Vivado Design Suite Tutorial

Model-Based DSP Design Using
System Generator

UG948 (v2019.1) May 22, 2019

& XILINX

"E See all versions
of this document

https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG948

& XILINX

Revision History

The following table shows the revision history for this document.

Section

Revision Summary

05/22/2019 Version 2019.1

Locating and Preparing the Tutorial Design Files

Updated design files.

Figure 69: Lab3_1 Design

Updated figure.

Model-Based DSP Design Using System Generator

UG948 (v2019.1) May 22, 2019

www.xilinx.com

l Send Feedback I

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=2

& XILINX

Table of Contents

REVISION HISTO Y 1ot 2
System GENErator fOr DSP OVEIVIEW.........ceiiiiiieeeeiieeeeeiteeeeeciteeeesiteeeesareeesssseeeesssseesasseeessssasesassseesanssseessnnsneennn 5
T Ao o [N ot o] o DTS P T PROTRSPSRRTRN 5
Yo i AV [l =T (U= 0 =T) USRS 7
Configuring MATLAB to the Vivado DeSIZN SUILEc.cccuiiiiiiie ettt e e ee et e e e e e e e s etarre e e e e e e e eenannnns 7
Locating and Preparing the Tutorial DeSIZN FIleSuuueiiiiiiciiiiiiee et et e e e e e e e anb e aeeeas 8
Lab 1: Introduction tO SYStEM GENEIATON.....cii ittt e e s bee e e e s e e e s sbee e s esabeeesssabeeessnareeas 9
TaiagoTe [¥To1dTo] o DNRU U PP P OO P T PR POPRTOURRPPRROt 9
Step 1: Creating @ DeSigN iN AN FPGA ... aan 10
Step 2: Creating an Optimized Design in @n FPGAooiiiiiiei ettt ettt e e e ette e e e eate e e e sbreeesebeneeeenns 24
Step 3: Creating a Design UsSiNg DiSCrete RESOUICESuuuuuuuuiiiiiii s 28
Step 4: WOrking With Data TYPES ...ueeeieiieeeiciiieeeciieee ettt e ettt e e e stte e e e s tte e e e sbteeeseabteeessnbteeesensteeeeasseeesaseneananes 38
SUIMIMIAIY ettt s 51
Lab 2: Importing Code iNtO SYStEM GENEIATON......cccciiiiiccieee et et e et e e e et e e e etee e e e e vteeeesbaeeessbbeeeessaneesanes 52
Step 1: Modeling Control With IM=Code..........uuiiiiiiiie et et e e e etre e e e e bae e e senbaeeeeenes 52
Step 2: Modeling BlOCKS WIth HDL.......cuuiiiiiiiii ettt et e e s e e s sabee e s ssabeeeessnbeeeesanbeeeesnns 56
Step 3 : Modeling BIocks With C/CH+ COUE.....cuiiiiiiiiiic ettt e te e te e be e st e s be e b e e beebaeraas 62
SUIMIMIAIY e s 70
Lab 3: Timing and RESOUICTE ANAIYSIS.....uuiiiiiiieiiciiieieiiiee et ee s st ee st e e s sere e e e sareeessaabeeesssteeessssaeesssseeessssseneenn 71
Ta1agoTe [¥To1dTe] o FNUT T O PO P RO PP UPPRTOPR 71
Step 1: Timing ANalysis iN SYStEM GENEIALONcccuiiiiiciiiee ettt e s e e s sbee e e sebeeeessabeeeesanseeessnnns 71
Step 2: Resource Analysis in SYStEM GENEIATON.......cciciiiii ettt et e e eetee e e e etre e e eearre e e seataeeesentaeeeenes 78
R U200 = V75N 82
Lab 4: Working With MUILI-RAtE SYSTEIMSeiiiiiiiiie ettt ere e e et e e e st e e e e sareeeesssaeessnsaeeesnseeeaan 83
T o e [V TordTe] o FONUR O T PO PP PSP PP UTUPPUPRUPPRPPON 83
Step 1: Creating Clock DOmain HIErarChisccuueiiiciiiii ettt et e e s ete e e e s eata e e e senraeeeenes 83
Step 2: Creating Asynchronous ChannEls............cuiiiiiiiie ittt e e e ratee e e s eate e e e senteeeeeanes 87
Step 3: SPECIfYiNg ClOCK DOMAINS .. .ciiiciiieieciiee ettt e e et e e e ette e e e ette e e e sataeaesastaeeesstaeeesastaeaesassanasnnes 92

Model-Based DSP Design Using System Generator Send Feedback 3
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=3

& XILINX
A o Table of Contents

UM M AIY e nnnn 97
Lab 5: Using AXI Interfaces and IP INt@EIrator.....cuui ittt e et e e e e e e e s rre e e e e e e e e anraeeees 98
TadgoTe [¥To1dTo] o DTS U TP TOPRPPPRN 98
Step 1: REVIEW the AXI INTEITACES. .. .iii ittt et e e e rata e e e srte e e e sentaeeesnbaeeesstaeeesntaeaesans 99
Step 2: Create a Vivado Project using System Generator [Pccceeeoeiiii et 100
Step 3: Create a Design in IP INtEZrator (IP1)ceccueeee ettt e e e e e e aae e e e a e e e aaeee s 103
Step 4: IMPIEMENT the DESIZN ..cccceiiiei ettt e e et e e e st e e e s e et e e e s aasaeeessseeesansaees 110
SUIT MY ¢ nnnn 111
Lab 6: Using a System Generator Design with @ Zyng-7000 SOC..........ccceciuieeiiiieeeeiieeeecreeeesiveeeesereeeesaneees 112
T Ao o [¥ Lot i Te] o DT TP SO UT PP VR PSPPI 112
Step 1: Review the AXI4-Lite INterface DIriVEIS.....ccuiiiiciiiie ittt ettt e e stae e e s are e s s s breeessaaeee s 113
Step 2: Developing Software and Running it on the Zyng-7000 SyStem.......c.cevvviiuiieiriiieeeiiiee e eriaeeeen 116
U MY ¢ e 121
=T Y I Lo ol SRR 122
Please Read: IMportant LeGal NOLICEScuiiii ittt see e s s rbee e e s ebee e s s sabee e s snres 122

Model-Based DSP Design Using System Generator Send Feedback 4
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=4

-~

A

[

Bl

& XILINX

System Generator for DSP Overview

Introduction

System Generator for DSP is a design tool in the Vivado® Design Suite that enables you to use the
MathWorks® model-based Simulink® design environment for FPGA design. Previous experience with
Xilinx® FPGA devices or RTL design methodologies is not required when using System Generator.
Designs are captured in the Simulink™ modeling environment using a Xilinx-specific block set.
Downstream FPGA steps including RTL synthesis and implementation (where the gate level design is
placed and routed in the FPGA) are automatically performed to produce an FPGA programming
bitstream.

Over 80 building blocks are included in the Xilinx-specific DSP block set for Simulink. These blocks
include common building blocks such as adders, multipliers and registers. Also included are complex
DSP building blocks such as forward-error-correction blocks, FFTs, filters, and memories. These complex
blocks leverage Xilinx LogiCORE™ IP to produce optimized results for the selected target device.

VIDEO: The Vivado Design Suite Quick Take Video Tutorial: System Generator Multiple Clock
Domains describes how to use Multiple Clock Domains within System Generator, making it possible to
implement complex DSP systems.

VIDEO: The Vivado Design Suite QuickTake Video Tutorial: Generating Vivado HLS block for use in
System Generator for DSP describes how to generate a Vivado HLS IP block for use in System Generator,
and ends with a summary of how the Vivado HLS block can be used in your System Generator design.

VIDEO: The Vivado Design Suite Quick Take Video: Using Vivado HLS C/C++/System C block in
System Generator describes how to incorporate your Vivado HLS design as an IP block into System Generator
for DSP.

Model-Based DSP Design Using System Generator Send Feedback 5
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/system-generator-multiple-clock-domains.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/system-generator-multiple-clock-domains.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-hls-block-system-generator-dsp.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-hls-block-system-generator-dsp.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-hls-c-system-c-system-generator.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-hls-c-system-c-system-generator.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=5

v
i; XI I_I NX@ System Generator for DSP Overview

VIDEO: The Vivado Design Suite Quick Take Video: Specifying AXI4-Lite Interfaces for your Vivado
System Generator Design describes how System Generator provides AXI4-Lite abstraction making it possible
to incorporate a DSP design into an embedded system. Full support includes integration into the IP Catalog,
interface connectivity automation, and software APIs.

VIDEO: The Vivado Design Suite QuickTake Video Tutorial: Using Hardware Co-Simulation with
Vivado System Generator for DSP describes how to use Point-to-Point Ethernet Hardware Co-Simulation
with Vivado System Generator for DSP. Hardware co-simulation makes it possible to incorporate a design
running in an FPGA directly into a Simulink simulation.

In this tutorial, you will do the following:

e labl:
0 Understand how to create and validate a model using System Generator.
0 Make use of workspace variables to easily parameterize your models.

0 Synthesize the model into FPGA hardware, and then create a more optimal hardware version
of the design.

0 Learn how fixed-point data types can be used to trade off accuracy against hardware area
and performance.

e Lab 2: Learn Modeling Control System with M-Code, incorporating existing RTL designs, written
in Verilog or VHDL, into your design, and import C/C++ source files into a System Generator
model by leveraging the tool integration with HLS.

e Lab 3: Learn how to do Timing and Resource Analysis and how to overcome timing violations.
e Lab 4: Learn how to create an efficient design using multiple clock domains.

e Lab 5: Use AXI interfaces and Vivado IP integrator to easily include your model into a larger
design.

e lLab 6: Integrate your design into a larger system and operate the design under CPU control.

Model-Based DSP Design Using System Generator Send Feedback 6
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/axi4-lite-interfaces-for-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/axi4-lite-interfaces-for-vivado.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/hardware-co-simulation-vivado-system-generator-for-dsp.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/hardware-co-simulation-vivado-system-generator-for-dsp.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=6

v
i; XI I_I NX@ System Generator for DSP Overview

Software Requirements

The MATLAB releases and simulation tools supported in this release of System Generator are described
in the Compatible Third-Party Tools section of the Vivado Design Suite User Guide: Release Notes,
Installation, and Licensing (UG973).

The operating systems supported in this release of System Generator are described in the Operating
Systems section of the Vivado Design Suite User Guide: Release Notes, Installation, and Licensing
(UG973).

Configuring MATLAB to the Vivado Design Suite

Before you begin, you should verify that MATLAB is configured to the Vivado® Design Suite. Do the
following:

1. Configure MATLAB.

e On Windows systems:

a. Select Start > All Programs > Xilinx Design Tools > Vivado 2019.x > System Generator
> System Generator 2019.x MATLAB Configurator.

IMPORTANT: On Windows systems you may need to launch the MATLAB configurator as
Administrator. When MATLAB Configurator is selected in the menu, use the mouse right-click
to select Run as Administrator.

¥ Select a MATLAB installation for System Generator Vivado — (| x
Choose MATLAB for System Generator Vivado
MATLAB Version Status Location
[]\ R2017b #£ Configured CAProgram Files\MATLAB\R2017b
Find MATLAB Remove Apply Ok Help

Figure 1: Select MATLAB Installation

b. Click the check box of the version of MATLAB you want to configure and then click OK.

Model-Based DSP Design Using System Generator Send Feedback 7
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug973-vivado-release-notes-install-license.pdf;a=CompatibleThirdPartyTools
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug973-vivado-release-notes-install-license.pdf;a=xOperatingSystems
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=7

)

0

v
i; XI I_I NX@ System Generator for DSP Overview

e On Linux systems:

Launching System Generator under Linux is handled using a shell script called sysgen located in
the <Vivado install dir>/bin directory. Before launching this script, you must make sure the
MATLAB executable can be found in your Linux system’s $PATH environment variable for your Linux

system. When you execute the sysgen script, it will launch the first MATLAB executable found in
$PATH and attach System Generator to that session of MATLAB. Also, the sysgen shell script
supports all the options that MATLAB supports and all options can be passed as command line
arguments to the sysgen script.

When the System Generator opens, you can confirm the version of MATLAB to which System
Generator is attached by entering the version command in the MATLAB Command Window.

>> version
ans =
"9.3.0.713579 (R2017b)*

Locating and Preparing the Tutorial Design Files

There are separate project files and sources for each of the labs in this tutorial. You can find the design
files for this tutorial on the www.xilinx.com website.

1. Download the Reference Design Files from the Xilinx website.

2. Extract the zip file contents into any write-accessible location on your hard drive or network
location.

RECOMMENDED: You will modify the tutorial design data while working through this tutorial.
You should use a new copy of the SysGen_Tutor ial directory extracted from ug948-
design-Files.zip each time you start this tutorial.

TIP: This document assumes the tutorial files are stored at C:\SysGen_Tutorial. All
pathnames and figures in this document refer to this pathname. If you choose to store the tutorial
in another location, adjust the pathnames accordingly.

Model-Based DSP Design Using System Generator Send Feedback
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=10b8182c-e0ad-4df5-8b55-ea2f1313cff6;d=ug948-design-files.zip
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=8

& XILINX

Lab 1: Introduction to System Generator

Introduction

In this lab exercise, you will learn how use System Generator to specify a design in Simulink and
synthesize the design into an FPGA. This tutorial uses a standard FIR filter and demonstrates how
System Generator provides you the design options that allow you to control the fidelity of the final
FPGA hardware.

Objectives
After completing this lab, you will be able to:

e Capture your design using the System Generator Blocksets.
e Capture your designs in either complex or discrete Blocksets.

e Synthesize your designs in an FPGA using the Vivado Design Environment.
Procedure
This lab has four primary parts:

e In Step 1, you will review an existing Simulink design using the Xilinx FIR Compiler block, and
review the final gate level results in Vivado.

e In Step 2, you will use over-sampling to create a more efficient design.
e In Step 3, the same filter is designed using standard discrete blockset parts.

e In Step 4, you will understand how to work with Data Types such as Floating-point and Fixed-
point.

Model-Based DSP Design Using System Generator Send Feedback 9
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=9

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

Step 1: Creating a Design in an FPGA

In this Step you learn the basic operation of System Generator and how to synthesize a Simulink design
into an FPGA.

1. Invoke System Generator.

e On Windows systems select Start > All Programs > Xilinx Design Tools > Vivado 2019.x >
System Generator > System Generator 2019.x.

e On Linux Systems, type sysgen at the command prompt.
2. Navigate to the Labl folder: cd C:\SysGen_Tutorial\Labl.

You can view the directory contents in the MATLAB Current Folder browser, or type Is at the
command line prompt.

3. Open the Labl_1 design as follows:
e At the MATLAB command prompt, type open Labl_1.slx
OR
e Double-click Labl_1.slx in the Current Folder browser.

The Lab1_1 design opens, showing two sine wave sources being added together and passed
separately through two low-pass filters. This design highlights that a low-pass filter can be
implemented using the Simulink FDATool or Lowpass Filter blocks.

Model-Based DSP Design Using System Generator Send Feedback 10
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=10

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

Sine Wave
2'pi*0e6 rad/s Spectrum
Analyzer Orig
FOATool
o+
> » [h > w |
Add Zero-Order
Hold Digital Spectrum
Filter Design Analyzer
[\/ FOA Tool
Sine Wave
2'pi*1e6 rad/s
Scope
> Lowpass : |

Lowpass Filter Spectrum

Analyzer
LPF

Figure 2: Labl_1 Design

4. From your Simulink project worksheet, select Simulation > Run or click the Run simulation button.

File Edit View Display Diagram Simulation Analysis Code Tools
v 3| <« i & -E - 40P [~
Model Browiser = | Introduction_Stepl > L;],.Ru_nm

Figure 3: Run Simulation Button

When simulation completes you can see the spectrum for the initial summed waveforms, showing a
1MHz and 9 MHz component, and the results of both filters showing the attenuation of the 9 MHz
signals.

Model-Based DSP Design Using System Generator Send Feedback 11
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=11

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

-
e Spectrum Analyzer Orig

& Spectrum Analyzer LPF

File Tools WView Simulation Help File Tools View Simulabon Help »

6@ | &< &k [C]ES| A N A N I
@r®

e @ Q= bd[LIES LA N L D (X

&9 o

=1953 |Sample Aate=20 | T=0.0005 Sample Rate=20 T=0.0005

ample Rate=20 T=0.0005

Figure 4: Initial Results

You will now create a version of this same filter using System Generator blocks for implementation in an
FPGA.

5. Click the Library Browser button in the Simulink toolbar to open the Simulink Library Browser.

File Edit View Display Diagram Simulation
-8 <« w @ -E - e q

S N
Model Browser = |__.______..__._FL prary Bro"_'sert *

Figure 5: Simulink Library Browser

When using System Generator, the Simulink library includes specific blocks for implementing
designs in an FPGA. You can find a complete description of the blocks provided by System
Generator in the Vivado Design Suite Reference Guide: Model-Based DSP Design Using System
Generator (UG958).

6. Expand the Xilinx Blockset menu, select DSP, then select Digital FIR Filter.
7. Right-click the Digital FIR Filter block and select Add block to model Labl_1.

Model-Based DSP Design Using System Generator Send Feedback 12
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug958-vivado-sysgen-ref.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=12

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

&2 simulink Library Browser =R BoR %™

=] Enter search term MELC Bl Rl (g' = 2

Xilinx Blockset/DSP

> Communications System Toolbox LN b2
> Communications System Toolbox HDL Support] -
> Computer Vision System Toolbox CIC Compiler 4.0

- Simulink - = _[i :

i

Complex Multiplier 6.0 CORDIC 6.0 DDS Compiler 6.0
Control System Toolbox — |
> DSP System Toolbox | ;
> DSP System Toolbox HDL Support 3 romie) p | € | |
» HDL Coder == 1 —
. HDL Verifier Digital FIR Filter Divider Generator 5.1 D5P48 Macro 3.0 DSP48E
Inr;lagedﬂcquisition ToolhoxIh : Add block to model Labl_1 Ctrl+1 |
> Phased Array System Toolbox L - -
. Simulink 30 Animation — Help for the Digital FIR Filter block jm
> Simulink Coder DSP48EL Go to parent Esc FDATool
> Simulink Extras [1
Stateflow E o Block parameters i
4 ilinx Blockset | s
AXT4 ' ' Sort in library model order
Basic Elements FFT - 2 LFSR

Communication b

o
1i
(9]
v

Control Logic L
Data Types a7} V
DSP Opmode Product Sine Wave
Floating-Point
Index
Math
Memory
Tools
> Xilinx Reference Blockset
Recently Used Blocks

Figure 6: Add Digital FIR Filter Block

You can define the filter coefficients for the Digital FIR Filter block by accessing the block attributes
— double-click the Digital FIR Filter block to view these — or, as in this case, they may be defined
using the FDATool.

8. In the same DSP blockset as the previous step, select FDATool and add it to the Lab1_1 design.
An FPGA design requires three important aspects to be defined:

e The input ports

e The output ports

e The FPGA technology

The next three steps show how each of these attributes is added to your Simulink design.

IMPORTANT: If you fail to correctly add these components to your design, it cannot be
implemented in an FPGA. Subsequent labs will review in detail how these blocks are
configured; however, they must be present in all System Generator designs.

9. In the Basic Elements menu, select Gateway In and add it to the design.

Model-Based DSP Design Using System Generator Send Feedback 13
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=13

v
i; XI I_I NXQ Lab 1: Introduction to System Generator

-

iﬁ Simulink Library Browser | = || (=] || b |
&< FDATool v fy - -

Xilinx Blockset/Basic Elements

> Computer Vision System Toolbox = 8 Pad -
Control System Toolbox
» DSP System Toolbox System Generator Absolute
> DSP System Toolbox HDL Support g
> HDL Coder RN) Asset D
» HDL Verlfler_ " Addressable Shift Register Assert
Image Acquisition Toolbox
Report Generator D & =
> Simulink 3D Animation L
» Simulink Coder BitBasher Black Box
> Simulink Extras >Epmbe > R ¥
Simulink Verification and Validation -
Stateflow Clock Enable Probe Concat
r | ili =
Xlll;;(qilockset AN 3 = 3 i
Basic Elements Constant Convert
Communication
Control Logic = R ¥
Data Types Counter Delay
DSP
Floating-Point a 0
High Level Synthesis -
Index Down Sample Expression
Math
Memory E)l In >), Out)
Tools ol Gateway In Gateway Out
4 | o » m I—WL -

Figure 7: Adding a Gateway In

10. Similarly, from the same menu add a Gateway Out block to the design.

11. Similarly, from the same menu add the System Generator token used to define the FPGA
technology.

12. Finally, make a copy of one of the existing Spectrum Analyzer blocks and rename the instance to
Spectrum Analyzer SysGen by clicking the instance name label and editing the text.

Model-Based DSP Design Using System Generator Send Feedback
UG948 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

14

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=14

v
i; XI I_I NXQ Lab 1: Introduction to System Generator

13. Connect the blocks as shown in the following figure. Use the left-mouse key to make connections

R

FDATaol System

between ports and nets.

