
Vivado Design Suite
User Guide

Embedded Processor
Hardware Design

UG898 (v2019.1) June 4, 2019

https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG898
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG898

Embedded Processor Hardware Design 2
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary

06/04/2019 Version 2019.1

General Updates Initial 2019.1 release.
MicroBlaze Configuration Wizard: MMU Page Updated links to Cache Page.

Using the MicroBlaze Configuration Window Clarified number of block RAMs in 32-bit and 64-bit
modes.

Trace and Profiling Additional information on Extended Profiling.

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=2
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=2

Table of Contents
Revision History . 2

Chapter 1: Introduction

Overview . 5

Device Tools Flow Overview . 5

General Steps for Creating an Embedded Processor Design. 7

Completing Connections Using Designer Assistance . 8

Making Manual Connections in a Design . 14

Manually Creating and Connecting to I/O Ports . 15

Enhanced Designer Assistance . 16

Platform Board Flow in IP Integrator . 17

Memory-Mapping in the Address Editor . 18

Running Design Rule Checks . 18

Integrating a Block Design in the Top-Level Design. 19

Vivado Pin Planner View of PS I/O . 20

Vivado IDE Generated Embedded Files . 21

Using the Software Development Kit (SDK) . 21

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

Introduction . 24

Designing Zynq UltraScale+ MPSoC Devices . 24

Overview of Zynq UltraScale+ MPSoc Configurations. 28

Validation IP . 51

Finishing the Design. 52

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design

Introduction . 53

Designing with Zynq-7000 Processors . 53

Overview of the Zynq-7000 Block Design and Configuration Window . 57

Using the Programmable Logic (PL) . 76

Chapter 4: Using a MicroBlaze Processor in an Embedded Design

Introduction to MicroBlaze Processor Design . 80
Embedded Processor Hardware Design 3
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=3
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=3

Creating a MicroBlaze Processor Design . 81

Using the MicroBlaze Configuration Window . 84

Cross-Trigger Feature of MicroBlaze Processors . 108

Custom Logic . 113

Embedded IP Catalog. 113

Completing Connections . 114

Multiple MicroBlaze Processor Designs . 121

Chapter 5: Designing with the Memory IP Core

Overview . 130

Adding the Memory IP. 130

Chapter 6: Reset and Clock Topologies in IP Integrator

Overview . 141

MicroBlaze Design without a Memory IP Core . 142

MicroBlaze Design with a Memory IP Core . 145

Zynq Design without PL Logic . 150

Zynq-7000 Design with PL Logic . 152

Zynq Design with a Memory IP Core in the PL . 158

Designs with Memory IP and the Clocking Wizard . 160

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

Overview . 161

Using UpdateMEM. 162

Memory (MEM) Files . 164

BRAM Memory Map Info (MMI) File . 166

Xilinx Parameterized Macros (XPM) Memories. 174

Appendix A: Additional Resources and Legal Notices

Xilinx Resources . 180

Solution Centers. 180

Documentation Navigator and Design Hubs . 180

References . 181

Please Read: Important Legal Notices . 182
Embedded Processor Hardware Design 4
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=4
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=4

Chapter 1

Introduction

Overview
This chapter provides an introduction to using the Xilinx® Vivado® Design Suite flow for
programming an embedded design using the Zynq® UltraScale+™ MPSoC device, the
Zynq-7000 SoC device, or the MicroBlaze™ processor.

Embedded systems are complex. Hardware and software portions of an embedded design
are projects in themselves. Merging the two design components so that they function as
one system creates additional challenges. Add an FPGA design project, and the situation
can become very complicated.

To simplify the design process, Xilinx provides several sets of tools with which you need to
become acquainted. The following describes a few of the basic tool names and acronyms
for these tools.

The Vivado Integrated Design Environment (IDE) includes the IP integrator tool, which you
can use to stitch together a processor-based design. This tool, combined with the Xilinx
Software Development Kit (SDK), provide an integrated environment to design and debug
microprocessor-based systems and embedded software applications.

For an example of working with embedded processors and SDK, hardware and software
cross-triggering, and debugging designs, see the Vivado Design Suite Tutorial: Embedded
Processor Hardware Design (UG940) [Ref 20]. In this tutorial, you use the Vivado IP
integrator tool to build embedded processor designs, and then debug the design with SDK
and the Vivado Integrated Logic Analyzer (ILA).

The following section provides an overview of the general hardware and software flow and
the related information for generating an embedded design with a Xilinx processor. These
sections apply to all Xilinx processor development.

Device Tools Flow Overview
The Vivado tools provide specific flows for programming, based on the processor. The
Vivado IDE uses the IP integrator with graphic connectivity screens to specify the device,
select peripherals, and configure hardware settings.
Embedded Processor Hardware Design 5
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=5
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=5

Chapter 1: Introduction
You can use the Vivado IP integrator to capture hardware platform information in XML
format applications, along with other data files to develop designs for Xilinx processors.
Software design tools use the XML to do the following:

° Create and configure board support package (BSP) libraries

° Infer compiler options

° Program the processor logic (PL)

° Define JTAG settings

° Automate other operations that require information about the hardware

The Zynq UltraScale+ MPSoC solution includes the Arm®v8-based Cortex™-A53,
high-performance, energy-efficient, 64-bit application processor that contains the Arm
Cortex-R5 MPCore real-time processor. Use Chapter 2, Using a Zynq UltraScale+ MPSoC
Device in an Embedded Design to understand how to use IP integrator and other Xilinx
tools to create an embedded Zynq MPSoC processor design. For hardware and software
specifics, see the following:

° Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085) [Ref 26]

° Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137) [Ref 28]

The Zynq-7000 SoC solution reduces the complexity of an embedded design by offering an
Arm Cortex-A9 dual core as an embedded block, along with programmable logic on a
single SoC. Use Chapter 3, Using a Zynq-7000 Processor in an Embedded Design to
understand how to use IP integrator and other Xilinx tools to create an embedded
Zynq-7000 processor design. For hardware and software specifics, see the following:

° Zynq-7000 SoC Technical Reference Manual (UG585) [Ref 6]

° Zynq-7000 SoC Software Developers Guide (UG821) [Ref 21]

The MicroBlaze embedded processor is a Reduced Instruction Set Computer (RISC) core,
optimized for implementation in Xilinx field programmable gate arrays (FPGAs). Use
Chapter 4, Using a MicroBlaze Processor in an Embedded Design to understand how to use
IP integrator and other Xilinx tools to create an embedded Microblaze processor design.
See the MicroBlaze Processor Reference Guide (UG984) [Ref 22] for more processor
information.

