Vivado Design Suite
User Guide

Embedded Processor
Hardware Design

UG898 (v2019.1) June 4, 2019

& XILINX

"E See all versions
of this document

https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG898
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG898

& XILINX.

Revision History

The following table shows the revision history for this document.

Section

Revision Summary

06/04/2019 Version 2019.1

General Updates

Initial 2019.1 release.

MicroBlaze Configuration Wizard: MMU Page

Updated links to Cache Page.

Using the MicroBlaze Configuration Window

Clarified number of block RAMs in 32-bit and 64-bit
modes.

Trace and Profiling

Additional information on Extended Profiling.

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019

www.Xxilinx.com

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=2
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=2

& XILINX

Table of Contents

ReVISION HIiStOry oottt it it ittt ettt eisentennsonnssnnssoosssnnsannsannses 2

Chapter 1: Introduction

OV VIBW L ittt ittt iti e tessesnesnsansanssssnssassnssnsosssssnssnssnssnsnnsass 5
Device TOOIS FIOW OVEIVIEWottt i e e ittt ittt eiesasasasasosnsnsasassnsasasnsnens 5
General Steps for Creating an Embedded ProcessorDesign.ccciiiiiriennennennn. 7
Completing Connections Using Designer Assistance.cuitiiennrnnnnnnneanennns 8
Making Manual Connectionsin aDesigN.......c.ciiitiiitiietrenereneeenaeenaeeanennns 14
Manually Creating and Connecting to I/OPOrtscciiiiiiiirinnenreenrnnennnnnn 15
Enhanced Designer AssistancCec.iiitiennrnernneneseennransaneansasnananns 16
Platform Board Flow in IP Integratorc.cciitiiiiiiiiiiieiinnerenoeenaeeeaesanennns 17
Memory-Mappinginthe Address Editorcciiiiiiiiiiiiiiiiiiiiitiennennnnnns 18
RunningDesign Rule Checksttt i i ettt tiereernenannnnnnns 18
Integrating a Block Design in the Top-Level Design.cciitiiiiiiierinernennennnnnns 19
Vivado Pin Planner View of PS 1/ 0 . ..o ittt ittt ittt ittt tatatneneneaneneanannnns 20
Vivado IDE Generated Embedded Filesciiiiiiiiiiiiiiii it iiiiinnnnnanas 21
Using the Software Development Kit (SDK)oiiiiiii it ittt ietieinennennnnnns 21

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

4T o T LT 4 o T 24
Designing Zynq UltraScale+ MPSOCDEVICeScvvtiiiirnereennrantnossesasansanns 24
Overview of Zynq UltraScale+ MPSoc Configurations.cciiiiiiiiiininnnnnnnn. 28
Validation IPt i i it ittt it e e et 51
Finishingthe Design.ciiiiiiiiiiiiii ittt tietiateeteesessnsantssssssasannanss 52

Chapter 3: Using a Zyngq-7000 Processor in an Embedded Design

Yo o 11 o 4o T o 5P 53
Designing with Zyng-7000 ProCesSOrScvueteereeeerenenesaeearensansaenasennanss 53
Overview of the Zyng-7000 Block Design and Configuration Window 57
Using the Programmable Logic (PL)cviiiiiiiiiiiiiiieie e tetetanensnsasasannanas 76

Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Introduction to MicroBlaze Processor Designc.oiiiiiiiiereeinrnntnersennsannanss 80

Embedded Processor Hardware Design N Send Feedback 3
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=3
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=3

& XILINX.

Creating a MicroBlaze Processor Designc.oiiiiininernenneenrnnrnnranennannnns 81
Using the MicroBlaze Configuration Windowciiiiiiiiiiiiineirneernnnenns 84
Cross-Trigger Feature of MicroBlaze Processorscooviiiiinnennennennenennennens 108
CUSEOM LOgIC ...t ii ittt ittt ittt iie e iieetnentonasonassonesosnsonnsonnsenassnness 113
Embedded IP Catalog.o i iii ittt ittt et i et teeetenateenetenasennsennsennnens 113
Completing Connectionscoiiiiiiiiii ittt ttineraneranesonnsennsenassanness 114
Multiple MicroBlaze Processor Designsviiii i iininn e rneeneeneeneansannnnnns 121

Chapter 5: Designing with the Memory IP Core

OVEIVIBW .ottt iietiientenasenassonesoossosnsosnsosassosssosnsosnsosnsennssnnsss 130
Adding the Memory IP.ot it ittt et itetteanrenneenaseenesenasennnanns 130

Chapter 6: Reset and Clock Topologies in IP Integrator

OV VI W Lottt it ittt it te st e teneansansosenssnsansanssssnssnssnsansassnssnsas 141
MicroBlaze Design withoutaMemory IPCoreciiiiiiiitiinernnernnnsennnans 142
MicroBlaze Design withaMemory IPCoreciiiiiiinineinerneennnnennsannnnnns 145
Zyng Design WithOUt PLLOGIC oot ittt ittt e i iie e tieeteneeenasenaeeanesanananns 150
Zyng-7000 Design With PLLOGIC . ..o v iiii it ittt it iii ittt eenennennssnsansnonnannns 152
Zynqg Design witha MemoryIPCoreinthe PL......... ...ttt iiiinennennn. 158
Designs with Memory IP and the ClockingWizardttt 160

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

L0 = 161
UsingUpdateMEM. ittt ittt it iettatentantonsossosensanssnsosensans 162
Memory (MEM) Filesttt it et ettt tee e raesaeensansansannnnnns 164
BRAM Memory Map Info (MIMI) Fileoviiii ittt ittt ittt tnteneearearnnennnns 166
Xilinx Parameterized Macros (XPM) Memories.vcvtiiiiiinerernrneneneenerenansans 174

Appendix A: Additional Resources and Legal Notices

XiliNX RESOUNCES . . i vt i ittt ittt tententeseneonsansansosssssnssnssnssnsssssssnss 180
LY o] [T 4o T N =T =T 180
Documentation Navigatorand Design Hubs ittt iinnrennnnns 180
3= =] =T P 181
Please Read: ImportantLegal Noticescciiiiiiiiiininernernrnnrnnrnnnnnnns 182

Embedded Processor Hardware Design N Send Feedback 4
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=4
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=4

& XILINX

Chapter 1

Introduction

Overview

This chapter provides an introduction to using the Xilinx® Vivado® Design Suite flow for
programming an embedded design using the Zynq® UltraScale+™ MPSoC device, the
Zynq-7000 SoC device, or the MicroBlaze™ processor.

Embedded systems are complex. Hardware and software portions of an embedded design
are projects in themselves. Merging the two design components so that they function as
one system creates additional challenges. Add an FPGA design project, and the situation
can become very complicated.

To simplify the design process, Xilinx provides several sets of tools with which you need to
become acquainted. The following describes a few of the basic tool names and acronyms
for these tools.

The Vivado Integrated Design Environment (IDE) includes the IP integrator tool, which you
can use to stitch together a processor-based design. This tool, combined with the Xilinx
Software Development Kit (SDK), provide an integrated environment to design and debug
microprocessor-based systems and embedded software applications.

For an example of working with embedded processors and SDK, hardware and software
cross-triggering, and debugging designs, see the Vivado Design Suite Tutorial: Embedded
Processor Hardware Design (UG940) [Ref 20]. In this tutorial, you use the Vivado IP
integrator tool to build embedded processor designs, and then debug the design with SDK
and the Vivado Integrated Logic Analyzer (ILA).

The following section provides an overview of the general hardware and software flow and
the related information for generating an embedded design with a Xilinx processor. These
sections apply to all Xilinx processor development.

Device Tools Flow Overview

The Vivado tools provide specific flows for programming, based on the processor. The
Vivado IDE uses the IP integrator with graphic connectivity screens to specify the device,
select peripherals, and configure hardware settings.

Embedded Processor Hardware Design N Send Feedback 5
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=5
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=5

2: X”_INX® Chapter 1: Introduction

You can use the Vivado IP integrator to capture hardware platform information in XML
format applications, along with other data files to develop designs for Xilinx processors.
Software design tools use the XML to do the following:

o Create and configure board support package (BSP) libraries

o Infer compiler options

- Program the processor logic (PL)

- Define JTAG settings

- Automate other operations that require information about the hardware
The Zynq UltraScale+ MPSoC solution includes the Arm®v8-based Cortex™-A53,
high-performance, energy-efficient, 64-bit application processor that contains the Arm
Cortex-R5 MPCore real-time processor. Use Chapter 2, Using a Zynq UltraScale+ MPSoC
Device in an Embedded Design to understand how to use IP integrator and other Xilinx
tools to create an embedded Zynq MPSoC processor design. For hardware and software
specifics, see the following:

o Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085) [Ref 26]

o Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137) [Ref 28]
The Zyng-7000 SoC solution reduces the complexity of an embedded design by offering an
Arm Cortex-A9 dual core as an embedded block, along with programmable logic on a
single SoC. Use Chapter 3, Using a Zyng-7000 Processor in an Embedded Design to

understand how to use IP integrator and other Xilinx tools to create an embedded
Zynqg-7000 processor design. For hardware and software specifics, see the following:

o Zyng-7000 SoC Technical Reference Manual (UG585) [Ref 6]
o Zyng-7000 SoC Software Developers Guide (UG821) [Ref 21]

The MicroBlaze embedded processor is a Reduced Instruction Set Computer (RISC) core,
optimized for implementation in Xilinx field programmable gate arrays (FPGAs). Use
Chapter 4, Using a MicroBlaze Processor in an Embedded Design to understand how to use
IP integrator and other Xilinx tools to create an embedded Microblaze processor design.
See the MicroBlaze Processor Reference Guide (UG984) [Ref 22] for more processor
information.

Xilinx provides design tools for developing and debugging software applications for (?)
Xilinx processors, including, but not limited to, the following:

- Software IDE
o GNU-based compiler tool-chain

- Debugging tools

Embedded Processor Hardware Design N Send Feedback 6
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=6
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=6

2: X”_INX® Chapter 1: Introduction

These tools let you develop both bare-metal applications that do not require an operating
system, and applications for an open-source Linux-based operating system. For Zynq
devices, the Vivado IP integrator captures information about the processing system (PS)
and peripherals, including configuration settings, register memory-map, and associated
logic in the programming logic (PL) fabric. You can then generate a bitstream for PL
initialization.

Third-party sources also provide software solutions that support Cortex processors,
including, but not limited to: software IDEs, compiler tool-chains, debug and trace tools,
embedded OS and software libraries, simulators, and modeling/virtual prototyping tools.
Third-party tool solutions vary in the level of integration and direct support for Zynq-7000
devices.

Xilinx provides integration between a hardware design and the software development with
an integrated flow down to the Software Development Kit (SDK): standalone product that is
available for download from the Xilinx website www.xilinx.com. See the Xilinx Software
Development Kit (SDK) User Guide (UG782) [Ref 8] for more information about how to use
the tool.

The following figure illustrates the tools flow for the embedded hardware of a Zynq device:

Hardware PS Configuration
Specification
File (XML)

Configure Generate Export to
PS Add IP Bitstream Software Tools Hardware
(Optional) Handoff

Memory Map
PL Configuration Information
(Bitstream) (MMI)

X12502050317

Figure 1-1: Hardware Design Tool Handoff to Software Tools

General Steps for Creating an Embedded Processor
Design

To complete an embedded processor design, you typically go through the following steps:

1. Create a new Vivado Design Suite project.

2. Create a block design in the IP integrator tool and instantiate a Xilinx processor, along
with any other Xilinx IP or your custom IP.

3. Generate Output Products of the IP in the block design with the correct synthesis mode
option.

Embedded Processor Hardware Design N Send Feedback 7
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=7
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=7

2: X”_INX® Chapter 1: Introduction

4. Create a top-level wrapper and instantiate the block design into a top-level RTL design.

5. Run the top-level design through synthesis and implementation, and then export the
hardware to SDK.

6. Create your software application. In SDK, associate the Executable Linkable File (ELF) file
with the hardware design. See Using the Software Development Kit (SDK). Also, see the
Xilinx Software Development Kit (SDK) Help (UG782) [Ref 8].

7. Use the Xilinx updatemem utility to merge the ELF and Memory Map Information (MMI)
for the block Rams with the hardware device bitstream. See Chapter 7, Using
UpdateMEM to Update BIT files with MMI and ELF Data for information about this utility.

8. Program into the target board.

Embedded IP Catalog

The Vivado Design Suite IP catalog is a unified repository that lets you search, review
detailed information, and view associated documentation for the IP.

After you add the third-party or customer IP to the Vivado Design Suite IP catalog, you can
access the IP through the Vivado Design Suite flows. Figure 1-2 shows a portion of the
Vivado IDE IP integrator IP catalog.

Search:

4F 1GI2.5G Ethernet PCSPMA or SGMII

F 2D Graphics Accelerator Bit Block Transfer
4F 3GPP LTE Channel Estimator

* 3GPP LTE MIMO Decoder

F 3GPP LTE MIMO Encoder

* 3GPPLTE Turbo Encoder

¢ 3GPP Mixed Mode Turbo Decoder

= 3GPP Turbo Encoder

F 10G Ethernet MAC

L I e = R R |

F Accumulator

Figure 1-2: IP Integrator IP Catalog

Completing Connections Using Designer Assistance

In Zynq processors, after you have configured the processor system (PS) for a Xilinx
processor device, you can instantiate other IP that go in the programmer logic (PL) portion
of the device.

In the IP integrator diagram area, right-click and select Add IP.

Embedded Processor Hardware Design N Send Feedback 8
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=8
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=8

2: X”_INX® Chapter 1: Introduction

The Vivado IP integrator provides two built-in features to assist you in completing the rest
of your IP subsystem design: Block Automation and Connection Automation. These features
help you put together a basic microprocessor system in the IP integrator tool and connect
ports to external 1/O ports.

f IMPORTANT: The following section uses a ZYNQ7 processor for illustration. The features are the same
regardless of the processor you use.

Block Automation

Block Automation is available when a Xilinx processor has subsystem IP instantiated in the
block design of the IP integrator tool.

Click Run Block Automation to get assistance with putting together a simple ZYNQ
Processing System, as shown in Figure 1-3.

Diagram X Address Editor X 2010
@ Q X & <O Q + E C 9 &
Designer Assistance available. Run Block Automation

&, design_1

processing system7 0

DDR +-||

- FIXED_IO + ||

M_AxI_ePoACLK 7Y N|() M FA;cLKGEtEK;r
FCLK_RESETO_N

ZYNQT Processing System

Figure 1-3: Run Block Automation Feature

The Run Block Automation dialog box in the following figure shows the options available
for automation, as shown in the following figure. If you are working with a targeted
reference board, you can enable the board presets by checking the Apply Board Preset
check box.

Embedded Processor Hardware Design N Send Feedback 9
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=9
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=9

8 X”_INX® Chapter 1: Introduction

¢ Run Block Automation @
Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its
configuration options on the right. ‘

q - -
[-

il Al Sastomalion & outof 1iscledtd) This option sets the board preset on the Processing System. All current properties
+ 4F processing_system7_1 will be overwritten by the board preset. This action cannot be undone. Zynq7 block
automation applies current board preset and generates external connections for
FIXED_IO, Trigger and DDR interfaces.

Description

MOTE: Apply Board Preset will discard existing IP configuration - please uncheck
this box, if you wish to retain previous configuration.

Instance: /fprocessing_systemv_1

Options
Make Interface External: FIXED_|O, DDR

Apply Board Preset: +
Cross Trigger In: Disable A
Cross Trigger Out: Disable

Y
W)

Figure 1-4: Run Block Automation for ZYNQ7 Dialog Box

When you click OK, the Block Automation feature creates the basic system, as shown in the
following figure.

Diagram X Address Editor X 200
@ 6 £ = € Q + C o i &

processing_system7_1

DOR ||| > DDR
Fixeo_io 4|} {» FIXED IO
ussinD o 4|

M_AXI_GPO

wamar o ZYNG T

TTCO WAVEZ OUT
FOLK_CLKO
FCLK_RESETO M

Z¥NOT Processing System

Figure 1-5: IP Integrator Canvas after Running Block Automation

You can also enable the cross-trigger feature by selecting the appropriate function using
the Cross Trigger In and Cross Trigger Out fields of the Block Automation dialog box.

Embedded Processor Hardware Design N Send Feedback 10
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=10
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=10

(: X”_INX® Chapter 1: Introduction

¢ Run Block Automation @
Automatically make connections in your design by checking the boxes ofthe blocks to connect. Select a block on the left to display its
configuration options on the right. ‘
- -
Q = 2 Description

o :
s Al Auamation (ot oGliseleced) This option sets the board preset on the Processing System. All current properties will be
overwritten by the board preset. This action cannot be undone. Zyng7 block automation

applies current board preset and generates external connections for FIXED_IO, Trigger
and DDR interfaces.

| 4F processing_system7_1

MOTE: Apply Board Preset will discard existing IP configuration - please uncheck this box,
if you wish to retain previous configuration.

Instance: /processing_system7_1

Options

Make Interface External: FIXED_IO, DDR

Apply Board Preset:

Cross Trigger In: Enable -

Cross Trigger Out:

Figure 1-6: Using Run Block Automation Dialog Box to Enable Cross Trigger Feature

The default value for the Cross Trigger In and Cross Trigger Out fields is Disable; however,
you can use the cross-trigger by selecting the Enable and New ILA options.

Selecting Enable for Cross Trigger In and Cross Trigger Out exposes only one of the

available cross-trigger pins in ZYNQ?7. The connectivity to these pins is left for you to
complete.

Diagram * Address Editor X]]
a 3N & o Q + E C 9| 1F °4
Designer Assistance available. Run Connection Automation

processing_systemy_1

oor +|} { > DDR

Fixeo_1o +||| {» FIXED_IO
usamo_o +|

A > H
[mosen mo w [mecen ouro 4]l
ZYNQ

M_AX|_GPO_ACLK

TTCO_WAVED_OUT
TTCO_WAVET_QUT
TTCO_WAVEZ_ QUT
FCLK_CLKO
FCLK_RESETO_N @

Z¥YNQT Pmoessing System

Figure 1-7: Cross Trigger Pins in ZYNQ7

Embedded Processor Hardware Design

. l Send Feedback l 1
UG898 (v2019.1) June 4, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=11
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=11

(: X”_INX® Chapter 1: Introduction

When you select the New ILA option, it not only enables the cross-trigger pins, it also
connects them to an Integrated Logic Analyzer (ILA) core.

Diagram ® Address Editor X 200
@ a i & © Q + & £, C 9 o
r. -
+ 2
L 2
+ systern_ila_0
— o 2|4 SLOT_0_AXI
—|* ZYNQ |+ riew
. b TRIG_OUT +|||
clk
razatn
Systermn ILA
L d
4 H

Figure 1-8: Cross Trigger Pins Connected to an ILA Using Block Automation

The Vivado IP integrator tool also provides a Board Automation feature when using a Xilinx
Target Reference Platform, such as the ZC702. See Platform Board Flow in IP Integrator for
more information.

This feature provides connectivity of the ports of an IP to the FPGA pins on the target board.
The IP configures accordingly, and based on your selections, connects the I/O ports. Board
Automation automatically generates the physical constraints for those IP that require
physical constraints.

In Figure 1-5, observe that the external DDR and FIXED_TIO interfaces connect to external
ports.
Using Connection Automation

If the IP integrator tool determines that a potential connection exists among the
instantiated IP in the canvas, it opens the Connection Automation feature.

In the following figure, the AXI BRAM Controller and the Block Memory Generator IP are
instantiated along with the ZYNQ7 Processing System IP.

The IP integrator tool determines that a potential connection exists between the AXI BRAM
Controller and the ZYNQ7 IP; consequently, Connection Automation is available, as shown
in the following figure.

Embedded Processor Hardware Design N Send Feedback 12
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=12
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=12

& XILINX.

Chapter 1: Introduction

Diagram x Address Editor

e ZYN

Figure 1-9:

x 200
@ a {4 x O Q

J Designer Assistance available. Run Connection Automation

+ % s C U T o

axi_bram_ctrl_0

55(1- S_AxI IR .1..
Run Connection Automation @
Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the lefi to
display its configuration options on the right. ‘

Q = | =
v/ }‘\IIAutomation (3 out of 3 selected)
~ || TF axi_bram_ctrl_0
| I} BRAM_PORTA
/| [} BRAM_PORTB
V| b S_AXI

Select an interface pin on the left panel to view its options

i,

Using Run Connection Automation Feature to Complete Connectivity

In this example, clicking Run Connection Automation instantiates an AXI Interconnect, a
Block Memory Generator, and a Proc Sys Reset IP, connects the AXI BRAM Controller to the
ZYNQ PS IP using AXI SmartConnect, and appropriately connects the Proc Sys Reset IP.

See this link to Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator
(UG994) [Ref 23] for a description of the differences between AXI Interconnect and AXI

SmartConnect.

The following figure shows the final result.

Embedded Processor Hardware Design N Send Feedback 13
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf;a=xInterConnectVsSmartConnect
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=13
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=13

& XILINX.

Chapter 1: Introduction

Diagram * Address Editor » 200
@ a H X O Q + & S, = C g -]
r=t_ps7_1_50M ai_bmm_ci_0_bram
I:IG‘\N’.‘:K syrc_dk mb_reset I|+ BRAM FORTA
wxt_reset in s stnect_resef000] :|+ BRAM FORTE
o _reset im periphenal_rescfO)
mb_dobig SyE M InberConneect arcsatn0in] Black Memary Generat
e _kodk o peripharal_arcsemn00) !
[y ————
I ami_bram_ctd_0
”Ts“ Bran FoORTA 4+ |}
3_od_aa s _Forma + ||| i DO
e LS fuso o
AXIBRAM Camm
systam_is_0
+ 5107 _0 A
|l|4 Troc S
rr 1. clk
211 rosan
4| Sy=iem ILA
+
-
b 4 - +!
- ZYNG.
.-
L= =
< >R
Figure 1-10: Block Design After Using Connection Automation

Making Manual Connections in a Design

The following figure shows how you can connect the ILA SLOT_0_AXTI or the c1k pin to the
clock and the AXI interface that needs to be monitored in the design. You can do this

manually.

As you move the cursor near an interface or pin connector on an IP block, the cursor
changes to a pencil. Click an interface or pin connector on an IP block, and drag the
connection to the destination block.

The following figure illustrates the use of manual connections.

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019

www.Xxilinx.com

| Send Feedback l

14

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=14
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=14

& XILINX.

Chapter 1: Introduction

rst_ps7_1_50M

ext_resatl_in
@ aux_reset_in

o dem_locked

slowast_syne_clk mb_rasat

bus_struct_rasat[0:0]
paripharal_resat[0:0]

= mb_dabug_sys_rst inlarconnact_aresatn[0:0]

|_arasatn[0:0]

Processor System Reset

axi_bram_ctd_0

Hl+ s_ax
5_axi_aclk

BRAM_PORTA +]||

oo oroTo il

% Connect from 'SLOT_0_AXI" interface
—

\ to 'axi_smc_MOO_AXI" interface connection,, .
L

|

system_ila_0

clk
rasatn

\ + SLOT_0_Ax

|||+ TRIG_IN

TRIG_OUT +]

System ILA

Figure 1-11: Manually Connecting Ports

Manually Creating and Connecting to 1/O Ports

You can manually create external I/O ports in the Vivado IP integrator by connecting signals

or interfaces to external 1/O ports then selecting a pin, a bus, or an interface connection.

To manually create/connect to an I/O port, right-click the port in the block diagram, and

then select one of the following from the right-click menu:

+ Make External: Use the Ctrl+Click keyboard combination to select multiple pins and
invoke the Make External connection. This command ties a pin on an IP to an I/O port

on the block design.

« Create Port: Creates non-interface signals, such as a clock, reset, or uart_txd. The
Create Port option gives more control in terms of specifying the input and output, the
bit-width and the type (c1k, reset, or data). In case of a clock, you can even specify

the input frequency.

« Create Interface Port: Creates ports on the interface for groupings of signals that

share a common function. For example, the S_AXT is an interface port on several Xilinx
IP. The command gives more control in terms of specifying the interface type and the
mode (master or slave).

Embedded Processor Hardware Design

UG898 (v2019.1) June 4, 2019

www.Xxilinx.com

l Send Feedback l

15

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=15
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=15

2: X”_INX® Chapter 1: Introduction

Enhanced Designer Assistance

The IP integrator tool offers enhanced designer assistance when an AXI4-Stream interface is
to be connected to an AXI4 memory-mapped interface. As an example, the following figure
shows a FIR Compiler IP with a streaming interface is to be connected to the slave ACP port
of the processing system7_0.

fir_compiler_0

=4k S_AXIS_DATA
M_AXIS_DATAE = .
aclk processing_system7_0

FIR Compiler PTP_ETHERNET_0+ |||

DDR - ||
FIXED_IO ||
il 4R S_AXI_ACP usBinD_0+ | DDR
el - M_AXI_GPO [}
M_AXI_GPO_ACLK - FIXED_IO
o ZYNQ. rreowaveo_our

TTCO_WAVEL_OUT
TTCO_WAVEZ2_OUT
FCLK_CLKOD
FCLK_RESETO_N

ZYNQ7 Processing System

Figure 1-12: Connecting Streaming Interface to a Memory-Mapped Interface

To use the enhanced designer assistance you must make a direct connection between the
M_AXIS_DATA interface pin of the FIR Compiler and the S_AXI_ACP port of the ZYNQ7
processing system as shown in the following figure.

fir_compiler_0
r =P 1
HFSAASDATA "
aclk S processing_system7_0
L FIR Compiler o PTP_ETHERNET_0+ |||

DDR 5 |

FIXED_IO ||

& USBIND_0+ [|]
i d=5_AXI ACP : | DDR
M_AXI | Connect from "M_AXIS_DATA' interface FIXED_IO

SAXAto 'S AXI ACP' interface
TTCO_WAVE2_O UTE

FCLK_CLKOD
FCLK_RESETO_N

ZYNQ7 Processing System

Figure 1-13: Invoking Enhanced Designer Assistance

The Make Connection dialog box, shown in Figure 1-14, informs you that the Stream Bus
Interface /fir_compiler_0/M_AXIS_DATA will be connected to the memory-mapped
bus-interface /processing system7_0/S_AXI_ACP. It also offers the user different
options for clocking on the streaming memory-mapped interface. The default is Auto.

Embedded Processor Hardware Design N Send Feedback 16
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=16
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=16

(: X”_INX® Chapter 1: Introduction

#. Make Connection s
Connect AXI4 Stream bus-interface /fir_compiler_0/M_AXIS_DATA to an AXH4 MemoryMapped bus-interface
{processing_system7_0/S_AXT ACP. ‘

Bridge IP to connect AXI4 MemoryMapped and AXI4 Stream interfaces : New AXI DMA (High/Medium frequency transfer)
Connect /fir_compiler_0/S_AXIS_DATA :

A4 Stream Clock (for unconnected clks) : Auto

AXI4 MemoryMapped Clock (for unconnected clks) :

/processing_system7_0/FCLK_CLKD (50 MHz)
Mew Clocking Wizard (100 MHz)
Mewr External Port (100 MHz)

i e

Figure 1-14: Make Connection Dialog Box for Enhanced Designer Assistance

The enhanced designer assistance instantiates a DMA core configured to do High/Medium
frequency transfers and makes the appropriate connection when you choose to click OK
after selecting the proper settings, as shown in the following figure.

! E |!L‘\’.I
& _pompiler_0 aci_chrm ;; e
I—::'.hgm_mu
e DSAKISDATA e e L] S Ll
P e LW R S el
HE Complier m):!::l” ﬂ:lﬂ. --‘-“F—ll FJ‘]:I“_:;H.K = =
i s L . —=
Y, 4 n%nmj P B |2 e 81| 2 & NI
SATIT_ITrY_FESE Ut M —1300_ARESETN e 'Y
ret_provecsing_cystam,_0_S0M i et b pne EH Lo Y
SO DU WI_ARISETH
fowest_sore eli e 4 H—=tan1_an s
b2 pesen i B 4 en s

Syslen Kl

- o)
debug 2ps st ieroned. areseinfi)) 1
ok peripheal_aresan[00)

Figure 1-15: Connections Made after Using Enhanced Designer Assistance

The enhanced designer assistance instantiates an AXI Subset Converter, an AXI Direct
Memory Access and an AXI Interconnect to make the connection between the streaming
interface of the FIR Compiler and the ACP port of PS7. The AXI4-Stream Subset Converter
provides a solution for connecting slightly incompatible AXI4-Stream signal sets together.
The IP has configurable AXI4-Stream signals for each interface that allows one to convert
one signal set to another in a consistent manner.

Platform Board Flow in IP Integrator

The Vivado® Design Suite is board-aware. The tools know the various components present
on the target board and can customize an IP to be instantiated and configured to connect
to the components of a particular board.

The IP integrator shows all the components present on the board in a separate tab called
the Board tab.

Embedded Processor Hardware Design N Send Feedback 17
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=17
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=17

2: X”_INX® Chapter 1: Introduction

Embedded Processor Hardware Design

When you use this tab to select components and the designer assistance offered by IP
integrator, you can easily connect your design to the components of your choice. I/0
constraints are automatically generated as a part of using this flow.

See this link in the Vivado Design Suite User Guide: Designing IP Subsystems Using IP
Integrator (UG994) [Ref 23] for more information.

Memory-Mapping in the Address Editor

While memory-mapping of the peripherals (slaves) instantiated in the block design are
automatically assigned, you can a manually assign the addresses also. To generate the
address map for this design, do the following:

1. Click the Address Editor tab above the diagram.
2. Click the Auto Assign Address button (bottom on the left side).

You can manually set addresses by entering values in the Offset Address and Range
columns. See this link in the Vivado Design Suite User Guide: Designing IP Subsystems Using
IP Integrator (UG994) [Ref 23] for more information.

Diagram % Address Editor 00
Q = 2 o
Cell Slave Interface Base Mame Offset Address Range High Address
~ F processing_system7_0

H Data (32 address bits : 0x40000000[1G]
~ Unconnected Slaves

@ gxi_bram_cirl_0 S_AXl Memo

o gxi_gpio_0 S_AXl Reg

Figure 1-16: Memory-Mapping Peripherals

TIP: The Address Editor tab only opens if the diagram contains an IP such as the Zynq-7000 SoC or
Zynq UltraScale+ MPSoC device that functions as a bus master in the design.

Running Design Rule Checks

The Vivado IP integrator runs basic DRCs in real time as you put the design together.
However, errors can occur during design creation. For example, the frequency on a clock pin
might not be set correctly.

s Send Feedback 18
UG898 (v2019.1) June 4, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf;a=UsingtheBoardFlowinIPIntegrator
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf;a=xCreatingaMemoryMap
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=18
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=18

(: X”_INX® Chapter 1: Introduction

To run a comprehensive DRC, click the Validate Design button E

If no warnings or errors occur in the design, a validation dialog box displays to confirm that
there are no errors or critical warnings in your design.

Integrating a Block Design in the Top-Level Design

After you complete the block design and validate the design, there are two more steps
required to complete the design:

- Generate the output products

- Create a HDL wrapper

Generating output products makes the source files and the appropriate constraints for the
IP available in the Vivado IDE Sources window.

Depending upon what you selected as the target language during project creation, the IP
integrator tool generates the appropriate files. If the Vivado IDE cannot generate the source
files for a particular IP in the specified target language, a message displays in the console.

Generating Output Products
To generate output products, do one of the following:

o In the Block Design panel, expand the Design Sources hierarchy and select
Generate Output Products.

o In the Flow Navigator panel, under IP Integrator, click Generate Block Design.

The Vivado Design Suite generates the HDL source files and the appropriate constraints for
all the IP used in the block design. The source files are generated based upon the Target
Language that you select during project creation, or in the Settings dialog box. See this link
to the Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
[Ref 23], for more information on generating output products.

Creating an HDL Wrapper

You can integrate an IP integrator block design into a higher-level design. To do so,
instantiate the design in a higher-level HDL file.

To instantiate at a higher level, in the Design Sources hierarchy of the Block Design panel,
right-click the design and select Create HDL Wrapper, as shown in Figure 1-17.

Embedded Processor Hardware Design N Send Feedback 19
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf;a=xGeneratingOutputProducts
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=19
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=19

2: X”_INX® Chapter 1: Introduction

Sources % Design Signals | Board ? 00
Qa T & + o
A4 Design Sources (3

> --ﬁllll i
viida base_zy Source Node Properties...

00 design_
s Open File
» #u design_
» Constraints Create HDL Wrapper...
> Simulation So View Instantiation Template

Generate Output Products...
<
Reset Qutput Products..

Hierarchy |F Sol

Figure 1-17: Creating an HDL Wrapper

Vivado offers two choices for creating an HDL wrapper, as shown in the following figure:

« Let Vivado create and automatically update the wrapper, which is the default option.

« Create a user-modifiable script, which you can edit and maintain. Choosing this option
requires that you update the wrapper every time you make port-level changes in the

block design.
¢%- Create HDL Wrapper L%]
You can either add or copy the HDL wrapper file to the project. Use copy option if you
would like to modify this file. ‘
Options

(") Copy generated wrapper to allow user edits

(@) Let Vivado manage wrapper and auto-update

l OK l I Cancel

Figure 1-18: Create HDL Wrapper Dialog Box

This generates a top-level HDL file for the IP integrator subsystem. You can now take your
design through the other design flows: elaboration, synthesis, and implementation.

Vivado Pin Planner View of PS 1/O

See the Zyng-7000 SoC PCB Design Guide (UG933) [Ref 19] for a detailed description of
guidelines for PCB pin-planning and design for these devices.

Embedded Processor Hardware Design N Send Feedback 20
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=20
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=20

2: X”_INX® Chapter 1: Introduction

Vivado IDE Generated Embedded Files

When you export a processor hardware design from the Vivado IP integrator tool to SDK,
the IP integrator generates the files listed in the following table.

Table 1-1: Files Generated by IP Integrator

File Description
system.xml Opens by default when you launch SDK and displays the address map of your
system.
ps<#>_init.c These files contain the initialization code for the Zynq Processing System and

initialization settings for DDR, clocks, PLLs, and MIOs. SDK uses these settings
when initializing the processing system so applications can run on top of the
processing system. Some settings in the processing system are in a fixed state
for the ZC702 evaluation board.

ps<#>_init.h

ps<#>_init.tcl The Tcl version of the INIT file.

ps<#>_init.html Describes the initialization data.

See the relevant Software Developers User Guide for the processor in question to obtain
more information about generated files.

Using the Software Development Kit (SDK)

The Xilinx Software Development Kit (SDK) provides a complete environment for creating
software applications targeted for Xilinx embedded processors. It includes a GNU-based
compiler toolchain (GCC compiler, TCF System debugger, utilities, and libraries), JTAG
debugger, flash programmer, drivers for Xilinx IP and bare-metal board support packages,
middleware libraries for application-specific functions, and an IDE for C/C++ bare-metal
and Linux application development and debugging. Based upon the open source Eclipse
platform, SDK incorporates the C/C++ Development Toolkit (CDT).

Features of SDK include:

+ C/C++ code editor and compilation environment

« Project management

« Application build configuration and automatic make file generation

« Error navigation

« Integrated environment for debugging and profiling embedded targets

« Additional functionality available using third-party plug-ins, including source code
version control

Embedded Processor Hardware Design N Send Feedback 21
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=21
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=21

2: X”_INX® Chapter 1: Introduction

SDK Availability

SDK is available from the Xilinx Vivado Design Suite installation package or as a standalone
installation. SDK also includes an application template for creating a First Stage Bootloader
(FSBL), as well as a graphical interface for building a boot image. SDK contains a help
system that describes concepts, tasks, and reference information. See Xilinx Software
Development Kit (SDK) Help (UG782) [Ref 8] for more information.

Exporting a Hardware Description

Once a design has been implemented and the bitstream generated, you can export the
design to SDK for software application development. In rare cases where the Processing
Logic does not contain any logic at all, you can also export the design without
implementing or generating the bitstream.

To export your design to SDK, do the following:
1. In the main Vivado IDE, select File > Export > Export Hardware.

The Export Hardware for SDK dialog box opens, as shown in the following figure.

¢~ Export Hardware o3

Export hardware platform for software
development tools ‘

Include bitstream

Export to: | & <Local to Project> -

[0K H Cancel |

Figure 1-19: Export Hardware for SDK
2. In the Export Hardware for SDK dialog box, check the Include bitstream check box.

Note: In a project-based flow, typically the Export to field is set to <Local to Project>, but it
can be changed as deemed appropriate.

3. After the hardware definition has been exported, select File > Launch SDK to launch
SDK from Vivado

The Launch SDK dialog box opens, as shown in Figure 1-20.

Embedded Processor Hardware Design N Send Feedback 22
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=22
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=22

2: X”_INX® Chapter 1: Introduction

% Launch SDK &3

Launch software development tool.

Exported location: | &) <Local to Project> -

Workspace: | &9 <Local to Project> -

’ 0K H Cancel |

Figure 1-20: Launch SDK Dialog Box

The Exported location and Workspace fields are typically set to <Local to Project> in a
project based flow. However, if you specify a different location for exporting the hardware
definition, set the Exported location field to that particular location. Likewise, the
Workspace location can be set to a the appropriate directory location.

After you export the hardware definition to SDK, and launch SDK, you can start writing your
software application in SDK.

You can do further debug and downloading of the software from SDK.

Alternatively, you can import the ELF file for the software back into the Vivado tools, and
integrate it with the FPGA bitstream for further download and testing.

Embedded Processor Hardware Design N Send Feedback 23
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=23
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=23

& XILINX

Chapter 2

Using a Zynq UltraScale+ MPSoC Device
in an Embedded Design

Introduction

This chapter describes the Xilinx® Vivado® Design Suite flow for working with the Zyng®
UltraScale+™ MPSoC device.

The examples target the Xilinx ZCU102 Rev 1.0 evaluation board and the tool versions in the
2019.x Vivado Design Suite release.

See the Introduction in Chapter 1 for programming information that applies to all
processors.

Designing Zynq UltraScale+ MPSoC Devices

The software interface for the Xilinx Zynq UltraScale+ MPSoC processing system IP core is
named zyng ps8. The Zynqg UltraScale+ MPSoC family consists of a system-on-chip (SoC)
with an integrated processor system (PS) and a programmer logic (PL) unit, providing an
extensible and flexible SoC solution on a single die.

Embedded Processor Hardware Design N Send Feedback 24
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=24
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=24

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

Creating a Design with the Zynq UltraScale+ Processing System

From within a design project that targets the Zynqg UltraScale+ MPSoC device, click the
Create Block Design button to create an empty block design.

1. Click the IP integrator Create Block Design option to open the Create Block Design
dialog box, where you can enter the Design Name, as shown in the following figure.

¢ Create Block Design [3|
Please specify name of block design. ‘
Design name: design_1
Directory: o0 =Local to Project= L
Specify source set: Design Sources ~

Figure 2-1: Create Block Design Dialog Box
2. Use this dialog box for the additional entries:

- Create the Block Design as a part of a project, or in a different location that you can
specify in the Directory field.

- Specify the source type by setting the field Specify source set from the pull-down
menu.

The Block Design window opens, as shown in the following figure.

Diagram 00 X

This design is empty. Press the + putton to add IP.

Figure 2-2: Block Design Window

Embedded Processor Hardware Design N Send Feedback 25
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=25
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=25

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

3. Select the Add IP option, and a Search box opens where you can search for, and select
the ZYNQ UltraScale+ MPSoc, shown in Figure 2-3.