D double € double - double |_

Gateway In Gateway Out
i il Spactn
Digetal FIR Filter A.-.awp;:: ;;zgcn
double N |
Sine Wave

2°pit9ed rad's Suu-:lfuu_n

Analyzer Ong
FOAToM
— double bie bie
—PIECGU N w cioul N |
Add Zero-Order

Hodd Drgital Spectrum

double Filter Design Analyzer

FDA Tool

Sine Wave
2'pitt a6 radls
=
Scope
I Lowpass o i |
Lowpass Filter Spectum
Analyzer
LPF
Figure 8: Initial System Generator Design
The next part of the design process is to configure the System Generator blocks.
Model-Based DSP Design Using System Generator Send Feedback 15
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=15

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

Configure the System Generator Blocks

The first task is to define the coefficients of the new filter. For this task you will use the Xilinx block
version of FDATool. If you open the existing FDATool block, you can review the existing Frequency and
Magnitude specifications.

1. Double-click the Digital Filter Design instance to open the Properties Editor.

This allows you to review the properties of the existing filter.

4 Block Parameters: Digital Filter Design EI@
File Edit Analysis Targets View Window Help
DedsSR a< i RNFNM#+0 BLORE W
rCurrent Filter Information —Magnitude Response (dB)
0 LI — T T T 7]
—~ 20 |
Structure: Direct-Form FIR % -
Order: 10 o -40+ ‘\ 7]
Stable: Yes 'g N
Source: Designed E -60 - ‘ i
o A
5y} '\\
= 80t \ .
1
1~ - -
A .-'/ \ /
-100 | | | | I U
| Stare Filter | 0 2 4 6 8
Frequency (MHz
| Filter Manager ... | q 4 ()
—Response Typg ———— —Filter Order ———— —Frequency Specifications — Magnitude Specifications
@ Lowpass v Specify order: |10 Units: |MHz v Units: |dB -
Highpass v
@) Minimum order Fs: 20
Bandpass Apass: 0.01
] Bandsto — Opti Fpass: 15
= ° Options > Astop: 100
- Differentiator - Density Factor: |16 Fstop: 85
[—Design Method
EE IR |Butterworth -
(]
@ @ FIR Equiripple v
E Input processing: Columns as channels (frame based) - Design Filter
Ready

Figure 9: Filter Specifications

2. Close the Properties Editor for the Digital Filter Design instance.
3. Double-click the FDATool instance to open the Properties Editor.

4. Review the filter specifications for the following values (shown in the figure above):

Model-Based DSP Design Using System Generator Send Feedback 16
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=16

& XILINX

¢ Frequency Specifications

o Units = MHz

o Fs=20
0 Fpass=15
0 Fstop =85
e Magnitude Specifications
0 Units = dB
0 Apass =001
o Astop =100

5. Close the Properties Editor.

Lab 1: Introduction to System Generator

Now, associate the filter parameters of the FDATool instance with the Digital FIR Filter instance.

6. Double-click the Digital FIR Filter instance to open the Properties Editor.

7. In the Filter Parameters section, replace the existing coefficients (Coefficient Vector) with
x1fda_numerator ("FDATool ™) to use the coefficients defined by the FDATool instance.

e

Coefficient Precision

V| Optimal values

Coefficient Width : |19

Interpolation Rate 1

Decimation Rate 1

5% Digital FIR Filter (Xilinx FIR Block) |)
Filter Parameters
Coefficient Vector
Use FDA Tool as Coefficient source
xfda_numerator('FDATool") FDA Tool

Coefficient Fractional Bits : |19

ok ||

Help | |

Apply

Figure 10: Digital FIR Filter Specifications

8. Click OK to exit the Digital FIR Filter Properties Editor.

Model-Based DSP Design Using System Generator
UG948 (v2019.1) May 22, 2019

www.xilinx.com

l Send Feedback I

17

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=17

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

In an FPGA, the design operates at a specific clock rate and using a specific number of bits to
represent the data values.

The transition between the continuous time used in the standard Simulink environment and the
discrete time of the FPGA hardware environment is determined by defining the sample rate of the
Gateway In blocks. This determines how often the continuous input waveform is sampled. This
sample rate is automatically propagated to other blocks in the design by System Generator. In a
similar manner, the number of bits used to represent the data is defined in the Gateway In block
and also propagated through the system.

Although not used in this tutorial, some Xilinx blocks enable rate changes and bit-width changes, up
or down, as part of this automatic propagation. More details on these blocks are found in the
Vivado Design Suite Reference Guide: Model-Based DSP Design Using System Generator (UG958).

Both of these attributes (rate and bit width) determine the degree of accuracy with which the
continuous time signal is represented. Both of these attributes also have an impact on the size,
performance, and hence cost of the final hardware.

System Generator allows you to use the Simulink environment to define, simulate, and review the
impact of these attributes.

9. Double-click the Gateway In block to open the Properties Editor.

Because the highest frequency sine wave in the design is 9 MHz, sampling theory dictates the
sampling frequency of the input port must be at least 18 MHz. For this design, you will use 20 MHz.

10. At the bottom of the Properties Editor, set the Sample Period to 1/20e6.

11. For now, leave the bit width as the default fixed-point 2's complement 16-bits with 14-bits
representing the data below the binary point. This allows us to express a range of -2.0 to 1.999,
which exceeds the range required for the summation of the sine waves (both of amplitude 1).

Model-Based DSP Design Using System Generator Send Feedback 18
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug958-vivado-sysgen-ref.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=18

& XILINX

Lab 1: Introduction to System Generator

Gateway In (Xilinx Gateway In)

E=8 BoR =55

Gateway in block. Converts inputs of type Simulink integer, single, double
and fixed-point to Xilinx fixed-point or floating-point data type.

Hardware notes: In hardware these blocks become top level input ports.

Basic Implementation

Output Type

(") Boolean (@) Fixed-point

Arithmetictype[Signed (2's comp) v]

Fixed-point Precision

Number of hits 16

Floating-point Precision

) Single Double Custom

Exponent width | 8

Quantization:

() Truncate (@) Round (unbiased: +/- Inf)
Overflow:

Wrap 0 Saturate Flag as error

Sample period 1/20e6

(") Floating-point

Binary point 14

Fraction width | 24

oK] l Cancel I [

Help

] l Apply

Figure 11: Gateway In Properties

12. Click OK to close the Gateway In Properties Editor.

This now allows us to use accurate sample rate and bit-widths to accurately verify the hardware.

13. Double-click the System Generator token to open the Properties Editor.

Because the input port is sampled at 20 MHz to adequately represent the data, you must define the
clock rate of the FPGA and the Simulink sample period to be at least 20 MHz.

Model-Based DSP Design Using System Generator

UG948 (v2019.1) May 22, 2019

www.xilinx.com

| Send Feedback I

19

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=19

& XILINX

14. Select the Clocking tab.

a. Specify an FPGA clock Period of 50 ns (1/20 MHz).
b. Specify a Simulink system period of 1/20e6 seconds.
C.

Lab 1: Introduction to System Generator

From the Perform analysis menu, select Post Synthesis and from Analyzer type menu select

Resource as shown below. This option gives the resource utilization details after completion.

(4] System Generator: Lab1_1

10 Ay

) &)
‘000 7 ! 4
Compilation Clocking General

[Enable multiple clocks

FPGA clock period (ns) :
50

[] Provide clock enable clear pin
Simulink system period (sec) :
1/20e6

=] = [=]

Clock pin location :

Perform analysis : Analyzer type :
Post Synthesis v Resource v.
Performance Tips l Generate [OK l l Apply l l Cancel l l Help l

Figure 12: Labl_1 Clocking

15. Click OK to exit the System Generator token.

16. Click the Run simulation button &/ to simulate the design
Figure 13: FIR Compiler Results.

and view the results, as shown in

Because the new design is cycle and bit accurate, simulation might take longer to complete than

before.

Model-Based DSP Design Using System Generator
UG948 (v2019.1) May 22, 2019 www.xilinx.com

20

| Send Feedback I

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=20

v
i; XI I_I NXQ, Lab 1: Introduction to System Generator

[4] Spectrum Analyzer FDA Tool (=] [=] X 4| Spectrum Analyzer Sysgen EI@
File Tocls View Simulation Help E File Tools View Simulation Help E
g @ | & @ &| A C]FA | (& Il [[(X g @ | & @ & A LK | Al [& (X

®r®| =@ QPr®| =@

2 0

Frequency | Z))
Ready RBW=1953 T=0020 Ready RBW=1953 T=0020

Figure 13: FIR Compiler Results

The results are shown above, on the right hand side (in the Spectrum Analyzer SysGen window), and
differ slightly from the original design (shown on the left in the Spectrum Analyzer FDA Tool
window). This is due to the quantization and sampling effect inherent when a continuous time
system is described in discrete time hardware.

The final step is to implement this design in hardware. This process will synthesize everything
contained between the Gateway In and Gateway Out blocks into a hardware description. This
description of the design is output in the Verilog or VHDL Hardware Description Language (HDL).
This process is controlled by the System Generator token.

17. Double-click the System Generator token to open the Properties Editor.
18. Select the Compilation tab to specify details on the device and design flow.

19. From the Compilation menu, select the IP Catalog compilation target to ensure the output is in IP
Catalog format. The Part menu selects the FPGA device. For now, use the default device. Also, use
the default Hardware description language, VHDL.

Model-Based DSP Design Using System Generator Send Feedback 21
UG948 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=21

& XILINX

Lab 1: Introduction to System Generator

Y System Generator: Labl_1

ey

Compilation Clocking General

Board :

MNaone
Part :
Kintex7 xc7k325t-3fbg676

Compilation :

IP Catalog

Hardware description language :

VHDL

[Use STD_LOGIC type for Boolean or 1
Target directory :

Inetlist

Synthesis strategy :
Vivado Synthesis Defaults -

["] Create interface document

B & @

o] B ()

VHDL library :
v | xil_defaullib

bit wide gateways

Browse...

Implementation strategy :

Vivado Implementation Defaults -

Model upgrade...

[] Create testbench

Performance Tips l l Generate l l

OK] [Apply] [Cancel] [Help]

Figure 14: System Generator Token for Lab 1 Step 1

20. Click Generate to compile the design into hardware.

The compilation process transforms the design captured in Simulink blocks into an industry
standard RTL (Register Transfer Level) design description. The RTL design can be synthesized into a
hardware design. A Resource Analyzer window appears when the hardware design description has
been generated.

Resource Analyzer: Labl_1 | = ” (=] ” &3 |

Post Synthesis Resources: Clicking on an instance name highlights corresponding block/subsystem in the model.

L, || = || ey
: =

Name BRAMS DSPs LUTs Registers

(445) (840} (203800} (407600)
4 labl 1 0 6 294 403
Digital FIR Filter 6 294 403
[OK] l Help I

Figure 15: Lab 1_1 Resource Analyzer

Model-Based DSP Design Using System Generator
UG948 (v2019.1) May 22, 2019 www.xilinx.com

| Send Feedback I 22

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=22

)

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

The Compilation status dialog box also appears.

Compilation status El@

v
Generation Completed
A

| ok || Show Details

Figure 16: Generation Complete

21. Click OK to dismiss the Compilation status dialog box.
22. Click OK to dismiss the Resource Analyzer window.
23. Click OK to dismiss the System Generator token.

The final step in the design process is to create the hardware and review the results.

Review the Results

The output from design compilation process is written to the netlist directory. This directory
contains three subdirectories:

e sysgen: This contains the RTL design description written in the industry standard VHDL format.
This is provided for users experienced in hardware design who wish to view the detailed results.

e ip: This directory contains the design IP, captured in Xilinx IP Catalog format, which is used to
transfer the design into the Xilinx Vivado Design Suite. Lab 5: Using AXI Interfaces and IP
Integrator, presented later in this document, explains in detail how to transfer your design IP
into the Vivado Design Suite for implementation in an FPGA.

e ip_catalog: This directory contains an example Vivado project with the design IP already
included. This project is provided only as a means of quick analysis.

Figure 15 above shows the summary of resources used after the design is synthesized. You can also
review the results in hardware by using the example Vivado project in the ip_catalog directory.

IMPORTANT: The Vivado project provided in the ip_catalog directory does not contain top-
level I/O buffers. The results of synthesis provide a very good estimate of the final design results;
however, the results from this project cannot be used to create the final FPGA.

24. Exit the Labl_1.sIx Simulink worksheet.

Model-Based DSP Design Using System Generator Send Feedback 23
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=23

& XILINX

Lab 1: Introduction to System Generator

Step 2: Creating an Optimized Design in an FPGA

In this step you will see how an FPGA can be used to create a more optimized version of the same

design used in Section 1, by oversampling. You will also learn about using workspace variables.

1. At the command prompt, type open Labl_2.slx.

2. From your Simulink project worksheet, select Simulation > Run or click the Run simulation button

2 to confirm this is the same design used in Step 1: Creating a Design in an FPGA.

3. Double-click the System Generator token to open the Properties Editor.

As noted in Section 1, the design requires a minimum sample frequency of 18 MHz and it is
currently set to 20 MHz (a 50 ns FPGA clock period).

50

1/20e6

4 System Generator: Labl_2

Compilation

FPGA clock period (ns) :

Clocking

Pl

General

[Enable muttiple clocks

[| Provide clock enable clear pin

Simulink system period (sec) :

Clock pin location :

ESRoy =

Perform analysis : Analyzer type :
Naone w | |Timing v || Launch...
Performance Tips Generate l QK J l Apply ‘ l Cancel l Help ‘

Figure 17: Initial Labl_2 Clocking

The frequency at which an FPGA device can be clocked easily exceeds 20 MHz. Running the FPGA at
a much higher clock frequency will allow System Generator to use the same hardware resources to
compute multiple intermediate results.

4. Double-click the FDATool instance to open the Properties Editor.

Model-Based DSP Design Using System Generator

UG948 (v2019.1) May 22, 2019

www.xilinx.com

l Send Feedback I

24

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=24

& XILINX

5. Click the Filter Coefficients button [':!-':*] to view the filter coefficients.

Lab 1: Introduction to System Generator

4] Block Parameters: FDATool EI@
File Edit Analysis Targets View Window Help
Dedael &« 300 R M3 0 BE)oRE W

rCurrent Filter Information ——————— —Filter CuefﬁC‘EmS;‘ Filter Coefficients

0.0019067134188906437
—-0.011075239432874705
—-0.041151591448130125

Structure: Direct-Form FIR 0.03513056753261963
Order: 10 0.28878272461128692
0.45093247976035494
Stable: Yes 0.288782768461128692
Source: Designed 0.03513056753261963
-0.041151591448130125
-0.011075239432874705
0.0019067134188906437
l Store Filter ...]

[Filter Manager ...

Computing Response ... Done

— Response Type — Filter Order — Frequency Specifications — Magnitude Specifications
9 Lowpass) (") Specify order: 10 Units: |MHz Units: |dB -
) |Highpass A .
-) (@ Minimum order Fs: 20

(") Bandpass) Apass: |0.01

() Bandsto — Opti Fpass: 15
] ° Otians g Astop: 100
= | |Differentiator) Density Factor: |16 = 65
@I I—Design Method
% || (IR Butterworth -
(] :
@ @ FIR Equiripple)
E‘ Input processing: Columns as channels (frame based) - Design Filter

Figure 18: Lab1l_2 Filter Coefficients

This shows the filter uses 11 symmetrical coefficients. This will require a minimum of 6
multiplications. This is indeed what is shown in Figure 15: Lab 1_1 Resource Analyzer where the final
hardware is using 6 DSP48 components, the FPGA resource used to perform a multiplication.

The current design samples the input at a rate of 20 MHz. If the input is sampled at 6 times the
current frequency, it is possible to perform all calculations using a single multiplier.

You will now replace some of the attributes of this design with workspace variables. First, you need

6. Close the FDATool Properties Editor.
7.

to define some workspace variables.
8. In the MATLAB Command Window:

a. Enter num_bits = 16

Model-Based DSP Design Using System Generator

UG948 (v2019.1) May 22, 2019

www.xilinx.com

l Send Feedback I 25

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=25

& XILINX

b. Enterbin_pt = 14

Lab 1: Introduction to System Generator

4\ Command Window EI@
>> num bits = 16
num_bits =
16
>> bin pt = 14
bin _pt =
14

Ji > |

il

Figure 19: Defining Workspace Variables

9. Indesign Labl_2, double-click the Gateway In block to open the Properties Editor.

10. In the Fixed-Point Precision section, replace 16 with num_bits and replace 14 with bin_pt, as
shown below.

i Gateway In (Xilinx Gateway In) EI@

Gateway in block. Converts inputs of type Simulink integer, single,

double and fixed-point to Xilinx fixed-point or floating-point data
type.

Hardware notes: In hardware these blocks become top level input
ports.

Basic Implementation

Output Type

(") Boolean (@) Fixed-point () Floating-point

Arithmetic type [Signed (2's comp) ~
Fixed-point Precision

Number of bits num_bits Binary point bin_pt]

Floating-point Precision
Single Double Custom

Exponent width |8 Fraction width | 24
Quantization:

() Truncate (@) Round (unbiased: +/- Inf)
Overflow:

(C)wrap (@) Saturate (") Flag as error
Sample period 1/20e6

o0 [coon [J[_aoop]

Figure 20: Labl_2 Gateway In Properties

Model-Based DSP Design Using System Generator

l Send Feedback I 26
UG948 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=26

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

11. Click OK to save and exit the Properties Editor.

In the System Generator token update the sampling frequency to 120 MHz (6 * 20 MHz) in this way:

a. Specify an FPGA clock Period of 8.33 ns (1/120 MHz).
b. Specify a Simulink system period of 1/120e6 seconds.
c. From the Perform analysis menu, select Post Synthesis and from Analyzer type menu, select

Resource as shown below. This option gives the resource utilization details after completion.

4\ System Generator: Lab1_2

¥ o a

Compilation Clocking General

|| Enable multiple clocks

FPGA clock period (ns) : Clock pin location :
533

[] Provide clock enable clear pin
Simulink system period (sec) :
1/120e6

Perform analysis : Analyzer type :
Post Synthesis * | |Resource * | Launch...
Performance Tips ‘ \ Generate ‘ l oK I l Apply I I Cancel ‘ I Help ‘

Figure 21: Labl_2 Clocking

12. Press Generate to compile the design into a hardware description.

In this case, the message appearing in the Diagnostic Viewer can be dismissed as you are purposely
clocking the design above the sample rate to allow resource sharing and reduce resources. Close
the Diagnostic Viewer window.

13. When generation completes, click OK to dismiss the Compilation status dialog box.

The Resource Analyzer window opens when the generation completes, giving a good estimate of the
final design results after synthesis as shown below.

Model-Based DSP Design Using System Generator Send Feedback 27
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=27

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

The hardware design now uses only a single DSP48 resource (a single multiplier) and compared to the
results in Figure 15: Lab 1_1 Resource Analyzer, the resources used are approximately half.

* Resource Analyzer: Labl_2 o= | [| &3

Post Synthesis Resources: Clicking on an instance name highlights corresponding block/subsystem in the model.

Name BRAMSs DSPs LUTs Registers
(445) (840) (203800) (407600)
4 |abl 2 0 1 112 198
Digital FIR Filter 0 1 112 198
[OK] | Help

Figure 22: Labl_2 Resource Analyzer

14. Click OK to dismiss the Resource Analyzer window.
15. Click OK to dismiss the System Generator token.
Exit the Labl_2.slx Simulink worksheet.

Step 3: Creating a Design Using Discrete Resources

In this step you will see how System Generator can be used to build a design using discrete
components to realize a very efficient hardware design.

1. At the command prompt, type open Labl_3.slx.

This opens the Simulink design shown in the following figure. This design is similar to the one in the
previous two steps. However, this time the filter is designed with discrete components and is only
partially complete. As part of this step, you will complete this design and learn how to add and
configure discrete parts.

Model-Based DSP Design Using System Generator Send Feedback 28
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=28

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

Figure 23: Initial Lab1_3 Design

This discrete filter operates in this way:
e Samples arrive through port In and after a delay are stored in a shift register (instance ASR).
e A ROM is required for the filter coefficients.
e A counter is required to select both the data and coefficient samples for calculation.
e A multiply accumulate unit is required to perform the calculations.
e The final down-sample unit selects an output every nth cycle.
Start by adding the discrete components to the design.
2. Click the Library Browser button &S in the Simulink toolbar to open the Simulink Library Browser.
a. Expand the Xilinx Blockset menu.

b. As shown in the following figure, select the Control Logic section, then select the Counter and
right-click with the mouse to add this component to the design.

Model-Based DSP Design Using System Generator Send Feedback 29
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=29

& XILINX

C.

Select the Memory section (shown at the bottom left in the figure above) and add a ROM to
the design.

