on the clock tree, the timing clocks propagate
through them and do not need to be redefined at their output, unless the waveform is
transformed by the cell. In general, you must rely on the auto-derivation mechanism as
much as possible as it provides the safest way to define the generated clocks that
correspond to the actual hardware behavior.

If the auto-derived clock name chosen by the Vivado Design Suite timing engine does not
seem appropriate, you can force your own name by using the create_generated_clock
command without specifying the waveform transformation. This constraint should be
located right after the constraint that defines the master clock in the constraint file. For
example, if the default name of a clock generated by a MMCM instance is net0, you can add
the following constraint to force your own name (fftClk in the given example):

create_generated_clock -name fftClk [get_pins mmcm_i/CLKOUT0]

To avoid any ambiguity, the constraint must be attached to the source pin of the clock. For
more information, see Vivado Design Suite User Guide: Using Constraints (UG903) [Ref 21].

User-Defined Generated Clocks

Once all the primary clocks have been defined, you can use the Clock Networks or Check
Timing (no_clock) reports to identify the clock tree portions that do not have a timing
clock and define the generated clocks accordingly.

It is sometimes difficult to understand the transformation performed by a cone of logic on
the master clock. In this case, you must adopt the most conservative constraint. For
example, the source pin is a sequential cell output. The master clock is at least divided by
two, so the proper constraint should be, for example:

create_generated_clock -name clkDiv2 -divide_by 2 \
-source [get_pins fd/C] [get_pins fd/Q]

Finally, if the design contains latches, the latch gate pins also need to be reached by a
timing clock and will be reported by Check Timing (no_clock) if the constraint is missing.
You can follow the examples above to define these clocks.

Path Between Master and Generated Clocks

Unlike primary clocks, generated clocks must be defined in the transitive fanout of their
master clock, so that the timing engine can accurately compute their insertion delay. Failure
to follow this rule will result in improper timing analysis and most likely in invalid slack
computation. For example, in the following figure gen_clk_reg/Q is being used as a clock
for the next flop (q_reg), and it is also in the fanout cone of the primary clock c1. Hence
gen_clk_reg/Q should have a create_generated_clock on it, rather than a
create_clock.
UltraFast Design Methodology Guide 158
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=158

Chapter 3: Design Creation
create_generated_clock -name GC1 -source [get_pins gen_clk_reg/C] -divide_by 2
[get_pins gen_clk_reg/Q]

Verifying Clocks Definition and Coverage

Once all design clocks are defined and applied in memory, you can verify the waveform of
each clock, the relationship between master and generated clocks by using the
report_clocks command:

Clock Period Waveform Attributes Sources
sysClk 10.00000 {0.00000 5.00000} P {sysClk}
clkfbout 10.00000 {0.00000 5.00000} P,G {clkgen/mmcm_adv_inst/CLKFBOUT}
cpuClk 20.00000 {0.00000 10.00000} P,G {clkgen/mmcm_adv_inst/CLKOUT0}
…
==
Generated Clocks
==

Generated Clock : cpuClk
Master Source : clkgen/mmcm_adv_inst/CLKIN1
Master Clock : sysClk
Edges : {1 2 3}
Edge Shifts : {0.000 5.000 10.000}
Generated Sources : {clkgen/mmcm_adv_inst/CLKOUT0}

X-Ref Target - Figure 3-79

Figure 3-79: Generated Clock in the Fanout Of Master Clock
UltraFast Design Methodology Guide 159
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=159

Chapter 3: Design Creation
You can also verify that all internal timing paths are covered by at least one clock. The
check_timing report provides two checks for that purpose:

• no_clock

Reports any active clock pin that is not reached by a defined clock.

• unconstrained_internal_endpoint

Reports all the data input pins of sequential cells that have a timing check relative to a
clock but the clock has not been defined.

If both checks return zero, the timing analysis coverage will be high.

Alternatively, you can run the XDC and Timing Methodology checks to verify that all clocks
are defined on recommended netlist objects without introducing any constraint conflict or
inaccurate timing analysis scenario.

If you are using a Vivado Design Suite version prior to 2016.3, use the following command
to run these checks:

report_drc -checks [get_drc_checks {XDC* TIMING-*}]

If you are using Vivado Design Suite version 2016.3 or later, use the following command to
run these checks:

report_methodology -checks [get_methodology_checks {TIMING-* XDC*}]

For more information, see Running Report Methodology in Chapter 4.

Adjusting Clock Characteristics

After defining the clocks and their waveform, the next step is to enter any information
related to noise or uncertainty modeling. The XDC language differentiates uncertainty
related to jitter and phase error from the one related to skew and delay modeling.

• Jitter

• Additional Uncertainty

• Clock Latency at the Source

• MMCM or PLL External Feedback Loop Delay
UltraFast Design Methodology Guide 160
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=160

Chapter 3: Design Creation
Jitter

For jitter, it is best to use the default values used by the Vivado Design Suite. You can
modify the default computation as follows:

• If a primary clock enters the device with a random jitter greater than zero, use the
set_input_jitter command to specify the jitter value.

• To adjust the global jitter if the device power supply is noisy, use
set_system_jitter. Xilinx does not recommend increasing the default system jitter
value.

For generated clocks, the jitter is derived from the master clock and the characteristics of
the clock modifying block. The user does not need to adjust these numbers.

Additional Uncertainty

When you need to add extra margin on the timing paths of a clock or between two clocks,
you must use the set_clock_uncertainty command. This is also the best and safest
way to over-constrain a portion of a design without modifying the actual clock edges and
the overall clocks relationships. The clock uncertainty defined by the user is additive to the
jitter computed by the Vivado tools, and can be specified separately for setup and hold
analyses.

For example, the margin on all intra-clock paths of the design clock clk0 needs to be
tightened by 500ps to make the design more robust to noise for both setup and hold:

set_clock_uncertainty -from clk0 -to clk0 0.500

If you specify additional uncertainty between two clocks, the constraint must be applied in
both directions (assuming data flows in both directions). The example below shows how to
increase the uncertainty by 250ps between clk0 and clk1 for setup only:

set_clock_uncertainty -from clk0 -to clk1 0.250 -setup
set_clock_uncertainty -from clk1 -to clk0 0.250 -setup

Clock Latency at the Source

It is possible to model the latency of a clock at its source by using the
set_clock_latency command with the -source option. This is useful in two cases:

• To specify the clock delay propagation outside the device independently from the input
and output delay constraints.

• To model the internal propagation latency of a clock used by a block during
out-of-context compilation. In such a compilation flow, the complete clock tree is not
described, so the variation between min and max operating conditions outside the
block cannot be automatically computed and must be manually modeled.
UltraFast Design Methodology Guide 161
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=161

Chapter 3: Design Creation
This constraint should only be used by advanced users as it is usually difficult to provide
valid latency values.

MMCM or PLL External Feedback Loop Delay

When the MMCM or PLL feedback loop is connected for compensating a board delay
instead of an internal clock insertion delay, you must specify the delay outside the FPGA
device for both best and worst delay cases by using the set_external_delay command.
Failure to specify this delay will make I/O timing analysis associated with the MMCM or PLL
irrelevant and can potentially lead to an impossible timing closure situation. Also, when
using external compensation, you must adjust the input and output delay constraint values
accordingly instead of just considering the clock trace delay on the board like in normal
cases.

Constraining Input and Output Ports
In addition to specifying the location and I/O standard for each port of the design, input
and output delay constraints must be specified to describe the timing of external paths
to/from the interface of the FPGA device. These delays are defined relative to a clock that is
usually also generated on the board and enters the FPGA device. In some cases, the delays
must be defined related to a virtual clock when the I/O path is related to a clock that has a
waveform different from the board clock.

System Level Perspective

The I/O paths are modeled like any other reg-to-reg paths by the Vivado Design Suite
timing engine, except that part of the path is located outside the FPGA device and needs to
be described by the user. When analyzing internal paths, minimum and maximum delays are
considered for both setup and hold analysis. This is also true for I/O paths. For this reason,
it is important to describe both min and max delay conditions. The I/O timing paths are
analyzed as single-cycle paths by default, which means:

• For max delay analysis (setup), the data is captured one clock cycle after the launch
edge for single data rate interface, and half clock cycle after the launch edge for a
double data rate interface.

• For min delay analysis (hold), the data is launched and captured by the same clock
edge.

If the relationship between the clock and I/O data must be timed differently, like for
example in a source synchronous interface, different I/O delays and additional timing
exceptions must be specified. This corresponds to an advanced I/O timing constraints
scenario.
UltraFast Design Methodology Guide 162
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=162

Chapter 3: Design Creation
Defining Input Delays

The input delay is defined relative to a clock at the interface of the device. Unless
set_clock_latency has been specified on the source pin of the reference clock, the
input delay corresponds to the absolute time from the launch edge, through the clock trace,
the external device and the data trace. If clock latency has already been specified
separately, you can ignore the clock trace delay.

The input delay values for the both types of analysis are:

Input Delay(max) = Tco(max) + Ddata(max) + Dclock_to_ExtDev(max) - Dclock_to_FPGA(min)
Input Delay(min) = Tco(min) + Ddata(min) + Dclock_to_ExtDev(min) - Dclock_to_FPGA(max)

X-Ref Target - Figure 3-80

Figure 3-80: Input Delay Computation

DIN D Q

REGBInternal Delay

CLK BUFG

Tsetup

Thold

D Q

Board
Device

Tco

Dclock_to_ExtDev Dclock_to_ FPGA

Board Clock Generator

FPGA DEVICE

Ddata

Input Delay

X13450
UltraFast Design Methodology Guide 163
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=163

Chapter 3: Design Creation
The following figure shows a simple example of input delay constraints for both setup (max)
and hold (min) analysis, assuming the sysClk clock has already been defined on the CLK
port:

set_input_delay -max -clock sysClk 5.4 [get_ports DIN]
set_input_delay -min -clock sysClk 2.1 [get_ports DIN]

A negative input delay means that the data arrives at the interface of the device before the
launch clock edge.

Defining Output Delays

Output delays are similar to input delays, except that they refer to the output path
minimum and maximum time outside the FPGA device in order to be functional under all
conditions.

X-Ref Target - Figure 3-81

Figure 3-81: Interpreting Min and Max Input Delays

Launch Edge

New DataOld Data

CLK

CLK

Source
Clock

DIN

Destination
Clock

Capture Edge
(hold check)

Min Input Delay

Max Input Delay

PERIOD

Capture Edge
(setup check)

X13451

X-Ref Target - Figure 3-82

Figure 3-82: Output Delay Computation

DOUTQD

REGB Internal Delay

CLKBUFG

Q

Tsetup

D

Board
Device

Thold

Tco

Dclock_to_ExtDevDclock_to_ FPGA

Board Clock Generator

FPGA DEVICE

Ddata

Output Delay

X13452
UltraFast Design Methodology Guide 164
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=164

Chapter 3: Design Creation
The output delay values for the both types of analysis are:

Output Delay(max) = Tsetup + Ddata(max) + Dclock_to_FPGA(max) - Dclock_to_ExtDev(min)
Output Delay(min) = Ddata(min) - Thold + Dclock_to_FPGA(min) - Dclock_to_ExtDev(max)

The following figure shows a simple example of output delay constraints for both setup
(max) and hold (min) analyses, assuming the sysClk clock has already been defined on the
CLK port:

set_output_delay -max -clock sysClk 2.4 [get_ports DOUT]
set_output_delay -min -clock sysClk -1.1 [get_ports DOUT]

The output delay corresponds to the delay on the board before the capture edge. For a
regular system synchronous interface where the clock and data board traces are balanced,
the setup time of the destination device defines the output delay value for max analysis.
And the destination device hold time defines the output delay for min analysis. The
specified min output delay indicates the minimum delay that the signal will incur after
coming out of the design, before it will be used for hold analysis at the destination device
interface. Thus, the delay inside the block can be that much smaller. A positive value for min
output delay means that the signal can have negative delay inside the design. This is why
min output delay is often negative. For example:

set_output_delay -min -0.5 -clock CLK [get_ports DOUT]

means that the delay inside the design until DOUT has to be at least +0.5 ns to meet the
hold time requirement.

Choosing the Reference Clock

Depending on the clock tree topology that controls the sequential cells related to input or
output ports, you have to choose the most appropriate clock to define the input or output

X-Ref Target - Figure 3-83

Figure 3-83: Interpreting Min and Max Output Delays

Launch Edge (FPGA)

New DataOld Data

CLK

CLK

Source
Clk

DOUT

Destination
Clk

Capture Edge
(hold check)

Min Output Delay

PERIOD

Capture Edge
(setup check)

Max Output Delay

TH(DestDev) TSU(DestDev) TH(DestDev)

X13453
UltraFast Design Methodology Guide 165
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=165

Chapter 3: Design Creation
delay constraints. If the clock of the I/O path register is a generated clock, the delay
constraint usually needs to be defined relative to the primary clock, which is defined
upstream of the generated clocks. There are some exceptions to this rule that are explained
in this section.

Identifying the Clocks Related to Each Port

Before defining the I/O delay constraint, you must identify which clocks are related to each
port. There are several ways to identify those clocks:

• Browse the Board Schematics

• Browse the Design Schematics

• Report Timing from or to the Port

• Using Automatically Identified Sampling Clocks

Browse the Board Schematics

For a group of ports connected to a particular device on the board, you can use the same
board clock that goes to both the device and the FPGA as the input or output delay
reference clock. You need to verify in the device data sheet if the board clock is internally
transformed for timing the I/O ports to make sure the FPGA design generates the same
clock to control the timing of the related group of ports.

Browse the Design Schematics

For each port, you can expand the path schematics to the first level of sequential cells, and
then trace the clock pins of those cells back to the clock source(s). This approach can be
impractical for ports that are connected to high fanout nets.

Report Timing from or to the Port

Whether a port is already constrained or not, you can use the report_timing command
to identify its related clocks in the design. Once all the timing clocks have been defined, you
can report the worst path from or to the I/O port, create the I/O delay constraint relative to
the clock reported, and re-run the same timing report from/to the other clocks of the
design. If it appears that the port is related to more than one clock, create the
corresponding constraint and repeat the process.

For example, the din input port is related to the clocks clk1 and clk2 inside the design:

report_timing -from [get_ports din] -sort_by group

The report shows that the din port is related to clk1. The input delay constraint is (for
both min and max delay in this example):

set_input_delay -clock clk1 5 [get_ports din]
UltraFast Design Methodology Guide 166
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=166

Chapter 3: Design Creation
Rerun timing analysis with the same command as previously, and observe that din is also
related to clk2 due to the -sort_by group option, which reports N paths per endpoint
clock. You can add the corresponding delay constraint and re-run the report to validate that
the din port is not related to another clock.

You can also run the same analysis using the Timing Summary report with the
-report_unconstrained option. With only clock constraints in your design, the
Unconstrained Paths section appears as follows:

--
Unconstrained Path Table

Path Group From Clock To Clock
---------- ---------- --------
(none)
(none) clk1
(none) clk2
(none) clk1
(none) clk2

The fields without a clock name (or <NONE> in the Vivado IDE) refer to a group of paths
where the startpoints (From Clock) or the endpoints (To Clock) are not associated with a
clock. The unconstrained I/O ports fall in this category. You can retrieve their name by
browsing the rest of the report. For example in the Vivado IDE, by selecting the Setup paths
for the clk1 to NONE category, you can see the ports driven by clk1 in the To column:

After adding the new constraints and applying them in memory, you must re-run the report
to determine which ports are still unconstrained. For most designs, you must increase the
number of reported paths to make sure all the I/O paths are listed in the report.

Using Automatically Identified Sampling Clocks

You can use the set_input_delay and set_output_delay constraints without
specifying the related clock. The Vivado Design Suite timing engine will analyze the design
and associate each port with all the sampling clocks automatically. Then by reporting timing
on the I/O paths, you can see how the tool constrained each I/O port. This is convenient for
quickly constraining a design, but this type of generic constraints can become a problem if
they are too generic and do not model the hardware reality accurately.

X-Ref Target - Figure 3-84

Figure 3-84: Getting a List of Unconstrained Output Ports
UltraFast Design Methodology Guide 167
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=167

Chapter 3: Design Creation
Using a Primary Clock

A primary clock (that is, an incoming board clock) should be used when it directly controls
the I/O path sequential cells, without traversing any clock modifying block. I/O delay lines
are not considered as clock modifying blocks because they only affect the clock insertion
delay and not the waveform. This case is illustrated by the two examples previously
provided in Defining Input Delays and Defining Output Delays. Most of the time, the
external device also has its interface characteristics defined with respect to the same board
clock.

When the primary clock is compensated by a PLL or MMCM inside the FPGA with the zero
hold violation (ZHOLD) mode, the I/O paths sequential cells are connected to an internal
copy (for example, a generated clock) of the primary clock. Because the waveforms of both
clocks are identical, Xilinx recommends using the primary clock as the reference clock for
the input/output delay constraints.

The constraints are identical to the example provided in Defining Input Delays because the
ZHOLD MMCM acts like a clock buffer with a negative insertion delay which corresponds to
the amount of compensation.

Using a Virtual Clock

When the board clock traverses a clock modifying block which transforms the waveform in
addition to compensating the overall insertion delay, it is recommended to use a virtual
clock as a reference clock for the input and output delay instead of the board clock. There
are three main cases for using a virtual clock:

• The internal clock and the board clock have different period: The virtual clock must be
defined with the same period and waveform as the internal clock. This results in a
regular single-cycle path requirement on the I/O paths.

• For input paths, the internal clock has a positive shifted waveform compared to the
board clock: the virtual clock is defined like the board clock, and a multicycle path
constraint of 2 cycles for setup is defined from the virtual clock to the internal clock.
These constraints force the setup timing analysis to be performed with a requirement
of 1 clock cycle + amount of phase shift.

X-Ref Target - Figure 3-85

Figure 3-85: Input Delay in the Presence of a ZHOLD MMCM in Clock Path

FDCE

data_reg[0]
mmcm

CLK OUT1CLK IN1
CLK

DIN

mmcm_zhold

DIN_IBUF_inst
I O

IBUF

+

C

CE

CLR

D

Q

Input Delay

X13454
UltraFast Design Methodology Guide 168
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=168

Chapter 3: Design Creation
• For output paths, the internal clock has a negative shifted waveform compared to the
board clock: the virtual clock is defined like the board clock and a multicycle path
constraint of 2 cycles for setup is defined from the internal clock to the virtual clock.
These constraints force the setup timing analysis to be performed with a requirement
of 1 clock cycle + amount of phase shift.

To summarize, the use of a virtual clock adjusts the default timing analysis to avoid treating
I/O paths as clock domain crossing paths with a very tight and unrealistic requirement.

IMPORTANT: You only need to use the multicycle path for I/O paths with phase-shifted clocks when the
phase-shift results in modification of the clock waveform. When the phase shift is added to the
insertion delay of the clock modifying block and the clock waveform is preserved, you do not need to
use a multicycle path. For more information, see this link in the Vivado Design Suite User Guide: Design
Analysis and Closure Techniques (UG906) [Ref 24].

For example, consider the sysClk board clock that runs at 100 MHz and gets multiplied by
an MMCM to generate clk266 that runs at 266 MHz. An output that is generated by clk266
should use clk266 as the reference clock. If you try to use sysClk as the reference clock (for
the set_output_delay specification), it will appear as asynchronous clocks, and the path
can no longer be timed as a single cycle.

Using a Generated Clock

For an output source synchronous interface, the design generates a copy of the internal
clock and forwards it to the board along with the data. This clock is usually used as the
reference clock for the output data delay constraints whenever the intent is to control and
report on the phase relationship (skew) between the forwarded clock and the data. The
forwarded clock can also be used in input and output delay constraints for a system
synchronous interface.

Rising and Falling Reference Clock Edges

The clock edges used in the I/O constraint must reflect the data sheet of the external device
connected to the FPGA device. By default, the set_input_delay and
set_output_delay commands define a delay constraint relative to the rising reference
clock edge. You must use the clock_fall option to specify a delay relative the falling
clock edge. You can also specify separate constraints for delays related to both rising and
falling clock edges by using the add_delay option with the second constraint on a port.

In most cases, the I/O reference clock edges correspond to the clock edges used to latch or
launch the I/O data inside the FPGA. By analyzing the I/O timing paths, you can review
which clock edges are used and verify that they correspond to the actual hardware
behavior. If by mistake a rising clock edge is used as a reference clock for an I/O path that
is only related to the falling clock edge internally, the path requirement is ½-period, which
makes timing closure more difficult.
UltraFast Design Methodology Guide 169
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xClockPhaseShift
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=169

Chapter 3: Design Creation
Verifying Delay Constraints

Once the I/O timing constraints have been entered, it is important to review how timing is
analyzed on the I/O paths and the amount of slack violation for both setup and hold checks.
By using the timing reports from/to all ports for both setup and hold analysis (that is,
delay type = min_max), you can verify that:

• The correct clocks and clock edges are used as reference for the delay constraints.

• The expected clocks are launching and capturing the I/O data inside the FPGA device.

• The violations can reasonably be fixed by placement or by setting the proper delay line
tap configuration. If this is not the case, you must review the I/O delay values entered
in the constraints and evaluate whether they are realistic, and whether you must modify
the design to meet timing.

I/O Path Report Command Lines Example

report_timing -from [all_inputs] -nworst 1000 -sort_by group \
-delay_type min_max

report_timing -to [all_outputs] -nworst 1000 -sort_by group \
-delay_type min_max

Improper I/O delay constraints can lead to impossible timing closure. The implementation
tools are timing driven and work on optimizing the placement and routing to meet timing.
If the I/O path requirements cannot be met and I/O paths have the worst violations in the
design, the overall design QoR will be impacted.

Input to Output Feed-through Path

There are several equivalent ways to constrain a combinatorial path from an input port to
an output port.

Example One

Use a virtual clock with a period greater or equal to the target maximum delay for the
feed-through path, and apply max input and output delay constraints as follows:

create_clock -name vclk -period 10
set_input_delay -clock vclk <input_delay_val> [get_ports din] -max
set_output_delay -clock vclk <output_delay_val> [get_ports dout] -max

where

input_delay_val(max) + feedthrough path delay (max) + output_delay_val(max)
<= vclk period.

In this example, only the maximum delay is constrained.
UltraFast Design Methodology Guide 170
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=170

Chapter 3: Design Creation
Example Two

Use a combination of min and max delay constraints between the feedthrough ports.
Example:

set_max_delay -from [get_ports din] -to [get_ports dout] 10
set_min_delay -from [get_ports din] -to [get_ports dout] 2

This is a simple way to constrain both minimum and maximum delays on the path. Any
existing input and output delay constraints on the same ports are also used during the
timing analysis. For this reason, this style is not very popular.

The max delay is usually optimized and reported against the Slow timing corner, while the
min delay is in the Fast timing corner. It is best to run a few iterations on the feedthrough
path delay constraints to validate that they are reasonable and can be met by the
implementation tools, especially if the ports are placed far from one another.

Using XDC Templates - Source Synchronous Interfaces

While most users can properly write timing constraints for system synchronous interfaces,
Xilinx recommends using I/O constraint templates for the source synchronous interfaces.
The source synchronous constraints can be written in several ways. The templates provided
by the Vivado Design Suite are based on the default timing analysis path requirement. The
syntax is simpler, but the delay values must be adjusted to account for the fact that the
setup analysis is performed with different launch and capture edges (1-cycle or 1/2-cycle)
instead of same edge (0-cycle). The timing reports can be more difficult to read as the clock
edges do not directly correspond to the active ones in hardware. You can navigate to these
templates in Vivado GUI through Tools > Language Templates > XDC >
TimingConstraints > Input Delay Constraints > Source Synchronous.

Defining Clock Groups and CDC Constraints
The Vivado IDE times the paths between all the clocks in your design by default. You can use
the following constraints to modify this default behavior:

• set_clock_groups: Disables timing analysis between groups of clocks that you
identify but not between the clocks within a same group.

• set_false_path: Disables timing analysis between the clocks only in the direction
specified by the -from and -to options.

In some cases, you might want to use the following constraints on one or more paths of the
clock domain crossing (CDC) to limit latency or bus skew:

• set_max_delay -datapath_only: Sets the maximum delay constraints on
asynchronous CDC paths to limit the latency.

Note: If clock groups or false path constraints already exist between the clocks or on the same
CDC paths, the maximum delay constraints will be ignored. Therefore, it is important to
UltraFast Design Methodology Guide 171
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=171

Chapter 3: Design Creation
thoroughly review every path between all clock pairs before choosing one CDC timing constraint
over another to avoid constraints collision.

RECOMMENDED: Xilinx also recommends running report_methodology to identify when a
set_max_delay -datapath_only constraint is overridden by a set_clock_groups or
set_false_path constraint. For details, see Running Report Methodology in Chapter 4.

• set_bus_skew: Constrains a set of signals between asynchronous CDC paths by bus
skew instead of latency.

TIP: You can also set a bus skew constraint from the Vivado IDE. In the Timing Constraints window,
expand Assertions, and double-click Set Bus Skew.

Reviewing Clock Interactions

Clocks that have a logical path between them are timed. The possible clock relationships
are:

• Synchronous

• Asynchronous

• Exclusive

Synchronous

Clock relationships are synchronous when two clocks have a fixed phase relationship. This
is the case when two clocks share the following:

• Common circuitry (common node)

• Primary clock (same initial phase)

Asynchronous

Clock relationships are asynchronous when they do not have a fixed phase relationship. This
is the case when one of the following is true:

• They do not share any common circuitry in the design and do not have a common
primary clock.

• They do not have a common period within 1000 cycles (unexpandable) and the timing
engine cannot properly time them together.

If two clocks are synchronous but their common period is very small, the setup paths
requirement is too tight for timing to be met. Xilinx recommends that you treat the two
clocks as asynchronous and implement safe asynchronous CDC circuitry.
UltraFast Design Methodology Guide 172
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=172

Chapter 3: Design Creation
Exclusive

Clock relationships are exclusive when they propagate on a same clock tree and reach the
same sequential cell clock pins but cannot physically be active at the same time.

Categorizing Clock Pairs

The clock pairs can be categorized by using the following reports:

• Clock Interaction Report

• Check Timing Report

Clock Interaction Report

The Clock Interaction report provides a high-level summary of how two clocks are timed
together:

• Do the two clocks have a common primary clock? When clocks are properly defined, all
clocks that originate from the same source in the design share the same primary clock.

• Do the two clocks have a common period? This shows in the setup or hold path
requirement column (“unexpandable”), when the timing engine cannot determine the
most pessimistic setup or hold relationship.

• Are the paths between the two clocks partially or completely covered by clock groups
or timing exception constraints?

• Is the setup path requirement between the two clocks very tight? This can happen,
when two clocks are synchronous, but their period is not specified as an exact multiple
(for example, due to rounding off). Over multiple clock cycles, the edges could drift
apart, causing the worst case timing requirement to be very tight.

Check Timing Report

The Check Timing report (multiple_clock) identifies the clock pins that are reached by
more than one clock and a set_clock_groups or set_false_path constraint has not
already been defined between these clocks.

Constraining Exclusive Clock Groups

You can use the regular timing or clock network reports to review the clock paths and
identify the situations where two clocks propagate on a same clock tree and are used at the
same time in a timing path where the startpoint and endpoint clock pins are connected to
the same clock tree. This analysis can be a time consuming task. Instead, you can review the
multiple_clock section of the Check Timing report. This section returns a list of clock
pins and their associated timing clocks.
UltraFast Design Methodology Guide 173
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=173

Chapter 3: Design Creation
Based on the clock tree topology, you must apply different constraints:

• Overlapping Clocks Defined on the Same Clock Source

• Overlapping Clocks Driven by a Clock Multiplexer

Overlapping Clocks Defined on the Same Clock Source

This occurs when two clocks are defined on the same netlist object with the
create_clock -add command and represent the multiple modes of an application. In
this case, it is safe to apply a clock groups constraint between the clocks. For example:

create_clock -name clk_mode0 -period 10 [get_ports clkin]
create_clock -name clk_mode1 -period 13.334 -add [get_ports clkin]
set_clock_groups -physically_exclusive -group clk_mode0 -group clk_mode1

If the clk_mode0 and clk_mode1 clocks generate other clocks, the same constraint needs
to be applied to their generated clocks as well, which can be done as follows:

set_clock_groups -physically_exclusive \
-group [get_clocks -include_generated_clock clk_mode0] \
-group [get_clocks -include_generated_clock clk_mode1]

Overlapping Clocks Driven by a Clock Multiplexer

When two or more clocks drive into a multiplexer (or more generally a combinatorial cell),
they all propagate through and become overlapped on the fanout of the cell. Realistically,
only one clock can propagate at a time, but timing analysis allows reporting several timing
modes at the same time.

For this reason, you must review the CDC paths and add new constraints to ignore some of
the clock relationships. The correct constraints are dictated by how and where the clocks
interact in the design.
UltraFast Design Methodology Guide 174
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=174

Chapter 3: Design Creation
The following figure shows an example of two clocks driving into a multiplexer and the
possible interactions between them before and after the multiplexer.

• Case in which the paths A, B, and C do not exist

clk0 and clk1 only interact in the fanout of the multiplexer (FDM0 and FDM1). It is
safe to apply the clock groups constraint to clk0 and clk1 directly.

set_clock_groups -logically_exclusive -group clk0 -group clk1

• Case in which only the paths A or B or C exist

clk0 and/or clk1 directly interact with the multiplexed clock. In order to keep timing
paths A, B and C, the constraint cannot be applied to clk0 and clk1 directly. Instead,
it must be applied to the portion of the clocks in the fanout of the multiplexer, which
requires additional clock definitions.

create_generated_clock -name clk0mux -divide_by 1 \
-source [get_pins mux/I0] [get_pins mux/O]

create_generated_clock -name clk1mux -divide_by 1 \
-add -master_clock clk1 \

-source [get_pins mux/I1] [get_pins mux/O]

set_clock_groups -physically_exclusive -group clk0mux -group clk1mux

X-Ref Target - Figure 3-86

Figure 3-86: Muxed Clocks

FDM1

D Q

FDM0

D Q

FD1

D Q

FD0

D Q

I0

I1

O

clk0

clk1

A

C

B

X13455
UltraFast Design Methodology Guide 175
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=175

Chapter 3: Design Creation
Constraining Asynchronous Clock Groups and Clock Domain Crossings

The asynchronous relationship can be quickly identified in the Clock Interaction report:
clock pairs with no common primary clock or no common period (unexpanded). Even if
clock periods are the same, the clocks will still be asynchronous, if they are being generated
from different sources. The asynchronous Clock Domain Crossing (CDC) paths must be
reviewed carefully to ensure that they use proper synchronization circuitry that does not
rely on timing correctness and that minimizes the chance for metastability to occur.
Asynchronous CDC paths usually have high skew and/or unrealistic path requirements. They
should not be timed with the default timing analysis, which cannot prove they will be
functional in hardware.

Report CDC

The Report CDC (report_cdc) command performs a structural analysis of the clock
domain crossings in your design. You can use this information to identify potentially unsafe
CDCs that might cause metastability or data coherency issues. Report CDC is similar to the
Clock Interaction Report, but Report CDC focuses on structures and related timing
constraints. Report CDC does not provide timing information because timing slack does not
make sense on paths that cross asynchronous clock domains.

Report CDC identifies the most common CDC topologies as follows:

• Single bit synchronizers

• Multi-bit synchronizers for buses

• Asynchronous reset synchronizers

• MUX and CE controlled circuitry

• Combinatorial logic before synchronizer

• Multi-clock fanin to synchronizer

• Fanout to destination clock domain

For more information on the report_cdc command, see this link in the Vivado Design
Suite User Guide: Design Analysis and Closure Techniques (UG906) [Ref 24] and see
report_cdc in the Vivado Design Suite Tcl Command Reference Guide (UG835) [Ref 17].