IP Details X
Search: Zyng (1 match)

4 7yng UltraScale+ MPSoC Mame: Zyng UltraScale+ MPSoC
Wersion: 3.0
Interfaces: AXl4, AXI4-Stream
Description: Zyng UltraScale+ MPSoC P
Status: Production
License: Included
Change Log: View Change Log
Vendor: Xilinx, Inc.
VLNV slinx.comiip:zyng_ultra_ps_e:3.0

Repository. C:XilinxVivado/2017.1/datalip
EMNTER to select, ESC to cancel, Ctrl+Q for IP details

Figure 2-3: Search for Zynq UltraScale+ MPSoc in the IP Catalog

When you select the Zynq UltraScale+ MPSoc IP, the Vivado IP integrator adds the IP to
the design, and a graphical representation of the processing system displays, as shown
in the following figure.

zyng_ultra_ps_e 0

M_AXI_HPMO_LPD + i}
maxihpm0_lpd_aclk pl_resetn0
pl_clkd

UI’[raSCALE+

Zyng UltraScale+ MPSoC

Figure 2-4: Graphical Display of Default ZYNQ UltraScale+ MPSoc

The corresponding Tcl command is create_bd_cell; the syntax is, as follows:

create_bd_cell -type ip -vlnv xilinx.com:ip:zyng ultra_ps_e:2.0 zyng ultra_ps_e_ 0

4. Double-click the processing system graphic to invoke the Re-customize IP process,
which displays the Re-customize IP for the Zynq UltraScale+ MPSoc dialog box as shown
in Figure 2-5.

5. Review the contents of the block design. The green colored blocks in the Zynq
UltraScale+ MPSoc are configurable items. You can click a green block to open the
coordinating configuration options.

Embedded Processor Hardware Design N Send Feedback 26
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=26
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=26

(: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

| ¢ Re-customize IP @
2Zynq Ultrascale+ MPSoC (3.0) g
© Documentation £} Presets IP Location
Page Navigator - PS UltraScale+ Block Design

[switch T Advanced Mode Ganfigurable ——

RPU LPD ——
PS UltraScale+ Block Design APU Kl
: FS-PL
) ‘ el | Configuration
/0 Configuration
OCHM
’
Clock Configuration i GPU Mali-400
|0}1/ = ‘ cal I-——
DDR Configuration | PCle Gen2 x1/x2ixé |
- | SATAOQ SATA1 |
PS-PL Configuration X | |
X | oaerron |
-—-w -oeua =
E Core SW =i
2 L £
2 lep] usso use1 _)(_ 8
| e
-
Z,
UARTO i 1§ |
o s
. = e
Y y E8
csu DDR Controller =S
PMU LPD_DMA (DDR3, DDR4, LPDDR3, LPDDRA} =

Figure 2-5: ZYNQ UltraScale+ MPSoc Configuration Dialog Box

Alternatively, you can select the options from the Page Navigator on the left, as shown in
Figure 2-5.

You can also enable the Advanced Configuration Mode by checking the Switch to
Advanced Mode check box, shown in Figure 2-6. When this option is enabled, the
Advanced Configuration, PCle Configuration, and Isolation Configuration options become
available.

Embedded Processor Hardware Design N Send Feedback 27
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=27
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=27

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

| v

| Zynq Ultrascale+ MPSoC (3.1) P
© Documentation £F Presets IP Location
Page Navigator /O Configuration
| Switch To Advanced Mode ¥ MIO Voltage Standard

BankO0 [MIO 0:25] Bank1 [MIO 26:51] Bank2 [MIO 52:77] Bank3 [Dedicated]
PS UltraScale+ Block Design

LVCMOS18 v LVCMOS18 v LVCMOS18 v LVCMOS33 v
/O Configuration

Clock Configuration - Q = $
DDR Configuration Search: |
Peripheral 1o Signal 110 Type Drive Strength(mA) Speer |

PS-PL Configuration > Low Speed

>
Advanced Configuration High Speed

> Reference Clocks

PCle Configuration

Isolation Configuration

OK ‘ ‘ Cancel

Figure 2-6: ZYNQ UltraScale+ Advanced Mode

Overview of Zynq UltraScale+ MPSoc
Configurations

The Zynqg UltraScale+ MPSoC Technical Reference Manual (UG1085) [Ref 26] provides details
on the options available in the Page Navigator of the ZYNQ UltraScale+ MPSoc
Configuration dialog box. The Zynq UltraScale+ MPSoC Software Developer Guide (UG1137)
[Ref 28] describes programming the device.

The following sections briefly describes these options.

Zyng UltraScale+ MPSoc Recustomization Window Information

The following figure shows the documentation options in the Re-customize IP window.

© Documentation | £F Presets IP Location

Product Guide
Change Log
Product Webpage |

Answer Records

Figure 2-7: Zynq UltraScale+ MPSoc Information

Embedded Processor Hardware Design N Send Feedback 28
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=28
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=28

(: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

+ Documentation: Opens the documentation menu and provides access to the Product
Guide, Change Log for the IP, and access the Xilinx website where you can find
documentation pertaining to Zynq UltraScale+ MPSoC.

« Presets: Lets you view information about the available preset options. You can save the
current configuration of PS8 to a file or apply a pre-existing configuration to configure
the current instance of the processors. Presets can also be applied to a target board.
The available options are Default, ZC702, ZC706, and Zedboard.

+ [P Location: Shows the location of the source files created for the IP.

Configuring 1/0 Peripherals

The ZYNQ UltraScale+ MPSoc has over 20 peripherals available that you can customize. You
can route these peripherals directly to the dedicated Multiplexed I/Os (MIO), EMIOs, or GT
Lanes as applicable. Peripherals are divided into two categories: Low Speed and High Speed
Peripherals.

Low Speed Peripherals: Memory Interfaces

QSPI

The generic Quad-SPI controller meets the requirements for generic low-level access by the
software. The controller supports generic and future command sequences and future
NOR/NAND flash devices. Due to the generic nature of the Quad-SPI controller, software
can generate any command sequence in any mode.

The Quad-SPI controller supports all features in SPI, dual-SPI, and Quad-SPI modes. The
Quad-SPI controller also supports the dual parallel mode, with separate buses, and stacked
mode with a shared bus, for two flash devices. The choices for Quad-SPI are Single, Dual
Stacked, and Dual Parallel.

The QSPI /O can be set with the appropriate slew, drive strength, and pull-up/pull-down
options. You can generate an optional Feedback Clk also.

Embedded Processor Hardware Design N Send Feedback 29
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=29
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=29

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

The following figure shows the Quad SPI Configuration options.

Peripheral
~ Low Speed
~ Memory Interfaces
~ | QSPI
Q15PI Data Mode
~ QSPIIO

CQuad SPIFlash
Quad 3P Flash
Quad 3P Flash
Quad 3P Flash
Feedback Clk

o]

Single
®1
MIOD .5
MO0
MIo1
MIO4
MIOS

Signal

sclk_out
so_mol
si_mil

n_ss_out

IO Type

schmitt
schmitt
schmitt

schmitt

Figure 2-8: Configuring QSPI 1/0 Pins

NAND

Drive Strength{mA)

12 hd
w12

12 hd

12 hd

The NAND flash controller has an advanced eXtensible interface (AXI) interface, which

allows the Arm® processor to configure the operational registers sitting inside the NAND
flash controller. The block supports the open NAND flash interface working group (ONFI)
standards 1.0, 2.0, 2.1, 2.2, 2.3, 3.0, and 3.1.

The NAND flash controller handles all the command, address, and data sequences, manages
all the hardware protocols, and allows the users to access NAND flash memory simply by
reading or writing into the operational registers. All available options can be set through

the Configuration wizard as shown in the following figure.

Peripheral [}
~ Memory Interfaces
> QsPI
~ ¥ NAND MIO 13 .. 25
MIO 10

ReadyBusy 1 Enable

Chip Enable

Data Strobe Enable
MNAND MO0
MNAND MIO13
MNAND MIO14
MNAND MIO15
MNAND MIO1E
MNAND MIOAT
MNAND MIO18
MNAND MIO19
MNAND MIO20
MNAND MIO21
MNAND MIO22
MNAND MIO23
MNAND MIO24
MNAND MIO25

Figure 2-9:

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019

Signal

nfc_rb_n[0]
nfc_ce[0]
nfc_cle
nfc_ale
nfc_dqg_out[0]
nfc_dqg_out[1]
nfc_dg_out[2]
nfc_dq_out[3]
nfc_dq_out[4]
nfc_dqg_out[5]
nfc_we_b
nfc_dq_out[6]
nfc_dqg_out[7]

nfc_re_n

IO Type

schmitt
schmitt
schmitt
schmitt
schmitt
schmitt
schmitt
schmitt
schmitt
schmitt
schmitt
schmitt
schmitt

schmitt

Configuring NAND 1/0 Pins

www.Xxilinx.com

Drive Strength{mA)

12
12
12
12
12
12
12
12
12
12
12
12
12

MESES RS EAIES

<

<
MESEdEd RS ESESEd RS ESESIERAIES

l Send Feedback l 30

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=30
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=30

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

SD

The SD 3.0/SDIO 3.0 host controller with an AXI processor interface conforms to the secure
digital (SD) host controller standard specification version 3.00. The host controller handles
the SDIO/SD protocol at the transmission level, packing data, adding cyclic redundancy
check (CRC), start/end bits, and checking for transaction format correctness. The host
controller provides for the programmed I/O method and the DMA data transfer method.

In the programmed I/O method, the host processor transfers data using the buffer data
port register. The DMA support for the host controller is determined by checking the DMA
support in the capabilities register. DMA allows a peripheral to read or write memory
without intervention from the CPU. The host controller system address register points to
the first data address, and data is accessed sequentially from that address, as shown in the
following figure.

110 Configuration

- ~ MIO Voltage Standard
Q Bank0 [MIO 0:25] | Bank1 [MIO 26:51]| Bank2 [MIO 52:77] Bank3 [Dedicated]
LVCMOS33 » | LVCMOS33 +~ | LVCMOS33 » LVCMOS33 +

M4

Search:

4

Peripheral [} Signal 1i0 Type Drive StrengthimA) Speed Pull Type Direction

~ Low Speed

~ Memory Interfaces

> QsPI

> MNAND

~ 8D
> /1 8D0 MIO 13 .22 hd
» /| 8D1 MIO 38 .51 hd

» /0 Peripherals
> Processing Unit
» High Speed

> Reference Clocks
Figure 2-10: Configuring SD 1/O Pins
1/0 Peripherals

CAN

There are two nearly identical CAN controllers in the PS that are independently operable.
The features of the CAN Controller are, as follows:

+ Conforms to the ISO 11898-1, CAN 2.0A, and CAN 2.0B standards.

« Standard (11-bit identifier) and extended (29-bit identifier) frames.

« Transmit message FIFO (TXFIFO) with a depth of 64 messages.

« Transmit prioritization through one high-priority transmit buffer (TXHPB).

Embedded Processor Hardware Design N Send Feedback 31
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=31
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=31

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

« Watermark interrupts for TXFIFO and RXFIFO.

« Automatic re-transmission on errors or arbitration loss in normal mode.
* Receive message FIFO (RXFIFO) with a depth of 64 messages.

« Four RX acceptance filters with enables, masks, and IDs.

« Loopback and snoop modes for diagnostic applications.

» Sleep mode with automatic wake-up.

+ Maskable error and status interrupts.

« 16-bit time stamping for receive messages.

« Readable RX/TX error counters.

The following figure shows the CAN configuration options.

«la =z 2

Search:

Peripheral [e] Signal 10 Type Drive Strength(mA) Speed Full Type Direction
~ /O Peripherals
~ CAN
~ || CAND MO 22 .23 w
MIOCLK
CAND MID22 phy_rx schmitt w12 slow pullup || in
CAND MIO23 phy_tx schmitt 12 || slow ~ || pullup || out
~ || CAN1 MIO 24 .. 25 w
MIOCLK
CAN 1 MIO24 phy_tx schmitt 12 || slow ~ || pullup || out
CAN 1 MID25 phy_rx schmitt w12 slow pullup || in

Figure 2-11: Configuring CAN 1/0 Pins
12C

The 12C module is a bus controller that can function as a master or a slave in a multi-master
design. It supports a wide clock frequency range from DC, approaching up to 400 Kb/s.

In master mode, a transfer can only be initiated by the processor writing the slave address
into the 12C address register. The processor is notified of any available received data by a
data interrupt or a transfer complete interrupt. If the hold bit is set, the 12C interface holds
the clock line (SCL) low after the data is transmitted to support slow processor service. The
master can be programmed to use both normal (7-bit) addressing and extended (10-bit)
addressing modes. 10-bit addressing is only supported in master mode.

In slave monitor mode, the I2C interface is set up as a master and continues to attempt a
transfer to a particular slave until the slave device responds with an ACK. The hold bit can
be set to prevent the master from continuing with the transfer, preventing an overflow
condition in the slave.

Embedded Processor Hardware Design N Send Feedback 32
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=32
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=32

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

A common feature between master mode and slave mode is the timeout (TO) interrupt flag.
If at any point the SCL line is held low by the master or the accessed slave for more than the
period specified in the timeout register, a TO interrupt is generated to avoid stall
conditions.

Select the appropriate MIO pins for the two 12C controllers from the drop-down menu. An
optional interrupt can be generated from the two 12C controllers.

The following figure shows the 12C configuration page.

Peripheral [} Signal IO Type Drive Strength(mA) Speed Pull Type Direction
~ 12C

~ ¥ 12C0 MIO2 .3 e
12C0 MIO2 scl_out schmitt w12 ~ sl v pullup % inout
12C0 MIO3 sda_out schmitt w12 ~ sl v pullup % inout

~ | 12C1 MIOOD .1 hd
12C1 MICO scl_out schmitt w12 ~ sl v pullup % inout
12C 1 Mo sda_out schmit | 12 v| sl v|[putup] inout

Figure 2-12: Configuring 12C 1/0 Pins
PITAG
An alternate option for communication with the Arm DAP is through the PJTAG signals.
There are six PJTAG interfaces specified in the MIO. Using the MIO SLCR, you can select one

of the PJTAGO-5 MIO interfaces to be the PJITAG interface. The PJTAG interface enters the
JTAG security gate circuit, which routes the JTAG interfaces around the device.

To use the PJTAG interface, the following conditions must be met.

« The JTAG security gate is disabled by writing to the correct register in the CSU.
« The Arm DAP is not on the JTAG chain.

To prevent security holes, the PJTAG is multiplexed into the JTAG signaling before the
security gate. The following figure shows the PJTAG configuration options.

Peripheral [} Signal 1i0 Type Drive StrengthimA) Speed Pull Type Direction
~ Low Speed
> Memory Interfaces

~ /0 Peripherals

> CAN

>o12C

~ | PJTAG Mo0.3 v
PJTAG MICO tck sch.. » 12 sl pullup | in
PJTAG MO tdi sch.. » 12 sl pullup | in
PJTAG MIO2 tdo sch.. 12 | sl v pullup v out
PJTAG MIO3 tms sch.. » 12 sl pullup | in

Figure 2-13: Configuring PJTAG 1/O Pins

Embedded Processor Hardware Design N Send Feedback 33
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=33
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=33

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

PMU

The platform management unit (PMU) controls the power-up, reset, and monitoring of
resources within the entire system. The Zynq UltraScale+ MPSoC PMU performs the
following set of tasks.

« Initialization of the system during boot.

« Management of power gating.

When the system is in the off mode, it becomes alive upon an indication from external or
internal events. Therefore, a subset of the system logic is active to detect such an event. The
PMU also provides power management, error management, safety functions, and a software
test library.

The PMU can obtain status information, and issue requests to other system elements
without using the application processors, monitor system temperature sensors, and control
system elements such as fans and power supplies.

Peripheral [} Signal 1i0 Type Drive StrengthimA) Speed Pull Type Direction
~ Low Speed
> Memory Interfaces

~ /0 Peripherals

> CAN
o120
PUTAG
~ 1 PMU
GPIEMIO
GPO EMIO
> ¥ GPIO MIO 26
> ¥ GPI1 Mo 27
» ¥ GPl2 MO 28
> ¥ GPI3 MO 29
> ¥ GPl 4 MO 30
> ¥ GPI5 MO 31
» ¥ GPOO MO 32
> ¥ GPO1 MIO 33
» ¥ GPO2 MO 34
» ¥ GPO3 MIO 35
> ¥ GPO4 MIO 36
» ¥ GPOS Mo 37

Figure 2-14: Configuring PMU 1/0 Pins
Ccsu

The boot process is managed and carried out by the Platform Management Unit and
Configuration Security Unit. The CSU can be enabled by selecting the CSU check box.

Embedded Processor Hardware Design N Send Feedback 34
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=34
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=34

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

SPI

The SPI bus controller enables communications with a variety of peripherals such as
memories, temperature sensors, pressure sensors, analog converters, real-time clocks,
displays, and any SD card with serial mode support. The SPI controller can function in
master mode, slave mode, or multi-master mode.

The Zynq UltraScale+ MPSoC includes two instances of an SPI controller: SPI0 and SPI1.
Both controllers are identical and independently controlled by software drivers. They can be
operated simultaneously.

Peripheral [} Signal 1i0 Type Drive StrengthimA) Speed Pull Type Direction
~ SPI
~ ¥/ SPI0 Mo 12 .17 v
MIO 15 A
SS[1]
S5[2]
SPIO MIo12 sclk_out sch.. » 12 ~ sl v pullup % inout
SPIO MIO15 n_ss_out[0] sch.. » 12 ~ sl v pullup % inout
SPIO MIO16 S0 sch.. » 12 ~ sl v pullup % inout
SPIO MIO7 si sch.. » 12 ~ sl v pullup % inout
~ ¥ P11 MO G .. 11 v
MIO 9 A
SS[1]
S5[2]
SPI1 MIOG sclk_out sch.. » 12 ~ sl v pullup % inout
SPI1 MIO9 n_ss_out[0] sch.. » 12 ~ sl v pullup % inout
SPI1 MIO10 S0 sch.. » 12 ~ sl v pullup % inout
SPI1 MIO11 si sch.. » 12 ~ sl v pullup % inout
> UART

Figure 2-15: Configuring SD 1/O Pins
UART

The UART controller is a full-duplex asynchronous receiver and transmitter that supports a
wide range of programmable baud rates and 1/O signal formats. The controller can
accommodate automatic parity generation and multi-master detection mode.

The UART operations are controlled by the configuration and mode registers. The state of
the FIFOs, modem signals, and other controller functions are read using the status, interrupt
status, and modem status registers.

The controller is structured with separate RX and TX data paths. Each path includes a
64-byte FIFO. The controller serializes and de-serializes data in the TX and RX FIFOs, and
includes a mode switch to support various loop-back configurations for the RxD and TxD
signals. The FIFO interrupt status bits support polling or an interrupt driven handler.
Software reads and writes data bytes using the RX and TX data port registers.

Embedded Processor Hardware Design N Send Feedback 35
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=35
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=35

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

When using the UART in a modem-like application, the modem control module detects and
generates the modem handshake signals and also controls the receiver and transmitter
paths according to the handshaking protocol. The following figure shows the UART
configurations options.

Peripheral [} Signal 1i0 Type Drive StrengthimA) Speed Pull Type Direction
~ Low Speed
> Memory Interfaces

~ /0 Peripherals

> CAN
>o12C
PJTAG
> PMU
csu
» 5P
~ UART
~ ¥ UART O MIOG .7 hd
MODEM
UART O MIOG rd sch.. » 12 sl pullup | in
UART O MIOT7 td sch.. 12 | sl v pullup v out
» VI UART 1 Moo0..1 v

Figure 2-16: Configuring UART 1/0 Pins

GPIO

The general purpose 1/O (GPIO) peripheral provides software with observation and control
of up to 78 device pins through the MIO module. The GPIO also provides access to 96 inputs
from the programmable logic (PL) and 192 outputs to the PL through the EMIO interface.

The GPIO is organized into six banks of registers that group related interface signals. Each
GPIO is independently and dynamically programmed as input, output, or interrupt sensing.
Software can read all GPIO values within a bank using a single load instruction, or write data
to one or more GPIOs (within a range of GPIOs) using a single store instruction. Figure 2-17
shows the GPIO configuration options.

Embedded Processor Hardware Design N Send Feedback 36
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=36
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=36

& XILINX.

Peripheral
~ GPIO

| GPIO EMIO
~ | GPIOO MIO
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID
GPIOO MID

Processing Unit

The processing unit (PU) for the Zynq UltraScale+ MPSoC device comprises four

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

o]

95
MO0 .. 25
M0
Mo
Moz
MIo3
Mio4
MIOs
MIOG
Mo7
Mos
M9
MIo10
Mo
MIo12
MIo13
MIo14
MIo15
MIO16
MIo17
MO8
MIo19
Mioz20

Figure 2-17: Configuring GPIO Pins

Signal

apio0[0]
apio0[1]
gpic0[2]
gpic0[3]
gpic0[4]
gpic0[g]
gpio0[E]
gpic0[7]
gpio0[8]
gpic0[9]
gpio0[10]
apio0[11]
apio0[12]
gpio0[13]
apio0[14]
apio0[15]
gpio0[16]
gpio0[17]
gpio0[18]
gpio0[19]
gpio0[20]

IO Type

sch...
sch...
sch...
sch...
sch...
sch...
sch...
sch...
sch...
sch...
sch...
sch...
sch...
sch...
sch...
sch...
sch...
sch...
sch...
sch...

sch...

MESEdEd RS ESESEd RS RS ES RS RS RS ESESEd RS ESESIES

Drive Strength{mA)

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

MESEdEd RS ESESEd RS RS ES RS RS RS ESESEd RS ESESIES

sl..
sl..
sl..
sl..
sl..
sl..
sl..
sl..
sl..
sl..
sl..
sl..
sl..
sl..
sl..
sl..
sl..
sl..
sl..
sl..

sl..

Speed

MESEdEd RS ESESEd RS RS ES RS RS RS ESESEd RS ESESIES

Cortex™-A53 MPCore™ processors, L2 cache, and related functionality. The
MPCore processor is the most power-efficient Arm v8 processor capable of seamless
support for 32-bit and 64-bit code. It makes use of a highly efficient 8-stage in-order
pipeline balanced with advanced fetch and data access techniques for performance. It fits in
a power and area footprint suitable for entry-level devices, and is at the same time capable
of delivering high-aggregate performance in scalable enterprise systems using high core

density.

SWDT

Pull Type Direction
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
pullup » | inout
Cortex-A53

Zynq UltraScale+ MPSoC devices have two system watchdog timers (SWDT), one each for
the RPU and APU subsystem.

« The RPU SWDT is in the low-power domain (LPD)
« The PU SWDT is in the full-power domain (FPD).

Each SWDT provides error condition information to the error manager.

The PU SWDT can be used to reset the APU or the FPD. The RPU SWDT can be used to reset
the RPU or the processing system (PS). These timers can be enabled, as shown in

Figure 2-18.

Embedded Processor Hardware Design

UG898 (v2019.1) June 4, 2019

www.Xxilinx.com

l Send Feedback l

37

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=37
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=37

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

~ Processing Unit
~ SWDT
~ Y| SWDT 0
Clockin
Reset out
~ || SWDT 1
Clockin

Reset out
Figure 2-18: Configuring Processing Unit SWDT Pins

Trace

The Cortex-A53 MPCore embedded trace macrocell (ETM) is a module that performs
real-time instruction flow tracing for the Cortex-A53 MPCore, based on the program flow
trace (PFT) architecture. The Cortex-A53 MPCore ETM generates information used by the
trace tools to reconstruct the execution of all or part of a program. The PFT architecture
assumes that the trace tools can access a copy of the code being traced. For this reason, the
ETM generates traces only at certain points in program execution, called waypoints. This
reduces the amount of trace data generated by the ETM. Waypoints are changes in the
program flow or events, such as an exception. The trace tools use waypoints to follow the
flow of program execution. To simplify implementation, each Cortex-A53 MPCore has one
embedded ETM to capture its running trace in real time.

TTC

The triple-time counter (TTC) module provides three independent timer/counter modules
that can each be clocked using either the system clock or an externally derived clock. All
three counters must have the same security status because they share a single APB bus.

When the TTC is in secure mode, applications running as user mode do not access its
register. Two TTC modules are instantiated in the device with one reserved for TrustZone
software while the other is shared by both TrustZone software and user software. When
TrustZone technology is not used, both TTCs are available to user software. Additionally, the
TTC has the option to support external reference clock inputs and pulse-width-modulated
(PWM) outputs with these features. The TTC configuration options are shown in

Figure 2-19.

Embedded Processor Hardware Design N Send Feedback 38
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=38
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=38

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

Peripheral s} Signal W0 Type Drive Strength(mA) Speed Pull Type
> CAN
»o12C
PJTAG
> PMU
csu
> SPI
> UART
» GPID
~ Processing Unit
> SWDT
> Trace
~ TTC
~ | TTCO
Clock
‘Waveout
> TICA
~ | TTC2

v TTC 3

Figure 2-19: Configuring Triple-timer Counter (TTC) Pins

High Speed Peripherals

Gigabit Ethernet Controller (GEM)

The gigabit Ethernet controller (GEM) implements a 10/100/1000 Mb/s Ethernet MAC
compatible with IEEE Standard for Ethernet (IEEE Std 802.3-2008) and capable of operating
in either half or full-duplex mode in 10/100 mode and full-duplex in 1000 mode. The
processing system (PS) is equipped with four gigabit Ethernet controllers. Each controller
can be configured independently. Each controller uses a reduced gigabit media
independent interface (RGMII), v2.0 to save pins.

Access to the programmable logic (PL) is through the EMIO which provides the gigabit
media independent interface (GMII). Other Ethernet communications interfaces can be
created in the PL using the GMII available on the EMIO interface. GEM supports SGMII using
the PS-GTR interface.

Registers are used to configure the features of the MAC, select different modes of
operation, and enable and monitor network management statistics. The DMA controller
connects to memory through the advanced eXtensible interface (AXI). It is attached to the
controller's FIFO interface of the MAC to provide a scatter-gather type capability for packet
data storage in an embedded processing system. Each GEM controller provides
management data input/output (MDIO) interfaces for PHY management.

Embedded Processor Hardware Design N Send Feedback 39
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=39
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=39

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

The time stamp unit (TSU) can also be enabled by checking the GEM TSU check box in the
configuration wizard as shown in the following figure. The TSU consists of a timer and
registers to capture the time at which PTP event frames cross the message timestamp point.
These are accessible through the APB interface. An interrupt is issued when a capture
register is updated. The following figure shows the GEM configuration options.

Peripheral [} Signal 1i0 Type Drive StrengthimA) Speed Pull Type Direction
> Low Speed

~ High Speed
~ GEM
> GEMO
> GEM 1
> GEM 2
> GEM 3

Figure 2-20: Configuring Gigabit Ethernet Controller Pins
usB

The USB 3.0 controller in the Zynq UltraScale+ MPSoC device consists of two independent
dual-role device (DRD) controllers. Both can be individually configured to work as host or
device at any given time. The USB 3.0 DRD controller provides an extensible host controller
interface (xHCI) to the system software through the advanced extensible interface (AXI)
slave interface.

An internal DMA engine is present in the controller and it utilizes the AXI master interface
to transfer data. The three dual-port RAM configurations implement the following:

+ RXdata FIFO
« TX data FIFO

« Descriptor/register cache.

The AXI master port and the protocol Layers access the different RAMs through the buffer
management unit. The following figure shows the USB configuration options.

Peripheral [} Signal 1i0 Type Drive StrengthimA) Speed Pull Type Direction
> Low Speed
~ High Speed
> GEM
~ USB
~ Y/ USBO
> UsSB20 MIO 52 .. 63 v
UsSB 3.0
~ ¥/ USB1
> UsSB20 MIO 64 .. 75 v
~ ¥ USB 3.0 GT Lane3 v

Enable V Bus Port

Figure 2-21: Configuring USB Controller Pins

Embedded Processor Hardware Design N Send Feedback 40
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=40
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=40

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

PCle

The Zynq UltraScale+ MPSoC device provides a controller for the integrated block for PCI
Express® v2.1 compliant, AXI-PCle bridge, and DMA modules. The AXI-PCle bridge
provides high-performance bridging between PCle and AXI.

The controller for PCle supports both endpoint and root port modes of operations. The
controller comprises two sub-modules.

« The AXI-PCle bridge provides AXI to PCle protocol translation and vice-versa,
ingress/egress address translation, DMA, and root port/endpoint (RP/EP) mode specific
services.

» The integrated block for PCle interfaces to the AXI-PCle bridge on one side and the
PS-GTR transceivers on the other. It performs link negotiation, error detection and
recovery, and many other PCle protocol specific functions. This block cannot be directly
accessed.

The block can be enabled by selecting the PCle option in the Configuration wizard, as
shown below.

Peripheral 8] Signal IO Type Drive Strength{mA) Sp

» Low Speed
~ High Speed
» GEM
» USB
~ ¥ PCle
~ Endpoint Mode Reset MIC 30 hd
PCIE MIO30 reset_n sch.. » 12 sl

Lane Selection | X1 V|
PCle Lane0 GT Lane0

Figure 2-22: Configuring PCle Controller Pins
Display Port

The Display Port controller is based on the VESA Display Port 1.2 standard specification,
and is a source-only controller. The main link supports up to two lanes at data rates of 1.62,
2.70, or 5.40 Gb/s. The video data is grabbed by the video clock and is independent of the
main link lanes clocking system. The data is packetized before being sent across the main
link lanes.

The Display Port controller supports both audio and video streams. In addition to a main
link, the controller supports auxiliary channel in a half-duplex mode, which is used for
source/sink communication. The auxiliary channel uses LVDS signaling using Manchester 2
level encoding as per the DisplayPort standard and works at a 1 Mb/s data rate.

A hot plugs detect (HPD) signal is used for hot plug detection and to generate an IRQ from
the sink to source.

Embedded Processor Hardware Design N Send Feedback 41
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=41
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=41

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

The Display Port controller has a configuration interface that is advanced peripheral bus
(APB) compliant. A number of AXI streaming interfaces exist for video and audio interfaces.
The Display Port controller supports live audio/video channels from the programmable
logic (PL). It also supports mixing audio channels and alpha blending, and chroma keying of
video channels, from the PL.

The Lane Selection field can be set using the pull-down menu in the Configuration Wizard
as shown in the following figure. The choices are: Dual Higher, Dual Lower, Single Higher,
and Single Lower. Based on the selection either one lane or two lanes are enabled. The
following figure shows the DisplayPort Controller options.

Peripheral [} Signal 1i0 Type Drive StrengthimA) Speed Pull Type Direction
> Low Speed
~ High Speed

> GEM

> UsSB

> PCle

~ ' Display Port

DPAUX EMIO v []

> Lane Selection Dual Higher e
> SATA

Figure 2-23: Configuring DisplayPort Controller Pins
SATA

The serial ATA (SATA) protocol was designed to replace the old parallel ATA (or IDE)
interface used mainly for storage devices. SATA uses the ATA/ATAPI command-set, but uses
serial communication over the differential wire pairs at rates of 1.5, 3.0, or 6.0 Gb/sec
corresponding to SATA generation 1, generation 2 or generation 3. The serial data is 8B/10B
encoded which ensures sufficient transition in the data pattern to ensure DC balancing and
enables the clock data recovery circuit to extract the clock from the incoming data pattern.
The following figure shows the SATA configuration options.

Peripheral [} Signal 1i0 Type Drive StrengthimA) Speed Pull Type Direction
> Low Speed
~ High Speed
> GEM
> UsSB
> PCle
> Display Port
~ /| SATA
¥'| SATA Lane0 GT Lane0 i
+| SATA Lane GT Lanet hd

Figure 2-24: Configuring SATA Controller Pins

The SATA block of the processing system (PS) is a high-performance dual-port SATA host
controller with an AHCI-compliant command layer which supports advanced features such
as native command queuing and frame information structure (FIS) based switching for
systems employing port multipliers.

Embedded Processor Hardware Design N Send Feedback 42
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=42
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=42

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

Reference Clocks

« Video Reference Clock: See the Clock Configuration section for details.

« PSS Alt Reference Clock: See the Clock Configuration section for details.

Clock Configuration

The Zynq UltraScale+ MPSoC processor has a programmable clock generator that takes a
definite input frequency clock and derives multiple clocks using the phase-locked loop
(PLL) blocks in the processing system (PS). The output clock from each of the PLLs is used
as a reference clock to the different PS peripherals.

The Zynq UltraScale+ MPSoC processor has five PLLs that generate various clocks used in
the PS subsystem.

« DDR PLL (DPLL): Mainly used to generate clocks for the DDR controller.

« APU PLL (APLL): Mainly used to generate clocks for the APU.

« RPU PLL (RPLL): Mainly used to generate clocks for the RPU.

« 1/O PLL (IOPLL): Mainly used to generate clocks the peripheral I/Os.

« Video PLL (VPLL): Generates clocks for the video blocks used in the PS subsystem.

The PLLs are grouped based on the associated power domain.

+ Low power domain PLL:

o 1/O PLL (IOPLL): Provides clocks for all low speed peripherals and part of the
interconnect.

o RPU PLL (RPLL): Provides clocks for the Cortex-R5 CPU and part of the interconnect.
« Full-power domain PLL:

o APU PLL (APLL): Provides clocks for the Cortex-A53 CPU clock and part of the
interconnect.

. Video PLL (VPLL): Provides clocks for the video I/0.
o DDR PLL (DPLL): Provides clocks for the DDR controller and part of the interconnect.
- DDR PHY: Provides its own PHY PLL (PPLL) to provide clocks for the DDR PHY.

You can configure clocks using one of the following methods:

« In the Zynq block design, click the Clocking block.

« From the Page Navigator, click Clock Configuration.

Input clocks can be configured by selecting the Input Clocks tab, as shown in Figure 2-25.

Embedded Processor Hardware Design N Send Feedback 43
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=43
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=43

8 X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

Zynq UltraScale+ MPSaC (3.1)
0 Documentation £ Presats IP Location

Page Navigator Clock Confguration

Swilch To Advanced Mode pstClocks Owipst Clocks

« Q = %
PS UltraScale+~ Block Design

Search
10 Condi guration
g Mame Source Input Freg (MHz) Range (MHZ)
Clock Configuration * InputReference requency]
* GT Lana Referance fregquency
I DOR Confi guration Peripheral Reference frequency
PS-PL Configuration
|
|
| 0K i Cancal

Figure 2-25: Clock Configuration Page - Input Clocks

Configure Output clocks by selecting the Output Clocks tab in the Clock Configuration
page.

Embedded Processor Hardware Design

. | Send Feedback l 44
UG898 (v2019.1) June 4, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=44
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=44

(: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

The following figure shows the Clock Configuration Output Clock options.

Zynq UltraScale+ MPSoC (3.1) d
© Documentation ¥ Presets IP Location
Page Navigator Clock Configuration

Switch To Advanced Mode Output Clocks

Enable Manual Mode
PS UltraScale+ Block Design

> PLL Options
1/0 Configuration

« Q < =2
Clock Configuration

Search:
DDR Configuration

Name Source FracEn Requested Fi
PS-PL Configuration ~ Low Power Domain Clocks

> Processor/Memory Clocks
> Peripherals/IO Clocks
> PL Fabric Clocks
> System Debug Clocks
~ Full Power Domain Clocks
> Processor/Memory Clocks
> Peripherals/lO Clocks
> System Debug Clocks
| ~ Advance Clocks
> Low Power Domain

> Full Power Domain

‘ OK | ’ Cancel

Figure 2-26: Clock Configuration Page - Output Clocks

DDR

The DDR subsystem connects to rest of the processor device through six AXl interfaces. One
of the data paths is connected to the real-time processing unit (RPU) and two to the cache
coherent interconnect (CCI-400). Others are multiplexed across the DisplayPort controller,
full-power domain DMA controller (FPD-DMA) and the programming logic (PL). Of the six
interfaces, five are 128-bits wide and the sixth interface (tied to the RPU) is 64-bits wide.

The DDR subsystem supports DDR3, DDR3L, LPDDR3, DDR4, and LPDDRA4. It can accept read
and write requests from six application host ports that are connected to the controller using
AXI bus interfaces. These requests are queued internally and scheduled for access to
SDRAM.

Embedded Processor Hardware Design N Send Feedback 45
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=45
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=45

(: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

The memory controller issues commands on the DDR PHY interface (DFI) interface to the
PHY module that reads and writes data from SDRAM.

You can configure DDR using one of two methods:

« From the Page Navigator, select the DDR Configuration.
* In the Zynq block design, click the DDR Controller block.

The following figure shows the DDR Configuration page.

DDR Configuration

Enable DDR Controller 4

Load DDR Presets = Custom v

Clocking Options
Memory Inteface Device Frequency (MHz) 1067 (Actual Interface :1066.560059)
DDR Controller Options

Memory Type DDR 4 v Effective DRAM Bus Width 64 Bit v

Components = UDIMM v ECC Disabled v

DDR Memaory Options

Speed Bin (use tooltip) DDR4 2133P DRAM IC Bus Width (per die) 8 Bits v
Cas Latency (cycles) 15 DRAM Device Capacity (per die) = 4096 MBits v
RAS to CAS Delay (cycles) 15 Bank Group Address Count (Bits) 2
Precharge Time (cycles) |15 Bank Address Count (Bits) 2
Cas Write Latency (cycles) |14 Row Address Count (Bits) 15
tRC (ns) 47.08 Column Address Count (Bits) 10

Figure 2-27: DDR Controller Configurations Page

Embedded Processor Hardware Design N Send Feedback 46
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=46
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=46

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

PS - PL Configuration

The Zynq UltraScale+ MPSoC device integrates a feature-rich, quad-core Arm Cortex-A53
MPCore based processing system (PS) and the Xilinx programmable logic (PL) block in a
single device. Each Zynq UltraScale+ MPSoC contains the same PS while the PL and I/O
resources vary between the devices.

The following figure shows the PS-PL Configuration page.

Zynq UltraScale+ MPSoC (3.2) '
© Documentation £F Presets IP Location
Page Navigator PS-PL Configuration
/| Switch To Advanced Mod « Q = 2
|
) Search:
PS UltraScale+ Block Design |
Name Select
/0 Configuration v General ~f |
v Interrupts
Clock Configuration
g v PLtoPS
DDR Configuration IRQO[0-7] 1 v
IRQ1[0-7] 0 v
PS-PL Configuration APU Legacy Interrupts(IRQ, FIQ)
RPU Legacy Interrupts(IRQ, nFIQ)
Advanced Configuration
v PStoPL
PCle Configuration Q3P 0 v

v CAN

lanlabinm M andaeabae

[oK ‘ Cancel

Figure 2-28: PS-PL Configurations Page

The PS and PL can be tightly or loosely coupled using multiple interfaces and other signals.
This enables the designer to effectively integrate user-created hardware accelerators and
other functions in the PL logic that are accessible to the processors and can also access
memory resources in the PS. Using a Zynq UltraScale+ MPSoC processor in your design
allows end-product differentiation through customized applications in the PL.

The processors in the PS always boot first, allowing a software-centric approach for PL
configuration. The PL can be configured as part of the boot process or configured at some
point.

Embedded Processor Hardware Design N Send Feedback 47
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=47
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=47

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

Additionally, the PL can be completely reconfigured or used with dynamic partial
reconfiguration. Partial reconfiguration (PR) allows configuration of a portion of the
programmable logic. This enables optional design changes such as updating coefficients or
time-multiplex the PL resources by swapping in new algorithms. This latter capability is
analogous to the dynamic loading and unloading of software modules. The PL
configuration data is referred to as a bitstream. See the Vivado Design Suite User Guide:
Partial Reconfiguration (UG909) [Ref 17] for more information.

The PL can be on a separate power domain from the PS. This allows your design to save
power by completely shutting down the PL. In this mode, the PL consumes no static or
dynamic power, thus significantly reducing the power consumption of the device. The PL
must be reconfigured when coming out of this mode. You must account for the
re-configuration time of the PL in your particular application because this varies depending
on the size of the bitstream.

The PS communicates with the PL using general-purpose interconnect blocks. They support
a variety of interfaces between the PL and PS and for data transfer between the PL and PS;
interrupt, clock, and reset; while also connecting PS peripherals to the PL for routing to PL
I/Os. Additionally, the debug cross-trigger and trace interface supports integrated
hardware and software code debugging.