Xilinx provides design tools for developing and debugging software applications for (?)
Xilinx processors, including, but not limited to, the following:

° Software IDE

° GNU-based compiler tool-chain

° Debugging tools
Embedded Processor Hardware Design 6
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=6
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=6

Chapter 1: Introduction
These tools let you develop both bare-metal applications that do not require an operating
system, and applications for an open-source Linux-based operating system. For Zynq
devices, the Vivado IP integrator captures information about the processing system (PS)
and peripherals, including configuration settings, register memory-map, and associated
logic in the programming logic (PL) fabric. You can then generate a bitstream for PL
initialization.

Third-party sources also provide software solutions that support Cortex processors,
including, but not limited to: software IDEs, compiler tool-chains, debug and trace tools,
embedded OS and software libraries, simulators, and modeling/virtual prototyping tools.
Third-party tool solutions vary in the level of integration and direct support for Zynq-7000
devices.

Xilinx provides integration between a hardware design and the software development with
an integrated flow down to the Software Development Kit (SDK): standalone product that is
available for download from the Xilinx website www.xilinx.com. See the Xilinx Software
Development Kit (SDK) User Guide (UG782) [Ref 8] for more information about how to use
the tool.

The following figure illustrates the tools flow for the embedded hardware of a Zynq device:

General Steps for Creating an Embedded Processor
Design
To complete an embedded processor design, you typically go through the following steps:

1. Create a new Vivado Design Suite project.
2. Create a block design in the IP integrator tool and instantiate a Xilinx processor, along

with any other Xilinx IP or your custom IP.
3. Generate Output Products of the IP in the block design with the correct synthesis mode

option.

X-Ref Target - Figure 1-1

Figure 1‐1: Hardware Design Tool Handoff to Software Tools

Configure
PS Add IP

Generate
Bitstream
(Optional)

Export to
Software Tools

Hardware
Specification
File (XML)

PL Configuration
(Bitstream)

PS Configuration

Memory Map
Information

(MMI)

Hardware
Handoff

X#####-050317X12502050317
Embedded Processor Hardware Design 7
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=7
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=7

Chapter 1: Introduction
4. Create a top-level wrapper and instantiate the block design into a top-level RTL design.
5. Run the top-level design through synthesis and implementation, and then export the

hardware to SDK.
6. Create your software application. In SDK, associate the Executable Linkable File (ELF) file

with the hardware design. See Using the Software Development Kit (SDK). Also, see the
Xilinx Software Development Kit (SDK) Help (UG782) [Ref 8].

7. Use the Xilinx updatemem utility to merge the ELF and Memory Map Information (MMI)
for the block Rams with the hardware device bitstream. See Chapter 7, Using
UpdateMEM to Update BIT files with MMI and ELF Data for information about this utility.

8. Program into the target board.

Embedded IP Catalog

The Vivado Design Suite IP catalog is a unified repository that lets you search, review
detailed information, and view associated documentation for the IP.

After you add the third-party or customer IP to the Vivado Design Suite IP catalog, you can
access the IP through the Vivado Design Suite flows. Figure 1-2 shows a portion of the
Vivado IDE IP integrator IP catalog.

Completing Connections Using Designer Assistance
In Zynq processors, after you have configured the processor system (PS) for a Xilinx
processor device, you can instantiate other IP that go in the programmer logic (PL) portion
of the device.

In the IP integrator diagram area, right-click and select Add IP.

X-Ref Target - Figure 1-2

Figure 1‐2: IP Integrator IP Catalog
Embedded Processor Hardware Design 8
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=8
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=8

Chapter 1: Introduction
The Vivado IP integrator provides two built-in features to assist you in completing the rest
of your IP subsystem design: Block Automation and Connection Automation. These features
help you put together a basic microprocessor system in the IP integrator tool and connect
ports to external I/O ports.

IMPORTANT: The following section uses a ZYNQ7 processor for illustration. The features are the same
regardless of the processor you use.

Block Automation

Block Automation is available when a Xilinx processor has subsystem IP instantiated in the
block design of the IP integrator tool.

Click Run Block Automation to get assistance with putting together a simple ZYNQ
Processing System, as shown in Figure 1-3.

The Run Block Automation dialog box in the following figure shows the options available
for automation, as shown in the following figure. If you are working with a targeted
reference board, you can enable the board presets by checking the Apply Board Preset
check box.

X-Ref Target - Figure 1-3

Figure 1‐3: Run Block Automation Feature
Embedded Processor Hardware Design 9
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=9
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=9

Chapter 1: Introduction
When you click OK, the Block Automation feature creates the basic system, as shown in the
following figure.

You can also enable the cross-trigger feature by selecting the appropriate function using
the Cross Trigger In and Cross Trigger Out fields of the Block Automation dialog box.

X-Ref Target - Figure 1-4

Figure 1‐4: Run Block Automation for ZYNQ7 Dialog Box

X-Ref Target - Figure 1-5

Figure 1‐5: IP Integrator Canvas after Running Block Automation
Embedded Processor Hardware Design 10
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=10
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=10

Chapter 1: Introduction
The default value for the Cross Trigger In and Cross Trigger Out fields is Disable; however,
you can use the cross-trigger by selecting the Enable and New ILA options.

Selecting Enable for Cross Trigger In and Cross Trigger Out exposes only one of the
available cross-trigger pins in ZYNQ7. The connectivity to these pins is left for you to
complete.

X-Ref Target - Figure 1-6

Figure 1‐6: Using Run Block Automation Dialog Box to Enable Cross Trigger Feature

X-Ref Target - Figure 1-7

Figure 1‐7: Cross Trigger Pins in ZYNQ7
Embedded Processor Hardware Design 11
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=11
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=11

Chapter 1: Introduction
When you select the New ILA option, it not only enables the cross-trigger pins, it also
connects them to an Integrated Logic Analyzer (ILA) core.

The Vivado IP integrator tool also provides a Board Automation feature when using a Xilinx
Target Reference Platform, such as the ZC702. See Platform Board Flow in IP Integrator for
more information.

This feature provides connectivity of the ports of an IP to the FPGA pins on the target board.
The IP configures accordingly, and based on your selections, connects the I/O ports. Board
Automation automatically generates the physical constraints for those IP that require
physical constraints.

In Figure 1-5, observe that the external DDR and FIXED_IO interfaces connect to external
ports.

Using Connection Automation

If the IP integrator tool determines that a potential connection exists among the
instantiated IP in the canvas, it opens the Connection Automation feature.

In the following figure, the AXI BRAM Controller and the Block Memory Generator IP are
instantiated along with the ZYNQ7 Processing System IP.

The IP integrator tool determines that a potential connection exists between the AXI BRAM
Controller and the ZYNQ7 IP; consequently, Connection Automation is available, as shown
in the following figure.

X-Ref Target - Figure 1-8

Figure 1‐8: Cross Trigger Pins Connected to an ILA Using Block Automation
Embedded Processor Hardware Design 12
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=12
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=12

Chapter 1: Introduction
In this example, clicking Run Connection Automation instantiates an AXI Interconnect, a
Block Memory Generator, and a Proc Sys Reset IP, connects the AXI BRAM Controller to the
ZYNQ PS IP using AXI SmartConnect, and appropriately connects the Proc Sys Reset IP.