Specific constraints should be applied to prevent default timing analysis on asynchronous
clock domain crossings:

• Global Constraints Between Clocks in Both Directions

• Constraints on Individual CDC Paths
UltraFast Design Methodology Guide 176
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug835-vivado-tcl-commands.pdf;a=xreport_cdc
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xReportClockDomainCrossings
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=176

Chapter 3: Design Creation
Global Constraints Between Clocks in Both Directions

When there is no need to limit the maximum latency, the clock groups can be used.
Following is an example to ignore paths between clkA and clkB:

set_clock_groups -asynchronous -group clkA -group clkB

When two master clocks and their respective generated clocks form two asynchronous
domains between which all the paths are properly synchronized, the clock groups
constraint can be applied to several clocks at once:

set_clock_groups -asynchronous \
-group {clkA clkA_gen0 clkA_gen1 …} \
-group {clkB clkB_gen0 clkB_gen1 …}

Or simply:

set_clock_groups -asynchronous \
-group [get_clocks -include_generated_clock clkA] \
-group [get_clocks -include_generated_clock clkB]

Constraints on Individual CDC Paths

If a CDC bus uses gray-coding (e.g., FIFO) or if latency needs to be limited between the two
asynchronous clocks on one or more signals, you must use the set_max_delay constraint
with the option -datapath_only to ignore clock skew and jitter on these paths, plus
override the default path requirement by the latency requirement. It is usually sufficient to
use the source clock period for the max delay value, just to ensure that no more than one
data is present on the CDC path at any given time.

When the ratio between clock periods is high, choosing the minimum of the source and
destination clock periods is also a good option to reduce the transfer latency. A clean
asynchronous CDC path should not have any logic between the source and destination
sequential cells, so the Max Delay Datapath Only constraint is normally easy to meet for the
implementation tools.

Some asynchronous CDC paths require a skew control between the bits of the bus instead
of a constraint on the bus latency. Using a bus skew constraint prevents the receiving clock
domain from latching multiple states of the bus on the same clock edge. You can set the bus
skew constraint on the bus with set_bus_skew command. For example, you can apply
set_bus_skew to a CDC bus that uses gray-coding instead of using the Max Delay
Datapath Only constraint. For more information, see this link in the Vivado Design Suite User
Guide: Using Constraints (UG903) [Ref 21].

For the paths that do not need latency control, you can define a point-to-point false path
constraint.
UltraFast Design Methodology Guide 177
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug903-vivado-using-constraints.pdf;a=xBusSkew
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=177

Chapter 3: Design Creation
Clock Exceptions Precedence Over set_max_delay

When writing the CDC constraints, verify that the precedence is respected. If you use
set_max_delay -datapath_only on at least one path between two clocks, the
set_clock_groups constraint cannot be used between the same clocks, and the
set_false_path constraint can only be used on the other paths between the two clocks.

In the following figure, the clock clk0 has a period of 5ns and is asynchronous to clk1.
There are two paths from clk0 domain to clk1 domain. The first path is a 1-bit data
synchronization. The second path is a multi-bit gray-coded bus transfer.

The designer decides that the gray-coded bus transfer requires a Max Delay Datapath Only
to limit the delay variation among the bits, so it becomes impossible to use a Clock Groups
or False Path constraint between the clocks directly. Instead, two constraints must be
defined:

set_max_delay -from [get_cells GCB0[*]] -to [get_cells [GCB1a[*]] \
-datapath_only 5
set_false_path -from [get_cells REG0] -to [get_cells REG1a]

There is no need to set a false path from clk1 to clk0 because there is no path in this
example.

X-Ref Target - Figure 3-87

Figure 3-87: Multiple Interactions Between Two Asynchronous Clocks

D Q

GCB0[N..0]

D Q

GCB1a[N..0]

D Q

GCB1b[N..0]

D Q

REG0

D Q

REG1a

D Q

REG1b

BUFG1 IBUF1 clk1BUFG0IBUF0clk0

X13456
UltraFast Design Methodology Guide 178
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=178

Chapter 3: Design Creation
Specifying Timing Exceptions
Timing exceptions are used to modify how timing analysis is done on specific paths. By
default, the timing engine assumes that all paths should be timed with a single cycle
requirement for setup analysis in order to cover the most pessimistic clocking scenario. For
certain paths, this is not true. Following are a few examples:

• Asynchronous Clock Domain Crossing paths cannot be safely timed due to the lack of
fixed phase relationship between the clocks. They should be ignored (Clock Groups,
False Path), or simply have datapath delay constraint (Max Delay Datapath Only)

• The sequential cells launch and capture edges are not active at every clock cycle, so the
path requirement can be relaxed accordingly (Multicycle Path)

• The path delay requirement needs to be tightened in order to increase the design
margin in hardware (Max Delay)

• A path through a combinatorial cell is static and does not need to be timed (False Path,
Case Analysis)

• The analysis should be done with only a particular clock driven by a multiplexer (Case
Analysis).

In any case, timing exceptions must be used carefully and must not be added to hide real
timing problems.

Timing Exceptions Guidelines

Use a limited number of timing exceptions and keep them simple whenever possible.
Otherwise, you will face the following challenges:

• The runtime of the compilation flow will significantly increase when many exceptions
are used, especially when they are attached to a large number of netlist objects.

• Constraints debugging becomes extremely complicated when several exceptions cover
the same paths.

• Presence of constraints on a signal can hamper the optimization of that signal.
Therefore, including unnecessary exceptions or unnecessary points in exception
commands can hamper optimization.

Following is an example of timing exceptions that can negatively impact the runtime:

set_false_path -from [get_ports din] -to [all_registers]

• If the din port does not have an input delay, it is not constrained. So there is no need
to add a false path.

• If the din port feeds only to sequential elements, there is no need to specify the false
path to the sequential cells explicitly. This constraint can be written more efficiently:

set_false_path -from [get_ports din]
UltraFast Design Methodology Guide 179
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=179

Chapter 3: Design Creation
• If the false path is needed, but only a few paths exist from the din port to any
sequential cell in the design, then it can be more specific (all_registers can
potentially return thousands of cells, depending upon the number of registers used in
the design):

set_false_path -from [get_ports din] -to [get_cells blockA/config_reg[*]]

Timing Exceptions Precedence and Priority Rules

Timing exceptions are subject to strict precedence and priority rules. The most important
rules are:

• The more specific the constraint, the higher the priority. For example:

set_max_delay -from [get_clocks clkA] -to [get_pins inst0/D] 12

set_max_delay -from [get_clocks clkA] -to [get_clocks clkB] 10

The first set_max_delay constraint has a higher priority because the -to option uses a
pin, which is more specific than a clock.

• The exceptions priority is as follows:

1. set_false_path

2. set_max_delay or set_min_delay

3. set_multicycle_path

The set_clock_groups command is not considered a timing exception even though it is
equivalent to two set_false_path commands between two clocks. It has higher
precedence than the timing exceptions.

The set_case_analysis and set_disable_timing commands disable timing
analysis on specific portions of the design. They have higher precedence than the timing
exceptions.

For details on XDC precedence and priorities, see this link in the Vivado Design Suite User
Guide: Using Constraints (UG903) [Ref 21].

Adding False Path Constraints

False path exceptions can be added to timing paths to ignore slack computation on these
paths. It is usually difficult to prove that a path does not need timing to be functional, even
with simulation tools. Xilinx does not usually recommend using a false path unless the risk
associated with it has been properly assessed and appear to be acceptable.
UltraFast Design Methodology Guide 180
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug903-vivado-using-constraints.pdf;a=XDCPrecedence
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=180

Chapter 3: Design Creation
Use Cases

The typical cases for using the false path constraint are:

• Ignoring timing on a path that is never active. For example, a path that crosses two
multiplexers that can never let the data propagate in a same clock cycle because of the
select pins connectivity.

set_false_path -through [get_pins MUX0/I0] -through [get_pins MUX1/I1]

• Ignoring timing on an asynchronous CDC path. This case is already discussed in
Defining Clock Groups and CDC Constraints.

• Ignoring static paths in the design. Some registers take a value once during the
initialization phase of the application and never toggle again. When they appear to be
on the critical path of the design, they can be ignored for timing in order to relax the
constraints on the implementation tools and help with timing closure. It is sufficient to
define a false path constraint from the static register only, without explicitly specifying
the paths endpoints. Example: the paths from a 32-bit configuration register
config_reg[31..0] to the rest of the design can be ignored by adding the
following false path constraint:

set_false_path -from [get_cells config_reg[*]]

Impact on Synthesis

The false path constraint is supported by synthesis and will only impact max delay
(setup/recovery) path optimization. It is usually not needed to use false path exceptions
during synthesis except for ignoring CDC paths.

Impact on Implementation

All the implementation steps are sensitive to the false path timing exception.

Adding Min and Max Delay Constraints

The min and max delay exceptions are used to override the default path requirement
respectively for hold/removal and setup/recovery checks by replacing the launch and
capture edge times with the delay value from the constraint.

X-Ref Target - Figure 3-88

Figure 3-88: Path Cannot be Sensitized

I0

I1

O

D Q
REG0

I0

I1

O

D
REG1

Q

S S

MUX0 MUX1

X13457
UltraFast Design Methodology Guide 181
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=181

Chapter 3: Design Creation
Use Cases

Common reasons for using the min or max delay constraints are for:

• Over-constraining a few paths of the design by tightening the setup/recovery path
requirement.

This is useful for forcing the logic optimization or placement tools to work harder on
some critical path cells, which can provide more flexibility to the router to meet timing
later on (after removing the max delay constraint).

• Replacing a multicycle constraint.

This is a valid, but not the recommended way, to relax the setup requirement on a path
that has active launch and capture edges every N clock cycles. Although it is the only
option to over-constrain a multicycle path by a fraction of a clock period to help with
timing closure during the routing step. For example, a path with a multicycle constraint
of 3 appears to be the worst violating path after route and fails timing by a few hundred
ps.

The original multicycle path constraint can be replaced by the following constraint
during optimization and placement:

set_max_delay -from [get_pins <startpointCell>/C] \
-to [get_pins <endpointCell>/D] 14.5

where

14.5 corresponds to 3 clock periods (of 5 ns each), minus 500 ps that correspond to
amount of extra margin desired.

• Constraining the maximum datapath delay on asynchronous CDC paths.

This technique has already been described in Defining Clock Groups and CDC
Constraints.

It is not common or recommended to force extra delay insertion on a path by using the
set_min_delay constraint. The default min delay requirement for hold or removal is
usually sufficient to ensure proper hardware functionality when the slack is positive.

Impact on Synthesis

The set_max_delay constraint is supported by synthesis, including the
-datapath_only option. The set_min_delay constraint is ignored.

Impact on Implementation

The set_max_delay constraint replaces the setup path requirement and influences the
entire implementation flow. The set_min_delay constraint replaces the hold path
UltraFast Design Methodology Guide 182
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=182

Chapter 3: Design Creation
requirement and only affects the router behavior whenever it introduces the need to fix
hold.

Avoiding Path Segmentation

Path segmentation is introduced when specifying invalid startpoint or endpoint for the
-from or -to options of the set_max_delay and set_min_delay commands only.
When a set_max_delay introduces path segmentation on a path, the default hold
analysis no longer takes place. You must constrain the same path with set_min_delay if
you desire to constrain the hold analysis as well. The same rule applies with the
set_min_delay command relative to the setup analysis.

Path segmentation must only be used by experts as it alters the fundamentals of timing
analysis:

• Path segmentation breaks clock skew computation on the segmented path.

• Path segmentation can break more paths than the one constrained by the segmenting
set_max_delay or set_min_delay command.

Path segmentation is reported by the tools in the log file when the constraints are applied.
You must avoid it by using valid startpoints and endpoints:

• Startpoints

clock, clock pin, sequential cell (implies valid startpoint pins of the cell), input or inout
port

• Endpoints

clock, input data pin of sequential cell, sequential cell (implies valid endpoint pins of the
cell), output or inout port

For details on path segmentation, see this link in the Vivado Design Suite User Guide:
Using Constraints (UG903) [Ref 21].

Adding Multicycle Path Constraints
Multicycle path exceptions must reflect the design functionality and must be applied on
paths that do not have an active clock edge at every cycle, on either the source clock, the
destination clock or both clocks. The path multiplier is expressed in terms of clock cycles,
either based on the source clock when the -start option is used, or the destination clock
when the -end option is used. This is particularly convenient for modifying the setup and
hold relationships between the startpoint and endpoint independently of the clock period
value.

The hold relationships are always tied to the setup ones. Consequently, in most cases, the
hold relationship also needs to be separately adjusted after the setup one has been
modified. This is why a second constraint with the -hold option is needed. The main
UltraFast Design Methodology Guide 183
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug903-vivado-using-constraints.pdf;a=xPathSegmentation
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=183

Chapter 3: Design Creation
exception to this rule is for synchronous CDC paths between phase-shifted clocks: only
setup needs to be modified.

Relaxing the Setup Requirement While Keeping Hold Unchanged

This occurs when the source and destination sequential cells are controlled by a clock
enable signal that activates the clock every N cycles. The following example has a clock
enable active every 3 cycles, with the same clock for both startpoint and endpoint:

Constraints:

set_multicycle_path -from [get_pins REGA/C] -to [get_pins REGB/D] -setup 3

set_multicycle_path -from [get_pins REGA/C] -to [get_pins REGB/D] -hold 2

X-Ref Target - Figure 3-89

Figure 3-89: Enabled Flops with Same Clock Signal
X-Ref Target - Figure 3-90

Figure 3-90: Timing Diagram for Setup/Hold Check

D Q
REGA

EN

D Q
REGB

EN

X13458

Hold (default)

launch edge

Source clock (REGA)

Destination clock (REGB)

Clock Enable

capture edge

active edgesSetup
(default)

BEFORE

Hold (default)

X13459
UltraFast Design Methodology Guide 184
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=184

Chapter 3: Design Creation
Note: With the first command, as the setup capture edge moved to the third edge (that is, by 2
cycles from its default position), the hold edge also moved by 2 cycles. The second command is for
bringing the hold edge back to its original location by moving it again by 2 cycles (in the reverse
direction).

For more information on other common multicycle path scenarios, such as phase shift and
multicycle paths between synchronous clocks, see the see this link in the Vivado Design
Suite User Guide: Using Constraints (UG903) [Ref 21].

IMPORTANT: When the clock phase shift does not modify the clock waveform but is instead included in
the insertion delay of the clock modifying block, you do not need to add a setup-only multicycle path
to properly time the path from or to the clock. For more information, see this link in the Vivado Design
Suite User Guide: Design Analysis and Closure Techniques (UG906) [Ref 24].

Impact on Synthesis and Implementation

The set_multicycle_path constraint is supported by synthesis and can greatly improve
the timing QoR (for setup only) by relaxing long paths that are functionally not active at
every clock cycle.

As for synthesis, multicycle path exceptions help the implementation timing-driven
algorithms to focus on the real critical paths. The hold requirements are important only
during routing. If a setup relationship was adjusted with a set_multicycle_path
constraint but not its corresponding hold relationships, the worst hold requirement may
become too hard to meet if it is over 2 or 3 ns. This situation can have a negative impact on
setup slack because of the additional delay inserted by the router while fixing hold
violations.

X-Ref Target - Figure 3-91

Figure 3-91: Setup/Hold Checks Modified After Multicycle Specification

launch edge

Source clock (REGA)

Destination clock (REGB)

Clock Enable

capture edge

HoldSetup

AFTER

Hold

X13460
UltraFast Design Methodology Guide 185
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug903-vivado-using-constraints.pdf;a=MulticyclePaths
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xClockPhaseShift
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=185

Chapter 3: Design Creation
Common Mistakes

Following are two typical mistakes that you must absolutely avoid:

• Relaxing setup without adjusting hold back to same launch and capture edges in the
case of a multicycle path not functionally active at every clock cycle. The hold
requirement can become very high (at least one clock period in most cases) and
impossible to meet.

• Setting a multicycle path exception between incorrect points in the design.

This occurs when you assume that there is only one path from a startpoint cell to an
endpoint cell. In some cases this is not true. The endpoint cell can have multiple data
input pins, including clock enable and reset pins, which are active on at least two
consecutive clock edges.

For this reason, Xilinx recommends that you specify the endpoint pin instead of just the
cell (or clock). Example: the endpoint cell REGB has three input pins: C, EN and D. Only
the REGB/D pin should be constrained by the multicycle path exception, not the EN pin
because it can change at every clock cycle. If the constraint is attached to a cell instead
of a pin, all the valid endpoint pins are considered for the constraints, including the EN
(clock enable) pin.

To be safe, Xilinx recommends that you always use the following syntax:

set_multicycle_path -from [get_pins REGA/C] \
-to [get_pins REGB/D] -setup 3
set_multicycle_path -from [get_pins REGA/C] \
-to [get_pins REGB/D] -hold 2

Other Advanced Timing Constraints
A few other timing constraints can be set to ignore and modify the default timing analysis:

• Case Analysis

• Disable Timing

• Data Check

• Max Time Borrow

Case Analysis

The case analysis command is commonly used to describe a functional mode in the design
by setting constants in the logic like what configuration registers do. It can be applied to
input ports, nets, hierarchical pins, or leaf cell input pins. The constant value propagates
through the logic and turns off the analysis on any path that can never be active. The effect
is similar to how the false path exception works.
UltraFast Design Methodology Guide 186
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=186

Chapter 3: Design Creation
The most common example is to set a multiplexer select pin to 0 or 1 in order to only allow
one of the two multiplexer inputs to propagate through. The following example turns off
the analysis on the paths through the mux/S and mux/I1 pins:

set_case_analysis 0 [get_pins mux/S]

Disable Timing

The disable timing command turns off a timing arc in the timing database, which
completely prevents any analysis through that arc. The disabled timing arcs can be reported
by the report_disable_timing command.

CAUTION! Use the disable timing command carefully. It can break more paths than desired!

Data Check

The set_data_check command sets the equivalent of a setup or hold timing check
between two pins in a design. It is commonly used to constrain and report asynchronous
interfaces. This command should be used by expert users.

Max Time Borrow

The set_max_time_borrow command sets the maximum amount of time a latch can
borrow from the next stage (logic after the latch), and give it the previous stage (logic
before the latch). Latches are not recommended in general as they are difficult to test and
validate in hardware. This command should be used by expert users.

Defining Physical Constraints
Physical constraints are used to control floorplan, specific placement, I/O assignments,
routers and similar functions. Make sure that each pin has an I/O location and standard
specified. Physical Constraints are covered in the following user guides:

• Vivado Design Suite User Guide: Using Constraints (UG903) [Ref 21] for locking
placement and routing, including relative placement of macros

• Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)
[Ref 24] for floorplanning

• Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 27] for
configuration
UltraFast Design Methodology Guide 187
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=187

Chapter 4

Implementation

Overview of Synthesis and Implementation
After selecting your device, choosing and configuring the IP, and writing the RTL and the
constraints, the next step is implementation. Implementation compiles the design through
synthesis and place and route, and then generates the bitstream that is used to program the
device. The implementation process might have some iterative loops, as discussed in
Chapter 1, Introduction. This chapter describes the various implementation steps,
highlights points for special attention, and gives tips and tricks to identify and eliminate
specific bottlenecks.

Running Synthesis
Synthesis takes in RTL and timing constraints and generates an optimized netlist that is
functionally equivalent to the RTL. In general, the synthesis tool can take any legal RTL and
create the logic for it. Synthesis requires realistic timing constraints, as described in
Working with Constraints in Chapter 3 and Baselining the Design in Chapter 5.

For additional information about synthesis, refer to the following resources:

• Vivado Design Suite User Guide: Synthesis (UG901) [Ref 19]

• Vivado Design Suite QuickTake Video: Design Flows Overview

Synthesis Attributes
Synthesis attributes allow you to control the logic inference in a specific way. Although
synthesis algorithms are set to give the best results for the largest number of designs, there
are often designs with differing requirements. In this case, you can use attributes to alter
the design to improve QoR. For information on the attributes supported by synthesis, see
the Vivado Design Suite User Guide: Synthesis (UG901) [Ref 19].

Note: Before retargeting your design to a new device, Xilinx recommends reviewing any synthesis
attributes from previous design runs that target older devices.
UltraFast Design Methodology Guide 188
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-design-flows-overview.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=188

Chapter 4: Implementation
When using the KEEP, DONT_TOUCH, and MAX_FANOUT attributes, be aware of the special
considerations described in the following sections.

KEEP and DONT_TOUCH

KEEP and DONT_TOUCH are valuable attributes for debugging a design. They direct the tool
to not optimize the objects on which they are placed.

• KEEP is used by the synthesis tool and is not passed along as a property in the netlist.
KEEP can be used to retain a specific signal, for example, to turn off specific
optimizations on the signal during synthesis.

• DONT_TOUCH is used by the synthesis tool and then passed along to the place and
route tools so the object is never optimized.

Take care when using these attributes:

• A KEEP attribute on a register that receives RAM output prevents that register from
being merged into the RAM, thereby preventing a block RAM from being inferred.

• Do not use these attributes on a level of hierarchy that is driving a 3-state output or
bidirectional signal in the level above. If the driving signal and the 3-state condition are
in this level of hierarchy, the IOBUF is not inferred, because the tool must change the
hierarchy to create the IOBUF.

• Attributes that disable optimization often result in larger, higher power-consuming
circuits. Xilinx recommends using these controls sparingly and removing them when no
longer needed.

Also, be aware that there is a difference between putting DONT_TOUCH on a signal or on a
level of hierarchy:

• If the attribute is placed on a signal, that signal is kept.

• If the attribute is placed on a level of hierarchy, the tool does not touch the boundaries
of that hierarchy, and no constant propagation occurs through the hierarchy. However,
optimizations inside that level of hierarchy are retained.

MAX_FANOUT

MAX_FANOUT forces the synthesis to replicate logic in order to meet a fanout limit. The tool
is able to replicate logic, but not inputs or black boxes. Accordingly, if a MAX_FANOUT
attribute is placed on a signal that is driven by a direct input to the design, the tool is
unable to handle the constraint.

Take care to analyze the signals on which a MAX_FANOUT is placed. If a MAX_FANOUT is
placed on a signal that is driven by a register with a DONT_TOUCH or drives signals that are
in a different level of hierarchy when the DONT_TOUCH attribute is on that hierarchy, the
MAX_FANOUT attribute will not be honored.
UltraFast Design Methodology Guide 189
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=189

Chapter 4: Implementation
Synthesis appends the replicated cells with _rep for the first replication and subsequent
replications are _rep__0, _rep__1 and so on. These cells can be seen in the post
synthesized netlist by selecting Edit > Find on cells.

IMPORTANT: Use MAX_FANOUT sparingly during synthesis. The place_design and
phys_opt_design commands in the Vivado® tools have a better idea of the placement of the design
and can do a better job of replication than synthesis. If a specific fanout is desired, it is often worth the
time and effort to manually code the extra registers.

Block-Level Synthesis Strategy
With Vivado synthesis, you can use various strategies and global settings to customize how
the design is synthesized. In most cases, these options are global and affect the entire
design. You can use the block-level synthesis strategy to synthesize different levels of
hierarchy with different global options in a top-down flow. This flow is faster and easier to
perform than a bottom-up compile. You can set constraints for the full design rather than
setting constraints for a lower level and then resetting for the top level.

Using the Block-Level Synthesis Strategy

Set the block-level synthesis strategy in the XDC file using the following syntax:

set_property BLOCK_SYNTH.<option_name> <value> [get_cells <instance_name>]

Where:

• <option_name> is the option to be set.

• <value> is the value to be assigned to the option.

• <instance_name> is the hierarchical instance on which to set the option.

Note: These properties are always set on hierarchical instances. This allows modules or entities that
are instantiated more than once to be synthesized with different options.

For example, you can set the following strategies in an XDC file:

set_property BLOCK_SYNTH.RETIMING 1 [get_cells U1]
set_property BLOCK_SYNTH.STRATEGY {AREA_OPTIMIZED} [get_cells U2]
set_property BLOCK_SYNTH.STRATEGY {AREA_OPTIMIZED} [get_cells U3]
set_property BLOCK_SYNTH.STRATEGY {DEFAULT} [get_cells U3/inst1]
UltraFast Design Methodology Guide 190
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=190

Chapter 4: Implementation
Vivado synthesis is performed as shown in the following figure.

You can set multiple BLOCK_SYNTH properties on the same instance to experiment with
different options. For example:

set_property BLOCK_SYNTH.STRATEGY {ALTERNATE_ROUTABILITY} [get_cells inst]

set_property BLOCK_SYNTH.FSM_EXTRACTION {OFF} [get_cells inst]

When working with IP, you can use the block-level synthesis strategy as follows:

• If the IP is compiled globally, you can use this strategy on the top level of the IP.

• If the IP is out-of-context, you cannot use the strategy, because the IP appears as a
black box. Instead, use global settings when compiling the IP.

Note: For more information on this feature and the supported strategies and options, see the
Vivado Design Suite User Guide: Synthesis (UG901) [Ref 19].

Incremental Synthesis Flows
In the Vivado Design Suite, you can use incremental synthesis to reuse existing synthesis
results. This approach reduces typical synthesis times by 50%. Using incremental synthesis
with the incremental implementation flow improves the runtime, consistency, and QoR of
the entire flow.

Incremental synthesis has the highest value when the top-level design is RTL and RTL makes
up a significant portion of the design. For designs that include a significant amount of
block diagrams, IP, or both, the Vivado Design Suite automatically separates synthesis on
these blocks and runs synthesis in out-of-context mode. In this mode, synthesis runtime is
optimized and results are reused. As a result, incremental synthesis has less value on these
designs.

X-Ref Target - Figure 4-1

Figure 4-1: Block-Level Synthesis Strategy Example
UltraFast Design Methodology Guide 191
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=191

Chapter 4: Implementation
You can enable incremental synthesis with no negative impact on QoR. The post-synthesis
design checkpoint approximately doubles in size, and there is a 1% increase in runtime
when synthesis data is read but not reused.

Incremental synthesis reduces runtime by reusing partitions from the reference synthesis
run. For incremental synthesis to be effective, the design must contain at least 5 partitions
of at least 10,000 instances. In addition, any design changes must impact as few partitions
as possible and must not be at the top level of the design.

Note: Some changes might impact cross-boundary optimization, which results in additional
partitions requiring resynthesis.

If you know which hierarchy will be modified, you can use the following property to
preserve the hierarchy. This allows incremental synthesis to reoptimize only the preserved
hierarchy in future synthesis runs. However, this property prevents cross-boundary
optimizations, which might have an impact on QoR.

set_property BLOCK_SYNTH.PRESERVE_BOUNDARY [get_cells <cellName>]

IMPORTANT: Do not change synthesis options from the reference run to the incremental run. Changing
options triggers a full resynthesis.

For more information, see the Vivado Design Suite User Guide: Synthesis (UG901) [Ref 19].

Moving Past Synthesis
Be sure that the netlist you obtained during synthesis is of good quality so that it does not
create problems downstream. The following sections cover important items to check before
proceeding with the rest of the implementation flow.

Reviewing and Cleaning DRCs
The report_drc command runs design rule checks (DRCs) to look for common design
issues and errors. There are multiple rule decks. The default rule deck checks the following:

• Post-synthesis netlist

• I/O, BUFG, and other placement specific requirements

• Attributes and wiring on MGTs, IODELAYs, MMCMs, PLLs and other primitives

RECOMMENDED: Review and correct DRC violations as early as possible in the design process to avoid
timing or logic related issues later in the implementation flow.
UltraFast Design Methodology Guide 192
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=192

Chapter 4: Implementation
TIP: For DRC violations that can be safely ignored, you can use the waiver mechanism to waive the
violations. For details, see this link in the Vivado Design Suite User Guide: Design Analysis and Closure
Techniques (UG906) [Ref 24].

Running Report Methodology
Due to the importance of the UltraFast design methodology, the Vivado tools provide a
Methodology Report that specifically checks for compliance with methodology. The tools
run different checks depending on the stage of the design process:

• RTL design: RTL lint-style checks

• Synthesized and implemented designs: Netlist, constraints, and timing checks

In Project Mode, the tools automatically run Report Methodology during implementation
(opt_design or route_design) by default. To run these checks manually, use either of
the following methods:

• At the Tcl prompt, open the design to be validated, and enter following Tcl command:

report_methodology

• To run these checks from the Vivado IDE, open the design to be validated, and select
Reports > Report Methodology.

RECOMMENDED: To identify common design issues, run this report the first time you synthesize the
design. Run this report again after significant module additions, constraint changes, or clocking circuit
changes.

Note: For Xilinx-supplied IP cores, the violations are already reviewed and checked.

Any violations are listed in the Methodology window, as shown in the following figure. If a
specific methodology violation does not need to be cleaned for your design, make sure that
you understand the violation and its implication clearly and why the violation does not
negatively impact your design.

TIP: For methodology check violations that can be safely ignored, you can use the waiver mechanism
to waive the violations. For details, see this link in the Vivado Design Suite User Guide: Design Analysis
and Closure Techniques (UG906) [Ref 24].

Note: Methodology checks related to RAMB and DSP primitive optional pipelining (SYNTH-6,
SYNTH-11, SYNTH-12 and SYNTH-13) are not reported when setup timing is greater than 1 ns on all
of the input or output paths for the primitives.
UltraFast Design Methodology Guide 193
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xGeneratingAndWaivingDesignChecks
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xGeneratingAndWaivingDesignChecks
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=193

Chapter 4: Implementation
For more information on running Report Methodology, see the Vivado Design Suite User
Guide: System-Level Design Entry (UG895) [Ref 12], and see this link in the Vivado Design
Suite User Guide: Design Analysis and Closure Techniques (UG906) [Ref 24].

Reviewing the Synthesis Log
You must review the synthesis log files and confirm that all messages given by the tool
match your expectations in terms of the design intent. Pay special attention to Critical
Warnings and Warnings. In most cases, Critical Warnings need to be cleaned up for a
reliable synthesis result.

CAUTION! If a message appears more than 100 times, the tool writes only the first 100 occurrences to
the synthesis log file. You can change the limit of 100 through the Tcl command set_param
messaging.defaultLimit.

Reviewing Timing Constraints
You must provide clean timing constraints, along with timing exceptions, where applicable.
Bad constraints result in long runtime, performance issues, and hardware failures.

RECOMMENDED: Review all Critical Warnings and Warnings related to timing constraints which
indicate that constraints have not been loaded or properly applied.

For more information, see Organizing the Design Constraints in Chapter 3.

Meeting Post-Synthesis Timing
The following sections discuss how to meet post-synthesis timing.

X-Ref Target - Figure 4-2

Figure 4-2: Methodology Window
UltraFast Design Methodology Guide 194
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=ValidatingDesignMethodologyLogicDRCs
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=194

Chapter 4: Implementation
Following Guidelines to Address Remaining Violations

IMPORTANT: Analyze timing post-synthesis to identify the major design issues that must be resolved
before you move forward in the flow.

HDL changes tend to have the biggest impact on QoR. You are therefore better off solving
problems before implementation to achieve faster timing convergence. When analyzing
timing paths, pay special attention to the following:

• Most frequent offenders (that is, the cells or nets that show up the most in the top
worst failing timing paths)

• Paths sourced by unregistered block RAMs

• Paths sourced by SRL

• Paths containing unregistered, cascaded DSP blocks

• Paths with large number of logic levels

• Paths with large fanout

For more information see Timing Closure in Chapter 5.

Dealing with High Levels of Logic

Identifying long logic paths is useful to diagnose difficult QOR challenges. Estimated net
delays post-synthesis are close to the best possible placement. To evaluate if a path with
high logic-level delay is meeting timing, you can generate timing reports with no net delay.
Timing closure cannot be achieved on paths that are still violating timing with no net
delays. For more information, see Timing Closure in Chapter 5.

Reviewing Utilization

It is important to review utilization for LUT, FF, block RAM, and DSP components
independently. A design with low LUT/FF utilization might still experience placement
difficulties if block RAM utilization is high. The report_utilization command
generates a comprehensive utilization report with separate sections for all design objects.

Note: After synthesis, utilization numbers might change due to optimization later in the design flow.