« AXl interfaces provide:

o High-performance AXl4 interface with FIFO support in the PS.

Variable native PL data bus width support (32/64/128).
- Support for independent read and write clocks.

- Path through the system memory management unit (SMMU) for address
translation (i.e., the PL can work with virtual addresses).

- Three interfaces support I/O coherency through the cache-coherent
interconnect (CCl).

- Dedicated low-latency path between the low-power domain (LPD) and PL.

o Accelerator coherency port (ACP) interface for coherency and direct allocation into
the L2 cache of the APU.

- AXI coherency extensions (ACE) interface for full coherency. Usable as ACE-Lite for
I/O coherency.

« 32 bits for general-purpose input and 32 bits for output from the platform
management unit (PMU) for communication with the PL.

« 16 shared interrupts and four inter-processor interrupts.

« Dedicated interfaces from the gigabit Ethernet controller (GEM) and the DisplayPort
protocol.

Embedded Processor Hardware Design N Send Feedback 48
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=48
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=48

& XILINX.

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

Advanced Configuration

The Advanced Configuration page, shown in the following figure, is only available when the
Switch to Advanced Mode check box is enabled. It can be accessed by selected the
Advanced Configuration option in the Page Navigator.

| Zynq Ultrascale+ MPSoC (3.1) P

Page Navigator

1/0 Configuration

Clock Configuration

DDR Configuration

PS-PL Configuration

© Documentation £F Presets

¥| Switch To Advanced Mode

PS UltraScale+ Block Design

IP Location

1/0 Configuration

MIO Voltage Standard

Bank0 [MIO 0:25] Bank1 [MIO 26:51] | | Bank2 [MIO 52:77] | | Bank3 [Dedicated]

LVCMOS18 v LVCMOS18 v LVCMOS18 v LVCMOS33 v

« |Q = 2
Search:

Peripheral o
> Low Speed

Signal /0 Type Drive Strength(mA) Spee:

Advanced Configuration

PCle Configuration

Isolation Configuration

> High Speed
> Reference Clocks

< >

Figure 2-29: Advanced Configurations Page

Various advanced options can be enabled from this page.

PCle Configuration

In the Advanced Configuration Mode, the PCle Configuration option is available in the Page
Navigator. When the PCle interface is enabled under 1/0 Configuration > High Speed >
PCle, then advanced parameters for the PCle interface can be entered in this page, shown
in the following figure.

Peripheral

[} Signal 1i0 Type Drive StrengthimA) Speed Pull Type Direction

> Low Speed

~ High Speed
> GEM
> UsSB
¥ PCle
~ Endpoint Mode Reset
PCIE
Lane Selection
PCle Laned

Embedded Processor Hardware Design

UG898 (v2019.1) June 4, 2019

MIO 30 A
MIO30
[x v|
GT Laned

Figure 2-30:

reset_n sch.. » 12 sl pullup | in

PCle Configurations Page

49
www.Xxilinx.com

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=49
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=49

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

Isolation Configuration

The Zynq UltraScale+ MPSoC processor can simultaneously run multiple processors. You
can physically and logically isolate these subsystems from one another, and at times allow
them to exchange/communicate information in a controlled manner. The Zynqg UltraScale+
MPSoC device IP lets you capture these subsystems in several ways to suite your needs. You
can partition your application using AXI transaction based inhibitors as well as physically
isolated ones by not sharing any logic (such as utilizing the fabric to create truly isolated
systems at signal level to ensure there are no signal connections between two or more
subsystems).

The Isolation Configuration tab of PCW focuses on letting you define these subsystems
using AXI transaction inhibitors and Arm® Trustzone infrastructure. For the Zynq
UltraScale+ MPSoC processor, these AXI transaction inhibitors take the form of the Xilinx
Memory Protection Unit (XMPU) and the Xilinx Peripheral Protection Unit (XPPU) to block
transactions between AXI Masters and Slaves. These two physical blocks are interspersed
throughout the Zynq UltraScale+ MPSoC processor to allow you finer control of your access
policy needs between subsystems.

Figure 2-31 shows the Isolation Configuration page.

Embedded Processor Hardware Design N Send Feedback 50
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=50
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=50

(: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

Isolation Configuration

Please review Known Limitations under the Isolation Configuration Section of PG201.

v/ Enable Isolation ¥/ Enable Secure Debug Lock Unused Memory

«Q z 2 + ==

F A
Search:
Name Start Address Size Unit TZ Settings
~ PMU Firmware
> Masters
v Slaves

v~ Control and Status Registers

CRF_APB KB v | Secure
DDR_XMPUOQ... KB v Secure
DDR_XMPU1... KB v | Secure
DDR_XMPUZ... KB v | Secure
DDR_XMPU3... KB v | Secure
DDR_XMPU4... KB v | Secure
NNDR XMPLI& kR v | Secure

Figure 2-31: lIsolation Configurations Page

Validation IP

The Zynq UltraScale+ MPSoC Verification Intellectual Property (VIP) supports the functional
simulation of Zynq UltraScale+ MPSoC based applications. It is targeted to enable the
functional verification of Programmable Logic (PL) by mimicking the Processor System
(PS)-PL interfaces and OCM/DDR memories of PS logic. This VIP is delivered as a package of
System Verilog modules.

VIP operation is controlled by using a sequence of System Verilog tasks contained in a
System Verilog-syntax file. The following is a brief list of features. See Zynqg UltraScale+
MPSoC Verification IP (DS941) [Ref 2] for more detail.

Features

« Pin compatible and Verilog-based simulation model.

« Supports all AXl interfaces.

Embedded Processor Hardware Design N Send Feedback 51
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=51
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=51

2: X”_INX® Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

AXl 4.0 compliant.

32, 64, and 128-bit Data-width for AXI_HP, 128-bit for AXI_ACP.

Sparse memory model (for DDR) and a RAM model (for OCM).

System Verilog task-based API.

Delivered in the Vivado Design Suite.

Blocking and non-blocking interrupt support.

ID width support as per the Zynq UltraScale+ MPSoC specification.

Support for all Zynq UltraScale+ MPSoC supported burst lengths and burst sizes.

Support for FIXED, INCR and WRAP transaction types. Protocol checking provided by
the AXI VIP models.

Read/Write request capabilities.

Finishing the Design

Review the following topics in Chapter 1, Introduction, for information related to
completing your design:

Completing Connections Using Designer Assistance
Making Manual Connections in a Design

Manually Creating and Connecting to I/O Ports
Enhanced Designer Assistance

Platform Board Flow in IP Integrator
Memory-Mapping in the Address Editor

Running Design Rule Checks

Integrating a Block Design in the Top-Level Design

Embedded Processor Hardware Design N Send Feedback 52
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=52
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=52

& XILINX

Chapter 3

Using a Zyng-7000 Processor in an
Embedded Design

Introduction

This chapter describes how to use the Xilinx® Vivado® Design Suite flow for using the
Zynq®-7000 SoC device.

The examples target the Xilinx ZC702 Rev 1.0 evaluation board and the tool versions in the
2019.x Vivado Design Suite release.

ﬁ IMPORTANT: The Vivado IP integrator is the replacement for Xilinx Platform Studio (XPS) for
embedded processor designs, including designs targeting Zynq devices and MicroBlaze™ processors.
XPS only supports designs targeting MicroBlaze processors. Both IP integrator and XPS are available
from the Vivado integrated design environment (IDE).

Designing with Zyng-7000 Processors

The Vivado IDE uses the IP integrator tool for embedded development. The IP integrator is
a GUI-based interface that lets you stitch together complex IP subsystems.

A variety of IP are available in the Vivado IDE IP catalog to accommodate complex designs.
You can also add custom IP to the IP catalog. See the Vivado Design Suite User Guide:
Designing IP Subsystems Using IP Integrator (UG994) [Ref 23] for more information.

Additionally, you can package IP using the Vivado IP packager tool. See Vivado Design Suite
User Guide: Creating and Packaging Custom IP (UG1118) [Ref 27].

Embedded Processor Hardware Design N Send Feedback 53
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=53
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=53

(: X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

Creating an IP Integrator Design with the Zynq-7000 Processor
To create an IP integrator design with the Zyng-7000 processor, do the following steps:

1. Click the IP integrator Create Block Design option to open the Create Block Design
dialog box, where you can enter the Design Name, as shown in the following figure.

¢ Create Block Design @
Please specify name of block design. ‘
Design name: | design_1 |
Directory: =0 =Local to Project= hd
Specify source set Design Sources w

©
Figure 3-1: Create Block Design Dialog Box
2. Use this dialog box for the additional entries:

- Create the Block Design as a part of a project, or in a different location that you can
specify in the Directory field.

- Specify the source type by setting the field Specify source set from the pull-down
menu.

The Block Design window opens, as shown in the following figure.

Diagram ?O0O00 X

This design is empty. Press the + button to add IP.

Figure 3-2: Block Design Window
3. In the empty block design canvas, you are prompted to Add IP from the IP catalog.

Embedded Processor Hardware Design N Send Feedback 54
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=54
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=54

2: X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

You can also right-click in the canvas and select Add IP, as shown below.

AddIP..

Add Module...

M

Make External

Run Block Automation...

¥

Customize Block...

IP Documentation 2
Orientation 3
IP Settings...

[¥f validate Design

Figure 3-3: Adding IP in the Block Design Canvas

4. Using the Search box opened, search for and select the ZYNQ7 Processing System,
shown in the following figure.

IP Details X
Search: zyng (1 match)

4F ZYNQ7 Processing System Mame: ZYNQT Processing System
Wersion: 5.5 (Rev. 6)
Interfaces: AXl4, AXI4-Stream
Description: Arm dual core SOC with Zyng fpga

Status: Production

License: Included

Change Log: View Change Log

Vendor: Kilinx, Inc.

WLNW: silinx comip:processing_system7:5.5

Repository: CXilinx_10_06/Nivado/2017 3/datalip
ENTER to select, ESC to cancel, Ctrl+Q for IP details

Figure 3-4: Search for Zynq in the IP Catalog

When you select the Zynq IP, the Vivado IP integrator adds the IP to the design, and a
graphical representation of the processing system displays, as shown in the following
figure.

processing_system7_0

DoR + |||

= FIXED_IO + |||

M AXl GPO ACLK ZYNQ M FAéciKGZ{EK-DF
FCLK RESETO M

ZYNQT7T Processing System

[

Figure 3-5: Graphical Display of Default ZYNQ7 Processing System

Embedded Processor Hardware Design N Send Feedback 55
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=55
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=55

& XILINX.

The corresponding Tcl command is create bd cell; the syntax is, as follows:

create_bd_cell -type ip -vlnv xilinx.com:ip:processing_system7:5.5

processing system7_0

5. Double-click the processing system graphic to invoke the Re-customize IP process,
which displays the Re-customize IP for the ZYNQ7 Processing System dialog box as

shown in the following figure.

ZYNQ7 Processing System (5.5)
© Documentation £ Presets IP Location € Import XPS Seftings

Page Navigator Zynqg Block Design

Zynqg Block Design

Appication Processor Unit (APU)

ARM Cortax -A9
cPu

Snoop Conral unit

-

Inte it

ARM Corlex -A9

cPU

256 KB
SRAM

B4

Slave

512 KB L2 Cache and Cantrollar Parts

VO Peripharais. "
PS-PL Configuration SPI0 |
sl SPLT
prs: 12C 0
Peripheral IO Pins (150) 12C 1 je—
x‘: System Lavel
= — Control Rags
. L —|
MIO Configuration T
-l
"o UART 1
: - 1 G
Clock Configuration MUX 1
(Mi0y SC ¥ DMAS
—
B +{ so > Channel
DDR Configuration uss o .
L —|
Us8 1 |
oo Core S
SMC Timing Calculation Nl
ENET 1 Canval
Bank1 ! Intarcannact)
NIO FLASH Mamor
Interrupts v -
(5318) Intarfaces —— ——— par |
) [
[oomoseT] | <«~t— oeve
EﬁCTmb\u
cmuum
DMA Bync [E[=[=]
H
s
Rests | Gnmm]
NHEE DMA RO

Programmatia
Logic b Memory

Meamory itefaces

:j DDR24, LF'M |

<

f
ot 2 I“mem
IO EMO) F'E"‘L
Pors Vaser

m:rzwusm

High Parformamce

Figure 3-6:

6. Review the contents of the block design.

| | | | Processing System(PS)

Programmable Logic(PL)

| .
oK | cancar |

ZYNQ7 Processing System Configuration Dialog Box

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

7. The green colored blocks in the ZYNQ7 processing system (PS) are configurable items.
You can click a green block to open the coordinating configuration options.
Alternatively, you can select the options from the Page Navigator on the left, as shown

in Figure 3-6.

Note the four buttons at the top of the dialog box shown in Figure 3-9:

- Documentation: Opens the documentation page of the Xilinx website, where you

can find documentation pertaining to Zynq.

- Presets: Lets you view information about the available preset options. You can save

the current configuration of PS7 to a file or apply a pre-existing configuration to

configure the current instance of the processors.

Embedded Processor Hardware Design

UG898 (v2019.1) June 4, 2019 www.xilinx.com

l Send Feedback l

56

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug835-vivado-tcl-commands.pdf;a=xcreate_bd_cell
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=56
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=56

(: XILINX® Chapter 3: Using a Zyng-7000 Processor in an Embedded Design

- Presets can also be applied to a target board. The available options are Default,
ZC702, ZC706, and Zedboard as seen in the following figure.

¢ Re-customize IP

ZYNQ7 Processing System (5.5)

© Documentation | £F Presets IP Location £ I
Current Preset: None

Page Navigator
Save Configuration...

Zyng Block Design .
Apply Configuration...

PS-PL Configuration Default

ZCT702

Peripheral 0 Pins
ZC706

MIO Configuration ZedBoard

Figure 3-7: Preset Options

« IP Location: Lets you create IP either locally to the project or at a remote location.

IP Location @p Import XPS Settings

"y IP Location

IP location:

Figure 3-8: Specify IP Location

« Import XPS Settings: If you have an XML file describing the configuration of a Zynq
processor from a XPS-based project, you can use this button to import that settings file
to configure the Zynq processor.

Overview of the Zynq-7000 Block Design and
Configuration Window

The Zyng-7000 SoC Technical Reference Manual (UG585) [Ref 6] provides details on the
default options available in the Page Navigator. The following subsections describe in brief
the Page Navigator selection options.

Processing System (PS)-Programmable Logic (PL) Configuration
Options

The PS-PL Configuration option tree displays with the collapsed options as shown in
Figure 3-9.

Embedded Processor Hardware Design N Send Feedback 57
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=57
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=57

2: X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

¢ Customize IP =3

ZYNQ7 Processing System (5.5) g
© Documentation £F Presets IP Location (' Switch to Defaults #5% Import XPS Settings

Page Navigator - PS-PL Configuration Summary Report
Zyng Block Design
- Search:
PS-PL Configuration Q| Name Select Description
> General

M4

Peripheral 0 Pins
> AXlIMon Secure Enablement 0 | Enable AXl Non Secure Transaction

4
~

MIO Configuration GP Slave AXl Interface

. > HP Slave AXl Interface
Clock Configuration
> ACP Slave AXl Interface
DDR Configuration > DMA Controller
» PS-PL Cross Trigger interface Enables PL cross trigger signals to PS and vice-versa
SMC Timing Calculation

Interrupts

oK | | Cancel

Figure 3-9: PL-PS Configuration Pane

General Options

When you expand General Options, the selections, shown in Figure 3-10, are available.

Embedded Processor Hardware Design N Send Feedback 58
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=58
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=58

& XILINX.

| # Re-cuslomize P
ZYNQT7 Processing System (5.5)
@ Documentalion £F Presels

Page Navigatlor ~ —

PS-PL Configuration

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

IP Location &% Imporl XPS Sellings

Zyng Block Design «- Q T =
PS-PL Configuration Search: | CL
Name Select
Peripheral I'0 Pins
v~ General
WIO Configuration UARTD Baud Rate 115200
UART1 Baud Rale 1182, ~
Clock Configuration .
PL A idle Port
DDR Configuration DOR ARB bypass Port
PS-PL Debug interface
SMC Timing Calculation
FTM Trace data interface
Interrupts FTM Trace bufter o
FTM Data edge detector 0
FTM Trace buffer FIFD size 128
FTM Trace buffer clock delay 12

Include ACP transaction checker

Trace data/control signal pipeline width a

Power-on resel{(POR) 4k timer

Processor eventinterface

» Address Editor

> Enable Clock Triggers

> Enable Clock Resets

Figure 3-10:

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019

www.Xxilinx.com

Summary Reparl

Description

Baud rate i3 generatad with internally fixed UART Ref Clock Freq=10
Baud rate is generated with intemnally fixed UART Ref Clock Freg=10...
Enables idle AXl signal to the PS used to indicate that there arz no o..
Enables DOR urgent/arb signal used to signal a crifical memory siar...
Enables PL debug signals to PS and vice-versa

Enables FTM Trace AX| straam interface used to capture data from P
Generates a FIFD to hold trace dats

Stores trace data in the FIFO when the data changes as marked by e...
FTM Trace buffer FIFO size

MNumbper of clock cycles interval for a frace data output from FIFO bain...
Enables ACP transaction checker.

Enables configurable number of pipeline stages on the TRACE DAT..
Enables power-on reset(POR) 4k timer. By default, 64k timeris used.

Enables event bus which provides a low-latency and direct mechanis...

OK | | Cancel

General Options (First Tier)

| Send Feedback l

59

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=59
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=59

2: X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

MIO and EMIO Configuration

From the Page Navigator, you can view and configure I/O pins by either clicking the
Peripheral I/O Pins option or MIO Configuration option.

ZYNQ7 Processing System (5.5) ¢

© Documentation £F Presets IP Location €} Import XPS Settings

Page Navigator Peripheral I/O Pins Summary Report
Zynq Block Design « Q T £ 0
PS-PL Configuration Search
Peripheral IO Pins Bank0 LVCMOS33V v Bank1 LVCMOS33V v
Peripherals 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 :

MIO Configuration

> ~
Quad SPI Flasl OumdSELE sk

Clock Configuration > SRAM/NOR Flz

SRAM/NOR Flash SRAM/NOR F
>
DDR Configuration NAND Flash cs NAND Flash
> Ethernet 0
Enet0
SMC Timing Calculation ne
> Ethernet 1
Interrupts USB O
UsB1
>
SDO =
>
SD1 s01 sD1
’ SPIO SFI0 mos
’ SPI1 SPI1 SPI1
> L UARTO UARTO UARTO UARTO UARTO UAR1
> L UART1 UART1 UART1 UART1 UART1 UART1
4 12C0 LT LS R 1n,a rame Y
< >
‘ OK ‘ ‘ Cancel

Figure 3-11: Configuring Peripheral 1/0O Pins Using Peripheral 1/O Pins Menu

The Zyng-7000 device PS has over 20 peripherals available. You can route these peripherals
directly to the dedicated Multiplexed 1/Os (MIO) on the device, or through the extended
multiplexed 1/0Os (EMIOs) routing to the fabric.

The configuration interface also lets you select I/0 standards and slew settings for the MIO.
When you enable a peripheral, a check mark appears next to the 1/O peripheral block. The
block design depicts the status of enabled and disabled peripherals.

Embedded Processor Hardware Design N Send Feedback 60
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=60
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=60

2: X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

From the MIO Configuration option, you can do the same as shown in the following figure.

¢ Re-customize IP
ZYNQ?7 Processing System (5.5) ¢
© Documentation £ Presets IP Location & Import XPS Settings

Page Navigator MIO Configuration Summary Report
Zynq Block Design Bank 0 /O Voltage| LVCMOS 3.3V v Bank 11/0 Voltage | LVCMOS 3.3V v

PS-PL Configuration - N
« Q = £ @1 O

Peripheral I/O Pins
Search:

MIO Configuration Peripheral 10 Signal 10 Type Speed Pullup Direction Polar
~ Memory Interfaces

Clock Configuration
>/ Quad SPIFlash MIO1.6 !

DDR Configuration MIO1.6
> SRAM/NOR Flash PCW QSPI QSPI 10

SMC Timing Calculation > NAND Flash
> /O Peripherals
Interrupts
> Application Processor Unit

> Programmable Logic Test and Debug

< >

o] [ome]

Figure 3-12: Configuring Peripheral 1/0 Pins Using MIO Configuration Menu

Chapter 2, “Signals, Interfaces, and Pins” of the Zyng-7000 SoC Technical Reference Manual
(UG585) [Ref 6] describes the MIOs and EMIOs for the 7z010 CLG225 device.

Pin Limitations

The 32 MIO pins available in the 7z010 CLG225 device restrict the functionality of the PS as
follows:

- Either one USB or one Ethernet controller is available using MIO.
- Cannot boot from SDIO.

- No NOR/SRAM interfacing.

o The width of NAND flash is limited to 8 bits.

Bank Settings

After you select peripherals, the individual 1/0 signals for the peripheral appear in the
respective MIO locations. Use this section primarily for selecting I/O standards for the
various peripherals. The PS MIO 1/0 buffers split into two voltage domains. Within each
domain, each MIO is independently programmable.

Embedded Processor Hardware Design N Send Feedback 61
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=61
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=61

2: X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

There are two /0O voltage banks:

o Bank 0 consists of pins 0:15
- Bank 1 consists of pins 16:53

Each MIO pin is individually programmed for voltage signaling:

- 1.8 and 2.5/3.3 volts
- CMOS single-ended or HSTL differential receiver mode

ﬁ IMPORTANT: The entire bank must have the same voltage, but the pins can have different I/0
standards.

When you configure MIOs in the MIO Configuration dialog box on the Zynq tab, you can
view a read-only image of the peripheral and respective MIO selections. The left side of the
window lists the available peripherals. A check mark on the peripheral indicates that a
peripheral is selected.

Flash Memory Interfaces

Select one of the following in the configuration wizard:

 Quad-SPI Flash
« SRAM/NOR Flash
« NAND Flash

Quad-SPI Flash

The following figure shows the available options for Quad SPI Flash.

Peripheral /O Pins Summary Report
« Q = = O
Search

Bank0 | LVCMOS33V v Bank1 LVCMOS33V v

Peripherals D ke D s Bt B O L7 L2 L0 L0 LA W20 13, L4l W18 LB L7y 48 110 20, L1, 122, 123, 24, L6, LoB

v ¥/ Quad SPI Flash — =

Single SS 4bit 10 Single SS 4bit IO

® Dual Quad SPI(4bit)

ss_b

Dual Guad S1.(Sbiy Dual Quad SPI (8bit) Dual Quad SPI (8bit)

Feedback Clock |
fb

-

Figure 3-13: Quad SPI Flash Options

Embedded Processor Hardware Design N Send Feedback 62
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=62
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=62

& XILINX.

Key features of the linear Quad-SPI Flash controller are:

o

o

o

o

Single or dual 1x and 2x read support

32-bit APB 3.0 interface for I/O mode that allows full device operations including
program, read, and configuration

32-bit AXI linear address mapping interface for read operations

Single chip select line support

Write protection signal support

Four-bit bidirectional 1/0 signals

Read speeds of x1, x2, and x4

Write speeds of x1 and x4

100 MHz maximum Quad-SPI clock at master mode

252-byte entry FIFO depth to improve Quad-SPI read efficiency

Support for Quad-SPI device up to 128 Mb density

Support for dual Quad-SPI with two Quad-SPI devices in parallel

Additionally, the linear address mapping mode features include:

o

Embedded Processor Hardware Design

Regular read-only memory access through the AXI interface

Up to two SPI flash memories

Up to 16 MB addressing space for one memory and 32 MB for two memories
AXI read acceptance capability of four

Both AXI incrementing and wrapping-address burst read

Automatically converts normal memory read operation to SPI protocol, and vice
versa

Serial, Dual, and Quad-SPI modes

s Send Feedback
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Chapter 3: Using a Zyng-7000 Processor in an Embedded Design

63

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=63
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=63

2: X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

SRAM/NOR Flash

The following figure shows the options for SRAM/NOR flash devices.

Peripheral /O Pins Summary Report
« Q = = 0
Search:
Bank0 | LVCMOS 3.3V J’ Bank1 | LVCMOS 33V v
Peripherals O ol L2 mile b il 1'—VCM053~3V § 12 13 14 15 18 17 18 19 20 21 22 23 24 25 28
~ /| SRAM/MNOR Flash] LVOMOS 2.5V .
— {HSTL 1.8V I
dd
- LVCMOS 1.8V
NOR CS0 -
NOR CS1 -
SRAM CS0 -
SRAM CS1 -
SRAM INT

Figure 3-14: SRAM/NOR Flash Configuration Options
The SRAM/NOR controller has the following features:

- 8-bit data bus width

o One chip select with up to 26 address signals (64 MB)

- Two chip selects with up to 25 address signals (32 MB + 32 MB)
- 16-word read and 16-word write data FIFOs

o 8-word command FIFO

- Programmable I/O cycle timing on a per-chip select basis

- Asynchronous memory operating mode

NAND Flash

Figure 3-15 shows the NAND flash options.

Embedded Processor Hardware Design N Send Feedback 64
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=64
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=64

& XILINX.

MIO Configuration

Bank 0 1/0 Voltage LVCMOS 3.3V v

« Q= = 4 0

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

Bank 11/0 Voltage LVCMOS 3.3V v

Search:
Peripheral 10 Signal
~ ¥ NAND Flash MIO02.14 v
data[15:8]

NAND Flash MIO 0 cs
NAND Flash MIO 2 ale
NAND Flash MIO 3 we_b
NAND Flash MIO 4 data[2]
NAND Flash MIO 5 data[0]
NAND Flash MIO 6 data[1]
NAND Flash MIO7 cle
NAND Flash MIO 8 re_b
NAND Flash MIO 9 data[4]
NAND Flash MIO 10 data[5]
NAND Flash MIO 11 data[6]

Figure 3-15:

10 Type

LVCMOS 3.3V
LVCMOS 3.3V
LVCMOS 3.3V
LVCMOS 3.3V
LVCMOS 3.3V
LVCMOS 3.3V
LVCMOS 3.3V
LVCMOS 3.3V
LVCMOS 3.3V
LVCMOS 3.3V

LVCMOS 3.3V

The NAND controller has the following features:

- 8/16-bit I/0 width with one chip select signal

o ONFI specification 1.0

- 16-word read and 16-word write data FIFOs

o 8-word command FIFO

- Programmable I/O cycle timing

o ECC assist

- Asynchronous memory operating mode

Clock Configuration

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019

Speed

slow
slow
slow
slow
slow
slow
slow
slow
slow
slow

slow

NAND Controller Options

Clock

Generation

0

1

2

3

Figure 3-16: Clock Configuration

www.Xxilinx.com

Pullup

ena.. v
disabled
disabled
disabled
disabled
disabled
disabled

disabled

Summary Report

Direction Polarity

out

out

out

inout

inout

inout

out

out

inout

inout

inout

| Send Feedback l 65

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=65
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=65

(: X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

You can configure clocks in the Zyng-7000 device using one of the following methods:

- From the Page Navigator, click Clock Configuration.

o In the Zynq block design, click the Clock Configuration block.

The following figure shows a collapsed view of the Clock Configuration page.

ZYNQ7 Processing System (5.5) g

© Documentation £F Presets IP Location &} Import XPS Settings

Page Navigator Clock Configuration Summary Report
Zynq Block Design Basic Clocking Advanc
PS-PL Configuration Input Frequency (MHz) 33.333333 CPU Clock Ratio' 6:2:1 v
Peripheral l/O Pi z a

eriphera ins «Q T 2 =
MIO Configuration Search
Clock Configuration Component Clock Source Requested Frequ... Actual Frequency(.. Range(MHz)

> Processor/Memory Clocks

DDR Configuration > 10 Peripheral Clocks ‘

> PLFabric Clocks
SMC Timing Calculation
> System Debug Clocks

Interrupts > Timers

[ox | [caneer |

Figure 3-17: Clock Configuration Page (Collapsed)

Embedded Processor Hardware Design N Send Feedback 66
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=66
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=66

2' X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
The following figure shows an expanded view of the Clock Configuration page.

Clock Configuration ummary Report
Basic Clacking

Input Frequency (MHZ) 33.333333 CPU Clock Ralio| 6:21 w

«a = 0

-

Search

Componant Clock Source Requested Fragu... Aclual Frequancyl.. Range{MHz)
= ProcessorMemory Clocks
cPU ARMPLL ~ BG6BGEGGES 566 GESERT 50.0: 6670
DDR DDRPLL +~ 533333333 533.333374 200.000000 : 534.000..

* |0 Peripheral Clocks

BMC 10 PLL ¥ 100 100000000 10.000000 : 100 000000
Qspl 0 PLL 200 10000000 10.000000 : 200 000000
EMETD IO FLL 1000 Mops 10.000000
EMET1 10 PLL 1000 Mops 10.000000
S0I0 I0PLL 100 10000000 10.000000 © 125 000000
= 10 PLL 166 665666 10000000 0.000000 : 200 000000
< CAN
CAN CLEK 0 FLL 100 10.000000 0. 100000 © 100000000
CAND MIOCLEK External -1 238095 -2:-1

Figure 3-18: Processor and Memory Clock Configurations Page (Expanded)

The Zynq-7000 SoC Technical Reference Manual (UG585) [Ref 6] describes the clocking of
the PS in detail. The Zynq clocking dialog box lets you set the peripheral clocks. The
peripherals on the PS typically allow clock source selection from internal PLLs or from an
external clock source. Most of the clocks can select the PLL to generate the clock.

Because the same PLL generates multiple frequencies, it might not be possible to get the
exact frequency entered in the Requested Frequency (MHz) column. The achievable
frequency is in the Actual Frequency (MHz) column.

Note: The frequency for a specific peripheral depends on many factors, such as input frequency,
frequency for other peripherals driven from the same PLL, and restrictions from the architecture.
Details of the M & D values chosen by the tool are available in the log file.

DDR Configuration

Memeory Interfaces

DDR2/3,LPDDR2
Controller

Figure 3-19: DDR Controller

To configure DDR, in the Zyng-7000 block design, click the DDR2/3, LPDDR2 Controller
block.

Embedded Processor Hardware Design N Send Feedback 67
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=67
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=67

(: XILINX® Chapter 3: Using a Zyng-7000 Processor in an Embedded Design

The DDR memory controller supports DDR2, DDR3, DDR3L, and LPDDR2 devices and
consists of three major blocks: an AXI memory port interface - DDR interface (DDRI), a core
controller with transaction scheduler (DDRC), and a controller with digital PHY (DDRP).

The DDRI block interfaces with four 64-bit synchronous AXI interfaces to serve multiple AXI
masters simultaneously. Each AXI interface has a dedicated transaction FIFO. The DDRC
contains two 32-entry content addressable memories (CAMs) to perform DDR data service
scheduling to maximize DDR memory efficiency. It also contains a “fly-by” channel for a
low-latency channel to allow access to DDR memory without going through the CAM.

The PHY processes read and write requests from the controller and translates them into
specific signals within the timing constraints of the target DDR memory. The PHY uses
signals from the controller to produce internal signals that connect to the pins using the
digital PHYs. The DDR pins connect directly to the DDR device(s) using the PCB signal
traces.

The system accesses the DDR using the DDRI through its four 64-bit AXI memory ports:

o One AXI port is dedicated to the L2-cache for the CPUs and ACP
- Two ports are dedicated to the AXI_HP interfaces

o The other masters on the AXI interconnect share the fourth port

The DDRI arbitrates the requests from the eight ports (four reads and four writes). The
arbiter selects a request and passes it to the DDR controller and transaction scheduler
(DDROQ).

The arbitration is based on a combination of how long the request has been waiting, the
urgency of the request, and if the request is within the same page as the previous request.

The DDRC receives requests from the DDRI through a single interface for both read and
write flows. Read requests include a tag field that the DDR returns with the data. The DDR
controller PHY (DDRP) drives the DDR transactions.

Note: 8-bit interfaces are not supported; however, 8-bit parts can be used to create 16/32-bit
interfaces.

Figure 3-20 shows the DDR controller Configurations page.

Embedded Processor Hardware Design N Send Feedback 68
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=68
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=68

(: X”_INX® Chapter 3: Using a Zyng-7000 Processor in an Embedded Design

DDR Configuration Summary Report
v| Enable DDR
« z 2

Search:

Name Select Description

~ DDR Controller Configuration

Memory Type DDR 3 v | Type of memory interface. Refer to UG585 Zynq Technical Reference ...
Memory Part MT41J128M8 JP-.. v Memory component part number. For unlisted parts choose "Custom...
Effective DRAM Bus Width 32 Bit v | Data width of DDR interface, not including ECC data width. Referto U...
ECC Disabled Enables error correction code support. ECC is supported only for an ..
Burst Length 8 v | Minimum number of data beats the controller should use when com...
DDR 533.333333 Memory clock frequency. The allowed freq range is (200.000000 : 53
Internal Vref Enables internal voltage reference source. Disable to use external Vr...
Juntion Temperature (C) Normal (0-85 v Intended operating temperature range. Controls the DDR refresh inte...

v

Memory Part Configuration

> Training/Board Details User Input v
Additive Latency (cycles) 0 Additive Latency (cycles). Increases the efficiency of the command an...
> Enable Advanced options Enable Advanced DDR QoS settings

Figure 3-20: DDR Controller Configurations Page

GIC - Interrupt Controller

You can configure the Generic Interrupt Controller (GIC) in one of two methods:

« In the Page Navigator, click Interrupts.

« In the Zyng block design, click the GIC block, shown in the following figure.

GIC

Figure 3-21: Generic Interrupt Controller

Embedded Processor Hardware Design N Send Feedback 69
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=69
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=69

& XILINX.

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

The following figure shows the Interrupt Port Configuration page.

Interrupts
« Q = =2
Search:

Interrupt Port
b Fabric Interrupts
~ PL-PS Interrupt Ports
IRQ_F2P[15:0]
Core0_nFIQ
Core0_nIRQ
Core1_nFlQ
Core1_nIRQ
~ PS-PL Interrupt Ports
IRQ_P2F_DMAC_ABORT
IRQ_P2F_DMACO
IRQ_P2F_DMACA1
IRQ_P2F_DMAC2
IRQ_P2F_DMAC3
IRQ_P2F_DMAC4
IRQ_P2F_DMACS5
IRQ_P2F_DMACE
IRQ_P2F_DMAC7

IDN D2C MM

[91:84],[6...
28
31
28
31

Summary Report

Description
Enable PL Interrupts to PS and vice versa

Enables 16-bit shared interrupt port from the PL. MSB is assigned th...
Enables fast private interrupt signal for CPUO from the PL

Enables private interrupt signal for CPUO from the PL

Enables fast private interrupt signal for CPU1 from the PL

Enables private interrupt signal for CPU1 from the PL

Enables shared interrupt abort signal from DMAC to the PL
Enables shared interrupt signal 0 from DMAC to the PL
Enables shared interrupt signal 1 from DMAC to the PL
Enables shared interrupt signal 2 from DMAC to the PL
Enables shared interrupt signal 3 from DMAC to the PL
Enables shared interrupt signal 4 from DMAC to the PL
Enables shared interrupt signal 5 from DMAC to the PL
Enables shared interrupt signal 6 from DMAC to the PL
Enables shared interrupt signal 7 from DMAC to the PL

Crnahlac charad intarrint cinnal framm QUMM $n tha DI

Figure 3-22: GIC Interrupts

GIC is a centralized resource for managing interrupts sent to the CPUs from the PS and PL.
The controller enables, disables, masks, and prioritizes the interrupt sources and sends

them to the selected CPU (or CPUs) in a programmed manner as the CPU interface accepts
the next interrupt. In addition, the controller supports security extension for implementing

a security-aware system.

« The controller is based on the Arm® Generic Interrupt Controller architecture version

1.0 (GIC v1), non-vectored.

« The private bus on the CPU accesses the registers for fast read/write response by
avoiding temporary blockage or other bottlenecks in the Interconnect.

« The interrupt distributor centralizes all interrupt sources before dispatching the one
with the highest priority to the individual CPUs.

The GIC ensures that, when you target an interrupt to several CPUs, only one CPU takes the
interrupt at a time. All interrupt sources contain a unique interrupt ID number. All interrupt
sources have their own configurable priority and list of targeted CPUs.

Embedded Processor Hardware Design

UG898 (v2019.1) June 4, 2019

. Send Feedback 70
www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=70
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=70

2: X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

Both the Zyng-7000 SoC Technical Reference Manual (UG585) [Ref 6] and the Zyng-7000 SoC
Software Developers Guide (UG821) [Ref 9] contain information regarding the logic blocks in
the Zyng-7000 device.

Interconnect between PS and PL

AXI_HP Interfaces

High Performamce
AXI 32b/64b Slave
Ports

Figure 3-23: AXI_HP Interfaces

The four AXTI_HP interfaces provide PL bus masters with high-bandwidth data paths to the
DDR and OCM memories. Each interface includes two FIFO buffers for read and write traffic.
The PL to the memory Interconnect routes the high-speed AXT_HP ports either to two DDR
memory ports or to the OCM. The AXI_HP interfaces are also referenced as AXI FIFO
interfaces (AFl), to emphasize their buffering capabilities.

ﬁ IMPORTANT: You must enable the PL level shifters using LVL_SHFTR_EN before PL logic communication
can occur.

Enable these interfaces by selecting PS-PL Configuration from the Page Navigator and
expanding the HP Slave AXI Interface option as shown in Figure 3-24.

Embedded Processor Hardware Design N Send Feedback 71
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=71
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=71

(: X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

PS-PL Configuration Summary Report

«Q = 2

Search:

Name Select Description

> General

> AXINon Secure Enablement 0 v | Enable AXI Non Secure Transaction

> GP Slave AXl Interface

¢

HP Slave AXl Interface

~ S AXI HPO interface v Enables AXI high performance slave interface 0
S AXI HPO DATAWIDTH 64 v | Allows HPO to be used in 32/64 bit data width mode
> S AXI HP1 interface Enables AXI high performance slave interface 1
> S AXI HP2 interface Enables AXI high performance slave interface 2
> S AXIHP3 interface Enables AXI high performance slave interface 3

> ACP Slave AXI Interface
> DMA Controller

> PS-PL Cross Trigger interface Enables PL cross trigger signals to PS and vice-versa

Figure 3-24: Enabling AXI HP Interfaces

The interfaces provide a high-throughput data path between PL masters and PS memories
including the DDR and on-chip RAM. The main features include:

Embedded Processor Hardware Design

32- or 64-bit data wide master interfaces (independently programmed per port)

Efficient dynamic upsizing to 64 bits for aligned transfers in 32-bit interface mode,
controllable using AxCACHE

Automatic expansion to 64-bits for unaligned 32-bit transfers in 32-bit interface mode
Programmable release threshold of write commands

Asynchronous clock frequency domain crossing for all AXI interfaces between the PL
and PS

Smoothing out of “long-latency” transfers using 1 KB (128 by 64 bit) data FIFOs for
both reads and writes

QoS signaling available from PL ports
Command and Data FIFO fill-level counts available to the PL
Standard AXI 3.0 interfaces support

Programmable command issuance to the interconnect, separately for read and write
commands

. l Send Feedback l 72
UG898 (v2019.1) June 4, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=72
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=72

2: X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

« Large slave interface read acceptance capability in the range of 14 to 70 commands
(burst length dependent)

« Large slave interface write acceptance capability in the range of 8 to 32 commands
(burst length dependent)

AXI ACP Interface

The Accelerator Coherency Port (ACP) provides low-latency access to programmable logic
masters, with optional coherency and L1 and L2 cache.

From a system perspective, the ACP interface has similar connectivity as the APU CPUs. Due
to this close connectivity, the ACP directly competes for resource access outside of the APU

block.

ﬁ IMPORTANT: You must enable the PL level shifters using LVL_SHFTR_EN before PL logic communication
can occur.

In the ZYNQ7 block design, click the 64b AXI ACP Slave Ports block to configure the
AXI_ACP.