See this link to Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator
(UG994) [Ref 23] for a description of the differences between AXI Interconnect and AXI
SmartConnect.

The following figure shows the final result.

X-Ref Target - Figure 1-9

Figure 1‐9: Using Run Connection Automation Feature to Complete Connectivity
Embedded Processor Hardware Design 13
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf;a=xInterConnectVsSmartConnect
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=13
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=13

Chapter 1: Introduction
Making Manual Connections in a Design
The following figure shows how you can connect the ILA SLOT_0_AXI or the clk pin to the
clock and the AXI interface that needs to be monitored in the design. You can do this
manually.

As you move the cursor near an interface or pin connector on an IP block, the cursor
changes to a pencil. Click an interface or pin connector on an IP block, and drag the
connection to the destination block.

The following figure illustrates the use of manual connections.

X-Ref Target - Figure 1-10

Figure 1‐10: Block Design After Using Connection Automation
Embedded Processor Hardware Design 14
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=14
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=14

Chapter 1: Introduction
Manually Creating and Connecting to I/O Ports
You can manually create external I/O ports in the Vivado IP integrator by connecting signals
or interfaces to external I/O ports then selecting a pin, a bus, or an interface connection.

To manually create/connect to an I/O port, right-click the port in the block diagram, and
then select one of the following from the right-click menu:

• Make External: Use the Ctrl+Click keyboard combination to select multiple pins and
invoke the Make External connection. This command ties a pin on an IP to an I/O port
on the block design.

• Create Port: Creates non-interface signals, such as a clock, reset, or uart_txd. The
Create Port option gives more control in terms of specifying the input and output, the
bit-width and the type (clk, reset, or data). In case of a clock, you can even specify
the input frequency.

• Create Interface Port: Creates ports on the interface for groupings of signals that
share a common function. For example, the S_AXI is an interface port on several Xilinx
IP. The command gives more control in terms of specifying the interface type and the
mode (master or slave).

X-Ref Target - Figure 1-11

Figure 1‐11: Manually Connecting Ports
Embedded Processor Hardware Design 15
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=15
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=15

Chapter 1: Introduction
Enhanced Designer Assistance
The IP integrator tool offers enhanced designer assistance when an AXI4-Stream interface is
to be connected to an AXI4 memory-mapped interface. As an example, the following figure
shows a FIR Compiler IP with a streaming interface is to be connected to the slave ACP port
of the processing_system7_0.

To use the enhanced designer assistance you must make a direct connection between the
M_AXIS_DATA interface pin of the FIR Compiler and the S_AXI_ACP port of the ZYNQ7
processing system as shown in the following figure.

The Make Connection dialog box, shown in Figure 1-14, informs you that the Stream Bus
Interface /fir_compiler_0/M_AXIS_DATA will be connected to the memory-mapped
bus-interface /processing_system7_0/S_AXI_ACP. It also offers the user different
options for clocking on the streaming memory-mapped interface. The default is Auto.

X-Ref Target - Figure 1-12

Figure 1‐12: Connecting Streaming Interface to a Memory-Mapped Interface

X-Ref Target - Figure 1-13

Figure 1‐13: Invoking Enhanced Designer Assistance
Embedded Processor Hardware Design 16
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=16
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=16

Chapter 1: Introduction
The enhanced designer assistance instantiates a DMA core configured to do High/Medium
frequency transfers and makes the appropriate connection when you choose to click OK
after selecting the proper settings, as shown in the following figure.

The enhanced designer assistance instantiates an AXI Subset Converter, an AXI Direct
Memory Access and an AXI Interconnect to make the connection between the streaming
interface of the FIR Compiler and the ACP port of PS7. The AXI4-Stream Subset Converter
provides a solution for connecting slightly incompatible AXI4-Stream signal sets together.
The IP has configurable AXI4-Stream signals for each interface that allows one to convert
one signal set to another in a consistent manner.

Platform Board Flow in IP Integrator
The Vivado® Design Suite is board-aware. The tools know the various components present
on the target board and can customize an IP to be instantiated and configured to connect
to the components of a particular board.

The IP integrator shows all the components present on the board in a separate tab called
the Board tab.

X-Ref Target - Figure 1-14

Figure 1‐14: Make Connection Dialog Box for Enhanced Designer Assistance

X-Ref Target - Figure 1-15

Figure 1‐15: Connections Made after Using Enhanced Designer Assistance
Embedded Processor Hardware Design 17
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=17
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=17

Chapter 1: Introduction
When you use this tab to select components and the designer assistance offered by IP
integrator, you can easily connect your design to the components of your choice. I/O
constraints are automatically generated as a part of using this flow.

See this link in the Vivado Design Suite User Guide: Designing IP Subsystems Using IP
Integrator (UG994) [Ref 23] for more information.

Memory-Mapping in the Address Editor
While memory-mapping of the peripherals (slaves) instantiated in the block design are
automatically assigned, you can a manually assign the addresses also. To generate the
address map for this design, do the following:

1. Click the Address Editor tab above the diagram.
2. Click the Auto Assign Address button (bottom on the left side).

You can manually set addresses by entering values in the Offset Address and Range
columns. See this link in the Vivado Design Suite User Guide: Designing IP Subsystems Using
IP Integrator (UG994) [Ref 23] for more information.

TIP: The Address Editor tab only opens if the diagram contains an IP such as the Zynq-7000 SoC or
Zynq UltraScale+ MPSoC device that functions as a bus master in the design.

Running Design Rule Checks
The Vivado IP integrator runs basic DRCs in real time as you put the design together.
However, errors can occur during design creation. For example, the frequency on a clock pin
might not be set correctly.

X-Ref Target - Figure 1-16

Figure 1‐16: Memory-Mapping Peripherals
Embedded Processor Hardware Design 18
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf;a=UsingtheBoardFlowinIPIntegrator
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf;a=xCreatingaMemoryMap
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=18
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=18

Chapter 1: Introduction
To run a comprehensive DRC, click the Validate Design button .

If no warnings or errors occur in the design, a validation dialog box displays to confirm that
there are no errors or critical warnings in your design.

Integrating a Block Design in the Top-Level Design
After you complete the block design and validate the design, there are two more steps
required to complete the design:

° Generate the output products

° Create a HDL wrapper

Generating output products makes the source files and the appropriate constraints for the
IP available in the Vivado IDE Sources window.

Depending upon what you selected as the target language during project creation, the IP
integrator tool generates the appropriate files. If the Vivado IDE cannot generate the source
files for a particular IP in the specified target language, a message displays in the console.

Generating Output Products

To generate output products, do one of the following:

° In the Block Design panel, expand the Design Sources hierarchy and select
Generate Output Products.