Reviewing Clock Trees

This section discusses reviewing clock trees, including clock buffer utilization and clock tree
topology.
UltraFast Design Methodology Guide 195
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=195

Chapter 4: Implementation
Clock Buffer Utilization

The report_clock_utilization command provides details on clock primitive
utilization. Observe the architecture clocking rules to avoid downstream placement issues.
For example, in 7 series devices, a BUFH can only fanout to loads in its clock region. Invalid
placement constraints or very high fanout for regional clock buffers might cause issues in
the placer. For designs with very high clock buffer utilization, it might be necessary to lock
the clock generators and some regional clock buffers to aid placement.

For some interfaces needing very tight timing relationship, it is sometimes better to lock
specific resources for these signals which need very tight timing relationship, for example,
source synchronous interfaces. In general, as a starting point for your design, lock only the
I/Os unless there are specific reasons not to follow this approach as cited above.

For more information on recommended placement constraints, see Timing Closure in
Chapter 5.

Clock Tree Topology

When working with clock trees, follow these recommendations:

• Run the report_clock_networks command to show the clock network in detail tree
view.

• Utilize clock trees in a way to minimize skew.

• For the outputs of PLLs and MMCMs, use the same clock buffer type to minimize skew.

• Look for unintended cascaded BUFG elements that can introduce additional delay,
skew, or both.

Implementing the Design
Vivado Design Suite implementation includes all steps necessary to place and route the
netlist onto the FPGA device resources, while meeting the design’s logical, physical, and
timing constraints. For additional information about implementation, refer to the following
resources:

• Vivado Design Suite User Guide: Implementation (UG904) [Ref 22]

• Vivado Design Suite QuickTake Video: Design Flows Overview

Using Project Mode vs. Non-Project Mode
You can run implementation in Project Mode or Non-Project Mode. Project Mode provides
the project infrastructure such as runs management, file sets management, reports
generation, and cross probing. Non-Project Mode provides easy integration and is driven
UltraFast Design Methodology Guide 196
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-design-flows-overview.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=196

Chapter 4: Implementation
by a Tcl script which must explicitly call all the desired reports along the flow. For additional
information about these modes, see this link in the Vivado Design Suite User Guide: Design
Flows Overview (UG892) [Ref 9].

Strategies

Strategies are used by the Vivado Design Suite to control both the tool options and the
reports that are generated by synthesis and implementation runs in Project Mode. You can
use the strategies to adjust the implementation goals and to control the reports that are
generated. For more information on strategies, see the Vivado Design Suite User Guide:
Implementation (UG904) [Ref 22].

RECOMMENDED: Try the default strategy Vivado Design Suite implementation defaults first. It provides
a good trade-off between runtime and design performance.

Note: Strategies are tool and version specific. In some cases, strategies might require a longer
runtime.

Directives

Directives provide different modes of behavior for the following implementation
commands:

• opt_design

• place_design

• phys_opt_design

• route_design

Use the default directive initially. Use other directives when the design nears completion to
explore the solution space for a design. You can specify only one directive at a time. For
more information on directives, see the Vivado Design Suite User Guide: Implementation
(UG904) [Ref 22].

Iterative Flows

In Non-Project Mode, you can iterate between various optimization commands with
different options. For example, you can run phys_opt_design -directive
AggressiveFanoutOpt followed by phys_opt_design -directive
AlternateFlowWithRetiming to run different physical synthesis optimizations on a
placed design that does not meet timing.

Running phys_opt_design iteratively can provide timing improvement. The
phys_opt_design command attempts to optimize the top timing problem paths. By
running phys_opt_design iteratively, lower-level timing problems can benefit from the
optimization. Running phys_opt_design at the post-route stage reroutes any nets that
UltraFast Design Methodology Guide 197
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug892-vivado-design-flows-overview.pdf;a=xUnderstandingUseModels
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=197

Chapter 4: Implementation
might have been unrouted. Therefore, after running phys_opt_design at post-route, you
do not need to explicitly run route_design.

Analyzing a Design at Different Stages Using Checkpoints
The Vivado Design Suite uses a physical design database to store placement and routing
information. Design checkpoint files (.dcp) allow you to save (write_checkpoint
command) and restore (read_checkpoint command) this physical database at key points
in the design flow. Checkpoints are a snapshot of the design at a specific point in the flow.
In Project Mode, the Vivado tools automatically generate design checkpoint files and store
them in the implementation runs directory. These can be opened in a separate instance of
Vivado.

This design checkpoint file includes the following:

• Current netlist, including any optimizations made during implementation

• Design constraints

• Implementation results

Checkpoint designs can be run through the remainder of the design flow using Tcl
commands. They cannot be modified with new design sources.

A few common examples for the use of checkpoints are:

• Saving results so you can go back and do further analysis on that part of the flow.

• Trying place_design using multiple directives and saving the checkpoints for each.
This would allow you to select the place_design checkpoint with the best timing results
for the subsequent implementation steps.

For more information on checkpoints, see the Vivado Design Suite User Guide:
Implementation (UG904) [Ref 22].

Using Interactive Report Files
After opening a checkpoint, you can read in and immediately analyze generated reports in
the Vivado IDE. To generate the reports, use the following reporting commands and append
the -rpx <filename.rpx> option:

report_timing_summary

report_timing

report_power

report_methodology

report_drc

After the checkpoint is open, you can open the interactive report file using Reports > Open
Interactive Report.
UltraFast Design Methodology Guide 198
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=198

Chapter 4: Implementation
Note: In Project Mode, the interactive reports are generated and opened automatically.

RECOMMENDED: When a report is generated, there is a size limit on the RPX file. Therefore, Xilinx
recommends using the catch command to prevent errors that might stop the flow. For example:
catch {report_timing_summary -rpx timing_summary.rpx -file timing_summary.rpt}

Using Incremental Implementation Flows
In the Vivado Design Suite, you can use incremental implementation to reuse existing
placement and routing data, which reduces implementation runtime and produces more
predictable results. When working with designs that have 95% or higher reuse, incremental
place and route typically achieves at least a twofold improvement over normal place and
route runtimes while maintaining the WNS of the reference run. For more information, see
this link in the Vivado Design Suite User Guide: Implementation (UG904) [Ref 22].

RECOMMENDED: Incremental implementation is most useful during critical stages of the design cycle
when changes to the flow scripts are difficult to make. Ensure that your flow scripts include incremental
implementation early in the design cycle so you can enable incremental implementation during critical
periods.

Note: For further improvement in runtimes and QoR, you can also use incremental synthesis, as
described in Incremental Synthesis Flows.

Incremental Implementation Flow Modes

In project mode, the easiest way to use incremental implementation is to enable automatic
incremental implementation. When using this method, the Vivado tools manage the
checkpoint update and retention. In addition, this method takes a conservative approach by
only using incremental implementation when the reference checkpoint is close to meeting
timing and reuse is high. When these conditions are not met, the non-incremental flow is
run.

Incremental implementation supports high and low reuse modes, which enable different
directives and alter the behavior of the flow. For details on these reuse modes, including the
supported directives and target WNS, see this link in the Vivado Design Suite User Guide:
Implementation (UG904) [Ref 22].

Runtime Considerations

Where 95% or more of the design is reused, runtimes can be reduced by half. As reuse
declines, the benefits also decline.

In low reuse mode, runtime is not predictable. When the place and route runs get closer to
meeting timing, the Vivado tools might increase runtime to meet timing. In other cases, the
Vivado tools might decrease runtime if existing placement and routing data is reused
efficiently.
UltraFast Design Methodology Guide 199
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=xIncrementalCompile
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=xHighandLowReuseModes
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=199

Chapter 4: Implementation
The following factors can also affect runtime:

• If critical path placement and routing cannot be reused, more effort is required to
preserve timing.

• Small design changes can introduce new timing problems that did not exist in the
reference design.

Parallel Runs

Run the standard flow runs in parallel with incremental implementation runs for maximum
flexibility. This allows you to take advantage of the benefits of incremental implementation
while preserving timing closure. It also allows you to use the incremental implementation
algorithms, which are different from the standard flow and can yield different results.

TIP: You can update the reference checkpoint regularly to help maintain the effectiveness of the flow.
Where resources are limited, launch incremental implementation runs before launching standard flow
runs to take advantage of better runtimes.

Opening the Synthesized Design
The first steps after synthesis are to read the netlist from the synthesized design into
memory and apply design constraints. You can open the synthesized design in various ways,
depending on the flow used. For more information, see this link in the Vivado Design Suite
User Guide: Implementation (UG904) [Ref 22].

Logic Optimization (opt_design)
Vivado Design Suite logic optimization optimizes the current in-memory netlist. Since this
is the first view of the assembled design (RTL and IP blocks), the design can usually be
further optimized. By default the opt_design command performs logic trimming,
removing of cells with no loads, propagating constant inputs, and block RAM power
optimization. It also optionally performs other optimizations such as remap, which
combines LUTs in series into fewer LUTs to reduce path depth.

Optimization Analysis

The opt_design command generates messages detailing the results for each optimization
phase. After optimization you can run report_utilization to analyze utilization
improvements. To better analyze optimization results, rerun opt_design with the
-verbose and -debug_log options for complete details on how each optimization
affects the logic and how user constraints prevent some optimizations. For more
information, see this link and this link in the Vivado Design Suite User Guide: Implementation
(UG904) [Ref 22].
UltraFast Design Methodology Guide 200
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=xOpeningTheSynthesizedDesign
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=xUsingTheDebugLogAndVerboseOptions
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=LogicOptimization
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=200

Chapter 4: Implementation
Power Optimization in Implementation
For optimizing your design for power, see Power Optimization in Chapter 5.

Placement (place_design)
The Vivado Design Suite placer engine positions cells from the netlist onto specific sites in
the target Xilinx device.

Placement Analysis

Use the timing summary report after placement to check the critical paths.

• Paths with very large negative setup time slack may require that you check the
constraints for completeness and correctness, or logic restructuring to achieve timing
closure.

• Paths with very large negative hold time slack are most likely due to incorrect
constraints or bad clocking topologies and should be fixed before moving on to route
design.

• Paths with small negative hold time slack are likely to be fixed by the router. You can
also run report_clock_utilization after place_design to view a report that
breaks down clock resource and load counts by clock region.

For more information, see Timing Closure in Chapter 5. For more information on placement,
see this link in the Vivado Design Suite User Guide: Implementation (UG904) [Ref 22].

Physical Optimization (phys_opt_design)
Physical optimization is an optional step of the flow. It performs timing-driven optimization
on the negative-slack paths of a design. Optimizations involve replication, retiming, hold
fixing, and placement improvement. Because physical optimization automatically performs
all necessary netlist and placement changes, place_design is not required after
phys_opt_design.

Need for Physical Synthesis

To determine if a design would benefit from physical synthesis, evaluate timing after
placement. Analyze failing paths for fanout. High fanout critical paths can benefit from
fanout optimization. Additionally, high-fanout data, address and control nets of large RAM
blocks involving multiple block RAMs that fail timing after route_design might benefit
from Forced Net Replication. For more information on physical synthesis, see this link in the
Vivado Design Suite User Guide: Implementation (UG904) [Ref 22].
UltraFast Design Methodology Guide 201
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=Placement
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=xPhysicalSynthesis
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=201

Chapter 4: Implementation
Routing (route_design)
The Vivado Design Suite router performs routing on the placed design and performs
optimization on the routed design to resolve hold time violations. By default, the router
performs optimization using a balance between runtime and design performance while
alleviating congestion. Some router directives sacrifice runtime for better design
performance and more aggressive congestion reduction. For more information on routing,
see this link in the Vivado Design Suite User Guide: Implementation (UG904) [Ref 22].

Route Analysis

Nets that are routed sub-optimally are often the result of incorrect timing constraints.
Before you experiment with router settings, make sure that you have validated the
constraints and the timing picture seen by the router. Validate timing and constraints by
reviewing timing reports from the placed design before routing.

Common examples of poor timing constraints include cross-clock paths and incorrect
multicycle paths causing route delay insertion for hold fixing. Congested areas can be
addressed by targeted fanout optimization in RTL synthesis or through physical
optimization. You can preserve all or some of the design hierarchy to prevent
cross-boundary optimization and reduce the netlist density. Or you can use floorplan
constraints to ease congestion.

For more information, see Timing Closure in Chapter 5.

Route Runtime

You can use the route_design -ultrathreads option to reduce runtime at the
expense of repeatability. This option gives the router extra freedom to execute multiple
threads, which allows routing to finish faster but with slightly different results each time.
The slack between identical subsequent runs differs by a fractional percentage, but the
runtime savings is significant. Consider this option to reduce router runtime only if your
environment does not require strictly repeatable results.
UltraFast Design Methodology Guide 202
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=Routing
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=202

Chapter 5

Design Closure

Overview of Design Closure
Design closure consists of meeting both timing and power requirements and successfully
writing a configuration bitstream to validate the functionality in hardware. Design closure
usually takes several iterations between results analysis, design modification, and
constraints modification. Design closure is often seen as a trade-off between timing and
power optimization. However, many optimizations that benefit timing also benefit power.
For example, improving placement to shorten distances between cells reduces both
propagation delay and interconnect power.

A common mistake is to focus exclusively on timing closure first, then begin power
optimization after timing is closed. The majority of power optimizations do not worsen
timing but do create variation in the logical netlist. Designs that are on the edge of meeting
timing might have trouble maintaining timing closure when power optimization changes
are introduced. Therefore, there is a misconception that timing must be sacrificed for
power. Xilinx recommends incorporating power optimizations early in the design cycle to
avoid iterations between closing timing and closing power.

TIP: See the UltraFast Design Methodology Timing Closure Quick Reference Guide (UG1292) [Ref 3] for
a condensed version of the techniques described in this chapter, including running initial design checks,
baselining the design, and resolving timing violations.

Timing Closure
Timing closure consists of the design meeting all timing requirements. It is easier to reach
timing closure if you have the right HDL and constraints for synthesis. In addition, it is
important to iterate through the synthesis stages with improved HDL, constraints, and
synthesis options, as shown in the following figure.
UltraFast Design Methodology Guide 203
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=203

Chapter 5: Design Closure
To successfully close timing, follow these general guidelines:

• When initially not meeting timing, evaluate timing throughout the flow.

• Focus on WNS (of each clock) as the main way to improve TNS.

• Review large WHS violations (<-1 ns) to identify missing or inappropriate constraints.

• Revisit the trade-offs between design choices, constraints, and target architecture.

• Know how to use the tool options and XDC.

• Be aware that the tools do not try to further improve timing (additional margin) after
timing is met.

The following sections provide recommendations for reviewing the completeness and
correctness of the timing constraints using methodology DRCs and baselining, identifying
the timing violation root causes, and addressing the violations using common techniques.

X-Ref Target - Figure 5-1

Figure 5-1: Design Methodology for Rapid Convergence

Run Synthesis
Review options & HDL code

Define & Refine
Constraints

Timing Acceptable?

Place & Route

Cross-probe
Instances in critical path
In Netlist view and
Elaborated view schematics

N

Y

report_clock_networks
 -> create_clock / create_generated_clock
report_clock_interaction
 -> set_clock_groups / set_false_path
check_timing
 -> I/O delays
report_timing_summary
 -> Timing exceptions

X13422
UltraFast Design Methodology Guide 204
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=204

Chapter 5: Design Closure
Understanding Timing Closure Criteria
Timing closure starts with writing valid constraints that represent how the design will
operate in hardware. Review the Timing Summary report as described in the following
sections.

Checking for Valid Constraints

Review the Check Timing section of the Timing Summary report to quickly assess the timing
constraints coverage, including the following:

• All active clock pins are reached by a clock definition.

• All active path endpoints have requirement with respect to a defined clock
(setup/hold/recovery/removal).

• All active input ports have an input delay constraint.

• All active output ports have an output delay constraint.

• Timing exceptions are correctly specified.

CAUTION! Excessive use of wildcards in constraints can cause the actual constraints to be different
from what you intended. Use the report_exceptions command to identify timing exception
conflicts and to review the netlist objects, timing clocks, and timing paths covered by each exception.

In addition to check_timing , the Methodology report (TIMING and XDC checks) flags
timing constraints that can lead to inaccurate timing analysis and possible hardware
malfunction. You must carefully review and address all reported issues.

Note: When baselining the design, you must use all Xilinx® IP constraints. Do not specify user I/O
constraints, and ignore the violations generated by check_timing and report_methodology
due to missing user I/O constraints.

Checking for Positive Timing Slacks

The following timing metrics indicate timing violations. Numbers must be positive to meet
timing. For more information, see Understanding Timing Reports.

• Setup/Recovery (max delay analysis): WNS > 0ns and TNS = 0ns

• Hold/Removal (min delay analysis): WHS > 0ns and THS = 0ns

• Pulse Width: WPWS > 0ns and TPWS = 0ns
UltraFast Design Methodology Guide 205
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=205

Chapter 5: Design Closure
Understanding Timing Reports

The Timing Summary report provides high-level information on the timing characteristics
of the design compared to the constraints provided. Review the timing summary numbers
during signoff:

• TNS (Total Negative Slack): The sum of the setup/recovery violations for each endpoint
in the entire design or for a particular clock domain. The worst setup/recovery slack is
the WNS (Worst Negative Slack).

• THS (Total Hold Slack): The sum of the hold/removal violations for each endpoint in the
entire design or for a particular clock domain. The worst hold/removal slack is the WHS
(Worst Hold Slack).

• TPWS (Total Pulse Width Slack): The sum of the violations for each clock pin in the
entire design or a particular clock domain for the following checks:

° minimum low pulse width

° minimum high pulse width

° minimum period

° maximum period

° maximum skew (between two clock pins of a same leaf cell)

• WPWS (Worst Pulse Width Slack): The worst slack for all pulse width, period, or skew
checks on any given clock pin.

The Total Slack (TNS, THS or TPWS) only reflects the violations in the design. When all
timing checks are met, the Total Slack is null.

The timing path report provides detailed information on how the slack is computed on any
logical path for any timing check. In a fully constrained design, each path has one or several
requirements that must all be met in order for the associated logic to function reliably.

The main checks covered by WNS, TNS, WHS, and THS are derived from the sequential cell
functional requirements:

• Setup time: The time before which the new stable data must be available before the
next active clock edge in order to be safely captured.

• Hold requirement: The amount of time the data must remain stable after an active clock
edge to avoid capturing an undesired value.

• Recovery time: The minimum time required between the time the asynchronous reset
signal has toggled to its inactive state and the next active clock edge.

• Removal time: The minimum time after an active clock edge before the asynchronous
reset signal can be safely toggled to its inactive state.

A simple example is a path between two flip-flops that are connected to the same clock net.
UltraFast Design Methodology Guide 206
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=206

Chapter 5: Design Closure
After a timing clock is defined on the clock net, the timing analysis performs both setup and
hold checks at the data pin of the destination flip-flop under the most pessimistic, but
reasonable, operating conditions. The data transfer from the source flip-flop to the
destination flip-flop occurs safely when both setup and hold slacks are positive.

For more information on timing analysis, see this link in the Vivado Design Suite User Guide:
Design Analysis and Closure Techniques (UG906) [Ref 24].

Checking That Your Design is Properly Constrained
Before looking at the timing results to see if there are any violations, be sure that every
synchronous endpoint in your design is properly constrained.

Run check_timing to identify unconstrained paths. You can run this command as a
standalone command, but it is also part of report_timing_summary. In addition,
report_timing_summary includes an Unconstrained Paths section where N logical paths
without timing requirements are listed by the already defined source or destination timing
clock. N is controlled by the -max_path option.

After the design is fully constrained, run the report_methodology command and review
the TIMING and XDC checks to identify non-optimal constraints, which will likely make
timing analysis not fully accurate and lead to timing margin variations in hardware.

Note: For Vivado Design Suite 2015.4 and previous releases, use the report_drc -ruledeck
methodology_checks Tcl command instead.

Fixing Issues Flagged by check_timing

The check_timing Tcl command reports that something is missing or wrong in the timing
definition. When reviewing and fixing the issues flagged by check_timing, focus on the
most important checks first. Following are the checks listed from most important to least
important.

No Clock and Unconstrained Internal Endpoints

This allows you to determine whether the internal paths in the design are completely
constrained. You must ensure that the unconstrained internal endpoints are at zero as part
of the Static Timing Analysis signoff quality review.

Zero unconstrained internal endpoints indicate that all internal paths are constrained for
timing analysis. However, the correct value of the constraints is not yet guaranteed.
UltraFast Design Methodology Guide 207
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xUnderstandingTheBasicsOfTimingAnalysis
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=207

Chapter 5: Design Closure
Generated Clocks

Generated clocks are a normal part of a design. However, if a generated clock is derived
from a master clock that is not part of the same clock tree, this can cause a serious problem.
The timing engine cannot properly calculate the generated clock tree delay. This results in
erroneous slack computation. In the worst case situation, the design meets timing
according to the reports but does not work in hardware.

Loops and Latch Loops

A good design does not have any combinational loops, because timing loops are broken by
the timing engine. The broken paths are not reported during timing analysis or evaluated
during implementation. This can lead to incorrect behavior in hardware, even if the overall
timing requirements are met.

No Input/Output Delays and Partial Input/Output Delays

All I/O ports must be properly constrained.

RECOMMENDED: Start by validating baselining constraints and then complete the constraints with the
I/O timing.

Multiple Clocks

Multiple clocks are usually acceptable. Xilinx recommends that you ensure that these clocks
are expected to propagate on the same clock tree. You must also verify that the paths
requirement between these clocks does not introduce tighter requirements than needed for
the design to be functional in hardware.

If this is the case, you must use set_clock_groups or set_false_path between these
clocks on these paths. Any time that you use timing exceptions, you must ensure that they
affect only the intended paths.

IMPORTANT: Because the XDC follows Tcl syntax and semantics rules, the order of constraints matters.

Fixing Issues Flagged by report_methodology

The report_methodology command reports additional constraints and timing analysis
issues, which you must carefully review before and after running the place and route tools.
This section describes the three main XDC and TIMING categories of checks, along with
their relative impact on timing closure and hardware stability. You must focus on resolving
the checks that impact timing closure first.
UltraFast Design Methodology Guide 208
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=208

Chapter 5: Design Closure
Methodology DRCs with Impact on Timing Closure

The DRCs shown in the following table flag design and timing constraint combinations that
increase the stress on implementation tools, leading to impossible or inconsistent timing
closure. These DRCs usually point to missing clock domain crossing (CDC) constraints,
inappropriate clock trees, or inconsistent timing exception coverage due to logic
replication. They must be addressed with highest priority.

IMPORTANT: Carefully verify timing checks with a severity of Critical Warning.

Table 5-1: Timing Closure Methodology DRCs

Check Severity Description

TIMING-6 Critical Warning No common clock between related clocks

TIMING-7 Critical Warning No common node between related clocks

TIMING-8 Critical Warning No common period between related clocks

TIMING-14 Critical Warning LUT on the clock tree

TIMING-15 Warning Large hold violation on inter-clock path

TIMING-16 Warning Large setup violation

TIMING-30 Warning Sub-optimal master source pin selection for generated
clock

TIMING-31 Critical Warning Inappropriate multicycle path between phase shifted
clocks

TIMING-32, TIMING-33,
TIMING-34, TIMING-37,
TIMING-38, TIMING-39

Warning Non-recommended bus skew constraint

TIMING-36 Critical Warning Missing master clock edge propagation for generated
clock

TIMING-42 Warning Clock propagation prevented by path segmentation

TIMING-44

TIMING-45

Warning Unreasonable user intra and inter-clock uncertainty

XDCB-3 Warning Same clock mentioned in multiple groups in the same
set_clock_groups command

XDCH-1 Warning Hold option missing in multicycle path constraint

XDCV-1 Warning Incomplete constraint coverage due to missing original
object used in replication

XDCV-2 Warning Incomplete constraint coverage due to missing
replicated objects
UltraFast Design Methodology Guide 209
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=209

Chapter 5: Design Closure
Methodology DRCs with Impact on Signoff Quality

The DRCs shown in the following table do not usually flag issues that impact the ease of
closing timing. Instead, these DRCs flag problems with timing analysis accuracy due to
non-recommended constraints. Even when setup and hold slacks are positive, the hardware
might not function properly under all operating conditions. Most checks refer to clocks not
defined on the boundary of the design, clocks with unexpected waveform, missing timing
requirements, or inappropriate CDC circuitry. For this last category, use the report_cdc
command to perform a more comprehensive analysis.

IMPORTANT: Carefully verify timing checks with a severity of Critical Warning.

Table 5-2: Signoff Quality Methodology DRCs

Check Severity Description

TIMING-1, TIMING-2,
TIMING-3, TIMING-4,
TIMING-27

Critical Warning Non-recommended clock source point definition

TIMING-5,
TIMING-25,
TIMING-19

Critical Warning Unexpected clock waveform

TIMING-9,
TIMING-10

Warning Unknown or incomplete CDC circuitry

TIMING-11 Warning Inappropriate set_max_delay -datapath_only
command

TIMING-12 Warning Clock Reconvergence Pessimism Removal disabled

TIMING-13,
TIMING-23

Warning Incomplete timing analysis due to broken paths

TIMING-17 Critical Warning Missing clock or input/output delay constraints

TIMING-18,
TIMING-20,
TIMING-26

Warning Missing clock or input/output delay constraints

TIMING-21,
TIMING-22

Warning Issues with MMCM compensation

TIMING-24 Warning Overridden set_max_delay -datapath_only command

TIMING-29 Warning Inconsistent pair of multicycle paths

TIMING-35 Critical Warning No common node in paths with the same clock

TIMING-40,
TIMING-43

Warning Inappropriate clock topologies or requirements

TIMING-41 Warning Invalid forwarded clock defined on an internal pin

TIMING-46 Warning Multicycle path with tied CE pins
UltraFast Design Methodology Guide 210
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=210

Chapter 5: Design Closure
Other Timing Methodology DRCs

Other TIMING and XDC checks identify constraints that can incur higher runtime, override
existing constraints, or are highly sensitive to netlist names change. The corresponding
information is useful for debugging constraints conflicts. You must pay particular attention
to the TIMING-28 check (Auto-derived clock referenced by a timing constraint), because the
auto-derived clock names can change when modifying the design source code and
resynthesizing. In this case, previously defined constraints will not work anymore or will
apply to the wrong timing paths.

Baselining the Design
Baselining is a process in which you create the simplest timing constraints and initially
ignore I/O timing. After all clocks are completely constrained, all paths with start and
endpoints within the design are automatically constrained. This provides an easy
mechanism to identify internal device timing challenges, even while the design is evolving.
Because the design might also have clock domain crossings, baseline constraints must also
include the relationship among the specified clocks, including generated clocks.

When baselining the design, you must meet timing after each implementation step by
analyzing and resolving timing challenges throughout the flow. First, you create simple and
valid constraints to give a realistic picture of timing in the Vivado® implementation tools.
Then, while iterating through different implementation steps, you solve timing violations
before moving onto the next step. The following figure shows the baselining process.
UltraFast Design Methodology Guide 211
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=211

Chapter 5: Design Closure
After baselining is complete, you can:

• Eliminate smaller timing violations

• Achieve full constraint coverage

• Individually baseline new modules before adding the modules to the top-level design

RECOMMENDED: Xilinx recommends that you create the baseline constraints very early in the design
process, and plan any major change to the design HDL against these baseline constraints.

Defining Baseline Constraints

To create the simplest set of constraints, use a valid post-synthesis Vivado checkpoint
without user timing constraints. With the checkpoint open, use the Timing Constraints

X-Ref Target - Figure 5-2

Figure 5-2: Baselining the Design

Post Synthesis Checkpoint

Baseline Process Complete

Define Baseline Constraints
Use the Timing Constraints wizard
Skip I/O timing constraints
Validate with report_methodology

opt_design +
report_timing_summary

place_design
Optional phys_opt_design
report_timing_summary

route_design
Optional phys_opt_design
report_timing_summary

Resolve setup violations (WNS)
Validate with report_methodolgy

Resolve setup violations (WNS)
Reduce large hold violations (WHS)

that are over -0.500ns

Resolve all timing violations
Verify methodology and DRC checks

are clean or properly waived

X20037-110617
UltraFast Design Methodology Guide 212
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=212

Chapter 5: Design Closure
wizard to define the constraints. The wizard guides you through the process of creating
constraints in a structured manner.

Not all constraints need to be defined at this stage. The Vivado tools ignore I/O timing by
default if there are no constraints. Therefore, you do not need to define I/O timing
constraints at this point. Instead, define the I/O timing constraints later in the flow after the
baselining process is complete.

TIP: When using the Timing Constraints wizard, deselect the suggested I/O timing constraints.

To get an accurate picture of internal timing in the device, define the following constraints:

• All clock constraints

• Clock domain crossings (CDC)

CDC paths between synchronous clocks are safely timed by default, but you must use
safe CDC circuitry and specify timing exceptions between asynchronous clocks.

• Paths with timing that is impossible to meet

Modify the RTL to reduce the logic and meet the path requirements.

IMPORTANT: All Xilinx IP or partner IP are delivered with specific XDC constraints that comply with the
Xilinx constraints methodology. The IP constraints are automatically included during synthesis and
implementation. You must keep the IP constraints intact when creating the baselining constraints.

If you do not use the Timing Constraints wizard to define the constraints, the following
sections cover the steps you must take to define the baseline constraints manually.

Identifying Which Clocks Must be Created

Begin by loading the post synthesized netlist or checkpoint into the Vivado IDE. In the Tcl
console, use the reset_timing command to ensure that all timing constraints are
removed.

Use the report_clock_networks Tcl command to create a list of all the primary clocks
that must be defined in the design. The resulting list of clock networks shows which clock
constraints should be created. Use the Timing Constraints Editor to specify the
appropriate parameters for each clock.

Verifying That No Clocks Are Missing

After the clock network report shows that all clock networks are constrained, you can begin
verifying of the accuracy of the generated clocks. Because the Vivado tools automatically
propagate clock constraints through clock-modifying blocks, it is important to review the
constraints that were generated. Use report_clocks to show which clocks were created
with a create_clock constraint and which clocks were generated.
UltraFast Design Methodology Guide 213
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=213

Chapter 5: Design Closure
Note: MMCMs, PLLs, and clock buffers are clock-modifying blocks. For UltraScale™ devices, GTs are
also clock-modifying blocks.

The report_clocks results show that all clocks are propagated. The difference between
the primary clocks (created with create_clock) and the generated clocks is displayed in
the attributes field:

• Clocks that are propagated (P) only are primary clocks.

• Clocks that are derived from other clocks are shown as both propagated (P) and
generated (G).

• Clocks that are generated by a clock-modifying block are shown as auto-derived (A).

• Other attributes indicate that an auto-derived clock was renamed (R), a generated clock
has an inverted waveform (I) relative to the incoming master clock, or a primary clock is
virtual (V).

You can also create generated clocks using the create_generated_clock constraint.
For more information, see the Vivado Design Suite User Guide: Using Constraints (UG903)
[Ref 21].

TIP: To verify that there are no unconstrained endpoints in the design, see the Check Timing report
(no_clock category). The report is available from within the Report Timing Summary or by using the
check_timing Tcl command.

Constraining Clock Domain Crossings

Upon verification of the clocking constraints, you must identify asynchronous and
over-constrained clock domain crossing paths.

X-Ref Target - Figure 5-3

Figure 5-3: Clock Report Shows the Clocks Generated from Primary Clocks
UltraFast Design Methodology Guide 214
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=214

Chapter 5: Design Closure
Note: This section does not explain how to properly cross clock region boundaries. Instead, it
explains how to identify which crossings exist and how to constrain them.

Reviewing Clock Relationships

You can view the relationship between clocks using the report_clock_interaction Tcl
command. The report shows a matrix of source clocks and destination clocks. The color in
each cell indicates the type of interaction between clocks, including any existing constraints
between them. The following figure shows a sample clock interaction report.

X-Ref Target - Figure 5-4

Figure 5-4: Sample Clock Interaction Report
UltraFast Design Methodology Guide 215
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=215

Chapter 5: Design Closure
The following table explains the meaning of each color in this report.

Before the creation of any false paths or clock group constraints, the only colors that appear
in the matrix are black, red, and green. Because all clocks are timed by default, the process
of decoupling asynchronous clocks takes on a high degree of significance. Failure to
decouple asynchronous clocks often results in a highly over-constrained design.