Gl

Ax|
ACP

Slave
Portz

Figure 3-25: AXI ACP Configuration

Alternatively, select the PS-PL Configuration and expand ACP Slave AXI Interface.

The following figure shows the ACP AXI Slave Configuration page.

PS-PL Configuration Summary Report
« Q = 2

Search:

Name Select Description
> General
> AXINon Secure Enablement 0 v | Enable AXI Non Secure Transaction

> GP Slave AXl Interface
> HP Slave AXl Interface
~ ACP Slave AXl Interface
S AXI ACP interface v Enables AXI coherent 64-bit slave interface
Tie off AXUSER Tie off AXUSER signals to high, enabling coherency when allowed by ...
> DMA Controller
> PS-PL Cross Trigger interface Enables PL cross trigger signals to PS and vice-versa

Figure 3-26: ACP Slave AXI Interface Page

Embedded Processor Hardware Design N Send Feedback 73
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=73
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=73

& XILINX.

AXI GP Interfaces

AXI_GP features include:

o

o

These interfaces are connected directly to the ports of the master interconnect and the
slave interconnect without additional FIFO buffering, unlike the AXI_HP interfaces, which
have elaborate FIFO buffering to increase performance and throughput. Therefore, the

Standard AXI protocol
Data bus width: 32
Master port ID width: 12

Master port issuing capability: 8 reads, 8 writes

Slave port ID width: 6

Slave port acceptance capability: 8 reads, 8 writes

performance is constrained by the ports of the master interconnect and the slave
interconnect. These interfaces are for general-purpose use only; they are not intended to
achieve high performance.

Chapter 3: Using a Zyng-7000 Processor in an Embedded Design

ﬁ IMPORTANT: You must enable the PL level shifters using LVL_SHFTR_EN before PL logic communication
can occur.

In the ZYNQ7 block design, click the following block to configure the AXI_GP interface.

Alternatively, in the Page Navigator, select the PS-PL Configuration and expand the GP
Master AXI Interface and GP Slave AXI Interface options.

32b GP
AXI

Master
Ports

32b GP
AXI
Slave
Ports

Figure 3-27: AXI GP Configuration

Figure 3-28 shows the GP AXI Master and Slave Configuration page.

Embedded Processor Hardware Design

UG898 (v2019.1) June 4, 2019

www.Xxilinx.com

l Send Feedback l

74

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=74
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=74

2: X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

PS-PL Configuration Summary Report

« Q = <

Search:

Name Select Description

> General ~
v AXI Non Secure Enablement 0 v | Enable AXI Non Secure Transaction

~ GP Master AXI Interface

~ M AXI GPO interface v Enables General purpose AXI master interface 0
Static remap Enables static remap for GPO interface
Thread ID Width 12 Thread ID Width for GP0 interface

~ M AXI GP1 interface Enables General purpose AXI master interface 1
Static remap 0 Enables static remap for GP1 interface
Thread ID Width 12 Thread ID Width for GP1 interface

v GP Slave AXl Interface
S AXI GPO interface Enables General purpose 32-bit AXl Slave interface 0
S AXI GP1 interface Enables General purpose 32-bit AXI Slave interface 1

Figure 3-28: GP Master and Slave AXI Interfaces

PS-PL Cross Trigger Interface

An embedded cross trigger (ECT) is the cross-triggering mechanism. Through ECT, a
CoreSight™ technology component can interact with other components by sending and
receiving triggers. ECT is implemented with two components:

o Cross trigger matrix (CTM)

o Cross trigger interface (CTI)
One or more CTMs form an event broadcasting network with multiple channels. A CTI
listens to one or more channels for an event, maps a received event into a trigger, and sends
the trigger to one or more CoreSight components connected to the CTI. A CTl also
combines and maps the triggers from the connected CoreSight technology components

and broadcasts them as events on one or more channels. Both CTM and CTI are CoreSight
technology components of the control and access class.

ECT is configured with:

o Four broadcast channels
o Four CTls

Note: Power-down is not supported.

You can enable cross-triggering by selecting the PS-PL Cross Trigger Interface in the ZYNQ7
Processing System configuration dialog box, shown in the following figure.

Embedded Processor Hardware Design N Send Feedback 75
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=75
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=75

& XILINX.

PS-PL Configuration

« Q = S

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

Search:
Name Select
? UMALontroler
v PS-PL Cross Trigger interface
~ Input Cross Trigger
Cross Trigger Input0 DISABLED
Cross Trigger Input1 DISABLED
Cross Trigger Input2 DISABLED
Cross Trigger Input3 DISABLED
~ Qutput Cross Trigger
Cross Trigger QOutput0 DISABLED
Cross Trigger Output1 DISABLED
Cross Trigger Qutput2 DISABLED
Cross Trigger Output3 DISABLED
Figure 3-29:

Summary Report

Description

Enables PL cross trigger signals to PS and vice-versa

Enables PL cross trigger signal 0 to PS CPU Debug Request event
Enables PL cross trigger signal 1 to PS CPU Debug Request event
Enables PL cross trigger signal 2 to PS CPU Debug Request event
Enables PL cross trigger signal 3 to PS CPU Debug Request event

Enables PS CPU Debug Acknowledgement event to PL cross trigger ...
Enables PS CPU Debug Acknowledgement event to PL cross trigger ...
Enables PS CPU Debug Acknowledgement event to PL cross trigger ...
Enables PS CPU Debug Acknowledgement event to PL cross trigger ...

PS-PL Cross Trigger Interface

Using the Programmable Logic (PL)

The PL provides a rich architecture of user-configurable capabilities, as follows:

« Configurable logic blocks (CLB)

o 6-input look-up tables (LUTs) with memory capability within the LUT

- Register and shift register functionality

- Adders that can be cascaded

+ 36 Kb block RAM

« Dual ports, up to 72 bits wide

« Configurable as dual 18 Kb
« Programmable FIFO logic

« Built-in error correction circuitry

» Digital signal processing - DSP48E1 Slice

o 25 x 18 two's complement multiplier/accumulator high-resolution (48 bit) signal

processor

- Power-saving 25-bit pre-adder to optimize symmetrical filter applications

- Advanced features: optional pipelining, optional ALU, and dedicated buses for

cascading

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019

. Send Feedback
www.Xxilinx.com

76

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=76
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=76

(: XILINX® Chapter 3: Using a Zyng-7000 Processor in an Embedded Design

+ Clock management:
- UHigh-speed buffers and routing for low-skew clock distribution
- Frequency synthesis and phase shifting
- Low-jitter clock generation and jitter filtering
« Configurable I/Os
o High-performance SelectlO™ technology

- High-frequency decoupling capacitors within the package for enhanced signal
integrity

- Digitally controlled impedance that can be tri-state for lowest power, high-speed
I/O operation

- High range (HR) I/Os support 1.2 Vto 3.3 V

o High performance (HP) I/Os support 1.2 V to 1.8 V (7z030, 7z045, and 7z100
devices)

« Low-power gigabit transceivers
- (72030, 7z045, and 7z100 devices)
o High-performance transceivers capable of up to 12.5 Gb/s (GTX)
- Low-power mode optimized for chip-to-chip interfaces

- Advanced transmit pre- and post-emphasis, and receiver linear (CTLE) and decision
feedback equalization (DFE), including adaptive equalization for additional margin

« Analog-to-digital converter (XADC)
o Dual 12-bit 1 MSPS analog-to-digital converters (ADCs)
- Up to 17 flexible and user-configurable analog inputs
- On-chip or external reference option
o On-chip temperature (£4°C max error) and power supply (x1% max error) sensors
- Continuous JTAG access to ADC measurements
« Integrated interface blocks for PCI Express designs (7z030, 7z045, and 72100 devices)

- Compatible to the PCl Express™ base specification 2.1 with Endpoint and Root Port
capability

o Supports Gen1 (2.5 Gb/s) and Gen2 (5.0 Gb/s) speeds

« Advanced configuration options, advanced error reporting (AER), end-to-end CRC
(ECRC)

Embedded Processor Hardware Design N Send Feedback 77
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=77
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=77

(: XILINX® Chapter 3: Using a Zyng-7000 Processor in an Embedded Design

Creating Custom Logic

The Vivado® IP packager lets you and third-party IP developers use the Vivado IDE to
prepare an intellectual property (IP) design for use in the Vivado IP catalog. The IP user can
then instantiate this third-party IP into a design in the Vivado Design Suite.

When IP developers use the Vivado Design Suite IP packaging flow, the IP user has a
consistent experience whether using Xilinx IP, third-party IP, or customer-developed IP
within the Vivado Design Suite.

IP developers can use the IP packager feature to package IP files and associated data into
a ZIP file. The IP user receives this generated ZIP file and installs the IP into the Vivado
Design Suite IP catalog. The IP user then customizes the IP through parameter selections
and generates an instance of the IP.

See the Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator
(UG994) [Ref 23] and the Vivado Design Suite Tutorial: Designing IP Subsystems Using IP
Integrator (UG995) [Ref 24] for more information.

O RECOMMENDED: To verify the proper packaging of the IP before handing it off to the IP user, Xilinx®
recommends that the IP developer run each IP module completely through the IP user flow to validate
that the IP is ready for use.

Zyng-7000 Processing System Verification

The Zynq®-7000 SoC Verification IP (VIP) is developed for customers designing
Zyng-based applications. It enables the functional verification of PL logic by mimicking the
PS-PL interfaces in PS logic. This VIP is delivered as a package of encrypted Verilog
modules. VIP operation is controlled by using a sequence of Verilog tasks contained in a
Verilog-syntax file. For more information on the Zynq VIP, see the Zynq-7000 SoC
Verification IP Data Sheet (DS940) [Ref 1].

Features

« Pin compatible and Verilog-based simulation model
« Supports all AXl interfaces
o AXl 3.0 compliant
» 32/64-bit data-width for AXTI_HP, 32-bit for AXI_GP and 64-bit for AXI_ACP
« Sparse memory model (for DDR) and a RAM model (for OCM)
« SystemVerilog task-based API
« Delivered in Vivado Design Suite

« Blocking and non-blocking interrupt support

Embedded Processor Hardware Design N Send Feedback 78
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=78
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=78

2: X”_INX® Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

« ID width support as per the Zyng-7000 specification

« Support for FIXED, INCR, and WRAP transaction types

« Support for all Zyng-7000 supported burst lengths and burst sizes
« Protocol checking, provided by the AXI VIP models

« Read/Write request capabilities

« System address decode for OCM/DDR transactions

Additional Features

« System address decode for register map read transactions (only default value of the
registers can be read)

« Support for static remap of AXI_GP0 and AXI_GP1
« Configurable latency for read/write responses
« First-level arbitration scheme based on the priority indicated by the AXI QoS signals

« Datapath connectivity between any AXI master in PL and the PS memories and register
map

« Parameters to enable and configure AXI master and slave ports

» APIs to set the traffic profile and latencies for different AXI master and slave ports
« Support for FPGA logic clock generation

» Soft reset control for the PL

« APl support to pre-load the memories, read/wait for the interrupts from PL, and checks
for certain data patterns to be updated at certain memory location

« All unused interface signals that output to the PL are tied to a valid value

« Semantic checks on all other unused interface signals

Embedded Processor Hardware Design N Send Feedback 79
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=79
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=79

& XILINX

Chapter 4

Using a MicroBlaze Processor in an
Embedded Design

Introduction to MicroBlaze Processor Design

The Vivado® IDE IP integrator is a powerful tool that lets you stitch together a
processor-based system.

The MicroBlaze™ embedded processor is a reduced instruction set computer (RISC) core,
optimized for implementation in Xilinx® Field Programmable Gate Arrays (FPGAS).

The following figure shows a functional block design of the MicroBlaze core.

Instruction-side Data-side
Bus interface Bus interface
M_AXI_IC] Memory Management Unit (MMU)] M_AXI_DC
M_ACE_IC E:> <:: | ITLB |<_| UTLB |_>| DTLB | :.|> ® M_ACE_DC
= 2
= S
® Program N N/ @
Counter Special
i
— Purpose ALU —
@ Registers Shift
A i Barel Shit || | gus
Branch IF
Target Cache Multiplier
Divider
T B instruction
IF Buffer FPU
Instruction
Decode 1 f{ } :> MO_AXIS ..
M15_AXIS
. . Register File : SO_AXIS ..
[] Optional MicroBlaze feature > 32 registers : <:| S15_AXIS

X19738-100318

Figure 4-1: Block Design of MicroBlaze Core

Embedded Processor Hardware Design N Send Feedback 80
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=80
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=80

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

The MicroBlaze processor is highly configurable: you can select a specific set of features
required by your design. The fixed feature set of the processor includes:

« Thirty-two 32-bit or 64-bit general purpose registers
« 32-bit instruction word with three operands and two addressing modes
« 32-bit address bus, extensible to 64-bits

« Single issue pipeline

In addition to these fixed features, the MicroBlaze processor has parameterized values that
allow selective enabling of additional functionality.

O RECOMMENDED: Older (deprecated) versions of MicroBlaze support a subset of the optional features
described in this manual. Only the latest (preferred) version of MicroBlaze (v11.0) supports all options.
Xilinx recommends that new designs use the latest preferred version of the MicroBlaze processor.

See the MicroBlaze Processor Reference Guide (UG984) [Ref 22] for more information.

MicroBlaze can be implemented either as a 32-bit processor or a 64-bit processor,
depending on user requirements. In general, Xilinx recommends that you select the 32-bit
processor implementation unless specific requirements cannot be met. The 64-bit
processor extends general-purpose registers to 64 bits, provides additional instructions to
handle 64-bit data, and can transparently address instructions and data using up to a 64-bit
address. In addition, the floating point unit (FPU) is extended to support double precision.

Another useful document reference is the MicroBlaze Triple Modular Redundancy (TMR)
Subsystem (PG268) [Ref 3], which provides soft error detection, correction and recovery for
Xilinx devices. The guide describes the IP cores that are part of the solution, and explains
typical use cases.

Creating a MicroBlaze Processor Design

Designing with a MicroBlaze processor in the Xilinx Vivado IP integrator is different than it
was in the legacy ISE® Design Suite and the Embedded Development Kit (EDK).

The Vivado IDE uses the IP integrator tool for embedded development. The IP integrator is
a GUI-based interface that lets you stitch together complex IP subsystems.

A variety of IP are available in the Vivado IDE IP catalog to meet the needs of complex
designs. You can also add custom IP to the IP catalog.

Embedded Processor Hardware Design N Send Feedback 81
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=81
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=81

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Designing with the MicroBlaze Processor

1. Inthe Flow navigator panel, under IP integrator, click the Create Block Design button to
open the Create Block Design dialog box.

2. Type the Design Name, as shown in the following figure.

¢ Create Block Design | &3 |
Please specify name of block design. ‘
Design name: design_1
Directory: =0 =Local to Project= hd
Specify source set Design Sources w
=

Figure 4-2: Create Block Design Dialog Box

The Block Design window opens, as shown in the following figure.

Diagram ? 0 & X

This design is empty. Press the + button to add IP.

Figure 4-3: The Block Design Canvas

3. Within the empty design, use either the Add IP button + on the design canvas, or
right-click in the canvas, and select Add IP.

Embedded Processor Hardware Design N Send Feedback 82
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=82
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=82

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

A Search box opens to let you search for and select the MicroBlaze processor, as shown
in the following figure.

)] IP Details]
Search: “ micr (3 matches)
MicroBlaze MName: MicroBlaze
MicroBlaze Debug Module (MDM) Version: 1.0

Interfaces: AXI4, AXI4-Stream

Description: The MicroBlaze 32 and 64 bit soft

processor core, praviding an

instruction set optimized for

embedded applications with many

user-configurable options. MicroBlaze

has many advanced architecture

features like Instruction and Data-side
EMTER to select, ESC to cancel, Ctrl+Q for IP details cache with AXl interfaces, ‘

MicroBlaze MCS

Figure 4-4: Search the IP Catalog for MicroBlaze

When you select the MicroBlaze IP, the Vivado IP integrator adds the IP to the design,
and a graphical representation of the processing system displays, as shown in the
following figure.

microblaze_0

|ll4 INTERRUPT

=< MicroBlaze ® ‘il

MicroBlaze
Figure 4-5: MicroBlaze Processor in Block Design Canvas
Note: The Tcl command is as follows:
create_bd_cell -type ip -vlnv xilinx.com:ip:microblaze:11.0 microblaze_0

4. Double-click the MicroBlaze IP in the canvas to invoke the Re-customize IP process,
which displays the Re-customize IP configuration page for the MicroBlaze processor,
shown in Figure 4-6.

Embedded Processor Hardware Design N Send Feedback 83
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=83
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=83

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Using the MicroBlaze Configuration Window

The following figure shows the Welcome page of the MicroBlaze configuration wizard.

MicroBlaze (11.0) s

© Documentation IP Location /# Advanced

IP Symbol Resources Component Name microblaze_0
Frequency
~
= Area ‘Welcome to MicroBlaze Configuration Wizard
B Performance
. -
Resource Estim ates M ICIro B |aze -
Usage Information
100.0
& Select a predefined configuration with Select Configuration below. Information about the selected configuration
90.0 can be found in the tooltip. Each predefined configuration completely changes the MicroBlaze parameters.
800 -« To modify the configuration, click on the Next button, click on the Advanced button at the top to directly
700 access parameters in a tabbed interface, or click OK to accept the configuration and close the dialog.
2
= 600 . . .
|5 Predefined Configurations
5 500 - :
a Select Configuration = Current Settings v
40.0
300 Select Processor Implementation
200 ®) 32 64
100T—
0.0+ General Settings
0.0

Select implementation optimization PERFORMANCE

Resource Usage

BRAM: 0 DSP4SE: 0 Page 1 of 4

| oK | ‘ Cancel ‘

Figure 4-6: MicroBlaze Configuration Wizard

The MicroBlaze Configuration wizard provides the following:

« Predefined configuration templates for one-click configuration.

« Estimates of MicroBlaze relative frequency, area, and performance, giving immediate
feedback based on selected configuration options.

« Page by page guidance through the configuration process.
« Tool tips for all configuration options to understand the effect of each option.

« An Advanced button that provides a tabbed interface for direct access to all of the
configuration options, see MicroBlaze Configuration Wizard: Advanced Mode.

Embedded Processor Hardware Design N Send Feedback 84
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=84
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=84

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

)

Embedded Processor Hardware Design

IMPORTANT: Interrupt & Reset and PVR options are only accessible through the Advanced mode.

The MicroBlaze Configuration wizard includes the following pages which are shown
depending on the options selected on the Welcome page:

Welcome Page: Shows the Predefined Configurations and General Settings. See the
MicroBlaze Configuration Wizard: Welcome Page for more information.

General: Shows the selection of execution units and optimization settings (this General
information is persistent). See the MicroBlaze Configuration Wizard: General Page for
more information.

Exceptions: Shows the Exceptions page when you select Enable Selections that option
on the Welcome Page. See the MicroBlaze Configuration Wizard: MMU Page for more
information.

Cache: Cache settings page is shown when you select Use Instructions and Data
Caches. See the MicroBlaze Configuration Wizard: Cache Page for more information.

MMU: Shows the MMU settings page when you select Use Memory Management on
the Welcome Page. See the MicroBlaze Configuration Wizard: MMU Page for more
information.

Debug: Shows the number of breakpoints and watchpoints when you select Enable
MicroBlaze Debug Module Interface. See the MicroBlaze Configuration Wizard:
Debug Page for more information.

Buses: Shows the Bus settings, which are persistent, as the last page of the
configuration wizard. See the MicroBlaze Configuration Wizard: Buses Page for more
information.

The left portion of the dialog box shows the relative values of the frequency, area, and
performance for the current settings, BRAM, and DSP numbers:

Frequency: Estimated frequency percentage relative to the maximum achievable
frequency with this architecture and speed grade, which gives an indication of the
relative frequency that can be achieved with the current settings.

Note: Thisis an estimate based on a set of predefined benchmarks, which can deviate up to 30%
from the actual value. Do not take this estimation as a guarantee that the system can reach a
corresponding frequency.

Area: Estimated area percentage in LUTs relative to the maximum area using this
architecture, which gives an indication of the relative MicroBlaze area achievable with
the current settings.

Note: This is an estimate, which can deviate up to 5% from the actual value. Do not take this
estimation as a guarantee that the implemented area matches this value.

Performance: Indicates the relative MicroBlaze processor performance achievable with
the current settings, relative to the maximum possible performance.

s Send Feedback 85
UG898 (v2019.1) June 4, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=85
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=85

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Note: This is an estimate based on a set of benchmarks, and actual performance can vary
significantly depending on the user application.

BRAMs: Total number of block RAMs used by the MicroBlaze processor. The instruction
and data caches, and the branch target cache use block RAMs, as well as the memory
management unit (MMU), which uses one block RAM in virtual or protected mode with
32-bit mode, and two with 64-bit mode.

DSP48: Total number of DSP48 used by the MicroBlaze processor. The integer
multiplier, and the floating point unit (FPU) use this total value to implement float
multiplication.

MicroBlaze Configuration Wizard: Welcome Page

The simplest way to use the MicroBlaze™ Configuration wizard is to select one of the ten
predefined templates, each defining a complete MicroBlaze configuration. You can use a
predefined template as a starting point for a specific application, using the wizard to refine
the configuration, by adapting performance, frequency, or area.

When you modify an option, you received direct feedback that shows the estimated relative
change in performance, frequency, and area in the information display.

The three presets are:

Microcontroller preset: Microcontroller preset suitable for microcontroller designs.
Area optimized, with no caches and debug enabled.

Real-time preset: Real-time preset geared towards real-time control. Performance
optimized, small caches and debug enabled, most execution units.

Application preset: Application preset design for high performance applications.
Performance optimized, large caches and debug enabled, and all execution units
including floating-point.

The other options are:

Embedded Processor Hardware Design

Minimum Area: The smallest possible MicroBlaze core. No caches or debug.

Maximum Performance: Maximum possible performance. Large caches and debug, as
well as all execution units.

Maximum Frequency: Maximum achievable frequency. Small caches and no debug,
with few execution units.

Linux with MMU: Settings suitable to get high performance when running Linux with
MMU. Memory Management enabled, large caches and debug, and all execution units.

Low-end Linux with MMU: Settings corresponding to the MicroBlaze Embedded
Reference System. Provides suitable settings for Linux development on low-end
systems. Memory Management enabled, small caches and debug.

s Send Feedback 86
UG898 (v2019.1) June 4, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=86
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=86

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

« Typical: Settings giving a reasonable compromise between performance, area, and
frequency. Suitable for standalone programs, and low-overhead kernels. Caches and

debug enabled.

« Frequency Optimized: Designed to provide all MicroBlaze features, including MMU,

while still achieving high frequency by utilizing the frequency optimized 8-stage
pipeline.

The following figure shows the Predefined Configurations in the Configuration wizard.

Welcome to MicroBlaze Configuration Wizard
. P74
MicroBlaze™
Usage Information

® Select a predefined configuration with Select Configuration below. Information about the selected configu
can be found in the tooltip. Each predefined configuration completely changes the MicroBlaze parameters.

=« To modify the configuration, click on the Next button, click on the Advanced button at the top to directly
access parameters in a tabbed interface, or click QK to accept the configuration and close the dialog.

Predefined Configurations

Select Configuration | Current Settings v

-

Current Settings
Select Processor Implem
Microcontroller Preset
DEP) 64 Real-time Preset
Application Preset
General Settings Minimum Area
Maximum Performance
Select imnlementat| . ICF W hd
Maximum Freguency
Linux with MMU
Low-end Linux with MMU

Typical

o

‘ oK ‘ | Cancel

Figure 4-7: MicroBlaze Predefined Configuration Settings

Select Processor Implementation

Select 32-bit or 64-bit processor implementation. The 64-bit processor extends all registers
to 64 bits, provides additional instructions to handle 64-bit data, and can address up to 4 EB
instructions and data using up to a 64-bit address. The extended addressing is selected on

the General tab.

Embedded Processor Hardware Design N Send Feedback
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=87
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=87

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

The compiler automatically generates a 64-bit executable when 64-bit mode is selected.

General Settings

If a pre-defined template is not used, you can select the options from the pages, which are
available for fine-tuning the MicroBlaze processor, based on your design needs. As you
position the mouse over these different options, a tooltip informs you what the particular
option means. The following bullets detail these options.

« Select implementation optimization: When set to:

- PERFORMANCE: Implementation is selected to optimize computational
performance, using a five-stage pipeline.

- AREA: Implementation is selected to optimize area, using a three-stage pipeline
with lower instruction throughput.

- FREQUENCY: Implementation is selected to optimize MicroBlaze frequency, using
an eight-stage pipeline.

O RECOMMENDED: /t is recommended to select AREA optimization on architectures with limited
resources such as Artix 7 or Spartan 7 devices. Selecting FREQUENCY optimization is recommended
in order to reach system frequency targets, particularly with cache-based external memory, MMU,
and/or large LMB memory. However, if performance is critical, AREA or FREQUENCY optimization
should not be selected, because some instructions require additional clock cycles to execute.

Note: You cannot use the Memory Management Unit (MMU), Branch Target Cache, Instruction
Cache Streams, Instruction Cache Victims, Data Cache Victims, and AXI Coherency Extension
(ACE) with area optimization.

« Enable MicroBlaze Debug Module Interface: Enable debug to be able to download
and debug programs using Xilinx System Debugger (XSDB).

O RECOMMENDED: Unless area resources are very critical, it is recommended that debugging be
always enabled.

« Use Instruction and Data Caches: You can use MicroBlaze with an optional instruction
cache for improved performance when executing code that resides outside the LMB
address range.

The instruction cache has the following features:

- Direct mapped (1-way associative)

o User selectable cacheable memory address range

- Configurable cache and tag size

o Caching over AXl4 interface (M_AXI_IC) or CachelLink (XCL) interface

- Option to use 4 or 8 word cache line

Embedded Processor Hardware Design N Send Feedback 88
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=88
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=88

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

o Cache on and off controlled using a bit in the MSR
- Optional WIC instruction to invalidate instruction cache lines

o Optional stream buffers to improve performance by speculatively pre-fetching
instructions

- Optional victim cache to improve performance by saving evicted cache lines
- Optional parity protection; invalidates cache lines if Block RAM bit error is detected

- Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

Activating caches significantly improves performance when using external memory,
even if you must select small cache sizes to reduce resource usage.

« Enable Exceptions: Enables exceptions when using an operating system with exception
support, or when explicitly adding exception handlers in a standalone program.

« Use Memory Management: Enables Memory Management if planning to use an
operating system - such as Linux -with support for virtual memory of memory
protection.

Note: When you enable area optimized MicroBlaze or stack protection, the Memory
Management Unit is not available.

« Enable Discrete Ports: Enables discrete ports on the MicroBlaze instance, which is
useful for:

- Generating software breaks (Ext_BRK, Ext_NM_BRK)

- Managing processor sleep and wakeup (Sleep, Hibernate, Suspend, Wakeup,
Dbg_Wakeup)

- Handling debug events (Debug_Stop, MB_Halted)
- Signaling error when using fault tolerance (MB_Error)
- Pausing the processor (Pause, Pause_Ack, Dbg_Continue)

- Setting reset mode (Reset_Mode)

Embedded Processor Hardware Design N Send Feedback 89
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=89
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=89

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

MicroBlaze Configuration Wizard: General Page

The following figure shows the General page of the MicroBlaze Configuration wizard.

General

Instructions
Enable Barrel Shifter
Enable Floating Point Unit = NONE v
Enable Integer Multiplier = NONE A
Enable Integer Divider
Enable Additional Machine Status Register Instructions
Enable Pattern Comparator

+| Enable Reversed Load/Store and Swap Instructions

Select Extended Addressing MNOMNE A

Optimization
Select implementation optimization PERFORMANCE
Enable Branch Target Cache

Branch Target Cache Size DEFAULT v

Fault Tolerance

[

Figure 4-8: General Page of the MicroBlaze Configuration Wizard
Instructions

« Enable Barrel Shifter: Enables a hardware barrel shifter in MicroBlaze. This parameter
enables the instructions bsrl, bsra, bsll, bsrli, bsrai,bslli, bsifi, and bsefi.
With the 64-bit processor implementation the corresponding long instructions are also
enabled. Enabling the barrel shifter can dramatically improve the performance of an
application, but increases the size of the processor. The compiler uses the barrel shift
instructions automatically if this parameter is enabled.

« Enable Floating Point Unit: Enables a floating point unit (FPU) based on the IEEE-754
standard. Single-precision is available with the 32-bit processor implementation, and
double-precision is added with the 64-bit implementation. Using the FPU significantly
improves the floating point performance of the application and significantly increases
the size of MicroBlaze.

Setting this parameter to BASIC enables add, subtract, multiply, divide and
compare instructions. Setting it to EXTENDED also enables convert and
square-root instructions. The compiler automatically uses the FPU instructions
corresponding to setting of this parameter.

Embedded Processor Hardware Design N Send Feedback 90
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=90
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=90

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

« Enable Integer Multiplier: Enables a hardware integer multiplier in MicroBlaze. This
parameter enables the instructions mul and muli when set to MUL32.

When set to MUL64, this enables the additional instructions: mulh, mulhu, and mulhsu
for 64-bit multiplication. This parameter can be set to NONE to free up DSpP48
primitives in the device for other uses. Setting this parameter to NONE has a minor
effect on the area of the MicroBlaze processor. When this parameter is enabled, the
compiler uses the mul instructions automatically.

« Enable Integer Divider: Enables a hardware integer divider in MicroBlaze. This
parameter enables the instructions, idiv and idivu. Enabling this parameter can
improve the performance of an application that performs integer division, but increases
the size of the processor. When this parameter is enabled, the compiler uses the idiv
instructions automatically.

« Enable Additional Machine Status Register Instructions: Enables additional machine
status register (MSR) instructions for setting and clearing bits in the MSR. This
parameter enables the instructions msrset and msrclr. Enabling this parameter
improves the performance of changing bits in the MSR.

« Enable Pattern Comparator: Enables pattern compare instructions pcmpbf, pcmpegq,
and pcmpne.

The pattern compare bytes find (pcmpb£) instructions return the position of the first
byte that matches between two words and improves the performance of string and
pattern matching operations. The SDK libraries use the pcmpbf instructions
automatically when this parameter is enabled.

The pcmpeq and pcmpne instructions return 1 or 0 based on the equality of the two
words. These instructions improve the performance of setting flags and the compiler
uses them automatically. With the 64-bit processor implementation, the corresponding
long instructions are also enabled.

Selecting this option also enables count leading zeroes instruction, c1z. The clz
instruction can improve performance of priority decoding, and normalization.

« Enable Reversed Load/Store and Swap Instructions: Enables reversed load/store and
swap instructions 1bur, lhur, lwr, sbr, shr, swr, swapb, and swaph. With the 64-bit
processor implementation, the long reversed load/store instructions 11r and s1lr are
also enabled. The reversed load/store instructions read or write data with opposite
endianness, and the swap instructions allow swapping bytes or half-words in registers.
These instructions are mainly useful to improve performance when dealing with
big-endian network access with a little-endian MicroBlaze.

- Enable Additional Stream Instructions: Provides additional functionality when using
AXI4-Stream links, including dynamic access instruction getd and putd that use
registers to select the interface.

Embedded Processor Hardware Design N Send Feedback 91
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=91
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=91

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

The instructions are also extended with variants that provide:

- Atomic get, getd, put, and putd instructions
o Test-only get and getd instructions

- get and getd instructions that generate a stream exception if the control bit is not
set

f IMPORTANT: The extended stream instructions must be enabled to use these additional instructions,
and at least one stream link must be selected. The stream exception must be enabled to use instructions
that generate stream exceptions.

« Select Extended Addressing: Set the memory addressing capability. With the 32-bit
processor implementation, this enables additional load/store instructions to be able to
access a larger address space than 4GB (32-bit address). With the 64-bit processor
implementation, the extended address is handled by normal load/store instructions.
The data side LMB and AXI bus addresses are extended to the number of address bits
corresponding to the selected memory size. The available choices are:

- NONE (32-bit address, no additional instructions)
. 64GB (36-bit address)

- 1TB (40-bit address)

- 16TB (44-bit address)

- 256TB (48-bit address)

- 16EB (64-bit address)

- 4PB (52-bit address)

For more information, including software usage and limitations, see the MicroBlaze
Processor Reference Guide (UG984) [Ref 22].

Optimization
+ Select implementation optimization: This option is the same as in the General
Settings options.

« Enable Branch Target Cache: When set, implements the branch target, which improves
branch performance by predicting conditional branches and caching branch targets.

TIP: The Enable Branch Target Cache option is not enabled when Select implementation
O optimization is set to AREA on the MicroBlaze Configuration Wizard: Welcome Page. Conversely,
enabling Branch Target Cache disables the Area option in Select implementation optimization.

« Branch Target Cache Size: Specify the size of the cache for branch targets.

Embedded Processor Hardware Design N Send Feedback 92
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=92
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=92

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Fault Tolerance

Auto/Manual: Determines if the Vivado tool will automatically enable fault tolerance,
or if you will specify it manually.

« Enable Fault Tolerance Support: When enabled, MicroBlaze protects internal block
RAM with parity, and supports error correcting codes (ECC) in LMB block RAM,

including exception handling of ECC errors. This prevents a bit flip in block RAM from
affecting the processor function.

o If this value is auto-computed (by not overriding it), fault tolerance is automatically
enabled in MicroBlaze when ECC is enabled in connected LMB BRAM controllers.

- If fault tolerance is explicitly enabled, the IP integrator tool enables ECC
automatically in connected LMB BRAM Controllers.

- If fault tolerance is explicitly disabled, ECC in connected LMB BRAM controllers is
not affected.

MicroBlaze Configuration Wizard: Cache Page

The following figure shows the Cache options page for the MicroBlaze configuration.

Cache

+| Enable Instruction Cache +| Enable Data Cache
Instruction Cache Feature Data Cache Feature
Size in Bytes 3Z2kB hd Size in Bytes 32KB v
Line Length 4 ~ Line Length 4 v
Base Address 0x00000000 Base Address 0x00000000
High Address Ox3FFFFFFF [Be] High Address Ox3FFFFFFF
+'| Enable Writes v| Enable Writes
Data Width 32-bit b Data Width 32-bit
Number of Streams 0 ~

Enable Write-back Storage Policy

Number of Victims 0 hd Number of Victims (1]

Figure 4-9: Cache Options Page of the MicroBlaze Configuration Wizard

Enable Instruction Cache: Uses this cache only when it is also enabled in software by
setting the instruction cache enable (ICE) bit in the machine status register (MSR).

The Instruction Cache configurable options are:

- Size in Bytes: Specifies the size of the instruction cache if C_USE_ICACHE is
enabled. Not all architectures permit all sizes.

Embedded Processor Hardware Design

s Send Feedback 93
UG898 (v2019.1) June 4, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=93
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=93

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

o Line Length: Select between 4, 8, or 16 word cache line length for cache
miss-transfers from external instruction memory.

- Base Address: Specifies the base address of the instruction cache. This parameter is
used only if C_USE_ICACHE is enabled.

- High Address: Specifies the high address of the instruction cache. This parameter is
used only if C_USE_ICACHE is enabled.

- Enable Writes: When enabled, one can invalidate instruction cache lines with the
wic instruction. This parameter is used only if C_USE_ICACHE is enabled.

- Use Cache for All Memory Accesses: When enabled, uses the dedicated cache
interface on MicroBlaze is for all accesses within the cacheable range to external
instruction memory, even when the instruction cache is disabled.

Otherwise, the instruction cache uses the peripheral AXI for these accesses when the
instruction cache is disabled.

When enabled, an external memory controller must provide only a cache interface
MicroBlaze instruction memory. Enable this parameter when using AXI Coherency
Extension (ACE).

- Use Distributed RAM for Tags: Uses the instruction cache tags to hold the address
and a valid bit for each cache line. When enabled, the instruction cache tags are
stored in Distributed RAM instead of block RAM. This saves block RAM, and can
increase the maximum frequency.

- Data Width: Specifies the instruction cache bus width when using AXI Interconnect.
The width can be set to:

- 32-bit: Bursts are used to transfer cache lines for 32-bit words depending on
the cache line length,

- Full Cache line: A single transfer is performed for each cache line, with data
width 128, 256, or 512 bits depending on cache line length

- 512-bit: Performs a single transfer, but uses only 128 or 256 bits, with 4 or 8
word cache line lengths.

The two wide settings require that the cache size is at least 8 KB, 16KB, or 32KB
depending upon cache line length. To reduce the AXI interconnect size, this
setting must match the interconnect data width. In most cases, you can obtain
the best performance with the wide settings.

Note: This setting is not available with area optimization, AXI Coherency Extension
(ACE), or when you enable fault tolerance.

- Number of Streams: Specifies the number of stream buffers used by the
instruction cache. A stream buffer is used to speculatively pre-fetch instructions,
before the processor requests them. This often improves performance, because the
processor spends less time waiting for instruction to be fetched from memory.

Embedded Processor Hardware Design N Send Feedback 94
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=94
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=94

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Note: To be able to use instruction cache streams, do not enable area optimization or AXI
Coherency Extension (ACE).

o Number of Victims: Specifies the number of instruction cache victims to save. A
victim is a cache line that is evicted from the cache. If no victims are saved, all
evicted lines must be read from memory again, when they are needed. By saving
the most recent lines, they can be fetched much faster, thus improving
performance.

O RECOMMENDED: /t is possible to save 2, 4, or 8 cache lines. The more cache lines that are
saved, the better performance becomes. The recommended value is 8 lines.

Note: To be able to use instruction cache victims, do not enable area optimization or AXI
Coherency Extension (ACE).

« Enable Data Cache: Uses this cache only when it is also enabled in software by setting
the data cache enable (DCE) bit in the machine status register (MSR).

Data Cache Features:

- Size in Bytes: Specifies the size of the data cache if C_USE_DCACHE is enabled. Not
all architectures permit all sizes.

o Line Length: Select between 4, 8, or 16 word cache line length for cache
miss-transfers from external memory.

- Base Address: Specifies the base address of the data cache. This parameter is used
only if C_USE_DCACHE is enabled.

- High Address: Specifies the high address of the data cache. This parameter is used
only if C_USE_DCACHE is enabled.

. Enable Writes: When enabled, one can invalidate data cache lines with the wdc
instruction. This parameter is used only if C_USE_DCACHE is enabled.

- Use Cache for All Memory Accesses: When enabled, uses the dedicated cache
interface on MicroBlaze is for all accesses within the cacheable range to external
memory, even when the data cache is disabled.

Otherwise, the data cache uses the peripheral AXI for these accesses when the data
cache is disabled. When enabled, an external memory controller must provide only a
cache interface MicroBlaze data memory. Enable this parameter when using AXI
Coherency Extension (ACE).

- Use Distributed RAM for Tags: Uses the data cache tags to hold the address and a
valid bit for each cache line. When enabled, the data cache tags are stored in
Distributed RAM instead of block RAM. This saves block RAM, and can increase the
maximum frequency.

Embedded Processor Hardware Design N Send Feedback 95
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=95
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=95

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

- Data Width: Specifies the data cache bus width when using AXI Interconnect. The
width can be set to:

- 32-bit: Bursts are used to transfer cache lines for 32-bit words depending on
the cache line length

- Full Cache line: A single transfer is performed for each cache line, with data
width 128, 256, or 512 bits depending on cache line length

- 512-bit: Performs a single transfer, but uses only 128 or 256 bits, with 4 or 8
word cache line lengths

The two wide settings require that the cache size is at least 8 KB, 16KB, or 32KB
depending upon cache line length. To reduce the AXI Interconnect size, this
setting must match the interconnect data width. In most cases, you can obtain
the best performance with the wide settings.

Note: This setting is not available with area optimization, AXI Coherency Extension
(ACE), or when you enable fault tolerance.