& Simulink Library Browser

L= Enter search term ﬁ.h. - t?d

Xilinx Blockset/ Control Logic

Simulink
» Communications System Toolbox
> Communications System Toolbax HDL ¢
Computer Vision System Toolbox
Control System Toolbox
DSF System Toolbox
» DSP System Toolbox HDL Support
» HOL Coder
HOL Veerifier
Image Acquisition Toolbox
Report Generator
» Simulink 3D Animation
» Simulink Coder
Simulink Extras
Simulink Verification and Validation
Stateflow
4 ¥ilinx Blocksat
AN
Basic Elements
Communication
Contral Logic
Data Types
DSP
Floating-Point
Index
Math
Memary
q 1] b

Lab 1: Introduction to System Generator

=)

™| = 3
28 BN B
- &
AXT FIFQ Black Box Constant
=Nt g
T] & T
= = .
Counter Dual Port RAM Expression

Add block to model Labl_3 Ctrl+]
Help for the Counter block
Go to parent Esc
Block parameters
RegreTer
: fan 4 3 x:::)
Relational ROM Shift
e I eh
Single Port RAM Slice Vivado HLS

Figure 24: Lab1_3 Counter Instance

d. Finally, select the DSP section and add a DSP48 Macro 3.0 to the design.

Model-Based DSP Design Using System Generator

UG948 (v2019.1) May 22, 2019

www.xilinx.com

| Send Feedback l

30

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=30

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

3. Connect the three new instances to the rest of the design as shown below.

B &

L
FDATool

Gatewsy In

|
E
:
i

Pl g[E

>a

. b »ld
W ok b p »(d . |

Cal > in * (211 " ‘
FoM _. i i ;

Caplure Lo 1

++

Counter

Convert DSP48 Macro 3.0

Reagister

;

2

Figure 25: Discrete Filter Design

You will now configure the instances to correctly filter the data.

4. Double-click the FDATool instance and select Filter Coefficients [':!-':*] from the toolbar to review the

filter specifications.

Model-Based DSP Design Using System Generator I Send Feedback I

UG948 (v2019.1) May 22, 2019 www.xilinx.com

31

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=31

& XILINX

Lab 1: Introduction to System Generator

[4] Block Parameters: FDATool o | @] R
File Edit Analysis Targets View Window Help
DEESR @< o0 D &R # = 0~ BE)O R E| 2

rCurrent Filter Information — Filter Coefficients

Structure: Direct-Form FIR

.
-0.
-0.

.

0018067134188306437
011075239432874705
041151591448130125
03513056753261963

.28B78278461128692

976035494
78461128692
03513056753261963

::::::

.041151581448130125
.011075239432874705

0019067134188306437

Order: 10 g
Stable: Yes a.
Source: Designed a.
-0
-0
0.
I Store Filter __]

I Filter Manager ...

—Response Type — Filter Order —Frequency Specifications — Magnitude Specifications
Cl Lowpass - (7)) Specify order- [10 Units: |MHz - Units: |dB hd
") Highpass hd)
_ (@) Minimum order Fs: |20
(") Bandpass Apass: |0.01
— || ¢ Bandstop — Options Fpass: 15
- Dpl : - s Astop: 100
= ' Differentiator - ensity Factor: Fstop: 95
I—Design Method
Ser || (IR |Butterworth v
L=l :
@ QI FIR |Equiripple Z
E Input processing” Columns as channels (frame based) M Design Filter

Ready

Figure 26: Lab1_3 Filter Specifications

This shows the same specifications as the previous steps in Lab 1 and confirms there are 11

coefficients. You can also confirm, by double-clicking on the input Gateway In that the input
sample rate is once again 20 MHz (Sample period = 1/20e6). With this information, you can now
configure the discrete components.

5. Close the FDATool Properties Editor.

6. Double-click the Counter instance to open the Properties Editor.

a.

length(xIfda_numerator("FDATool"))-1

This will ensure the counter counts from 0 to 10 (11 coefficient and data addresses).

b.

Model-Based DSP Design Using System Generator
UG948 (v2019.1) May 22, 2019

www.xilinx.com

For the Counter type, select Count limited and enter this value for Count to value:

For Output type, leave default value at Unsigned and in Number of Bits enter the value 4.
Only 4 binary address bits are required to count to 11.

l Send Feedback I

For the Explicit period, enter the value 1/(11*20e6) to ensure the sample period is 11 times
the input data rate. The filter must perform 11 calculations for each input sample.

32

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=32

& XILINX

Lab 1: Introduction to System Generator

® Counter (Xilink Counier) A

= L= o

Hardware nates: Free running counters are the least expensive in

hardware. A cownt limited counter i implemented by combining a
counter with a comparator,

Basic Implementation
Counter type:

Freg running (@ Count limited
Count to value length(xida_numerator FOATool -1
Count dirgction:

@ up Dawii UpyDavwiri
Initial value o
Step 1
Qutput Précson
Output Bype:

Signed (2's comp) @ Ursigreed

Hurnber of bits 4

Binary poant i)

Optional Ports
Provide syncheonous reset poen
Frovide enable port

Explicit Sample Perod

Explicit period 111" 20e6)

oK Cancel Help

Figure 27: Counter Properties Editor

d. Click OK to exit the Properties Editor.

7. Double-click the ROM instance to open the Properties Editor.
a.

For the Depth, enter the value length(x1fda_numerator ("FDATool *)). This will ensure
the ROM has 11 elements.

For the Initial value vector, enter: x1fda_numerator("FDATool *). The coefficient values
will be provided by the FDATool instance.

Model-Based DSP Design Using System Generator

| Send Feedback I 33
UG948 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=33

& XILINX

Lab 1: Introduction to System Generator

-

5 ROM (Xilinx Single Port Read-Only .. | = || & | £ |

Basic | Output | Implementation |

Depth length(xlfda_numerator('FDATool'))

Initial value vector xfda_numerator('FDATool")

Memaory Type:
I Distributed memory (@) Block RAM
Optional Ports

[] Provide reset port for output reqister
Initial value for output register|0

[] Provide enable port

Latency 1

ok || cancel || nelp || apply

Figure 28: ROM Properties Editor

c. Click OK to exit the Properties Editor.

8. Double-click the DSP48 Macro 3.0 instance to open the Properties Editor.

a. In the Instructions tab, replace the existing Instructions with A*B+P and then add A*B. When the

sel input is false the DSP48 will multiply and accumulate. When the sel input is true the DSP48

will simply multiply.

Model-Based DSP Design Using System Generator

UG948 (v2019.1) May 22, 2019

www.xilinx.com

| Send Feedback I

34

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=34

& XILINX

b.

C.

Lab 1: Introduction to System Generator

52 DSP48 Macro 30 (Xilinx DSP48 Macro 3.0)

Instructions | Fipeline Options | Implementation |

E=8 FoR =

ACIN, A, BCIN,B
Valid operators: +, -, =, ()

Valid functions: RNDSIMPLE, RNDSYM

Valid operands: CONCAT, B, C, PCIN, P>>17, PCIN>>17, CARRYIN, CARRYCASCIN,

Instructions are case insensitive and tolerate spaces.

Target XtremeDSP Slice: DSP48E1

Instructions

A®B+P
A*B

Available Instructions
#
(A+D)
(A+D)*B
(A+D)*B+C
(A+D)*B+C+CARRYIN
(A+D)*B+CARRYIN
(A+D)*B+P
(A+D)*B+P+CARRYIN
(A+D)*B+P>>17
(A+D)*B+P>>17+CARRYIN
(A+D)*B+PCIN
(A+D)*B+PCIN+CARRYIN

[] Show Filtered Instructions

OK] l Cancel

|

Help] l Apply

Figure 29: DSP48 Instructions Tab

Model-Based DSP Design Using System Generator

UG948 (v2019.1) May 22, 2019

www.xilinx.com

In the Pipeline Options tab, use the Pipeline Options drop-down menu to select By _Tier.

| Send Feedback I

Select Tier 3 and Tier 5. This will ensure registers are used at the inputs to A and B and between
the multiply and accumulate operations.

35

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=35

& XILINX

Lab 1: Introduction to System Generator

¥ DSP48 Macro 3 0 (Xilinx DSP48 Macro 3.0)

Instructions Pipeline Options | Implementation |

= @]

Pipeline Dptions
Custom Pipeline options
Tier 1 2
Al
B —»
CONCAT
c - —
CARRYIN Ll Ly
CONTROL .
< | Il | r
[JTier1 []Tierz Tier3 [|Tier4 Tier 5 Tier 6
D D D
A A A A
B B B B M
CONCAT CONCAT CONCAT
C C C C C P
CARRYIN CARRYIN CARRYIN CARRYIN CARRYIN
CONTROL CONTROL CONTROL CONTROL CONTROL
0K I [Cancel] ’ Help I [Apply

Figure 30: DSP48 Pipeline Options Tab

d. Click OK to exit the Properties Editor.

9. Use the Save to save the design.

Model-Based DSP Design Using System Generator
UG948 (v2019.1) May 22, 2019 www.xilinx.com

| Send Feedback l

36

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=36

v
i; XI I_I NXQ, Lab 1: Introduction to System Generator

10. Click the Run simulation button to simulate the design and view the results, as shown in the figure

below.

[4] Spectrum Analyzer FDA Tool o || [&3 4| Spectrum Analyzer SysGen EI@
File Tools View Simulation Help o File Tools View Simulation Help o
g @ &« & kA [E]FA| kA M U [(X B o @< & [@MW

[ON N R=cr 7] [OR N =]

Ready RBW=19.53 |Sample Rate=20 T=0.0005 Ready RBW=19.63 Sample Rate=20 T=0.0005

Figure 31: Discrete FIR Compiler Results

The final step is to compile the design into a hardware description and synthesize it.
11. Double-click the System Generator token to open the Properties Editor.
12. From the Compilation tab, make sure the Compilation target is IP Catalog.

13. From the Clocking tab, under Perform analysis select Post Synthesis and for Analyzer type select
Resource. This option gives the resource utilization details after completion.

14. Press Generate to compile the design into a hardware description. After generation finishes, it
displays the resource utilization in the Resource Analyzer window.

Model-Based DSP Design Using System Generator Send Feedback 37
UG948 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=37

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

¥ Resource Analyzer: Labl 3 o || B e
Post Synthesis Resources: Clicking on an instance name highlights corresponding block/subsystem in the model.
&][1[eg |

Bz

Name BRAMSs DSPs LUTs Registers
(443) (840) (203800) (407600)

4 labl_3 05 1 23 159
3 0 0 0 16
r2 4] 4] 2 1
0 0 0 0 16
Relationall 0 0 0 1
ROM 0.3 0 0 0
Down Samplel 0 0 0 48
DSP48 Macro 3.0 0 1 2 25
Counter 0 0 3 4
Capture Register 4] 4] 0 48
ASR 0 0 16 0

Figure 32: Labl_3 Synthesis Results

The design now uses fewer FPGA hardware resources than either of the versions designed with the
Digital FIR Filter macro (Figure 15: Lab 1_1 Resource Analyzer and Figure 22: Labl_2 Resource
Analyzer).

15. Click OK to dismiss the Resource Analyzer dialog box.
16. Click OK to dismiss the Compilation status dialog box.
17. Click OK to dismiss the System Generator token.

18. Exit the Lab1l_3.slIx worksheet.

Step 4: Working with Data Types

In this step, you will learn how hardware-efficient fixed-point types can be used to create a design
which meets the required specification but is more efficient in resources, and understand how to use
Xilinx Blocksets to analyze these systems.

This exercise has two primary parts.
e In Part 1 you will review and synthesize a design using floating-point data types.

e In Part 2 you will work with the same design, captured as a fixed-point implementation, and
refine the data types to create a hardware-efficient design which meets the same requirements.

Part 1: Designing with Floating-Point Data Types

In this part you will review a design implemented with floating-point data types.

1. Invoke System Generator.

Model-Based DSP Design Using System Generator Send Feedback 38
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=38

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

On Windows systems select Start > All Programs > Xilinx Design Tools > Vivado 2019.x >
System Generator > System Generator 2019.x

e On Linux systems, type sysgen at the command prompt.
2. At the command prompt, type open Labl_4 1.slx

This opens the Simulink design shown in the following figure. This design is similar to the design
used in Lab 1_1, however this time the design is using float data types and the filter is implemented
in sub-system FIR.

Model-Based DSP Design Using System Generator Send Feedback 39
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=39

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

First you will review the attributes of the design, then simulate the design to review the
performance, and finally synthesize the design.

o 3

FDATool System

Generator
double double double
Gateway In1 Gateway Out1
Spectrum
FIR Analyzer SysGen
double
>
Sine Wave
2*pi*9e6 rad's Spectrum
Analyzer Orig
FDATool
+ doutfle double double |_
Add Zero-Order
Hold Digital Spectrum
doubile Filter Design Analyzer
FDA Tool
Sine Wave
2*pi*1e6 rad's

Figure 33: Initial Labl_4_1 Design

Seen in the figure above, both the input and output of instance FIR are of type double.
3. In the MATLAB Command Window enter MyCoeffs = xlfda_numerator("FDATool ").
4. Double-click the instance FIR to open the sub-system.
5. Double-click the instance Constantl to open the Properties Editor.

This shows the Constant value is defined by MyCoeffs(1).

Model-Based DSP Design Using System Generator Send Feedback 40
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=40

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

10.

¥ Constantl (Xilink Constant Block) o || B &3
Basic D5P48

Constant value MyCoeffs(1)

Output Type
Boolean Fixed-point (@) Floating-point

Fixed-point Precision

Floating-peint Precision

@) Single Double Custom

Sample Period
+ | Sampled constant

Sample period 1/20e6

OK | Cancel | Help | Apply

Figure 34: Constantl Properties Editor

Close the Constantl Properties editor.

Return to the top-level design using the toolbar button Up To Parent {f* or click the tab labeled
Labl 4 1.

The design is summing two sine waves, both of which are 9 MHz. The input gateway to the System
Generator must therefore sample at a rate of at least 18 MHz.

Double-click the Gateway Inl instance to open the Properties Editor and confirm the input is
sampling the data at a rate of 20 MHz (a Sample period of 1/20e6).

Close the Gateway In Properties editor.
Press the Run simulation button to simulate the design.

The results shown below show the System Generator blockset produces results which are very close
to the ideal case, shown in the center. The results are not identical because the System Generator
design must sample the continuous input waveform into discrete time values.

Model-Based DSP Design Using System Generator Send Feedback 41
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=41

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

Randy FREWS1953 Sample Rates20 T=0.0005 Rapdy REW=1953 Sample Rates20 T#0.0005 Raady REW=1953 Sample Rnte=20 T=0.0005

Figure 35: Labl 4 1 Simulation Results

The final step is to synthesize this design into hardware.
11. Double-click the System Generator token to open the Properties Editor.
12. From the Compilation menu, make sure the Compilation target is IP Catalog.

13. From the Clocking menu, under Perform analysis select Post Synthesis and from Analyzer type
menu select Resource. This option gives the resource utilization details after completion.

14. Press Generate to compile the design into a hardware description. After completion, it generates
the resource utilization in Resource Analyzer window as shown below.

¥ Resource Analyzer: Labl 4 1 [@ | 2@ '

Post Synthesis Resources: Clicking on an instance name highlights corresponding block/subsystem in the model.

BRAMSs DSPs LUTs Registers

it (445) (840) (203800) (407600) |
|4 lab141 0 33 5578 1332
FIR 0 33 5578 1332

ok || Help

Figure 36: Labl_4 1 Resource Analyzer

15. Click OK to dismiss the Compilation status dialog box.

Model-Based DSP Design Using System Generator Send Feedback
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

42

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=42

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

16. Click OK to dismiss the System Generator token.

You implemented this same filter in Lab 1 using fixed-point data types. When compared to the
synthesis results from that implementation — the initial results from Lab 1 are shown below in Figure
37: Labl_1 Resource Analyzer Results and you can see this current version of the design is using a
large amount of registers (FF), LUTs, and DSP48 (DSP) resources (Xilinx dedicated multiplier/add
units).

Resource Analyzer: Labl_1 = [=] P

Post Synthesis Resources: Clicking on an instance name highlights corresponding block/subsystem in the model.

B |52 | e
ek || =2

Name BRAMSs DSPs LUTs Registers
(445) (840) (203800) (407600)
4 labl 1 0 6 294 403
Digital FIR Filter 0 6 294 403
oK l | Help

Figure 37: Labl_1 Resource Analyzer Results

Maintaining the full accuracy of floating-point types is an ideal implementation but implementing full
floating-point accuracy requires a significant amount of hardware.

For this particular design, the entire range of the floating-point types is not required. The design is
using considerably more resources than what is required. In the next Part, you will learn how to
compare designs with different data types inside the Simulink environment.

17. Exit the Vivado Design Suite.
18. Exit the Labl_4 1.slIx Simulink worksheet.

Part 2: Designing with Fixed-Point Data Types

In this part you will re-implement the design from Part 1: Designing with Floating-Point Data Types
using fixed-point data types, and compare this new design with the original design. This exercise will
demonstrate the advantages and disadvantages of using fixed-point types and how System Generator
allows you to easily compare the designs, allowing you to make trade-offs between accuracy and
resources within the Simulink environment before committing to an FPGA implementation.

Model-Based DSP Design Using System Generator Send Feedback 43
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=43

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

1. At the command prompt, type open Labl 4 2.slx to open the design shown below.

B > 3

FDATool Syslem
Ganerator
Fix_18 14 Fix_43 2| o
T oo P2 gl
Gateway In2 Galeway Oul2
Spactrum
FIR-Fixed-Paint Analyzer SysGan Fixed
XFloal B 2 XFloai 8 de bl
T Sy BV LL
Gateway Inl Galeway Oull
Spactrum
FIR Analyzer SysGen
mﬂ >
Sine Wave
2*pi*de6 rad's Spectrum
Analyzer Orig
FOATaal
+ ol dowiblel double
4 T .
Aad Zerm-Order
Hald Degital Spectrum
douibie Filter Design Analyzer
FO Tool
Sine Wave
2 pi*1ed rads

Figure 38: Labl_4 2 Design

In this design, the floating-point implementation is captured alongside an identical fixed point
design.

2. In the MATLAB Command Window enter MyCoeffs = xlfda_ numerator("FDATool").

3. Double-click the instance Gateway In2 to confirm the data is being sampled as 16-bit fixed-point
value.

4. Click Cancel to exit the Properties Editor.

5. Click the Run simulation button to simulate the design and confirm instance Spectrum Analyzer
SysGen Fixed shows the filtered output.

As you will see if you examine the output of instance FIR-Fixed-Point (shown in Figure 38:
Labl_4_2 Design) System Generator has automatically propagated the input data type through the
filter and determined the output must be 43-bit (with 28 binary bits) to maintain the resolution of
the signal.

Model-Based DSP Design Using System Generator Send Feedback 44
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=44

& XILINX

This is based on the bit-growth through the filter and the fact that the filter coefficients (constants
in instance FIR-Fixed-Point) are 16-bit.

6. Inthe MATLAB Command Window, enter sum(abs(MyCoeffs)) to determine the absolute

Lab 1: Introduction to System Generator

maximum gain using the current coefficients.

Command Window

fx

-

>> MyCoeffs = xl1fda numerator ('FDRTool')

MyCoeffs =

Columns 1 through 7

0.001% -0.0111 -0.0412
Column=s 8 through 11
0.0351 -0.0412 -0.0111

»>» sumf{abs (MyCoeffs))
ans =
1.2070

>> |
<

0.0351 0.2888

0.001%

I

0.4509

()]

1

Figure 39: Labl_4 2 Coefficient Sum

Taking into account the positive and negative values of the coefficients the maximum gain possible

is 1.2070 and the output signal should only ever be slightly smaller in magnitude than the input
signal, which is a 16-bit signal. There is no need to have 15 bits (43-28) of data above the binary

point.

You will now use the Reinterpret and Convert blocks to manipulate the fixed-point data to be no

greater than the width required for an accurate result and produce the most hardware efficient

design.

7. Right-click with the mouse anywhere in the canvas and select Xilinx BlockAdd.

8. In the Add Block entry box, type Reinterpret.

9. Double-click the Reinterpret component to add it to the design.

10. Repeat the previous three steps for these components:

a. Convert

b. Scope

11. In the design, select the Gateway Out2 instance.

Model-Based DSP Design Using System Generator
UG948 (v2019.1) May 22, 2019

www.xilinx.com

l Send Feedback I

45

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=45

v
t; XI I_I NX@ Lab 1: Introduction to System Generator

a. Right-click and use Copy and Paste to create a new instance of the Gateway Out block.

b. Paste twice again to create two more instances of the Gateway Out (for a total of three new
instances).

12. Double-click the Scope component.
a. Inthe Scope properties dialog box, select File > Number of Inputs > 3.

b. Select View > Configuration Properties and confirm that the Number of input ports is 3.