Table 5-3: report_clock_interaction Colors

Color Label Meaning What Next

Black No path No interaction among these clock
domains.

Primarily for information
unless you expected these
clock domains to be
interacting.

Green Timed There is interaction among these clock
domains, and the paths are getting timed.

Primarily for information
unless you do not expect any
interaction among the clock
domains.

Cyan Partial False
Path

Some of the paths for the interacting
domains are not being timed due to user
exceptions.

Ensure that the timing
exceptions are really desired.

Red Timed
(unsafe)

There is interaction among these clock
domains, and the paths are being timed.
However, the clocks appear to be
independent (and hence, asynchronous).

Check whether these clocks
are supposed to be declared
as asynchronous, or whether
they are supposed to be
sharing a common primary
source.

Orange Partial False
Path (unsafe)

There is interaction among these clock
domains. The clocks appear to be
independent (and hence, asynchronous).
However, only some of the paths are not
timed due to exceptions.

Check why some paths are
not covered by timing
exceptions.

Blue User Ignored
Paths

There is interaction among these clock
domains, and the paths are not being
timed due to clock groups or false path
timing exceptions.

Confirm that these clocks are
supposed to be
asynchronous. Also, check
that the corresponding HDL
code is written correctly to
ensure proper
synchronization and reliable
data transfer across clock
domains.

Light blue Max Delay
Datapath
Only

There is interaction among these clock
domains, and the paths are getting timed
through: set_max_delay
-datapath_only.

Confirm that the clocks are
asynchronous and that the
specified delay is correct.
UltraFast Design Methodology Guide 216
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=216

Chapter 5: Design Closure
Identifying Clock Pairs Without Common Primary Clocks

The clock interaction report indicates whether or not each pair of interacting clocks has a
common primary clock source. Clock pairs that do not share a common primary clock are
frequently asynchronous to each other. Therefore, it is helpful to identify these pairs by
sorting the columns in the report using the Common Primary Clock field. The report does
not determine whether clock-domain crossing paths are or are not designed properly.

Use the report_cdc Tcl command for a comprehensive analysis of clock domain crossing
circuitry between asynchronous clocks. For more information on the report_cdc
command, see this link in the Vivado Design Suite User Guide: Design Analysis and Closure
Techniques (UG906) [Ref 24] and see report_cdc in the Vivado Design Suite Tcl Command
Reference Guide (UG835) [Ref 17].

Identifying Tight Timing Requirements

For each clock pair, the clock interaction report also shows setup requirement of the worst
path. Sort the columns by Path Req (WNS) to view a list of the tightest requirements in the
design. Figure 5-4 shows the timing report sorted by WNS column. Review these
requirements to ensure that no invalid tight requirements exist.

The Vivado tools identify the path requirements by expanding each clock out to 1000
cycles, then determining where the closest, non-coincident edge alignment occurs. When
1000 cycles are not sufficient to determine the tightest requirement, the report shows Not
Expanded, in which case you must treat the two clocks as asynchronous.

For example, consider a timing path that crosses from a 250 MHz clock to a 200 MHz clock:

• The positive edges of the 200 MHz clock are {0, 5, 10, 15, 20 …}.

• The positive edges of the 250 MHz clock are {0, 4, 8, 12, 16, 20 …}.

The tightest requirement for this pair of clocks occurs when the following is true:

• The 250 MHz clock has a rising edge at 4 ns

• The next rising edge of the 200 MHz clock is at 5 ns.

This results in all paths timed from the 250 MHz clock domain into the 200 MHz clock
domain being timed at 1 ns.

Note: The simultaneous edge at 20 ns is not the tightest requirement in this example, because the
capture edge cannot be the same as the launch edge.
UltraFast Design Methodology Guide 217
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xReportClockDomainCrossings
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug835-vivado-tcl-commands.pdf;a=xreport_cdc
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=217

Chapter 5: Design Closure
Because this is a fairly tight timing requirement, you must take additional steps. Depending
on the design, one of the following constraints might be the correct way to handle these
crossings:

• set_clock_groups / set_false_path / set_max_delay -datapath_only

Use one of these constraints when treating the clock pair as asynchronous. Use the
report_cdc Tcl command to validate that the clock domain crossing circuitry is safe.

• set_multicycle_path

Use this constraint when relaxing the timing requirement, assuming proper clock
circuitry controls the launch and capture clock edges accordingly.

If nothing is done, the design might exhibit timing violations that cross these two domains.
In addition, all of the best optimization, placement and routing might be dedicated to these
paths instead of given to the real critical paths in the design. It is important to identify these
types of paths before any timing-driven implementation step.

Constraining Both Primary and Generated Clocks at the Same Time

Before any timing exceptions are created, it is helpful to go back to
report_clock_networks to identify which primary clocks exist in the design. If all
primary clocks are asynchronous to each other, you can use a single constraint to decouple
the primary clocks from each other and to decouple their generated clocks from each other.
Using the primary clocks in report_clock_networks as a guide, you can decouple each
clock group and associated clocks as shown in the following figure.

X-Ref Target - Figure 5-5

Figure 5-5: Clock Domain Crossing from 250MHz to 200 MHz
UltraFast Design Methodology Guide 218
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=218

Chapter 5: Design Closure
Decouple asynchronous clocks
set_clock_groups -asynchronous \
-group [get_clocks sysClk -include_generated_clocks] \
-group [get_clocks gt0_txusrclk_i -include_generated_clocks] \
-group [get_clocks gt2_txusrclk_i -include_generated_clocks] \
-group [get_clocks gt4_txusrclk_i -include_generated_clocks] \
-group [get_clocks gt6_txusrclk_i -include_generated_clocks]

Limiting I/O Constraints and Timing Exceptions

Most timing violations are on internal paths. I/O constraints are not needed during the first
baselining iterations, especially for I/O timing paths in which the launching or capturing
register is located inside the I/O bank. You can add the I/O timing constraints after the
design and other constraints are stable and the timing is nearly closed.

TIP: Starting with the Vivado Design Suite 2015.3 release, you can use the
config_timing_analysis -ignore_io_paths yes Tcl command to ignore timing on all I/O
paths during implementation and in reports that use timing information. You must manually enter this
command before or immediately after opening a design in memory.

Based on recommendations of the RTL designer, timing exceptions must be limited and
must not be used to hide real timing problems. Prior to this point, the false path or clock
groups between clocks must be reviewed and finalized.

IP constraints must be entirely kept. When IP timing constraints are missing, known false
paths might be reported as timing violations.

X-Ref Target - Figure 5-6

Figure 5-6: Report Clock Networks
UltraFast Design Methodology Guide 219
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=219

Chapter 5: Design Closure
Evaluating Design WNS Before and After Each Step

You must evaluate the design WNS after each implementation step. If you are using the Tcl
command line flow, you can easily incorporate report_timing_summary after each
implementation step in your build script. If you are using the Vivado IDE, you can use simple
tcl.post scripts to run report_timing_summary after each step. In both cases, when
a significant degradation in WNS is noted, you must analyze the checkpoint immediately
preceding that step.

In addition to evaluating the timing for the entire design before and after each
implementation step, you can take a more targeted approach for individual paths to
evaluate the impact of each step in the flow on the timing. For example, the estimated net
delay for a timing path after the optimization step might differ significantly from the
estimated net delay for the same path after placement. Comparing the timing of critical
paths after each step is an effective method for highlighting where the timing of a critical
path diverges from closure.

Post-Synthesis and Post-Logic Optimization

Estimated net delays are close to the best possible placement for all paths. To fix violating
paths try the following:

• Change the RTL.

• Use different synthesis options.

• Add timing exceptions such as multicycle paths, if appropriate and safe for the
functionality in hardware.

Pre- and Post-Placement

After placement, the estimated net delays are close to the best possible route, except for
long and medium-to-high fanout nets, which use more pessimistic delays. In addition,
congestion or hold fixing impact are not accounted for in the net delays at this point, which
can make the timing results optimistic.

Clock skew is accurately estimated and can be used to review imbalanced clock trees impact
on slack.

You can estimate hold fixing by running min delay analysis. Large hold violations where the
WHS is -0.500ns or greater between slices, block RAMs, or DSPs will need to be fixed. Small
violations are acceptable and will likely be fixed by the router.

Note: Paths to/from dedicated blocks like the PCIe® block can have hold time estimates greater
than -0.500 ns that get automatically fixed by the router. For these cases, check
report_timing_summary after routing to verify that all corresponding hold violations are fixed.
UltraFast Design Methodology Guide 220
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=220

Chapter 5: Design Closure
Pre- and Post-Physical Optimization

Evaluate the need for running physical optimization to fix timing problems related to:

• Nets with high fanout (report_high_fanout_nets shows highest fanout non-clock
nets)

• Nets with drivers and loads located far apart

• DSP and block RAM with sub-optimal pipeline register usage

Pre and Post-Route

Slack is reported with actual routed net delays except for the nets that are not completely
routed. Slack reflects the impact of hold fixing on setup and the impact of congestion.

No hold violation should remain after route, regardless of the worst setup slack (WNS)
value. If the design fails hold, further analysis is needed. This is typically due to very high
congestion, in which case the router gives up on optimizing timing. This can also occur for
large hold violations (over 4 ns) which the router does not fix by default. Large hold
violations are usually due to improper clock constraints, high clock skew or, improper I/O
constraints which can already be identified after placement or even after synthesis.

If hold is met (WHS>0) but setup fails (WNS<0), follow the analysis steps described in
Analyzing and Resolving Timing Violations.

Baselining and Timing Constraints Validation Procedure

The following procedure helps track your progress towards timing closure and identify
potential bottlenecks:

1. Open the synthesized design.

2. Run report_timing_summary -delay_type min_max, and record the information
shown in the following table.

3. Open the post-synthesis report_timing_summary text report and record the
no_clock section of check_timing.

Number of missing clock requirements in the design: ___________

4. Run report_clock_networks to identify primary clock source pins/ports in the
design. (Ignore QPLLOUTCLK, QPLLOUTREFCLK because they are pulse-width only
checks.)

Number of unconstrained clocks in the design: ___________

WNS TNS Num Failing
Endpoints WHS THS Num Failing

Endpoints

Synth
UltraFast Design Methodology Guide 221
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=221

Chapter 5: Design Closure
5. Run report_clock_interaction -delay_type min_max and sort the results by
WNS path requirement.

Smallest WNS path requirement in the design: ___________

6. Sort the results of report_clock_interaction by WHS to see if there are large hold
violations (>500 ps) after synthesis.

Largest negative WHS in the design: ___________

7. Sort results of report_clock_interaction by Inter-Clock Constraints and list all
the clock pairs that show up as unsafe:

8. Upon opening the synthesized design, how many CRITITCAL_WARNINGS exist?

Number of synthesized design CRITICAL WARNINGS: ___________

9. What types of CRITICAL WARNINGS exist?

Record examples of each type.

10. Run report_high_fanout_nets -timing -load_types -max_nets 25.

Number of high fanout nets NOT driven by FF: ___________

Number of loads on highest fanout net NOT driven by FF: ___________

Do any high fanout nets have negative slack?- If yes, WNS = ___________

11. Implement the design. After each step, run report_timing_summary and record the
information shown in the following table.

Run report_exceptions -ignored to identify if there are constraints that overlap in
the design. Record the results.

WNS TNS Num Failing
Endpoints WHS THS Num Failing

Endpoints

Opt

Place

Physopt

Route
UltraFast Design Methodology Guide 222
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=222

Chapter 5: Design Closure
Analyzing and Resolving Timing Violations
The timing-driven algorithms focus on the worst violations for each clock domain.
Understanding and fixing problems related to the worst violation for each clock usually
resolves most smaller violations when you rerun the implementation flow. You must identify
the main timing characteristic contributing to each violation and then apply the
corresponding resolution techniques described throughout this chapter.

The following figure shows the basic process for analyzing and resolving timing violations.

X-Ref Target - Figure 5-7

Figure 5-7: Analyzing and Resolving Timing Violations

Load Design Checkpoint with Timing
Violations

Manually Identify Timing Violations Root Causes with
report_timing_summary and
report_design_analysis

High Clock Skew
or Uncertainty

High Cell Delay

Reduce Clock Skew
Use parallel buffers instead of cascaded buffers
Use CLOCK_DELAY_GROUP
Add timing exceptions between asynchronous clocks

Reduce Clock Uncertainty
Optimize MMCM settings
Divide clocks with BUFGCE_DIV

Modify RTL to use parallel or efficient operator
Add pipeline registers, and use synthesis retiming
Pipeline DSP, RAMB, and URAM paths
Optimize SRL paths
Remove KEEP/DONT_TOUCH/MARK_DEBUG

High Route Delay

Review and adjust floorplan constraints
Optimize high fanout nets
Address placer or router congestion level > 4 from log file or

reported by report_design_analysis -congestion

Try report_qor_suggestions for automated analysis and
timing closure recommendations

X20036-110617
UltraFast Design Methodology Guide 223
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=223

Chapter 5: Design Closure
Identifying Timing Violations Root Cause
For setup, you must first analyze the worst violation of each clock group. A clock group
refers to all intra, inter, and asynchronous paths captured by a given clock.

For hold, all violations must be reviewed as follows:

• Before routing, review only violations over 0.5ns.

• After routing, start with the worst violation.

Reviewing Timing Slack

Several factors can impact the setup and hold slacks. You can easily identify each factor by
reviewing the setup and hold slack equations when written in the following simplified form:

For timing analysis, clock skew is always calculated as follows:

Clock Skew = destination clock delay - source clock delay (after the common node if
any)

During the analysis of the violating timing paths, you must review the relative impact of
each variable to determine which variable contributes the most to the violation. Then you
can start analyzing the main contributor to understand what characteristic of the path
influences its value the most and try to identify a design or constraint change to reduce its
impact. If a design or constraint change is not practical, you must do the same analysis with
all other contributors starting with the worst one. The following list shows the typical
contributor order from worst to least.

For setup/recovery:

• Datapath delay: Subtract the timing path requirement from the datapath delay. If the
difference is comparable to the (negative) slack value, then either the path requirement
is too tight or the datapath delay is too large.

• Datapath delay + setup/recovery time: Subtract the timing path requirement from the
datapath delay plus the setup/recovery time. If the difference is comparable to the

Slack (setup/recovery) = setup path requirement

- datapath delay(max)

+ clock skew

- clock uncertainty

- setup/recovery time

Slack (hold/removal) = hold path requirement

+ datapath delay(min)

- clock skew

- clock uncertainty

- hold/removal time
UltraFast Design Methodology Guide 224
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=224

Chapter 5: Design Closure
(negative) slack value, then either the path requirement is too tight or the
setup/recovery time is larger than usual and noticeably contributes to the violation.

• Clock skew: If the clock skew and the slack have similar negative values and the skew
absolute value is over a few 100 ps, then the skew is a major contributor and you must
review the clock topology.

• Clock uncertainty: If the clock uncertainty is over a few 100 ps, then you must review
the clock topology and jitter numbers to understand why the uncertainty is so high.

For hold/removal:

• Clock skew: If the clock skew is over 300 ps, you must review the clock topology.

• Clock uncertainty: If the clock uncertainty is over 200 ps, then you must review the
clock topology and jitter numbers to understand why the uncertainty is so high.

• Hold/removal time: If the hold/removal time is over a few 100 ps, you can review the
primitive data sheet to validate that this is expected.

• Hold path requirement: The requirement is usually zero. If not, you must verify that
your timing constraints are correct.

Assuming all timing constraints are accurate and reasonable, the most common
contributors to timing violations are usually the datapath delay for setup/recovery timing
paths, and skew for hold/removal timing paths. At the early stage of a design cycle, you can
fix most timing problems by analyzing these two contributors. However, after improving
and refining design and constraints, the remaining violations are caused by a combination
of factors, and you must review all factors in parallel to identify which to improve.

See this link for more information on timing analysis concepts, and see this link for more
information on timing reports (report_timing_summary/report_timing) in the
Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906) [Ref 24].

Using the Design Analysis Report

When timing closure is difficult to achieve or when you are trying to improve the overall
performance of your application, you must review the main characteristics of your design
after running synthesis and after any step of the implementation flow. The QoR analysis
usually requires that you look at several global and local characteristics at the same time to
determine what is suboptimal in the design and the constraints, or which logic structure is
not suitable for the target device architecture and implementation tools. The
report_design_analysis command gathers logical, timing, and physical
characteristics in a few tables to simplify the QoR root cause analysis.

Note: The report_design_analysis command does not report on the completeness and
correctness of timing constraints. See Checking That Your Design is Properly Constrained for more
information on reviewing and fixing timing constraints.
UltraFast Design Methodology Guide 225
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xTimingAnalysisFeatures
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xPerformingTimingAnalysis
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=225

Chapter 5: Design Closure
TIP: Run the Design Analysis Report in the Vivado IDE for improved visualization, automatic filtering,
and convenient cross-probing.

The following sections only cover timing path characteristics analysis. The Design Analysis
report also provides useful information about congestion and design complexity, as
described in Identifying Congestion.

Analyze Path Characteristics

You can use the following command to report the 50 worst setup timing paths:

report_design_analysis -max_paths 50 -setup -name design_analysis_postRoute

The following figure shows an example of the Setup Path Characteristics table generated by
this command. To see additional columns in the window, scroll horizontally.

Following are tips for working with this table:

• Toggle between numbers and % by clicking on the "%" (Show Percentage) button. This
is particularly helpful to review proportion of cell delay and net delay.

• By default, columns with only null or empty values are hidden. Click on the "Hide
Unused" button to turn off filtering and show all columns, or right click on the table
header to select which columns to show or hide.

X-Ref Target - Figure 5-8

Figure 5-8: Report Design Analysis Timing Path Characteristics Post-Route
UltraFast Design Methodology Guide 226
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=226

Chapter 5: Design Closure
From this table, you can isolate which characteristics are introducing the timing violation for
each path:

• High logic delay percentage (Logic Delay)

° Are there many levels of logic? (LOGIC_LEVELS)

° Are there any constraints or attributes that prevent logic optimization?
(DONT_TOUCH, MARK_DEBUG)

° Does the path include a cell with high logic delay such as block RAM or DSP?
(Logical Path, Start Point Pin Primitive, End Point Pin Primitive)

° Is the path requirement too tight for the current path topology? (Requirement)

• High net delay percentage (Net Delay)

° Are there any high fanout nets in the path? (High Fanout, Cumulative Fanout)

° Are the cells assigned to several Pblocks that can be placed far apart? (Pblocks)

° Are the cells placed far apart? (Bounding Box Size, Clock Region Distance)

° For SSI technology devices, are there nets crossing SLR boundaries? (SLR Crossings)

° Are one or several net delay values a lot higher than expected while the placement
seems correct? Select the path and visualize its placement and routing in the Device
window.

° Is there a missing pipeline register in a block RAM or DSP cell? (Comb DSP, MREG,
PREG, DOA_REG, DOB_REG)

• High skew (<-0.5 ns for setup and >0.5 ns for hold) (Clock Skew)

° Is it a clock domain crossing path? (Start Point Clock, End Point Clock)

° Are the clocks synchronous or asynchronous? (Clock Relationship)

° Is the path crossing I/O columns? (IO Crossings)

TIP: For visualizing the details of the timing paths in the Xilinx Vivado IDE, select the path in the table,
and go to the Properties tab.
UltraFast Design Methodology Guide 227
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=227

Chapter 5: Design Closure
Review the Logic Level Distribution

The report_design_analysis command also generates a Logic Level Distribution table
for the worst 1000 paths (default) that you can use to identify the presence of longer paths
in the design. The longest paths are usually optimized first by the placer in order to meet
timing, which will potentially degrade the placement quality of shorter paths. You must
always try to eliminate the longer paths to improve the overall QoR. For this reason, Xilinx
recommends reviewing the longest paths before placement.

The following figure shows an example of the Logic Level Distribution for a design where
the worst 5000 paths include difficult paths with 17 logic levels while the clock period is 7.5
ns. Run the following command to obtain this report:

report_design_analysis -logic_level_distribution -logic_level_dist_paths 5000 -name
design_analysis_prePlace

For logic levels above 10, you can use the -min_level and -max_level options to
provide more distribution information for paths between the min and max level you
identify. For example:

report_design_analysis -logic_level_distribution -min_level 16 -max_level 20
-logic_level_dist_paths 5000 -name design_analysis_1

Run the following command to generate the timing report of the longest paths:

report_timing -name longPaths -of_objects [get_timing_paths -setup -to [get_clocks
cpuClk_5] -max_paths 5000 -filter {LOGIC_LEVELS>=16 && LOGIC_LEVELS<=20}]

Based on what you find, you can improve the netlist by changing the RTL or using different
synthesis options, or you can modify the timing and physical constraints.

Datapath Delay and Logic Levels

In general, the number of LUTs and other primitives in the path is most important factor in
contributing to the delay. Because LUT delays are reported differently in 7 series and
UltraScale devices, separate cell delay and route delay ranges must be considered, as
explained below.

X-Ref Target - Figure 5-9

Figure 5-9: Report Design Analysis Timing Path Characteristics Pre-Place
UltraFast Design Methodology Guide 228
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=228

Chapter 5: Design Closure
If the path delay is dominated by:

• Cell delay is >25% in 7 series devices and >50% in UltraScale devices

Can the path be modified to be shorter or to use faster logic cells? See Reducing Logic
Delay.

• Route delay is >75% in 7 series devices and >50% in UltraScale devices

Was this path impacted by hold fixing? You can determine this by running
report_design_analysis -show_all and examining the Hold Detour column.
Use the corresponding analysis technique.

° Yes - Is the impacted net part of a CDC path?

- Yes - Is the CDC path missing a constraint?

- No - Do the startpoint and endpoint of that hold-fixed path use a balanced
clock tree? Look at the skew value.

° No - See the following information on congestion.

Was this path impacted by congestion? Look at each individual net delay, the fanout and
observe the routing in the Device view with routing details enabled (post-route analysis
only). You can also turn on the congestion metrics to see if the path is located in or near
a congested area. Use the following analysis steps for a quick assessment or review
Identifying Congestion for a comprehensive analysis.

° Yes - For the nets with the highest delay value, is the fanout low (<10)?

- Yes - If the routing seems optimal (straight line) but driver and load are far
apart, the sub-optimal placement is related to congestion. Review Addressing
Congestion to identify the best resolution technique.

- No - Try to use physical logic optimization to duplicate the driver of the net.
Once duplicated, each driver can automatically be placed closer to its loads,
which will reduce the overall datapath delay. Review Optimizing High Fanout
Nets for more details and to learn about alternate techniques.

° No - The design is spread out too much. Try one of the following techniques to
improve the placement:

- Reducing Control Sets

- Tuning the Compilation Flow

- Considering Floorplan

Clock Skew and Uncertainty

Xilinx devices use various types of routing resources to support most common clocking
schemes and requirements such as high fanout clocks, short propagation delays, and
UltraFast Design Methodology Guide 229
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=229

Chapter 5: Design Closure
extremely low skew. Clock skew affects any register-to-register path with either a
combinational logic or interconnect between them.

RECOMMENDED: Run a design analysis report (report_design_analysis) to generate a timing
report, which includes information on clock skew data. Verify that the clock nets do not contain
excessive clock skew.

Clock skew in high performance clock domains (+300 MHz) can impact performance. In
general, the clock skew should be no more than 500 ps. For example, 500 ps represents 15%
of a 300 MHz clock period, which is equivalent to the timing budget of 1 or 2 logic levels.
In cross domain clock paths the skew can be higher, because the clocks use different
resources and the common node is located further up the clock trees. SDC-based tools time
all clocks together unless constraints specify that they should not be, for example:

set_clock_groups/set_false_path/set_max_delay -datapath_only)

If you suspect high clock skew, review Reducing Clock Skew and Reducing Clock
Uncertainty.

Reducing Logic Delay
Vivado implementation focuses on the most critical paths first, which often makes less
difficult paths become critical after placement or after routing. Xilinx recommends
identifying and improving the longest paths after synthesis or after opt_design, because
it will have the biggest impact on QoR and will usually dramatically reduce the number of
place and route iterations to reach timing closure.

Before placement, timing analysis uses estimated delays that correspond to ideal
placement and typical clock skew. By using report_timing, report_timing_summary,
or report_design_analysis, you can quickly identify the paths with too many logic
levels or with high cell delays, because they usually fail timing or barely meet timing before
placement. Use the methodology proposed in Identifying Timing Violations Root Cause to
find the long paths which need to be improved before implementing the design.
UltraFast Design Methodology Guide 230
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=230

Chapter 5: Design Closure
Optimizing Regular Fabric Paths

Regular fabric paths are paths between fabric registers or shift registers that traverse a mix
of LUTs, MUXFs, and CARRYs. The report_design_analysis Timing Path Characteristics table
provides the best logic path topology summary, where the following issues can be
identified:

• Several small LUTs are cascaded

Mapping to LUTs is impacted by hierarchy, the presence of KEEP_HIERARCHY,
DONT_TOUCH, or MARK_DEBUG attributes, or intermediate signals with some fanout
(10 and higher). Run the opt_design -remap option or use the AddRemap or
ExploreWithRemap directives to collapse smaller LUTs and reduce the number of logic
levels. If opt_design is unable to optimize the longest paths due to a net fanout
greater than one between the small LUTs, you can force the optimization by setting the
LUT_REMAP property on the LUTs.

• Single CARRY cell is present in the path

CARRY primitives are most beneficial for QoR when cascaded. CARRY cells are more
difficult to place than LUTs, and forcing synthesis to use LUTs rather than a single CARRY
allows for better LUTs structuring and more flexible placement in many cases. Try the
FewerCarryChains synthesis directive or the PerfThresholdCarry strategy (Project Mode
only) to eliminate most single CARRY cells. Alternatively, use the CARRY_REMAP
property to instruct opt_design to remap the tagged CARRY cells to LUTs.

Note: This optimization technique is automatically applied by the report_qor_suggestions
Tcl command.

• Path ends at shift register (SRL)

Pull the first register out of the shift register by using the SRL_STYLE attribute in RTL. For
details, see this link in the Vivado Design Suite User Guide: Synthesis (UG901) [Ref 19].
Alternatively, you can use the SRL_STAGES_TO_REG_INPUT property applied prior to
opt_design to implement the same optimization. For details, see this link in the
Vivado Design Suite User Guide: Implementation (UG904) [Ref 22].

Note: This optimization technique is automatically applied by the report_qor_suggestions
Tcl command.

• Path ends at a fabric register (FD) clock enable or synchronous set/reset

If the path ending at the data pin (D) has more margin and fewer logic levels, use the
EXTRACT_ENABLE or EXTRACT_RESET attribute and set it to “no” on the signal in RTL. For
details, see Pushing the Logic from the Control Pin to the Data Pin in Chapter 3.
Alternatively, you can instruct opt_design to perform the same optimization by
setting the CONTROL_SET_REMAP property on the registers to optimize.

Note: This optimization technique is automatically applied by the report_qor_suggestions
Tcl command.
UltraFast Design Methodology Guide 231
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug901-vivado-synthesis.pdf;a=xSupportedAttributes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=xShiftRegisterOptimization
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=231

Chapter 5: Design Closure
TIP: To cross-probe from a post-synthesis path to the corresponding RTL view and source code, see this
link in the Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906) [Ref 24].

Optimizing Paths with Dedicated Blocks and Macro Primitives

Paths from/to/between dedicated blocks and macro primitives, such as DSP, block RAM,
FIFO or GT_CHANNEL, need special attention as these primitives usually have the following
timing characteristics:

• Higher setup/hold/clock-to-output timing arc values for some pins. For example, a
block RAM has a clock-to-output delay around 1.5 ns without the optional output
register and 0.4 ns with the optional output register. Review the data sheet of your
target device architecture for complete details.

• Higher routing delays than regular FD/LUT connections

• Higher clock skew variation than regular FD-FD paths

Also, their availability and site locations are restricted compared to CLB slices, which usually
makes their placement more challenging and often incurs some QoR penalty.

For these reasons, Xilinx recommends the following:

• Pipeline paths from and to dedicated blocks and macro primitives as much as possible

• Restructure the combinational logic connected to these cells to reduce the logic levels
by at least 1 or 2 cells if latency incurred by pipelining is a concern

• Meet setup timing by at least 500 ps on these paths before placement

• Replicate cones of logic connected to too many dedicated blocks or macro primitives if
they need to be placed far apart

• When the design has tight timing requirements to, within, or from a DSP block, run
opt_design -dsp_register_opt to move registers to a more timing optimal
position

Note: Because timing is approximate during opt_design, you might also need to run
phys_opt_design -dsp_register_opt to correct movements where timing was not
accurately represented at the pre-placement stage.

Reducing Net Delay
Sub-optimal net delay is the consequence of a challenging design or inappropriate
constraints on the placer and router algorithms. The most common root causes are:

• Presence of physical constraints forcing logic to be placed far apart

• Lower placement quality (spread logic) due to very high device utilization

• Difficulty to route high fanout nets
UltraFast Design Methodology Guide 232
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xUsingTheElaboratedViewToOptimizeTheRTL
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=232

Chapter 5: Design Closure
• Presence of congested area due to the netlist complexity and device obstacles, such as
I/O columns and device boundaries

The following sections present several analysis and resolution techniques.

Reviewing Physical Constraints

All designs come with a minimum set of physical constraints, especially for I/O location, and
sometimes for clocking and logic placement. While I/O location cannot be modified at the
time of the design is ready for timing closure, physical constraints such Pblocks and LOC
must be analyzed. Use the report_design_analysis Timing Path Characteristics table to
identify the presence of several Pblocks constraints on each critical path.

In the Vivado IDE Properties window, you can select the path in the Timing Path
Characteristic table to review which Pblocks are constraining cells in the path. Consider
removing one or several Pblock constraints if the constraints force logic spreading.

Identifying Congestion

Device congestion can potentially lead to difficult timing closure if the critical paths are
placed inside or next to a congested area or if the device utilization is high and the placed
design is hardly routable. In many cases, congestion will significantly increase the router
runtime. If a path shows routed delays that are longer than expected, Xilinx recommends
analyzing the congestion of the design and identifying the best congestion alleviation
technique.

Congestion Area and Level Definition

Xilinx FPGA routing architecture comprises interconnect resources of various lengths in
each direction: North, South, East and West. A congested area is reported as the smallest
square that covers adjacent interconnect tiles (INT_XnYm) or CLB tiles (CLE_M_XnYm) where
interconnect resource utilization in a specific direction is close to or over 100%. The
congestion level is the positive integer which corresponds to the side length of the square.
The following figure shows the relative size of congestion areas on an UltraScale device
versus clock regions.
UltraFast Design Methodology Guide 233
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=233

Chapter 5: Design Closure
Congestion Level Ranges

When analyzing congestion, the level reported by the tools can be categorized as shown in
the following table.

Note: Congestion levels of 5 or higher often impact QoR and always lead to longer router runtime.

Interconnect Congestion Level in the Device Window

The Interconnect Congestion Level metric highlights the largest contiguous area in which
routing resources are overused. By default, this metric is based on estimation, which is
similar to the congestion level after initial routing. Actual routing can also be displayed if
routing exists. After placement or after routing, you can display this congestion metric by
right-clicking in the Device window, selecting Metric, and then selecting Interconnect
Congestion Level.

The Interconnect Congestion Level metric provides a quick visual overview of any
congestion hotspots in the device. The following figure shows a placed design with several
congested areas. This metric is based on the current interconnect demand and availability
with a threshold of 0.9 (i.e., 90% routing usage). The range is 0.1 to 0.9.