- Enable Write-back Storage Policy: This parameter enables use of a write-back
data storage policy. When this policy is in effect, the data cache only writes data to
memory when necessary, which improves performance in most cases. With
write-back enabled, data is stored by writing an entire cache line. Using write-back
also requires that the cache is flushed by software when appropriate, to ensure that
data is available in memory; for example, when using direct memory access (DMA).
When not enabled, a write-through policy is used, which always writes data to
memory immediately.

TIP: When the MMU is enabled, setting this parameter allows individual selection of storage policy
O for each TLB entry.

- Number of Victims: Specifies the number of data cache victims to save. A victim is
a cache line that is evicted from the cache. If no victims are saved, all evicted lines
must be read from memory again, when they are needed. By saving the most recent
lines, they can be fetched much faster, thus improving performance.

O RECOMMENDED: /t is possible to save 2, 4, or 8 cache lines. The more cache lines that are saved,
the better performance becomes. The recommended value is 8 lines.

Note: To be able to use data cache victims, do not enable area optimization or AXI Coherency
Extension (ACE).

Embedded Processor Hardware Design N Send Feedback 96
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=96
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=96

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

MicroBlaze Configuration Wizard: MMU Page

The following figure shows the MMU page of the MicroBlaze Configuration.

MMU

Memory Management VIRTUAL v

Memory Management Feature

Data Shadow Translation Look-Aside Buffer Size 4 v
Instruction Shadow Translation Look-Aside Buffer Size 2 v
Enable Access to Memory Management Special Registers = FULL v
MNumber of Memory Protection Zones 16

Privileged Instructions FULL PROTECTION v

Figure 4-10: MicroBlaze Configuration Wizard MMU Page
Memory Management

The Memory Management field specifies the implementation of the memory
management unit (MMU).

« To disable the MMU, set this parameter to None (0), which is the default.

« To enable only the User Mode and Privileged Mode instructions, set this parameter to
USERMODE (1). To enable Memory Protection, set the parameter to PROTECTION (2).

« To enable full MMU functionality, including virtual memory address translation, set this
parameter to VIRTUAL (3).

When USERMODE is set, it enables the Privileged Instruction exception. When
PROTECTION or VIRTUAL is set, it enables the Privileged Instruction exception and the
four MMU exceptions (Data Storage, Instruction Storage, Data TLB Miss, and Instruction TLB
Miss).

Memory Management Features

- Data Shadow Translation Look-Aside Buffer Size: Defines the size of the instruction
shadow translation look-aside buffer (TLB). This TLB caches data address translation
information, to improve performance of the translation. The selection is a trade-off
between smaller size and better performance: the default value is 4.

« Instruction Shadow Translation Look-Aside Buffer Size: Defines the size of the
instruction shadow translation look-aside buffer (TLB). This TLB caches instruction
address translation information to improve performance of the translation. The
selection is a trade-off between smaller size and better performance: the default value
is 2.

Embedded Processor Hardware Design N Send Feedback 97
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=97
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=97

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

« Enable Access to Memory Management Special Registers: Enables access to the
memory management special register using the MFS and MTS instructions:

- Minimal (0) only allows writing TLBLO, TLBHI, and TLBX.
- Read (1) adds reading to TLBLO, TLBHI, TLBX, PID, and ZPR.
o Write (2) allows writing all registers, and reading TLBX.

o Full (3) adds reading of TLBLO, TLBHI, TLBX, PID, and ZPR.

In many cases, it is not necessary for the software to have full read access. For example,
this is the case for Linux memory management code. It is then safe to set access to
Write, to save area. When using static memory protection, access can be set to
Minimal, because the software then has no need to use TLBSX, PID, and ZPR.

* Number of Memory Protection Zones: Specifies the number of memory protection
zones to implement. In many cases memory management software does not use all
available zones. For example, the Linux memory management code only uses two
zones. In this case, it is safe to reduce the number of implemented zones, to save area.

« Privileged Instructions: Specifies which instructions to allow in User Mode.
o Full Protection (0): Ensures full protection between processes.

- Allow Stream Instructions (1): Makes it possible to use AXI4-Stream instructions in
User Mode.

- Allow Extended Address Instruction (2): Makes it possible to use extended
load/store instructions when available.

- Allow Both (3): Allows both types of instructions.

C CAUTION! /t is strongly discouraged to change this setting from Full Protection, unless it is
necessary for performance reasons.

Embedded Processor Hardware Design N Send Feedback 98
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=98
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=98

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

MicroBlaze Configuration Wizard: Debug Page

Debug
MicroBlaze Debug Module Interface BASIC ~
Hardware Breakpoints
Mumber of PC Breakpoints 1
Mumber of Write Address Watchpoints 0

Mumber of Read Address Watchpoints 0

Performance Monitoring
Mumber of Performance Monitor Event Counters | 5
Mumber of Performance Monitor Latency Counters 1

Performance Monitor Counter Width 32

Trace & Profiling

Trace Buffer Size 8kB

Profile Buffer Size | NOME
Figure 4-11: MicroBlaze Configuration Wizard Debug Page
Debug Options
MicroBlaze Debug Module Interface

« BASIC: Enables the MicroBlaze Debug Module (MDM) interface to MicroBlaze
processor for debugging. With this option, you can use Xilinx System Debugger (XSDB)
to debug the processor over the Joint Test Action Group (JTAG) boundary-scan
interface.

« EXTENDED: Enables enhanced debug features of MicroBlaze such as Cross-Trigger,
Trace, and Profiling.

« NONE: Disables this option after you finish debugging to reduce the size of the
MicroBlaze processor.

Hardware Breakpoints

ﬁ IMPORTANT: The following options are only applied if C DEBUG_ENABLED is on. The MicroBlaze
processor takes a noticeable frequency hit as the numbers are increased.

* Number of PC Breakpoints: Specifies the number of program counter (PC) hardware
breakpoints Xilinx System Debugger (XSDB) can set.

Number of Write Address Watchpoints: Specifies the number of write address
watchpoints XSDB can set.

Embedded Processor Hardware Design N Send Feedback 99
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=99
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=99

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

* Number of Read Address Watchpoints: Specifies the number of read address
watchpoints XSDB can set.

O RECOMMENDED: /t is recommended that these two options be set to 0 if you are not using
watchpoints for debugging.

Interface
This option is only available when using Advanced Mode.

« MicroBlaze Debug Connection: Select the type of interface for connecting the
MicroBlaze Debug Module (MDM). SERIAL is the default JTAG interface, which is
generally recommended and uses the least amount of resources. PARALLEL provides
synchronous parallel access to MicroBlaze debug registers, with better performance
and timing. AXIl is a subset of PARALLEL, providing an AXl4-Lite interface that can be
connected through AXI register slices or AXI clock converters to further improve
timing.

Performance Monitoring

With extended debugging, MicroBlaze provides the following performance monitoring
counters to count various events and to measure latency during program execution:

 C_DEBUG_EVENT_COUNTERS: Configures the event counters.
e+ C_DEBUG_LATENCY_COUNTERS: Configures the latency counters.

» (C_DEBUG_COUNTER_WIDTH: Sets the counter width to 32, 48, or 64 bits.

With the default configuration, the counter width is set to 32 bits and there are five event
counters and one latency counter.

Trace and Profiling

With extended debugging, MicroBlaze provides program trace, storing information in the
embedded trace buffer (ETB) to enable program execution tracing. Users can also toggle
the Auto switch and select the External Trace check box, if desired.

Use the parameter C_DEBUG_TRACE_SIZE to configure the size of the embedded trace
buffer from 8KB to 128KB, or the external trace buffer from 32B to 8 KB.

O RECOMMENDED: /t is recommended to always keep the external trace buffer set to 8KB, to avoid buffer
overflow.

By setting C_DEBUG_TRACE_SIZE to 0 (None), program trace is disabled.

Embedded Processor Hardware Design N Send Feedback 100
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=100
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=100

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Extended debugging also provides non-intrusive profiling, storing program execution
statistics in a profiling buffer. The buffer is divided into a number of bins, each counting the
number of executed instructions or clock cycles within a certain address range.

Use the parameter C_DEBUG_PROFILE_SIZE to configure the size of the profiling buffer from
4K to 128K. By setting the parameter to 0 (None), profiling is disabled.

MicroBlaze Configuration Wizard: Buses Page

Local Memory Bus Interfaces

Enable Local Memory Bus Instruction Interface: Enables LMB instruction interface.
When this instruction is set as shown in Figure 4-12, the Local Memory Bus (LMB)
instruction interface is available.

A typical MicroBlaze system uses this interface to provide fast local memory for
instructions. Normally, it connects to an LMB bus using an LMB Bus Interface Controller
to access a common block RAM.

Enable Local Memory Bus Data Interface: Enables LMB data interface. When this
parameter is set, the local memory bus (LMB) data interface is available. A typical
MicroBlaze system uses this interface to provide fast local memory for data and
vectors. Normally, it connects to an LMB bus using an LMB Bus Interface Controller to
access a common block RAM.

AXI and ACE Interfaces

Embedded Processor Hardware Design

Select Bus Interface: When this parameter is set to AXI, then AXI is selected for both
peripheral and cache access. When this parameter is set to ACE, then AXl is selected for
peripheral access and ACE is selected for cache access, providing cache coherency
support.

Note: To be able to use ACE, area optimization, write-back data cache, instruction cache
streams, or victims cache data widths other than 32-bit must not be set. You must set Use Cache
for All Memory Accesses for both caches.

Enable Peripheral AXI Interface Instruction Interface: When this parameter is set,
the peripheral AXI4-Lite instruction interface is available. In many cases, this interface is
not needed, in particular if the Instruction Cache is enabled and
C_ICACHE_ALWAYS_USED is set.

Enable Peripheral AXI Data Interface: When this parameter is set, the peripheral AXI
data interface is available. This interface usually connects to peripheral I/O using
AXI4-Lite, but it can be connected to memory also. If you enable exclusive access, the
AXI4 protocol is used.

o Send Feedback 101
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=101
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=101

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Stream Interfaces

Number of Stream Links: Specifies the number of pairs of AXI4-Stream link interfaces.
Each pair contains a master and a slave interface. The interface provides a
unidirectional, point-to-point communication channel between MicroBlaze and a
hardware accelerator or co-processor. This is a low-latency interface, which provides
access between the MicroBlaze register file and the FPGA fabric.

Other Interfaces

Embedded Processor Hardware Design

Enable Trace Bus Interface: When this parameter is set, the Trace bus interface is
available. This interface is useful for debugging, execution statistics and performance
analysis. In particular, connecting interface to a ChipScope™ Logic Analyzer (ILA) allows
tracing program execution with clock cycle accuracy.

The MicroBlaze Trace interface can be used to view the processor software execution in
simulation and in hardware. It is sufficient to enable the interface without actually
connecting it, to get access to the signals in simulation, and to add them to an ILA in
hardware.

The waveform can be related to the assembler and source code by looking at the
executable object dump. In SDK this can be viewed by double-clicking on the generated
ELF file. It is also possible to generate an object dump from the ELF file with
interspersed source code using the mb-objdump command. The Trace_PC and
Trace_Instruction signals correspond to the address and instruction in the object
dump. Note that these, and most other signals, are only valid when

Trace Valid_ Instr is set.

Memory access addresses are shown using the Trace_Data_Address signal, which is
valid when either Trace_Data_Read or Trace_Data_Write is set. Instruction results
are written to a MicroBlaze destination register indicated by Trace_Reg_Addr when
the Trace_Reg_Write signal is set, with the value shown by the
Trace_New_Reg_Value signal.

The Trace_Exception_Kind signal, valid when Trace_Exception_Taken is set,
indicates interrupts, breaks and exceptions. This can be useful to find error conditions or
interrupt related issues.

For a complete description of all the Trace bus interface signals, see Chapter 3, "Trace
Interface Description" in MicroBlaze Processor Reference Guide (UG984) [Ref 22].

Lockstep Interface: When you enable lockstep support, two MicroBlaze cores run the
same program in lockstep, and you can compare their outputs to detect errors.
o When set to NONE, no lockstep interfaces are enabled.

o When set to LOCKSTEP_MASTER, it enables the Lockstep_Master_Out and
Lockstep_Out output ports.

o When set to LOCKSTEP_SLAVE, it does the following:

o Send Feedback 102
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=102
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=102

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

- Enables the Lockstep_Slave_In input port and Lockstep_Out output
ports.

- Sets the C_LOCSTEP_SLAVE parameter to 1.
The slave processor is visible as a CPU, and can have private LMB memory.

 LOCKSTEP_HIDDEN_SLAVE behaves the same way as LOCKSTEP_SLAVE, except that
the slave processor is not visible as a CPU. This setting is recommended, except when
using private LMB memory. When this option is enabled, additional options become
available under the Local Memory Bus Interfaces and AXI and ACE Interfaces section
as shown in Figure 4-12. These options are explained below.

Mscraliiaze (19.9) ¥

) Docurmanistion IPLocaion | 8§ SRansad

Resowras CrmpararkHame micablzs_b

Fraquency 1| l [] % Busss
v
EE Prformance Lzl Marmasry Biss insariacas
Richipaiies Estimatis

+ Enaile Local Wermary Bus Insinucion Interface Uz Nonior imlerbace for Local Wemary Bus Instudion Inkerface

T e — + Enazle Local Wamary Bus Data infertace Lz Nonior infertace forLocal Wemary Bus Data infertace

AN ard ACE Infariaran

Sabat Bt Inkefeca | AN

Eratie Periphiral &6 instruction imkrace Lz b rabar i nkarTaaa for Poriph sral A% instroction ks ce

Parcant (4]

+ Enabie Peripheral 46 Dala inferfacy s Waniior inkeraca for Periph eral Sl Dala nferfacy
L Manahar Inkufaca for Cacha A3 Irariuchion Intafos

1 Lk Wanitar Inteacs for Cacha A3 Dats imarace

Sarei b liaTatic

Mumber gl Simam Links ©

har hiesisces

Enable Trars Bus infeifos

Resource Usaga
||.c:|s|iu|r|ir|m LOCKSTER HOOEN BLAVE I
ERAME DEP4EE:

Figure 4-12: MicroBlaze Configuration Wizard Buses Page

- Use Monitor Interface for Local Memory Bus Instruction Interface: Select
Monitor Interface for LMB instruction interface. This can be used to simplify
connection of LMB for a lockstep slave processor when private LMB memory is not
used.

- Use Monitor Interface for Local Memory Bus Data Interface: Select Monitor
Interface for LMB data interface. This can be used to simplify connection of LMB for
a lockstep slave processor when private LMB memory is not used.

- Use Monitor Interface for Peripheral AXI Instruction Interface: Select Monitor
Interface for AXI peripheral data interface. This can be used to simplify connection
of AXI for a lockstep slave processor.

Embedded Processor Hardware Design N Send Feedback 103
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=103
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=103

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

- Use Monitor Interface for Peripheral AXI Data Interface: Select Monitor
Interface for AXI peripheral data interface. This can be used to simplify connection
of AXI for a lockstep slave processor.

- Use Monitor Interface for Cache AXI Instruction Interface: Select Monitor
Interface for AXI cache instruction interface. This can be used to simplify connection
of AXI for a lockstep slave processor.

- Use Monitor Interface for Cache AXI Data Interface: Select Monitor Interface for
AXI cache data interface. This can be used to simplify connection of AXI for a
lockstep slave processor.

There is also a monitor option for interrupt on the Interrupt & Reset tab:

+ Use Monitor Interface for Interrupt: Select Monitor Interface for the interrupt
interface. This can be used to simplify connection of interrupt for a lockstep slave
processor when a common interrupt source is used.

MicroBlaze Configuration Wizard: Advanced Mode

Accessible through the Advanced button on the Welcome page of the MicroBlaze
Configuration wizard, the Advanced mode provides a tabbed interface that lets you interact
directly with the various configuration options. Figure 4-13 shows the Advance Mode
Interrupt and Reset options.

MicroBlaze (11.0) ¢
0 Documentation IP Location | # Advanced
Resources Component Name microblaze 0
~
Frequency Interrupt & Reset
BN Area
Bl Performance Interrupt
Resource Estim aty
100.07
WO E Use Interrupt = NONE
80.01
Reset
700 —
= Specify MSR Reset Value: EIP EE DCE ICE BIP IE
= 00T
T
E os00T— Veceors
o
400T— s Vector Base Address 0x00000000

Figure 4-13: Advanced Mode: Interrupt and Reset Tab

The tabbed interface of the Advanced mode provides access to each of the pages of the
MicroBlaze Configuration wizard as follows:

Embedded Processor Hardware Design N Send Feedback 104
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=104
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=104

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

¢ MicroBlaze Configuration Wizard: General Page
» MicroBlaze Configuration Wizard: Cache Page

« MicroBlaze Configuration Wizard: MMU Page

« MicroBlaze Configuration Wizard: Debug Page

¢ MicroBlaze Configuration Wizard: Buses Page

In addition, the Exception, Interrupt & Reset and PVR tabs are only available through the
Advanced mode interface.

MicroBlaze Advanced Mode Exception Tab

The following figure shows the MicroBlaze Exception options page.

Genera Exception Cache MMU Debug nterrupt & Reset PVR Buses

Math Exceptions

Bus Exceptions

Enable Instruction-side AX| Exception

Enable Data-side AXI Exception

Other Exceptions
Enable lllegal Instruction Exception

Enable Unaligned Data Exception

Figure 4-14: Exception Options in the MicroBlaze Configuration Wizard

f IMPORTANT: You must provide your own exception handler.

Math Exceptions

« Enable Floating Point Unit Exceptions: Enables exceptions generated by the floating
point unit (FPU). The FPU throws exceptions for all of the IEEE standard conditions:
underflow, overflow, divide-by-zero, and illegal operations. In addition, the MicroBlaze
FPU throws a de-normalized operand exception.

Embedded Processor Hardware Design N Send Feedback 105
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=105
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=105

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

« Enable Integer Divide Exception: Causes an exception if the divisor (rA) provided to
the idiv or idiwvu instruction is zero, or if an overflow occurs for idiv.

Bus Exceptions

« Enable Instruction-side AXI Exception: Causes an exception if there is an error on the
instruction-side AXI bus.

« Enable Data-side AXI Exception: Causes an exception if there is an error on the
data-side AXI bus.

Other Exceptions

« Enable Illegal Instruction Exception: Causes an exception if the major opcode is
invalid.

« Enable Unaligned Data Exception: When enabled, the tools automatically insert
software to handle unaligned accesses.

« Generated lllegal Instruction Exception for NULL Instructions: MicroBlaze compiler
does not generate, nor do SDK libraries use the NULL instruction code (0x00000000).
This code can only exist legally if it is hand-assembled. Executing a NULL instruction
normally means that the processor has jumped outside the initialized instruction
memory.

If C_OPCODE_OxO_ILLEGAL is set, MicroBlaze traps this condition; otherwise, it treats
the command as a NOP. This setting is only available if you have enabled lllegal
Instruction Exception.

« Enable Stream Exception: Enables stream exception handling for Advanced eXtensible
Interface (AXI) read accesses.

f IMPORTANT: You must enable additional stream instructions to use stream exception handling.

« Enable Stack Protection: Ensures that memory accesses using the stack pointer (R1) to
ensure they are within the limits set by the stack low register (SLR) and stack high
register (SHR). If the check fails with exceptions enabled, a stack protection violation
exception occurs. The Xilinx System Debugger (XSDB) also reports if the check fails.

MicroBlaze Advanced Mode Interrupt & Reset Tab
Figure 4-13 shows the Interrupt & Reset tab of the MicroBlaze Configuration wizard.

Interrupt

« Sense Interrupt on Edge vs. Level (Auto): Specifies whether the MicroBlaze processor
senses interrupts on edge or level.

Embedded Processor Hardware Design N Send Feedback 106
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=106
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=106

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

o If this parameter is enabled, then MicroBlaze only detects an interrupt on the edge
specified by C_EDGE_IS_POSITIVE.

o If this parameter is disabled, whenever the interrupt is high an interrupt will be
triggered.

Note: If an interrupt is generated and handled while the interrupt input remains high,
another interrupt will be generated.

Sense Interrupt on Rising vs. Falling Edge (Auto): Specifies whether the MicroBlaze
processor detects interrupts on the rising or falling edges if C_INTERRUPT_IS_EDGE
is set to 1.

Use Interrupt: Specifies whether the MicroBlaze processor interrupt input is enabled.
Selecting NORMAL enables interrupts. Selecting FAST also enables low-latency
interrupt handling.

Reset

Specify MSR Reset Value: Specify reset value for select MSR bits.
- Setting ICE (=0x0020) enables instruction cache at reset.

- Setting DCE (=0x0080) enables data cache at reset.

o Setting EIP (=0x0200) sets exception in progress at reset.

- Setting EE (=0x0100) enables exceptions at reset.

- Setting BIP (=0x0008) sets break in progress at reset.

- Setting IE (=0x0002) enables interrupts at reset.

TIP: Enabling caches at reset will allow execution to start immediately from external memory and
can thus be used to reduce or eliminate the need for LMB memory.

Vectors

Vector Base Address: Change the base address used for MicroBlaze vectors. This
affects the vectors for Reset, User Vector, Interrupt, Break, and Hardware Exception. See
the MicroBlaze Processor Reference Guide (UG984) [Ref 22] for more information.
Normally the base address is 0x00000000 in Local Memory, but if this address is used
for other purposes, this parameter allows the vectors to be moved to another address.
The 7 least significant bits (LSBs) in the address must be zero.

MicroBlaze Advanced Mode PVR Tab

The following figure shows the PVR tab of the MicroBlaze Configuration wizard. See the
MicroBlaze Processor Reference Guide (UG984) [Ref 22] for more information on Processor
Version Register (PVR).

Embedded Processor Hardware Design

o Send Feedback 107
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=107
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=107

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

PVR

Processor Version Registers
Specifies Processor Version Register NONE v

Specify USER1 Bits in Processor Version Register 0x00

Specify USER2 Bits in Processor Version Register 0x00000000

Figure 4-15: MicroBlaze Configuration Wizard PVR Page

Processor Version Registers

Specifies Processor Version Register: PVR options are, as follows:
. None (0): The default, disables the PVR.

- Basic (1): Enables only the first PVR.

o Full (2): Enables all PVRs.

Specifies USER1 Bits in Processor Version Register: This parameter specifies the
USER1 bits, 24 through 31, in the PVR. This parameter is only used if C_PVR is set to
Basic (1) or Full (2).

Specifies USER2 Bits in Processor Version Register: This parameter specifies the
value of the second processor version register (USER2). This parameter is only used if
C _PVR is set to Full (2).

Cross-Trigger Feature of MicroBlaze Processors

With basic debugging, cross trigger support is provided by two signals: DBG_STOP and
MB_Halted.

Embedded Processor Hardware Design

When the DBG_STOP input is set to 1, MicroBlaze halts after a few instructions. XSDB
detects that MicroBlaze has halted, and indicates where the halt occurred. The signal
can be used to halt MicroBlaze processors at any external event, such as when an
Integrated Logic Analyzer (ILA) is triggered.

The MB_Halted output signal is set to 1 whenever the MicroBlaze processor is halted,
such as after a breakpoint or watchpoint is hit, after a stop XSDB command, or when
the DBG_STOP input is set.

The output is cleared when MicroBlaze execution is resumed by an XSDB command.

o Send Feedback 108
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=108
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=108

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

)

Embedded Processor Hardware Design

. l Send Feedback l 109
UG898 (v2019.1) June 4, 2019 www.xilinx.com

IMPORTANT: The DBG_STOP and MB_Halted pins are hidden. To see those pins, you must enable the
Enable Discrete Ports option on the Welcome page of the MicroBlaze Configuration dialog box, as
shown in Figure 4-16.

You can use the MB_Halted signal to trigger an Integrated Logic Analyzer (ILA), or halt
other MicroBlaze cores in a multiprocessor system by connecting the signal to their
DBG_STOP inputs. The following figure shows the discrete port and the Enable Discrete
Ports check box.

IP Symbol Resources Component Name microblaze_0

Show disabled ports
Predefined Configurations

Select Configuration = Current Settings v

Select Processor Implementation

®) 32 64
[+ TERRUPT
DLMB
” + DEBUG + " General Settings
ik v+]
P I— MAXLDP + i Select implementation optimization PERFORMANCE
i MB_Halted
= Ex
- Sleg +| Enable MicroBlaze Debug Module Interface
P
= Ext_MNM_BREK Hib "
ibernate
= Dbg Stop Use Instruction and Data Caches
\Wakeup[0:1] Suspend
= '/ akeup[0:
5 Dhq 'Wakeup Enable Exceptions
= Reset_Mode[0:1] i
Dbg Continue

= Pause
== MNon_Secure[(:3]

Pause_Ack Use Memory Management

I v Enable Discrete PorTsI

Figure 4-16: Enable Discrete Ports Option

With extended debugging, cross trigger support is available in conjunction with the MDM.
The MDM provides programmable cross triggering between all connected processors, as
well as external trigger inputs and outputs. For details, see the MicroBlaze Debug Module
(MDM) v3.1 Product Guide (PG115) [Ref 4].

To enable extended debug, set the MicroBlaze Debug Module Interface to EXTENDED in
the Debug Page of the MicroBlaze Configuration Wizard as shown in the following figure.

MicroBlaze can handle up to eight cross trigger actions. Cross trigger actions are generated
by the corresponding MDM cross trigger outputs, connected using the Debug bus, shown
in Figure 4-17.

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=109
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=109

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

General Exception Cache MU Debug Interrupt & Reset PVR Buses
MicroBlaze Debug Module Interface | EXTEMDED w
Hardware Breakpoints
Mumber of PC Breakpoints 1 [0-8]
Mumber of Write Address Watchpoints | 0 [0-4]

Mumber of Read Address Watchpoints | 0 [0-4]

Figure 4-17: Enable EXTENDED Debug for MicroBlaze

You can also set the Extended Debug option when running Block Automation for the
MicroBlaze processor, as shown in Figure 4-18.

¢ Run Block Automation

Automatically make connections in your design by checking the boxes ofthe blocks to connect. Select a block on the left to display
its configuration options on the right.

Q - -~
a -

~ | All Automation (1 out of 1 selected’

Description

MicroBlaze connection automation generates local memory of selected size,
+ 4F microblaze_0 and caches can be configured. MicroBlaze Debug Module, Peripheral AXl
interconnect, Interrupt Controller, a clock source, Processor System Reset are
also added and connected as needed. A preset MicroBlaze configuration can
also be selected.

Instance: imicroblaze_0

Options
Preset Mone w
Local Memaory: 8KB A
Local Memory ECC: Mone A
Cache Configuration: = Mone A
Debug Module:
Peripheral AXI Port: Hoae
Debug Only

Interrupt Contraller: ' pepug & LUART

Clock Connection: | EXtended Debug DOMHZ)

I~
w

Figure 4-18: Extended Debug Option

Next, in the MicroBlaze Debug Module (MDM) configuration dialog box, the Enable Cross
Trigger check box is enabled, as highlighted in Figure 4-19.

Embedded Processor Hardware Design N Send Feedback 110
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=110
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=110

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

¢ Re-customize IP X

MicroBlaze Debug Module (MDM) (3.2) ¢

0 Documentation IP Location

Show disabled ports Component Name | mdm_1

Debug

Mumber of MicroBlaze debug ports 1 [0-32]

Enable Debug Register Access From AX]

+'| Enable AX| Memaory Access From Debug

+'| Enable Cross Trigger

UART

Il TRIG_N 8o +] Enable JTAG UART
mi_s_scLE MBOEBUGD + |||
of h_sxI_ARESETHRIG_OUT_0 + |||

Debug 575 Fst External Trace

Select External Trace Output Interface | NOME w
External Trace Data Width 32

Advanced
Specifies the JTAG user-defined register used | USER2 w
Select BSCAN location INTERMNAL
Mumber of External Trigger Inputs 1 w
Mumber of External Trigger Qutputs 1 w

| oK | | Cancel

Figure 4-19: Enable Cross Trigger Check Box in MDM

You can also select up to four external trigger inputs and external trigger outputs. When
enabled, the block design updates to show the MDM details, as shown in the following
figure.

mdm_1
M_AXI 4 [
I+ TRIG_IN_0 LME 0 4 |[|=
||+ TRIG_IN_1 MBDEBUG_0 + |[|=
M_AXI_ACLK TRIG_OUT_0 4 ||
M_AX| ARESETN TRIG_OUT_1 +|||

Dabug_SYS_Rst

MicroBlaze Debug Module (MDM)
Figure 4-20: MDM in Block Design After Enabling Cross Trigger

Next, run Connection Automation, shown in the following figure, to connect the cross
trigger signals to an ILA.

Embedded Processor Hardware Design N Send Feedback 111
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=111
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=111

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Designer Assistance available. Run Connection Automation

Figure 4-21: Connecting the TRIG_IN_O Interface Pin to an ILA

Leaving the settings of Auto, as shown in the following figure, on both
TRIG_IN_O0/TRIG_OUT_O in the Run Connection Automation dialog box, instantiates a
new ILA and connects the TRIG_IN_0/TRIG_OUT_O signal of the MDM to the
corresponding pin of the System ILA.

-

¢ Run Connection Automation

a2

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the leftto
display its configuration options on the right.

Q = e Description
~ |l i
AllAutomatoni(2 outof 5 selected) Connect Slave trigger interface /mdm_1/TRIG_IN_0 to Master trigger interface on
~ || 4F clk_wiz_1 an ILA block.
ik CLK_IN1_D
= reset Options
¥ /1% mdm_1 ILA Connection: | Auto v
<t TRIG_IN_D

¥ ik TRIG_OUT_D
~ [4F rst_clk_wiz_1_100M

= ext_reset_in

Figure 4-22: Run Connection Automation Confirmation Dialog Box

The following figure show the resulting block design.

|
7 i
mdm_1 system_ila 1
M_AXI 4 [/4 SLOT_0_AXI
J|[+ TRIG_IN_O e 0 +]} - |||+ TRIG_IN TRIG OUT |
— o M_AXI_ACLK MBDEBUG O + |} clk

M_AX| ARESETN TRIG_OUT 0 |}
Dabug_SYS_Rst

rasatn

System ILA

MicroBlaze Debug Module (MDM})

Figure 4-23: Block Design After Connecting Cross Trigger Pins to the ILA

Embedded Processor Hardware Design

. l Send Feedback l 112
UG898 (v2019.1) June 4, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=112
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=112

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Custom Logic

The Vivado IP packager lets you and third party IP developers use the Vivado IDE to prepare
an Intellectual Property (IP) design for use in the Vivado IP catalog. The IP user can then
instantiate this third party IP into a design in the Vivado Design Suite.

When IP developers use the Vivado® Design Suite IP packaging flow, the IP user has a
consistent experience whether using Xilinx IP, third-party IP, or customer-developed IP
within the Vivado Design Suite.

IP developers can use the IP packager feature to package IP files and associated data into
a ZIP file. The IP user receives this generated ZIP file, installs the IP into the Vivado Design
Suite IP catalog. The IP user then customizes the IP through parameter selections and
generates an instance of the IP. See Vivado Design Suite User Guide: Creating and Packaging
Custom [P (UG1118) [Ref 27] for more information.

O RECOMMENDED: To verify the proper packaging of the IP before handing it off to the IP user, Xilinx
recommends that the IP developer run each IP module completely through the IP user flow to verify
that the IP is ready for use.

Embedded IP Catalog

The Vivado IDE IP catalog is a unified repository that lets you search, review detailed
information, and view associated documentation for the IP. After you add the third-party or
customer IP to the Vivado Design Suite IP catalog, you can access the IP through the Vivado
Design Suite flows. The following figure shows a portion of the Vivado IDE IP catalog.

Embedded Processor Hardware Design N Send Feedback 113
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=113
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=113

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Search:

~

4F 162,56 Ethernet PCS/PMA or SGMII

#F 2D Graphics Accelerator Bit Block Transfer
4F 3GPP LTE Channel Estimator

4F 3GPP LTE MIMO Decoder

4F 3GPP LTE MIMO Encoder

4 3GPPLTE Turbo Encoder

4 3GPP Mixed Mode Turbo Decoder

#F 3GPP Turbo Encoder

#F 7 Series Integrated Block for PCI Express
F 10G/25G Ethernet Subsystem

4 10G Ethernet MAC

#F 106 Ethernet PCSIPMA (10GBASE-RIKR
#F 106 Ethernet Subsystem

F 40GI506G Ethernet Subsystem

FF Accumulator

4 Adder/Subtracter

En:

5 AHAL ita tn AW Rridna =
EMNTER to select, ESC to cancel, Ctrl+Q for IP details

Figure 4-24: 1P Catalog

Completing Connections

After you have configured the MicroBlaze processor, you can start to instantiate other IP
that constitutes your design.

In the IP integrator canvas, right-click and select Add IP. You can use two built-in features of
the IP integrator to complete the rest of the IP subsystem design: the Block Automation and
Connection Automation features assist you with putting together a basic microprocessor
system in the IP integrator tool and/or connecting ports to external 1/O ports.

Block Automation

The Block Automation feature is available when you instantiate a microprocessor in the
block design of the IP integrator tool.

Note: The block design must specify a part or board that uses a specific processor to make that
processor accessible through the IP catalog.

1. Click Run Block Automation to get assistance with putting together a simple
MicroBlaze System.

Diagram X Address Editor X
e =l (e Q +

M Designer Assistance available. Run Block Automation

Figure 4-25: Run Block Automation Using Designer Assistance

Embedded Processor Hardware Design N Send Feedback 114
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=114
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=114

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

The Run Block Automation dialog box lets you provide input about basic features that
the microprocessor system requires. The following figure shows the Block Automation
dialog box.

Autematically make conneclions in your design by checking the boxes of the blocks to connect. Select 3 block on the leftio display its
:unhguraﬂcn oplions on the right ‘

Description

~ | All Aufomation (2 out of 1 selactad <
) MicroBlaze conneclion automation genaratas local memary of seleded size, and cachas

+ F microblaze_0 can be configured. MicroBlaze Debug Maodule, Peripheral AX] inferconned, Interrupt
Controller, a clock source, Processar System Reset are also added and connected as
needed A presel MicroBlaze configuration can also be seleded

Instance: imicroblaze_0

Options
Preset Hone w
Local Mermory KB by
Local Bemory ECC. | Mone ~
Cache Configuration: = Mone d
Debug Madule Debug Only v

Pariphargl AX1 Port Enablad
Interrupt Controllér

Clgck Connection Mew Clocking Wizard b

Figure 4-26: Run Block Automation Dialog Box for MicroBlaze

The MicroBlaze Preset option provides a convenient way of configuring the processor
settings according to the particular use case: microcontroller, real-time, or application. If
necessary, further configuration can be done in the MicroBlaze Configuration wizard.

2. Select the required options and click OK.

The Run Block Automation creates the following MicroBlaze system.

Embedded Processor Hardware Design N Send Feedback 115
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=115
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=115

& XILINX.

clk_wiz_1

Jll+ cLCINI D ik ount

reset locked

rst_clk_wiz_1_100M

Clocking Wizard

microblaze_0

|Il+ INTERRUPT
et || + DEBUG

MicroBlaze®

Reset

owve + |||
iLme + |||
M_AXI_DP |-

dem_locked

slowest_sync_clk mb_reset
bus_struct_reset[0:0] -
peripheral_reset[0:0]
interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

ext_reset_in
aux_reset_in

mb_debug_sys_rst

Processor System Reset

Chapter 4: Using a MicroBlaze Processor in an Embedded Design

microblaze_0_local_memory

MicroBlaze
|||+ pme
mdm_1 I+ Lme
LMB_Clk
MBDEBUG 0 + [}

SYS_Rst
Debug_SYS_Rst -

MicroBlaze Debug Module (MDM)

Figure 4-27: MicroBlaze Design After Running Block Automation

Using Connection Automation

When the IP integrator tool determines that a potential connection exists among the
instantiated IP in the canvas, it opens the Connection Automation feature.

In the following figure, two IP, the GPIO and the UARTLite, are instantiated along with the
MicroBlaze processor subsystem.

Diagram ?_D0ax
a q ¥ kB |2 Qq s + B C 9 i
ok _wiz_1 mierobiaze 0 ad perigh
L [+]
2y _iff_cock [|| GLHIN1 O o utt r i wiz_1_100M i o0 aw
“ b AL
msat_l [reset Om‘l— R —— I il
Clocking Viizand ws_ast i Dum st racetiD | — =5 o
b 500 sl .
resal il 0 [T I of ‘ pangnan oo 0| jm |] o0 anesemy S MOAN
microblaze_{ Intesconnect aeaing O b=l e e <.
- » L -
penigherel aseachiol -
| + mreswuer |) b 100 ARESETH
L r 1 Blp v D,t:: tm:—l o Systam Resel b~ M1 ACLE
- viicroblaze x| oP +.-_-| 1_ARESETH .
Pt LANLS ! T O opio s
’ Wicroll . a_gpio_0 AXI Interconnect
— f microblaze_0_local_memony
mdm_1 14 5 A |
— & sl sen am 4]| [+ ouus
_avenshn J I+ nus
AXI GRIC LiB_Ca:
I L var_dll
AXI Uartit

Figure 4-28: Using Connection Automation Feature of IP Integrator

When you click the Run Connection Automation link, the following dialog box, shown in
Figure 4-29, opens.

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019

| Send Feedback l 116

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=116
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=116

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

¢ Run Connection Automation = _!

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the leftto
display its configuration options on the right.

Q = | 2
~ & All Automation (7 out of 7 selected)
~ || #F axi_gpio_0
</ it GPIO
<k S_AXI
v |/ 3F axi_uartlite_0
Vb 5_AXI Select an interface pin on the left panel to view its options
< It UART
v |V FF clk_wiz_1
V| I} CLK_IN1_D
| = reset
v |/ FF rst_clk_wiz_1_100M
< = ext_reset_in

Figure 4-29: The Run Connection Automation Dialog Box

The IP integrator determines that there is a potential connection for the following objects:

* The Proc Sys Rst IP ext_reset_in pin must connect to a reset source, which can be
either an internal reset source or an external input port.

» The Clocking Wizard CLK_IN_1_D pin must connect to either an internal clock source
or an external input port.

« The AXI GPIO s_axi interface must connect to a master AXl interface.
« The AXI GPIO core gpio interface must connect to external |/Os.
« The Uartlite IP s_axi interface must connect to a master AXI interface.

* The Uartlite IP uart interface must connect to external 1/Os.

When you run connection automation on each of those available options, the block design
looks like Figure 4-30.

Embedded Processor Hardware Design N Send Feedback 117
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=117
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=117

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Diagram ? -0r

Q a x® x| a e+ B C o |TF &

ays_diff_dock [
msat_il [

e _cli_wiz_1_1000

Clocking and |
resel 1l 0 [T
m 0

| + mreswuer |] - 10 ARESETH
|| + ce=uc - IJLIm‘""'——l Procassor Syatam Reset b= M1 ACLE
1

CI MicroBlaze ™ , ==+l o sesem

e

L var_dll

g

Figure 4-30: Running Connection Automation for a Sample MicroBlaze Design

Completing the Design

See the following sections in Chapter 1, Introduction for common considerations in an
embedded design:

Platform Board Flow in IP Integrator

Making Manual Connections in a Design

Manually Creating and Connecting to I/O Ports
Memory-Mapping in the Address Editor

Running Design Rule Checks

Integrating a Block Design in the Top-Level Design

MicroBlaze Processor Constraints

The IP integrator generates constraints for IP generated within the tool during output
products generation; however, you must generate constraints for any custom IP or
higher-level code.

A constraint set is a set of XDC files that contain design constraints, which you can apply to
your design. There are two types of design constraints:

Embedded Processor Hardware Design

Physical constraints define pin placement, and absolute, or relative placement of cells
such as: BRAMs, LUTs, Flip-Flops, and device configuration settings.

Timing constraints, written in industry standard SDC, define the frequency
requirements for the design. Without timing constraints, the Vivado Design Suite
optimizes the design solely for wire length and routing congestion.