° In the Flow Navigator panel, under IP Integrator, click Generate Block Design.

The Vivado Design Suite generates the HDL source files and the appropriate constraints for
all the IP used in the block design. The source files are generated based upon the Target
Language that you select during project creation, or in the Settings dialog box. See this link
to the Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
[Ref 23], for more information on generating output products.

Creating an HDL Wrapper

You can integrate an IP integrator block design into a higher-level design. To do so,
instantiate the design in a higher-level HDL file.

To instantiate at a higher level, in the Design Sources hierarchy of the Block Design panel,
right-click the design and select Create HDL Wrapper, as shown in Figure 1-17.
Embedded Processor Hardware Design 19
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf;a=xGeneratingOutputProducts
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=19
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=19

Chapter 1: Introduction
Vivado offers two choices for creating an HDL wrapper, as shown in the following figure:

• Let Vivado create and automatically update the wrapper, which is the default option.
• Create a user-modifiable script, which you can edit and maintain. Choosing this option

requires that you update the wrapper every time you make port-level changes in the
block design.

This generates a top-level HDL file for the IP integrator subsystem. You can now take your
design through the other design flows: elaboration, synthesis, and implementation.

Vivado Pin Planner View of PS I/O
See the Zynq-7000 SoC PCB Design Guide (UG933) [Ref 19] for a detailed description of
guidelines for PCB pin-planning and design for these devices.

X-Ref Target - Figure 1-17

Figure 1‐17: Creating an HDL Wrapper

X-Ref Target - Figure 1-18

Figure 1‐18: Create HDL Wrapper Dialog Box
Embedded Processor Hardware Design 20
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=20
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=20

Chapter 1: Introduction
Vivado IDE Generated Embedded Files
When you export a processor hardware design from the Vivado IP integrator tool to SDK,
the IP integrator generates the files listed in the following table.

See the relevant Software Developers User Guide for the processor in question to obtain
more information about generated files.

Using the Software Development Kit (SDK)
The Xilinx Software Development Kit (SDK) provides a complete environment for creating
software applications targeted for Xilinx embedded processors. It includes a GNU-based
compiler toolchain (GCC compiler, TCF System debugger, utilities, and libraries), JTAG
debugger, flash programmer, drivers for Xilinx IP and bare-metal board support packages,
middleware libraries for application-specific functions, and an IDE for C/C++ bare-metal
and Linux application development and debugging. Based upon the open source Eclipse
platform, SDK incorporates the C/C++ Development Toolkit (CDT).

Features of SDK include:

• C/C++ code editor and compilation environment
• Project management
• Application build configuration and automatic make file generation
• Error navigation
• Integrated environment for debugging and profiling embedded targets
• Additional functionality available using third-party plug-ins, including source code

version control

Table 1‐1: Files Generated by IP Integrator

File Description

system.xml Opens by default when you launch SDK and displays the address map of your
system.

ps<#>_init.c

ps<#>_init.h

These files contain the initialization code for the Zynq Processing System and
initialization settings for DDR, clocks, PLLs, and MIOs. SDK uses these settings
when initializing the processing system so applications can run on top of the
processing system. Some settings in the processing system are in a fixed state
for the ZC702 evaluation board.

ps<#>_init.tcl The Tcl version of the INIT file.
ps<#>_init.html Describes the initialization data.
Embedded Processor Hardware Design 21
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=21
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=21

Chapter 1: Introduction
SDK Availability

SDK is available from the Xilinx Vivado Design Suite installation package or as a standalone
installation. SDK also includes an application template for creating a First Stage Bootloader
(FSBL), as well as a graphical interface for building a boot image. SDK contains a help
system that describes concepts, tasks, and reference information. See Xilinx Software
Development Kit (SDK) Help (UG782) [Ref 8] for more information.

Exporting a Hardware Description

Once a design has been implemented and the bitstream generated, you can export the
design to SDK for software application development. In rare cases where the Processing
Logic does not contain any logic at all, you can also export the design without
implementing or generating the bitstream.

To export your design to SDK, do the following:

1. In the main Vivado IDE, select File > Export > Export Hardware.

The Export Hardware for SDK dialog box opens, as shown in the following figure.
.

2. In the Export Hardware for SDK dialog box, check the Include bitstream check box.
Note: In a project-based flow, typically the Export to field is set to <Local to Project>, but it
can be changed as deemed appropriate.

3. After the hardware definition has been exported, select File > Launch SDK to launch
SDK from Vivado

The Launch SDK dialog box opens, as shown in Figure 1-20.

X-Ref Target - Figure 1-19

Figure 1‐19: Export Hardware for SDK
Embedded Processor Hardware Design 22
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=22
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=22

Chapter 1: Introduction
The Exported location and Workspace fields are typically set to <Local to Project> in a
project based flow. However, if you specify a different location for exporting the hardware
definition, set the Exported location field to that particular location. Likewise, the
Workspace location can be set to a the appropriate directory location.

After you export the hardware definition to SDK, and launch SDK, you can start writing your
software application in SDK.

You can do further debug and downloading of the software from SDK.

Alternatively, you can import the ELF file for the software back into the Vivado tools, and
integrate it with the FPGA bitstream for further download and testing.

X-Ref Target - Figure 1-20

Figure 1‐20: Launch SDK Dialog Box
Embedded Processor Hardware Design 23
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=23
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=23

Chapter 2

Using a Zynq UltraScale+ MPSoC Device
in an Embedded Design

Introduction
This chapter describes the Xilinx® Vivado® Design Suite flow for working with the Zynq®
UltraScale+™ MPSoC device.

The examples target the Xilinx ZCU102 Rev 1.0 evaluation board and the tool versions in the
2019.x Vivado Design Suite release.

See the Introduction in Chapter 1 for programming information that applies to all
processors.

Designing Zynq UltraScale+ MPSoC Devices
The software interface for the Xilinx Zynq UltraScale+ MPSoC processing system IP core is
named zynq ps8. The Zynq UltraScale+ MPSoC family consists of a system-on-chip (SoC)
with an integrated processor system (PS) and a programmer logic (PL) unit, providing an
extensible and flexible SoC solution on a single die.
Embedded Processor Hardware Design 24
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=24
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=24

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
Creating a Design with the Zynq UltraScale+ Processing System

From within a design project that targets the Zynq UltraScale+ MPSoC device, click the
Create Block Design button to create an empty block design.

1. Click the IP integrator Create Block Design option to open the Create Block Design
dialog box, where you can enter the Design Name, as shown in the following figure.

2. Use this dialog box for the additional entries:

° Create the Block Design as a part of a project, or in a different location that you can
specify in the Directory field.

° Specify the source type by setting the field Specify source set from the pull-down
menu.

The Block Design window opens, as shown in the following figure.