4. Scope o || || £

File Tools View Simulation Help ~
@- 0P ® - a-0-F4-

10

4 Configuration Properties: Scope
Main | Time | Display | Logging
Open at simulation start
Display the full path
Number of input ports: 3 |W|

Sample time: -1

Input processing: ‘Elements as channels (sample based) '|

Maximize axes: ‘Off '|

Axes scaling: ‘Manual '| Configure ...

| OK || Cancel | Apply

Ready

Figure 40: Configuration Properties Dialog Box

c. Click OK to close the Configuration Properties dialog box.
d. Select File > Close to close the Scope properties dialog box.
13. Connect the blocks as shown in the figure below.

14. Rename the signal names into the scope as shown in the figure below: Convert, Reinterpret and
Growth.

To rename a signal, click the existing name label and edit the text, or if there is no text double-click
the wire and type the name.

Model-Based DSP Design Using System Generator Send Feedback 46
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=46

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

N double
Gateway Cutd
double
>l

» [e]
ool Syste L Ot e
od Generator Gateway Outd

T o T
Out Comert

Gateway Quts
Scope
Fix_16_14 Fix_43_28 Fix_a3_28 o1 | Fix 16 14] deubie
_. Im Ount | r=inlerprel » Zcast . > Out »
Gateway In2 Relnterpret Convert Gateway Out2
Spectrum
FIR-Fixed-Point

Analyzer SysGen Fixed

%Float_6_2 XFloat_§ 2 double
S —— S S o S
Gateway Ini Gateway Cut1
Spectrum
FIR Analyzer SysGen
P =
»!
Sine Wave
2'pi*Ged radis Spectrum
Analyzer Orig
FO&Tecl
s+ doutple double| doutle
ik PEpe o
Add Zero-Order
Hald Digetal Spectrum
doubla Filter Design Analyzer
[\/ FDA Toal
Sine Wave
2°pi*1e6 radis

Figure 41: Updated Labl_4_2 Design

15. Click the Run simulation button to simulate the design.

16. Double-click the Scope to examine the signals.

O TIP: You might need to zoom in and adjust the scale in View > Configuration
Properties to view the signals in detail.

Model-Based DSP Design Using System Generator

l Send Feedback I 47
UG948 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=47

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

|4 Scope EI@

File Tools View Simulation Help A

Q- 6OP® - C F&-

Reinterp

Ready T=0.0005

Figure 42: Updated Labl_4_2 Design Scope

The Reinterpret and Convert blocks have not been configured at this point and so all three signals
are identical.

The Xilinx Reinterpret block forces its output to a new type without any regard for retaining the
numerical value represented by the input. The block allows for unsigned data to be reinterpreted as
signed data, or, conversely, for signed data to be reinterpreted as unsigned. It also allows for the
reinterpretation of the data's scaling, through the repositioning of the binary point within the data.

In this exercise you will scale the data by a factor of 2 to model the presence of additional design
processing which may occur in a larger system. The Reinterpret block may also be used to scale down.

17. Double-click the Reinterpret block to open the Properties Editor.
18. Select Force Binary Point.
19. Enter the value 27 in the input field Output Binary Point and click OK.

The Xilinx Convert block converts each input sample to a number of a desired arithmetic type. For
example, a number can be converted to a signed (two's complement) or unsigned value. It also
allows the signal quantization to be truncated or rounded and the signal overflow to be wrapped,
saturated, or to be flagged as an error.

Model-Based DSP Design Using System Generator Send Feedback 48
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=48

v
i; XI I_I NXQ, Lab 1: Introduction to System Generator

In this exercise, you will use the Convert block to reduce the size of the 43-bit word back to a 16-bit
value. In this exercise the Reinterpret block has been used to model a more complex design and scaled
the data by a factor of 2. You must therefore ensure the output has enough bits above the binary point
to represent this increase.

20. Double-click the Convert block to open the Properties Editor.

21. In the Fixed-Point Precision section, enter 13 for the Binary Point and click OK.
22. Save the design.

23. Click the Run simulation button to simulate the design.

24. Double-click the Scope to examine the signals.

TIP: You may need to zoom in and adjust the scale in View > Configuration
Properties to view the signals in detail.

In the figure below you can see the output from the filter (Growth) has values between plus and
minus 1. The output from the Reinterpret block moves the data values to between plus and minus 2.

In this detailed view of the waveform, the final output (Convert) shows no difference in fidelity,
when compared to the reinterpret results, but uses only 16 bits.

4 Scope E@

File Tools View Simulation Help o

@- 40P ® -0 F@-

Reinterp

Ready T=0.0005

Figure 43: Scaled Labl_4_2 Design Scope

The final step is to synthesize this design into hardware.

Model-Based DSP Design Using System Generator Send Feedback 49
UG948 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=49

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

25. Double-click the System Generator token to open the Properties Editor.
26. From the Compilation menu, make sure the Compilation target is IP Catalog.

27. From the Clocking menu, under Perform analysis select Post Synthesis and from Analyzer type
menu select Resource. This option gives the resource utilization details after completion.

28. Click Generate to compile the design into a hardware description. After completion, it generates the
resource utilization in Resource Analyzer window as shown below.

¢ Resource Analyzer: Labl_4 2 (o @] =]

Post Synthesis Resources: Clicking on an instance name highlights corresponding block/subsystem in the model.

Bk || 72 || ma
|| g || B

A BRAMS DSPs LUTs Registers
(445) (840) (203800) (407800)
4 |abl 4 2 0 44 6167 1926
FIR-Fixed-Point 0 11 589 578
> FIR 0 33 5578 1332
Convert 0 0 0 16
ok || el

Figure 44: Labl_4_2 Resource Analyzer

29. Click OK to dismiss the Compilation status dialog box.
30. Click OK to dismiss the System Generator token.

Notice, as compared to the results in Step 1 (Figure 37: Labl_1 Resource Analyzer Results) these
results show approximately

e 45% more Flip-Flops
e 20% more LUTs
e 30% more DSP48s

However, this design contains both the original floating-point filter and the new fixed-point version:
the fixed-point version therefore uses approximately 75-50% fewer resources with the acceptable
signal fidelity and design performance.

31. Exit the Vivado Design Suite.
32. Exit the Labl 4 2.slx worksheet.

Model-Based DSP Design Using System Generator Send Feedback 50
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=50

v
i; XI I_I NX@ Lab 1: Introduction to System Generator

Summary

In this lab, you learned how to use the System Generator blockset to create a design in the Simulink
environment and synthesize the design in hardware which can be implemented on a Xilinx FPGA. You
learned the benefits of quickly creating your design using a Xilinx Digital FIR Filter block and how the
design could be improved with the use of over-sampling.

You also learned how floating-point types provide a high degree of accuracy but cost many more
resources to implement in an FPGA and how the System Generator blockset can be used to both
implement a design using more efficient fixed-point data types and compensate for any loss of
accuracy caused by using fixed-point types.

The Reinterpret and Convert blocks are powerful tools which allow you to optimize your design without
needing to perform detailed bit-level optimizations. You can simply use these blocks to convert
between different data types and quickly analyze the results.

Finally, you learned how you can take total control of the hardware implementation by using discrete
primitives.

Note: In this tutorial you learned how to add System Generator blocks to the design and then
configure them. A useful productivity technique is to add and configure the System Generator
token first. If the target device is set at the start, some complex IP blocks will be automatically
configured for the device when they are added to the design.

The following solutions directory contains the final System Generator (*.slx) files for this lab.
C:/SysGen_Tutorial/Labl/solution

Model-Based DSP Design Using System Generator Send Feedback 51
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=51

& XILINX

Lab 2: Importing Code into System Generator

Step 1: Modeling Control with M-Code

Introduction

In this step you will be creating a simple Finite State Machine (FSM) using the MCode block to detect a
sequence of binary values 1011. The FSM needs to be able to detect multiple transmissions as well,
such as 10111011.

Objectives

After completing this lab, you will be able to create a Finite State Machine using the MCode block in
System Generator.

Procedure

In this exercise you will create the control logic for a Finite State Machine using M-code. You will then
simulate the final design to confirm the correct operation.

1. Launch System Generator and change the working directory to:
C:\SysGen_Tutorial\Lab2\M_code

2. Open the file Lab2_1.slx.

You see the following incomplete diagram.

&

=

(Moo na 4w J—o womeomee--»[out

Repeating din matched
Sequence Output of Block Ram
Stair State Machine

Figure 45: System Generator Block

3. Add an MCode block from the Xilinx Blockset/Index library.

Model-Based DSP Design Using System Generator Send Feedback 52
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=52

v
i; XI I_I NX@ Lab 2: Importing Code into System Generator

a. Do not wire up the block yet.
b. You will first edit the MATLAB function to create the correct ports and function name.

4. Double-click the MCode block and click Edit M-File, as shown in the following figure.

5% MCode (Xilinx MCode Block) = Fol ™™

Pass input values to a MATLAB function for evaluation in Xilinx
fixed-point type. The input ports of the block are input arguments
of the function. The output ports of the block are output arguments
of the function.

Basic | Interface Advanced

Block Interface
MATLAB function

xmax]

l Browse... I l Edit M-File...

Explicit Sample Period
[] specify explicit sample period

1

Figure 46: Edit M-File Option

The following figure shows the default M-code in the MATLAB text editor.

M Editor - CA\Xilinx\Vivado\2017.3\scripts\sysgen\matlab\ximax.m

| xImax.m [+ |
i functic;n z = xlmax(x, V)
D if x > v
gl Z = X;
Lt else
5o Z = ¥;
& = end
q

Figure 47: M-Code in MATLAB Text Editor

5. Edit the default MATLAB function to include the function name state_machine and the input din
and output matched.

6. You can now delete the sample M-code.

Model-Based DSP Design Using System Generator Send Feedback 53
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=53

v
i; XI I_I NXQ Lab 2: Importing Code into System Generator

B - - Greeeserse - |
D L(_‘E EJRun Section ‘l[l‘,P

FLE | NAVGATE EDT | pooicints Run Runand |- Advance Run and

- - Advance Time
h 4 h 4
BREAKPOINTS RUN
| state_machine.m |+ |
1 function matched = state machine (din) |

2

Ln 2 Col 1

Figure 48: Initial State Machine Code

7. After you make the edits, use Save As to save the MATLAB file as state_machine.m to the Lab5
folder.

a. In the MCode Properties Editor, use the Browse button to ensure that the MCode block is
referencing the local M-code file (state_machine.m).

8. In the MCode Properties Editor, click OK.
You will see the MCode block assume the new ports and function name.

9. Now connect the MCode block to the diagram as shown below:

(OO 0O T F——1»im >0 state_macm os——>{_out]

Repeating Input matched

Seqmnce icode Output of Block Rem
Stair State Machine

Figure 49: Connected MCode Block

You are now ready to start coding the state machine. The bubble diagram for this state machine is
shown in the following figure. This FSM has five states and is capable of detecting two sequences in
succession.

Model-Based DSP Design Using System Generator Send Feedback 54
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=54

v
i; XI I_I NX@ Lab 2: Importing Code into System Generator

Din=1

Figure 50: State Machine

10. Edit the M-code file, state_machine.m, and define the state variable using the Xilinx xI_state
data type as shown below. This requires that you declare a variable as a persistent variable. The
x1_state function requires two arguments: the initial condition and a fixed-point declaration.
Because you need to count up to 4, you need 3 bits.

persistent state, state = xl_state(0,{xlUnsigned, 3, 0});

11. Use a switch-case statement to define the FSM states shown. A small sample is provided below to
get you started.

Note: You need an otherwise statement as your last case.

switch state

case O
if din == 1
state = 1;
else
state = 0O;
end

matched = 0;

12. Save the M-code file and run the simulation. The waveform should look like the following figure.

Model-Based DSP Design Using System Generator Send Feedback 55
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=55

v
(A XI I_I NXQ Lab 2: Importing Code into System Generator

You should notice two detections of the sequence.

@ »
Figures - Output of Block Ram State Machine [EM

@0 @< %% "EmBe0 x| »x

; Output of Block Ram State Mac...

Figure 51: Lab2_1 Waveforms

Step 2: Modeling Blocks with HDL

Introduction

In this lab exercise you will import an RTL design into System Generator as a black box.

e A black box allows the design to be imported into System Generator even though the
description is in Hardware Description Language (HDL) format.

Objectives

After completing this step, you will be able to:

e Import an RTL HDL description into System Generator for DSP.
e Configure the black box to ensure the design can be successfully simulated.
In this step you will import an RTL design into System Generator as a black box.

e A black box allows the design to be imported into System Generator even though the
description is in Hardware Description Language (HDL) format.

1. Invoke System Generator and from the MATLAB console, change the directory to:
C:\SysGen_Tutorial\Lab2\HDL.

The following files are located in this directory:

e Lab2_ 2.slx - A Simulink model containing a black box example.

Model-Based DSP Design Using System Generator Send Feedback 56
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=56

v
i; XI I_I NXQ Lab 2: Importing Code into System Generator

e transpose_fir.vhd - Top-level VHDL for a transpose form FIR filter. This file is the VHDL
that is associated with the black box.

e mac.vhd - Multiply and adder component used to build the transpose FIR filter.
2. Typeopen Lab2_2._slx.
3. Open the subsystem named Down Converter.
4. Open the subsystem named Transpose FIR Filter Black Box.

At this point, the subsystem contains two input ports and one output port. You will add a black box
to this subsystem:

”
bﬁ black_box_examplel/Down Converter/Transpose FIR Filter Black Box =HACE X

File Edit View Display Diagram Simulation Analysis Code Tools Help
-8 a8 ¢ w@® -2 4P ORSED » @~

Transpose FIR Filter Black Box |

@® |["ablack_box_examplel ¥ [Pa|Down Converter b |Pa| Transpose FIR Filter Black Box

ha®s

In
Out
@D

rst

b4

Ready 130% FixedStepDiscrete

Figure 52: Transpose FIR Filter Black Box

5. Right-click the design canvas, select Xilinx BlockAdd, and add a Black Box block to this subsystem.
A browser window opens, listing the VHDL source files that can be associated with the black box.

6. From this window, select the top-level VHDL file transpose_fir.vhd. This is illustrated in the
following figure:

Model-Based DSP Design Using System Generator Send Feedback 57
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=57

v
i; XI I_ NX@ Lab 2: Importing Code into System Generator

Select the file that contains the entity description for the black box | X \
UQ ‘ » Computer » OSDisk (C:) » Sysgen_tutorial » Lab2 » HDL

Organize ~ New folder SE 1 @

- Favorites Name Date modified Type Size

B Desktop 2 mac 11/8/2013 11:14PM VHD Fi
I Downloads I transpose_fir 8/6/2014 411 PM VHD F
<& Recent Places

m

.| Libraries

‘. Documents
4 Music

= Pictures
l Videos

& Computer
& OSDisk (C)

adrive (\\pndena T (L} b

File name: ~| [l supported HDL Files (- v

o] [me |

Figure 53: Transpose Filter HDL

The associated configuration M-code transpose_fir_config.m opens in an Editor for
modifications.

7. Close the Editor.

8. Wire the ports of the black box to the corresponding subsystem ports and save the design.

.—|—.ﬂ
In din
rat Out

Black Box

Figure 54: Transpose Filter as a Black Box

9. Double click the Black Box block to open this dialog box:

Model-Based DSP Design Using System Generator Send Feedback 58
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=58

v
i; XI I_I NX@ Lab 2: Importing Code into System Generator

3¢ Black Box5 (Xilinx Black Bax) e[S S

Incorporates black box HOL and simulation mode! into a System
Generator design.

You must supply a Black Box with certain information about the HOL
component you would like to bring into System Generator. This
information is provided through a Matlab function.

When "Simulation mode” is set to "Inactive”, you will typically want to
provide a separate simulation model by using a Simulation Multiplexer.
When "Simulation mode” is set to "External co-simulator”™, you must
indude a ModelSim block in the design.

Basic Implementation

Block configuration m-function

transpose_fir_config|

Simulation mode:

@ Inactive () Vivado Simulator (7 External co-simulator
HD se (spedify helper block by name)
[] verbose
[OK] [Cancel] [Help] [Apply]

Figure 55: Black Box Properties Editor

The following are the fields in the dialog box:

¢ Block configuration m-function: This specifies the name of the configuration M-function for
the black box. In this example, the field contains the name of the function that was generated by
the Configuration Wizard. By default, the black box uses the function the wizard produces. You
can however substitute one you create yourself.

e Simulation mode: There are three simulation modes:

o0 Inactive: When the mode is Inactive, the black box participates in the simulation by ignoring
its inputs and producing zeros. This setting is typically used when a separate simulation
model is available for the black box, and the model is wired in parallel with the black box
using a simulation multiplexer.

o Vivado Simulator: When the mode is Vivado Simulator, simulation results for the black box
are produced using co-simulation on the HDL associated with the black box.

0 External co-simulator: When the mode is External co-simulator, it is necessary to add a
ModelSim HDL co-simulation block to the design, and to specify the name of the ModelSim
block in the HDL co-simulator to use field. In this mode, the black box is simulated using
HDL co-simulation.

10. Set the Simulation mode to Inactive and click OK to close the dialog box.

11. Move to the design’s top level and run the simulation by clicking the Run simulation button & ;
then double-click the Scope block.

Model-Based DSP Design Using System Generator Send Feedback 59
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=59

v
i; XI I_I NXQ Lab 2: Importing Code into System Generator

12.

13.

14.

15.

16.
17.
18.

Notice the black box output shown in the Output Signal scope is zero. This is expected because the
black box is configured to be Inactive during simulation.

4] Scope \EI@
80 a<@E%%|0a% 8 .

Input Signal

Output Signal

0 50 100 150 200 250 300 350 400 450 500
Time offset: 0

Figure 56: Lab2_2 Scope with Inactive Simulation

From the Simulink Editor menu, select Display > Signals & Ports > Port Data Types to display the
port types for the black box.

Compile the model (Ctrl-D) to ensure the port data types are up to date.

Notice that the black box port output type is UFix_26_0. This means it is unsigned, 26-bits wide, and
has a binary point 0 positions to the left of the least significant bit.

Open the configuration M-function transpose_fir_config.m and change the output type from
UFix_26_0 to Fix_26_12. The modified line (line 26) should read:

dout_port.setType("Fix_26 _12%);

Continue the following steps to edit the configuration M-function to associate an additional HDL
file with the black box.

Locate line 65: this_block.addFile("transpose_fir.vhd");
Immediately above this line, add the following: this_block.addFile("mac.vhd®);

Save the changes to the configuration M-function and close the file.

Model-Based DSP Design Using System Generator Send Feedback 60
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=60

v
i; XI I_I NX@ Lab 2: Importing Code into System Generator

19. Click the design canvas and recompile the model (Ctrl-D).

Your Transpose FIR Filter Black Box subsystem should display as follows:

?—l—bdin)
Fix_26_12
dout 1)
Bool rat Qut
Black Box

Figure 57: Updated Transpose Filter

20. From the Black Box block parameter dialog box, change the Simulation mode field from Inactive to
Vivado Simulator and then click OK.

21. Move to the top-level of the design and run the simulation.
22. Examine the scope output after the simulation has completed.

Notice the waveform is no longer zero. When the Simulation Mode was Inactive, the Output Signal
scope displayed constant zero. Now, the Output Signal shows a sine wave as the results from the
Vivado Simulation.

23. Right click the Output Signal display and select Configuration Properties. In the Main tab, set Axis
Scaling to the Auto setting.

You should see a display similar to that shown below.

Model-Based DSP Design Using System Generator Send Feedback 61
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=61

v
i; XI I_I NXQ Lab 2: Importing Code into System Generator

4] Scope = EoE %=
a8 a<@ %R0 a8 =

Input Signal

Qutput Signal

-1000
0 50 100 160 200 250 300 350 400 450 500

Time offset: 0

Figure 58: Lab2_2 Scope with Vivado Simulation

Step 3 : Modeling Blocks with C/C++ code

The System Edition of the Vivado® Design Environment includes the Vivado HLS feature, which has the
ability to transform C/C++ design sources into RTL. System Generator has a Vivado HLS block in the
Xilinx Blockset/Control Logic and Xilinx Blockset/Index libraries that enables you to bring in C/C++
source files into a System Generator model.

Objectives

After completing this lab, you will be able to incorporate a design, synthesized from C, C++ or SystemC
using Vivado HLS, as a block into your MATLAB design.

Procedure

In this step you will first synthesize a C file using Vivado HLS. You will operate within a Vivado DSP
design project, using a design file from MATLAB along with an associated HDL wrapper and constraint
file. In Part 2, you incorporate the output from Vivado HLS into MATLAB and use the rich simulation
features of MATLAB to verify that the C algorithm correctly filters an image.

Model-Based DSP Design Using System Generator Send Feedback 62
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=62

v
i; XI I_I NX@ Lab 2: Importing Code into System Generator

Part 1: Creating a System Generator Package from Vivado HLS

1. Invoke Vivado HLS: Start > All Programs > Xilinx Design Tools > Vivado 2019.x > Vivado HLS >
Vivado HLS 2019.x.

2. Select Open Project in the welcome screen and navigate to the Vivado HLS project directory
C:\SysGen_Tutorial\Lab2\C_code\hls_project as shown in the following figure.