. l Send Feedback l 118
UG898 (v2019.1) June 4, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=118
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=118

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Note: Without timing constraints, Vivado implementation makes no effort to assess or improve
the performance of the design.

i} IMPORTANT: The Vivado Design Suite does not support UCF format. For information on migrating
UCF constraints to XDC commands see the ISE to Vivado Design Suite Migration Guide (UG911)
[Ref 18] for more information.

The options on how to use constraint sets, are, as follows:

» Multiple constraints files within a constraint set.
« Constraint sets with separate physical and timing constraint files.
« A master constraints file, and direct design changes to a new constraints file.

« Multiple constraint sets for a project, and make different constraint sets active for
different implementation runs to test different approaches.

« Separate constraint sets for synthesis and for implementation.

« Different constraint files to apply during synthesis, simulation, and implementation to
help meet your design objectives.

Separating constraints by function into different constraint files can make your overall
constraint strategy more clear, and facilitate being able to target timing and
implementation changes.

Organizing design constraints into multiple constraint sets can help you do the following:

« Target different Xilinx FPGAs for the same project. Different physical and timing
constraints could be necessary for different target parts.

« Perform "what-if" design exploration. Using constraint sets to explore different
scenarios for floorplanning and over-constraining the design.

« Manage constraint changes. Override master constraints with local changes in a
separate constraint file.

TIP: A good way to validate the timing constraints is to run the report_timing_summary command
O on the synthesized design. Problematic constraints must be addressed before implementation.

For more information on defining and working with constraints that affect placement and
routing, see the Vivado Design Suite User Guide: Using Constraints (UG903) [Ref 16].

Taking the Design through Synthesis, Implementation, and
Bitstream Generation

After you complete the design and constrain it appropriately, you can run synthesis and
implementation, and then you can generate a bitstream.

Embedded Processor Hardware Design N Send Feedback 119
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=119
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=119

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Exporting Hardware to the Software Development Kit (SDK)

See Using the Software Development Kit (SDK) in Chapter 1 for more information. In
general, after you generate the bitstream for your design, you are ready to export your
hardware definition to SDK.

This action exports the necessary XML files needed for SDK to understand the IP used in the
design and also the memory mapping from the perspective of the processor. After a
bitstream is generated and the design is exported, you can then download the device and
run the software on the processor.

TIP: If you want to start software development before a bitstream is created, you can export the
O hardware definition to SDK after generating the design.

1. Select File > Export > Export Hardware.

This launches the Export Hardware for SDK dialog box, where you can choose the
available export options, as shown in the following figure.

¢ Export Hardware &3

Export hardware platform for software
development tools. ‘

¥ Include bitstream

Exportto: | &0 =Local to Project= hd

Figure 4-31: Export Hardware for SDK Dialog Box
2. After the hardware is exported, select File > Launch SDK to launch SDK.

After you export the hardware definition to SDK, and launch SDK, you can start writing your
software application. Also, you can perform more debug and software from SDK.

Alternatively, you can import the software ELF file back into a Vivado IDE project, and
integrate that file with an FPGA bitstream for further download and testing.

Embedded Processor Hardware Design N Send Feedback 120
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=120
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=120

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Multiple MicroBlaze Processor Designs

Multiple MicroBlaze processors can be included in a block design. The configurations of
these multiple MicroBlaze designs may vary based on design needs. A simple dual
MicroBlaze design is discussed in the following sections.

Instantiate MicroBlaze IP Cores

Create a block design and instantiate two instances of MicroBlaze IP as shown. Note that
the Run Block Automation link becomes active in the banner.

Diagram X i Edit X 200

@ H & Q + ¢ C o
7 Designer Assistance available. Run Block »“.utomatlgn
microblaze_1
||’+ INTERRUPT
|||+ oesuc & pIMB +|||

s MicroBlaze ™ wei

Reset

MicroBlaze

microblaze 0

||’+ INTERRUPT
||+ pesue “& pivB +|||

MicroBlaze ™ e

Reset

MicroBlaze

Figure 4-32: Multiple MicroBlaze Instances in a Block Design
Click the Run Block Automation link to run block automation on both the MicroBlaze
instances. Again, the options here varies on the design requirements.

For example:

« Both the MicroBlaze processors might run from a single system clock or they could be
totally independent.

« They could share the Clocking Wizard IP or they could have independent Clocking
Wizard IP.

This topology shows two independent Clocking Wizard IP for each MicroBlaze processor as
in Figure 4-33.

Embedded Processor Hardware Design N Send Feedback 121
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=121
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=121

8 X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

’ ¢ Run Block Automation X

| Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its
configuration options on the right. ‘

- -
Q= 2 Description
l v I AN Automalion (2 out of 2 selecled) MicroBlaze connection automation generates local memory of selected size, and caches
| v F microblaze_0 can be configured. MicroBlaze Debug Module, Peripheral AXI interconnect, Interrupt
| 7 4F microblaze_1 Controller, a clock source, Processor System Reset are also added and connected as
|
1

needed. A preset MicroBlaze configuration can also be selected.

Instance: /microblaze_0

! Options
| Preset: None T
] Local Memory: 64KB v
] Local Memory ECC: None b |
|
Cache Configuration: = None v
| Debug Module: Debug Only v

Peripheral AXI Port: Enabled v
| Interrupt Controller:

Clock Connection: New Clocking Wizard (100 MHz) v
& o
| &

Figure 4-33: Block Automation Dialog Box for Dual MicroBlaze Design

The block design looks like Figure 4-34:

Embedded Processor Hardware Design N Send Feedback 122
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=122
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=122

8 X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Diagram ?2 —-0aX

Q@ o X X Q s + ¢ C 9 T &

* Designer Assistance available. Run Connection Automation

microblaze_0_local_memory

ox_wiz_1 l

(1 rst_ck_wiz_1_100M 1 H]
ﬂ.;. CIK N1 D ok out! r . \ ||+ s

= lacked n

microblaze_1

| v+ INTERRUPT)
DLME o || pueii
ey v il
o MicroBlaze ™ | ue !
A B laz
microblaze_0
| '+ INTERRUPT
= DUME o || ettt
||+ o=suc H =4 LA o |t
« MicroBlaze™ , s 3

AcroBlaz

mdm_1

p ~ microblaze_1_local_memory
MBDEBUG O +

I}
MEDEBUG_1 +l rst_microblaze_1_ck_wz_1_100M -]
Detg_SYS_Rst | . . ||+ v
.) 2 e slaw c. mb_reset LMB Ck
28 ” N :
x

AD:

microblaze_1_ck_wiz_1

|l4 cx_ ™1 D e outt
reset locked

Figure 4-34: Block Design After Running Block Automation

Note: Both the MicroBlaze processors share the same MicroBlaze Debug Module that is
automatically configured to support two debug interfaces.

At this point you can add peripherals to your design as needed. In this case, two instances
of Uartlite, one GPIO and a AXI BRAM Controller were added.

« The Uartlite IP is connected to each of the MicroBlaze processor instances.
« The GPIO is connected to one instance of the MicroBlaze IP.

« Finally, the AXI BRAM Controller controlling the Block Memory Generator is shared by
both MicroBlaze processors.

« The input clock to one of the Clocking Wizard IP is the on-board System Differential
Clock while the other Clocking Wizard is tied to the on-board PCle Clock.

Run Connection Automation

Note: Run Connection Automation link is active at the top of the block design banner. Click Run

Connection Automation. Check the All Automation check-box (15 out of 15 selected), as shown in
Figure 4-35.

Embedded Processor Hardware Design

. | Send Feedback l 123
UG898 (v2019.1) June 4, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=123
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=123

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

[

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its

configuration options on the right.

~ All Automation (15 out of 15 selected)
~ |/ 4F axi_bram_ctrl_0
¥| {k BRAM_PORTA
| {ik BRAM_PORTB
7 I S_AxI
~ /| ¥ axi_gpio_0
7| i GPIO
7 { S_AXI
~ 4 axi_uartlite_0
7| ik S_AXI
7| i} UART
v |/ 4F axi_uartlite_1
7 b S_AXI
7| ik UART
7| F clk_wiz_1
v {k CLK_IN1_D
v = reset

<

v |/ 4F microblaze_1_clk_wiz_1
/| CLK_IN1_D
/| = reset
~ || 4F rst_clk_wiz_1_100M
7| = ext_reset_in
~ | 4F rst_microblaze_1_clk_wiz_1_100M

Y| = ext_reset_in

Figure 4-35: Connection Automation Dialog Box

Make the selections listed in Table 4-1 for each automation.

Table 4-1: Connection Automation Options

» |nstantiate a new BMG and
connect the PORTB of the AXI
BRAM Controller to the BMG IP.

* Use the previously instantiated
BMG core and automatically
configure it to be a true
dual-ported memory and
connected to PORTB of the AXI
BRAM Controller.

Connection More Information Setting
axi_bram_ctrl_0 The only option for this automation | Leave the B1k_Mme_Gen to its default
« BRAM PORTA is to instantiate a new Block option of Auto.

- Memory Generator as shown under
options.
axi_bram_ctrl_0 The Run Connection Automation Leave the B1k_Mem_Gen option to its
« BRAM PORTB dialog box gives you two choices: | default value of Auto.

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019 www.xilinx.com

l Send Feedback l 124

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=124
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=124

& XILINX.

Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Table 4-1: Connection Automation Options (Cont’d)

Connection

More Information

Setting

axi_bram_ctrl_0

The Master Field can be set to
either /microblaze 0 or

Leave it to the default value of
/microblaze 0.

- S_AXI !
/microblaze_1.
axi_gpio_0 The GPIO interface can be tied to Set the Selected Board Part Interface to
. GPIO several on-board interfaces. led_8bits (LED).
axi_gpio_0 The Master field is set to its default | Keep the default settings.
. S AXI value of /microblaze_0 (Periph).

All other fields is set to its default
value of Auto.

axi_uartlite_0
« S_AXI

The Master field is set to its default
value of /microblaze_0 (Periph).

All other fields is set to its default
value of Auto.

Keep the default settings.

axi_uartlite_0
« UART

Set the Select Board Part Interface
to the rs232_uart interface present
on-board or tie it to a custom
interface.

Keep the default setting of rs232_uart
(UART).

axi_uartlite_1
+ S_AXI

The Master field is set to its default
value of /microblaze_1 (Periph).

All other fields is set to its default
value of Auto.

Keep the default settings.

axi_uartlite_0

The Select Board Part Interface can
be set to the rs232_uart interface

Because you already used the
rs232_uart (UART) interface on the

« UART
present on-board or can be tied to | board to connect to the /uartlite_0
a custom interface. instance, set the Select Board Part

Interface option to Custom.
clk_wiz_1 The input clock source of the Leave the Select Board Part Interface
« CLK IN1 D Clocking Wizard can be tied to the | field to sys_diff_clock (System
-7 several on-board clock sources or it | differential clock).

can be tied to a Custom input clock.

clk_wiz_1 The reset pin of the Clocking Leave the Select Board Part Interface to

. reset Wizard can be tied to either the its default value of reset (FPGA Reset).

on-board reset source or to a
custom input pin.

microblaze 1 _clk_wiz_1
« CLK_INT1_D

The input clock source of the
Clocking Wizard can be tied to the
several on-board clock sources or it

can be tied to a Custom input clock.

Leave the Select Board Part Interface
field to New External Port (100 MHz).

microblaze_1_clk_wiz_1

e reset

The reset pin of the Clocking
Wizard can be tied to either the
on-board reset source or to a
custom input pin.

Leave the Select Board Part Interface to
its default value of reset (FPGA Reset).

Embedded Processor Hardware Design

UG898 (v2019.1) June 4, 2019

www.Xxilinx.com

l Send Feedback l 125

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=125
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=125

2: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Table 4-1: Connection Automation Options (Cont’d)

Connection More Information Setting

rst_clk_wiz_1_100M The reset pin of the Processor Leave the Select Board Part Interface to
System Reset IP can be tied to its default value of reset (FPGA Reset).
either the on-board reset source or
to a custom input pin.

« ext_reset_in

rst_microblaze_1_clk_wiz_1_100M | The reset pin of the Processor Leave the Select Board Part Interface to
. ext reset in System Reset IP can be tied to its default value of reset (FPGA Reset).
- N either the on-board reset source or
to a custom input pin.

After running connection automation, one instance of the Microblaze (microblaze_0) is
connected to three slaves AXI BRAM Controller (axi_bram_ctrl_0), AXI Uartlite
(axi_uartlite_0) and AXI GPIO (axi_gpio_0). The other instance of MicroBlaze
(microblaze_1) is connected to the AXI| Uartlite (axi_uartlite_1).

Re-Customizing AXI Interconnects

If you want the microblaze_1 instance of MicroBlaze to access the AXI BRAM Controller
(axi_bram_ctrl_0), then the two interconnects instances must be reconfigured.

1. Double-click the AXI Interconnect (microblaze_ 1 axi_periph).
The Re-customize IP dialog box opens.

2. From the drop-down menu, set the Number of Master Interfaces field to 2, as shown
in Figure 4-36.

Embedded Processor Hardware Design N Send Feedback 126
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=126
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=126

8 X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

' #° Re-customize IP X J
‘ AXI Interconnect (2.1) g ‘
|

o Documentation IP Location |

Component Name microblaze_1_axi_periph

Top Level Settings Slave Interfaces Master Interfaces

Number of Slave Interfaces 1 v
Number of Master Interfaces 2 v
Interconnect Optimization Strategy Custom v

|
| AXl Interconnect includes IP Integrator automatic converter insertion and configuration.
| When the endpoint IPs attached to the interfaces of the AXI Interconnect differ
‘ in width, clock or protocol, a converter IP will automatically be added inside the interconnect.
If a converter IP is inserted, IP integrator's parameter propagation automatically
configures the converter to match the design.
‘ To see which conversion IPs have been inserted, use the IP integrator
‘expand hierarchy buttons to explore inside the AXI Interconnect hierarhcy.

| NOTE:Addressing information for AXI Interconnect is specified in the IP Integrator address editor. |

Enable Advanced Configuration Options

‘ oK | | Cancel

Figure 4-36: Re-customize IP Dialog Box

Similarly, re-customize the microblaze_axi_periph instance such that the Number of
Slave Interfaces field is set to 2.

3. After that, you can connect the Master Interface M01_AXTI of
microblaze_1_axi_periph to the S01_AXT slave interface of
microblaze_0_axi_periph.

4. Connect the clocks and resets accordingly as well, as shown in the following figure.

micrablaze_1_a_perph

+ soo_ax
ACK
ARESETN
S _sCLx e NDO A0 + [Zi
sm_sRESETN 5t A
= WS aze_0_aw_perph —
MOO_ ARESETN
M1 i+ sm_ax
o i i[+ 501_ax:
[ACLK
ARESETN
p— SO0 ACLK
mcubiaze 1 micrbiaze_1_local_ memary [0 o am [
= SO $- 4 W00 2CLK ..‘m|“+;
NTERRUPT -k sy = M0 £
I+ - aue +||} ||+ cue L 02 00+ e
=||+ cesua . - H hr iy = MO CLK
Cik ICro |a7_e a1 e p—{ 01 rRESETN
- MAXI P [l 8 Ok 1 I g
oot 3
R
Moo Eiaze o, p— MO2 ARESETN
N — - S01_sCLK
peel 501_ARESETN
A imememed
mcotiaze 0

Figure 4-37: Connecting the two AXI Interconnects

Embedded Processor Hardware Design N Send Feedback 127
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=127
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=127

(: X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

By doing this, you made the microblaze_1 access all the slaves accessible by
microblaze_0. This is an optional decision.

Mapping and Excluding Unwanted Slaves

If you want to access the AXI BRAM Controller from microblaze_1, you can exclude the
other slaves from the microblaze_1 memory space. This can be done in the address
editor. As can be seen in Figure 4-38, the microblaze_1 memory space has three
unmapped slaves.

D < Address Editor 200
Q = ¢ = o
Cell Slave Interface Base Name Offset Address Range High Address
== dAI_udiung_u O_RMAI ney vasuuy_uuuy uan . vasuuu_rrrx e
= axi_bram_ctrl_0 S_AXI Mem0 0xC000_0000 8K ~ 0xCO00_1FFF

~ B Instruction
== microblaze_0_local_memory/ilmb_bram_if_cntlr SLMB Mem 0x0000_0000 64K v 0x0000_FFFF

~ % microblaze_1

~ B Data (32 address bits : 4G
== microblaze_1_local_memory/dimb_bram_if_cntir SLMB Mem 0x0000_0000 32K ~ 0x0000_7FFF
== axi_uartlite_1 S_AXI Reg 0x4060_0000 64K v 0x4060_FFFF

» Unmapped Slaves

= axi_gpio_0 S_AXI Reg
= axi_uartlite_0 S_AXI Reg
@ axi_bram_ctrl_0 S_AXI Mem0

~ B Instruction (32 address bits : 4G
= microblaze_1_local_memory/ilmb_bram_if_cntir SLMB Mem 0x0000_0000 32K v 0x0000_7FFF ied

Figure 4-38: microblaze_1 Memory Map

1. First, assign addresses to all the unmapped slaves by selecting them, right-clicking, and
selecting Assign Address from the context menu.

v = Unmapped Slaves
@ axi_gpio_0 S_AXI Reg
@ axi_uartlite_0 MSi%Address
@ axi_bram_ctrl_0
~ B Instruction (32 address bit

== microblaze_1_local_memory/ilmb_brart Exclude Segment 1]

Figure 4-39: Mapping Unmapped Slaves
2. Next, "exclude” the unwanted slaves from the memory map of microblaze_1 by

selecting them in the address editor, right-clicking, and selecting Exclude Segment, as
shown in Figure 4-40.

Embedded Processor Hardware Design N Send Feedback 128
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=128
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=128

g X”_INX® Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Diagram * Address Editor x 200
Q| x| < o
Cell Slave Interface Base Name OffsetAddress Range High Address

- dAI_ypiu_v O_AMAI ney uasuuu_uuuy uan v UAsUUU_rrrr =y

= axi_uartlite_0 S_AXI Reg 0x4060_0000 64K v 0x4060_FFFF

= axi_bram_ctrl_0 S_AXI Mem0 0xC000_0000 8K ~ 0xCO00_1FFF

~ B Instruction (32 address bits : 4G
== microblaze_0_local_memory/ilmb_bram_if_cntir ~SLMB Mem 0x0000_0000 64K ~ 0x0000_FFFF

~ 4F microblaze_1
~ B Data(32a

= microblaze_1_local_memory/dimb_bram_if_cntir SLMB Mem 0x0000_0000 32K v 0x0000_7FFF
= axi_uartlite_1 S_AXI Reg 0x4060_0000 64K ~ 0x4060_FFFF
= axi_bram_ctrl_0 S_AXI Mem0 0xC000_0000 8K v 0xCO00_1FFF
= axi_gpio_0 S_AXI Reg 0x4000_0000 64K v 0x4000_FFFF

= axi_uartlite_0 — - 0x4060_0000 64K v 0x4060_FFFF

v B Instruction (22 add Address Segment Properties...

= microblaze_1_local_mem Unmap Segment 0x0000_0000 32K v 0x0000_7EEFF
Exclude Seament

Figure 4-40: Excluding Unwanted Slaves from Memory Map

The address editor now looks as follows.

Diagram * Address Editor x 200
Q| x| < o
Cell Slave Interface Base Name OffsetAddress Range High Address
= axi_uartlite_0 S_AXI Reg 0x4060_0000 64K ~ 0x4060_FFFF ~
= axi_bram_ctrl_0 S_AX Mem0 0xC000_0000 8K v 0xCO00_1FFF

~ [Instruction (32

= microblaze_0_local_memory/ilmb_bram_if_cntir SLMB Mem 0x0000_0000 64K ~ O0X0000_FFEF
~ % microblaze_1
~ B Data (32 ad

== microblaze_1_local_memory/dimb_bram_if_cntir SLMB Mem 0x0000_0000 32K ~ 0x0000_7FFF
= axi_uartlite_1 S_AXI Reg 0x4060_0000 64K v 0x4060_FFFF
== axi_bram_ctrl_0 S_AXI Mem0 0xC000_0000 8K v 0xCO00_1FFF

g Excluded Address Segments (2
== axi_gpio_0 S_AXI Reg 0x4000_0000 64K 0x4000_FFFF
= axi_uartlite_0 S_AXI Reg 0x4060_0000 64K 0x4060_FFFF

~ [Instruction (32 add

== microblaze_1_local_memory/ilmb_bram_if_cntir SLMB Mem 0x0000_0000 32K ~ 0x0000_7FFF v

Figure 4-43: Excluded Slaves

After you complete the design in this way, the rest of the design flow is the same as any
other Block design flow.

Embedded Processor Hardware Design 129
Send Feedback
UG898 (v2019.1) June 4, 2019 www.xilinx.com |_,e” | Feedback |

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=129
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=129

& XILINX

Chapter 5

Designing with the Memory IP Core

Overview

The Xilinx® memory IP is a combined pre-engineered controller and physical layer (PHY)
for interfacing UltraScale™ architecture and 7 series™ FPGA user designs with AMBA®
advanced extensible interface (AXI4) slave interfaces to DDR2, DDR3, or DDR4 SDRAM,
QDRI+ SRAM, or RLDRAM 3 devices.

For more information, see the following:

« UltraScale Architecture FPGAs Memory IP (PG150) [Ref 5]
e Zyng-7000 SoC and 7 Series Devices Memory Interface Solutions (UG586) [Ref 7]

This chapter provides information about using, customizing, and simulating a LogiCORE™
IP DDR4, DDR3, or DDR2 SDRAM memory interface core in the Vivado IP integrator tool.
This chapter describes the core architecture and provides details on customizing and
interfacing to the core.

TIP: Although the information in this chapter is tailored for the KC705, Kintex® -7 board, the
O differences for UltraScale devices, and the KCUT105 board, are highlighted throughout this text. These
guidelines can also be applied to Xilinx devices on custom boards.

Adding the Memory IP

To add the Memory IP core to a block design, right-click in the IP integrator design canvas
and select Add IP. A searchable IP catalog opens. When you type the first few letters of an
IP name, in this case Memory IP, only the IP cores matching the name are listed.

Alternatively, you can click the Add IP button on the toolbar at the top of the canvas +

Embedded Processor Hardware Design N Send Feedback 130
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=130
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=130

& XILINX.

Chapter 5: Designing with the Memory IP Core

Double-click to select the Memory Interface Generator IP and add it to your block design.

MIG (3 matches)

#F DDR32 SDRAM (MIG Name:
%F DDR4 SDRAM (MIG Version:
#F Memory Interface Generator (MIG 7 Series) Interfaces:

Description:

Status:
License:
Change Log:
Vendor:
VLNV
Repository:

IP Details X

nterface Generator (MIG 7 Series)
4.0 (Rev. 3)
AXl4

This Memory Interface Generator
is a simple menu driven tool to
generate advanced memaory
interfaces. This tool generates
HDL and pin placement
constraints that will help you
design your application. Kintex-7
supports DDR3 SDRAM, DDR2
SDRAM, LPDDR2 SDRAM, QDR I1+
SRAM, RLDRAMII and RLDRAMIIL
Virtex-7 supports DDR3 SDRAM,
DDR2 SDRAM, LPDDR2 SDRAM,
QDR I+ SRAM, RLDRAMI and
RLDRAMII. Artix-7 supports DDR3
SDRAM, DDR2 SDRAM and
LPDDR2 SDRAM. Zyng supports
DDR3 SDRAM, DDR2 SDRAM and
LPDDR2 SDRAM

Production

Included

View Change Log

Xilinx, Inc.
silinx.comiip:mig_7series:4.0

C:ilingVivadol2017 . 1/datalip

EMNTER to select, ESC to cancel, Ctrl+Q for IP details

Figure 5-1: Add the Memory IP by Searching in the IP Catalog

This places the Memory IP core into the IP integrator block design.

1. To make changes to the Memory IP configuration, right-click the block to open the
menu, and click Customize Block. You can also double-click the Memory IP block to
open the Xilinx Memory Interface Generator dialog box.

The following figure shows both the Memory IP and the 7 series IP core in the
upper-left, and the DDR4 Memory IP core for UltraScale devices in the lower-right. The
Memory IP that is available in the IP catalog depends on the target part or platform
board selected for your project. There are separate IP cores to support DDR3 and DDR4
memory controllers for UltraScale devices.

mig_7series_1

|+ ek REF
sys_rst

Memory Interface Generator (MIG 7 Series)

ddra_1

©0_DDRa 4 ||
Jl|l+ cosvs ok o0 _init_caiih_complete
24 Co DDRA S_AXI dbg_dk
0 ddrd_aressin dhg_bes511:0]

aya_rat of)_died_ui_cik

of)_dded_ui_cli_ayne rat

DDR4 SDRAM (MIG)

Figure 5-2: Instantiate the Memory IP Core in the Block Design

Embedded Processor Hardware Design

UG898 (v2019.1) June 4, 2019 www.xilinx.com

l Send Feedback l 131

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=131
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=131

(: XI LI NX® Chapter 5: Designing with the Memory IP Core

This example targets the KC705 board for the project. As shown in the following figure,
the Board tab of the platform board flow is available to let you select components to

interface to your design.

2. From the Board tab, drag and drop the DDR3 SDRAM component into the block design
canvas.

Note: In the case of the UltraScale KCU105 board, you can also use the DDR4 SDRAM
component.

Sources | Design Signals | Board X ? 00
Q = £ 9 e
@ Kintex-7 KC705 Evaluation Platform
~ [« Clock Sources (0 out of 1 connected)
» System differential clock
~ | Ethernet Configurations (0 out of 4 connected)
¥ Onboard PHY
¥ PHY using SFP
¥ PHY using SMA
¥ PHY using SMA in LVDS mode
~ | External Memory (1 out of 3 connected)
¥$ DDR3 SDRAM
¥ Linear flash
¥ Pl flash
~ | General Purpose Input or Qutput (0 out of 5 connected)
¥ DIP switches
O LCD ~

Figure 5-3: Instantiating the Memory IP Core using Platform Board Flow

To connect the memory controller to the memory components on the target platform
board, the Vivado® IP integrator connects the SYS_cCLK and DDR interfaces of the Memory

IP to external interface ports, as seen in the following figure.

mig_7series_0

DDR3 + |||w===ef> ddr3_sdram

4+ S_AXI ui_clk_sync_rst =
sys_diff_clock [Dyw||(+ sYS_cLK ui_clk e
- sys_rst ui_addn _clk 0 j=
Q aresetn mmem_locked =

init_calib_complete =

Memory Interface Generator (MIG 7 Series)

Figure 5-4: Board Flow Connects SYS_CLK and DDR3 Interfaces

TIP: You can also begin by simply dragging and dropping the DDR SDRAM component from the Board
O tab into an empty block design. In this case, the Vivado IP integrator instantiates the Memory IP onto
the canvas and connects the SYS_CLK and DDR interfaces of the Memory IP to the components on the

platform board.

Embedded Processor Hardware Design N Send Feedback 132
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=132
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=132

2: XI LI NX® Chapter 5: Designing with the Memory IP Core

3. Select the Run Connection Automation link at the top of the design canvas, as seen in
the following figure. This connects the Memory IP to the system FPGA reset on the
platform board.

| Automatically make connections in your design by checking the boxes of the interfaces to connect Select an interface on the leftto display its
| configuration options on the right.

Q - e
- -

~ | All Automation (1 out of 1 selected)

Description

Connect Slave interface (/mig_7series_0/S_AXl) to a selected Master address space,
v ¥ & mig_Tseries_0

v 8_AXI Options
Master Imicroblaze_0 (Cached) w
|)
Bridge IP Auto v
Clock source for driving Interconnect P~ Auto v
Clock source for Master interface 100 MHz,

Clock source for Slave interface

Figure 5-5: Run Connection Automation for Memory IP

Note: For the KCU105 board, the Run Connection Automation dialog box includes both the
CO_SYS_CLK and the sys_rst interfaces for the Memory IP.

Making Connections with Block Automation

As an alternative to dragging and dropping the DDR SDRAM component from the Board
tab, you could use the Block Automation feature of IP integrator to configure the Memory
IP and tie its SYS_CLK and DDR3 interfaces to the board interfaces.

1. Because the Memory IP core provides the clocking for the entire KC705 board, you
should Run Block Automation, shown in the following figure, for the Memory IP core
prior to adding a clock controller.

Diagram
=l (e Q + ¥ C 9
M Designer Assistance available. Run Block Automation Run Connection Automation

mig_7series_0

|+ ek REF
sys_rst

Memory Interface Generator (MIG 7 Series)

Figure 5-6: Configuring Memory IP using Block Automation

Embedded Processor Hardware Design N Send Feedback 133
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=133
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=133

& XILINX.

Chapter 5: Designing with the Memory IP Core

This opens the Run Block Automation dialog box as shown in Figure 5-7.

¢ Run Block Automation

configuration options on the right.

Q = | 2
~ | All Automation (1 out of 1 selected)
V| F mig_7series_0

Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its

Description

Connect Board Part Interface to MIG IP.

Instance: Imig_7series_0

Options

Board_Part_|nterface: ddr3_sdram

Figure 5-7: Run Block Automation Dialog Box

The Run Block Automation dialog box shows the available IP. In this case, the block

design only has the Memory IP you previously added.

Ensure the Memory IP is selected, and click OK.

The sys_cLK and DDR interfaces of the Memory IP are connected to the DDR memory
components on the platform board. The Memory IP core is configured for 400 MHz
operation with the correct pins selected to interface to the KC705 board. Figure 5-8
shows the Memory IP core after running Block Automation.

sys_diff_clock D—"

Figure 5-8:

mig_7series_0

DDR34- |p===="> ddr3_sdram

=5 AXI ui_clk_sync_rst
4L5YS_CLK ui_clk
sys_rst ui_addn_dk_0

resatn mmem_locked

init_calib_complete

Memaory Interface Generator (MIG 7 Series)

Memory IP Core in Block Design After Running Block Automation

Adding a Clocking Wizard

If the design requires clocking in addition to the clock generated by the Memory IP core,
you need to add a Clocking wizard IP into the block design.

1. Select the Add IP command, type Clock into the search field, and select the Clocking
Wizard IP. Figure 5-9 shows a Clock Wizard IP with a Memory IP core within a design.

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019

l Send Feedback l 134

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=134
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=134

2: XI LI NX® Chapter 5: Designing with the Memory IP Core

mig_7series_0

a5 aa DDR3 < || === "3 ddr3_sdram
H 3 ui_clk_sync_rst
sys_diff_clock D—" 2=5YS_CLK 8 ui_clk
sys_rst i
mmem_locked

init_calib_complete

Memaory Interface Generator (MIG 7 Series)
clk_wiz_0

clk_inl clk_outl
reset locked

Clocking Wizard
Figure 5-9: Clocking Wizard

Follow these steps to connect the Clocking Wizard to the Memory IP core:
2. Connecttheui_clkorui_addn_clk_0 output of the Memory IP, as well as any other

clocks generated, to the c1k_in1 input of the Clocking wizard, as shown in the
following figure.

O TIP: Make sure to use the appropriate output clock pin with the desired frequency.

3. For the UltraScale Memory IP, connect the c0_ddr4_ui_clk pin to the Clocking
Wizard, as shown in the following figure.

mig_7series_0

{ > ddr3_sdram

CI";J:_'kin;_l Wizard

|Connect from 'ui_clk’ port to 'clk_inl’ port |

Figure 5-10: Connect ui_clk to clk_in1l

4. Connect the ui_clk_sync_rst pin of the Memory IP core to the reset pin of the
Clocking wizard, as shown below.

5. For the UltraScale Memory IP, connect the c0_ddr4_ui_clk_sync_rst pin to the
Clocking wizard, shown in Figure 5-11.

Embedded Processor Hardware Design N Send Feedback 135
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=135
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=135

2: XI LI NX® Chapter 5: Designing with the Memory IP Core

mig_7series_0

{ > ddr3_sdram

sys_diff_clock [=

Connect from 'ui_clk_sync_rst’ port

to 'reset’ port
Clocking Wizard

Figure 5-11: Connect ui_clk_sync_rst to the Reset Port

6. Configure the Clocking wizard to generate any required clocks for the design, by
double-clicking the IP.

Adding an AXI Master

To complete the Memory IP design, an AXI master such as a Zynq processor or a MicroBlaze
embedded processor, or an external processor is required. The following procedure lists the
steps to instantiate a MicroBlaze processor into the block design.

1. Select the Add IP command, type Micro into the search field, and select the MicroBlaze
processor to add it to the design.

2. Click Run Block Automation to construct a basic MicroBlaze system, and configure the
settings in the dialog box as follows:

- Preset: None (or the one that is desired)

- Local Memory: Select the required amount of local memory from pull-down menu.
o Local Memory ECC: Turn on ECC if desired.

- Cache Configuration: Select the required amount of Cache memory.

- Debug Module: Specify the type of debug module from the pull-down menu.

- Peripheral AXI Interconnect: This option must be enabled.

o Interrupt Controller: Optional.

- Clock Connection: Select the clock source from the pull-down menu.

Figure 5-12 shows the Run Block Automation page.

Embedded Processor Hardware Design N Send Feedback 136
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=136
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=136

& XILINX.

Chapter 5: Designing with the Memory IP Core

its configuration options on the right.

-

Automatically make connections in your design by checking the boxes of the blocks to connect Select a block on the left to display

Q| x| F
Description
v o i
Al At_:tomatmn (1 outof 1 selected) MicroBlaze connection automation generates local memory of selected size, and
| v microblaze_0 caches can be configured. MicroBlaze Debug Module, Peripheral AXl interconnect,
| Interrupt Controller, a clock source, Processor System Reset are also added and
| connected as needed. A preset MicroBlaze configuration can also be selected
| Instance: /microblaze_0
Options

|
| Preset None v

Local Memory: 8KB v

Local Memory ECC: MNone v

Cache Configuration: | 8KB v
| Debug Module: Debug 0. v |
|

Peripheral AXI Port | Enabled ~

Interrupt Controller:
i Clock Connection: lelk_wiz_D/clk_out1 (100 M. ~

o\
Figure 5-12: Run Block Automation Settings
3. Click OK.

The Run Block Automation adds and connects IP needed to support the MicroBlaze
processor into the block design. The block design should look similar to the following
figure; however, notice that the Memory IP core is not yet connected to the MicroBlaze

processor.

micratiaza_0

ows + ||k

L + |}

MicroBlaze ® wans +:

M_AXIDC [
M_axiic 4 [

Il + wreErRUST
]| + pEBUC
o
Reset

MicroBlaze

sys_dilt_dack [

mem_1

wEozsus 0 + ||}

Detiug SYS Rt

MicraBlaze Dabug Module (MDM)

rst_dlk_wiz_0_100M

L ddi3_sdram

micrablza_0_local_memary

slowest _syne_ck

tus_stuct

Ciocking Wizard

Processor System Resat

b ot |._

meegn]

Figure 5-13:

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019

www.Xxilinx.com

Block Design After Running Block Automation for MicroBlaze

| Send Feedback l 137

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=137
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=137

(: XI LI NX® Chapter 5: Designing with the Memory IP Core

4. At the top of the design canvas, click Run Connection Automation to connect the
Memory IP core to the MicroBlaze processor. The Run Connection Automation dialog
box opens, as shown in Figure 5-14.

| Automatically make connections in your design by checking the boxes ofthe interfaces to connect Select an interface on the leftto display its
configuration options on the right

Q - e
- -

Description
v/
All Automation (1 out of 1 selected) Connect Slave interface (/mig_7series_0/S_AXI) to a selected Master address space.
v ¥ % mig_7series_0
Y|k 8_AXI Options
Master Imicroblaze_0 (Cache -
|

Bridge IP Auto v
Clock source for driving InterconnectIP | Auto v
Clock source for Master interface 100 MHz

Clock source for Slave interface 200 MHz

Figure 5-14: Run Connection Automation Dialog Box to Connect Memory IP to MicroBlaze
5. Select the S_AXT interface of themig_7series_0.
Note: For the UltraScale Memory IP, select the CO_DDR4_S_AXT interface of the mig_0.

The /microblaze_0 (Cached) option should be selected by default.

6. You have a choice to select either the AXTI Interconnect orthe AXI SmartConnect
for the Interconnect IP. For high bandwidth application (such as the Memory IP), the
Auto option selects the AXI SmartConnect IP.

7. Leave the rest of the options to their default values.

8. Click OK.

This instantiates an AXI Interconnect and makes the required connection between the
Memory IP core and the MicroBlaze processor, as shown in the following diagram.

Embedded Processor Hardware Design N Send Feedback 138
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=138
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=138

(: XI LI NX® Chapter 5: Designing with the Memory IP Core

Diagram ?2_0aX
@ a X & |9 a s + B C 9 & &
 Designer Assistance available. Run Conneclion Automation
iesobiasa m.mm;m,o,ma\, memary
mdm_1 7 outs + | {4+ owe
I+ wrersuer ir I
MBDESUG 0 + e | D80G . - e |l e
= MicroBlaze ™ waee+: =
Reset oo - -
M_AXLIE + [t
Wicotiaze i e
S04
soi_wa MM
Iél MOD_AX) o |
IEI
AXI SmantConnact

t_mig_Tseries_0_200M

{0 3 sdram

sys_dlff_cock [

Figure 5-15: Memory IP/MicroBlaze Connections

From here you can complete any remaining connections to the design, such as connecting
to an external reset source, or connecting any interrupt sources through a concat IP to the
MicroBlaze processor.

Creating a Memory Map

To generate the address map for this design, click the Address Editor tab above the
diagram. The memory map is automatically created as IP, and added to the design. You can
set the addresses manually by entering values in the Offset Address and Range columns.
See this link in the Vivado Design Suite User Guide: Designing IP Subsystems Using IP
Integrator (UG994) [Ref 23] for more information. The following figure shows the Address
Editor.

Address Editor ? —0&a X
Q = 2 o
Cell Slave Interface Base Mame Offset Address Range High Address

~ 4F microblaze_0
~ B Data (32 address bits : 4G)
= microblaze_0_local_memory/dimb_bram_if_cntir SLMB Mem 0x0000_0000 8K * 0x0000_1FFF
== mig_7series_0 S_AXI memaddr 0x8000_0000 1G ~ OxBFFF_FFFF
~ B Instruction (32 address bits : 4G)
= microblaze_0_local_memoryfilmb_bram_if_cntir SLMB Mem 0x0000_0000 8K * 0x0000_1FFF
== mig_7series_0 S_AXI memaddr 0x8000_0000 1G ~ OxBFFF_FFFF

Figure 5-16: Address Editor

TIP: The Address Editor tab only appears if the diagram contains an IP block that functions as a bus
O master, such as the MicroBlaze processor in the following diagram.

Embedded Processor Hardware Design N Send Feedback 139
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf;a=xCreatingaMemoryMap
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=139
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=139

2: XI LI NX® Chapter 5: Designing with the Memory IP Core

Running Design Rule Checks

The Vivado IP integrator runs basic design rule checks in real time as you create the design.
However, problems can occur during design creation. For example, the frequency on a clock
pin might not be set correctly. To run a comprehensive design check, click the Validate
Design button [¥.

If the design is free of warnings and errors, a successful validation dialog box displays.

Implementing the Design

Now you can implement the design, generate the bitstream, and create the software
application in SDK.

Embedded Processor Hardware Design N Send Feedback 140
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=140
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=140

& XILINX

Chapter 6

Reset and Clock Topologies in IP
Integrator

Overview

To create designs with IP integrator that function correctly on the target hardware, you must
understand reset and clocking considerations. This chapter provides information about
clock and reset connectivity at the system level. In the Vivado® [P integrator, you can use
the Xilinx® platform board flow, which enables you to configure IP in your design to
connect to board components using signal interfaces in an automated manner. You can also
make all the connections manually. The examples and overall flow described in this chapter
use the platform board flow, but the considerations are valid for all block designs.

For designs using the Memory IP core, the core provides the clock source, and the primary
clock from the board oscillator must be connected directly to the Memory IP core. For more
information, see Designing with the Memory IP Core in Chapter 5.