X-Ref Target - Figure 2-1

Figure 2‐1: Create Block Design Dialog Box

X-Ref Target - Figure 2-2

Figure 2‐2: Block Design Window
Embedded Processor Hardware Design 25
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=25
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=25

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
3. Select the Add IP option, and a Search box opens where you can search for, and select
the ZYNQ UltraScale+ MPSoc, shown in Figure 2-3.

When you select the Zynq UltraScale+ MPSoc IP, the Vivado IP integrator adds the IP to
the design, and a graphical representation of the processing system displays, as shown
in the following figure.

The corresponding Tcl command is create_bd_cell; the syntax is, as follows:

create_bd_cell -type ip -vlnv xilinx.com:ip:zynq_ultra_ps_e:2.0 zynq_ultra_ps_e_0

4. Double-click the processing system graphic to invoke the Re-customize IP process,
which displays the Re-customize IP for the Zynq UltraScale+ MPSoc dialog box as shown
in Figure 2-5.

5. Review the contents of the block design. The green colored blocks in the Zynq
UltraScale+ MPSoc are configurable items. You can click a green block to open the
coordinating configuration options.

X-Ref Target - Figure 2-3

Figure 2‐3: Search for Zynq UltraScale+ MPSoc in the IP Catalog

X-Ref Target - Figure 2-4

Figure 2‐4: Graphical Display of Default ZYNQ UltraScale+ MPSoc
Embedded Processor Hardware Design 26
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=26
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=26

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
Alternatively, you can select the options from the Page Navigator on the left, as shown in
Figure 2-5.

You can also enable the Advanced Configuration Mode by checking the Switch to
Advanced Mode check box, shown in Figure 2-6. When this option is enabled, the
Advanced Configuration, PCIe Configuration, and Isolation Configuration options become
available.

X-Ref Target - Figure 2-5

Figure 2‐5: ZYNQ UltraScale+ MPSoc Configuration Dialog Box
Embedded Processor Hardware Design 27
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=27
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=27

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design

Overview of Zynq UltraScale+ MPSoc
Configurations
The Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085) [Ref 26] provides details
on the options available in the Page Navigator of the ZYNQ UltraScale+ MPSoc
Configuration dialog box. The Zynq UltraScale+ MPSoC Software Developer Guide (UG1137)
[Ref 28] describes programming the device.

The following sections briefly describes these options.

Zynq UltraScale+ MPSoc Recustomization Window Information

The following figure shows the documentation options in the Re-customize IP window.

X-Ref Target - Figure 2-6

Figure 2‐6: ZYNQ UltraScale+ Advanced Mode

X-Ref Target - Figure 2-7

Figure 2‐7: Zynq UltraScale+ MPSoc Information
Embedded Processor Hardware Design 28
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=28
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=28

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
• Documentation: Opens the documentation menu and provides access to the Product
Guide, Change Log for the IP, and access the Xilinx website where you can find
documentation pertaining to Zynq UltraScale+ MPSoC.

• Presets: Lets you view information about the available preset options. You can save the
current configuration of PS8 to a file or apply a pre-existing configuration to configure
the current instance of the processors. Presets can also be applied to a target board.
The available options are Default, ZC702, ZC706, and Zedboard.

• IP Location: Shows the location of the source files created for the IP.

Configuring I/O Peripherals

The ZYNQ UltraScale+ MPSoc has over 20 peripherals available that you can customize. You
can route these peripherals directly to the dedicated Multiplexed I/Os (MIO), EMIOs, or GT
Lanes as applicable. Peripherals are divided into two categories: Low Speed and High Speed
Peripherals.

Low Speed Peripherals: Memory Interfaces

QSPI

The generic Quad-SPI controller meets the requirements for generic low-level access by the
software. The controller supports generic and future command sequences and future
NOR/NAND flash devices. Due to the generic nature of the Quad-SPI controller, software
can generate any command sequence in any mode.

The Quad-SPI controller supports all features in SPI, dual-SPI, and Quad-SPI modes. The
Quad-SPI controller also supports the dual parallel mode, with separate buses, and stacked
mode with a shared bus, for two flash devices. The choices for Quad-SPI are Single, Dual
Stacked, and Dual Parallel.

The QSPI I/O can be set with the appropriate slew, drive strength, and pull-up/pull-down
options. You can generate an optional Feedback Clk also.
Embedded Processor Hardware Design 29
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=29
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=29

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
The following figure shows the Quad SPI Configuration options.

NAND

The NAND flash controller has an advanced eXtensible interface (AXI) interface, which
allows the Arm® processor to configure the operational registers sitting inside the NAND
flash controller. The block supports the open NAND flash interface working group (ONFI)
standards 1.0, 2.0, 2.1, 2.2, 2.3, 3.0, and 3.1.

The NAND flash controller handles all the command, address, and data sequences, manages
all the hardware protocols, and allows the users to access NAND flash memory simply by
reading or writing into the operational registers. All available options can be set through
the Configuration wizard as shown in the following figure.

X-Ref Target - Figure 2-8

Figure 2‐8: Configuring QSPI I/O Pins

X-Ref Target - Figure 2-9

Figure 2‐9: Configuring NAND I/O Pins
Embedded Processor Hardware Design 30
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=30
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=30

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
SD

The SD 3.0/SDIO 3.0 host controller with an AXI processor interface conforms to the secure
digital (SD) host controller standard specification version 3.00. The host controller handles
the SDIO/SD protocol at the transmission level, packing data, adding cyclic redundancy
check (CRC), start/end bits, and checking for transaction format correctness. The host
controller provides for the programmed I/O method and the DMA data transfer method.

In the programmed I/O method, the host processor transfers data using the buffer data
port register. The DMA support for the host controller is determined by checking the DMA
support in the capabilities register. DMA allows a peripheral to read or write memory
without intervention from the CPU. The host controller system address register points to
the first data address, and data is accessed sequentially from that address, as shown in the
following figure.

I/O Peripherals

CAN

There are two nearly identical CAN controllers in the PS that are independently operable.
The features of the CAN Controller are, as follows:

• Conforms to the ISO 11898-1, CAN 2.0A, and CAN 2.0B standards.
• Standard (11-bit identifier) and extended (29-bit identifier) frames.
• Transmit message FIFO (TXFIFO) with a depth of 64 messages.
• Transmit prioritization through one high-priority transmit buffer (TXHPB).

X-Ref Target - Figure 2-10

Figure 2‐10: Configuring SD I/O Pins
Embedded Processor Hardware Design 31
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=31
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=31

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
• Watermark interrupts for TXFIFO and RXFIFO.
• Automatic re-transmission on errors or arbitration loss in normal mode.
• Receive message FIFO (RXFIFO) with a depth of 64 messages.
• Four RX acceptance filters with enables, masks, and IDs.
• Loopback and snoop modes for diagnostic applications.
• Sleep mode with automatic wake-up.
• Maskable error and status interrupts.
• 16-bit time stamping for receive messages.
• Readable RX/TX error counters.