X-Ref Target - Figure 5-10

Figure 5-10: Congestion Levels and Areas in an UltraScale Device View

Table 5-4: Congestion Level Ranges

Level Area Congestion QoR Impact

1, 2 2x2, 4x4 None None

3, 4 8x8, 16x16 Mild Possible QoR degradation

5 32x32 Moderate Likely QoR degradation

6 64x64 High Difficulty routing

7, 8 128x128, 256x256 Impossible Likely unroutable
UltraFast Design Methodology Guide 234
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=234

Chapter 5: Design Closure
You can visualize congestion based on:

• Direction: North, South, East, West, Vertical, Horizontal

• Type: Short, Long, Global

• Style: Estimated, Routed, Mixed

For 7 series and UltraScale devices, use the Routing Congestion per CLB, which is based on
estimation and not actual routing. After placement or after routing, you can display this
congestion metric by right-clicking in the Device window, selecting Metric, and then
selecting Vertical and Horizontal Routing Congestion per CLB. This provides a quick
visual overview of any congestion hotspots in the device. The following figure shows a
placed design with several congested areas due to high utilization and netlist complexity.

X-Ref Target - Figure 5-11

Figure 5-11: Example of Interconnect Congestion Level in the Device Window
UltraFast Design Methodology Guide 235
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=235

Chapter 5: Design Closure
Congestion in the Placer Log

The placer estimates congestion throughout the placement phases and spreads the logic in
congested areas. This helps reducing the interconnect utilization to improve routability, and
also the estimated versus routed delays correlation. However, when the congestion cannot
be reduced due to high utilization or other reasons, the placer does not print congestion
details but issues the following warning:

WARNING: [Place 46-14] The placer has determined that this design is highly congested
and may have difficulty routing. Run report_design_analysis -congestion for a
detailed report.

In that case the QoR is very likely impacted and it is prudent to address the issues causing
the congestion before continuing on to the router. As stated in the message, use the
report_design_analysis command to report the actual congestion levels, as well as
identify their location and the logic placed in the same area.

Congestion in the Router Log

The router issues additional messages depending on the congestion level and the difficulty
to route certain resources. The router also prints several intermediate timing summaries.
The first one comes after routing all the clocks and usually shows WNS/TNS/WHS/TNS

X-Ref Target - Figure 5-12

Figure 5-12: Example of Congestion per CLB in the Device Window
UltraFast Design Methodology Guide 236
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=236

Chapter 5: Design Closure
numbers similar to post-place timing analysis. The next router intermediate timing
summary is reported after initial routing. If the timing has degraded significantly, the QoR
has been impacted by hold fixing and/or congestion.

When congestion level is 4 or higher, the router prints an initial estimated congestion table
which gives more details on the nature of the congestion:

• Global Congestion is similar to how the placer congestion is estimated and is based on
all types of interconnects.

• Long Congestion only considers long interconnect utilization for a given direction.

• Short Congestion considers all other interconnect utilization for a given direction.

Any congestion area greater than 32x32 (level 5) will likely impact QoR and routability
(highlighted in yellow in the table below). Congestion on Long interconnects increases
usage of Short interconnects which results in longer routed delays. Congestion on Short
interconnects usually induce longer runtimes and if their tile % is more than 5%, it will also
likely cause QoR degradation (highlighted in red in the table below).

During Global Iterations, the router first tries to find a legal solution with no overlap and
also meet timing for both setup and hold, with higher priority for hold fixing. When the
router does not converge during a global iteration, it stops optimizing timing until a valid
routed solution has been found, as shown on the example below:

Phase 4.1 Global Iteration 0
 Number of Nodes with overlaps = 1157522
 Number of Nodes with overlaps = 131697
 Number of Nodes with overlaps = 28118
 Number of Nodes with overlaps = 10971
 Number of Nodes with overlaps = 7324
WARNING: [Route 35-447] Congestion is preventing the router from routing all nets.
The router will prioritize the successful completion of routing all nets over timing
optimizations.

X-Ref Target - Figure 5-13

Figure 5-13: Initial Estimated Congestion Table

INFO: [Route 35-449] Initial Estimated Congestion
__
	Global Congestion	Long Congestion	Short Congestion			
	___________________	___________________	___________________			
Direction	Size	% Tiles	Size	% Tiles	Size	% Tiles
___________	________	__________	________	__________	________	__________
NORTH	16x16	1.95	32x32	1.68	32x32	11.58
___________	________	__________	________	__________	________	__________
SOUTH	8x8	1.90	16x16	2.00	32x32	9.23
___________	________	__________	________	__________	________	__________
EAST	8x8	0.93	2x2	0.20	32x32	9.14
___________	________	__________	________	__________	________	__________
WEST	8x8	1.37	2x2	0.15	32x32	14.50
___________	________	__________	________	__________	________	__________
UltraFast Design Methodology Guide 237
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=237

Chapter 5: Design Closure
After a valid routed solution has been found, timing optimizations are re-enabled.

The route also flags CLB routing congestion and provides the name of the top most
congested CLBs. See INFO message below.

INFO: [Route 35-443] CLB routing congestion detected. Several CLBs have high routing
utilization, which can impact timing closure. Top ten most congested CLBs are:
CLEL_L_X29Y384 CLEL_R_X29Y384 CLE_M_X43Y107 CLEL_R_X43Y107 CLEL_L_X31Y389
CLEL_R_X31Y389

Finally, when the router cannot find a legally routed solution, several Critical Warning
messages, as shown below, indicate the number of nets that are not fully routed and the
number of interconnect resources with overlaps.

CRITICAL WARNING: [Route 35-162] 44084 signals failed to route due to routing
congestion. Please run report_route_status to get a full summary of the design's
routing.

…

CRITICAL WARNING: [Route 35-2] Design is not legally routed. There are 91566 node
overlaps.

 TIP: During routing, nets are spread around the congested areas, which usually reduces the final
congestion level reported in the log file when the design is successfully routed.

Report Design Analysis Congestion Report

To help you identify congestion, the Report Design Analysis command allows you to
generate a congestion report that shows the congested areas of the device and the name of
design modules present in these areas. The congestion tables in the report show the
congested area seen by the placer and router algorithms. The following figure shows an
example of the congestion table.

The Placed Maximum, Initial Estimated Router Congestion, and Router Maximum
congestion tables provide information on the most congested areas in the North, South,
East, and West direction. When you select a window in the table, the corresponding
congested area is highlighted in the Device window. For information on the congestion and
QoR impact, see Table 5-4.

X-Ref Target - Figure 5-14

Figure 5-14: Congestion Table
UltraFast Design Methodology Guide 238
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=238

Chapter 5: Design Closure
The tables show the congestion at different stages of the design flow:

• Placed Maximum: Shows congestion based on the location of the cells and a model of
routing.

• Initial Estimated Router Congestion: Shows congestion after a quick router iteration.
This is the most useful stage to analyze congestion because it gives an accurate picture
of congestion due to placement.

• Router Maximum: Shows congestion after the router has worked extensively to reduce
congestion.

The Congestion percentages in the Congestion Table show the routing utilization in the
congestion window. The top three hierarchical cells located in the congested window are
listed and can be selected and cross-probed to the Device window or Schematic window.
The cell utilization percentage in the congestion window is also shown.

With the hierarchical cells present in the congested area identified, you can use the
congestion alleviating techniques discussed later in this guide to try reducing the overall
design congestion.

For more information on generating and analyzing the Report Design Analysis Congestion
report, see this link in the Vivado Design Suite User Guide: Design Analysis and Closure
Techniques (UG906) [Ref 24].

Report Design Analysis Complexity Report

The Complexity Report shows the Rent Exponent, Average Fanout, and distribution per type
of leaf cells for the top-level design and/or for hierarchical cells. The Rent exponent is the
relationship between the number of ports and the number of cells of a netlist partition
when recursively partitioning the design with a min-cut algorithm. It is computed with
similar algorithms as the ones used by the placer during global placement. Therefore, it can
provide a good indication of the challenges seen by the placer, especially when the
hierarchy of the design matches well the physical partitions found during global placement.

A design with higher Rent exponent corresponds to a design where the groups of highly
connected logic also have strong connectivity with other groups. This usually translates into
a higher utilization of global routing resources and an increased routing complexity. The
Rent exponent provided in this report is computed on the unplaced and unrouted netlist.
After placement, the Rent exponent of the same design can differ as it is based on physical
partitions instead of logical partitions.

Report Design Analysis runs in Complexity Mode when you do either of the following:

• Check the Complexity option in the Report Design Analysis dialog box Options tab.

• Execute the report_design_analysis Tcl command with the -complexity
option.
UltraFast Design Methodology Guide 239
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xCongestionReport
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=239

Chapter 5: Design Closure
The following figure shows the Complexity Report.

The following table shows the typical ranges for the Rent Exponent.

The following table shows the typical ranges for the Average Fanout.

You must treat high Rent exponents and high Average Fanouts for larger modules with
higher importance. Smaller modules, especially under 15,000 total instances, can have high
Rent exponent and high Average Fanout and still be easy to place and route successfully.
Therefore, you must review the Total Instances column along with the Rent exponent and
Average Fanout.

X-Ref Target - Figure 5-15

Figure 5-15: Complexity Report

Table 5-5: Rent Exponent Ranges

Range Meaning

0.0 to 0.65 This range is low to normal.

0.65 to 0.85 This range is high, especially when the total number of instances is above
15,000.

Above 0.85 This range is very high, indicating that the design might fail during
implementation if the number of instances is also high.

Table 5-6: Average Fanout Ranges

Range Meaning

Below 4 This range is normal.

4 to 5 This range is high, indicating that placing the design without congestion
might be difficult.
Note: When using SSI technology devices, if the total number of instances is above
100,000, it might be difficult for the placer to find a solution that fits in 1 SLR or is
spread over 2 SLRs.

Above 5 This range is very high, indicating that the design might fail during
implementation.
UltraFast Design Methodology Guide 240
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=240

Chapter 5: Design Closure
TIP: Top-level modules do not necessarily have high complexity metrics even though some of the
lower-level modules have high Rent exponents and high Average Fanouts. Use the
-hierarchical_depth option to refine the analysis to include the lower-level modules.

For more information on generating and analyzing the Report Design Analysis Complexity
report see this link in the Vivado Design Suite User Guide: Design Analysis and Closure
Techniques (UG906) [Ref 24].

Reducing Clock Skew
To meet requirements such as high fanout clocks, short propagation delays, and low clock
skew, Xilinx devices use dedicated routing resources to support most common clocking
schemes. Clock skew can severely reduce timing budget on high frequency clocks. Clock
skew can also add excessive stress on implementation tools to meet both setup and hold
when the device utilization is high.

The clock skew is typically less than 300 ps for intra-clock timing paths and less than 500 ps
for timing paths between balanced synchronous clocks. When crossing I/O columns or SLR
boundaries, clock skew shows more variation, which is reflected in the timing slack and
optimized by the implementation tools. For timing paths between unbalanced clock trees or
with no common node, clock skew can be several nanoseconds, making timing closure
almost impossible.

To reduce clock skew:

1. Review all clock relationships to ensure that only synchronous clock paths are timed and
optimized, as described in Defining Clock Groups and CDC Constraints in Chapter 3.

2. Review the clock tree topologies and placement of timing paths impacted by higher
clock skew than expected, as described in the following sections.

3. Identify the possible clock skew reduction techniques, as described in the following
sections.

Using Intra-Clock Timing Paths

Timing paths with the same source and destination clocks that are driven by the same clock
buffer typically exhibit very low skew. This is because the common node is located on the
dedicated clock network, close to the leaf clock pins, as shown in the following figure.
UltraFast Design Methodology Guide 241
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xCongestionReport
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=241

Chapter 5: Design Closure
When analyzing the clock path in the timing report, the delays before and after the
common node are not provided separately because the common node only exists in the
physical database of the design and not in the logical view. For this reason, you can see the
common node in the Device window of the Vivado IDE when the Routing Resources are
turned on but not in the Schematic window. The timing report only provides a summary of
skew calculation with source clock delay, destination clock delay, and credit from clock
pessimism removal (CPR) up to the common node.

Limiting Synchronous Clock Domain Crossing Paths

Timing paths between synchronous clocks driven by separate clock buffers exhibit higher
skew, because the common node is located before the clock buffers. That is, the common
node is farther from the leaf clock pins, resulting in higher pessimism in the timing analysis.
The clock skew is even worse for timing paths between unbalanced clock trees due the
delay difference between the source and destination clock paths. Although positive skew
helps with meeting setup time, it hurts hold time closure, and vice versa.

In the following figure, three clocks have several intra and inter clock paths. The common
node of the two clocks driven by the MMCM is located at the output of the MMCM (red
markers). The common node of the paths between the MMCM input clock and MMCM
output clocks is located on the net before the MMCM (blue marker). For the paths between

X-Ref Target - Figure 5-16

Figure 5-16: Typical Synchronous Clocking Topology with Common Node Located on Green Net
UltraFast Design Methodology Guide 242
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=242

Chapter 5: Design Closure
the MMCM input clock and MMCM output clocks, the clock skew can be especially high
depending on the clkin_buf BUFGCE location and the MMCM compensation mode.

Xilinx recommends limiting the number of synchronous clock domain crossing paths even
when clock skew is acceptable. Also, when skew is abnormally high and cannot be reduced,
Xilinx recommends treating these paths as asynchronous by implementing asynchronous
clock domain crossing circuitry and adding timing exceptions.

Adding Timing Exceptions between Asynchronous Clocks

Timing paths in which the source and destination clocks originate from different primary
clocks or have no common node must be treated as asynchronous clocks. In this case, the
skew can be extremely large, making it impossible to close timing.

You must review all timing paths between asynchronous clocks to ensure the following:

• Proper asynchronous clock domain crossing circuitry (report_cdc)

• Timing exception definitions that ignore timing analysis (set_clock_groups,
set_false_path) or ignore skew (set_max_delay -datapath_only)

You can use the Clock Interaction Report (report_clock_interaction) to help identify
clocks that are asynchronous and are missing proper timing exceptions. For more
information on CDC path constraints, see Defining Clock Groups and CDC Constraints in
Chapter 3.

X-Ref Target - Figure 5-17

Figure 5-17: Synchronous CDC Paths with Common Nodes on Input and Output of a MMCM
UltraFast Design Methodology Guide 243
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=243

Chapter 5: Design Closure
Applying Common Techniques for Reducing Clock Skew

Because the 7 series and UltraScale device clocking architectures differ, review the Clocking
Guidelines in Chapter 3 to learn the best practice for each architecture, and verify that your
design complies.

TIP: Given the flexibility of the UltraScale device clocking architecture, the report_methodology
command contains checks to aid you in creating an optimal clocking topology.

The following techniques cover the most common scenarios:

• Avoid timing paths between cascaded clock buffers by eliminating unnecessary buffers
or connecting them in parallel as shown in the following figure.

• Combine parallel clock buffers into a single clock buffer and connect any clock buffer
clock enable logic to the corresponding sequential cell enable pins, as shown on figure
below. If some of the clocks are divided by the buffers built-in divider, implement the
equivalent division with clock enable logic and apply multicycle path timing exceptions
as needed. When both rising and falling clock edges are used by the downstream logic
or when power is an important factor, this technique might not be applicable.

X-Ref Target - Figure 5-18

Figure 5-18: Asynchronous CDC Paths with Proper CDC Circuitry and No Common Node

X-Ref Target - Figure 5-19

Figure 5-19: Synchronous Clocking Topology with Cascaded BUFG Reconnected in Parallel
UltraFast Design Methodology Guide 244
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=244

Chapter 5: Design Closure
• Remove LUTs or any combinatorial logic in clock paths as they make clock delays and
clock skew unpredictable during placement, resulting in lower quality of results. Also, a
portion of the clock path is routed with general interconnect resources which are more
sensitive to noise than global clocking resources. Combinatorial logic usually comes
from sub-optimal clock gating conversion and can usually be moved to clock enable
logic, either connected to the clock buffer or to the sequential cells.

In the following figure, the first BUFG (clk1_buf) is used in LUT3 to create a gated clock
condition.

Applying Techniques for Improving Skew in 7 Series Devices

Although the 7 series and UltraScale architectures differ in terms of clock architectures,
some general clock considerations apply to both families:

• Do not use the CLOCK_DEDICATED_ROUTE=FALSE constraint in a production 7 series
design. Use CLOCK_DEDICATED_ROUTE=FALSE only as a temporary workaround to a

X-Ref Target - Figure 5-20

Figure 5-20: Synchronous Clocking Topology with Parallel Clock Buffer Recombined into a
Single Buffer

X-Ref Target - Figure 5-21

Figure 5-21: Skew Due to Local Routing on Clock Network
UltraFast Design Methodology Guide 245
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=245

Chapter 5: Design Closure
clock failure ONLY to produce an implemented design in order to view the clocking
topology for debugging. Clock paths routed with fabric interconnect can have high
clock skew and be impacted by switching noise, leading to poor performance or
non-functional designs. In the following figure, the right side has a dedicated clock
route, while on the left side, the dedicated route is disabled for clock.

• Do not allow regional clock buffers (BUFR/BUFIO/BUFH) to drive logic in several clock
regions as the skew between the clock tree branches in each region will be very high.
Remove inappropriate LOC or Pblock constraints to resolve this situation.

X-Ref Target - Figure 5-22

Figure 5-22: Comparison of Fabric Clock Route versus Dedicated Clock Route
UltraFast Design Methodology Guide 246
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=246

Chapter 5: Design Closure
Improving Skew in UltraScale and UltraScale+ Devices

• Avoid using an MMCM or PLL to perform simple division of a BUFG_GT clock. BUFG_GT
cells have the ability to divide down the input clock. The following figure shows how to
save an MMCM resource and implement balanced clock trees for two clocks originating
from a GTHE3_CHANNEL cell.

• Use the CLOCK_DELAY_GROUP on the driver net of critical synchronous clocks to force
CLOCK_ROOT and route matching during placement and routing. The buffers of the
clocks must be driven by the same cell for this constraint to be honored. For details,
see Synchronous CDC in Chapter 3.

Note: This optimization technique is automatically applied by the report_qor_suggestions
Tcl command.

• If a timing path is having difficulty meeting timing and the skew is larger than
expected, it is possible that the timing path is crossing an SLR or an I/O column. If this
is the case, physical constraints such as Pblocks may be used to force the source and
destination into a single SLR or to prevent the crossing of an I/O column.

• When working with high speed synchronous clock domain crossing timing paths,
LOCing the clock modifying blocks such as the MMCM/PLL to the center of the clock
loads can aid in meeting timing. The decreased delay on the clock networks will result
in less timing pessimism on the clock domain crossing paths.

• Verify that clock nets with CLOCK_DEDICATED_ROUTE=FALSE constraint are routed with
global clocking resources. Use ANY_CMT_COLUMN instead of FALSE to ensure the clock
nets with routing waivers are routed with dedicated clocking resources only. See Clock
Constraints in Chapter 3 for more details on CLOCK_DEDICATED_ROUTE support. If the
clock net is routed with fabric interconnect, identify the design change or clocking
placement constraint needed to resolve this situation and make the implementation
tools use global clocking resources instead. Clock paths routed with fabric interconnect
can have high clock skew or be impacted by switching noise, leading to poor
performance or non-functional designs.

X-Ref Target - Figure 5-23

Figure 5-23: Implementing Balanced Clock Trees using UltraScale BUFG_GTs
UltraFast Design Methodology Guide 247
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=247

Chapter 5: Design Closure
Reducing Clock Uncertainty
Clock uncertainty is the amount of uncertainty relative to an ideal clock. Uncertainty can
come from user-specified external clock uncertainty (set_clock_uncertainty), system
jitter or duty cycle distortion. Clock Modifying Blocks such as the MMCM and PLL also
contribute to clock uncertainty in the form of Discrete Jitter, and Phase Error if multiple
related clocks are used.

The Clocking Wizard provides accurate uncertainty data for the specified device and can
generate various MMCM clocking configurations for comparing different clock topologies.
To achieve optimal results for the target architecture, Xilinx recommends regenerating clock
generation logic using the Clocking Wizard rather than using legacy clock generation logic
from prior architectures.

Using MMCM Settings to Reduce Clock Uncertainty

When configuring an MMCM for frequency synthesis, the target frequency may have
several possible M (multiplier) and D (divider) values to achieve the same goal. The M and
D values that result in the highest VCO frequency that does not exceed the maximum VCO
frequency for the device will minimize the clock uncertainty.

The MMCM frequency synthesis example below uses an input clock of 62.5 MHz to generate
an output clock of approximately 40 MHz. There are two solutions, but the MMCM_2 with a
higher VCO frequency generates less clock uncertainty due to reduced jitter and phase
error.

TIP: When using the Clocking Wizard from the IP Catalog, make sure that Jitter Optimization Setting
is set to the Minimum Output Jitter, which provides the higher VCO frequency.

Table 5-7: MMCM Frequency Synthesis Example

MMCM_1 MMCM_2

Input clock 62.5 MHz 62.5 MHz

Output clock 40.0 MHz 39.991 MHz

CLKFBOUT_MULT_F 16 22.875

CLKOUT0_DIVIDE_F 25 35.750

VCO Frequency 1000.000 MHz 1429.688

Jitter (ps) 167.542 128.632

Phase Error (ps) 384.432 123.641
UltraFast Design Methodology Guide 248
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=248

Chapter 5: Design Closure
Using BUFGCE_DIV to Reduce Clock Uncertainty

TIP: The report_qor_suggestions Tcl command flags this issue.

In UltraScale devices, BUFGCE_DIV cells can be used to reduce clock uncertainty on
synchronous clock domain crossings by eliminating MMCM Phase Error. For example,
consider a path between a 300 MHz and 150 MHz clock domains, where both clocks are
generated by the same MMCM.

In this case, the clock uncertainty includes 120 ps of Phase Error for both Setup and Hold
analysis. Instead of generating the 150 MHz clock with the MMCM, a BUFGCE_DIV can be
connected to the 300 MHz MMCM output and divide the clock by 2. For optimal results, the
300 MHz clock needs to also use a BUFGCE_DIV with BUFGCE_DIVIDE set to 1 to match the
150 MHz clock delay accurately, as shown in the following figure.

With the new topology:

• For setup analysis, clock uncertainty does not include the MMCM phase error and is
reduced by 120 ps.

• For hold analysis, there is no more clock uncertainty (only for same edge hold analysis).

• The common node moves closer to the buffers, which saves some clock pessimism.

By applying the CLOCK_DELAY_GROUP constraint on the two clock nets, the clock paths will
have matched routing. For more information, see Synchronous CDC in Chapter 3.

Note: The report_qor_suggestions Tcl command provides these constraints.

X-Ref Target - Figure 5-24

Figure 5-24: Improving the Clock Topology for an UltraScale Synchronous CDC Timing Path
UltraFast Design Methodology Guide 249
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=249

Chapter 5: Design Closure
The following table compares the clock uncertainty for setup and hold analysis of an
UltraScale synchronous CDC timing path.

Applying Common Timing Closure Techniques
The following techniques can help with design closure on challenging designs. Before
attempting these techniques, ensure that the design is properly constrained and that you
identify the main issue that affects the top violating paths.

RECOMMENDED: Xilinx recommends running the report_qor_suggestions Tcl command to
identify and apply many of these techniques automatically. For more information, see this link in the
Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906) [Ref 24].

Improving the Netlist with Block-Level Synthesis Strategies
Although most designs can meet timing requirements with the default Vivado synthesis
settings, larger and more complex designs usually require a mix of synthesis strategies for
different hierarchies to close timing. For example, one module might require the use of
MUXF* resources to implement a timing critical function, but the rest of the design might
benefit from implementation of logic in LUTs rather than MUXF* to reduce congestion. In
this case, set the PERFORMANCE_OPTIMIZED strategy for the timing-critical module, and
synthesize the rest of the design using the Flow_AlternateRoutability strategy to reduce
congestion. For more information, see Block-Level Synthesis Strategy in Chapter 4.

Table 5-8: Comparison of Clock Uncertainty for Setup and Hold Analysis of an UltraScale Synchronous
CDC Timing Path

Setup Analysis MMCM Generated 150 MHz Clock BUFGCE_DIV 150 MHz Clock

Total System Jitter (TSJ) 0.071 ns 0.071 ns

Discrete Jitter (DJ) 0.115 ns 0.115 ns

Phase Error (PE) 0.120 ns 0.000 ns

Clock Uncertainty 0.188 ns 0.068 ns

Hold Analysis MMCM Generated 150 MHz Clock BUFGCE_DIV 150 MHz Clock

Total System Jitter (TSJ) 0.071 ns 0.000 ns

Discrete Jitter (DJ) 0.115 ns 0.000 ns

Phase Error (PE) 0.120 ns 0.000 ns

Clock Uncertainty 0.188 ns 0.000 ns
UltraFast Design Methodology Guide 250
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xReportQoRSuggestions
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=250

Chapter 5: Design Closure
Improving Logic Levels
Throughout the design cycle, you must verify that the logic level distribution fits the clock
frequency goals for the target Xilinx FPGA family and device speed grade. Although a
limited number of paths with a high number of logic levels do not always introduce a timing
closure challenge, you can improve the timing QoR by optimizing the longest paths in the
design with the Vivado synthesis retiming option.

Using the retiming option globally is usually runtime intensive and can negatively impact
power. Therefore, Xilinx recommends that you identify a specific hierarchy with violations
on paths with a high number of logic levels after synthesis or with optimal placement. When
the paths in the fanin or fanout of the longest paths have fewer logic levels and are
contained within a small or medium hierarchical module, you can use the
BLOCK_SYNTH.RETIMING block-level synthesis strategy.

The following figure shows a critical paths with 5 LUTs, constrained by a 600 MHz clock. The
REG2 destination flop drives a timing path with a single LUT that is included one hierarchy
up from REG2.

In addition to using the Schematic window in the Vivado IDE, you can use the
report_design_analysis -logic_level_distribution command to review the
distribution of logic levels for specific paths. This allows you to determine how many paths
need to be rebalanced to improve the timing QoR.

You can use the retiming_forward and retiming_backward attributes available in
Vivado synthesis to control the optimization on a specific register or a path. Using these
attributes applies retiming optimization on a specific set of paths rather than on the top
module or submodules, which reduces the area overhead. You can apply these attributes in
the RTL or in the XDC file. For more information, including usage and restrictions, see the
Vivado Design Suite User Guide: Synthesis (UG901) [Ref 19].

X-Ref Target - Figure 5-25

Figure 5-25: Schematic Showing Critical Path with 5 Logic Levels
UltraFast Design Methodology Guide 251
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=251

Chapter 5: Design Closure
The following figure shows 58 paths with 5 logic levels within the inst1/inst2 hierarchy
constrained with the 600 MHz clock and 32 paths with only 1 logic level.

Vivado synthesis can rebalance the logic levels by moving the registers in the low logic level
paths into the high logic level paths. In this example, you can add the following constraint
to the synthesis XDC file to perform retiming on the inst1/inst2 hierarchy:

set_property BLOCK_SYNTH.RETIMING 1 [get_cells inst1/inst2]

After rerunning synthesis with the same global settings and the updated XDC file, you can
run regular timing analysis on the inst1/inst2 timing paths or rerun the
report_design_analysis command to verify that the longest paths have fewer logic
levels, as shown in the following figure. The critical path is now REG0 > 3 LUTs > REG2
(backward retimed), and the path from REG2 to REG4 has 3 logic levels.

Reducing Control Sets
TIP: This optimization technique is automatically applied by the report_qor_suggestions Tcl
command.

Often not much consideration is given to control signals such as resets or clock enables.
Many designers start HDL coding with "if reset" statements without deciding whether the
reset is needed or not. While all registers support resets and clock enables, their use can
significantly affect the end implementation in terms of performance, utilization, and power.

The first factor to consider is the number of control sets. A control set is the group of clock,
enable, and set/reset signals used by a sequential cell. For example, two cells connected to
the same clock have different control sets if only one cell has a reset or if only one cell has

X-Ref Target - Figure 5-26

Figure 5-26: Logic Level Distribution with Default Synthesis Optimization

X-Ref Target - Figure 5-27

Figure 5-27: Logic Level Distribution with Retiming Enabled for Synthesis Optimization
UltraFast Design Methodology Guide 252
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=252

Chapter 5: Design Closure
a clock enable. Constant or unused enable and set/reset register pins also contribute to
forming control sets.

The second factor to consider is the targeted architecture. The number of control sets that
can be packed together depends on the architecture:

• A 7 series device slice (or half-CLB) comprises 8 registers, which all share 1 clock, 1
set/reset, and 1 clock enable. Only 1 control set can be used per group of 8 registers.

• An UltraScale device half-CLB comprises 2 groups of 4 registers, which share 1 clock
and 1 set/reset. In addition, each group of 4 registers has 1 clock enable and can ignore
the set/reset. A constant set/reset signal is not routed and can be ignored. A constant
enable signal is treated like a dynamic enable signal and needs to be routed. Under
optimal conditions, up to 2 control sets can be used per group of 8 registers.

CLB packing restrictions caused by control sets force the placer to move some registers,
including their input LUT. In some cases, the registers are moved to less optimal locations.
The additional distance can negatively impact not only utilization but also placement QoR
and power consumption, due to logic spreading (longer net delays) and higher interconnect
resources utilization. This is mainly of concern in designs with many low fanout control
signals, such as clock enables that feed single registers.

Despite the higher UltraScale device CLB control set capacity, typical designs show a control
set utilization similar to 7 series designs. Therefore, Xilinx recommendations are the same
for both architectures. The following table provides a guideline for the recommended
number of control sets, depending on the target device size, for both Xilinx 7 series and
UltraScale devices.

These guidelines assume the following:

• Typical control set capacity: 1 per 8 CLB registers

• Total number of control sets in a device: CLB registers / 8

To determine the number of control sets in a design:

• Before placement: Use report_control_sets -verbose

• After placement: Use report_utilization (text mode only)

Table 5-9: Control Set Guideline for 7 Series and UltraScale Devices

Percentage of Control Sets

Acceptable Less than 7.5% of the total number of control sets in the device

Reduction
Recommended

Between 7.5% and 15% of the total number of control sets in the device

Reduction
Required

Greater than 15% of the total number of control sets in the device
UltraFast Design Methodology Guide 253
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=253

Chapter 5: Design Closure
TIP: The number of unique control sets can be a problem in a small portion of the design, resulting in
longer net delays or congestion in the corresponding device area. Identifying the high local density of
unique control sets requires detailed placement analysis in the Vivado IDE Device window, which
includes highlighted control signals in different colors.

If the number of control sets is high, use one of the following strategies to reduce their
number:

• Remove the MAX_FANOUT attributes that are set on control signals in the HDL sources
or constraint files. Replication on control signals dramatically increases the number of
unique control sets. Xilinx recommends relying on place_design to perform coarse
replication and using phys_opt_design -directive Explore for finer replication
after placer. This prevents unnecessary replication and equivalent control sets from
crossing each other, which can lead to routing congestion.

• Increase the control set threshold of Vivado synthesis (or other FPGA synthesis tool).
Review the control sets fanout distribution table in report_control_sets
-verbose to determine a more appropriate control sets threshold to use during
synthesis. For example:

synth_design -control_set_opt_threshold 16

TIP: Use the BLOCK_SYNTH synthesis constraints to change the control sets threshold on modules that
are the most impacted by placement spreading or congestion.

• Use opt_design -control_set_merge or opt_design
-merge_equivalent_drivers to merge equivalent control sets after synthesis.

• Use the CONTROL_SET_REMAP property to map low-fanout control signals driving the
synchronous set/reset and/or CE pin of a register to the D-input. For more information,
see this link in the Vivado Design Suite User Guide: Implementation (UG904) [Ref 22].

• Avoid low fanout asynchronous set/reset (preset/clear), because they can only be
connected to dedicated asynchronous pins and cannot be moved to the datapath by
synthesis. For this reason, the synthesis control set threshold option does not apply to
asynchronous set/reset.

• Avoid using both active-High and active-Low of a control signal for different sequential
cells.

• Only use clock enable and set/reset when necessary. Often data paths contain many
registers that automatically flush uninitialized values, and where set/reset or enable
signals are only needed on the first and last stages.

Additional synthesis attributes and recommendations on control signals are available in
Control Signals and Control Sets in Chapter 3.
UltraFast Design Methodology Guide 254
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=xControlSetReduction
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=254

Chapter 5: Design Closure
Optimizing High Fanout Nets
High fanout nets often lead to implementation issues. As die sizes increase with each FPGA
family, fanout problems also increase. It is often difficult to meet timing on nets that have
many thousands of endpoints, especially if there is additional logic on the paths, or if they
are driven from non-sequential cells, such as LUTs or distributed RAMs.