Browse For Folder &
4 Sysgen_tutorial -
Labl
4 Lab2

4 C_code
4 hls_project
F solutionl =
Aautopilot
csim
HDL
M_code
| Llab3 L

Folder: his_project

Make New Folder oK Cancel
Figure 59: Vivado HLS Project
3. Click OK to open the project.

4. Expand the Source folder in the Explorer pane (left-hand side) and double-click the file
MedianFi lter.cpp to view the contents of the C++ file as shown in the following figure.

Model-Based DSP Design Using System Generator Send Feedback 63
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=63

v
i; XI I_I NX@ Lab 2: Importing Code into System Generator

[t5 Explorer 2 =08 MedianfFilter.cpp =0
£ his_project 1#include "MedianFilter.h" -
& Includes 2 #define WINDOW SIZE 3

3 typedef unsigned char PixelType;

= Source A i
9 MedianFilter.cpp 5 #define PIX_SWAP(a,b) { PixelType temp=(a);(a)=(b);(b)=temp; }
a Test Bench 6 #define PIX_SORT(a,b) { if ((a)>(b)) PIX_SWAP((a),(b)); }
= solution1 7
constraints 8 PixelType OptMedian®(PixelType * p)
W directives.tcl 94

PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;

& scriptcl 12 PIX_SORT(p[1], p[2]) ;
& csim 11 PIX_SORT(p[®], p[1]) ; PIX_SORT(p[31, p[4]) ; PIX_SORT(p[6], p[71) ;
= build 12 PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[71, p[81) ;

= report 14 PIX SORT(p[3], p[6]) ; PIX SORT(p[1], p[4]) ; PIX SORT(p[2], p[5]) ;
15 PIX_SORT(p[4]1, p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ;

PIX_SORT(p[4], p[2]) ;

return(p[4]) ;

13 PIX_SORT(p[®@], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], p[7]) ;

O =~ O

19

20 PixelType Mean(PixelType* buffer)
21 { hd
4

}

Figure 60: C++ Source File

This file implements a 2-Dimensional median filter on 3x3 window size.

5. Synthesize the source file by right-clicking on solution1 and selecting C Synthesis > Active
Solution as shown in the following figure.

[t Explarer &2 " = O][[MedianFilter.cpp = =0
4 125 hls_project 1#include "MedianFilter.h" -
. & Includes 2 #define WINDOW_SIZE 3

+ B Source 3 typedef unsighed char PixelType;

€] MedianFilter.cop

m

4
5 #define PIX_SWAP(a,b) { PixelType temp=(a);(a)=(b);(b)=temp; }

+ = Test Bench 6 #define PIX SORT(a,b) { if ((a)>(b)) PIX SWAP((a),(b)); }
a |¢= solution™ .. - -
‘& Solution Settings... i .
4 # constl OptMedian9(PixelType * p)
& dir Rename
i ser Copy ORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
- Paste ORT(p[@], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7]) ;
4 (= csim
& byl ¥ Delete ORT(p[1], p[2]) ; PIX SORT(p[4], p[5]) ; PIX SORT(p[7], p[8]) ;
Sl _ DRT(alR] _m[213 - DTX SORT(p[5], p[8]) ; PIX_SORT(p[4], pL7]) ;
> = rep] C Synthesis » | B Active S?Iutlon _SORT(p[1], p[4]) ; PIX_SORT(p[2], p[51) ;
C/RTL Cosimulation B+ All Solutions (SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ;
Export RTL B+ Select Solutions...

Open Report » In(p[d]) ;

10

20 PixelType Mean(PixelType* buffer)
21 =
4 »

Figure 61: HLS Synthesis

When the synthesis completes, Vivado HLS displays this message:
Finished C synthesis.

Now you will package the source for use in System Generator.

6. Right-click solutionl and select Export RTL.

Model-Based DSP Design Using System Generator Send Feedback 64
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=64

v
i; XI I_I NXQ Lab 2: Importing Code into System Generator

7. Set Format Selection to System Generator for DSP as shown in the following figure and click OK.

¢ Export RTL

=

Export RTL as IP

Format Selection

[E‘:.ystem Generator for DSP "]

Evaluate Generated RTL

[Verilog ']
| Vivado RTL Synthesis
"1 Place and Route

"] Do not show this dialog box again.

l OK l [Cancel

Figure 62: Export HLS IP to System Generator

When the Export RTL process completes, Vivado HLS displays this message:
Finished export RTL.

8. Exit Vivado HLS.

Model-Based DSP Design Using System Generator Send Feedback 65
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=65

v
(A XI I_I NXQ Lab 2: Importing Code into System Generator

Part 2: Including a Vivado HLS Package in a System Generator Design

1. Launch System Generator and open the Lab2_3_slx file in the Lab2/C_code folder. This should
open the model as shown in the following figure.

> Out | pixel

]
i MNoisy Input Image
Constant 4 y Inpi g

star f--= ‘
R —DD—I Riad Gateway Out
H , -

ewly-- Gateway Outl

R S R % soeeenl ot
G o - - Gateway Qut?
ol ou——
D—. Bl .y : Gateway Qut3
Motsy Image v . H
RGE? LineBufier i Gateway Outd Seope
|
Cutpunt Delay1
Filtered Image

Figure 63: Lab2_3 Design

2. Add a Vivado HLS block by right-clicking anywhere on the canvas workspace.
3. Select Xilinx BlockAdd.
4. Type Vivado HLS in the Add block dialog box.

Model-Based DSP Design Using System Generator Send Feedback 66
UG948 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=66

& XILINX

5. Select Vivado HLS as shown in the figure below.

Lab 2: Importing Code into System Generator

Constant
start
o
R
rewl
D—D Green pixal
t] 0=
PR
B
Mosy Image RGEY LineBufier

>

-3 Add block Vivado HLS|

P pial

Moisy Input Image

-

Vivado HLS

e
L
b
>

Scope
!
- Out 79w piar
Cutpul DOelayl
Filtered Image

Figure 64: Adding a Vivado HLS Block

6. Double-click the Vivado HLS block to open the Properties Editor.

7. Use the Browse button to select the solution created by Vivado HLS in Strep 1, at
C:/SysGen_Tutorial/Lab2/C_code/hls_project/solutionl,as shown in Figure 65:

Importing Vivado HLS IP.
8. Click OK to import the Vivado HLS IP.

Model-Based DSP Design Using System Generator
www.Xilinx.com

UG948 (v2019.1) May 22, 2019

| Send Feedback l

67

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=67

v
(A XI I_I NXQ Lab 2: Importing Code into System Generator

¥ Vivado HLS (Xilinx High Level Synth... | o | B || 52 |

This block allows incuding C,C++ and SystemC source files in
System Generator for DSP designs.

Solution il/Lab2/C_code/hls_project/solutionl’ | Browsa ...

LT S e S e

Refresh Edit

| Use C simulation model if available

| Display signal types

Output Sample Times| Simulink system period ~ |

ok || cancel || melp || Apply |

Figure 65: Importing Vivado HLS IP

9. Connect the input and output ports of the block as shown in the following figure.

Syslen

Generator

L Out W pixal

MNolsy Input Image

o we——— o]
Gateway Qut

ap_stent ap_dle m
Gateway Outl

e s+ oul——
Gateway Out2

Gateway Outd
o V_ap wid > Out|———»

e

S — e
Nossy Image AGR2Y LineRuffer Vivado HLS Gateway Outé Scope

oo 2 fafoe

Output

Delayi

Filtered Image

Figure 66: Completed Lab2_3 Design

10. Navigate into the Noisy Image sub-system and double-click the Image From File block
xilinx_logo.png to open the Source Block Parameters dialog box.

Model-Based DSP Design Using System Generator Send Feedback 68
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=68

v
(A XI I_I NXQ Lab 2: Importing Code into System Generator

11. Use the Browse button to ensure the file name correctly point to the file xi linx_logo. jpg as
shown below.

=

Block Parameters: Image From File
Image From File
Reads an image from a file.
Use the File name parameter to specify the image file you want to

import into your model. Use the Sample time parameter to set the
sample period of the block.

Main | Data Types |
Parameters

File name: 5ysgen_tutorial\Lab2\C_code\xilinx_logo.jpg

Sample time: ImSize*ImSize B

Image signal: [5eparate color signals .]

Output port labels: R|G|B

J [OK H Cancel H Help H Apply

Figure 67: Input Image Location

12. Click OK to exit the Source Block Parameters dialog box.
13. Use the toolbar button Up to Parent 4% to return to the top level.

14. Save the design.

Model-Based DSP Design Using System Generator Send Feedback 69
UG948 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=69

& XILINX

Lab 2: Importing Code into System Generator

15. Simulate the design and verify the image is filtered, as shown in the following figures.

File Tools View Simulation Help
B O | a & o -

Qe =

1:256x256

Ready

|4 Noisy Input Image =

T=131072.000

[e@lr=]

|4 Filtered Image

File Tools View Simulation Help N
RO |&q W Elhoox v

Or® =@

Ready |:266x256 T=131072.000

Figure 68: Lab2_3 Simulation Results

Summary

In this lab you learned

e How to create control logic using M-Code. The final design may be used to create an HDL
netlist, in the same manner as designs created using the Xilinx Blocksets.

e How to model blocks in System Generator using HDL by incorporating an existing VHDL RTL
design and the importance of matching the data types of the System Generator model with
those of the RTL design and how the RTL design is simulated within System Generator.

e How to take a filter written in C++, synthesize it with Vivado HLS and incorporate the design
into MATLAB. This process allows you to use any C, C++ or SystemC design and create a custom
block for use in your designs. This exercise showed you how to import the RTL design generated
by Vivado HLS and use the design inside MATLAB.

Solutions to this lab can be found corresponding locations:
C:/SysGen_Tutorial/Lab2/M_code/solution

C:/SysGen_Tutorial/Lab2/HDL/solution
C:/SysGen_Tutorial/Lab2/C_code/solution

Model-Based DSP Design Using System Generator

UG948 (v2019.1) May 22, 2019

www.xilinx.com

l Send Feedback I 70

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=70

& XILINX

Lab 3: Timing and Resource Analysis

Introduction

In this lab, you learn how to verify the functionality of your designs by simulating in Simulink® to
ensure that your System Generator design is correct when you implement the design in your target
Xilinx® device.

Objectives
After completing this lab, you will be able to:

e Identify timing issues in the HDL files generated by System Generator and discover the source of
the timing violations in your design.

e Perform resource analysis and access the existing resource analysis results, along with
recommendations to optimize.

Procedure

This exercise has two primary parts.
e In Step 1 you will learn how to do timing analysis in System Generator.

e In Step 2 you will learn how to perform resource analysis in System Generator.

Step 1: Timing Analysis in System Generator

1. Invoke System Generator.

e On Windows systems select Start > All Programs > Xilinx Design Tools > Vivado 2019.x >
System Generator > System Generator 2019.x.

e On Linux Systems, type sysgen at the command prompt.
2. Navigate to the Lab3 folder: cd C: \SysGen-Tutorial\Lab3.

You can view the directory contents in the MATLAB Current Folder browser, or type Is at the
command line prompt.

3. Open the Lab3 design as follows:
e At the MATLAB command prompt, type open Lab3.slx
OR

Model-Based DSP Design Using System Generator Send Feedback 71
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=71

v
i; XI I_I NX@ Lab 3: Timing and Resource Analysis

e Double-click Lab3.slIx in the Current Folder browser.

The Lab3 design opens, as shown below.

== &
— o = N

e N CH o T

snasa il S R — e P o __.a

4. sk iy

Figure 69: Lab3_1 Design

4. From your Simulink project worksheet, select Simulation > Run or click the Run simulation button
to simulate the design.

5. Double-click the System Generator token to open the Properties Editor.

6. Select the Clocking tab.

Model-Based DSP Design Using System Generator Send Feedback 72
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=72

& XILINX

7. From the Perform analysis menu, select Post Synthesis and from Analyzer type menu select

Timing as shown below.

o e e

Compilation Clocking General

["] Enable multiple clocks

FPGA clock period (ns) :
2.0

[] Provide clock enable clear pin
Simulink system period (sec) :
1

Lab 3: Timing and Resource Analysis

Clock pin location :

Perform analysis : Analyzer type :
Post Synthesis * | |Timing w | Launch...
Performance Tips I l Generate ‘ l Ok I I Apply ‘ l Cancel ‘ l Help ‘

Figure 70: Configuring for a Timing Analysis

8. In the System Generator token dialog box, click Generate.

When you generate, the following occurs:

a. System Generator generates the required files for the selected compilation target. For timing

analysis System Generator invokes Vivado in the background for the design project, and passes
design timing constraints to Vivado.

b. Depending on your selection for Perform Analysis (Post Synthesis or Post Implementation),
the design runs in Vivado through synthesis or through implementation.

c. After the Vivado tools run is completed, timing paths information is collected and saved in a

specific file format from the Vivado timing database. At the end of the timing paths data

collection the Vivado project is closes and control is passed to the MATLAB/System Generator

process.

d. System Generator processes the timing information and displays a Timing Analyzer table with

timing paths information as shown below.

Model-Based DSP Design Using System Generator

UG948 (v2019.1) May 22, 2019

www.xilinx.com

l Send Feedback I

73

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=73

v
i; XI I_I NX@ Lab 3: Timing and Resource Analysis

¥t Timing Analyzer: Lab3 o | =@ | =]

Post Synthesis Timing Paths: Clicking on a timing path highlights corresponding blocks in the model.

Violation type | setup Status : FAILED
Slé.ck (ns) Delay (ns) gic Delay (ns) ing Delay (ns) Levels of Logic Source Destination Source Clock Destination Clock
1 -0.818 2.806 2.365 0.441 13 Lab3/sub.. Lab3/sub.. clk clk
2 0.687 1.3 0.963 0.337 9 Lab3/add.. Lab3/add.. clk clk L
3 0.6582 0.973 0.53% 0.434 0 Lab3/sub.. Lab3/sub.. clk clk |
4 0.812 1L~ al7/3) 0.684 0.491 8 Lab3/add.. Lab3/add.. clk clk
5 0.827 1.158 0.752 0.408& 3 Lab3/add.. Lab3/add.. clk clk
6 0.837 0.65 0.21¢ 0.434 0 Lab3/Del.. Lab3/sub.. clk clk
7 0.8453 0.902 0.335 0.567 1 Lab3/Del.. Lab3/Req.. clk clk
8 1.058 0.962 0.962 0 0 Lab3/Del.. Lab3/Del.. clk clk
9 1.36 0.484 0.232 0.252 0 Lab3/Del.. Lab3/Del.. clk clk -
« 11 »

Figure 71: Lab3 Timing Analyzer Results

9. In the timing analyzer table:
e Paths with lowest slack values display, with the worst Slack at the top and increasing slack below
e Paths with timing violations have a negative slack and display in red.

10. Cross probe from the Timing Analyzer table to the Simulink model by clicking any path in the
Timing Analyzer table, which highlights the corresponding System Generator blocks in the model.
This allows you to troubleshoot timing violations by analyzing the path on which they occur.

11. When you cross probe, you see the corresponding path as shown in the following figure.

12. Blocks with timing violations are highlighted in red.

Traaposed form of s
o + >
LD
3 Timing Analyzer: 1303 =5 o8 i3
T . o Post Synthesis Timing Paths: Clckng on 3 tming path hghlohts comespandng blocks in th madel
En + > Suored e cosicients
r_n o . * Wiolation type Saatus : FAILLD
2 . 7 » - -
1 » i T o Sack (ms) Dolay [ns) gic Deliry (s} Ing Delay (ns) nvels of Logk Source Destin *
"o
»on 1 -0.818 2,806 2,365 0. 441 13 Zabdfsub. Lab3,
2 0.687 0.963 9
3 1,538 p
+
ox ™
Ty -
. .o

e
»| & = . L ED)
il 1 » m

Match RAM Srsigh MULT delay

Figure 72: Cross Probing in the Timing Analyzer

Model-Based DSP Design Using System Generator Send Feedback 74
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=74

v
i; XI I_I NXQ Lab 3: Timing and Resource Analysis

13. Double-click the second path in timing Analyzer table and cross-probe, the corresponding
highlighted path in green which indicates no timing violation.

»a
2_21 a UFix_33_22 b UFix_3 I UFix_32 Z;d —
e - [a:b] — —p
& UFix_32_21 a-b a:b] R % UFix_32_22
Znag————— Z q
—® en 4|—>en
AddSub3 Reqister
>
d 40 UFix_10_0
10{0
——»en

Figure 73: Highlighting for No Timing Violations

If you close the Timing Analyzer and sometime later you may want to relaunch the Timing Analyzer
table using the existing timing analyzer results for the model. A Launch button is provided under
the Clocking tab of the System Generator token dialog box. This will only work if you already ran
timing analysis on the Simulink model.

% © 8

Compilation ~ Clocking General i

[] Enable multiple clocks

FPGA clock period (ns) : Clock pin location :
20

[Provide clack enable clear pin
Simulink system period (sec) :
1

Perform analysis : Analyzer type :
Post Synthesis > | |Timing "
S
lF‘erformanceT\ps] lGenerate] l oK I l Apply I l Cancel] l Help]

Figure 74: Launching the Timing Analyzer

Model-Based DSP Design Using System Generator Send Feedback 75
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=75

v
i; XI I_I NX@ Lab 3: Timing and Resource Analysis

Note : If you relaunch the Timing Analyzer window, make sure that the Analyzer type field is set
to Timing. The table that opens will display the results stored Target directory specified in the
System Generator token dialog box, regardless of the option selected for Perform analysis (Post
Synthesis or Post Implementation)

Trouble Shooting the Timing violations

1. By inserting some registers in the combinational path may give better timing results and may help
overcome timing violations if any. This can be done my changing latency of the combinational
blocks as explained below.

2. Again double-click the violated path from the timing analyzer which opens the violated path as
shown below.

R + ¥ addr " I '
) Saoed fiter coeflicients |
] . i e
o 0f + dala Foc 18 17
1 F2doul P 1817 | Mull

=

¥
M ‘

‘ 5ol ‘

a0
[

= dl
Match RAM u::m‘rh MULT delay

Figure 75: Violated Path for Troubleshooting

Model-Based DSP Design Using System Generator Send Feedback 76
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=76

v
i; XI I_I NXQ Lab 3: Timing and Resource Analysis

3. Double-click the Mult block to open the Multiplier block parameters window as shown below.

3¢ Mult (Xilinx Multiplier) = el ™

Hardware notes: To check for the optimum internal pipeline stages
of the dedicated multiplier you must select 'Test for optimum
pipelining'.

Optimization Goal: For implementation into device fabric (LUTSs),
the Speed or Area optimization will take effect only if it's supported
by IP for the particular device family. Otherwise, the results will be
identical regardless of the selection.

Basic Implementation

Output Type

Precision:
@ Full () user defined
Fixed-point Qutput Type
Arithmetic type:
(@) Signed (2's comp) Unsigned
Fixed-point Precision

Number of bits |36 Binary point| 34

Quantization:

(@) Truncate Round (unbiased: +/- Inf)
Overflow:

(@) Wrap Saturate Flag as error
Optional Port

Provide enable port

Latency 1

| ok || cancel || Hep || Appy

Figure 76: Multiplier block properties

4. Under "Basic” tab, change the latency from “1" to “2" and click OK.

5. Double-click System Generator token, and ensure that the “Analyzer Type” is “Timing” and click
Generate.

Model-Based DSP Design Using System Generator Send Feedback 77
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=77

0

v
i; XI I_I NX@ Lab 3: Timing and Resource Analysis

6. After the generation completes, it opens the timing Analyzer table as shown below. Observe the
status pass at the top-right corner. It indicates there are no timing violated paths in the design.

#% Timing Analyzer: Lab3 = O x

Post Synthesis Timing Paths: Clicking on a timing path highlights corresponding blocks in the model.

Violation type setup Status{ PASSED

Sla?:k (ns) Delay (ns) gic Delay (ns) ing Delay (ns) Levels of Logic Source Destination -
1 0.1%76 1.811 1.306 0.505 14 Lab3/Del.. Lab3/sub..
P 0.692 0.973 0.539 0.434 0 Lab3/sub.. Lab3/sub..
3 0.696 1.291 1.045 0.246 9 Lab3/add.. Lab3/add..
4 0.812 1-1735 0.684 0.491 3 Lab3/add.. Lab3/add..
3 0.827 1.158 0.752 0.406 3 Lab3/add.. Lab3/add..

6 0.837 0.65 0.216 0.434 0 Lab3/Del.. Lab3/sub.. »
< >

- = = - ——————— —

Figure 77: Timing Analyzer Table — No Violations

Notes :

1)

2)

For quicker timing analysis iterations, post-synthesis analysis is preferred over post-
implementation analysis.

Changing the latency of the block may increase the no.of resources which can be seen using
Step 2: Resource Analysis in System Generator).

Step 2: Resource Analysis in System Generator

In this step we use same design, Lab3.slx, used for Step 1 but we are going to perform Resource

Analysis.