The following figure shows the CAN configuration options.

I2C

The I2C module is a bus controller that can function as a master or a slave in a multi-master
design. It supports a wide clock frequency range from DC, approaching up to 400 Kb/s.

In master mode, a transfer can only be initiated by the processor writing the slave address
into the I2C address register. The processor is notified of any available received data by a
data interrupt or a transfer complete interrupt. If the hold bit is set, the I2C interface holds
the clock line (SCL) low after the data is transmitted to support slow processor service. The
master can be programmed to use both normal (7-bit) addressing and extended (10-bit)
addressing modes. 10-bit addressing is only supported in master mode.

In slave monitor mode, the I2C interface is set up as a master and continues to attempt a
transfer to a particular slave until the slave device responds with an ACK. The hold bit can
be set to prevent the master from continuing with the transfer, preventing an overflow
condition in the slave.

X-Ref Target - Figure 2-11

Figure 2‐11: Configuring CAN I/O Pins
Embedded Processor Hardware Design 32
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=32
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=32

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
A common feature between master mode and slave mode is the timeout (TO) interrupt flag.
If at any point the SCL line is held low by the master or the accessed slave for more than the
period specified in the timeout register, a TO interrupt is generated to avoid stall
conditions.

Select the appropriate MIO pins for the two I2C controllers from the drop-down menu. An
optional interrupt can be generated from the two I2C controllers.

The following figure shows the I2C configuration page.

PJTAG

An alternate option for communication with the Arm DAP is through the PJTAG signals.
There are six PJTAG interfaces specified in the MIO. Using the MIO SLCR, you can select one
of the PJTAG0-5 MIO interfaces to be the PJTAG interface. The PJTAG interface enters the
JTAG security gate circuit, which routes the JTAG interfaces around the device.

To use the PJTAG interface, the following conditions must be met.

• The JTAG security gate is disabled by writing to the correct register in the CSU.
• The Arm DAP is not on the JTAG chain.

To prevent security holes, the PJTAG is multiplexed into the JTAG signaling before the
security gate. The following figure shows the PJTAG configuration options.

X-Ref Target - Figure 2-12

Figure 2‐12: Configuring I2C I/O Pins

X-Ref Target - Figure 2-13

Figure 2‐13: Configuring PJTAG I/O Pins
Embedded Processor Hardware Design 33
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=33
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=33

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
PMU

The platform management unit (PMU) controls the power-up, reset, and monitoring of
resources within the entire system. The Zynq UltraScale+ MPSoC PMU performs the
following set of tasks.

• Initialization of the system during boot.
• Management of power gating.

When the system is in the off mode, it becomes alive upon an indication from external or
internal events. Therefore, a subset of the system logic is active to detect such an event. The
PMU also provides power management, error management, safety functions, and a software
test library.

The PMU can obtain status information, and issue requests to other system elements
without using the application processors, monitor system temperature sensors, and control
system elements such as fans and power supplies.

CSU

The boot process is managed and carried out by the Platform Management Unit and
Configuration Security Unit. The CSU can be enabled by selecting the CSU check box.

X-Ref Target - Figure 2-14

Figure 2‐14: Configuring PMU I/O Pins
Embedded Processor Hardware Design 34
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=34
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=34

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
SPI

The SPI bus controller enables communications with a variety of peripherals such as
memories, temperature sensors, pressure sensors, analog converters, real-time clocks,
displays, and any SD card with serial mode support. The SPI controller can function in
master mode, slave mode, or multi-master mode.

The Zynq UltraScale+ MPSoC includes two instances of an SPI controller: SPI0 and SPI1.
Both controllers are identical and independently controlled by software drivers. They can be
operated simultaneously.

UART

The UART controller is a full-duplex asynchronous receiver and transmitter that supports a
wide range of programmable baud rates and I/O signal formats. The controller can
accommodate automatic parity generation and multi-master detection mode.

The UART operations are controlled by the configuration and mode registers. The state of
the FIFOs, modem signals, and other controller functions are read using the status, interrupt
status, and modem status registers.

The controller is structured with separate RX and TX data paths. Each path includes a
64-byte FIFO. The controller serializes and de-serializes data in the TX and RX FIFOs, and
includes a mode switch to support various loop-back configurations for the RxD and TxD
signals. The FIFO interrupt status bits support polling or an interrupt driven handler.
Software reads and writes data bytes using the RX and TX data port registers.

X-Ref Target - Figure 2-15

Figure 2‐15: Configuring SD I/O Pins
Embedded Processor Hardware Design 35
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=35
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=35

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
When using the UART in a modem-like application, the modem control module detects and
generates the modem handshake signals and also controls the receiver and transmitter
paths according to the handshaking protocol. The following figure shows the UART
configurations options.

GPIO

The general purpose I/O (GPIO) peripheral provides software with observation and control
of up to 78 device pins through the MIO module. The GPIO also provides access to 96 inputs
from the programmable logic (PL) and 192 outputs to the PL through the EMIO interface.

The GPIO is organized into six banks of registers that group related interface signals. Each
GPIO is independently and dynamically programmed as input, output, or interrupt sensing.
Software can read all GPIO values within a bank using a single load instruction, or write data
to one or more GPIOs (within a range of GPIOs) using a single store instruction. Figure 2-17
shows the GPIO configuration options.

X-Ref Target - Figure 2-16

Figure 2‐16: Configuring UART I/O Pins
Embedded Processor Hardware Design 36
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=36
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=36

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
Processing Unit

The processing unit (PU) for the Zynq UltraScale+ MPSoC device comprises four
Cortex™-A53 MPCore™ processors, L2 cache, and related functionality. The Cortex-A53
MPCore processor is the most power-efficient Arm v8 processor capable of seamless
support for 32-bit and 64-bit code. It makes use of a highly efficient 8-stage in-order
pipeline balanced with advanced fetch and data access techniques for performance. It fits in
a power and area footprint suitable for entry-level devices, and is at the same time capable
of delivering high-aggregate performance in scalable enterprise systems using high core
density.

SWDT

Zynq UltraScale+ MPSoC devices have two system watchdog timers (SWDT), one each for
the RPU and APU subsystem.

• The RPU SWDT is in the low-power domain (LPD)
• The PU SWDT is in the full-power domain (FPD).

Each SWDT provides error condition information to the error manager.

The PU SWDT can be used to reset the APU or the FPD. The RPU SWDT can be used to reset
the RPU or the processing system (PS). These timers can be enabled, as shown in
Figure 2-18.