Use Register Replication

Most synthesis tools provide a fanout threshold limit to force high fanout driver replication.
The Vivado synthesis option is synth_design -fanout_limit 5000. Adjusting this
global threshold does not allow you to control which registers can be replicated. A better
method is to apply attributes on specific registers or levels of hierarchy to specify which
registers can or cannot be replicated. For example, if a LUT1 rather than a register is being
used for replication, it indicates that an attribute or constraint is preventing the
optimization, such as a DONT_TOUCH attribute on a hierarchical cell or net segment in a
different hierarchy.

Sometimes, designers address the high fanout nets in RTL or synthesis by using a global
fanout limit or a MAX_FANOUT attribute on a specific net. This does not always result in the
most optimal routing resource usage, especially if the MAX_FANOUT attribute is set too
low. In addition, if the high fanout signal is a register control signal and is replicated more
than necessary, this can lead to a higher number of control sets.

Often, a better approach to reducing fanout is to use a balanced tree for the high fanout
signals. Consider manually replicating registers based on the design hierarchy, because the
cells included in a hierarchy are often placed together. Review the recommendations in Use
Register Replication in Chapter 3.

To structure control set trees as described in the preceding example, you can use the
opt_design Tcl command with one of the following options:

• -control_set_merge: This option reduces the drivers of logically-equivalent control
signals to a single driver.

• -merge_equivalent_drivers: This option reduces the drivers of
logically-equivalent signals, including control signals, to a single driver.
UltraFast Design Methodology Guide 255
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=255

Chapter 5: Design Closure
These options are the reverse of fanout replication and result in nets that are better suited
for module-based replication. This merge also works across multi-stage reset trees as
shown in the following figure.

• -hier_fanout_limit <arg>: This option replicates registers according to hierarchy
where <arg> represents the fanout limit for the replication according to the logical
hierarchy. For each hierarchical instance driven by the high fanout net, if the fanout
within the hierarchy is greater than the specified limit, the net within the hierarchy is
driven by a replica of the driver of the high fanout net. The replicated driver is placed in
the same level of hierarchy as the original driver, and replication is not limited to
control set registers. The following figure shows replication on a clock enable net with
a fanout of 60,000 using opt_design -hier_fanout_limit 1000. Because each
module SR_1K contains 1000 loads, the driver is replicated 59 times.

X-Ref Target - Figure 5-28

Figure 5-28: Control Set Merging Using opt_design -control_set_merge

RST1
1

RST2
1

RST3
1 300

RST3
2 400

RST2
2

RST3
3 200

RST3
4 500

RST1 RST2 RST3
1400

X20035-110617
UltraFast Design Methodology Guide 256
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=256

Chapter 5: Design Closure
Fanout optimization is enabled by default in place_design. Replication occurs early in
the placer flow and is based on placement information. Registers that drive more than 1000
loads and registers that drive DSPs, block RAMs, FIFOs, and URAMs are considered for
replication and are co-located with the loads if replication occurs.

For SSI technology devices, high-fanout drivers can be replicated for each SLR and
optionally assigned to SLR-aligned Pblocks along with their loads. This technique helps
reduce the impact of the SLR crossing delay and gives more freedom to place the replicated
high fanout nets independently in each SLR.

Promote High Fanout Nets to Global Routing

TIP: This optimization technique is automatically applied by the report_qor_suggestions Tcl
command.

Lower performance high fanout nets can be moved onto the global routing by inserting a
clock buffer between the driver and the loads. This optimization is automatically performed
in opt_design for nets with a fanout greater than 25000 only when a limited number of
clock buffers are already used and the clock period of the logic driven by the net is below
the limit specific to the targeted device and speed grade.

You can force synth_design and opt_design to insert a clock buffer when setting the
CLOCK_BUFFER_TYPE attribute on a net in the RTL file or in the constraint file (XDC). For
example:

set_property CLOCK_BUFFER_TYPE BUFG [get_nets netName]

X-Ref Target - Figure 5-29

Figure 5-29: Module-Based Replication on a High-Fanout Clock Enable Net
UltraFast Design Methodology Guide 257
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=257

Chapter 5: Design Closure
Using global clocking insures optimal routing at the cost of higher net delay. For best
performance, clock buffers must drive sequential loads directly, without intermediate
combinatorial logic. In most cases, opt_design reconnects non-sequential loads in
parallel to the clock buffer. If needed, you can prevent this optimization by applying a
DONT_TOUCH on the clock buffer output net. Also, if the high fanout net is a control signal,
you must identify why some loads are not dedicated clock enable or set/reset pins. Review
the use of dedicated synthesis attribute to control local clock enable and set/reset
optimizations in Control Signals and Control Sets in Chapter 3.

The placer also automatically routes high fanout nets (fanout > 1000) on any global routing
tracks available after clock routing is performed. This optimization occurs towards the end
of the placer flow and is only performed if timing does not degrade. You can disable this
feature using the -no_bufg_opt option.

Use Physical Optimization

Physical optimization (phys_opt_design) automatically replicates the high fanout net
drivers based on slack and placement information, and usually significantly improves
timing. Xilinx recommends that you drive high fanout nets with a fabric register (FD*), which
is easier to replicate and relocate during physical optimization.

In some cases, the default phys_opt_design command does not replicate all critical high
fanout nets. Use a different directive to increase the command effort: Explore,
AggressiveExplore or AggressiveFanoutOpt. Also, when a high fanout net becomes critical
during routing, you can add an iteration of phys_opt_design to force replication on
specific nets before trying to route the design again. For, example:

phys_opt_design -force_replication_on_nets [get_nets [list netA netB netC]]

Prioritize Critical Logic Using the group_path Command
You can use the group_path command with the -weight option to give higher priority to
the path endpoints defined in a clock group. For example, to assign a higher priority to
group of logic clocked by a specific clock, use the following command:

group_path -name [get_clocks clock] -weight 2

In this example, the implementation tools give higher priority to the paths that belong to
clock group clock with a weight of 2 over other paths in the design.

Fixing Large Hold Violations Prior to Routing
For paths that have large hold violations (> 0.4 ns), it is advantageous to reduce the hold
violations prior to routing the design, making it easier for the router to fix the remaining
smaller hold violations using route detours. Reducing hold violations prior to routing can
be beneficial if hold fixing has been identified as a source of routing congestion. The
phys_opt_design hold fixing options each use different resources and have specific
UltraFast Design Methodology Guide 258
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=258

Chapter 5: Design Closure
targets. It is important to use the proper option depending upon the device utilization and
desired impact. Prior to running phys_opt_design for hold fixing, it is important to
validate that the design has properly constrained clocktrees for minimal skew.

The insertion of negative-edge triggered registers between sequential elements can split a
timing path into two half period paths and significantly reduce hold violations. You can
insert the negative-edge triggered registers using the -insert_negative_edge_ffs
option during the phys_opt_design implementation step. Only paths with flip-flop
drivers and at most one LUT in between the sequential elements are considered for this
optimization. The setup slack on the paths must be sufficiently positive after the
optimization or else the optimization is discarded.

The following figure shows a negative-edge triggered register inserted after a flip-flop
driving a CMAC block. Before the optimization, the hold slack between the flip-flop and the
driver was -0.492 ns. After the insertion of the negative-edge triggered register
(highlighted in blue), the setup and hold slack are both positive.

You can also insert LUT1 delays onto datapaths to reduce hold violations. To insert LUT1
delays, use one of the following options during the phys_opt_design implementation
step:

• -hold_fix: Performs LUT1 insertion and only considers paths that are the largest
WHS violators with sufficient positive setup slack.

• -aggressive_hold_fix: Performs LUT1 insertion in a more aggressive manner than
the standard -hold_fix option. The -aggressive_hold_fix optimization
considers many hold violating paths for LUT1 insertion and can be used to significantly
reduce design THS at the expense of LUT utilization.

Note: The phys_opt_design -directive ExploreWithAggressiveHoldFix directive
runs the Explore directive along with the -aggressive_hold_fix as a single optimization.

The following figure shows a LUT1 delay inserted after a flip-flop driving an ILKN block.
Before the optimization, the path from the flip-flop to the ILKN is the WHS path in the
design with -0.277 ns hold slack. After the insertion of the LUT1 delay (highlighted in blue),
the hold slack is positive and the setup slack remains positive.

X-Ref Target - Figure 5-30

Figure 5-30: Fixing Hold Violation with Negative Edge Register Insertion
UltraFast Design Methodology Guide 259
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=259

Chapter 5: Design Closure
Addressing Congestion
Congestion can be caused by a variety of factors and is a complex problem that does not
always have a straightforward solution. Complexity and congestion have the same
resolution techniques. Check to see if complex modules are placed in the congested regions
of the device. The report_design_analysis congestion report helps you identify the
congested regions and the top modules that are contained within the congestion window.
Various techniques exist to optimize the modules in the congested region.

TIP: Before you try to address congestion with the techniques being discussed below, make sure that
you have clean constraints. Overlapping Pblocks can cause congestion and should be avoided.
Excessive hold time failures or negative hold slack require the router to detour which can lead to
congestion.

Lower Device Utilization

When several fabric resource utilization percentages are high (on average > 75%),
placement becomes more challenging if the netlist complexity is also high (high top-level
connectivity, high Rent exponent, high average fanout). High performance designs also
come with additional placement challenges. In such situations, revisit the design features
and consider removing non-essential modules until only one or two fabric resource
utilization percentages are high. If logic reduction is not possible, review the other
congestion alleviation techniques presented in this chapter.

TIP: Review resource utilization after opt_design in order to get more accurate numbers, once
unused logic has been trimmed instead of after synthesis.

X-Ref Target - Figure 5-31

Figure 5-31: Fixing Hold Violation with LUT1 Delay Insertion
UltraFast Design Methodology Guide 260
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=260

Chapter 5: Design Closure
Balance SLR Utilization for SSI Devices

When targeting SSI technology devices it is important to analyze the utilization per SLR
region. Overall utilization might be low, but high utilization in one SLR might lead to a
congestion.

In the following figure, the overall utilization for the design is low. However, the utilization
in SLR2 is high and the logic requires more routing resources than logic in the other SLRs.
The logic in this area is a wide bus MUX that saturates the routing resources.

X-Ref Target - Figure 5-32

Figure 5-32: Utilization Analysis per SLR Region
UltraFast Design Methodology Guide 261
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=261

Chapter 5: Design Closure
To balance utilization, try the following:

• Use different placer directives for spreading the design.

• Use floorplanning constraints, such as Pblocks to keep some modules out of the highly
utilized and congested SLR.

Use Alternate Placer and Router Directives

Because placement typically has the greatest impact on overall design performance,
applying different placer directives is one of the first techniques that should be tried to
reduce congestion. Consider running the alternate placer directives without any existing
Pblock constraints in order to give more freedom to the placer to spread the logic as
needed.

Several placer directives exist that can help alleviate congestion by spreading logic
throughout the device to avoid congested regions. The SpreadLogic placer directives are:

• AltSpreadLogic_high

• AltSpreadLogic_medium

• AltSpreadLogic_low

• SSI_SpreadLogic_high

• SSI_SpreadLogic_low

When congestion is detected on SLR crossing, consider using:

• SSI_BalanceSLLs placer directive which helps with partitioning the design across SLRs
while attempting to balance SLLs between SLRs.

• SSI_SpreadSLLs placer directive which allocates extra area for regions of higher
connectivity when partitioning across SLRs.

Other placer directives or implementation strategies might also help with alleviating
congestions and should also be tried after the placer directives mentioned above.

To compare congestion for different placer directives either run the Design Analysis
Congestion report after place_design, or examine the initial estimated congestion in the
router log file. Review the results against the congestion level ranges shown in Table 5-4.

Routing has less impact on congestion than placer directives. However, in some cases it is
useful to attempt different routing directives. The following directive ensures that the
router works harder to access more routing and relieve congestion in the interconnect tiles:

• AlternateCLBRouting

Note: The AlternateCLBRouting routing directive is most effective when there is short congestion or
both short and long congestion. This directive only applies to UltraScale devices.
UltraFast Design Methodology Guide 262
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=262

Chapter 5: Design Closure
For more information, see this link in the Vivado Design Suite User Guide: Implementation
(UG904) [Ref 22].

Turn Off Cross-Boundary Optimization

Prohibiting cross-boundary optimization in synthesis prevents additional logic getting
pulled into a module. This reduces the complexity of the modules but can also lead to
higher overall utilization. This can be done globally with the -flatten_hierarchy none
option in synth_design. This same technique can be applied on specific modules with
the KEEP_HIERARCHY attribute in RTL.

Reduce MUXF Mapping

TIP: This optimization technique is automatically applied by the report_qor_suggestions Tcl
command.

Using MUXF* primitives helps critical paths with many logic levels or a tight clock
requirement while also reducing power. MUXF* includes MUXF7, MUXF8, and MUXF9, which
are dedicated multiplexer resources located within the CLB. These resources are grouped
with up to eight LUTs during placement. This grouping forces high CLB input utilization with
higher routing demand and limits placement flexibility when the netlist connectivity is
complex, leading to potential higher routing congestion and timing degradation.

In addition, the opt_design command provides an optional MUX optimization phase to
remap MUXF* structures to LUT3 primitives to improve routability. You can use the
-muxf_remap option to remap all of the MUXF* cells. Alternatively, set the MUXF_REMAP
property to TRUE on a select number of cells in the congested region to limit the scope of
the MUX remapping. Any MUXF* cells with the MUXF_REMAP property set to TRUE
automatically trigger the MUX optimization phase during opt_design and are remapped
to LUT3s.

Note: Disabling these resources can result in increased power. Use this method only when needed
to achieve timing closure.
UltraFast Design Methodology Guide 263
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=xPlacerDirectives
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=263

Chapter 5: Design Closure
The following figure shows a 16-1 MUX before and after the MUXF* optimization.

To further optimize the netlist after performing MUX optimization, use the -remap option
with the -muxf_remap option. This combines the LUT3 primitives that are generated by
the MUXF* optimization with connected logic if possible.

As described in Identifying Congestion, you can determine whether timing closure is
impacted by routing congestion by reviewing the Router Initial Estimated Congestion table
in the log files or in the Design Analysis report (report_design_analysis
-congestion) after place or route is complete.

In the following figure, the Design Analysis report shows that 7% of the device is impacted
by Short congestion level 5 (32x32 CLBs) in the South direction while 26% MUXF are utilized
in the corresponding congested area.

In the Vivado IDE, you can select a row in the table of the Design Analysis congestion report
to highlight the corresponding congested area in the Device window. The following figure

X-Ref Target - Figure 5-33

Figure 5-33: Netlist Before and After MUX Optimization

X-Ref Target - Figure 5-34

Figure 5-34: South Short Congestion in the report_design_analysis Congestion Table
UltraFast Design Methodology Guide 264
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=264

Chapter 5: Design Closure
shows that the congestion overlaps with a higher MUXF density area. The MUXF cells are
highlighted in magenta using the following command in the Vivado IDE Tcl Console:

highlight_objects -color magenta [get_cells -hier -filter REF_NAME=~MUXF*]

MUXF* includes MUXF7/MUXF8/MUXF9, which are dedicated multiplexer resources located
within the CLB. These resources are grouped with up to 8 LUTs during placement, forcing
high CLB input utilization with higher routing demand and limiting placement flexibility.
The estimated congestion per CLB is displayed using the Vivado IDE metrics.

When high MUXF* utilization overlaps with areas of higher congestion, Xilinx recommends
reducing the number of MUXF* by mapping their corresponding functionality to LUTs,
which have higher placement and routing flexibility. You can use the following command in
the XDC synthesis constraints to modify the netlist:

set_property BLOCK_SYNTH.MUXF_MAPPING 0 [get_cells inst_name4]

After rerunning synthesis, place, and route, the updated congestion table in the Design
Analysis report now shows that the South Short congestion is lower (level 4), which typically
improves the timing quality of results.

X-Ref Target - Figure 5-35

Figure 5-35: MUXF Congestion Highlighted in the Vivado IDE Device Window

X-Ref Target - Figure 5-36

Figure 5-36: Initial Router Congestion Table after Reducing MUXF Usage on a Module
UltraFast Design Methodology Guide 265
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=265

Chapter 5: Design Closure
Disable LUT Combining

TIP: This optimization technique is automatically applied by the report_qor_suggestions Tcl
command.

LUT combining reduces logic utilization by combining LUT pairs with shared inputs into
single dual-output LUTs that use both O5 and O6 outputs. However, LUT combining can
potentially increase congestion because it tends to increase the input/output connectivity
for the slices. If LUT combining is high in the congested area (> 40%), you can try using a
synthesis strategy that eliminates LUT combining to help alleviate congestion. The
Flow_AlternateRoutability synthesis strategy and directive instructs the synthesis tool to not
generate any additional LUT combining.

Note: If you are using Synplify Pro for synthesis, you can use the Enable Advanced LUT Combining
option in the Implementation Options under the Device tab. This option is on by default. If you are
modifying the Synplify Pro project file (*prj), the following is specified:
set_option -enable_prepacking 0|1 (default is "1").

You can use the following command to select cells with LUT combining enabled in your
design:

select_objects [get_cells -hier -filter {SOFT_HLUTNM != "" || HLUTNM != ""}]

The following figure shows the horizontal congestion of a design with and without LUT
combining. The cells utilizing LUT combining are highlighted in purple.

To disable LUT combining on a module that overlaps with areas of higher congestion, use
the following Tcl command:

reset_property SOFT_HLUTNM [get_cells -hierarchical -filter {NAME =~ <module name>*}]

X-Ref Target - Figure 5-37

Figure 5-37: Effect of LUT Combining on Horizontal Congestion

Horizontal Congestion with LUT Combining Horizontal Congestion
without LUT Combining

X18040-101916
UltraFast Design Methodology Guide 266
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=266

Chapter 5: Design Closure
Limit High-Fanout Nets in Congested Areas

TIP: This optimization technique is automatically applied by the report_qor_suggestions Tcl
command.

High fanout nets that have tight timing constraints require tightly clustered placement to
meet timing. This can cause localized congestion as shown in the following figure. High
fanout nets can also contribute to congestion by consuming routing resources that are no
longer available for other nets in the congestion window.

To analyze the impact of high fanout non-global nets on routability in the congestion
window you can:

• Select the leaf cells of the top hierarchical modules in the congestion window

• Use the find command (Edit > Find) to select all of the nets of the selected cell objects
(filter out Global Clocks, Power, and Ground nets)

• Sort the nets in decreasing Flat Pin Count order

• Select the top fan-out nets to show them in relation to the congestion window

This can quickly help you identify high-fanout nets which potentially contribute to
congestion.

For high fanout nets with tight timing constraints in the congestion window, replicating the
driver will help relaxing the placement constraints and alleviate congestion.

X-Ref Target - Figure 5-38

Figure 5-38: High-Fanout Nets in Congestion Window
UltraFast Design Methodology Guide 267
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=267

Chapter 5: Design Closure
High fanout nets (fanout > 5000) with sufficient positive timing slack can be routed on
global clock resources instead of fabric resources. The placer automatically routes high
fanout nets with fanout > 1000 on global routing resources if those resources are available
towards the end of the placer step. This optimization only occurs if it does not degrade
timing.

You can also set the property CLOCK_BUFFER_TYPE=BUFG on the net and let synthesis or
logic optimization automatically insert the buffer prior to the placer step. Review the new
inserted buffer placement along with its driver and loads placement after place_design
to verify that it is optimal. If it is not optimal, use the CLOCK_REGION constraint (UltraScale
devices only) or LOC constraint (7 series devices only) on the clock buffer to control its
placement.

Use Cell Bloating

You can use cell bloating to insert whitespace (increased cell spacing) during the
place_design step. This leads to a lower density of cells in a given area of the die, which
can reduce congestion by increasing available routing. This technique is particularly
effective in small, congested areas of relatively high-performance logic.

To use cell bloating, apply the CELL_BLOAT_FACTOR property to hierarchical cells and set
the value to LOW, MEDIUM, or HIGH. When working with smaller modules of several
hundred cells, HIGH is the recommended setting.

CAUTION! If the device already uses too many routing resources, cell bloating is not recommended. In
addition, using cell bloating on larger cells might force placed cells to be too far apart.

Tuning the Compilation Flow
The default compilation flow provides a quick way to obtain a baseline of the design and
start analyzing the design if timing is not met. After initial implementation, tuning the
compilation flow might be required to achieve timing closure.

Using Strategies and Directives

Strategies and directives can be used to increase the implementation solution space and
find the optimal solution for your design. The strategies are applied globally to a project
implementation run, while the directives can be set individually on each step of the
implementation flow in both project and non-project modes. The pre-defined strategies
should be tried first before trying to customize the flow with directives. Xilinx does not
recommend running the SSI technology strategies for a non-SSI technology device.

If timing cannot be met with the predefined strategies, you can manually explore a custom
combination of directives. Because placement typically has a large impact on overall design
performance, it can be beneficial to try various placer directives with only the I/O location
constraints and with no other placement constraints. By reviewing both WNS and TNS of
UltraFast Design Methodology Guide 268
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=268

Chapter 5: Design Closure
each placer run (these values can be found in the placer log), you can select two or three
directives that provide the best timing results as a basis for the downstream
implementation flow.

TIP: For a list of directives and a short description their functions, enter the implementation command
followed by the -help option (for example, place_design -help), or see this link in the Vivado
Design Suite User Guide: Implementation (UG904) [Ref 22].

For each of these checkpoints, several directives for phys_opt_design and
route_design can be tried and again only the runs with the best estimated or final
WNS/TNS should be kept. In Non-Project Mode, you must explicitly describe the flow with
a Tcl script and save the best checkpoints. In Project Mode, you can create individual
implementation runs for each placer directive, and launch the runs up to the placement
step. You would continue implementation for the runs that have the best results after the
placer step (as determined by the Tcl-post script).

Physical constraints (Pblocks and DSP and RAM macro constraints) can prevent the placer
from finding the most optimal solution. Xilinx therefore recommends that you run the
placer directives without any Pblock constraints. The following Tcl command can be used to
delete any Pblocks before placement with directives commences:

delete_pblock [get_pblocks *]

Running place_design -directive <directive> and analyzing placement of the
best results can also provide a template for floorplanning the design or reusing the
placement of block RAM macros or DSP macros, which can stabilize the flow from run to
run.

Using Optimization Iterations

Sometimes it is advantageous to iterate through a command multiple times to obtain the
best results. For example, it might be helpful to first run phys_opt_design with the
force_replication_on_nets option in order to optimize some critical nets that
appear to have an impact on WNS during route.

Next run phys_opt_design with any of the directives to improve the overall WNS of the
design.

In Non-Project Mode, use the following commands:

phys_opt_design -force_replication_on_nets [get_nets -hier *phy_reset*]

phys_opt_design -directive <directive name>

In Project Mode, the same results can be achieved by running the first phys_opt_design
command as part of a Tcl-pre script for a phys_opt_design run step which will run using
the -directive option.
UltraFast Design Methodology Guide 269
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=xImplementationCategoriesStrategyDescriptionsAndDirectiveMapping
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=269

Chapter 5: Design Closure
Overconstraining the Design

When the design fails timing by a small amount after route, it is usually due to a small
timing margin after placement. It is possible to increase the timing budget for the router by
tightening the timing requirements during placement and physical optimization. To
accomplish this, Xilinx recommends using the set_clock_uncertainty constraint for
the following reasons:

• It does not modify the clock relationships (clock waveforms remain unchanged).

• It is additive to the tool-computed clock uncertainty (jitter, phase error).

• It is specific to the clock domain or clock crossing specified by the -from and -to
options.

• It can easily be reset by applying a null value to override the previous clock uncertainty
constraint.

In any case, Xilinx recommends that you:

• Overconstrain only the clocks or clock crossing that cannot meet setup timing.

• Use the -setup option to tighten the setup requirement only

Note: If you do not specify this option, both setup and hold requirements are tightened.

• Reset the extra uncertainty before running the router step.

See the following example:

A design misses timing by -0.2 ns on paths with the clk1 clock domain and on paths from
clk2 to clk3 by -0.3 ns before and after route.

1. Load netlist design and apply the normal constraints.

2. Apply the additional clock uncertainty to overconstrain certain clocks.

a. The value should be at least the amount of violation.

b. The constraint should be applied only to setup paths.

set_clock_uncertainty -from clk0 -to clk1 0.3 -setup

set_clock_uncertainty -from clk2 -to clk3 0.4 -setup

3. Run the flow up to the router step. It is best if the pre-route timing is met.

4. Remove the extra uncertainty.

set_clock_uncertainty -from clk0 -to clk1 0 -setup

set_clock_uncertainty -from clk2 -to clk3 0 -setup

5. Run the router.
UltraFast Design Methodology Guide 270
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=270

Chapter 5: Design Closure
After the router, you can review the timing results to evaluate the benefits of
overconstraining. If timing was met after placement but still fails by some amount after
route, you can increase the amount of uncertainty and try again.

RECOMMENDED: Do not overconstrain beyond 0.5 ns. Overconstraining the design can result in
increased power for the implementation as well as an increase in runtime.

TIP: An alternative to overconstraining the design is to change the relative priority of each path group.
By default, each clock and user-defined path group is analyzed independently with the same priority
during implementation. You can set a higher priority for any clock-based path group using the
group_path -weight 2 -name <ClockName> options. The priority of user-defined path groups
cannot be changed.

Using Incremental Implementation

You can use incremental implementation to reduce implementation runtime and produce
more predictable results. Xilinx recommends making incremental implementation part of
your standard timing closure strategies. For more information, see this link in the Vivado
Design Suite User Guide: Implementation (UG904) [Ref 22].

This section covers recommendations for both high and low reuse modes. High reuse mode
is enabled when cell reuse is equal to or greater than 75%. Low reuse mode is enabled when
cell reuse is less than 75%.

Choose a High Quality Reference Checkpoint

When you use automatic incremental implementation, the Vivado tools manage the
checkpoint to use. This ensures that reuse is high and timing is nearly closed. In addition,
the tools try to match reference timing rather than close timing. To experiment outside of
these constraints, you must manually select a checkpoint. Use the following guidelines to
choose a high quality reference checkpoint:

• Use a reference checkpoint that meets timing or is close to meeting timing. If the
reference checkpoint is close to meeting timing, Xilinx recommends running the
route_design -tns_cleanup command to clean up paths that are not the worst
case path. You can also run post-route phys_opt_design to further reduce the
number of timing failures.

• When running more than one incremental implementation run, select different timing
closed checkpoints.

• When multiple reference checkpoints meet timing and have matching synth_design
and opt_design options, choose the checkpoint with the least congestion. Examine
the Vivado router log file and look for initial estimated congestion. For details, see
Identifying Congestion.
UltraFast Design Methodology Guide 271
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=xIncrementalCompile
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=271

Chapter 5: Design Closure
• Use incremental synthesis to further improve reuse and the ability to maintain QoR.
Enable incremental synthesis early in the design closure cycle rather than waiting until
you are ready to use incremental implementation.

Limit Differences for High Reuse Mode

In high reuse mode, the amount of reuse depends on the differences between the reference
and incremental runs, including differences in the following:

• Source code and IP

• Tool options used for synth_design and opt_design

• Tool versions

For best results, maximize reuse as follows:

• Run incremental flows in parallel with standard timing closure flows.

• If you have multiple runs with different synth_design and opt_design options, use
a different reference checkpoint for each run.

• Use the same tool versions across runs if possible. Newer tool versions might include
changes to algorithms and thresholds for existing options.

• Use report_incremental_reuse -hierarchical to show matching percentages
per hierarchy area. If hierarchy areas that should match are not showing high matching
percentages, compare the tool options and tool versions of the reference design and
incremental design.

Avoid the following synthesis differences, which can impact reuse:

• Enabling register retiming

• Preserving or dissolving logical hierarchy

• Changing constraints

Note: Options used with place_design, route_design, and phys_opt_design in the
reference run do not affect reuse.

Select Incremental Implementation Directives for High Reuse Mode

In high reuse mode, the repeatability of the reference checkpoint results is the priority. You
can fine tune the behavior of the tool with the following supported directives:

• Default: Targets the WNS from the reference run. This helps maintain consistency with
the reference checkpoint and runtime.

• Explore: Targets WNS = 0.0 ns. Use this directive when the reference run is very close
to meeting timing, and you are willing to trade off consistency in results and runtime
with more effort to try to meet timing. This mode can improve WNS by up to 100 ps on
difficult designs. There is usually a runtime hit with this option.
UltraFast Design Methodology Guide 272
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=272

Chapter 5: Design Closure
• Quick: This option is intended for designs that easily meet timing with > 99% reuse.
Typically, this option is used for ASIC emulation and prototype designs with minor
changes that do not impact timing.

Improve Timing QoR for High Reuse Mode

In high reuse mode, improve timing QoR as follows:

• Ensure the reference checkpoint has already closed timing.

In the reference checkpoint, if WNS is > 0.100 ns, increase effort on the reference runs
to improve the WNS. After WNS is within 0.100 ns, you can use the Explore directive to
try to close timing.

• Run multiple incremental runs with different reference checkpoints.

This would normally mean the reference checkpoints are generated with different placer
directives and all close timing.

• Do not floorplan incremental runs.

Pblock placement is overridden by reference checkpoint placement.

• Do not overconstrain the placer as described in Overconstraining the Design.

Overconstraining the design in the incremental run can severely impact reuse, because
the tools try to meet a target WNS that is artificially altered.

Reduce QoR Variability for Low Reuse Mode

In low reuse mode, you can reuse particular cells (for example, a hierarchical cell in the
design) or cell types (for example, DSPs or block RAMs). This can be effective when both of
the following are true:

• Some design runs are showing that a design can meet timing but many runs do not.

• It is early in the design the flow or significant changes are still being made.

Reusing hierarchical cells is effective when placement of a particular cell is influencing the
WNS significantly. Reusing DSPs, block RAMs, or both is useful in designs that have a
relatively high density of these blocks.

To reuse particular cell or cell types:

• Analyze the reference runs, such as checking failing checkpoints to identify areas to
target.

• After determining the area to target, compare a set of runs against a baseline set of
runs to evaluate effectiveness.

• Use different place_design directives.
UltraFast Design Methodology Guide 273
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=273

Chapter 5: Design Closure
Note: In low reuse mode, all directives from the standard flow are supported, and target WNS is
always 0.00 ns.

To reuse only block memory placement, use the following Tcl script:

read_checkpoint -incremental routed.dcp \

-reuse_objects [all_rams] -fix_objects [all_rams]

To reuse only DSP placement, use the following Tcl script:

read_checkpoint -incremental routed.dcp \

-reuse_objects [all_dsps] -fix_objects [all_dsps]

To reuse both Block Memory and DSP placement, use the following Tcl script:

read_checkpoint -incremental routed.dcp \

-reuse_objects [all_rams] -reuse_objects [all_dsps] -fix_objects
[current_design]

To reuse hierarchy in a particular hierarchical cell and all hierarchies below the cell, use the
following Tcl script:

read_checkpoint -incremental routed.dcp \

-only_reuse [get_cells <cell_name>] -fix_objects [get_cells <cell_name>]

Considering Floorplan

Floorplanning allows you to guide the tools, either through high-level hierarchy layout, or
through detail placement. This can provide improved QoR and more predictable results. You
can achieve the greatest improvements by fixing the worst problems or the most common
problems. For example, if there are outlier paths that have significantly worse slack, or high
levels of logic, fix those paths first by grouping them in a same region of the device through
a Pblock. Limit floorplanning only to portions of design that need additional user
intervention, rather than floorplanning the entire design.

Floorplanning logic that is connected to the I/O to the vicinity of the I/O can sometimes
yield good results in terms of predictability from one compilation to the next. In general, it
is best to keep the size of the Pblocks to a clock region. This provides the most flexibility for
the placer. Avoid overlapping Pblocks, as these shared areas can potentially become more
congested. Where there is a high number of connecting signals between two Pblocks
consider merging them into a single Pblock. Minimize the number of nets that cross
Pblocks.