The Memory IP core can generate up to five additional clocks (Memory IP core for
UltraScale devices can generate only four additional clocks), which you can use for resetting
the design as needed. For designs that contain a Memory IP core, ensure that the primary
onboard clock is connected to memory controller, and then use the user clock (ui_clock
or the ui_addn_clk_x) as additional clock sources for the rest of the design.

For IP integrator designs with platform board flow, specific IP (for example, Memory IP and
Clocking Wizard) support board-level clock configuration. For the rest of the system,
clocking can be derived from the supported IP. Similarly, for driving reset signals,
board-level reset configuration is supported by a specific reset IP (for example,
proc_sys_reset). You can use other IP that also require external reset but are not
currently supported by the platform board flow.

The following sections describe the reset topologies for different types of designs.

Embedded Processor Hardware Design N Send Feedback 141
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=141
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=141

2: X”_INX® Chapter 6: Reset and Clock Topologies in IP Integrator

MicroBlaze Design without a Memory IP Core

For any design that uses a MicroBlaze™ processor without a Memory IP core, you can
instantiate a Clocking Wizard IP to generate the clocks required. For the platform board
flow, you can configure the connection as follows:

1. After instantiating a MicroBlaze processor in the design, click the Run Block
Automation link. This creates the MicroBlaze subsystem, as shown in the following
figure.

Diagram x Address Editor %
@ e I B O Q : + = C 9

J¥ Designer Assistance available. Run Block Automation Run Connection Automation

microblaze_0

||+ INTERRUPT

||+ oeBuc . - ouve |
ok MicroBlaze e ||
mecet M_AXI_DP 4 [::

MicroBlaze

Figure 6-1: Run Block Automation on the MicroBlaze

2. In the Run Block Automation dialog box, select the New Clocking Wizard option to
instantiate the Clocking Wizard IP, and click OK, as shown in the following figure.

¢ Run Block Automation loc

Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on
the left to display its configuration options on the right. ‘

Description

v/ i
Al AstorTaion (Y/out s/ el MicroBlaze connection automation generates local memory of selected

| %F microblaze_0 size, and caches can be configured. MicroBlaze Debug Module,
Peripheral AXl interconnect, Interrupt Controller, a clock source,
Processor System Reset are also added and connected as needed. A
preset MicroBlaze configuration can also be selected

Instance: imicroblaze_0

Options
Preset MNone v
Local Memory: 8KB v
Local Memory ECC! MNone A
Cache Configuration: | None v
Debug Module Debug Only ~

Peripheral AX| Port Enabled v
Interrupt Controller;

Clock Connection: New Clocking Wizard (100 MHz v

@)

Figure 6-2: Run Block Automation Dialog Box for the MicroBlaze

Running Block Automation also instantiates and connects the Proc Sys Reset IP to the
various blocks in the design.

Embedded Processor Hardware Design N Send Feedback 142
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=142
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=142

(: X”_INX® Chapter 6: Reset and Clock Topologies in IP Integrator

The IP integrator canvas looks like the following figure.

Diagram x Address Editor X 00
@ @ X H O Q s + & C o

* Designer Assistance available. Run Connection Automation

alk wiz_1 rst_clk_wiz_1_100M

lIj+ cuc D ek _outt

— — slowest_sync_clk mb_reset
@ ext_reset_in bus_struct_reset[0:0]
Clocking Wizard € aux_reset_in peripheral_reset[0:0] =
mb_debug_sys rst inlerconnect_aresetn[0:0] @
dem_locked peripheral_aresetn[0:0] @
mdm_1

Processor System Reset
MBDEBUG_0 + |||=——
Debug_SYS_Rst

MicroBlaze Debug Module (MDNM)

microblaze_0 microblaze_0_local_memory

+ INTERRUPT
!! + DEBUG - - BLEZ H ii + DLMB
- M Bl - ILME + Jl|+ 1Lme
L g"‘ . ICro aze M_AXIDP 4+ | LMB_Clk
o SYS_Rst
MicroBlaze

Figure 6-3: Effect of Running Block Automation

3. Click Run Connection Automation and select /clk_ wiz_1/CLK _IN1_D to connect the
on-board clock to the input of the Clocking Wizard IP, according to the board definition.
Note: You can customize the Clocking Wizard to generate the various clocks required by the
design.

Diagram X Address Editor X
e I ® © Q $ + =

M Designer Assistance available. Run Connection Automation

Figure 6-4: Running Connection Automation on the Clocking Wizard

Embedded Processor Hardware Design

. | Send Feedback l 143
UG898 (v2019.1) June 4, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=143
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=143

Chapter 6: Reset and Clock Topologies in IP Integrator

& XILINX.

In the Run Connection Automation dialog box, select sys_diff_clock to select the board

4.
interface for the target board, or select Custom to tie a different input clock source to

the Clocking Wizard IP, then click OK.
=X

¢ Run Connection Automation
Automatically make connections in your design by checking the boxes ofthe interfaces to connect. Select an interface on the left to display

itz configuration options on the right.

Q = 2 Description
Sl A Amation (3. 0ut of 3 Selected) Connect Board Part Interface to IP interface.

~ /] FF clk_wiz_1
Interface: iclk_wiz_1/CLK_IN1_D

V| I} CLK_IN1_D
| = reset
~ (/|3 rst_clk_wiz_1_100M Optians
Select Board Part Interface: | sys_diff_clock (System differential clock) R

pcie_refclk { PCle MGT reference Clock)

< = ext_reset_in
sys_diff_clock (System differential clock)

Custom

Figure 6-5: Connecting On-board sys_diff_clock to CLK_IN1_D Pin of Clocking Wizard
5. For the reset pin of the Clocking Wizard, select the dedicated reset interface on the

target board or a Custom reset input source.

=%
y

¢ Run Connection Automation
Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the leftto

display its configuration options on the right.

Q = = Description
 (RIAT fromation (T Ut o Fseteded) Connect Board Part Interface to IP interface.

~ [m 4F clk_wiz_1
Interface: iclk_wiz_1/reset

= clk_in1
| = reset ’
~ [|4 rst_clk_wiz_1_100M Opiions
= ext_reset_in Select Board Part Interface: | reset (FPGA Reset) e
reset (FPGA Reset)
Custom
©
Figure 6-6: Connect the On-Board Reset
Embedded Processor Hardware Design Send Feedback 144
www.xilinx.com l—\/_l

UG898 (v2019.1) June 4, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=144
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=144

& XILINX.

Note: Steps 4 and 5 above can also be done by dragging and dropping the System Differential
Clock under the Clock Sources folder and FPGA Reset from the Reset folder in the Board tab.

Chapter 6: Reset and Clock Topologies in IP Integrator

Forthe ext_reset_in pin for the Processor System Reset block choose the same reset
source as chosen for the Clocking Wizard in the step above or a Custom reset source.

After you make your choice and click OK, the IP integrator canvas looks like the

following figure.

reset [»

clk_wiz_1

sys_diff_clock [J+

Clocking Wizard

microblaze 0

|

clk_outd
| reset locked F

|||+ wrERRUPT
|||+ DEBUG

MicroBlaze

DLMB + |||
ive + ||
M_AXI DP 4

MicroBlaze

rst_clk_wiz_1_100M

slowest_sync_ck
exl_resel_in

aux_reset_in
mb_debug_sys_rst

dem_locked

mb_reset
bus_struct_reset[0:0]
peripheral_reset[0:0]
interconnect_aresetn|0:0]

peripheral_aresetn[0:0]

Processor System Reset

microblaze 0 local_memory

1
Clk
Resat

mdm_1

MBDEBUG_0 +m
Debug SYS_Rst =

MicroBlaze Debug Module (MDM)

Figure 6-7: On-Board Reset Connected to the Proc Sys Reset IP

CAUTION! /f the platform board flow is not used, ensure that the “locked” output of the Clocking
Wizard is connected to the “dcm_locked” input of Proc_Sys_Reset.

MicroBlaze Design with a Memory IP Core

RECOMMENDED: As mentioned in the introduction, the Memory IP is a clock source, and Xilinx
recommends that you connect the on-board clock directly to the Memory IP core.

The Memory IP core provides a user clock (ui_clock) and up to five additional clocks (four
in case of UltraScale Memory IP) that can be used in the rest of the design. You can
configure the connection, as follows:

1.

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019

When using the platform board flow automation in a design that contains the Memory
IP, add the Memory IP first (or drag and drop the DDR3 SDRAM/DDR4 SDRAM interface
from the Board window which instantiates the Memory IP core and configures it for the
board), and then run Block Automation. This connects the on-board clock to the
Memory IP core.

You can then customize Memory IP to generate additional clocks, as shown in
Figure 6-8.

l Send Feedback l 145

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=145
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=145

& XILINX.

Chapter 6: Reset and Clock Topologies in IP Integrator

nterrace Generator

| 4§ xilinx Memory

REFERENCE
DESIGN [1]

AU G G §

& XILINX.

‘ User Guide Version Info

Memory Options for Controller 0 - DDR3 SDRAM

|»

Input Clock Period: Select the pericd for the PLL input clock (CLKIN). MIG determines the allowable input clock
pericds based on the Memary Clock Period entered above and the ciocking guideiines fisted in the User Guide, The
generated design will use the selected Input Clock and Memory Clock Periods fo generate the required PLL
parameters. If the required input clock period is not avaiabls, the Memory Clock Period must be modfied.

E |

| 5000 ps (200 Mkz)

MIG can generate up to 5 additional clocks to be used in Fabric logic. This will be generated from the same MMCM which is used for generation of UI_CLK. The
first clock(Clock 0) has 2 wider range of choices, Al the values in the additional clocks drop dovims are calculsted considering the MMCM VCO frequency 2

[Select Additional Clocks(if required) ‘
|
1250.000000 ps (800 MHz) Mhz. For complete details on clocking of MIG, refer to MIG User Guide. ‘

Clock 0 | 10000 ps (100.00000 Mhz) ~| o= 8000
Clock 1 |nonE | [b=1
Clock 2 |none | p=1
Clock 3 |none -] p=1
Clock 4 [rone ~][p=1

Choose the Memory Options for the memory device. Memory Option selections are restricted to those supported by the controller. Consult the memary vendor
data sheet for more information.

Read Burst Type and Length

The burst type determines the data ordering within a burst. Consult the memory datashest for more information. Burst length 8 ,ﬁ
is the crily supportad vahue. Sequen

Output Driver Impedance Control

RZQ/7 v

Controller Chip Select Pin |
The Chip Seec (C5#) pin can betd low el o save on i n the address/cammand sroup vhen ths sescton s sst [|
to "Disable’, Disable is only valid for single rank configurations, the

RTT (nominal) - On Die Termination (ODT) ‘

Select the nominal value of ODT for the DQ, DQS/DQS# and DM signals on the component or DIMM interface. This must be set
to RZQ/6 i(40 chms) for data rates at 1333 Mbps and above. In 2 siot DIMM configuations this value will be used for the ’m

unwiritten slot during & write and wiill also be used for the unselected slot during a read. Use board level simulation to chocse
the optimum value.

Programmable impedance for the output buffer.

Memory Address Mapping Selection

User Address

a
: %
= o

=
< Back ‘ Next> I Cancel | ‘

Figure 6-8: Customization Dialog Box for the MIG Core to Generate Additional Clocks

After configuring the MIG to generate additional clocks, click the Run Connection

Automation link at the top of the banner.

The Run Connection Automation dialog box states that the ddr3_sdram interface is
available, as shown in Figure 6-9.

3. Click OK.

Embedded Processor Hardware Design

UGS898 (v2019.1) June 4, 2019

| Send Feedback l 146

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=146
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=146

8 X”_INX® Chapter 6: Reset and Clock Topologies in IP Integrator

=

¢ Run Block Automation

Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its
configuration options on the right.

Description
~ | All Automation (1 out of 1 selected)

V| F mig_7series_0

Connect Board Part Interface to MIG IP.

Instance: Imig_7series_0

Options

Board_Part_|nterface: ddr3_sdram

I/;\I
\2) oK Cancel

Figure 6-9: Running Block Automation on the Memory IP Core

This connects the interface ports to the Memory IP, as shown in the following figure.

mig_7series_0

DDR3+h|—D ddr3_sdram

=5 AXI ui_clk_sync_rstm=
4L5YS_CLK ui_clk =
sys_rst ui_addn_dk_0
resatn mmem_locked m=
init_calib_complete

sys_diff_clock D—"

Memory Interface Generator (MIG 7 Series)

Figure 6-10: Block Automation Creates the DDR3 SDRAM

4. Add the MicroBlaze processor to the design and run Block Automation, as shown in the
Figure 6-11.

Diagram * Address Editor X
ala i x|([¢] a + B|lC ol o

M Designer Assistance available. Run Block Automation Run Connection Automation
microblaze_u

|ll4 INTERRUPT
|ll+ pesue & pLB +|||

MicroBlaze™ s

Reset

MicroBlaze

mig_7series_0

DDR3 + |||
4+ 5_AXI ui_clk_sync_rst
5_diff_Clock [——| -+ SYS_CLK ui_clk
sys_rst ui_addn_clk_0
aresetn mmem_locked

init_calib_complete

Memory Interface Generator (MIG 7 Series)

Figure 6-11: Instantiate and Run Block Automation on the MicroBlaze

Embedded Processor Hardware Design N Send Feedback 147
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=147
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=147

(: X”_INX® Chapter 6: Reset and Clock Topologies in IP Integrator

5. In the Clock Connection field of the Run Block Automation dialog box, select the
Memory IP ui_clk (/mig_7series_0/ui_clk or mig_7series/u_addn_clk_0) as the clock
source for the MicroBlaze processor, as shown in the following figure, and click OK.

O TIP: The mig_7series_0/ui_addn_clk_0 is selected by default.

¢ Run Block Automation

Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the leftto
display its configuration options on the right.

Q - -~
= -

~ | All Automation (2 out of 1 select

Description

MicroBlaze connection automation generates local memaory of selected

| F microblaze_0 size, and caches can be configured. MicroBlaze Debug Module, Peripheral
AXlinterconnect, Interrupt Controller, a clock source, Processor System
Reset are also added and connected as needed.

Instance: imicroblaze_0

Iclk_wiz_1/clk_out1 (100 MHz)
Imig_7series_0/ui_addn_clk_0 (100 MHz)

Imig_7series_0fui_clk (200 MHz)

Options
Local Memory:

Local Memory ECC: | /ddr3_sdram_ck_n (100 MHz
X Iddr3_sdram_ck_p (100 MHz
Cache Configuration:
Ipcie_refclk_clk_n (100 MHz)
Debug Module: Ipcie_refclk_clk_p (100 MHz)
Peripheral AXI Port Isys_diff_clock_clk_n (100 MHz)
fsys_diff_clock_clk_p (100 MHz)
Interrupt Controller: | ey locking Wizard (100 1iHz)

Clock Connection: Imig_7series_0/ui_addn_clk_0 (100 MHz) |

@

Figure 6-12: Run Block Automation Options for the MicroBlaze Processor

Q) ~

This creates a MicroBlaze subsystem and connects the ui_addn_c1lk_0 as the input
source clock to the subsystem, as shown by the highlighted net in the following figure.

microblaze_0_local_memory

microblaze_0
,
mdm_1 [p—— oLME +
MBDEBUG O + ||} ||+ oesuc . P \L\.nf +
« MicroBlaze ® s+
Mi M_AXI_IC
mig_Tseries_0 MicroBlaze

O ddr3_sdram

rst_mig_Tseries_0_100M

sowest_sync_ck mb_reset
ex_resel_in 2

au_reset in

mb_debug_sys_rst interconned_areseln{00]

dom_locked penipneral_sresetn|0:0]

Figure 6-13: Connect the Output Clock from the Memory IP Core to Clock the Design
6. Make the following additional connections:

a. Click Connection Automation and select /mig_7series/S_AXI to connect the
Memory IP to MicroBlaze.

Embedded Processor Hardware Design N Send Feedback 148
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=148
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=148

(: X”_INX® Chapter 6: Reset and Clock Topologies in IP Integrator

b. In the Run Connection Automation dialog box select /microblaze_0 (Cached)
option for the s_AXT interface.

c. Leave all other settings for S_AXT to their default value of Auto.

¢ Run Connection Automation | &3 |
Automatically make connections in your design by checking the boxes ofthe interfaces to connect. Select an interface on the left to display its
configuration options on the right. ‘
Q = 2 Description

~ | All Automation (3 out of 3 selected)
~ /| %F mig_7series_0

Connect Slave interface (fmig_7series_0/5_AXI) to a selected Master address space.

< I} 5_AXI Options

| = sys_rst
Master: Imicroblaze_0 (Cached)

~ [/ %F rst_mig_7series_0_100M & =

V| = ext_reset_in Interconnect IP: Auto v
Crossbar clock source of Interconnect IP: | Auto ~
Clock source for Master interface: Auto ~
Clock source for Slave interface: Auto ~

I/;\I
\2) oK Cancel

Figure 6-14: Run Connection Automation Dialog Box
d. Connect the on-board reset to the sys_rst input of the Memory IP.

e. Connect the ext_reset_in of the rst_mig 7 series_0_100M Processor
System Reset block to reset (FPGA Reset).

f. Click OK.

The following figure shows the completed connection for MB-Memory IP with Designer
Assistance.

menniaze 0

o+

Lz +|

* MicroBlaze ™ wwe+t

A1 DG 4
Maxic 4

WoroBaze

raset [

Figure 6-15: Connect reset and mmcp_locked Pins

Embedded Processor Hardware Design N Send Feedback 149
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=149
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=149

& XILINX.

Chapter 6: Reset and Clock Topologies in IP Integrator

Zynq Design without PL Logic

For Zynq designs without programmable logic (PL), all the clocks are contained in the
ZYNQ7 Processing System IP. Use the following steps to add a Zynq design without PL.

1. After adding the ZYNQ7 Processing System IP, click Run Block Automation and select

/processing_system7_0, as shown in the following figure.

Diagram

X Address Editor X
LY] L%
Q- wu L

M Designer Assistance available. Run Block Automation

200

& Q + = C o o

processing_system7_0

DDR + |||
FIXED_IO +|||
M_AXI_GPO + (i}
FCLK_CLKO
FCLK_RESETO_N

M_AXI GPO_ACLK ZYNQ‘

ZYNQ7 Processing System

Figure 6-16:

2. The Run Block Automation states that the FIXED_I0 and the DDR interfaces will be

Run Block Automation on Zynq

connected to external ports, as shown in Figure 6-17.

3. Click OK.

¢ Run Block Automation

Automatically make connections in your design by checking the boxes of the blocks to connect Select a block on the left to display its

configuration oplions on the right.

~ ' All Automation (1 out of 1 selected)
| 3F processing_system7_0

Description

This option sets the board preset on the Processing System. All current properties will be
overwritten by the board preset This action cannot be undone. Zyng7 block automation
applies current board preset and generates external connections for FIXED_IO, Trigger
and DDR interfaces

MNOTE: Apply Board Preset will discard existing IP configuration - please uncheck this box,
if you wish to retain previous configuration.

Instance: /processing_system7_0

Options
Make Interface External: FIXED_IQ, DDR
Apply Board Preset o

Cross Trigger In Disable w

Cross Trigger Out: Disable

Figure 6-17:

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019

Run Block Automation on the ZYNQ7 Processor

www.Xxilinx.com

l Send Feedback l 150

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=150
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=150

2: X”_INX® Chapter 6: Reset and Clock Topologies in IP Integrator

4. Double-click the ZYNQ7 Processing System to re-customize the IP.

5. Set the specific clocks in the Re-Customize IP dialog box Clocking Configuration page,
shown below.

¢ Re-customize IP @

ZYNQ7 Processing System (5.5) ’
o Documentation 'ﬂ- Presets IP Location @j Import XPS Settings
Page Havigator —_ Clock Configuration Summary Report

Zyng Block Design Basic Clocking

nced Clocking

PS-PL Configuration 4 |nput Frequency (MHz) 33.333333 CPU Clock Ratio| 6:2:1 -

Peripheral 110 Pins Q Search:

4L

MIQ Configuration Component Clock Source Requested Frequ.. Actual Frequency(.. Range(MHz)

~ ProcessorMemory Clocks

L(1

EREHEITEIET cPU ARMPLL | 666.666666 666.66667 50.0: 667.0
DDR Configuration DDR DDRPLL +| 533333333 533.333374 200.000000 : 534.000...

~ |0 Peripheral Clocks
SMC Timing Calculation

SNC 10 PLL 100 10.000000 10.000000 : 100.000000
Interrupts QsPI 10 PLL 200 10.000000 10.000000 : 200.000000
ENETO 10 PLL 1000 Mbps 10.000000
ENET1 10 PLL 1000 Mbps 10.000000
SDIO 10 PLL 100 10.000000 10.000000 : 125.000000
SPI 10 PLL 166.666666 10.000000 0.000000: 200.000000
» CAN

~ PL Fabric Clocks

v FCLK_CLKOD 10 PLL || 50 50.000000 0.100000 : 250.000000
FCLK_CLKA 10 PLL 50 10.000000 0.100000 : 250.000000
FCLK_CLK2 10 PLL 50 10.000000 0.100000 : 250.000000
FCLK_CLK3 10 PLL 50 10.000000 0.100000 : 250.000000

~ System Debug Clocks

TPIU External 200 200.000000 10.000000 : 300.000000
~ Timers
WDT CPU_1X 133.333333 111111115 0.100000 : 200.000000
> TTCO
> TTCA
| oK | | Cancel

Figure 6-18: Clock Configuration Options for the ZYNQ7 Processing System

Embedded Processor Hardware Design N Send Feedback 151
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=151
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=151

& XILINX.

Chapter 6: Reset and Clock Topologies in IP Integrator

Zynqg-7000

Design with PL Logic

FCLK_RESET2_N, and FCLK_RESET3_N: for resetting the PL.

RECOMMENDED: For designs with a Zyng-7000 processor that contain custom logic in the PL fabric
(but without Memory IP), source the clocking and reset for the PL portion of the design from the PS. You
can use any of the PL Fabric Clocks: FCLK_CLKO, FCLK_CLK1, FCLK_CLK2, and FCLK_CLK3: for the clock
source. You can use the associated resets these clocks: FCLK_RESETO_N, FCLK_RESETT_N,

Use the following steps to add a Zynq-7000 processor design with PL.

1.

/processing_system7_0.

After adding the ZYNQ7 Processing System IP, click Run Block Automation and select

<

FCLK_RESETO_N

Diagram x Address Editor X 00
e X B © Q + ¥ C 9 o
M Designer Assistance available. Run Block Automation
processing_system7_0
DDR + |||
- FIXED_IO +|||
M_AX]_GPO_ACLK ZYNQ M_AXI_GPO 4

FCLK_CLKO

ZYNQ7 Processing System

>

Figure 6-19:

The Run Block Automation dialog box states that the FIXED_I0 and the DDR interfaces

Run Block Automation on the ZYNQ7 Processing System

will be connected to external ports, as shown in Figure 6-20.

Embedded Processor Hardwa
UG898 (v2019.1) June 4, 2019

re Design
www.Xxilinx.com

l Send Feedback l 152

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=152
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=152

(: X”_INX® Chapter 6: Reset and Clock Topologies in IP Integrator

¢ Run Block Automation @
Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its
configuration options on the right. ‘
Q = 2 Description

v | i
Allfutamakion {Foutiofiselected) This option sets the board preset on the Processing System. All current properties will be

| %F processing_system7_0 overwritten by the board preset. This action cannot be undone. Zyng7 block automation
applies current board preset and generates external connections for FIXED_IO, Trigger
and DDR interfaces.

MOTE: Apply Board Preset will discard existing IP configuration - please uncheck this box,
if you wish to retain previous configuration.

Instance: /processing_system7_0
Options

Make Interface External: FIXED_|O, DDR

Apply Board Preset. +
Cross Trigger In: Disable w

Cross Trigger Out: Disable w

P

Figure 6-20: Run Block Automation Dialog Box for the ZYNQ7 Processing System
2. Click OK.
3. Double-click the ZYNQ7 Processing System to re-customize the IP.

Figure 6-21 shows the re-customization page.

Embedded Processor Hardware Design N Send Feedback 153
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=153
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=153

8 XI LI NX® Chapter 6: Reset and Clock Topologies in IP Integrator

¢ Re-customize IP @

ZYNQ7 Processing System (5.5) ‘

@ Documentation £F Presets IP Location ﬁ'} Import KPS Settings

Page Navigator — Zyng Block Design Summary Report
Zynqg Block Design
yng g =
VO Penpherals General
PS-PL Configuration SPLO Sl Application Processor Unit (APU)
g | R
o ZC0 &) [11c] .
Peripheral 110 Pins (15:0) 12C 1 < ARM Corlex -A9 ARM Corex -AS
canNDg N Syl cPU cPU
CARE 4— Control Regs
MIO Configuration UART 0 | &in
UART1 W] Al
:Bx o) 5 } ek Snoop Control unt | YT e
Clock Configuration sy M= L] e —— Stovn
o “—{ s&p1 - Channel l 512 KB L2 Cache and Controlier | Parts
useo__ W |
DDR Configuration e | oM 256K8
e S
| ErEr e g o e et
SWC Timing Calculation cakd [—ENEET—— Central ' =
Mo FLASH Memory t !
i ; (53:18) Intertaces Le—] -— e
MRS . P
[wamo 1
— Programmabie DDR23,LPDOR2
T = ECJ Logie to Memary Controlier
SME Timing
Cabculation
DMA $yne BEEE]
e I O £ .
R | { P | ; 7 i : } Processing System(PS)
byl 2taf, LU T ppap || smee [o, o IR2 | Hign Performames KADG I
Muoe('éjmmm PS-PL A Al 2 5 Ags.'“@ Al 320840 Slave
Clock Ports Master Slave SHA Ports
Pors Pors
Pragrammable Logic(PL)
| OK | | Cancel

Figure 6-21: Re-Customize the ZYNQ7 Processing System

4. In the Re-customize IP dialog box, click Clock Configuration in the Page Navigator and
then expand PL Fabric Clocks, as shown in Figure 6-22.

Embedded Processor Hardware Design N Send Feedback 154
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=154
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=154

2: X”_INX® Chapter 6: Reset and Clock Topologies in IP Integrator

¢ Re-customize IP @

ZYNQ7 Processing System (5.5) ‘
0 Documentation -ﬂ- Presets IP Location @p Import XPS Settings
Page Navigator - Clock Configuration Summary Report

Zynq Block Design Basic Clocking Advanced Clocking

PS-PL Configuration 4= |nput Frequency (MHz) 33.333333 CPU Clock Ratio| 6:2:1 s

Peripheral 0 Pins Q Search:

MIO Configuration = Component Clock Source Requested Frequ... Actual Frequency(.. Range(MHz)

> ProcessorMemory Clocks

4

Clock Configuration > 10 Peripheral Clocks
_ * - PLFabricClocks
DDR Configuration
¥| FCLK_CLKO 10 PLL || 50 50.000000 0.100000 : 250.000000
SMC Timing Calculatior
FCLK_CLK1 10 PLL 50 10.000000 0.100000 : 250.000000
Interrupts FCLK_CLK2 10 PLL 50 10.000000 0.100000 : 250.000000
FCLK_CLK3 10 PLL 50 10.000000 0.100000 : 250.000000

> System Debug Clocks

> Timers

| oK | | Cancel

Figure 6-22: Specify the Frequency of the Fabric Clock
5. Click PS-PL Configuration in the Page Navigator and expand General.

6. Expand Enable Clock Resets and select the appropriate resets for the PL fabric, as
shown in Figure 6-23.

Embedded Processor Hardware Design N Send Feedback 155
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=155
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=155

& XILINX.

P5-PL Configuration

Chapter 6: Reset and Clock Topologies in IP Integrator

- Search:
Q| name Select
b General
= UARTO Baud Rate 115200
— UART1 Baud Rate 115200
PL AXl idle Port
DDR ARB bypass Port
PS-PL Debug interface
FTM Trace data interface
FTM Trace buffer 0
FTM Data edge detector 0
FTM Trace buffer FIFO size 128
FTM Trace buffer clock delay 12
Include ACP transaction checker
Trace data/control signal pipeline width 8
Power-on reset(POR) 4k timer
Processor event interface
> Address Editor
» Enable Clock Triggers
~ Enable Clock Resets
FCLK_RESETO_N ¥
FCLK_RESET1_N
FCLK_RESET2_N
FCLK_RESET3_N
> AXlMon Secure Enablement 0

Summary Report

Description

Baud rate is generated with internally fixed UART Ref Clock Freg=10...
Baud rate is generated with internally fixed UART Ref Clock Freg=10...
Enables idle AX] signal to the PS used to indicate that there are no o...
Enables DDR urgent/arb signal used to signal a critical memaory star...
Enables PL debug signals to PS and vice-versa

Enables FTM Trace AXl stream interface used to capture data from P...
Generates a FIFO to hold trace data

Stores trace data in the FIFO when the data changes as marked by e...
FTM Trace buffer FIFO size

Mumber of clock cycles interval for a trace data output from FIFO bein...
Enables ACP transaction checker.

Enables configurable number of pipeline stages on the TRACE DAT...
Enables power-on reset(POR) 4k timer. By default, 64k timeris used.

Enables event bus which provides a low-latency and direct mechanis...

Enables general purpose reset signal 0 for PL logic
Enables general purpose reset signal 1 for PL logic
Enables general purpose reset signal 2 for PL logic

Enables general purpose reset signal 3 for PL logic

| Enable AXl Non Secure Transaction

Figure 6-23: Enable the Resets to the PL Fabric

7. Instantiate an IP such as AXI GPIO in the PL fabric. Then, click Run Connection
Automation.

The Run Connection Automation dialog box states that the S_AXT port of the GPIO will
be connected to the ZYNQ7 Processing System master interface M_AXI_GPO0, as shown

in Figure 6-24.

8. Click OK.

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019

www.Xxilinx.com

l Send Feedback l 156

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=156
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=156

8 X”_INX® Chapter 6: Reset and Clock Topologies in IP Integrator

¢ Run Connection Automation

Automatically make connections in your design by checking the boxes ofthe interfaces to connect. Select an interface on the left to display its
configuration options on the right.

Q = | 2
~ | All Automation (2 out of 2 selected)
~ || #F axi_gpio_0

Description

Connect Slave interface (faxi_gpio_0/5_AXl) to a selected Master address space.

</ it GPIO Options
i 5_AXI
o Master: Iprocessing_system7_0/M_AXI_GPO
Interconnect IP: Mew AXl Interconnect

Crossbar clock source of Interconnect IP: | Auto

Clock source for Master interface: Auto

Clock source for Slave interface: Auto

I/;\I
\2) oK Cancel

Figure 6-24: Run Connection Automation Dialog Box to Connect GPIO

=%
y

>

The clock and resets in the IP integrator design should look as shown in the following

figure.

rst_processing_system7_0_50M

lowest_sync_clk mb_reset m=
_reset_in bus_struct_reset[0:0] =
=Qaux_reset_in peripheral_reset[0:0] =
=—mb_debug_sys_rst interconnect_aresetn[0: 0]
= dcm_locked peripheral_aresetn[0:0 j—

processing_system7_0

Processor System Reset

DDR 4
FIXED_IO 4

DDR

USBIND_0 4=
M_AXI_GP0 <=

-
M_AXI_GPO_ACLK TTCO_WAVEQ_OUT|
ZYNQ TTCO_WAVE1_OUT|
TTCO_WAVEZ_OUT|
FCLK_CLKO—
FCLK_RESETO_N:

axi_gpio_0

des A
_axi_aclk G104 |}

[FIXED_IO

;_axi_aresetn

ZYNQ7 Processing System

oG] processing_system7_0_axi_periph

.
[4rso0_aa
ACLK

L— ARESETH Bl |
500_ACLK D§Dmuﬁm+ e

S00_ARESETN [1]£5
MOD_ACLK
MDO_ARESETN

AXT Interconnect

> gpio_sw

Figure 6-25: Using the Output Clock from the ZYNQ PS7 IP to Clock the Design

Embedded Processor Hardware Design N Send Feedback 157
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=157
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=157

2: X”_INX® Chapter 6: Reset and Clock Topologies in IP Integrator

Zynq Design with a Memory IP Core in the PL

RECOMMENDED: for Zynq designs that include a Memory IP core in the PL, it is recommended that the
input clock to the Memory IP core use an external clock source instead of the PS Fabric clock. The

external clock from an on-board oscillator would be cleaner in terms of jitter when compared to clocks
from the PS. You can use PS Fabric clocks for other portions of the PL design if required.

1. Add the Memory IP and configure according to design requirements.

2. Then, connect the input clock source to the SYS_CLK input of the Memory IP core by
right-clicking SYS_CLK in the block design and selecting Make External.

3. If the design uses a MicroBlaze processor, add it to the design and run Block
Automation. The Run Block Automation dialog box opens.

4. Specify /mig_7series_0/ui_clk or the /mig_7_series_0/ui_addn_clk_0 (if the Memory IP
core has been configured to have ui_addn_clk_x pins) as the input clock.

=[] All Automation (1 out of 1 selected) Description

MicroBlaze connection automation generates local memory of selected size,

and caches can be configured. MicroBlaze Debug Module, Peripheral AXI
interconnect, Interrupt Controller, a clock source, Processor System Reset are
also added and connected as needed.

Instance: /microblaze_0

Options
Local Memaory:
Local Memory ECC:
Cache Configuration:
Debug Module:
Peripheral AXI Port:
Interrupt Controller:

Clock Connection:

Debug Only -
Enabled ~

O

/mig_7series_0/ui_addn_clk_0 (100 MHz) =

MNone

Jmig_7series_0fui_addn_clk 0 =
/mig_7series_0/ui_clk (100 MHz)
New Clocking Wizard (100 MHz)

New External Port (100 MHz)

Figure 6-26: Specifying MicroBlaze Options

O TIP: mig_7series_0/ui_addn_clk_0 (100 MHz) is selected by default.

5. Click OK.

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019 www.xilinx.com

l Send Feedback l 158

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=158
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=158

Chapter 6: Reset and Clock Topologies in IP Integrator

& XILINX.

The block design looks like the following figure.

. microblaze_0_local_memo
microblaze_0 i

mdm_1 DLMB 4
|ll+ wTERRUPT "

mepEauG_o + ||| |||+ oeEBuG . T o
L™ MicroBlaze ® ueix
MicroBlaze Debug Module (MDM) Rosat M_AXI_IC

MicroBlaze

mig_7serles_0 rst_mig_7series 0_100M
F DDR3 +'|| pﬁ slawast_sync_clk mih_raset ’»—1
ext_resal in

ui_clk_syne_rst bus_struct_resetf:0]
ui clk aux_reset in
mmem_locked mb_debug_sys_rst
init_calib_complta dem_lacked

peripheral_resatj0:0]
interconnact_aresatn{00]
Memary Interface Generalor (MIG 7 Series) Processor Syslem Resel

peripheral_aresetnf00]

Figure 6-27: Block Design after Running Block Automation on the MicroBlaze

6. Click Run Connection Automation link to complete rest of the connections. The Run
Connection Automation dialog box opens.

7. Select all available connections with their default values, as shown in the following
figure.

¢ Run Connection Automation | 3 |
Automatically make connections in your design by checking the boxes ofthe interfaces to connect. Select an interface on the left to display
itz configuration options on the right. ‘

- -~
= -

Q

~ | All Automation (2 out of 2 selected)

Description

Connect Slave interface (fmig_7series_0/S_AXI)to a selected Master address space.
~ /| %F mig_7series_0

< I} 5_AXI Options

| = sys_rst
Master: Imicroblaze_0 (Cached) w
Interconnect IP: Auto ~
Crossbar clock source of Interconnect IP: | Auto ~
Clock source for Master interface: Auto ~
Clock source for Slave interface: Auto ~

Figure 6-28:

Embedded Processor Hardware Design
UG898 (v2019.1) June 4, 2019

www.Xxilinx.com

Complete the Block Design using Connection Automation

l Send Feedback l 159

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=159
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=159

(: X”_INX® Chapter 6: Reset and Clock Topologies in IP Integrator

8. The connected design should look like the following figure.

microblaze_0_local memary

||+ owe
|+ wme
M8 _Ci
microtiaze_0 S5 Ret
i
W umax

mdm_1 _ g [}

o mdm it Il wirermunT LME 4l

MBDEBUG_0 + || e[|+ DEBUIC H =4 o

, P MicroBlaze ™ wamer 4|
a7 Debug Maduia) AR

Ruset

rst_mig_7series_0_100M

SY5_CLK >
raselrt >

Figure 6-29: Complete the Block Design

Designs with Memory IP and the Clocking Wizard

For designs that require specific clock frequencies not generated by the Memory IP core,
you can instantiate a Clocking Wizard IP and use the ui_clock output of the Memory IP as
the clock input for the IP Clocking wizard.

You also need to make the following additional connections:

1. Connect the onboard reset to the Clocking wizard reset input in addition to the Memory
IP.

2. Connect the mmcm_1locked pin of the Memory IP and locked pin of Clocking wizard to
the Util_vector_Logic IP configured to the AND operation. Then, connect the
output of the Util_vVector_Logic to the dcm_locked input of Proc_Sys_Reset.

Embedded Processor Hardware Design N Send Feedback 160
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=160
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=160

& XILINX

Chapter 7

Using UpdateMEM to Update BIT files
with MMI and ELF Data

)

Embedded Processor Hardware Design

Overview

A single device, with one or more embedded processors as well as programmable logic,
needs a single boot image, which must contain the merged CPU software and FPGA
bitstream images. The UpdateMEM utility (updatemem) is a data translation tool to map
contiguous blocks of data across multiple block RAMs that constitute a contiguous logical
address space.

With the combination of Zynq®-7000 SoC devices or Microblaze embedded processors, on
the UltraScale™ architecture or 7 series devices, UpdateMEM merges the CPU software
image of an executable and linkable format (ELF) file into the FPGA bitstream created by the
Vivado® Design Suite and the write_bitstream command, by mapping the ELF data
onto the memory map information (MMI) for the block RAMs in the design. As a result, the
software for an embedded processor can be initialized from block RAM-built address
spaces within an FPGA bitstream. This provides a powerful and flexible means of merging
parts of CPU software and FPGA design tool flows.

The Vivado Design Suite automatically merges an associated ELF file for an embedded
processor design when generating the device bitstream. If you have associated the ELF file
using the Tools > Associate ELF Files command from the Vivado IDE, then the Vivado
Design Suite merges the data as needed.

Use the Associate ELF Files command to add the SCOPED_TO_REF and
SCOPED_TO_CELLS properties to the associated ELF files, as follows:

- The SCOPED_TO_REF property associates the ELF file with all instances of the
specified hierarchical module, or block design.

- The SCOPED_TO_CELLS associates the ELF file with specified instances of the
specified embedded processor cells.

You can also run the UpdateMEM command at any time to manually associate the ELF file
and MMI file with the BIT file of the implemented design.

IMPORTANT: UpdateMEM can only be used to update unencrypted bitstream files.

o Send Feedback 161
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug835-vivado-tcl-commands.pdf;a=xwrite_bitstream
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=161
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=161

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

Using UpdateMEM

For embedded processor based designs, the UpdateMEM (updatemem) command merges
CPU software images into bitstream files, to initialize the block RAM memory within the
target Xilinx device. The UpdateMEM command can also take an ELF file or CPU Software
Image as an input and write out MEM files for simulation purposes. The UpdateMEM
command takes the following inputs:

« A bitstream (BIT) file, which is initially generated by the Vivado Design Suite
implementation tools. You can create a bitstream file from an implemented design
using the write_bitstream Tcl command. A bitstream (BIT) file is a binary data file
that contains a bit image of the design, to be downloaded to a Xilinx device. The
UpdateMEM command reads a BIT file as an input, and writes a BIT file as its output.

» The memory-map information (MMI) file is a text file that describes how individual
block RAMs on the Xilinx device are grouped together to form a contiguous address
space called an address block.