TIP: Resource Analysis can be performed whenever you generate any of the following
compilation targets:

IP Catalog

Hardware Co-Simulation
Synthesized Checkpoint
HDL Netlist.

1. Double-click the System Generator token in the Simulink model. Make sure that the part is
specified and Compilation is set to any one of the compilation targets listed above.

Model-Based DSP Design Using System Generator

l Send Feedback I
UG948 (v2019.1) May 22, 2019 www.xilinx.com

78

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=78

& XILINX

Lab 3: Timing and Resource Analysis

2. In the Clocking tab, set the Perform Analysis field to Post Synthesis and Analyzer type field to

Resource.

-

4] System Generator: Lab3

|| Enable multiple clocks

FPGA clock period (ns) :
2.0

[] Provide clock enable clear pin
Simulink system period (sec) :
1

Perform analysis :
Post Synthesis

f @ g
i &)
Compilation Clocking General

o] @[=]

Clock pin location :

Analyzer type :

- Resource

S

Performance Tips l l Generate l l 0]

=

| o] [Lcames] {_op_]

Figure 78: Configuring for a Resource Analysis

3. In the System Generator token dialog box, click Generate.

System Generator processes the resource utilization data and displays a Resource Analyzer table

with resource utilization information.

Model-Based DSP Design Using System Generator
UG948 (v2019.1) May 22, 2019

www.xilinx.com

79

| Send Feedback I

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=79

v
i; XI I_I NX@ Lab 3: Timing and Resource Analysis

#% Resource Analyzer: Lab3 - O X

Post Synthesis Resources: Clicking on an instance name highlights corresponding block/subsystem in the model.

Bk || 572 || pa
= || ey || =2
V

= BRAMs DSPs LUTs Registers 0
(445) (8407 (203800) (407600)

v Lab3 0.5 1 153 273
subsystem 0.5 1 97 49
addr_gen 0 0 54 105
Register1 0 i} 0 1
Register g i} 0 48
Delay7 0 0 1 1
Delay4 0 0 0 20
Delay3 0 0 1 1

Figure 79: Lab3 Resource Analyzer

Each column heading (for example, BRAMSs, DSPs, or LUTs) in the table shows the total number of
each type of resources available in the Xilinx device for which you are targeting your design. The
rest of the table displays a hierarchical listing of each subsystem and block in the design, with the
count of these resource types.

4. You can cross probe form the Resource Analyzer table to the Simulink model by clicking a block or
subsystem name in the Resource Analyzer table, which highlights the corresponding System
Generator block or subsystem in the model.

Cross probing is useful to identify blocks and subsystems that are implemented using a particular
type of resource.

Model-Based DSP Design Using System Generator Send Feedback 80
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=80

v
i; XI I_I NXQ Lab 3: Timing and Resource Analysis

5. The block you have selected in the table will be highlighted yellow and outlined in red.

8 double Fix_18_17
data_outh——— | > Fix_18_17
2
P en
test_source
e uble I UFix_32_21
7[‘ ‘ Lojora U100
nats addr > UFix_10_0
Jaou UFix_10_0 z° urn o [0
0 » In “ L——»en
Q_ p phase
Constant3 Fi
phase Bool y E
I bl * In -~ |Bool —
: i ok_div Constantd
| ce -
#¢ Resource Analyzer: Lab3 ‘ = H o] ” —
o addr_gen
Post Synthesis Resources: Clicking on an instance name highlights corresponding block/subsystem in the medel.
Name BRAMs DSPs Registers
(445) (840) (407600)
4 Lab3 05 153 273
> subsysteml 0.5 97 49
> addr_gen 1] 1] 54 105
Registerl 0 0 0 1
Register 0 0 0 48
Delay7 [} [} 1 1 —
Delay4 0 0 0 20
Delay3 0 0 1 1 L » BodMatch|addr
Delay2 0 0 0 48 €. pamm
[

Figure 80: Cross-Probing in the Resource Analyzer

6. If the block or subsystem you have selected in the table is within an upper-level subsystem, then the

parent subsystem is highlighted in red in addition to the underlying block as shown below.

Model-Based DSP Design Using System Generator Send Feedback
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

81

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=81

& XILINX

Lab 3: Timing and Resource Analysis

Ly

32_n
——®b

UFix_33_22

UFix 3 UFix_32_22
[a:b] —P-einterpre———» d

TR

4 UFix 32 22
21—

¥ Resource Analyzer: Lab3

4 Name

4 Lab3

» subsysteml

4 addr_gen
Relationall
Register>
Registerd
Register3
Register10
Register

BRAMs
(443)

DSPs LUTs
(840)

Registers
(407600)
273
497
105
1
10
32
10
10
32 -

0.5
0.5

oo o oo
o oo

=}

1 UFix_10_0
Al

addr

Registerd

[Ok l [Help

Figure 81: Subsystem View of Resources

IMPORTANT: If the Resource Analyzer window or the Timing Analyzer window opens and no
information is displayed in the table (table cells are empty), double-click the System Generator
token and set the Target directory to a new directory, that is, a directory that has not been used
before. Then run the analysis again.

Summary

In this lab you learned how to use timing and resource analysis inside system generator which, in turn,

invokes vivado synthesis to collect the information for the analysis. You also learned how to identify

timing violated paths and to troubleshoot them for simple designs.

Model-Based DSP Design Using System Generator

UG948 (v2019.1) May 22, 2019

www.xilinx.com

| Send Feedback I

82

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=82

& XILINX

Lab 4: Working with Multi-Rate Systems

Introduction

In this lab exercise, you will learn how to efficiently implement designs with multiple data rates using
multiple clock domains.

Objectives
After completing this lab, you will be able to:

e Understand the benefits of using multiple clock domains to implement multi-rate designs.

e Understand how to isolate hierarchies using FIFOs to create safe channels for transferring
asynchronous data.

e How to implement hierarchies with different clocks.

Procedure
This exercise has three primary parts.
e In Step 1, you will learn how to create hierarchies between the clock domains.

e In Step 2, you will learn how to add FIFOs between the hierarchies.

e In Step 3, you will learn how to add separate clock domains for each hierarchy.

Step 1: Creating Clock Domain Hierarchies

In this step you will review a design in which different parts of the design operate at different data rates
and partition the design into subsystems to be implemented in different clock domains.
1. Invoke System Generator:

e On Windows systems select Start > All Programs > Xilinx Design Tools > Vivado 2019.x >
System Generator > System Generator 2019.x.

e On Linux Systems, type sysgen at the command prompt.
2. Navigate to the Lab4 folder: cd C:\SysGen_Tutorial\Lab4.
3. At the command prompt, type open Lab4_1.slx

Model-Based DSP Design Using System Generator Send Feedback 83
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=83

v
i; XI I_I NX@ Lab 4: Working with Multi-Rate Systems

This opens the Simulink design shown in the following figure. This design is composed of three basic

parts:

e The channel filter digitally converts the incoming signal (491.52 MSPS) to near baseband (61.44
MSPS) using a classic multi-rate filter: the use of two half-band filters followed by a decimation
of 2 stage filter, which requires significantly fewer coefficients than a single large filter.

e The output section gain-controls the output for subsequent blocks which will use the data.

e The gain is controlled from the POWER_SCALE input.

e
?—| ot h:._?.l ' o _'EI e _ﬁ-n ‘ _|
plale= S a 9 S CIE e
A L= e =
& | e ——— e j s - E;ﬂ

Figure 82: Initial Lab4_1 Design

4. Click the Run simulation button to simulate the design.

In the following figure Sample Time Display is enabled with colors (right-click in the canvas >
Sample Time Display > Colors), and shows clearly that the design is running at multiple data rates.

&

Figure 83: Lab4_1 Display After Simulation

5. The System Generator environment automatically propagates the different data rates through the
design.

Model-Based DSP Design Using System Generator N Send Feedback 84
www.Xilinx.com [—\/—]

UG948 (v2019.1) May 22, 2019

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=84

v
i; XI I_I NX@ Lab 4: Working with Multi-Rate Systems

When a multi-rate design such as this is implemented in hardware, the most optimal
implementation is to use a clock at the same frequency as the data; however, the clock is abstracted
away in this environment. The following methodology demonstrates how to create this ideal
implementation in the most efficient manner.

6. To efficiently implement a multi-rate (or multi-clock) design using System Generator you should
capture each part running at the same data rate (or clock frequency) in its own hierarchy with its
own System Generator token. The separate hierarchies should then be linked with FIFOs.

7. The current design has two obvious, and one less obvious, clock domains:

e The gain control input POWER_SCALE could be configurable from a CPU and therefore can run
at the same clock frequency as the CPU.

e The actual gain-control logic on the output stage should run at the same frequency as the
output data from the FIR. This will allow it to more efficiently connect to subsequent blocks in
the system.

e The less obvious region is the filter-chain. Remember from Lab 1 that complex IP provided with
System Generator, such as the FIR Compiler, automatically takes advantage of over-clocking to
provide the most efficient hardware. For example, rather than use 40 multipliers running at 100
MHz, the FIR Compiler will use only 8 multipliers if clocked at 500 MHz (= 40*100/500). The
entire filter chain can therefore be grouped into a single clock domain. The first FIR Compiler
instance will execute at the maximum clock rate and subsequent instances will automatically
take advantage of over-sampling.

You will start by grouping these regions into different hierarchies.

8. Select all the blocks in the filter chain — all those to be in the same clock domain, including the
FDATool instances - as shown below.

9. Select Create Subsystem, also as shown in the figure below, to create a new subsystem.

?

Figure 84: Create DDC Subsystem

Model-Based DSP Design Using System Generator Send Feedback 85
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=85

& XILINX

10. Select the instance name subsystem and change this to DDC to obtain the design shown.

Sine Wavel

ool

&

Lab 4: Working with Multi-Rate Systems

Bool 03

ot

Sutz
e e e
oo b arQg

- z

Dy

ol
Seale FIF Culput

38 2503 [[Feshesps [0S Fs 16 1408
| reirt erprst S| ganConected

Feintemret

BinPt FIR Ouaput

Figure 85: Lab4_1 with DDC Subsystem

Cormeert
Aound FIR Oubput

11. Select the components in the output path and create a subsystem named Gain Control.

Sirme Wave

Sing Wavel

?

UFe_16_8
¥ In I

double

Doc

in2
double

ol

Otz

OoItHE

=I|—'|

Gain Control

Figure 86: Lab4_1 with Gain Control Subsystem

L'

12. Finally, select the Gateway In instance POWER_SCALE and Constant to create a new subsystem
called CTRL. The final grouped design is shown below.

Model-Based DSP Design Using System Generator
UG948 (v2019.1) May 22, 2019

www.xilinx.com

| Send Feedback I

86

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=86

v
i; XI I_I NX@ Lab 4: Working with Multi-Rate Systems

oouble

doubde
Gut2 Gain Conlred |

Sine Waved
Sing Wawve onc

Figure 87: Lab4_1 with Domain Subsystems

When this design is complete, the logic within each subsystem will execute at different clock
frequencies. The clock domains might not be synchronous with each other. There is presently nothing
to prevent incorrect data being sampled between one subsystem and another subsystem.

In the next step you will create asynchronous channels between the different domains to ensure data
will asynchronously and safely cross between the different clock domains when the design is
implemented in hardware.

Step 2: Creating Asynchronous Channels

In this step you will implement asynchronous channels between subsystems using FIFOs. The data in
FIFOs operates on a First-In-First-Out (FIFO) basis, and control signals ensure data is only read when
valid data is present and data is only written when there is space available. If the FIFO is empty or full
the control signals will stall the system. In this design the inputs will always be capable of writing and
there is no requirement to consider the case for the FIFO being full.

There are two data paths in the design where FIFOs are required:

e Data from CTRL to Gain Control.

e Data from DDC to Gain Control.
1. Right-click anywhere in the canvas and select Xilinx BlockAdd.
2. Type FIFO in the Add Block dialog box.

Model-Based DSP Design Using System Generator Send Feedback 87
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=87

v
i; XI I_I NX@ Lab 4: Working with Multi-Rate Systems

3. Select FIFO from the menu to add a FIFO to the design.

4. Connect the data path through instance FIFO. Delete any existing connections to complete this task.
a. Connect CTRL/Outl to FIFO/din.
b. Connect FIFO/dout to Gain Control/Inl.

5. Make a copy of the FIFO instance (using Ctrl-C and Ctrl-V to copy and paste).

6. Connect the data path through instance FIFO1. Delete any existing connections to complete this
task.

a. Connect DDC/Out2 to FIFO1/din.
b. Connect FIFO1l/dout to Gain Control/In3.

You have now connected the data between the different domains and have the design shown below.

* N

choubile
couble
Cut1 | din dat
errpty (>
CTR Hoem
iy
e B In1 doubie [|
b
—»
dauble Qutt
=173 —| FIFD L |
In2 o
doubie |
coubila
B double ldin dout : I3 Ould [
- eerply [Gain Contral T
o h A .
iul[y
Are ful»

FIFO

Figure 88: Lab4_1 with FIFO Data Channels

You will now connect up the control logic signals to ensure the data is safely passed between domains.

e From the CTRL block a write enable is required. This is not currently present and needs to be
created.

e From the DDC block a write enable is required. The data_tvalid from the final FIR stage may be
used for this.

e The Gain Control must generate a read enable for both FIFOs. You will use the empty signal
from the FIFOs and invert it; if there is data available, this block will read it.

Model-Based DSP Design Using System Generator Send Feedback 88
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=88

v
i; XI I_I NX@ Lab 4: Working with Multi-Rate Systems

7. Double-click the CTRL block to open the subsystem.
8. Right-click in the canvas and use Xilinx BlockAdd to add these blocks:
a. Delay (Xilinx)
b. Relational
9. Select instance Outl and make a copy (use Ctrl-C and Ctrl-V to cut and paste).
10. Double-click the Relational block to open the Properties Editor.
11. Use the Comparison drop-down menu to select al=b and click OK.

12. Connect the blocks as shown in the following figure.

1 LFi_18_A ol

*| In * 27 1)

[ZEE

Figure 89: Modified CTRL Subsystem

This will create an output strobe on Out2 which will be active for one cycle when the input changes, and
be used as the write-enable from CTRL to the Gain Control (the FIFO block at the top level).

13. Click the Up to Parent toolbar button 4F to return to the top level.

14. Double-click the instance Gain Control to open the subsystem.

15. Right-click in the canvas and use Xilinx BlockAdd to add these blocks:
a. Inverter
b. Inverter (for a total of two inverters)
c. Delay (Xilinx)

16. Select the instance Outl and make a copy Out3 (use Ctrl-C and Ctrl-V to cut and paste).
a. Rename Out3 to DDC_Read

17. Select instance Outl and make a copy Out3 (use Ctrl-C and Ctrl-V to cut and paste).
a. Rename Out3 to CTRL_Read

18. Select instance In1 and make a copy In4 (use Ctrl-C and Ctrl-V to cut and paste).

Model-Based DSP Design Using System Generator Send Feedback 89
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=89

v
i; XI I_I NX@ Lab 4: Working with Multi-Rate Systems

a. Rename In4 to CTRL_Empty

19. Connect the blocks as shown in the following figure.

ok A o ol 03 .
Lz} a R L Qur ()
In2t Ot
Inverar Dielay
: "a r - r -
I 22 Fu 38 2508) Foe 38 2509 I | Fix 16 1408 r
doubk ax B reirt erpre % cqat — Out »_2)
I3 Feintemret Canverl
i BinPt FIF Output Found FIF Output
Scale FIR Culput
doubla
> o -
DOC Aead
Delayi
doubila 4 doubie
. £ -
Cad o)
CTRL_Emply CTRI_Read

Irviarter

Figure 90: Modified Gain Control Subsystem

e The FIFO empty signal from the top-level Gain Control FIFO (FIFO) block is simply an inverter
block used to create a read-enable for the top-level DDC FIFO (FIFO1). If the FIFO is not empty,
the data will be read.

e Similarly, the FIFO empty signal from the top-level DDC FIFO (FIFO1) is inverted to create a FIFO
read-enable.

e This same signal will be used as the new data_tvalid (which was In2). However, since the FIFO
has a latency of 1, this signal must be delayed to ensure this control signal is correctly aligned
with the data (which is now delayed by 1 through the FIFO).

20. Use the Up to Parent toolbar button “i* to return to the top level.

Model-Based DSP Design Using System Generator Send Feedback 90
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=90

v
i; XI I_I NX@ Lab 4: Working with Multi-Rate Systems

This shows the control signals are now present at the top level.

Cout dubila
Lbdn dout
cutz I
CTR >w=
dul[>
choubie

In1 Cut1 f
c
dauble doubla
it == In2 [a]1

In1 In3 DOC_Raad [+
dautle ..., R l \—0 |
Cut2 = din | CTRL_Empty CTR Fead [+

bia Cant 00

Sine Wavel ergly [Gain Gontral
I nnc) we
aaful>
Are fullly

FIFO1

Figure 91: Modified Lab4_1 Design

You will now complete the final connections.

21. Connect the control path through instance FIFO. Delete any existing connections to complete this
task.

a. Connect CTRL/0ut2 to FIFO/we.
b. Connect FIFO/empty to Gain Control/CTRL_Empty.
c. Connect Gain Control/CTRL_Read to FIFO/re.

22. Connect the control path through instance FIFO1. Delete any existing connections to complete this
task.

a. Connect DDC/0utl to FIFO1/we.
b. Connect FIFO1/empty to Gain Control/In2.
c. Connect Gain Control/DDC_Read to FIFO1/re.

Model-Based DSP Design Using System Generator Send Feedback 91
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=91

v
i; XI I_I NX@ Lab 4: Working with Multi-Rate Systems

deukie
doutle
outt w{cin el
doutie
double oty
oumf—— |
- dalible |—||
TR gy - int =21} >
ot
e fully g A
" == |
- e o >
o fy doivle |
| CTRL_Empty CTRI_Read [—] o ————
L 1 Gain Control
doubiia
e
ou2 #{cin e
doubl
oty
00GC =
s>
re iy
FIFC

Figure 92: Final Lab4_1 Design

23. Click the Run simulation button to simulate the design and confirm the correct operation — you will
see the same results as Step 1 action 4.

In the next step, you will learn how to specify different clock domains are associated with each
hierarchy.

Step 3: Specifying Clock Domains

In this step you will specify a different clock domain for each subsystem.

1. Double-click the System Generator token to open the Properties Editor.
2. Select the Clocking tab.
3. Click Enable multiple clocks.

Note that the FPGA clock period and the Simulink system period are now greyed out. This option
informs System Generator that clock rate will be specified separately for each hierarchy. It is
therefore important the top level contains only subsystems and FIFOs; no other logic should be
present at the top level in a multi-rate design.

Model-Based DSP Design Using System Generator Send Feedback 92
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=92

v
i; XI I_I NX@ Lab 4: Working with Multi-Rate Systems

TSystem Generator: Lab4 1 I::' o] |_3@__'
i i P A
N O G
000y et 74 g

Compilation Clocking General

[] Enable multiple clocks

FPGA clock period (ns) : Clock pin location :
1e9/491 52e6
Provide clock enable clear pin

Simulink system period (sec) :

1/491.52e6

Perform analysis : Analyzer type :

Performance Tips ‘ ‘Generate‘ ‘ Ok ‘ I Apply | I Cancel ‘ l Help ‘

Figure 93: Enable Multiple Clock Domains

4. Click OK to close the Properties Editor.

You will now specify a new clock rate for the CTRL block. The CTRL block will be driven from a CPU
which executes at 100 MHz.

5. Select the System Generator token.
6. Use Ctrl-C or right-click to copy the token.

You will specify a new clock rate for the CTRL block. This block will be clocked at 100 MHz and
accessed using an AXI4-Lite interface.

7. Double-click the CTRL block to navigate into the subsystem.

8. Use Ctrl-V or right-click to paste a System Generator token into CTRL.

9. Double-click the System Generator token to open the Properties Editor.

10. Select the Clocking tab.

11. Deselect Enable multiple clocks (this was inherited when the token was copied).
12. Change the FPGA clock period to 1€9/100e6.

13. Change the Simulink system period to 1/100e6.

Model-Based DSP Design Using System Generator Send Feedback 93
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=93

v
i; XI I_I NX@ Lab 4: Working with Multi-Rate Systems

(4] System Generator: Lab4_1/CTRL

Compilation Cloeking General

|:| Enable multiple clocks

FPGA clock period (ns) : Clock pin location :
1e9/100e6

[Pravide clock enable clear pin
Simulink system period (sec) :
1/100e6

Perform analysis : Analyzer type :

Mone * | | Timing -

| o

-

i | [aeer] [cemee] [ben]

Performance Tips

Figure 94: CTRL Clock Domain

14. Click OK to close the Properties Editor.
15. Double-click the Gateway In instance POWER_SCALE to open the Properties Editor.
16. Change the Sample period to 1/100e6 to match the new frequency of this block.

In the Implementation tab, note that the Interface is set to AXI4-Lite. This will ensure this port is
implemented as a register in an AXI4-Lite interface.