TIP: When upgrading to a newer version of the Vivado Design Suite, first try compiling without Pblocks
or with minimal Pblocks (i.e. only SLR level Pblocks) to see if there are any timing closure challenges.
Pblocks that previously helped to improve the QoR might prevent place and route from finding the best
possible implementation in the newer version of the tools.
UltraFast Design Methodology Guide 274
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=274

Chapter 5: Design Closure
TIP: When the IS_SOFT property is set to TRUE, Pblocks are ignored starting with physical synthesis in
placer through the end of the implementation flow. For example, set_property IS_SOFT TRUE
[get_pblocks pblock_0]. This approach is particularly helpful for preserving the overall
placement while giving additional flexibility to placement algorithms that reduce congestion, move
logic closer to optimal locations, and increase the efficiency of physical optimizations.

For SSI technology devices, you can also consider using SLR Pblocks or soft floorplanning
constraints (USER_SLR_ASSIGNMENT). For more information, see SSI Technology
Considerations.

Grouping Critical Logic

Grouping critical logic to avoid crossing SLR or I/O columns can help improve the critical
path of a design. The following figure shows two examples of a large FIFO implemented
with 29 FIFO36E2 primitives. The critical path is from the WRRSTBUSY pin of every FIFO36E2
in the group through 5 LUTs to the WREN pin of every FIFO36E2 in the group.

• On the left, the example shows that the placer was unable to find the most optimal
placement of the path, because block RAM utilization was high. FIFO36E2 primitives are
marked in red.

• On the right, the example shows that the placer was able to meet timing, because the
FIFO36E2 blocks were grouped in a rectangle that avoided the configuration column
crossing. FIFO36E2 primitives are marked in green.

Reusing Placement Results

It is fairly easy to reuse the placement of block RAM macros and DSP macros. Reusing this
placement helps to reduce the variability in results from one netlist revision to the next.
These primitives generally have stable names. The placement is usually easy to maintain.

X-Ref Target - Figure 5-39

Figure 5-39: FIFO Locations Avoiding the Configuration Column

FIFO Locations Not Avoiding the Configuration Column Preassigned FIFO Locations Avoiding the Configuration Column
UltraFast Design Methodology Guide 275
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=275

Chapter 5: Design Closure
Some placement directives result in better block RAM and DSP macro placement than
others. You can try applying this improved macro placement from one placer run to others
using different placer directives to improve QoR. A simple Tcl script that saves block RAM
placement into an XDC file is shown below.

set_property IS_LOC_FIXED 1 \
[get_cells -hier -filter {PRIMITIVE_TYPE =~ BMEM.bram.*}]

write_xdc bram_loc.xdc -exclude_timing

You can edit the bram_loc.xdc file to only keep block RAM location constraints and apply
it for your consecutive runs.

IMPORTANT: Do not reuse the placement of general slice logic. Do not reuse the placement for sections
of the design that are likely to change.

SSI Technology Considerations
Stacked silicon interconnect (SSI) technology devices consist of multiple super logic regions
(SLRs), joined by an interposer. The interposer connections are called super long lines
(SLLs). There is some delay penalty when crossing from one SLR to another. To minimize the
impact of the SLL delay on your design, floorplan the design so that SLR crossings are not
part of the critical path. Minimizing SLR crossings through floorplanning by keeping a
challenging module within one SLR only can also improve timing and routability of the
design targeting SSI technology devices.

Using Hard SLR Floorplan Constraints

For high-performance designs, sufficient pipelining between the major hierarchies is
required to ease global placement and SLR partitioning. When a design is challenging, SLR
crossing points can change from run to run. In addition to defining SLR Pblocks, you can
create additional Pblocks that are aligned to clock regions and located along the SLR
boundary to constrain the crossing flip-flops. The following example shows an UltraScale
ku115 SSI device with the following Pblocks:

• 2 SLR Pblocks: SLR0 and SLR1

• 2 SLR-crossing Pblocks: SLR0_top_row and SLR1_bottom_row
UltraFast Design Methodology Guide 276
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=276

Chapter 5: Design Closure
IMPORTANT: Xilinx recommends using CLOCKREGION ranges instead of LAGUNA ranges for
SLR-crossing Pblocks.

TIP: You can define SLR Pblocks by specifying a complete SLR. For example, resize_pblock
pblock_SLR0 -add SLR0. Also, when critical paths appear on SLR crossings due to Pblock
constraints, you can set the IS_SOFT property to TRUE on SLR Pblocks. Soft Pblocks are treated as hard
Pblocks during the placer floorplanning phase (also known as SLR partitioning) and during the first half
of the global placement phase. Soft Pblocks are ignored during the physical synthesis in placer phase
through the end of the implementation flow. Soft Pblocks allow a limited amount of logic to move
across SLR boundaries to improve timing QoR.

For more information, see this link in Vivado Design Suite User Guide: Design Analysis and
Closure Techniques (UG906) [Ref 24].

VIDEO: For information on using floorplanning techniques to address design performance issues, see
the Vivado Design Suite QuickTake Video: Design Analysis and Floorplanning.

X-Ref Target - Figure 5-40

Figure 5-40: SLR-Crossing Pblock Example

Pblocks
dedicated to
SLR crossing
flip-flops

X18184-110716
UltraFast Design Methodology Guide 277
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf;a=xFloorplanning
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/design-analysis-floorplanning-with-vivado.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=277

Chapter 5: Design Closure
Using Soft SLR Floorplan Constraints

For large designs, logic for most of the major blocks fits in one SLR as expected and closes
timing after a few design iterations. However, small portions of the logic, especially the
connectivity across major blocks and across SLRs, is subject to QoR variation depending on
the overall design placement. In such cases, the placer and physical optimization algorithms
need additional flexibility to replicate or move some of the logic to a different SLR to
address placement challenges and close timing.

SLR Pblocks are hard constraints that prevent fine-tuning logic assignment to the optimal
SLR as well as prevent a number of physical optimizations. To allow the Vivado
implementation tools more flexibility, you can use the USER_SLR_ASSIGNMENT property to
floorplan the design by assigning large design blocks to SLRs. Set this property to a string
value, which is applied to hierarchical cells and ignored on leaf cells. The value you set for
this property influences the logic partitioning as follows:

• SLR name: When a hierarchical cell is assigned the name of an SLR (SLR0, SLR1, SLR2,
etc.), the placer attempts to place the entire cell within the specified SLR.

• String value: When a hierarchical cell is assigned an arbitrary string value, the placer
chooses the SLR. This prevents cells from being partitioned into multiple SLRs.

Note: If multiple cells have the same USER_SLR_ASSIGNMENT value, the placer attempts to
group the cells in the same SLR.

The USER_SLR_ASSIGNMENT property is a soft constraint while the Pblock is a hard
constraint, which gives USER_SLR_ASSIGNMENT the following advantages over Pblocks:

• When needed, the placer has the flexibility to ignore USER_SLR_ASSIGNMENT to find a
valid partitioning of the design.

• Although USER_SLR_ASSIGNMENT prevents hierarchical cells from being partitioned,
this property allows the placer and physical optimization to make fine-tuned
adjustments to leaf cell placement near the SLR boundaries to improve timing. These
adjustments include moving pipeline registers across SLR boundaries if the moves
improve timing. These register moves are not permitted across Pblock boundaries.

In the following example, a design contains three timing-critical hierarchical blocks with cell
names IP1, IP2, and IP3 and targets a two-SLR device. To split the three blocks so that IP1
and IP2 are kept together in SLR1 while IP3 is placed in SLR0, the following XDC constraints
are applied:

set_property USER_SLR_ASSIGNMENT SLR1 [get_cells {IP1 IP2}]
set_property USER_SLR_ASSIGNMENT SLR0 [get_cells IP3]

The following figure shows the resulting placement. To improve performance, you can
incorporate extra pipeline stages to traverse distances within the device. This is particularly
helpful along expected SLR crossings, between IP2 and IP3 in this example. During detail
UltraFast Design Methodology Guide 278
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=278

Chapter 5: Design Closure
placement and phys_opt_design, the pipeline registers from IP2 and IP3 can
automatically move across SLR boundaries if this improves timing.

For cases in which you cannot set USER_SLR_ASSIGNMENT or the placer splits challenging
paths across SLRs, you can use the USER_CROSSING_SLR property to direct where SLR
crossings should or should not occur. Typically, you apply this property to nets or leaf pins
where you want pins to be placed in the same SLR as the net driver, or where you want the
SLR crossing for the case of a register chain. Set this property to a Boolean value, which is
applied to nets and pins to constrain individual SLR crossings:

• TRUE: Indicates that the target net object should cross an SLR or the target pin object
should be connected across an SLR. You can only apply the TRUE value to
register-to-register connections with a single fanout in between.

Note: You cannot use the TRUE value for random logic. This option is useful for ensuring a chain
of registers always crosses a SLR boundary on a specific register when trying multiple
implementation strategies.

• FALSE: Indicates that the target net object should not cross an SLR or the target pin
object should not be connected across an SLR. You can apply the FALSE value to any
net or pin.

X-Ref Target - Figure 5-41

Figure 5-41: Placement Example for the USER_SLR_ASSIGNMENT Property

SLR0

SLR1

IP2

IP3

IP1

Add pipeline
registers for
placement
flexibility

X21199-071618
UltraFast Design Methodology Guide 279
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=279

Chapter 5: Design Closure
Note: Pins must not be inside macro primitives, because these pins are internal and cannot be
constrained.

In the following example, a pipeline register chain crosses an SLR twice, resulting in an
unintentional, inefficient zigzag path.

Note: In the next two figures, each dot represents a register stage.

To achieve the optimal placement in which only net_B crosses the SLR, the following XDC
constraints are applied:

set_property USER_CROSSING_SLR FALSE [get_pins -leaf -of [get_nets net_A]]
set_property USER_CROSSING_SLR TRUE [get_pins -leaf -of [get_nets net_B]]

The resulting placement contains just a single SLR crossing on net_B as shown in the
following figure.

X-Ref Target - Figure 5-42

Figure 5-42: Suboptimal SLR Crossings Before Setting the USER_CROSSING_SLR Property

net_A net_B

SLR
Boundary

X21198-071618
UltraFast Design Methodology Guide 280
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=280

Chapter 5: Design Closure
Using SLR Crossing Registers

When targeting UltraScale+ SSI technology devices, you can map a register-to-register SLR
crossing to a Laguna TX_REG driving a Laguna RX_REG directly. This type of connection is
only possible in the UltraScale+ device family, where the Vivado router can fix hold time
violations by setting local programmable clock delays. Using the TX_REG to RX_REG SLR
crossing topology for pipeline register crossings offers the following performance
advantages:

• The placement of SLR crossings spreads vertically, reducing routing congestion near
SLR boundaries.

• Locating registers in Laguna sites improves delay estimation accuracy, resulting in
higher QoR.

• SLR-crossing performance becomes faster and more consistent.

Note: When targeting UltraScale SSI technology devices, you can only use a Laguna TX_REG or
RX_REG on a SLR crossing net, and you cannot use both at the same time. Performance advantages
are similar to the ones listed above.

A reliable method of mapping registered crossings to Laguna is to apply both BEL and LOC
constraints to the registers to lock them in place. The LOC value assigns the Laguna site, and
the BEL value chooses a particular Laguna register inside the site, one of six TX_REG
registers or one of six RX_REG registers. Laguna crossing registers are a fixed distance apart,
which means that each TX_REG register is paired with an RX_REG register for a direct
connection.

In the following example, a register-to-register connection is manually placed onto a
TX_REG to RX_REG connection. Pipeline register reg_A drives a single fanout with the single

X-Ref Target - Figure 5-43

Figure 5-43: Optimal SLR Crossings After Setting the USER_CROSSING_SLR Property

net_A

net_B

X21197-071618
UltraFast Design Methodology Guide 281
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=281

Chapter 5: Design Closure
load of register reg_B. For a vu9p target device, the following XDC constraints are applied
so that reg_A in SLR2 drives reg_B in SLR1 using a direct TX_REG to RX_REG connection:

set_property BEL TX_REG3 [get_cells reg_A]
set_property BEL RX_REG3 [get_cells reg_B]
set_property LOC LAGUNA_X2Y480 [get_cells reg_A]
set_property LOC LAGUNA_X2Y360 [get_cells reg_B]

The BEL assignments are applied first, and the register position (0, 1, ... 5) must match
between TX_REG and RX_REG, which is 3 for this example. Finally, the distance between
paired Laguna sites is 120 rows. The register reg_A drives from the bottom row of the SLR2
Laguna column across to the bottom row of the SLR1 Laguna column. When creating
LAGUNA BEL and LOC constraints, try grouping registers with same clock, clock enable and
reset signals to avoid control set compatibility issues.

Alternatively, you can set the USER_SLL_REG property on registers that you expect to be
placed at an SLR crossing boundary on a Laguna register site. The USER_SLL_REG constraint
is ignored by place_design if the register D and Q pins are connected to a net that either
does not cross an SLR boundary or drives loads placed in multiple SLRs. For example:

set_property USER_SLL_REG TRUE [get_cells {reg_A reg_B}]

Using Auto-Pipelining for SLR Crossings

Whether you use soft SLR floorplan constraints, hard SLR floorplan constraints, or no
floorplan constraints, the number of pipeline stages required to meet timing between major
portions of the design located in different SLRs varies based on the following:

• Target frequency

• Device floorplan

• Device speedgrade

You can leverage the auto-pipelining feature to allow the placer algorithms to decide on the
number of required stages and their optimal location, which helps timing closure across SLR
boundaries. When using this feature, the Vivado placer automatically uses Laguna registers
without additional intervention.

You can enable auto-pipelining by setting AUTOPIPELINING_* attributes on buses and
handshake logic in your RTL, but make sure that the additional latency does not adversely
affect the design functionality. Alternatively, you can use the Xilinx AXI Register Slice
Memory Mapped or Streaming IP, configured in the SLR crossing. For additional
information, see Auto-Pipelining Considerations in Chapter 3.
UltraFast Design Methodology Guide 282
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=282

Chapter 5: Design Closure
Power Analysis and Optimization
Given the importance of power, the Vivado tools support methods for obtaining an
accurate estimate for power, as well as providing some power optimization capabilities. For
additional information refer to Vivado Design Suite User Guide: Power Analysis and
Optimization (UG907) [Ref 25].

RECOMMENDED: When targeting UltraScale and UltraScale+™ devices and using the Explore directives
or Explore-based strategies, you must manually enable BRAM power optimization by running
power_opt_design or using opt_design -bram_power_opt after opt_design runs. Xilinx
recommends targeting BRAMs to achieve power reduction.

Estimating Power Throughout the Flow
As your design flow progresses through synthesis and implementation, you must regularly
monitor and verify the power consumption to be sure that thermal dissipation remains
within budget. You can then take prompt remedial actions if power approaches your budget
too closely.

Specify a power budget to report the power margin using the XDC constraint:

set_operating_conditions -design_power_budget <value in watts>

This value is used by the report_power command. The difference between the calculated
on-chip power and the power budget is the power margin, which is displayed in red in the
Vivado IDE if the power budget is exceeded. This makes it easier to monitor power
consumption throughout the flow.

TIP: For UltraScale+ devices, you can export an XDC file from XPE that contains the environment
settings, including the XPE estimate that can be used as a power budget constraint. You can override
the power budget using either XPE or the XDC. Add the XDC constraints for power margin reporting.

The accuracy of the power estimates varies depending on the design stage when the power
is estimated. To estimate power post-synthesis through implementation, run the
report_power command, or open the Power Report in the Vivado IDE.

• Post Synthesis

The netlist is mapped to the actual resources available in the target device.

• Post Placement

The netlist components are placed into the actual device resources. With this packing
information, the final logic resource count and configuration becomes available.
UltraFast Design Methodology Guide 283
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=283

Chapter 5: Design Closure
This accurate data can be exported to the Xilinx Power Estimator spreadsheet. This
allows you to:

° Perform what-if analysis in XPE.

° Provide the basis for accurately filling in the spreadsheet for future designs with
similar characteristics.

• Post Routing

After routing is complete all the details about routing resources used and exact timing
information for each path in the design are defined.

In addition to verifying the implemented circuit functionality under best and worst case
logic and routing delays, the simulator can also report the exact activity of internal nodes
and include glitching. Power analysis at this level provides the most accurate power
estimation before you actually measure power on your prototype board.

Using the Power Constraints Advisor
The Power Constraint Advisor reports the tool-computed switching activity on all control
signals in the design and is sorted starting with highest fanout. Review this list for Low
confidence levels, which indicate resets with high switching activity and enables with very
low or zero switching activity. Both factors contribute to erroneously optimistic power
results. For more information, see this link in the Vivado Design Suite User Guide: Power
Analysis and Optimization (UG907) [Ref 25].

Best Practices for Accurate Power Analysis
For accurate power analysis, make sure you have accurate timing constraints, I/O
constraints, and switching activity. For more information, see this link in the Vivado Design
Suite User Guide: Power Analysis and Optimization (UG907) [Ref 25].

Reviewing the Design Power Distribution After Running Vivado
Design Suite Power Analysis
You can review the total on-chip power and thermal properties as well as details of the
power at the resource level to determine which parts of your design contribute most to the
total power. For more information, see this link in the Vivado Design Suite User Guide: Power
Analysis and Optimization (UG907) [Ref 25].

Further Refining Control Signal Activity After Running Vivado
Design Suite Power Analysis
When SAIF-based annotation has not been used for accurate power analysis, you can
fine-tune the power analysis after doing the first level analysis. For more information, see
UltraFast Design Methodology Guide 284
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug907-vivado-power-analysis-optimization.pdf;a=xPowerConstraintsAdvisor
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug907-vivado-power-analysis-optimization.pdf;a=xEstimatingPowerInTheXilinxPowerEstimator
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug907-vivado-power-analysis-optimization.pdf;a=xReviewYourDesignPowerDistribution
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=284

Chapter 5: Design Closure
this link in the Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)
[Ref 25].

Power Optimization
If the power estimates are outside the budget, you must follow the steps described in the
following sections to reduce power.

Analyzing Your Power Estimation and Optimization Results

Once you have generated the power estimation report using report_power, Xilinx
recommends the following:

• Examine the total power in the Summary section. Does the total power and junction
temperature fit into your thermal and power budget?

• If the results are substantially over budget, review the power summary distribution by
block type and by the power rails. This provides an idea of the highest power
consuming blocks.

• Review the Hierarchy section. The breakdown by hierarchy provides a good idea of the
highest power consuming module. You can drill down into a specific module to
determine the functionality of the block. You can also cross-probe in the GUI to
determine how specific sections of the module have been coded, and whether there
are power efficient ways to recode it.

Running Power Optimization

TIP: To maximize the impact of power optimizations, see Coding Styles to Improve Power in Chapter 3.

Power optimization works on the entire design or on portions of the design (when
set_power_opt is used) to minimize power consumption.

Power optimization can be run either pre-place or post-place in the design flow, but not
both. The pre-place power optimization step focuses on maximizing power saving. This can
result (in rare cases) in timing degradation. If preserving timing is the primary goal, Xilinx
recommends the post-place power optimization step. This step performs only those power
optimizations that preserve timing.

In cases where portions of the design should be preserved due to legacy (IP) or timing
considerations, use the set_power_opt command to exclude those portions (such as
specific hierarchies, clock domains, or cell types) and rerun power optimization.

Using the Power Optimization Report

To determine the impact of power optimizations, run the following command in the Tcl
console to generate a power optimization report:
UltraFast Design Methodology Guide 285
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug907-vivado-power-analysis-optimization.pdf;a=xFurtherRefiningControlSignalActivity
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=285

Chapter 5: Design Closure
report_power_opt -file myopt.rep

Using the Timing Report to Determine the Impact of Power Optimization

Power optimization works to minimize the impact on timing while maximizing power
savings. However, in certain cases, if timing degrades after power optimization, you can
employ a few techniques to offset this impact.

Where possible, identify and apply power optimizations only on non-timing critical clock
domains or modules using the set_power_opt XDC command. If the most critical clock
domain happens to cover a large portion of the design or consumes the most power, review
critical paths to see if any cells in the critical path were optimized by power optimization.

Objects optimized by power optimization have an IS_CLOCK_GATED property on them.
Exclude these cells from power optimization.

To locate clock gated cells, run the following Tcl command:

get_cells -hier -filter {IS_CLOCK_GATED==1}

Configuration and Debug
After successfully completing the design implementation, the next step is to load the
design into the FPGA and run it on hardware. Configuration is the process of loading
application-specific data (a bitstream) into the internal memory of the FPGA device. Debug
is required if the design does not meet expectations on the hardware.

See the following resources for details on configuration and debug software flows and
commands:

• Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 27]

• Vivado Design Suite Tcl Command Reference Guide (UG835) [Ref 17]

• 7 Series FPGAs Configuration User Guide (UG470) [Ref 39]

• UltraScale Architecture Configuration User Guide (UG570) [Ref 39]

• Vivado Design Suite QuickTake Video: How To Use the “write_bitstream” Command in
Vivado

Configuration
You must first successfully synthesize and implement your design in order to create a
bitstream image. Once the bitstream has been generated and all DRCs are analyzed and
corrected, you can load bitstream onto the device using one of the following methods:

• Direct Programming
UltraFast Design Methodology Guide 286
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/use-write-bitstream-command-in-vivado.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=286

Chapter 5: Design Closure
The bitstream is loaded directly to the device using a cable, processor, or custom
solution.

• Indirect Programming

The bitstream is loaded into an external flash memory. The flash memory then loads the
bitstream into the device.

You can use the Vivado tools to accomplish the following:

• Create the FPGA bitstream (.bit or .rbt).

• Select Tools > Edit Device Properties to review the configuration settings for
bitstream generation.

• Format the bitstream into flash programming files (.mcs).

• Program the device using either of the following methods:

° Directly program the device.

° Indirectly program the attached configuration flash device.

Flash devices are non-volatile devices and must be erased before programming.
Unless a full chip erase is specified, only the address range covered by the assigned
MCS is erased.

IMPORTANT: The Vivado Design Suite Device Programmer can use JTAG to read the Status register
data on Xilinx devices. In case of a configuration failure, the Status register captures the specific error
conditions that can help identify the cause of a failure. In addition, the Status register allows you to
verify the Mode pin settings M[2:0] and the bus width detect. For details on the Status register, see the
Configuration User Guide [Ref 39] for your device.

TIP: If configuration is not successful, you can use a JTAG readback/verify operation on the FPGA
device to determine whether the intended configuration data was loaded correctly into the device.

Debugging
In-system debugging allows you to debug your design in real time on your target device.
This step is needed if you encounter situations that are extremely difficult to replicate in a
simulator.

For debug, you provide your design with special debugging hardware that allows you to
observe and control the design. After debugging, you can remove the instrumentation or
special hardware to increase performance and logic reduction.

Debugging an FPGA design is a multistep, iterative process. Like most complex problems, it
is best to break the FPGA design debugging process down into smaller parts by focusing on
UltraFast Design Methodology Guide 287
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=287

Chapter 5: Design Closure
getting smaller sections of the design working one at a time rather than trying to get the
whole design to work at once.

Though the actual debugging step comes after you have successfully implemented your
design, Xilinx recommends planning how and where to debug early in the design cycle. You
can run all necessary commands to perform programming of the FPGA devices and
in-system debugging of the design from the Program and Debug section of the Flow
Navigator window in the Vivado IDE.

Following are the debug steps:

1. Probing: Identify the signals in your design that you want to probe and how you want to
probe them.

2. Implementing: Implement the design that includes the additional debug IP attached to
the probed nets.

3. Analyzing: Interact with the debug IP contained in the design to debug and verify
functional issues.

4. Fixing phase: Fix any bugs and repeat as necessary.

For more information, see Vivado Design Suite User Guide: Programming and Debugging
(UG908) [Ref 27].
UltraFast Design Methodology Guide 288
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=288

Chapter 5: Design Closure
Probing the Design

The Vivado tools provide several methods to add debug probes in your design. The table
below explains the various methods, including the pros and cons of each method.

Table 5-10: Debugging Flows

Debugging Flow Name Flow Steps Pros/Cons

HDL instantiation probing
flow

Explicitly attach signals in the HDL
source to an ILA debug core
instance.

• You have to add/remove debug
nets and IP from your design
manually, which means that you
will have to modify your HDL
source

• This method provides the option
to probe at the HDL design level.

• It is easy to make mistakes when
generating, instantiating, and
connecting debug cores.

Netlist insertion probing
flow (recommended)

Use one of the following two
methods to identify the signal for
debug:

• Use the MARK_DEBUG attribute to
mark signals for debug in the
source RTL code.

• Use the MARK_DEBUG right-click
menu option to select nets for
debugging in the synthesized
design netlist.

Once the signal is marked for
debug, use the Set up Debug wizard
to guide you through the Netlist
Insertion probing flow.

• This method is the most flexible
with good predictability.

• This method allows probing at
different design levels (HDL,
synthesized design, system
design).

• This method does not require HDL
source modification.

Tcl-based netlist insertion
probing flow

Use the set_property Tcl
command to set the MARK_DEBUG
property on debug nets then use
Netlist insertion probing Tcl
commands to create debug cores
and connect them to debug nets.

See Modifying the Implemented
Netlist to Replace Existing Debug
Probes for post-synthesis insertion
of ILA core.

• This method provides fully
automatic netlist insertion

• You can turn debugging on or off
by modifying the Tcl commands.

• This method does not require HDL
source modification.
UltraFast Design Methodology Guide 289
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=289

Chapter 5: Design Closure
Choosing Debug Nets

Xilinx makes the following recommendations for choosing debug nets:

• Probe nets at the boundaries (inputs or outputs) of a specific hierarchy. This method
helps isolate problem areas quickly. Subsequently, you can probe further in the
hierarchy if needed.

• Do not probe nets in between combinatorial logic paths. If you add MARK_DEBUG on
nets in the middle of a combinatorial logic path, none of the optimizations applicable
at the implementation stage of the flow are applied, resulting in sub-par QOR results.

• Probe nets that are synchronous in order to get cycle accurate data capture.

Retaining Names of Debug Probe Nets Using MARK_DEBUG

You can mark a signal for debug either at the RTL stage or post-synthesis. The presence of
the MARK_DEBUG attribute on the nets ensures that the nets are not replicated, retimed,
removed, or otherwise optimized. You can apply the MARK_DEBUG attribute on top level
ports, nets, hierarchical module ports and nets internal to hierarchical modules. This
method is most likely to preserve HDL signal names post synthesis. Nets marked for
debugging are shown in the Unassigned Debug Nets folder in the Debug window post
synthesis.

Add the mark_debug attribute to HDL files as follows:

VHDL:

attribute mark_debug : string;
attribute keep : string;
attribute mark_debug of sine : signal is "true";

Verilog:

(* mark_debug = "true" *) wire sine;
UltraFast Design Methodology Guide 290
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=290

Chapter 5: Design Closure
You can also add nets for debugging in the post-synthesis netlist. These methods do not
require HDL source modification. However, there may be situations where synthesis might
not have preserved the original RTL signals due to netlist optimization involving absorption
or merging of design structures. Post-synthesis, you can add nets for debugging in any of
the following ways:

• Select a net in any of the design views (such as the Netlist or Schematic windows), then
right-click and select Mark Debug.

• Select a net in any of the design views, then drag and drop the net into the Unassigned
Debug Nets folder.

• Use the net selector in the Set Up Debug Wizard.

• Set the MARK_DEBUG property using the properties window or the Tcl Console.

set_property mark_debug true [get_nets -hier [list {sine[*]}]]

This applies the mark_debug property on the current, open netlist. This method is
flexible, because you can turn MARK_DEBUG on and off through the Tcl command.

Using ILA Cores

The Integrated Logic Analyzer (ILA) core allows you to perform in-system debugging of
post-implementation designs on an FPGA device. Use this core when you need to monitor
signals in the design. You can also use this feature to trigger on hardware events and
capture data at system speeds.

ILA Core and Timing Considerations

The configuration of the ILA core has an impact in meeting the overall design timing goals.
Follow the recommendations below to minimize the impact on timing:

• Choose probe width judiciously. The bigger the probe width the greater the impact on
both resource utilization and timing.

• Choose ILA core data depth judiciously. The bigger the data depth the greater the
impact on both block RAM resource utilization and timing.

• Ensure that the clocks chosen for the ILA cores are free-running clocks. Failure to do so
could result in an inability to communicate with the debug core when the design is
loaded onto the device.

• Ensure that the clock going to the dbg_hub is a free running clock. Failure to do so
could result in an inability to communicate with the debug core when the design is
loaded onto the device. You can use the connect_debug_port Tcl command to
connect the clk pin of the debug hub to a free-running clock.
UltraFast Design Methodology Guide 291
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=291

Chapter 5: Design Closure
• Close timing on the design prior to adding the debug cores. Xilinx does not
recommend using the debug cores to debug timing related issues.

• If you still notice that timing has degraded due to adding the ILA debug core and the
critical path is in the dbg_hub, perform the following steps:

a. Open the synthesized design.

b. Find the dbg_hub cell in the netlist.

c. Go to the Properties of the dbg_hub.

d. Find property C_CLK_INPUT_FREQ_HZ.

e. Set it to frequency (in Hz) of the clock that is connected to the dbg_hub.

f. Find property C_ENABLE_CLK_DIVIDER and enable it.

g. Re-implement design.

• Make sure the clock input to the ILA core is synchronous to the signals being probed.
Failure to do so results in timing issues and communication failures with the debug
core when the design is programmed into the device.

• Make sure that the design meets timing before running it on hardware. Failure to do so
results in unreliable results.
UltraFast Design Methodology Guide 292
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=292

Chapter 5: Design Closure
The following table shows the impact of using specific ILA features on design timing and
resources.

Note: This table is based on a design with one ILA and does not represent all designs.

TIP: In the early stages of FPGA designs, there are usually a lot of spare resources in the FPGA that can
be used for debugging.

Table 5-11: Impact of ILA Features on Design Timing and Resources

ILA Feature When to Use Timing Area

Capture Control/
Storage
Qualification

• To capture relevant
data

• To make efficient use of
data capture storage
(block RAM)

Medium to High Impact • No additional block
RAMs

• Slight increase in
LUT/FF count

Advanced Trigger

• When BASIC trigger
conditions are
insufficient

• To use complex
triggering to focus in
on problem area

High Impact • No additional block
RAMs

• Moderate increase in
LUT/FF count

Number of
Comparators per
Probe Port
Note: Maximum is 4.

To use probe in multiple
conditionals:

• 1-2 for Basic

• 1-4 for Advanced

• +1 for Capture Control

Medium to High Impact • No additional block
RAMs

• Slight to moderate
increase in LUT/FF
count

Data Depth

To capture more data
samples

High Impact • Additional block RAMs
per ILA core

• Slight increase in
LUT/FF count

ILA Probe Port
Width

To debug a large bus
versus a scalar

Medium Impact • Additional block RAMs
per ILA core

• Slight increase in
LUT/FF count

Number of Probes
Ports

To probe many nets Low Impact • Additional block RAMs
per ILA core

• Slight increase in
LUT/FF count
UltraFast Design Methodology Guide 293
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=293

Chapter 5: Design Closure
For designs with high-speed clocks, consider the following:

• Limit the number and width of signals being debugged.

• Pipeline the input probes to the ILA (C_INPUT_PIPE_STAGES), which enables extra levels
of pipe stages.

For designs with limited MMCM/BUFG availability, consider clocking the debug hub with
the lowest clock frequency in the design instead of using the clock divider inside the debug
hub.

Debugging Designs in Vivado IP Integrator

The Vivado IP integrator provides different ways to set up your design for debugging. You
can use one of the following flows to add debug cores to your IP integrator design. The flow
you choose depends on your preference and the types of nets and signals that you want to
debug.

• Debug interfaces, nets, or both in the block design using the System ILA core

Use this flow to:

° Perform hardware-software co-verification using the cross-trigger feature of a
MicroBlaze device, Zynq®-7000 SoC, or Zynq UltraScale+ MPSoC.

° Verify the interface-level connectivity.

• Netlist insertion flow

Use this flow to analyze I/O ports and internal nets in the post-synthesized design.