The Vivado Design Suite writes the MMI file automatically and places that file into the
<project>.runs/impl_1 folder when generating the bitstream, or you can manually
write that information using the write_mem_info command. The UpdateMEM
command uses the MMI file to identify the physical BRAM resources that map to a
specific address range. For more information on the MMI file, see BRAM Memory Map
Info (MMI) File.

« The Vivado Design Suite writes the SMI file (memory-map information file for
simulation) automatically and places that file into the
<project>.sim/sim_x/behav folder when simulation is run on the design.

« An executable and linkable format (ELF) file, which is a product of the software
development kit (SDK), is a binary data file that contains an executable program image
ready for running on an embedded processor. The ELF file contains the data to be
mapped by UpdateMEM into the address ranges of the BRAMs.

« Optionally, a memory (MEM) file is a manually created text file that describes
contiguous blocks of data to initialize or populate a specified address space. The
UpdateMEM command can use the MEM file in place of an ELF file. See Memory (MEM)
Files for more information.

« Aninstance ID of the embedded processor in the design, to associate the ELF or MEM
file with the processor.

The UpdateMEM command populates contiguous blocks of data defined in ELF or MEM
files, across multiple block RAMs of a Xilinx device mapped by the MMI file. The
UpdateMEM command merges the memory information into a bitstream file for
configuring and programming the target Xilinx device.

Embedded Processor Hardware Design N Send Feedback 162
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=162
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=162

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

The UpdateMEM command also lets you merge multiple data files for multiple processors
in designs that have more than one embedded processor. In this case, the -data and
-proc options must be specified in pairs, with the first -data file providing the software
image or memory content for the first -proc specified. The second -data applies to the
second -proc, and so on.

This command returns the name of the bitstream file created from the inputs, or returns an
error if it fails.

Arguments for updatemem

« -meminfo <arg>: (Required) Name of the memory mapping information (MMI) file
for the implemented design or memory mapping information for simulation (SMI) file.
This file can be generated using the write_mem_info Tcl command.

« -data <arg>: (Required) Name of the Executable and Linkable Format (ELF) file, or a
MEM file to map into BRAM addresses.

+ -writememfile: Output.men file. Translates the ELF file and writes the information to
the specified.mem file, which can be used in simulation flows. This option is applicable
only to processor based designs. This argument is still supported but not
recommended to be used.

« -bit <arg>: (Required) Name of the bit input bitstream (BIT) file. If the file extension
is missing, an extension of .bit is assumed.

Note: The UpdateMEM command can only be used with unencrypted bitstream files.

« -proc <arg>: (Required) Instance path of the embedded processor.

TIP: You can specify multiple processors for the UpdateMEM command in cases where a design has

O multiple embedded processors. In this case the -data and -proc options must be specified in pairs,
with the first -data argument applying to the first -proc argument. However, the UpdateMEM
command can take either an ELF file or a MEM file in a single run, but cannot use both -data formats
at the same time even when specifying multiple processors.

« -out <arg>: (Required) Specify the name of output file, without suffix. The file has a
suffix of .bit applied automatically.

« -—force: (Optional) Overwrite the specified output file if it already exists.

« -debug: Hidden debug flag to output initialization strings in the block memory.

Examples

The following example reads the specified MEM info file, ELF file, and bitstream file, and
generates the merged bitstream file:

updatemem -meminfo top.mmi -data hello_world.elf -bit top.bit \
-proc design_1_i/microblaze_1 -out top_meminfo.bit

Embedded Processor Hardware Design N Send Feedback 163
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=163
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=163

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

The following example shows the use of UpdateMEM in a block design that has two
embedded microblaze processors, one with an associated ELF file, and the other using a
MEM file. Notice this requires two passes of the updatemem command, with the output
bitstream of the first acting as the input bitstream of the second:

updatemem -bit top.bit -meminfo top.mmi -data topl.elf \
-proc system_i/microblaze_1 -out first_out.bit

updatemem -bit first_out.bit -meminfo top.mmi -data top2.mem \
-proc system_i/microblaze_2 -out top_out.bit

To convert an ELF file into a MEM file for simulation flows, use the following command:

updatemem -data topl.elf -meminfo topl.smi -proc design_1_i/microblaze_0

Memory (MEM) Files

A Memory (MEM) file is a manually edited text file that describes contiguous blocks of data.
that can be used in place of the ELF file. The format of MEM files is an industry standard,
consisting of two basic elements:

« Hexadecimal address specifier: An address specifier is indicated by an @ character
followed by the hexadecimal address value. There are no spaces between the @
character and the first hexadecimal character.

« Hexadecimal data values: Hexadecimal data values follow the hexadecimal address
value, separated by spaces, tabs, or carriage-return characters.

Because the MEM file is in hexadecimal format, each character represents four bits, or a
nibble, in the memory.

Hexadecimal data values can consist of as many hexadecimal characters as desired.
However, when a value has an odd number of hexadecimal characters, the first hexadecimal
character is assumed to be a zero. For example, hexadecimal values A, C74, and 84F21 are
interpreted as the values OA, 0C74, and 084F21 respectively.

i? IMPORTANT: The common Ox hexadecimal prefix is not allowed. Using this prefix on MEM file
hexadecimal values is flagged as a syntax error.

There must be at least one data value following an address, up to as many data values that
belong to the previous address value. Following is an example of the most common MEM
file format:

@0000 3A @0001 7B @0002 C4 @0003 56 @0004 02
@0005 6F @0006 89...

Embedded Processor Hardware Design N Send Feedback 164
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=164
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=164

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

UpdateMEM requires a less redundant format. An address specifier is used only once at the
beginning of a contiguous block of data. The previous example is rewritten as:

@0000 3A 7B C4 56 02 6F 89...

The address for each successive data value is derived according to its distance from the
previous address specifier. A MEM file can have as many contiguous data blocks as
required. While the gap of address ranges between data blocks can be any size, no two data
blocks can overlap an address range.

O TIP: UpdateMEM allows the free-form use of both // and /*...*/ commenting styles in the MEM file.

The Vivado Design Suite also supports a MEM File format for memory initialization as
described at this link in the Vivado Design Suite User Guide: Synthesis (UG901) [Ref 15]. The
MEM File format supported by the Vivado Design Suite is different from the file format
supported by UpdateMEM.

You should define the MEM file structure for Vivado tools to match the synthesis view of the
memory as an array, which adheres to the Verilog language specification. The MEM file
used for UpdateMEM should include spaces to match the <Datawidth> tag as defined in
the memory map info (MMI) file. For more information, see MMI File Syntax.

According to the Verilog language specification, the memory is treated as an array, so for
Vivado synthesis the MEM file for a 64k memory (256x256 array) should look as follows:

@00000000
aa
bb

Note: White space and/or comments are used to separate the numbers.

For the UpdateMem command, which has a post implementation physical view of the
memory, the MEM file should look as follows:

@00000000
aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb

Note: For UpdateMEM, the spaces that separate the words are determined by the MSB and LSB
attributes of the <Datawidth> tag defined in the MMI file.

Embedded Processor Hardware Design N Send Feedback 165
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug901-vivado-synthesis.pdf;a=xInitializingRAMContents
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=165
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=165

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

BRAM Memory Map Info (MMI) File

The following are design considerations for block RAM-implemented address spaces, and
the definition of memory map info files:

Embedded Processor Hardware Design

The block RAMs come in fixed-size widths and depths, where CPU address spaces
might need to be much larger in width and depth than a single block RAM.
Consequently, multiple block RAMs must be logically grouped together to form a
single CPU address space as seen in Figure 7-1.

A single CPU bus access is often multiple bytes wide of data, for example, 32 or 64 bits
(4 or 8 bytes) at a time.

CPU bus accesses of multiple data bytes might also access multiple block RAMs to
obtain that data. Therefore, byte-linear CPU data must be interleaved by the bit width
of each block RAM and by the number of block RAMs in a single bus access. However,
the relationship of CPU addresses to block RAM locations must be regular and easily
calculable.

CPU data must be located in a block RAM-constructed memory space relative to the
CPU linear addressing scheme, and not to the logical grouping of multiple block RAMs.

Address space must be contiguous, and in whole multiples of the CPU bus width. Bus
bit lane interleaving is allowed only in the sizes supported by the Virtex® device block
RAM port sizes.

Addressing must account for the differences in instruction and data memory space.
Because instruction space is not writable, there are no address width restrictions.
However, data space is writable and usually requires the ability to write individual bytes.
For this reason, each bus bit lane must be addressable.

The size of the memory map and the location of the individual block RAMs affect the
access time. Evaluate the access time after implementation to verify that it meets the
design specifications.

o Send Feedback 166
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=166
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=166

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

64 bit bus accesses ‘
63:56 55:48 47:40 39:32 31:24 2316 158 70
OxFFFFCO000
w o o o o o o o o
e |Tl|Z||D||3||3||Z||2||T
o C > > > > > > > >
s lzllzllzllzllzllz]lz]llz]]l=
N > o = w S = S||3
o
o] (oo o]l [e]l o]l [o]l[o]]|&
o |D||3||3||[3||3|{[Z|[TI|IB]|]|5
So |||z |Z2|[z|IB||2]|[2]]2
HEIHIEIHIHIBIBIEIE
n o > w N o o © o8 g
3
o||le||le||e||e||e||oe||e|]|S
o [(o||Z||Z||2||D||Z||D||D]|]|3
so |||z ===z]]|3]]S
o |1Z < < < < < < < ®
N N N N N — — — — o
Lp| N e oS © o \1 o |2
@
ol |lo||lo||lo||lo||lw||lw]||o]|]|S
® By By By By By By By 1
so [s||=||=|=]lz]]|z[z]]>
X » < < < < < < < < Y
w %) N N ¥ S N N
L | = S © o ~ o) o =
OXFFFFFFFF Crron

Figure 7-1: Block RAM Address Space
The address space in the figure above consists of four bus blocks: Bus Block 0 through 3.

« CPU bus accesses are 8 block RAMs (64 bits) wide, with each column of block RAMs
occupying an 8-bit wide slice of a CPU bus access called a Bit Lane.

« Each row of 8 block RAMs in a bus access are grouped together in a Bus Block. Hence,
each Bus Block is 64 bits wide and 4096 bytes in size.

« The entire collection of block RAMs is grouped together into a contiguous address
space called an Address Block.

The upper right corner address is 0xFFFFC000, and the lower left corner address is
OxFFFFFFFF. Because a bus access obtains 8 data bytes across 8 block RAMs, byte-linear
CPU data must be interleaved by 8 bytes in the block RAMs.

Embedded Processor Hardware Design N Send Feedback 167
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=167
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=167

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

In this example using a 64-bit data word indexed by bytes from left to right as [0:7], [8:15]:

- Byte 0 goes into the first byte location of bit lane block RAM7, byte 1 goes into the
first byte location of Bit Lane block RAM6; and so forth, to byte 7.

- CPU data byte 8 goes into the second byte location of Bit Lane block RAM7, byte 9
goes into the second byte location of Bit Lane block RAM6 and so forth, repeating
until CPU data byte 15.

- This interleave pattern repeats until every block RAM in the first bus block is filled.

- This process repeats for each successive bus block until the entire memory space is
filled, or the input data is exhausted.

As described in MMI File Syntax, the order in which bit lanes and bus blocks are defined
controls the filling order. For the sake of this example, assume that bit lanes are defined
from left to right, and bus blocks are defined from top to bottom.

This process is called bit lane mapping, because these formulas are not restricted to
byte-wide data. This is similar, but not identical, to the process embedded software
programmers use when programmed CPU code is placed into the banks of fixed-size
EPROM devices.

The important distinctions to note between the two processes are, as follows:

Embedded Processor Hardware Design

Embedded system developers generally use a custom software tool for byte-lane
mapping for a fixed number and organization of byte-wide storage devices. Because
the number and organization of the devices cannot change, these tools assume a
specific device arrangement. Consequently, little or no configuration options are
provided.

By contrast, the number and organization of FPGA block RAMs are completely
configurable (within FPGA limits). Any tool for byte-lane mapping for block RAMs must
support a large set of device arrangements.

Existing byte-lane mapping tools assume an ascending order of the physical addressing
of byte-wide devices because that is how board-level hardware is built. By contrast,
FPGA block RAMs have no fixed usage constraints and can be grouped together with
block RAMs anywhere within the FPGA fabric. Although this example displays block
RAMs in ascending order, block RAMs can be configured in any order.

o Send Feedback 168
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=168
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=168

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

Memory Map Information File (MMI) Features

A memory map information (MMI) file is an XML file designed for computer parsing. It is
similar to high-level computer programming languages in using the following features:

» Block structures by XML keyword tags or directives. MMI maintains similar structures in
groups or blocks of data. MMI creates blocks to delineate address space, bus access
groupings, and comments.

« Symbolic name usage: MMI uses names and keywords to refer to groups or entities
(improving readability), and uses names to refer to address space groupings and Block
RAMs.

MMI observes the following conventions:

+ Keywords are case-sensitive

« Indenting is for clarity only.

* White space is ignored except where it delineates items or keywords.

« Line endings are ignored. You can have as many items as you want on a single line.

« Numbers can be entered as decimal or hexadecimal. Hexadecimal numbers use the
0xXXX notation form.

C CAUTION! MMI file does not get generated if a design does not contain a processor or XPM Memories.

MMI File Syntax

The memory map info (MMI) file is an XML file that syntactically describes how individual
block RAMs make up a contiguous logical data space. You can create an MMI file from an
open implemented design in the Vivado Design Suite using the write_mem_info Tcl
command. The implemented design provides the needed placement information of the
block RAM resources.

UpdateMEM uses the MMI file as input to direct the translation of data into the proper
initialization form. The Example MMI file below shows the XML-based syntax used to
describe the organization of block RAM usage.

<?xml version="1.0" encoding="UTF-8"?>
<MemInfo Version="1" Minor="0">
<Processor Endianness="Little” InstPath="design_1_i/microblaze_0">
<AddressSpace
Name="design_1_i_microblaze_0.design_1_i_microblaze_0_local_memory dlmb_bram if_cnt
lr” Begin="0" End="8191">
<BusBlock>
<BitLane MemType="RAMB32” Placement="X2Y17">
<DataWidth MSB="15" LSB="0"/>
<AddressRange Begin="0”" End="2047"/>
<Parity ON="false” NumBits="0"/>

Embedded Processor Hardware Design N Send Feedback 169
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=169
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=169

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

</BitLane>
<BitLane MemType="RAMB32” Placement="X3Y17">
<Datawidth MSB=”31" LSB="16"/>
<AddressRange Begin="0”" End="2047"/>
<Parity ON="false” NumBits="0"/>
</BitLane>
</BusBlock>
</AddressSpace>
</Processor>
<Processor Endianness="Little” InstPath="design_1_i/microblaze_1">
<AddressSpace
Name="design_1_i_microblaze_1.design_1_1i_microblaze_1_local_memory dlmb_bram if_cnt
lr” Begin="0" End="8191">
<BusBlock>
<BitLane MemType="RAMB32” Placement="X4Y13">
<DataWidth MSB="15" LSB="0"/>
<AddressRange Begin="0" End="2047"/>
<Parity ON="false” NumBits="0"/>
</BitLane>
<BitLane MemType="RAMB32” Placement="X4Y14">
<DataWidth MSB=”31" LSB="16"/>
<AddressRange Begin="0" End="2047"/>
<Parity ON="false” NumBits="0"/>
</BitLane>
</BusBlock>
</AddressSpace>
</Processor>
<Processor Endianness="Little" InstPath="design_1_i/processing_ system7_0">
<AddressSpace Name="design_1_1i_processing system7_0.design_1_i_axi_bram ctrl_0"
Begin="1073741824" End="1073750015">
<BusBlock>
<BitLane MemType="RAMB32" Placement="X2Y18">
<DataWidth MSB="15" LSB="0"/>
<AddressRange Begin="0" End="2047"/>
<Parity ON="false" NumBits="0"/>
</BitLane>
<BitLane MemType="RAMB32" Placement="X2Y19">
<Datawidth MSB="31" LSB="16"/>
<AddressRange Begin="0" End="2047"/>
<Parity ON="false" NumBits="0"/>
</BitLane>
</BusBlock>
</AddressSpace>
</Processor>
<Config>
<Option Name="Part" Val="xc7z020clg484-1"/>
</Config>
</MemInfo>

Address Map Definitions (Multiple Processor Support)

UpdateMEM supports multiple processors using the following XML tags:

<Processor Endianness="Little” InstPath="design_1_i/processing system7_0">
</Processor>

Embedded Processor Hardware Design N Send Feedback 170
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=170
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=170

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

)

Embedded Processor Hardware Design

IMPORTANT: Although Processor Endianness is defined in the MMI file, it is not supported by
UpdateMEM.

Address Space Definitions

The outermost definition of an address space comprises the following components:

<AddressSpace Name="design_1_i_processing_system7_0.design_1_1i_axi_bram_ctrl_ 0"
Begin="1073741824" End=”1073750015">
</AddressSpace>

The ADDRESS_SPACE and /ADDRESS_SPACE tags define a single contiguous address
space. The mandatory Name= following the ADDRESS_SPACE tag provides a symbolic name
for the entire address space. Referring to the address space name is the same as referring to
the entire contents of the address space.

An MMI file can contain multiple ADDRESS_SPACE definitions, even for the same address
space, as long as each ADDRESS_SPACE name is unique.

Next is the beginning and ending address values that the Address Space occupies by using
the Begin= and End= pair.

BusBlock Definitions (Bus Accesses)

Inside an ADDRESS_SPACE definition are a variable number of sub-block definitions called
BusBlocks, as shown in the following example:

<BusBlock>
</BusBlock>

Each Bus Block contains block RAM Bit Lane definitions that are accessed by a parallel CPU
bus access.

The order in which the bus blocks are specified defines which part of the address space a
Bus Block occupies. The lowest addressed Bus Block is defined first, and the highest
addressed Bus Block is defined last. The top-to-bottom order in which Bus Blocks are
defined also controls the order in which UpdateMEM fills those Bus Blocks with data.

Bit-Lane Definitions (Memory Device Usage)

A bit-lane definition determines which bits in a CPU bus access are assigned to particular
block RAMs. Each definition takes the form of MemType with Placement data, followed by
the bit numbers and AddressRange the bit lane occupies. The syntax is, as follows:

<BitLane MemType="RAMB32” Placement="X2Y19">
<Datawidth MSB=”31" LSB="16"/>
<AddressRange Begin="0" End="2047"/>
<Parity ON="false” NumBits="0"/>
</BitLane>

o Send Feedback 17
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=171
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=171

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

)

Embedded Processor Hardware Design

IMPORTANT: Although bit-lane parity is defined in the MMI file, it is not supported by UpdateMEM.

Typically, the bit numbers are given in the following order:
<DataWidth MSB=bit_num LSB=bit_num>

If the order is reversed to have the least significant bit (LSB) first and the most significant
bit (MSB) second, UpdateMEM bit-reverses the bit-lane value before placing it into the
block RAM.

As with BusBlocks, the order in which bit-lanes are defined is important. But in the case of
bit-lanes, the order infers which part of BusBlock CPU access a bit-lane occupies. The first
bit-lane defined is inferred to be the most significant bit-lane value, and the last defined is
the least significant bit-lane value. In the following figure, the most significant bit-lane is

BRAM7, and the least significant bit-lane is BRAMO. As seen in Example Block RAM Address
Space Layout, this corresponds with the order in which the Bit Lanes are defined.

When UpdateMEM inputs data, it takes data from data input files in Bit Lane sized chunks,
from the most right value first to the left most. For example, if the first 64 bits of input data
are 0xB47DDE02826A8419 then the value 0xB4 is the first value to be set into a Block
RAM.

Given the Bit Lane order, BRAM7 is set to 0xB4, BRAM6 to 0x7D, and so on until BRAMO is
set to 0x19. This process repeats for each successive Bus Block access BRAM set until the

memory space is filled or until the input data is exhausted. The figure below expands the

first Bus Block to illustrate this process.

+0 +1 +2 +3 +4 +5 +6 +7
B4 7D DE 02 82 6A 84 19

63:56 55:48 4740 39:32 31:24 23:16 15:8 7:0

oY) oY) oY) oY) oY) oY) oY) oY)

By By By By By By By By

> > > > > > > >

< < < < < < < <

~ o) o TN &) N — S)
X11014

Figure 7-2: Bit Lane Fill Order

o Send Feedback 172
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=172
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=172

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

The Bit Lane definitions must match the hardware configuration. If the MMI is defined
differently from the way the hardware actually works, the data retrieved from the memory
components will be incorrect.

Bit Lane definitions also have some optional syntax, depending on what device type
keyword is used in the Address Block definition.

When specifying block RAM cells, the physical row and column location within the FPGA
device can be indicated. Following are examples of the physical row and column location:

Placement="X3Y5"

Use the Placement= keyword to assign the corresponding block RAM to a specific
resource location in the FPGA device. In this case the block RAM is placed at column 3 and
row 5 in the FPGA device.

In addition to using correct syntax for bit-lane and BusBlock definitions, you must take into
account the following limitations:

« While the examples in this document use only byte-wide data widths for clarity, the
same principles apply to any data width for which a block RAM is configured.

» There cannot be any gaps or overlaps in bit-lane numbering. All bit-lanes in an Address
Block must be the same number of bits wide.

« The bit-lane widths are valid for the memory device specified by the device type
keyword.

« The amount of byte storage occupied by the Bit Lane block RAMs in a BusBlock must
equal the range of addresses inferred by the start and end addresses for a BusBlock.

o All BusBlocks must be the same number of bytes in size.
- A block RAM instance name can be specified only once.
o A BusBlock must contain one or more valid bit-lane definitions.

o An address Block must contain one or more valid BusBlock definitions.

UpdateMEM checks for all these conditions and transmits an error message if it detects a
violation.

Embedded Processor Hardware Design N Send Feedback 173
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=173
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=173

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

Xilinx Parameterized Macros (XPM) Memories

XPM is a tool for creating RAM and ROM structures according to user-specified
requirements. Within the XPM code, you specify a number of generics including memory
size, clocking mode, ECC mode, and so forth. These requirements are then converted by the
Vivado synthesis tool into the appropriate size and style of memory array.

XPMs are simple, lightweight, in-line customizable, solutions for common HDL flow use
cases. They can also be considered as simple parameterizable IP. XPMs are synthesizable
SystemVerilog-based HDL delivered with the Vivado Design Suite.

For details on XPMs, see the Vivado Design Suite User Guide: System-Level Design Entry
(UG895) [Ref 14].

For details on the various XPMs and their parameterization options, see the UltraScale
Architecture Libraries Guide (UG974) [Ref 21].

Note: In the 2018.1 Vivado release and beyond, XPMs are enabled automatically in project mode,
and in non-project mode are used automatically during synthesis/implementation.

Because XPMs are used in RTL flows (or non-processor based designs), the UpdateMEM
command needs a MEM (.mem) file as an argument; it cannot take an ELF file as an
argument.

The limitations to using UpdateMEM with XPM memories are, as follows:

- ROM configurations need a MEM file prior to synthesis.
- ECCis not supported.

Using XPM Memory in Vivado

To use XPM Memory in Vivado you need to create design sources for the XPM memory.
Follow the following steps to create XPM memory.

1. Launch Vivado and create a Project.

2. In the Sources window, right-click Design Sources, and select Add Sources from the
context menu.

Embedded Processor Hardware Design N Send Feedback 174
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=174
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=174

8 X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

|i Add Sources X ‘

Add Sources

VIVADO'

| HLx Editions This guides you through the process of adding and creating sources for your project

Add or create constraints
® Add or create design sources

Add or create simulation sources

€ XILINX

Figure 7-3: Add Sources Dialog Box

3. In the Add or Create Design Sources page, click Create File.

Add or Create Design Sources

Specify HDL, netlist, Block Design, and IP files, or directories containing those file types to add to your project. '
| Create a new source file on disk and add it to your project.

+

| A

Add Files H Add Directories H Create File

| N

Figure 7-4: Create a New Source File

4. In the Create Source File dialog box, specify the HDL language of your choice from the
File type drop-down menu, and type a name for the memory block being created in the
File name field.

5. Keep the File location to its default value <Local to Project>.

Embedded Processor Hardware Design N Send Feedback 175
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=175
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=175

(: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

6. Click OK, as shown in the following figure.

Create a new source file and add it to your
project.

File type: ® verilog v

File name: mult_p_4kx18_spram

File location: « =Local to Project= v
N o

Figure 7-5: Create Source File Dialog Box

7. In the Add or Create Design Sources page, click Finish.

——
[

|
Add or Create Design Sources

Specify HDL, netlist, Block Design, and IP files, or directories containing those file types '
to add to your project. Create a new source file on disk and add it to your project.

+,
Index Name Library Location '
|
0 1 mult_p_4kx18_spramv xil_defaultlib <Local to Project=
|
|
Add Files ‘ ‘ Add Directories ‘ ‘ Create File

"_’ ‘ Finish ‘ Cancel ‘

Figure 7-6: Add Sources Dialog Box

8. The Define Module dialog box opens. Click Cancel to dismiss the dialog box.

9. The Define Module dialog box asks to confirm that you indeed do not want to create the
template for the HDL file.

10. Click Yes.

This example copies a pre-existing XPRM template in the next steps into the HDL file.

Embedded Processor Hardware Design N Send Feedback 176
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=176
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=176

8 X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

11. Now you can see the newly created Verilog file in the Sources window.

Sources ¥ Design Signals Board ? 0
Q = 2 + &
~ . Design Sources (2) -
design_1 (design_1.bd
@-. multi_p_4kx18_spram (multi_p_4kx18_spram.

> Constraints
v Simulation Sources (2)

i A

Hierarchy IP Sources Libraries Compile Order

Figure 7-7: New HDL File in Sources Window

12.In the Flow Navigator, under Project Manager, click Language Templates.

M4
Ay
9

Flow Navigator
~ PROJECT MANAGER
£+ Settings
Add Sources
Language Templates
IF IP Catalog

v IP INTEGRATOR

Create Block Design
Figure 7-8: New HDL File in Sources Window

13. The Language Template dialog box opens. In the Search field type xpm and select the
template for the appropriate HDL code (VHDL/Verilog), shown in Figure 7-9.

Embedded Processor Hardware Design N Send Feedback 177
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=177
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=177

8 X||_|NX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

[

14.

15.

16.

Embedded Processor Hardware Design

age Templates * ‘

Select a language template

Templates Preview
Q T & & oo oe Shem be”
Search: .- xpm 42 matches o
= p () 221 Library xpm;
Synchronous Reset Synchronizer (xpm_cdc_sync_rst) 222 ‘use xpm.vcomponents.all:

v [XPM_FIFO 223
Asynchronous FIFO (xpm_fifo_async) :
AX| Stream FIFQ (xpm_fifo_axis)
Synchronous FIFO (xpm_fifo_sync) 227
v = XPM_MEMORY -
Dual Port Distributed RAM (xpm_memory_dpdistram) -

y Xpm_mMEemOry sSpram inst : Xpm memory spram
230 generic map (

Dual Port ROM (xpm_memory_dprom) 231 ADDR_WIDTH A => 6,

Simple Dual Port RAM (xpm_memory_sdpram) 232 AUTO_SLEEF_TIME => 0, L
% 233 BYTE_WRITE_WIDTH A => 32, -- DE
Single Port RAM (xpm_memory_spram) 234 ECC_MODE => "no_ecc”, -
Single Port ROM (xpm_memory_sprom) 235 MEMORY INIT FILE => "none", |
True Dual Port RAM (xpm_memory_tdpram) 236 MEMORY INIT PARAM => "Q", |

237 MEMORY OPTIMIZATION => "true", -- S5t
238 MEMORY FRIMITIVE => "auto", -- St
¢ 239 MEMORY SIZE => 2048, D
ebug ~ 240 MESSAGE CONTROL => 0, DECIMAL ~

jstemVerilog

Figure 7-9: Language Template Dialog Box

Cut and paste the template for the Single Port RAM memory and add the instantiation
template to the HDL file. Complete the definition of the HDL file by adding the
appropriate entity and/or module definition.

Integrate your XPM memory block with the rest of the design. You can use the IP
Integrator tool to integrate the XPM memory as a RTL module.

Diagram ?2_-_0aX
@ @ I & © Q + E » C 9 T o

mul_p_&c §_spram_0

cka

axi_tram_cxi_0 ra
omc sya reast O Hag_ani 0 swa_rorra — |l = ragea RTL a7y
— pec s e — Tt Tk
ac bab —] - .
rezat sbowes g ck s resct = M Aa nr‘; - el 110)
tram_weas_3p10] r
ck_wiz_ 0 aut st in tus stz reace) arcsan @170
== J Ly _00s 4311 4
et portproral_rac{0 o) YT s
defauit_syscik_300 I+ cxx mr & & _as mb_dobug @5 st Inseronnect arcacen(00] S
o t ockas s ke proral tram_rd a b —?
rec : m loched 0
-] tram_we_af30] b
3ng Wiz

Figure 7-10: Block Design with XPM Memory Added as an RTL Module

Set the appropriate depth of the memory instantiated in the Address Editor.

. | Send Feedback l 178
UG898 (v2019.1) June 4, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=178
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=178

2: X”_INX® Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

Sur | x | Diagra < Address Editor
Q = |
Cell Slave Interface Base Name Offset Address Range High Address
jtag_axi_0
Data
axi_bram_ctrl_0 S_AX Mem0 0xC000_0000 16K v 0xCO000_3FFF

Figure 7-11: Block Design with XPM Memory Added as an RTL Module

17. Generate output products, synthesize, implement, and create the bitstream for the
design.

18. If you have a mem file, you can use that to populate the initialization strings of the XPM
memory using the following updatemem command as an example:

updatemem -meminfo <mmi_file name>.mmi -data <mem_file_name>.mem -bit <bit file
name>.bit -proc <path to xpm memory instance> -out <output bit file name>.bit

19. You can also use the -debug switch to see the init_strings of the XPM memory.
Below is an example of using the -debug switch.

updatemem -debug -meminfo <mmi_file_name>.mmi -data <mem_file_name>.mem -bit <bit
file name>.bit -proc <path to xpm memory instance> -out <output bit file name>.bit >
dmp . txt<

Embedded Processor Hardware Design N Send Feedback 179
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=179
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=179

& XILINX

Appendix A

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see
Xilinx Support.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

See the Xilinx Memory Interface Solution Center for information regarding the Memory IP.

Documentation Navigator and Design Hubs

Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

« From the Vivado IDE, select Help > Documentation and Tutorials.
« On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

« At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

« In the Xilinx Documentation Navigator, click the Design Hubs View tab.
« On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page.

Embedded Processor Hardware Design N Send Feedback 180
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/support/answers/34243.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=180
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=180

2: X”_INX® Appendix A: Additional Resources and Legal Notices

References

Zynq-7000 SoC Verification IP Data Sheet (DS940)

Zynq UltraScale+ MPSoC Verification IP (DS941)

MicroBlaze Triple Modular Redundancy (TMR) Subsystem (PG268)

MicroBlaze Debug Module (MDM) LogiCORE IP Product Guide (PG115)

UltraScale Architecture-Based FPGAs Memory IP LogicCORE IP Product Guide (PG150)
Zynqg-7000 SoC Technical Reference Manual (UG585)

7 Series FPGAs Memory Interface Solutions User Guide (UG586)

Xilinx Software Development Kit (SDK) Help (UG782)

Zynq-7000 SoC Software Developers Guide (UG821)
. Vivado Design Suite Tcl Command Reference Guide (UG835)

-~

© © N o v kA W DN

_
- O

. Zyng-7000 SoC Packaging and Pinout Product Specification (UG865)

—_
N

. Vivado Design Suite User Guide: Design Flows Overview (UG892)
. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

— —
AoOow

. Vivado Design Suite User Guide: System-Level Design Entry (UG895)
. Vivado Design Suite User Guide: Synthesis (UG901)

—_
[NV,

. Vivado Design Suite User Guide: Using Constraints (UG903)

—_
~l

. Vivado Design Suite User Guide: Partial Reconfiguration (UG909)
. ISE to Vivado Design Suite Migration Guide (UG911)
.Zynq-7000 SoC PCB Design Guide (UG933)

N =
o W ©

. Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940)
. UltraScale Architecture Libraries Guide (UG974)

NN
N =

. MicroBlaze Processor Reference Guide (UG984)

N
w

. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
24. Vivado Design Suite Tutorial: Designing IP Subsystems Using IP Integrator (UG995)
25. Zynq UltraScale+ MPSoC Packaging and Pinout Product Specification (UG1075)

26. Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085)

27. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

28. Zynq UltraScale+ MPSoC Software Developer Guide (UG1137)

Embedded Processor Hardware Design N Send Feedback 181
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=mdm;v=latest;d=pg115-mdm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug933-Zynq-7000-PCB.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=SDK_Doc/index.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug865-Zynq-7000-Pkg-Pinout.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ultrascale_memory_ip;v=latest;d=pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1075-zynq-ultrascale-pkg-pinout.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+doc;d=mig_7series/v1_9/ug586_7Series_MIS.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug995-vivado-ip-subsystems-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=tmr;v=v1_0;d=pg268-tmr.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=processing_system7_vip;v=latest;d=ds940-zynq-vip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=zynq_ultra_ps_e_vip;v=v1_0;d=ds941-zynq-ultra-ps-e-vip.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=181
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=181

2: X”_INX® Appendix A: Additional Resources and Legal Notices

Training Resources

Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

—_

Vivado Design Suite QuickTake Video: Designing with Vivado IP Integrator

2. Vivado Design Suite QuickTake Video: Targeting Zynq Devices Using Vivado IP
Integrator

3. Designing FPGAs Using the Vivado Design Suite 2
4. Embedded Systems Design Training Course

5. Advanced Features and Techniques of Embedded Systems Software Design Training
Course

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

© Copyright 2013-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCle, and PCl Express are trademarks
of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

Embedded Processor Hardware Design N Send Feedback 182
UG898 (v2019.1) June 4, 2019 www.xilinx.com l—\/_l

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=embedded-systems-design.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=advanced-embedded-systems-design.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=advanced-embedded-systems-design.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/targeting-zynq-using-vivado-ip-integrator.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/targeting-zynq-using-vivado-ip-integrator.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/designing-with-vivado-ip-integrator.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=182
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=182

	Vivado Design Suite User Guide: Embedded Processor Hardware Design
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Overview
	Device Tools Flow Overview
	General Steps for Creating an Embedded Processor Design
	Embedded IP Catalog

	Completing Connections Using Designer Assistance
	Block Automation
	Using Connection Automation

	Making Manual Connections in a Design
	Manually Creating and Connecting to I/O Ports
	Enhanced Designer Assistance
	Platform Board Flow in IP Integrator
	Memory-Mapping in the Address Editor
	Running Design Rule Checks
	Integrating a Block Design in the Top-Level Design
	Generating Output Products
	Creating an HDL Wrapper

	Vivado Pin Planner View of PS I/O
	Vivado IDE Generated Embedded Files
	Using the Software Development Kit (SDK)
	SDK Availability
	Exporting a Hardware Description

	Ch. 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
	Introduction
	Designing Zynq UltraScale+ MPSoC Devices
	Creating a Design with the Zynq UltraScale+ Processing System

	Overview of Zynq UltraScale+ MPSoc Configurations
	Zynq UltraScale+ MPSoc Recustomization Window Information
	Configuring I/O Peripherals
	Low Speed Peripherals: Memory Interfaces
	QSPI
	NAND
	SD

	I/O Peripherals
	CAN
	I2C
	PJTAG
	PMU
	CSU
	SPI
	UART
	GPIO
	Processing Unit
	SWDT
	Trace
	TTC

	High Speed Peripherals
	Gigabit Ethernet Controller (GEM)
	USB
	PCIe
	Display Port
	SATA

	Reference Clocks

	Clock Configuration
	DDR
	PS - PL Configuration
	Advanced Configuration
	PCIe Configuration
	Isolation Configuration

	Validation IP
	Features

	Finishing the Design

	Ch. 3: Using a Zynq-7000 Processor in an Embedded Design
	Introduction
	Designing with Zynq-7000 Processors
	Creating an IP Integrator Design with the Zynq-7000 Processor

	Overview of the Zynq-7000 Block Design and Configuration Window
	Processing System (PS)-Programmable Logic (PL) Configuration Options
	General Options

	MIO and EMIO Configuration
	Pin Limitations
	Bank Settings
	Flash Memory Interfaces
	Quad-SPI Flash
	SRAM/NOR Flash
	NAND Flash

	Clock Configuration
	DDR Configuration
	GIC - Interrupt Controller
	Interconnect between PS and PL
	AXI_HP Interfaces

	AXI ACP Interface
	AXI GP Interfaces
	PS-PL Cross Trigger Interface

	Using the Programmable Logic (PL)
	Creating Custom Logic
	Zynq-7000 Processing System Verification
	Features
	Additional Features

	Ch. 4: Using a MicroBlaze Processor in an Embedded Design
	Introduction to MicroBlaze Processor Design
	Creating a MicroBlaze Processor Design
	Designing with the MicroBlaze Processor

	Using the MicroBlaze Configuration Window
	MicroBlaze Configuration Wizard: Welcome Page
	Select Processor Implementation
	General Settings

	MicroBlaze Configuration Wizard: General Page
	Instructions
	Optimization
	Fault Tolerance

	MicroBlaze Configuration Wizard: Cache Page
	MicroBlaze Configuration Wizard: MMU Page
	Memory Management
	Memory Management Features

	MicroBlaze Configuration Wizard: Debug Page
	Debug Options
	Hardware Breakpoints
	Interface

	Performance Monitoring
	Trace and Profiling

	MicroBlaze Configuration Wizard: Buses Page
	Local Memory Bus Interfaces
	AXI and ACE Interfaces
	Stream Interfaces
	Other Interfaces

	MicroBlaze Configuration Wizard: Advanced Mode
	MicroBlaze Advanced Mode Exception Tab
	Math Exceptions
	Bus Exceptions
	Other Exceptions
	MicroBlaze Advanced Mode Interrupt & Reset Tab
	Interrupt
	Reset
	Vectors

	MicroBlaze Advanced Mode PVR Tab
	Processor Version Registers

	Cross-Trigger Feature of MicroBlaze Processors
	Custom Logic
	Embedded IP Catalog
	Completing Connections
	Block Automation
	Using Connection Automation
	Completing the Design
	MicroBlaze Processor Constraints
	Taking the Design through Synthesis, Implementation, and Bitstream Generation
	Exporting Hardware to the Software Development Kit (SDK)

	Multiple MicroBlaze Processor Designs
	Instantiate MicroBlaze IP Cores
	Run Connection Automation
	Re-Customizing AXI Interconnects
	Mapping and Excluding Unwanted Slaves

	Ch. 5: Designing with the Memory IP Core
	Overview
	Adding the Memory IP
	Making Connections with Block Automation
	Adding a Clocking Wizard
	Adding an AXI Master
	Creating a Memory Map
	Running Design Rule Checks
	Implementing the Design

	Ch. 6: Reset and Clock Topologies in IP Integrator
	Overview
	MicroBlaze Design without a Memory IP Core
	MicroBlaze Design with a Memory IP Core
	Zynq Design without PL Logic
	Zynq-7000 Design with PL Logic
	Zynq Design with a Memory IP Core in the PL
	Designs with Memory IP and the Clocking Wizard

	Ch. 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
	Overview
	Using UpdateMEM
	Arguments for updatemem
	Examples

	Memory (MEM) Files
	BRAM Memory Map Info (MMI) File
	Memory Map Information File (MMI) Features
	MMI File Syntax
	Address Map Definitions (Multiple Processor Support)
	Address Space Definitions
	BusBlock Definitions (Bus Accesses)
	Bit-Lane Definitions (Memory Device Usage)

	Xilinx Parameterized Macros (XPM) Memories
	Using XPM Memory in Vivado

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Resources

	Please Read: Important Legal Notices