X-Ref Target - Figure 2-17

Figure 2‐17: Configuring GPIO Pins
Embedded Processor Hardware Design 37
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=37
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=37

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
Trace

The Cortex-A53 MPCore embedded trace macrocell (ETM) is a module that performs
real-time instruction flow tracing for the Cortex-A53 MPCore, based on the program flow
trace (PFT) architecture. The Cortex-A53 MPCore ETM generates information used by the
trace tools to reconstruct the execution of all or part of a program. The PFT architecture
assumes that the trace tools can access a copy of the code being traced. For this reason, the
ETM generates traces only at certain points in program execution, called waypoints. This
reduces the amount of trace data generated by the ETM. Waypoints are changes in the
program flow or events, such as an exception. The trace tools use waypoints to follow the
flow of program execution. To simplify implementation, each Cortex-A53 MPCore has one
embedded ETM to capture its running trace in real time.

TTC

The triple-time counter (TTC) module provides three independent timer/counter modules
that can each be clocked using either the system clock or an externally derived clock. All
three counters must have the same security status because they share a single APB bus.

When the TTC is in secure mode, applications running as user mode do not access its
register. Two TTC modules are instantiated in the device with one reserved for TrustZone
software while the other is shared by both TrustZone software and user software. When
TrustZone technology is not used, both TTCs are available to user software. Additionally, the
TTC has the option to support external reference clock inputs and pulse-width-modulated
(PWM) outputs with these features. The TTC configuration options are shown in
Figure 2-19.

X-Ref Target - Figure 2-18

Figure 2‐18: Configuring Processing Unit SWDT Pins
Embedded Processor Hardware Design 38
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=38
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=38

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
High Speed Peripherals

Gigabit Ethernet Controller (GEM)

The gigabit Ethernet controller (GEM) implements a 10/100/1000 Mb/s Ethernet MAC
compatible with IEEE Standard for Ethernet (IEEE Std 802.3-2008) and capable of operating
in either half or full-duplex mode in 10/100 mode and full-duplex in 1000 mode. The
processing system (PS) is equipped with four gigabit Ethernet controllers. Each controller
can be configured independently. Each controller uses a reduced gigabit media
independent interface (RGMII), v2.0 to save pins.

Access to the programmable logic (PL) is through the EMIO which provides the gigabit
media independent interface (GMII). Other Ethernet communications interfaces can be
created in the PL using the GMII available on the EMIO interface. GEM supports SGMII using
the PS-GTR interface.

Registers are used to configure the features of the MAC, select different modes of
operation, and enable and monitor network management statistics. The DMA controller
connects to memory through the advanced eXtensible interface (AXI). It is attached to the
controller's FIFO interface of the MAC to provide a scatter-gather type capability for packet
data storage in an embedded processing system. Each GEM controller provides
management data input/output (MDIO) interfaces for PHY management.

X-Ref Target - Figure 2-19

Figure 2‐19: Configuring Triple-timer Counter (TTC) Pins
Embedded Processor Hardware Design 39
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=39
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=39

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
The time stamp unit (TSU) can also be enabled by checking the GEM TSU check box in the
configuration wizard as shown in the following figure. The TSU consists of a timer and
registers to capture the time at which PTP event frames cross the message timestamp point.
These are accessible through the APB interface. An interrupt is issued when a capture
register is updated. The following figure shows the GEM configuration options.

USB

The USB 3.0 controller in the Zynq UltraScale+ MPSoC device consists of two independent
dual-role device (DRD) controllers. Both can be individually configured to work as host or
device at any given time. The USB 3.0 DRD controller provides an extensible host controller
interface (xHCI) to the system software through the advanced extensible interface (AXI)
slave interface.

An internal DMA engine is present in the controller and it utilizes the AXI master interface
to transfer data. The three dual-port RAM configurations implement the following:

• RX data FIFO
• TX data FIFO
• Descriptor/register cache.

The AXI master port and the protocol Layers access the different RAMs through the buffer
management unit. The following figure shows the USB configuration options.

X-Ref Target - Figure 2-20

Figure 2‐20: Configuring Gigabit Ethernet Controller Pins

X-Ref Target - Figure 2-21

Figure 2‐21: Configuring USB Controller Pins
Embedded Processor Hardware Design 40
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=40
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=40

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
PCIe

The Zynq UltraScale+ MPSoC device provides a controller for the integrated block for PCI
Express® v2.1 compliant, AXI-PCIe bridge, and DMA modules. The AXI-PCIe bridge
provides high-performance bridging between PCIe and AXI.

The controller for PCIe supports both endpoint and root port modes of operations. The
controller comprises two sub-modules.

• The AXI-PCIe bridge provides AXI to PCIe protocol translation and vice-versa,
ingress/egress address translation, DMA, and root port/endpoint (RP/EP) mode specific
services.

• The integrated block for PCIe interfaces to the AXI-PCIe bridge on one side and the
PS-GTR transceivers on the other. It performs link negotiation, error detection and
recovery, and many other PCIe protocol specific functions. This block cannot be directly
accessed.

The block can be enabled by selecting the PCIe option in the Configuration wizard, as
shown below.

Display Port

The Display Port controller is based on the VESA Display Port 1.2 standard specification,
and is a source-only controller. The main link supports up to two lanes at data rates of 1.62,
2.70, or 5.40 Gb/s. The video data is grabbed by the video clock and is independent of the
main link lanes clocking system. The data is packetized before being sent across the main
link lanes.

The Display Port controller supports both audio and video streams. In addition to a main
link, the controller supports auxiliary channel in a half-duplex mode, which is used for
source/sink communication. The auxiliary channel uses LVDS signaling using Manchester 2
level encoding as per the DisplayPort standard and works at a 1 Mb/s data rate.

A hot plugs detect (HPD) signal is used for hot plug detection and to generate an IRQ from
the sink to source.

X-Ref Target - Figure 2-22

Figure 2‐22: Configuring PCIe Controller Pins
Embedded Processor Hardware Design 41
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=41
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=41

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
The Display Port controller has a configuration interface that is advanced peripheral bus
(APB) compliant. A number of AXI streaming interfaces exist for video and audio interfaces.
The Display Port controller supports live audio/video channels from the programmable
logic (PL). It also supports mixing audio channels and alpha blending, and chroma keying of
video channels, from the PL.

The Lane Selection field can be set using the pull-down menu in the Configuration Wizard
as shown in the following figure. The choices are: Dual Higher, Dual Lower, Single Higher,
and Single Lower. Based on the selection either one lane or two lanes are enabled. The
following figure shows the DisplayPort Controller options.

SATA

The serial ATA (SATA) protocol was designed to replace the old parallel ATA (or IDE)
interface used mainly for storage devices. SATA uses the ATA/ATAPI command-set, but uses
serial communication over the differential wire pairs at rates of 1.5, 3.0, or 6.0 Gb/sec
corresponding to SATA generation 1, generation 2 or generation 3. The serial data is 8B/10B
encoded which ensures sufficient transition in the data pattern to ensure DC balancing and
enables the clock data recovery circuit to extract the clock from the incoming data pattern.
The following figure shows the SATA configuration options.