17. Click OK to close the Properties Editor.
18. Again, select and copy the System Generator token.
19. Use the Up to Parent toolbar button to return to the top level.

You will now specify a new clock rate for the Gain Control block. The Gain Control block will be
clocked at the same rate as the output from the DDC, 61.44 MHz.

20. Double-click the Gain Control block to navigate into the subsystem.
21. Use Ctrl-V or right-click to paste a System Generator token into Gain Control.
22. Double-click the System Generator token to open the Properties Editor.

23. Select the Clocking tab.

Model-Based DSP Design Using System Generator Send Feedback 94
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=94

v
i; XI I_I NX@ Lab 4: Working with Multi-Rate Systems

24. Change the FPGA clock period to 1e9/61.44¢€6.
25. Change the Simulink system period to 1/61.44e6.

TSys‘[em Generator: Lab4_1/Gain Control o | = || =
S0 GC
& &

Compilation Clocking General

[| Enable multiple clocks

FPGA clock period (ns) : Clock pin location :
1e9/61.44e6

|| Provide clock enable clear pin
Simulink system period (sec) :
1/61.44e6

Perform analysis : Analyzer type :

None - Timing v-

Performance Tips l lGenerate] [oK l [Apply l l Cancel l l Help l

Figure 95: Gain Control Clock Domain

26. Click OK to close the Properties Editor.

Note that the output signals are prefixed with M_AXI_DATA_. This will ensure that each port will be
implemented as an AXI4 interface, since the suffix for both signals is a valid AXI4 signal name (tvalid
and tdata).

27. Use the Up to Parent toolbar button to return to the top level.

The DDC block will use the same clock frequency as the original design, 491 MHz, as this is the rate of
the incoming data.

28. In the top-level design, select and copy the System Generator token.
29. Double-click the DDC block to navigate into the subsystem.
30. Use Ctrl-V or right-click to paste a System Generator token into DDC.

31. Double-click the System Generator token to open the Properties Editor.

Model-Based DSP Design Using System Generator Send Feedback 95
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=95

v
i; XI I_I NX@ Lab 4: Working with Multi-Rate Systems

32. Select the Clocking tab.

33. Deselect Enable multiple clocks. The FPGA clock period and Simulink system period are now set to
represent 491 MHz.

"4 System Generator: Lab4_1/DDC E [=] @
. o o
Compilation Clocking General
[] Enable multiple clocks
FPGA clock period (ns) : Clock pin location :

1e9/491.52e6

["] Provide clock enable clear pin
Simulink system period (sec) :
1/491 526

Perform analysis : Analyzer type :

Naone v Timing v-

Performance Tips l [Generate] [oK] l Apply l l Cancel l l Help l

Figure 96: DDC Clock Domain

34. Click OK to close the Properties Editor.

35. Use the Up to Parent toolbar button to return to the top level.

36. Save the design.

37. Click the Run simulation button to simulate the design and confirm the same results as earlier.
The design will now be implemented with three clock domains.

38. Double-click the top-level System Generator token to open the Properties Editor.

39. Press Generate to compile the design into a hardware description.

40. Click Yes to dismiss the simulation warning.

41. When generation completes, click OK to dismiss the Compilation status dialog box.

Model-Based DSP Design Using System Generator Send Feedback 96
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=96

v
i; XI I_I NX@ Lab 4: Working with Multi-Rate Systems

42. Click OK to dismiss the System Generator token.

43. Open the file C:\SysGen_Tutorial\Lab4\I1PP_QT_MCD_0001\DDC_HB_hier\ip\hdI\
lab4_1.vhd to confirm the design is using three clocks, as shown below.

entity lab4 1 is
port (
ctrl_clk : in std _logic;
ddc _clk : in std_logic;
gain_control_clk : in std_logic;

Summary

In this lab, you learned how to create separate hierarchies for portions of the design which are to be
implemented with different clock rates. You also learned how to isolate those hierarchies using FIFOs to
ensure safe asynchronous transfer of the data and how to specify the clock rates for each hierarchy.

The following solutions directory contains the final System Generator (*.slx) files for this lab. The
solutions directory does not contain the IP output from System Generator or the files and directories
generated when Vivado is executed.

C:/SysGen_Tutorial/Lab4/solution

The results from Step 1 are provided in file Lab4_1_sol.sIx

The results from Step 2 are provided in file Lab4_2_sol.sIx

The final results from Step 3 are provided in file Lab4_3_sol.sIx

Model-Based DSP Design Using System Generator Send Feedback 97
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=97

& XILINX

Lab 5: Using AXI Interfaces and IP Integrator

Introduction

In this lab, you will learn how AXI interfaces are implemented using System Generator. You will save the
design in IP catalog format and use the resulting IP in the Vivado IP Integrator environment. Then you
will see how IP Integrator enhances your productively by supplying connection assistance when you use
AXI interfaces.

Objectives
After completing this lab, you will be able to:

e Implement AXI interfaces in your designs.
e Add your design as IP in the Vivado IP Catalog.

e Connect your design in IP Integrator.
Procedure
This exercise has four primary parts.
e In Step 1, you will review how AXI interfaces are implemented using System Generator.
e In Step 2, you will create a Vivado project for your System Generator IP.
e In Step 3, you will create a design in IP Integrator using the System Generator IP.

e In Step 4, you will implement the design and generate an FPGA bitstream (the file used to
program the FPGA).

Model-Based DSP Design Using System Generator Send Feedback 98
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=98

v
i; XI I_I NX@ Lab 5: Using AXI Interfaces and IP Integrator

Step 1: Review the AXI Interfaces

In this step you review how AXI interfaces are defined and created.

1. Invoke System Generator and use the Current Folder browser to change the directory to
C:\SysGen_Tutorial\Lab5.

2. Typeopen Lab5_1.slx inthe Command Window.

This opens the design shown in the following figure.

N

l

Out treachy
axis_source_tready Yo ey
Bool
i _traady|
‘‘‘‘‘‘
UFix 610
velid Bodl biock_data_
Boal ;J—‘ it
e 52 Ly o vam - —{DES out_data dout_tiast Out tHast
Idsa o m_axis_tout_tlast o Workapaoes
o in_tiast Bool UFix 32 0 wnt32
= out_tlast f——————————p{ DES_out _tast dout_tdata »l Out CES ouput
Bool i
trsacly DES receive interface block m_gde,_dout_idala To Workspacat
ool i
AXIFIFO dout_tvald » Out N CES_outpad_valid
m_axis_dout_tvalid YT
face block
Data In

DES_parity_er

:
[

parity_er Ta Workspace?

ly
onstan resel
uint3z UFix 32 0 reset
©]
Bool

Constant Key[63:32] hi UFix_64.0 Partty En]

Liniz2 UFix 32 } bLe/
DEScore

Constanti Keyl31:0] data in1

Figure 97: Lab5_1 Design

This design uses a number of AXI interfaces. You will review these shortly.

0 Using AXI interfaces allows a design exported to the Vivado IP Catalog to be efficiently
integrated into a larger system using IP Integrator.

o ltis not a requirement for designs exported to the IP Catalog to use AXI interfaces.
This design uses the following AXI interfaces:

0 An AXI4-Stream interface is used for ports s_axis_source_*. All Gateway In and Out
signals are prefixed with the same name (s_axis_source_), ensuring they are grouped
into the same interface. The suffixes for all ports are valid AXI4-Stream interface signal
names (tready, tvalid, tlast and tdata).

— Similarly, an AXI4-Stream interface is used for ports m_axis_dout_*.

— An AXI4-Lite interface is used for the remaining ports. You can confirm this using the
following steps:

3. Double-click Gateway In instance decrypt (or any of reset, Keys[63:32], Keys[31:0], or parity_err).

Model-Based DSP Design Using System Generator Send Feedback 99
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=99

Y

v
t; XI I_I NX@ Lab 5: Using AXI Interfaces and IP Integrator

In the Properties Editor select the Implementation tab.
Confirm the Interface is specified as AXI4-Lite in the Interface options.
Click OK to exit the Properties Editor.

Details on simulating the design are provided in the canvas notes. For this exercise, you will
concentrate on exporting the design to the Vivado IP catalog and use the IP in an existing design.

Step 2: Create a Vivado Project using System Generator IP

In this step you create a Vivado project which you will use to create your hardware design.

S A T o

Double-click the System Generator token to open the Properties Editor.

In the Properties Editor, make sure IP Catalog is selected for the Compilation type.
Click Generate to generate a design in IP Catalog format.

Click OK to dismiss the Compilation status dialog box.

Click OK to dismiss the System Generator token.

The design has been written in IP Catalog format to the directory ./IP1_Project. You will now
import this IP into the Vivado IP Catalog and use the IP in an existing example project.

Open the Vivado IDE using Start > All Programs > Xilinx Design Tools > Vivado 2019.x >
Vivado 2019.x.

Click Create Project.
Click Next.

10. Enter C:/SysGen_Tutorial/Lab5/1P1_Project for the Project Location.

Model-Based DSP Design Using System Generator

TIP: You will have to manually type /1P1_Project in the Project location box to create the
IP1_Project directory.

l Send Feedback I 100
UG948 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=100

v
i; XI I_I NX@ Lab 5: Using AXI Interfaces and IP Integrator

¢ MNew Project @

Project Name

Enter a name for your project and specify a directory where the project data files will be stored. ‘

Project name: project_1
Project location: | C/SysGen_TutorialiLabS/IPI_Project IZ‘

Create project subdirectory

Project will be created at: C:/SysGen_Tutorial/Lab5/PI_Project/project_1

=
\2) = Back Cancel

Figure 98: Vivado IPI Project

11. Click Next.
12. Select both RTL Project and Do not specify sources at this time and click Next.

Model-Based DSP Design Using System Generator Send Feedback 101
UG948 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=101

& XILINX

13. Select Boards and ZYNQ-7 ZC702 Evaluation Board as shown in the next figure.

Lab 5: Using AXI Interfaces and IP Integrator

v

New Project

Default Part

Choose a default Xilinx part or board for your project. This can be changed later.

select fE Pars | B Boards
~ Filter/ Preview
Vendor: All

Display Mame: All

Latest

Reset All Filters

Board Rey:

Search

Display Name

E ZedBoard Zynq Evaluation and Development Kit
@ Artix-7 ACT01 Evaluation Platform

Kintex-7 KC705 Evaluation Platform

Kintex-UltraScale KCU105 Evaluation Platform
E Kintex-UltraScale+ KCU116 Evaluation Platfarm

H Kintex UltraScale KCU1500 Acceleration Development Board

@ virtex-7 VC707 Evaluation Platform
@ Virtex-7 VC709 Evaluation Platform
@ virtex-UltraScale VCU108 Evaluation Platfarm
 virtex-UltraScale VCU110 Evaluation Platform

Vendor

em.avnet.com
xilimx.com
xilinx.com
xilinx.com
xlime.com
xilinx.com
Alime.com
xilinx.com
xilime.com

xilinx.com

| @ zynQ-7 ZC702 Evaluation Board

xilinx.com

@ zYMQ-7 ZCT06 Evaluation Board
E Zyng UltraScale+ ZCU102 Evaluation Board
4

Board Connectors
FMC1_LPC
FMCZ_LPC

xilinx.com

xilinx.com

Board ...

1.1
11
1.0

1.0
1.1
1.0
1.0
1.0
1.0
11
1.0

Part

£ xc7z020clg484-1

8} xc7a200tbg676-2

8} xCTK325tg900-2

8 xckuD40-fivat156-2-2
8 xckuSp-fiub676-2-2
8 xcku115-ivb2104-2-¢
8 xc7vr485tTg1761-2
£ xcTwEO0HFg1761-2
8 yovu095-fiva2104-2-2
£ xovu190-figc2104-2-¢
8} xc7z020c1g484-1

8 xc72045ffgo00-2

{8 xczufe g-fivb 1156-2-i

Target Connections

lOPinC..

434
676
900
1,156
676
2,104
1761
1761
2,104
2,104
434
900
1,156

File Version

13
13
15
12
10
10
13
18
12
11
13
14
3.0

Available
10Bs

200
400
500
520
280
702
700
850
832
416
200
362
328 &

14. Click Next.
15. Click Finish.

Figure 99: Target Device

16. You have now created a Vivado project based on the ZC702 evaluation board.

Model-Based DSP Design Using System Generator
UG948 (v2019.1) May 22, 2019

www.xilinx.com

| Send Feedback I 102

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=102

v
i; XI I_I NXQ Lab 5: Using AXI Interfaces and IP Integrator

Step 3: Create a Design in IP Integrator (IPI)

In this step you will create a design using the System Generator IP.

1. Click Create Block Design in the Flow Navigator pane.

Fiw Edt Flow Tools redow Lyt Yiernr Help
&, - -
Pl Marvagated O B PROUECT LLANAGER - g o _1
w PROJECT MAMAGER
Sourcos
& Semnc
, QA E e+
Akod Sources
Canign Seurcey
Langubge Templiles
Congiraims
o " Caladog Sl asoh Sounoe
sam_1

v P RTEGRATOR

AT 5

Hiaranciy

Properies

v SIIALATION

Fun Simiyiaton

Figure 100: Create Block Design

2. In the Create Block Design dialog box, click OK to accept the default name.

You will first create an IP repository for the System Generator IP and add the IP to the repository.

3. Right-click in the Diagram window and select IP Settings.

Model-Based DSP Design Using System Generator
UG948 (v2019.1) May 22, 2019 www.xilinx.com

| Send Feedback I 103

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=103

& XILINX

Diagram

4.

S

This design is

+

Lab 5: Using AXI Interfaces and IP Integrator

Block Design Properties...

Copy

Select All

AddIP...
Add Module...

IP Settings... I

“alidate Design

Create Hierarchy...
Create Comment

Create Port...

Figure 101: Open IP Settings

700X

In the Settings dialog box, select IP > Repository under Project Settings and click the Add
Repository button (+) to add a repository.

¢ Settings

Project Settings
General
Simulation
Elaboration
Synthesis
Implementation
Bitstream

> P

Repository
Packager

Tool Settings
Project
IP Nefaults

2)
\?)

IP = Repository

Add directories to the list of repositories. You may then add additional IP to a selected repository. ‘
Ifan IP iz dizabled then a tooltip will alert you to the reason.

IP Repositories

L

Press the | 4 | button to Add Repository

Add Repository

Refresh All

| Ok | | Cancel |

o

Figure 102: Add Repository Button

Model-Based DSP Design Using System Generator
UG948 (v2019.1) May 22, 2019

www.xilinx.com

| Send Feedback I 104

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=104

& XILINX

5. Inthe IP Repositories dialog box, navigate to this Directory:

C:\SysGen_Tutorial\Lab5\IPI_Project\ip.

Lab 5: Using AXI Interfaces and IP Integrator

6. With folder ip selected, click Select to create the new repository as shown below.

¢ [P Repositories

Directory: C\SysGen_TutariallLab5VP1_Projechip

~ | SysGen_Tutorial

» Lab3
~ J. Labb
R IPI_Project
» L Hil
~ | ip
constrs
drivers
| hdl
images

| lab5_1_c_counter_binary_vi12_0_i0
lab5_1_dist_mem_gen_i0
lab5_1_dist_mem_gen_i1

| lab5_1_dist_mem_gen_i2

lahR 41 diet mam nan i2

WOW W W W W W W W

Figure 103: IP Repository ip

7. Click OK to exit the Add Repository dialog box.

8. Click OK to exit the Settings dialog box.

9. Click the Add IP button in the center of the canvas.

10. Type zynq in the Search dialog box.

11. Double-click ZYNQ7 Processing System to add the CPU.

Model-Based DSP Design Using System Generator
UG948 (v2019.1) May 22, 2019 www.xilinx.com

Recent: CiSysGen_Tutorial/lLabSNPI_Projectip A d r ‘j

»

l Send Feedback I 105

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=105

v
i; XI I_I NX@ Lab 5: Using AXI Interfaces and IP Integrator

Diagram ?2 00 X

Search: ynq (1 match)

F ZYNQT Processing System

ENTER to select, ESC to cancel, Ctrl+Q for IP details |

Figure 104: Adding the Zynq Processor

12. Click Run Block Automation as shown in the following figure.

Diagram 200 X
] Q| =9 Q + E C o @

» Designer Assistance available. Run Block Automation

Figure 105: Block Automation

13. Leave Apply Board Preset selected and click OK. This will ensure the design is automatically
configured to operate on the ZC702 evaluation board.

14. Right-click anywhere in the block diagram and select Add IP.

Model-Based DSP Design Using System Generator Send Feedback 106
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=106

v
i; XI I_I NX@ Lab 5: Using AXI Interfaces and IP Integrator

Diagram 200X
e a A =B O Q + = C o I &
m7_0

DOR + ||j===[> DDR

FIXED_IO + |||===={T> FIXED_IO
USBIND_ D + |||
Q, Search... M_AXI_GPO + i
T& Salect All TTCO WAVED OUT ==
TTCO_WAVE1 OUT =
+ AddiP. Ctrl+l TTEO WAVE2 OUT
Add Module... FCLK_CLKD =
IP Setiings... FCLK_RESETO_N -

[validate Design System)

Create Hierarchy...

Figure 106: Add IP to the IP Integrator Diagram

15. Type lab5 in the Search dialog box.
16. Double-click lab5_1 to add the IP to the design.

17. You will now connect the IP to the rest of the design. Vivado IP Integrator provides automated
assistance when the design uses AXI interfaces.

18. Click Run Connection Automation (at the top of the design canvas).

19. Click OK to accept the default options (lab5_1 0/lab5_1 s axi to
processing_system7_0/M_AXI_GPO0) and connect the AXI4-Lite interface to the Zynq 7000 IP
SoC.

20. Double-click the ZYNQ7 Processing System to customize the IP.

21. Click the PS-PL Configuration as shown in the figure below.

22. Expand the HP Slave AXI Interface and select the S AXI HPO interface.
Make sure to check the box next to S AXI HPO interface.

Model-Based DSP Design Using System Generator Send Feedback 107
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=107

v
i; XI I_I NX@ Lab 5: Using AXI Interfaces and IP Integrator

¢ Re-customize IP @I

ZYNQT Processing System (5.5) ’
© Documentation £F Presets IP Location @:_t Import XPS Settings

Page Mavigator = PS-PL Configuration Summary Report

Zyng Block Design

! - Search:

PS-PL Configuration Q| Name Select Description

. . ~ 7 General
Peripheral /0 Pins =
> AXIMNon Secure Enablement 0 ~ | Enable AXI Non Secure Transaction
MIO Configuration ~ > GPSlave AX Interface

. ~ HP Slave AXl Interface
Clock Configuration

> 5 AXIHPO interface + Enables AXl high performance slave interface 0
DDR Configuration > 5 AXIHP1 interface Enables AXI high performance slave interface 1
SN Timing Galcalaion » S AXIHPZ interface Enables AXI high performance slave interface 2
» 5 AXIHP3 interface Enables AX1 high performance slave interface 3
Interrupts » ACP Slave AX Interface
> DMA Controller
» PS-PL Cross Trigger interface Enables PL cross trigger signals to PS and vice-versa
OK ‘ | Cancel

Figure 107: Customize the Zynq Processing System

23. Click OK to add this port to the Zynq Processing System.

24. On the System Generator IP lab5_1 block, click the AXI4-Stream input interface port
s_axis_source and drag the mouse. Possible valid connections are shown with green check
marks as the pencil cursor approaches them. Drag the mouse to the S_AX1_HPO port on the Zynq
Processing System to complete the connection.

Model-Based DSP Design Using System Generator Send Feedback 108
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=108

& XILINX

Lab 5: Using AXI Interfaces and IP Integrator

Diagram

a Q

e Q

4

L]
L

processing_system?_0 I

(4 lab5_1_s_an
clk
lab5_1_arssain

labs 1

S AXI_HPO_

S AXI_HPO_FIFO_CTRL
S_AX|_HFO
M_AXI_GPO_ACLK

FIXED IO 4 |[j=—
useIND 0 + |||
M_AXI_GPO 4 [

Z\{" NO‘ TTCO WAV EO_§ £

Ii.

ouT

_CLKD
FOLK_RESETON

Connect from 's_axis_source’ interface
to'S_AXI_HPO'interface

ZYNQT Processing System

Figure 108: Connecting the AXI4-Stream Interface

25. Click OK in the Make Connection dialog box.

26. Finally, click Run Connection Automation to connect the AXI4-Lite interface on the AXI DMA to

the processor.

27. Click OK to accept the default.

28. Use the Validate Design toolbar button to confirm the design has no errors.

Diagram

@ Q

o Q

ra
W

i

H C 9

200 X

Validate Design (FG)

processing_system?_0

labs 1.0

'-—'l’.a- = mwis swren

T

Figure 109: Validate the IPI Design

29. Click OK to close the Validate Design message.

DDR +]||
FIXED 10 4 Il

The design from System Generator has now been successfully incorporated into an IP Integrator
design. The IP in the repository may be used within any Vivado project, by simply adding the

repository to the project.