Note: You can also use a combination of both flows to debug your design.

For more information on using System ILA in your IP integrator design, see the Vivado
Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994) [Ref 29].

Debugging AXI Interfaces in Vivado Hardware Manager

The System ILA IP in IP integrator allows you to perform in-system debugging of
post-implemented designs on a Xilinx device. Use this feature when there is a need to
monitor interfaces and signals in the design.

If you inserted System ILA debug cores in your IP integrator block design, you can debug
and monitor AXI transactions and read and write events in the Waveform window shown in
the following figure. The Waveform window displays the interface slots, transactions,
events, and signal groups that correspond to the interfaces probed by the System ILA IP.
UltraFast Design Methodology Guide 294
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=294

Chapter 5: Design Closure
For more information on System ILA and debugging AXI interfaces in the Vivado Hardware
Manager, see this link and this link in the Vivado Design Suite User Guide: Programming and
Debugging (UG908) [Ref 27].

Using In-System IBERT

The In-System IBERT core provides RX margin analysis through eye scan plots on the RX
data of transceivers in UltraScale and UltraScale+ devices. The core enables configuration
and tuning of the GTH/GTY transceivers and is accessible through logic that communicates
with the dynamic reconfiguration port (DRP) of the transceivers. You can use the core to
change attribute settings as well as registers that control the values on the rxrate, rxlpmen,
txdiffctrl, txpostcursor, and txprecursor ports.

The Vivado Serial I/O Analyzer in the Hardware Manager communicates with the core
through JTAG when the design is programmed onto the device. There is only one instance
of In-System IBERT required per design. In-System IBERT can work with all GTs used in the
design. However, you must generate separate In-System IBERT cores according to the
different GT types (for example, GTH, GTY).

Creating an In-System IBERT design with an internal system clock can prevent a scan from
being performed. When creating an eye scan, the status changes from In Progress to
Incomplete. Eye scan is incomplete when the internal system clock (MGTREFCLK) is
connected to the clk/drpclk_i input port of In-System IBERT IP.

Note: If needed, consider using an external clock, which does not exhibit this behavior. Alternatively,
click any available link in the Vivado Serial I/O Analyzer. Go to the Properties window, and find the
MB_RESET reg under the LOGIC field. Set it to 1 and then toggle back to 0. Rerun the eye scan or
sweep.

X-Ref Target - Figure 5-44

Figure 5-44: Waveform Window
UltraFast Design Methodology Guide 295
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug908-vivado-programming-debugging.pdf;a=xDebuggingAXIInterfacesInTheHardwareManager
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug908-vivado-programming-debugging.pdf;a=xInSystemLogicDesignDebuggingFlows
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=295

Chapter 5: Design Closure
For more information on this core, see the In-System IBERT LogiCORE IP Product Guide
(PG246) [Ref 51].

Running Debug-Related DRCs

The Vivado Design Suite provides debug-related DRCs, which are selected as part of the
default rule deck when report_drc is run. The DRCs check for the following:

• Block RAM resources for the device are exceeded because of the current requirements
of the debug core.

• Non-clock net is connected to the clock port on the debug core.

• Port on the debug core is unconnected.

Generating AXI Transactions

Use the JTAG-to-AXI debug core to generate AXI transactions that interact with various AXI
full and AXI lite slave cores in a system that is running on hardware. Instantiate this core in
your design from the IP Catalog to generate AXI transactions and debug/drive AXI signals
internal to your FPGA at run time. You also can use this core in designs without processors.

Modifying the Implemented Netlist to Replace Existing Debug Probes

It is possible to replace debug nets connected to an ILA core in a placed and routed design
checkpoint. You can do this by using the Engineering Change Order (ECO) flow. This is an
advanced design flow used for designs that are nearing completion, where you need to
swap nets connected to an existing ILA probe port. For information on using the ECO flow
to modify nets on existing ILA cores, see this link in the Vivado Design Suite User Guide:
Implementation (UG904) [Ref 22].

Inserting, Deleting, or Editing ILA cores on an Implemented Netlist

If you want to add, delete, or modify ILA cores (for example, resizing probe width, changing
the data depth, etc.), Xilinx recommends that you use the Incremental Compile flow. The
Incremental Compile flow for debug cores operates on a synthesized design or checkpoint
(DCP) and uses a reference implemented checkpoint, ideally from a previous
implementation run. This approach might save you time versus a complete
re-implementation of the design. For information on using the Incremental Compile flow to
insert, delete, or edit ILA cores, see this link in the Vivado Design Suite User Guide:
Programming and Debugging (UG908) [Ref 27].
UltraFast Design Methodology Guide 296
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug908-vivado-programming-debugging.pdf;a=xIncrementalCompileWithDebugCoreILAModifications
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf;a=xVivadoECOFlow
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=296

Chapter 5: Design Closure
Using Remote Debugging

Xilinx provides multiple ways to debug or upgrade your design remotely:

• Use the Xilinx Hardware Server product to connect to a remote computer in the lab.

• Implement the Xilinx Virtual Cable (XVC) protocol to connect to a network-connected
board.

For more information on using the Xilinx Virtual Cable protocol, see this link in the Vivado
Design Suite User Guide: Programming and Debugging (UG908) [Ref 27]. For more
information on using an example design using the XVC flow with the PCIe core, see the
UltraScale+ Devices Integrated Block for PCI Express Product Guide (PG213) [Ref 32].
UltraFast Design Methodology Guide 297
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug908-vivado-programming-debugging.pdf;a=xRemoteDebuggingInVivado
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=297

Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, tools, and intellectual property at all
stages of the design cycle. Topics include design assistance, advisories, and troubleshooting
tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.

• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.
UltraFast Design Methodology Guide 298
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=298

Appendix A: Additional Resources and Legal Notices
References
These documents provide supplemental material useful with this guide.

1. Vivado® Design Suite Documentation

2. UltraFast™ Design Methodology Quick Reference Guide (UG1231)

3. Design Methodology Timing Closure Quick Reference Guide (UG1292)

4. UltraFast Design Methodology Checklist (XTP301)

Vivado Design Suite User and Reference Guides
5. UltraFast Embedded Design Methodology Guide (UG1046)

6. UltraFast High-Level Productivity Design Methodology Guide (UG1197)

7. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

8. Vivado Design Suite User Guide: I/O and Clock Planning (UG899)

9. Vivado Design Suite User Guide: Design Flows Overview (UG892)

10. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

11. Vivado Design Suite User Guide: Using Tcl Scripting (UG894)

12. Vivado Design Suite User Guide: System-Level Design Entry (UG895)

13. Vivado Design Suite User Guide: Designing with IP (UG896)

14. Vivado Design Suite User Guide: Embedded Processor Hardware Design (UG898)

15. Vivado Design Suite User Guide: Logic Simulation (UG900)

16. Vivado Design Suite User Guide: Getting Started (UG910)

17. Vivado Design Suite Tcl Command Reference Guide (UG835)

18. Vivado Design Suite Properties Reference Guide (UG912)

19. Vivado Design Suite User Guide: Synthesis (UG901)

20. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

21. Vivado Design Suite User Guide: Using Constraints (UG903)

22. Vivado Design Suite User Guide: Implementation (UG904)

23. Vivado Design Suite User Guide: Hierarchical Design (UG905)

24. Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)

25. Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)

26. Xilinx Power Estimator User Guide (UG440)
UltraFast Design Methodology Guide 299
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug912-vivado-properties.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug898-vivado-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1231-ultrafast-design-methodology-quick-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=xtp301-design-methodology-checklist.zip
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;t=release+notes
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1292-ultrafast-timing-closure-quick-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug440-xilinx-power-estimator.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1197-vivado-high-level-productivity.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=299

Appendix A: Additional Resources and Legal Notices
27. Vivado Design Suite User Guide: Programming and Debugging (UG908)

28. Vivado Design Suite User Guide: Partial Reconfiguration (UG909)

29. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

30. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

31. Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC Libraries Guide (UG953)

UltraScale Architecture Libraries Guide (UG974)

32. UltraScale+ Devices Integrated Block for PCI Express Product Guide (PG213)

Vivado Design Suite Tutorials
33. Vivado Design Suite Tutorial: High-Level Synthesis (UG871)

34. Vivado Design Suite Tutorial: Design Flows Overview (UG888)

35. Vivado Design Suite Tutorial: Logic Simulation (UG937)

36. Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940)

37. Vivado Design Suite Tutorial: Partial Reconfiguration (UG947)

Other Xilinx Documentation
38. 7 Series FPGAs PCB Design Guide (UG483)

UltraScale Architecture PCB Design User Guide (UG583)

Zynq-7000 SoC PCB Design Guide (UG933)

39. 7 Series FPGAs Configuration User Guide (UG470)

UltraScale Architecture Configuration User Guide (UG570)

40. 7 Series FPGAs SelectIO Resources User Guide (UG471)

UltraScale Architecture SelectIO Resources User Guide (UG571)

41. 7 Series Clocking Resources Guide (UG472)

UltraScale Architecture Clocking Resources User Guide (UG572)

42. UltraScale Architecture GTH Transceivers User Guide (UG576)

UltraScale Architecture GTY Transceivers Advance Specification User Guide (UG578)

43. UltraScale Architecture Gen3 Integrated Block for PCI Express® LogiCORE IP Product Guide
(PG156)
UltraFast Design Methodology Guide 300
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug576-ultrascale-gth-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug578-ultrascale-gty-transceivers.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug888-vivado-design-flows-overview-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug471_7Series_SelectIO.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug472_7Series_Clocking.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug937-vivado-design-suite-simulation-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug570-ultrascale-configuration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug953-vivado-7series-libraries.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug470_7Series_Config.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=in_system_ibert;v=latest;d=pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug483_7Series_PCB.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug933-Zynq-7000-PCB.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug571-ultrascale-selectio.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug572-ultrascale-clocking.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pcie3_ultrascale;v=latest;d=pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=300

Appendix A: Additional Resources and Legal Notices
44. 7 Series FPGAs Memory Resources User Guide (UG473)

45. 7 Series FPGAs DSP48E1 Slice User Guide (UG479)

46. UltraScale Architecture DSP Slice User Guide (UG579)

47. 7 Series FPGAs and Zynq-7000 SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter
User Guide (UG480)

48. Reference System: Kintex-7 MicroBlaze System Simulation Using IP Integrator (XAPP1180)

49. Zynq-7000 SoC and 7 Series FPGAs Memory Interface Solutions User Guide (UG586)

50. UltraScale Architecture FPGAs Memory IP LogiCORE IP Product Guide (PG150)

51. In-System IBERT LogiCORE IP Product Guide (PG246)

52. Xilinx White Paper: Simulating FPGA Power Integrity Using S-Parameter Models (WP411)

53. 7 Series Schematic Review Recommendations (XMP277)

UltraScale Architecture Schematic Review Checklist (XTP344)

UltraScale+ FPGA and Zynq UltraScale+ MPSoC Schematic Review Checklist (XTP427)

54. UltraScale FPGA BPI Configuration and Flash Programming (XAPP1220)

55. BPI Fast Configuration and iMPACT Flash Programming with 7 Series FPGAs (XAPP587)

56. Using SPI Flash with 7 Series FPGAs (XAPP586)

57. SPI Configuration and Flash Programming in UltraScale FPGAs (XAPP1233)

58. Using Encryption to Secure a 7 Series FPGA Bitstream (XAPP1239)

TIP: A complete set of Xilinx documents can be accessed from Documentation Navigator. For more
information, see Accessing Additional Documentation and Training.

Training Resources
1. UltraFast Design Methodology Training Course

2. Vivado Design Suite QuickTake Video: UltraFast Vivado Design Methodology

3. Vivado Design Suite QuickTake Video: Vivado Design Flows Overview

4. Vivado Design Suite QuickTake Video: Targeting Zynq Using Vivado IP Integrator

5. Vivado Design Suite QuickTake Video: Partial Reconfiguration in Vivado Design Suite

6. Vivado Design Suite QuickTake Video: Creating Different Types of Projects

7. Vivado Design Suite QuickTake Video: Managing Sources With Projects
UltraFast Design Methodology Guide 301
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=mig_7series;v=latest;d=ug586_7Series_MIS.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=courses/ultrafast-design-methodology.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/targeting-zynq-using-vivado-ip-integrator.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/partial-reconfiguration-in-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp586-spi-flash.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/creating-different-types-of-projects.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/managing-sources-with-projects.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-design-flows-overview.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug480_7Series_XADC.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/ultrafast-vivado-design-methodology.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1180.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=in_system_ibert;v=latest;d=pg246-in-system-ibert.pdf
https://secure.xilinx.com/webreg/clickthrough.do?cid=423500&license=RefDesLicense&filename=xtp427-ultrascale-plus-schematic-review-checklist.zip
https://www.xilinx.com/support/documentation/white_papers/wp411_Sim_Power_Integrity.pdf
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=198776;d=xmp277-7series-schematic-review-recommendations.zip
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=359174;d=xtp344-ultrascale-schematic-review-checklist.zip
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1239-fpga-bitstream-encryption.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ultrascale_memory_ip;v=latest;d=pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1233-spi-config-ultrascale.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug579-ultrascale-dsp.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1220-ultrascale-bpi-config-prog-nor-flash.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp587-bpi-fast-configuration.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=301

Appendix A: Additional Resources and Legal Notices
8. Vivado Design Suite QuickTake Video: Using Vivado Design Suite with Revision Control

9. Vivado Design Suite QuickTake Video: Managing Vivado IP Version Upgrades

10. Vivado Design Suite QuickTake Video: I/O Planning Overview

11. Vivado Design Suite QuickTake Video: Configuring and Managing Reusable IP in Vivado

12. Vivado Design Suite QuickTake Video: How To Use the “write_bitstream” Command in
Vivado

13. Vivado Design Suite QuickTake Video: Design Analysis and Floorplanning

14. Vivado Design Suite QuickTake Video: Introducing the UltraFast Design Methodology
Checklist

15. Vivado Design Suite Video Tutorials

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2013–2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, ISE, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other
designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. PCI,
PCIe and PCI Express are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective
owners.
UltraFast Design Methodology Guide 302
UG949 (v2019.1) June 26, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-design-suite-revision-control.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/managing-vivado-ip-version-upgrades.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/i-and-o-planning-overview.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/configuring-managing-reusable-ip-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/use-write-bitstream-command-in-vivado.html
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/introducing-ultrafast-design-methodology.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/design-analysis-floorplanning-with-vivado.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Methodology_Guides&docId=UG949&Title=UltraFast%20Design%20Methodology%20Guide%20for%20the%20Vivado%20Design%20Suite&releaseVersion=2019.1&docPage=302

	UltraFast Design Methodology Guide for the Vivado Design Suite
	Revision History
	Table of Contents
	Ch. 1: Introduction
	About the UltraFast Design Methodology
	Using This Guide
	Using the UltraFast Design Methodology Checklist
	Using the UltraFast Design Methodology DRCs
	Using the UltraFast Design Methodology System-Level Design Flow Diagram

	Understanding UltraFast Design Methodology Concepts
	Maximizing Impact Early in the Development Cycle
	Validating at Each Design Stage
	Taking Advantage of Rapid Validation

	Using the Vivado Design Suite
	Managing Vivado Design Suite Sources with a Revision Control System
	Upgrading to New Vivado Design Suite Releases

	Accessing Additional Documentation and Training

	Ch. 2: Board and Device Planning
	Overview of Board and Device Planning
	PCB Layout Recommendations
	Aligning with Physical Components on the PCB
	Power Distribution System
	Specific Considerations for PCB Design

	Clock Resource Planning and Assignment
	I/O Planning Design Flows
	Types of Vivado Design Suite Projects for I/O Planning
	Pre-RTL I/O Planning
	Netlist-Based I/O Planning

	Defining Alternate Devices
	Pin Assignment
	Using Xilinx Tools in Pinout Selection
	Required Information

	Pinout Selection
	Interface Data, Address, and Control Pins
	Interface Control Signals
	Very High Fanout, Design-Wide Control Signals
	Configuration Pins
	Memory Interfaces
	Gigabit Transceivers (GTs)
	High Speed I/O
	Internal VREF and DCI Cascade Constraints

	Interface Bandwidth Validation

	Designing with SSI Devices
	SSI Pinout Considerations
	Super Logic Region (SLR)
	SLR Nomenclature
	Master Super Logic Region
	Silicon Interposer
	Super Long Line (SLL) Routes
	Propagation Limitations
	SLR Utilization Considerations
	SLR Crossing for Wide Buses

	Designing with HBM Devices
	Placement Considerations when Using HBM Devices
	Pipelining Considerations for Crossing SLRs
	Resource Planning within SLR0
	PCIE4C to HBM AXI paths within SLR0

	Device Power Aspects and System Dependencies
	Power Supply Paths on Devices
	Power Modes
	Power-On
	Startup Power
	Standby Power
	Active Power

	Environmental Factors Impacting Power
	Power Rail Consolidation Impacting Power
	Power Models Accuracy
	Device Power and the Overall System Design Process
	Worst Case Power Analysis Using Xilinx Power Estimator (XPE)

	Configuration
	Board Design Tips

	Ch. 3: Design Creation
	Overview of Design Creation
	Defining a Good Design Hierarchy
	Add I/O Components Near the Top Level
	Insert Clocking Elements Near the Top Level
	Register Data Paths at Logical Boundaries
	Address Floorplanning Considerations
	Optimize Hierarchy for Functional and Timing Debug
	Apply Attributes at the Module Level
	Optimize Hierarchy for Advanced Design Techniques
	Example of Upfront Hierarchical Planning for High Speed DSP Designs

	RTL Coding Guidelines
	Using Vivado Design Suite HDL Templates
	Control Signals and Control Sets
	Resets
	When and Where to Use a Reset
	Synchronous Reset vs. Asynchronous Reset
	Reset Coding Example One: Multiplier with Asynchronous Reset
	Reset Coding Example Two: Multiplier with Synchronous Reset
	Issues When Trying to Eliminate Reset in HDL Code

	Clock Enables
	Creating Clock Enables
	Reset and Clock Enable Precedence

	Controlling Enable/Reset Extraction with Synthesis Attributes
	Using DIRECT_ENABLE and DIRECT_RESET
	Pushing the Logic from the Control Pin to the Data Pin

	Tips for Control Signals

	Know What You Infer
	Inferring RAM and ROM
	Performance Considerations When Implementing RAM
	Scenarios Preventing Block RAM Output Register Inference
	Checking for Multi-Fanout on the Output of Read Data Registers
	Checking for Reset Signals on the Address/Read Data Registers
	Checking for Feedback Structures in Registers
	Mapping Memories to UltraRAM Blocks

	Coding for Optimal DSP and Arithmetic Inference
	Coding Shift Registers and Delay Lines
	Initialization of All Inferred Registers, SRLs, and Memories
	Deciding When to Instantiate or Infer
	Synthesis Tool Optimization
	When Instantiation Is Desirable

	Coding Styles to Improve Performance
	High Fanouts in Critical Paths
	Reduce Loads in Portions of the Design That Do Not Require It
	Use Register Replication

	Pipelining Considerations
	Consider Pipelining for SSI Devices
	Consider Pipelining Up Front
	Check Inferred Logic
	Determine Whether Pipelining is Needed
	Balance Latency
	Balance Pipeline Depth and SRL Usage
	Avoid Unnecessary Pipelining
	Consider Pipelining Macro Primitives

	Auto-Pipelining Considerations
	Using the AXI Register Slice in Auto-Pipelining Mode
	Using Auto-Pipelining on Custom Interfaces
	Reviewing the Auto-Pipelining Implementation Results

	Coding Styles to Improve Power
	Gate Clock or Data Paths
	Maximize Gating Elements
	Use Clock Enable Pins of Dedicated Clock Buffers
	Use Case Block When Priority Encoder Not Needed

	Performance/Power Trade-off for Block RAMs
	Decomposing Deeper Memory Configurations for Balanced Power and Performance
	Running RTL DRCs

	Clocking Guidelines
	UltraScale Device Clocking
	Clock Primitives
	Global Clock Buffer Connectivity and Routing Tracks
	Clock Routing, Root, and Distribution
	Clock Tree Placement and Routing
	Clocking Capability
	High Fanout Clocks
	Low Fanout Clocks
	Balanced Utilization of High and Low Fanout Clocks

	Clock Constraints
	Using LOC Constraints for IO/MMCM/PLL/GT
	Using the CLOCK_REGION Property on Clock Buffers
	Using a Pblock to Restrict Clock Buffer Placement
	Using the USER_CLOCK_ROOT Property on a Clock Net
	Using the CLOCK_DELAY_GROUP Constraint on Several Clock Nets
	Using the CLOCK_DEDICATED_ROUTE Constraint
	Using the CLOCK_LOW_FANOUT Constraint

	Clocking Topology Recommendations
	Parallel Clock Buffers
	Cascaded Clock Buffers
	Clock Multiplexing
	PLL/MMCM Feedback Path and Compensation Mode
	BUFG_GT Divider

	SelectIO Clocking
	ISERDESE3 and IDDRE1 Clocking
	OSERDESE3 Clocking

	I/O Timing with MMCM ZHOLD/BUF_IN Compensation
	Synchronous CDC
	GT Interface Clocking
	BUFG_GT with Dynamic Divider
	Single Quad vs. Multi-Quad Interface
	[RT]XUSRCLK/[RT]XUSRCLK2 Skew Matching
	Integrated Block for PCI Express CORECLK/PIPECLK/USERCLK Skew Matching

	7 Series Device Clocking
	Using Horizontal Clock Region Buffers for Clock Gating
	Additional Clocking Considerations for SSI Devices

	Clock Skew for Global Clocking Resources in SSI Technology Devices
	Designing the Clock Structure
	Inference
	Synthesis Constraints and Attributes
	Use of IP
	Instantiation

	Controlling the Phase, Frequency, Duty-Cycle, and Jitter of the Clock
	Using Clock Modifying Blocks (MMCM and PLL)
	Using IDELAYs on Clocks to Control Phase

	Using Gated Clocks
	Converting Clock Gating to Clock Enable
	Gating the Clock Buffer
	Controlling and Synchronizing Device Startup

	Avoiding Local Clocks
	Creating an Output Clock

	Clock Domain Crossing
	Single-Bit CDC
	Multi-Bit CDC
	Optimizing for MTBF
	Selecting the Correct Value for the DEST_SYNC_FF Parameter

	Constraining the Design Correctly

	Working With Intellectual Property (IP)
	Planning IP Requirements
	AMBA AXI
	Vivado Design Suite IP Catalog
	Custom IP
	Selecting IP from the IP Catalog

	Customizing IP
	Using the Customization GUI
	Using a Tcl Script

	IP Versions and Revision Control

	Working with Constraints
	Organizing the Design Constraints
	Recommended Constraint Files
	Simple Design
	Complex Design

	Validating the Read Sequence
	Recommended Constraints Sequence
	Creating Synthesis Constraints
	Creating Implementation Constraints
	Creating Block-Level Constraints

	Defining Timing Constraints in Four Steps
	Defining Clock Constraints
	Identifying Clock Sources
	Clock Networks Report
	Check Timing Report

	Creating Primary Clocks
	Input Ports
	Gigabit Transceiver Output Pins in 7 Series Devices
	Certain Hardware Primitive Output Pins

	Creating Generated Clocks
	Auto-Derived Clocks
	User-Defined Generated Clocks
	Path Between Master and Generated Clocks

	Verifying Clocks Definition and Coverage
	Adjusting Clock Characteristics
	Jitter
	Additional Uncertainty
	Clock Latency at the Source
	MMCM or PLL External Feedback Loop Delay

	Constraining Input and Output Ports
	System Level Perspective
	Defining Input Delays
	Defining Output Delays
	Choosing the Reference Clock
	Identifying the Clocks Related to Each Port
	Browse the Board Schematics
	Browse the Design Schematics
	Report Timing from or to the Port
	Using Automatically Identified Sampling Clocks
	Using a Primary Clock
	Using a Virtual Clock
	Using a Generated Clock
	Rising and Falling Reference Clock Edges

	Verifying Delay Constraints
	I/O Path Report Command Lines Example

	Input to Output Feed-through Path
	Example One
	Example Two

	Using XDC Templates - Source Synchronous Interfaces

	Defining Clock Groups and CDC Constraints
	Reviewing Clock Interactions
	Synchronous
	Asynchronous
	Exclusive

	Categorizing Clock Pairs
	Clock Interaction Report
	Check Timing Report

	Constraining Exclusive Clock Groups
	Overlapping Clocks Defined on the Same Clock Source
	Overlapping Clocks Driven by a Clock Multiplexer

	Constraining Asynchronous Clock Groups and Clock Domain Crossings
	Report CDC
	Global Constraints Between Clocks in Both Directions
	Constraints on Individual CDC Paths
	Clock Exceptions Precedence Over set_max_delay

	Specifying Timing Exceptions
	Timing Exceptions Guidelines
	Timing Exceptions Precedence and Priority Rules

	Adding False Path Constraints
	Use Cases
	Impact on Synthesis
	Impact on Implementation

	Adding Min and Max Delay Constraints
	Use Cases
	Impact on Synthesis
	Impact on Implementation
	Avoiding Path Segmentation

	Adding Multicycle Path Constraints
	Relaxing the Setup Requirement While Keeping Hold Unchanged
	Impact on Synthesis and Implementation
	Common Mistakes

	Other Advanced Timing Constraints
	Case Analysis
	Disable Timing
	Data Check
	Max Time Borrow

	Defining Physical Constraints

	Ch. 4: Implementation
	Overview of Synthesis and Implementation
	Running Synthesis
	Synthesis Attributes
	KEEP and DONT_TOUCH
	MAX_FANOUT

	Block-Level Synthesis Strategy
	Using the Block-Level Synthesis Strategy

	Incremental Synthesis Flows

	Moving Past Synthesis
	Reviewing and Cleaning DRCs
	Running Report Methodology
	Reviewing the Synthesis Log
	Reviewing Timing Constraints
	Meeting Post-Synthesis Timing
	Following Guidelines to Address Remaining Violations
	Dealing with High Levels of Logic
	Reviewing Utilization
	Reviewing Clock Trees
	Clock Buffer Utilization
	Clock Tree Topology

	Implementing the Design
	Using Project Mode vs. Non-Project Mode
	Strategies
	Directives
	Iterative Flows

	Analyzing a Design at Different Stages Using Checkpoints
	Using Interactive Report Files
	Using Incremental Implementation Flows
	Incremental Implementation Flow Modes
	Runtime Considerations
	Parallel Runs

	Opening the Synthesized Design
	Logic Optimization (opt_design)
	Optimization Analysis

	Power Optimization in Implementation
	Placement (place_design)
	Placement Analysis

	Physical Optimization (phys_opt_design)
	Need for Physical Synthesis

	Routing (route_design)
	Route Analysis
	Route Runtime

	Ch. 5: Design Closure
	Overview of Design Closure
	Timing Closure
	Understanding Timing Closure Criteria
	Checking for Valid Constraints
	Checking for Positive Timing Slacks
	Understanding Timing Reports

	Checking That Your Design is Properly Constrained
	Fixing Issues Flagged by check_timing
	No Clock and Unconstrained Internal Endpoints
	Generated Clocks
	Loops and Latch Loops
	No Input/Output Delays and Partial Input/Output Delays
	Multiple Clocks

	Fixing Issues Flagged by report_methodology
	Methodology DRCs with Impact on Timing Closure
	Methodology DRCs with Impact on Signoff Quality
	Other Timing Methodology DRCs

	Baselining the Design
	Defining Baseline Constraints
	Identifying Which Clocks Must be Created
	Verifying That No Clocks Are Missing

	Constraining Clock Domain Crossings
	Reviewing Clock Relationships
	Identifying Clock Pairs Without Common Primary Clocks
	Identifying Tight Timing Requirements
	Constraining Both Primary and Generated Clocks at the Same Time

	Limiting I/O Constraints and Timing Exceptions
	Evaluating Design WNS Before and After Each Step
	Post-Synthesis and Post-Logic Optimization
	Pre- and Post-Placement
	Pre- and Post-Physical Optimization
	Pre and Post-Route

	Baselining and Timing Constraints Validation Procedure

	Analyzing and Resolving Timing Violations
	Identifying Timing Violations Root Cause
	Reviewing Timing Slack
	Using the Design Analysis Report
	Analyze Path Characteristics
	Review the Logic Level Distribution

	Datapath Delay and Logic Levels
	Clock Skew and Uncertainty

	Reducing Logic Delay
	Optimizing Regular Fabric Paths
	Optimizing Paths with Dedicated Blocks and Macro Primitives

	Reducing Net Delay
	Reviewing Physical Constraints
	Identifying Congestion
	Congestion Area and Level Definition
	Congestion Level Ranges
	Interconnect Congestion Level in the Device Window
	Congestion in the Placer Log
	Congestion in the Router Log
	Report Design Analysis Congestion Report
	Report Design Analysis Complexity Report

	Reducing Clock Skew
	Using Intra-Clock Timing Paths
	Limiting Synchronous Clock Domain Crossing Paths
	Adding Timing Exceptions between Asynchronous Clocks
	Applying Common Techniques for Reducing Clock Skew
	Applying Techniques for Improving Skew in 7 Series Devices
	Improving Skew in UltraScale and UltraScale+ Devices

	Reducing Clock Uncertainty
	Using MMCM Settings to Reduce Clock Uncertainty
	Using BUFGCE_DIV to Reduce Clock Uncertainty

	Applying Common Timing Closure Techniques
	Improving the Netlist with Block-Level Synthesis Strategies
	Improving Logic Levels
	Reducing Control Sets
	Optimizing High Fanout Nets
	Use Register Replication
	Promote High Fanout Nets to Global Routing
	Use Physical Optimization

	Prioritize Critical Logic Using the group_path Command
	Fixing Large Hold Violations Prior to Routing
	Addressing Congestion
	Lower Device Utilization
	Balance SLR Utilization for SSI Devices
	Use Alternate Placer and Router Directives
	Turn Off Cross-Boundary Optimization
	Reduce MUXF Mapping
	Disable LUT Combining
	Limit High-Fanout Nets in Congested Areas
	Use Cell Bloating

	Tuning the Compilation Flow
	Using Strategies and Directives
	Using Optimization Iterations
	Overconstraining the Design
	Using Incremental Implementation
	Choose a High Quality Reference Checkpoint
	Limit Differences for High Reuse Mode
	Select Incremental Implementation Directives for High Reuse Mode
	Improve Timing QoR for High Reuse Mode
	Reduce QoR Variability for Low Reuse Mode

	Considering Floorplan
	Grouping Critical Logic
	Reusing Placement Results

	SSI Technology Considerations
	Using Hard SLR Floorplan Constraints
	Using Soft SLR Floorplan Constraints
	Using SLR Crossing Registers
	Using Auto-Pipelining for SLR Crossings

	Power Analysis and Optimization
	Estimating Power Throughout the Flow
	Using the Power Constraints Advisor
	Best Practices for Accurate Power Analysis
	Reviewing the Design Power Distribution After Running Vivado Design Suite Power Analysis
	Further Refining Control Signal Activity After Running Vivado Design Suite Power Analysis
	Power Optimization
	Analyzing Your Power Estimation and Optimization Results
	Running Power Optimization
	Using the Power Optimization Report
	Using the Timing Report to Determine the Impact of Power Optimization

	Configuration and Debug
	Configuration
	Debugging
	Probing the Design
	Choosing Debug Nets
	Retaining Names of Debug Probe Nets Using MARK_DEBUG
	Using ILA Cores
	ILA Core and Timing Considerations

	Debugging Designs in Vivado IP Integrator
	Debugging AXI Interfaces in Vivado Hardware Manager
	Using In-System IBERT
	Running Debug-Related DRCs
	Generating AXI Transactions
	Modifying the Implemented Netlist to Replace Existing Debug Probes
	Inserting, Deleting, or Editing ILA cores on an Implemented Netlist
	Using Remote Debugging

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Vivado Design Suite User and Reference Guides
	Vivado Design Suite Tutorials
	Other Xilinx Documentation

	Training Resources
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