30. You will now process the design through to bitstream.

Model-Based DSP Design Using System Generator

UG948 (v2019.1) May 22, 2019

www.xilinx.com

| Send Feedback l 109

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=109

v
i; XI I_I NX@ Lab 5: Using AXI Interfaces and IP Integrator

Step 4: Implement the Design

In this step you will implement the IPI design and generate a bitsteam.

1. Return to the Project Manager view by clicking Project Manager in the Flow Navigator.

2. In the Sources browser in the main workspace pane, a Block Diagram object called design_1 is at
the top of the Design Sources tree view.

3. Right-click this object and select Generate Output Products.

Sources ? 00 X
Q|E[¢|+ o
hd Design Sources (1

&0 design_1 (design_1.bd)
> Constraints

Source Mode Properties. .
A Simulation Sources (1

, sim_1 (1 [OpenFile
Create HDL Wrapper...
View Instantiation Template
| Generate OutputF’role:}s...
Hierarchy IP Sources Librarig Reset Output Products .. -

Figure 110: Generate Output Products

4. In the Generate Output Products dialog box, click Generate to start the process of generating the
necessary source files.

5. When the generation completes, right-click the design_1 object again, select Create HDL
Wrapper, and click OK (and let Vivado manage the wrapper) to exit the resulting dialog box.

The top level of the Design Sources tree becomes the design_1_wrapper.v file. The design is
now ready to be synthesized, implemented, and to have an FPGA programming bitstream
generated.

6. In the Flow Navigator, click Generate Bitstream to initiate the remainder of the flow.
7. Click Yes to generate the synthesis and implementation files.

8. In the dialog that appears after bitstream generation has completed, select Open Implemented
Design and click OK.

9. After you view your implemented design, exit the Vivado IDE.

The next tutorial: Lab 6: Using a System Generator Design with a Zyng-7000 SoC, shows how this design
may be further processed using the Vivado IDE to implement this design with software on a Xilinx
ZC702 evaluation board.

Model-Based DSP Design Using System Generator Send Feedback 110
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=110

v
i; XI I_I NX@ Lab 5: Using AXI Interfaces and IP Integrator

Summary

In this lab, you learned how AXI interfaces are added to a System Generator design and how a System
Generator design is saved in IP Catalog format, incorporated into the Vivado IP Catalog, and used in a
larger design. You also saw how IP Integrator can substantially increase productivity with connection
automation and hints when AXI interfaces are used in your design.

The following solutions directory contains the final System Generator (*.slx) files for this lab. The
solutions directory does not contain the IP output from System Generator or the files and directories
generated when Vivado is executed.

C:/SysGen_Tutorial/Lab5/solution

Model-Based DSP Design Using System Generator Send Feedback 111
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=111

& XILINX

Lab 6: Using a System Generator Design with a Zyng-7000 SoC

Introduction

In this lab, you will learn how to export your Vivado design with System Generator IP to a software
environment and use driver files created by System Generator to quickly implement your project on a
Xilinx evaluation board, running hardware with software in the same design.

Objectives

After completing this lab, you will be able to:

e Understand how to export your Vivado design with System Generator IP to a software
environment (SDK).

e Understand how System Generator automatically creates software driver files for AXI4-Lite
interfaces.

e Understand how to integrate the System Generator driver files into your software application.

Procedure
This exercise has two primary parts.

e In Step 1, you will review the AXI4-Lite interface and associated C drivers.

e In Step 2, you will export your Vivado design to a software environment and run it on a board.

Model-Based DSP Design Using System Generator Send Feedback 112
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=112

& XILINX

Lab 6: Using a System Generator Design with a Zyng-7000 SoC

Step 1: Review the AXI4-Lite Interface Drivers

In this step you review how AXI4-Lite interface drivers are provided when a design with an AXI4-Lite

interface is saved.

This exercise uses the same design as Lab 5: Using AXI Interfaces and IP Integrator.

1. Invoke System Generator and use the Current Folder browser to change the directory to:

C:\SysGen_Tutorial\Lab6.

2. At the command prompt, type open Lab6_1.slx.

This opens the design shown in the following figure.

5
Beal block_data_

tualid
- \—b llllll et

Bl
in_t Bl

g

Bool

AXIFIFO

dout_tlast

To Workspace3

N e
Out tlast

| L

m_axis_dout_tiast To Workspaces

UFix 32 0 ——qun2
»| DES_cutput

ui
Out

m_axis_doul_tdata To WorkepaceT

N ey Rl

ul
Out CES_outpet_vald

DEScare

Figure 111: Lab6_1 Design

m_axs_dout_tvalid To Workspaced

parity_er To Workspace?

This design uses a number of AXI interfaces. These interfaces were reviewed in Lab 5 and the review is

repeated here with additional details on the AXI4-Lite register addressing.

e Using AXI interfaces allows a design exported to the Vivado IP Catalog to be efficiently
integrated into a greater system using IP integrator.

e It is not a requirement for designs exported to the IP Catalog to use AXI interfaces.

The design uses the following AXI interfaces:

e An AXI4-Stream interface is used for ports s_axis_source_*. All Gateway In and Out signals
are prefixed with same name (s_axis_source_) ensuring they are grouped into the same
interface. The suffix for all ports are valid AXI4-Stream interface signal names (tvalid, tlast

and tdata).

e An AXI4-Lite interface is used for the remaining ports. You can confirm this by performing the

following steps:

Model-Based DSP Design Using System Generator

UG948 (v2019.1) May 22, 2019

www.xilinx.com

l Send Feedback I 113

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=113

v
i; XI I_I NX@ Lab 6: Using a System Generator Design with a Zyng-7000 SoC

3. Double-click Gateway In decrypt (or any of reset, Keys[63:32], Keys[31:0], parity_err).
4. 1In the Properties Editor select the Implementation tab.
5. Confirm the Interface is specified as AXI4-Lite in the Interface options.

Also note how the address of this port may be automatically assigned (as the current setting of
Auto assign address offset indicates) or the address may be manually specified.

6. Click OK to exit the Properties Editor.

Details on simulating the design are provided in the canvas notes. For this exercise, you will
concentrate on exporting the design to the Vivado IP catalog and use the IP in an existing design.

7. In the System Generator token, select Generate to generate a design in IP Catalog format.
8. Click OK to dismiss the Compilation status dialog box.
9. Click OK to dismiss the System Generator token.

10. In the file system, navigate to the directory
C:\SysGen_Tutorial\Lab6\sys gen_ip\ip\drivers\lab6 1 vl 2\src and view the
driver files.

The driver files for the AXI4-Lite interface are automatically created by System Generator when it
saves a design in IP Catalog format.

File Edit View Tools Help

Organize ~ Include in library - Share with ~ Burn MNew folder = - I 9
EaveTites ; Name : Date modified Type Size
% Creative Cloud Files i lab6_1.c C File 2KB
B Desktop lab6_1h H File 5 KB
~» Recent Places lab6_1_hw.h File 1KB
¢ Downloads lab6_1_linux.c C File 5 KB
lab6_1_sinit.c C File 2ZKB
- Libraries Makefile File 1KB
. Documents
4\ Music i
6 items

Figure 112: AXI4-Lite Driver Files

11. Open file Iab6_1_hw.h to review which addresses the ports in the AXI4-Lite interface were
automatically assigned.

Model-Based DSP Design Using System Generator Send Feedback 114
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=114

v
i; XI I_I NX@ Lab 6: Using a System Generator Design with a Zyng-7000 SoC

k= 3

LI T I T B

=/

@file labé_1_hw.h

This header file contains identifiers and driver functions {(or
macros) that can be used to access the device. The user should refer to the
hardware device specification for more details of the device operation.

fidefine LABG_1_RESET BxB/*x{ reset =/

ftidefine LABG_1_DECRYPT Bx4fx=x{ decrypt =/
fidefine LABG_1_KEY_63_32 Bx8/%x{ key_63_32 =/
fidefine LABG_1_KEY_31_8 Bxc/==x{ Key_31_8 »/
ftidefine LABG_1_PARITY_ERR B218/%x{ parity_err =/

Figure 113: AXI4-Lite Address Assignment

12. Open file 1ab6_1.c to review the C code for the driver functions. These are used to read and write
to the AXI4-Lite registers and can be incorporated into your C program running on the Zyng-7000
CPU. The function to write to the decrypt register is shown in the figure below.

#tinclude "“lab6_1.h"
#ifndef _ linux__
int lab6_1_CfgInitialize(lab6_1 =InstancePtr, lab6_1_Config =*ConfigPtr) {

H

Xil_AssertHonvoid{InstancePtr *= HULL);
%il_AssertHonvoid{ConfigPtr *= HULL);

InstancePtr->1abé_1_BasefAddress = ConfigPtr->1ab6_1_BaseAddress;

InstancePtr->IsReady = 1;
return X3T_SUCCESS;

ftendif
void labs_1_reset_write(lab6_1 =InstancePtr, u32 Data) {

%¥il_AssertVUoid{InstancePtr *= HULL);

labé_1_WriteReg{InstancePtr->1abé_1_BaseAddress, 8, Data);

H

u32 labé_1_reset_read{lab6_1 =InstancePtr) {
uld2 Data;
%¥il_AssertVUoid{InstancePtr *= HULL);
Data = labé_1_ReadReg{InstancePtr->1labé6_1_BaseAddress, 8);
return Data;

b

| voia 1ab6_1_decrypt_write(labé_1 *InstancePtr, u32 Data) { |

%¥il_AssertVUoid{InstancePtr *= HULL);
labé_1_WriteReg{InstancePtr->1abé_1_BaseAddress, 4, Data);

H

Figure 114: AXI4-Lite Driver Code

The driver files are automatically included when the System Generator design is added to the IP
Catalog. The procedure for adding a System Generator design to the IP Catalog is detailed in Lab 5.
In the next step, you will implement the design.

Model-Based DSP Design Using System Generator

l Send Feedback I 115
UG948 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=115

& XILINX

Lab 6: Using a System Generator Design with a Zyng-7000 SoC

Step 2: Developing Software and Running it on the

Z2yng-7000 System

In this step you will use a copy of the design which was completed in Lab 5: Using AXI Interfaces and IP

Integrator.

1. Open the Vivado IDE:

e Use Start > All Programs > Xilinx Design Tools > Vivado 2019.x > Vivado 2019.x.

In this lab you will use the same design as Lab 5, but this time you will create the design using a Tcl

file, rather than the interactive process used in Lab 5.

2. Using the Tcl console as shown in the following figure:

a. Type cd C:/SysGen_Tutorial/Lab6/1PI_Project to change to the project directory.

b. Type source lab6_design.tcl to create the RTL design.

File Flow Tools Window Help Qr Quick Access

VIVADO!

HLx Editions

Quick Start

Create Project >
Open Project >
Open Example Project >

Tasks

Manage IP >
Open Hardware Manager >

Xilinx Tcl Store >

Learning Center

Documentation and Tutorials >
Quick Take Videos >

Release Notes Guide >

Tcl Console

Q T = Il B B @
‘tl
Sy

| start_
| ed C:/Syséen_Tusorial/labé/IFI Project
<

& XILINX

ALL PROGRAMMABLE

Figure 115: Lab6 IPI Design

Model-Based DSP Design Using System Generator
UG948 (v2019.1) May 22, 2019 www.xilinx.com

l Send Feedback l 116

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=116

v
i; XI I_I NX@ Lab 6: Using a System Generator Design with a Zyng-7000 SoC

This creates the project, creates the IPI design and builds the implementation (RTL synthesis, followed
by place and route). This may take some time to complete (same as the final step of Lab 5).

When it completes:

3. Click Open Implemented Design in the Flow Navigator pane.

4. From the Vivado IDE File menu select Export > Export Hardware.

5. In the Export Hardware dialog box make sure the Include Bitstream option is enabled.
Leave everything as Local to Project.

6. Click OK to export the hardware.

7. From the Vivado IDE File menu select Launch SDK.
In the Launch SDK dialog box, leave everything Local to Project.

8. Click OK to open SDK.

SDK opens. Observe that Sysgen IP 1ab6_1 is listed in the IP blocks present in the design section of
the system.hdf file.

Note: If the Welcome page is open, close it.
9. From the SDK File menu, select New > Application Project.
10. Enter the Project Name Des_Test in the New Project dialog box.
A board support package will also be created as part of this step.
11. Click Next.
12. Select the Hello World template.
13. Click Finish.

14. Expand the Des_Test_bsp container, as shown below, to confirm the AXI4-Lite driver code is
included in the project.

Model-Based DSP Design Using System Generator Send Feedback 117
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=117

v
i; XI I_I NX@ Lab 6: Using a System Generator Design with a Zyng-7000 SoC

™ Project Explorer
4 [l Des_Test_bsp
» i BSP Documentation
4 = ps/_cortexad 0
= code
¢ [= include
> = lib
4 = |ibsrc
= axidma_v9_3
+ = canps_v3_2
» = coresightps_dcc_vl_4
+ = cpu_cortexa9_v2 4
» = ddrps_v1_0
- = devcfg_v3_ 4
» = dmaps_v2_3
+ = emacps_v3_ 4
+ = generic_v2_0
- = gplops_v3_2
» = licps_v3_5
4= labb_1 vl 2
4 (= srC
+ [g labb_1_g.c
+ b lab6_1_hw.h
- 2 1ab6 1 linux.c
+ 2] 1ab6_1_sinit.c
> [€ 1ab6_1.c
+ bl lab6_L.h
Makefile

Figure 116: SDK Project

15. Power up the ZC702 board so you can program the FPGA.

Make sure the board has all the connections to allow you to download the bitstream on the FPGA
device, and make sure switches SW10 and SW16 are set correctly. Refer to the documentation that
accompanies the ZC702 development board.

16. Click XilinxTools > Program FPGA.
17. The Done LED (DS3) goes on.
18. Select the SDK Terminal tab at the bottom of the workspace.

Model-Based DSP Design Using System Generator Send Feedback 118
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=118

v
i; XI I_I NX@ Lab 6: Using a System Generator Design with a Zyng-7000 SoC

19.

20.

21.
22.
23.
24.

25.
26.

Model-Based DSP Design Using System Generator

To set up the terminal in the SDK Terminal tab, click the Connect icon and perform the following:
a. Select Connection Type > Serial.

b. Select the COM port to which the USB UART cable is connected. On Windows, if you are not
sure, open the Device Manager and identify the port with the Silicon Labs driver under Ports
(COM & LPT).

c. Change the Baud Rate to 115200.

d. Click OK to exit the Terminal Settings dialog box.

e. Check that terminal is connected by message in tab title bar.

Right-click application project Des_Test in the Project Explorer pane.

a. Select Run As > Launch on Hardware.

Switch to the SDK Terminal tab and confirm that Hel lo World was received.
Expand the container Des_Test and then expand the container src.
Double-click the hel loworld.c file.

Replace the contents of this file with the contents of the file hel lo_world_final .c from the lab9
directory.

Save the hel loworld.c source code.

Right-click application project Des_Test in the Explorer pane, and select Run As > Launch on
Hardware.

Note: If a window opens containing the text “debug session already exists”, click OK in
that window.

l Send Feedback I 119
UG948 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=119

v
(A XI I_I NXQ Lab 6: Using a System Generator Design with a Zyng-7000 SoC

27. Review the results in the SDK Terminal tab (shown below).

system.hdf i, system.mss l¢l helloworld.c &2

/* Configure the encryption key */

key MSW = ©x98674058;

key LSW = 0x01645880:

lab6 1 key 31 @ write(DES_inst, key LSW);
lab6_1 _key 63_32 write(DES_inst, key_ MSW);
decrypt E a; // encrypt

lab6 1 decrypt write(DES_inst, decrypt);

/* Read back the DES configuration */

key LSW = lab6_1 key 31 @ read(DES_inst);

key MSW = lab6_1 key 63 32 read(DES_inst);

decrypt = lab6_1_decrypt_read(DES_inst);
key_parity_error = lab6_1_parity_err_read(DES_inst);
print("DES key = @x");

putnum(key MSW);

putnum(key_LSW);

4 | 1
I*] Problems ¥ Tasks B Console T Properties B SDK Terminal &2 = X 4 = 0

Connected to: Senal (COM3, 115200,0, 8)

AXI DMA Status = 10001000

AXI DMA Status = 10021002

DES cipher text output:

..... YeF\g.O. - 88d7 b5 0e aa 59 65 46 ec 5c el 67 91 4f a4 dd
b.M. [wvzY.{-628a4df8 20 7cdl 76 2e 7a59da 93 d207 7b
t.5R.5 -e374151e 35 b5 52 9 12 ¢6 11 db d8 0d 24 9c¢
.ZR.2a..~"5." - 1le cd da 5a 52 d7 32 61 e0 Ob da 5e 60 35 84 22
WOLV._y 5 - d8 cf 8962 5d c65605af5f 0279 b0 a2 2a 16

DES deciphered output:

Thisisasecret- 54686973 206973206120736563726574
message that mu - 206d 6573736167 652074686174 206d 75
st be hidden, no - 73 74 20 62 65 20 68 69 64 64 65 6e 2c 20 6e 6f
matter what. Wa - 20 6d 61 74 74 65 72 20 77 68 61 74 2e 20 57 61
it - what? -6974202d 2077686174 3f202020202020

11|

DES core - example all done (=

4 ;

Figure 117: Terminal Display

Model-Based DSP Design Using System Generator Send Feedback 120
UG948 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=120

v
i; XI I_I NX@ Lab 6: Using a System Generator Design with a Zyng-7000 SoC

Summary

In this lab, you learned how to export your Vivado IDE design containing System Generator IP to the
SDK software environment and integrate the driver files automatically created by System Generator to
run the application on the ZC702 board. You then viewed the result of the acceleration.

The following solutions directory contains the final System Generator (*.slx) files for this lab. The
solutions directory does not contain the IP output from System Generator, the files and directories
generated when Vivado IDE is executed, or the SDK workspace.

C:/SysGen_Tutorial/Lab6/solution

Model-Based DSP Design Using System Generator Send Feedback 121
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=121

& XILINX

Legal Notices

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort,
including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in
connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss
or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party)
even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no
obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not
reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and
conditions of the Limited Warranties which can be viewed at https://www.xilinx.com/warranty.htm IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:
https://lwww.xilinx.com/warranty.htm#critapps.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS,
THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A
SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING
LIMITATIONS ON PRODUCT LIABILITY.

©Copyright 2013-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, UltraScale, and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective
owners.

Model-Based DSP Design Using System Generator Send Feedback 122
UG948 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/
https://www.xilinx.com/warranty.htm
https://www.xilinx.com/warranty.htm#critapps
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2019.1&docPage=122

	Vivado Design Suite Tutorial: Model-Based DSP Design Using System Generator
	Revision History
	Table of Contents
	System Generator for DSP Overview
	Introduction
	Software Requirements
	Configuring MATLAB to the Vivado Design Suite
	Locating and Preparing the Tutorial Design Files

	Lab 1: Introduction to System Generator
	Introduction
	Objectives
	Procedure

	Step 1: Creating a Design in an FPGA
	Configure the System Generator Blocks
	Review the Results

	Step 2: Creating an Optimized Design in an FPGA
	Step 3: Creating a Design Using Discrete Resources
	Step 4: Working with Data Types
	Part 1: Designing with Floating-Point Data Types
	Part 2: Designing with Fixed-Point Data Types

	Summary

	Lab 2: Importing Code into System Generator
	Step 1: Modeling Control with M-Code
	Introduction
	Objectives
	Procedure

	Step 2: Modeling Blocks with HDL
	Introduction
	Objectives

	Step 3 : Modeling Blocks with C/C++ code
	Objectives
	Procedure
	Part 1: Creating a System Generator Package from Vivado HLS
	Part 2: Including a Vivado HLS Package in a System Generator Design

	Summary

	Lab 3: Timing and Resource Analysis
	Introduction
	In this lab, you learn how to verify the functionality of your designs by simulating in Simulink® to ensure that your System Generator design is correct when you implement the design in your target Xilinx® device.
	Objectives
	Procedure

	Step 1: Timing Analysis in System Generator
	Trouble Shooting the Timing violations

	Step 2: Resource Analysis in System Generator
	Summary

	Lab 4: Working with Multi-Rate Systems
	Introduction
	Objectives
	Procedure

	Step 1: Creating Clock Domain Hierarchies
	Step 2: Creating Asynchronous Channels
	Step 3: Specifying Clock Domains
	Summary

	Lab 5: Using AXI Interfaces and IP Integrator
	Introduction
	Objectives
	Procedure

	Step 1: Review the AXI Interfaces
	Step 2: Create a Vivado Project using System Generator IP
	Step 3: Create a Design in IP Integrator (IPI)
	Step 4: Implement the Design
	Summary

	Lab 6: Using a System Generator Design with a Zynq-7000 SoC
	Introduction
	Objectives
	Procedure

	Step 1: Review the AXI4-Lite Interface Drivers
	Step 2: Developing Software and Running it on the Zynq-7000 System
	Summary

	Legal Notices
	Please Read: Important Legal Notices