The SATA block of the processing system (PS) is a high-performance dual-port SATA host
controller with an AHCI-compliant command layer which supports advanced features such
as native command queuing and frame information structure (FIS) based switching for
systems employing port multipliers.

X-Ref Target - Figure 2-23

Figure 2‐23: Configuring DisplayPort Controller Pins

X-Ref Target - Figure 2-24

Figure 2‐24: Configuring SATA Controller Pins
Embedded Processor Hardware Design 42
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=42
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=42

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
Reference Clocks

• Video Reference Clock: See the Clock Configuration section for details.
• PSS Alt Reference Clock: See the Clock Configuration section for details.

Clock Configuration

The Zynq UltraScale+ MPSoC processor has a programmable clock generator that takes a
definite input frequency clock and derives multiple clocks using the phase-locked loop
(PLL) blocks in the processing system (PS). The output clock from each of the PLLs is used
as a reference clock to the different PS peripherals.

The Zynq UltraScale+ MPSoC processor has five PLLs that generate various clocks used in
the PS subsystem.

• DDR PLL (DPLL): Mainly used to generate clocks for the DDR controller.
• APU PLL (APLL): Mainly used to generate clocks for the APU.
• RPU PLL (RPLL): Mainly used to generate clocks for the RPU.
• I/O PLL (IOPLL): Mainly used to generate clocks the peripheral I/Os.
• Video PLL (VPLL): Generates clocks for the video blocks used in the PS subsystem.

The PLLs are grouped based on the associated power domain.

• Low power domain PLL:

° I/O PLL (IOPLL): Provides clocks for all low speed peripherals and part of the
interconnect.

° RPU PLL (RPLL): Provides clocks for the Cortex-R5 CPU and part of the interconnect.
• Full-power domain PLL:

° APU PLL (APLL): Provides clocks for the Cortex-A53 CPU clock and part of the
interconnect.

° Video PLL (VPLL): Provides clocks for the video I/O.

° DDR PLL (DPLL): Provides clocks for the DDR controller and part of the interconnect.

° DDR PHY: Provides its own PHY PLL (PPLL) to provide clocks for the DDR PHY.

You can configure clocks using one of the following methods:

• In the Zynq block design, click the Clocking block.
• From the Page Navigator, click Clock Configuration.

Input clocks can be configured by selecting the Input Clocks tab, as shown in Figure 2-25.
Embedded Processor Hardware Design 43
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=43
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=43

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
Configure Output clocks by selecting the Output Clocks tab in the Clock Configuration
page.

X-Ref Target - Figure 2-25

Figure 2‐25: Clock Configuration Page - Input Clocks
Embedded Processor Hardware Design 44
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=44
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=44

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
The following figure shows the Clock Configuration Output Clock options.

DDR

The DDR subsystem connects to rest of the processor device through six AXI interfaces. One
of the data paths is connected to the real-time processing unit (RPU) and two to the cache
coherent interconnect (CCI-400). Others are multiplexed across the DisplayPort controller,
full-power domain DMA controller (FPD-DMA) and the programming logic (PL). Of the six
interfaces, five are 128-bits wide and the sixth interface (tied to the RPU) is 64-bits wide.

The DDR subsystem supports DDR3, DDR3L, LPDDR3, DDR4, and LPDDR4. It can accept read
and write requests from six application host ports that are connected to the controller using
AXI bus interfaces. These requests are queued internally and scheduled for access to
SDRAM.

X-Ref Target - Figure 2-26

Figure 2‐26: Clock Configuration Page - Output Clocks
Embedded Processor Hardware Design 45
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=45
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=45

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
The memory controller issues commands on the DDR PHY interface (DFI) interface to the
PHY module that reads and writes data from SDRAM.

You can configure DDR using one of two methods:

• From the Page Navigator, select the DDR Configuration.
• In the Zynq block design, click the DDR Controller block.

The following figure shows the DDR Configuration page.
X-Ref Target - Figure 2-27

Figure 2‐27: DDR Controller Configurations Page
Embedded Processor Hardware Design 46
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=46
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=46

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
PS - PL Configuration

The Zynq UltraScale+ MPSoC device integrates a feature-rich, quad-core Arm Cortex-A53
MPCore based processing system (PS) and the Xilinx programmable logic (PL) block in a
single device. Each Zynq UltraScale+ MPSoC contains the same PS while the PL and I/O
resources vary between the devices.

The following figure shows the PS-PL Configuration page.

The PS and PL can be tightly or loosely coupled using multiple interfaces and other signals.
This enables the designer to effectively integrate user-created hardware accelerators and
other functions in the PL logic that are accessible to the processors and can also access
memory resources in the PS. Using a Zynq UltraScale+ MPSoC processor in your design
allows end-product differentiation through customized applications in the PL.

The processors in the PS always boot first, allowing a software-centric approach for PL
configuration. The PL can be configured as part of the boot process or configured at some
point.

X-Ref Target - Figure 2-28

Figure 2‐28: PS-PL Configurations Page
Embedded Processor Hardware Design 47
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=47
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=47

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
Additionally, the PL can be completely reconfigured or used with dynamic partial
reconfiguration. Partial reconfiguration (PR) allows configuration of a portion of the
programmable logic. This enables optional design changes such as updating coefficients or
time-multiplex the PL resources by swapping in new algorithms. This latter capability is
analogous to the dynamic loading and unloading of software modules. The PL
configuration data is referred to as a bitstream. See the Vivado Design Suite User Guide:
Partial Reconfiguration (UG909) [Ref 17] for more information.

The PL can be on a separate power domain from the PS. This allows your design to save
power by completely shutting down the PL. In this mode, the PL consumes no static or
dynamic power, thus significantly reducing the power consumption of the device. The PL
must be reconfigured when coming out of this mode. You must account for the
re-configuration time of the PL in your particular application because this varies depending
on the size of the bitstream.

The PS communicates with the PL using general-purpose interconnect blocks. They support
a variety of interfaces between the PL and PS and for data transfer between the PL and PS;
interrupt, clock, and reset; while also connecting PS peripherals to the PL for routing to PL
I/Os. Additionally, the debug cross-trigger and trace interface supports integrated
hardware and software code debugging.

• AXI interfaces provide:

° High-performance AXI4 interface with FIFO support in the PS.
- Variable native PL data bus width support (32/64/128).
- Support for independent read and write clocks.
- Path through the system memory management unit (SMMU) for address

translation (i.e., the PL can work with virtual addresses).
- Three interfaces support I/O coherency through the cache-coherent

interconnect (CCI).

° Dedicated low-latency path between the low-power domain (LPD) and PL.

° Accelerator coherency port (ACP) interface for coherency and direct allocation into
the L2 cache of the APU.

° AXI coherency extensions (ACE) interface for full coherency. Usable as ACE-Lite for
I/O coherency.

• 32 bits for general-purpose input and 32 bits for output from the platform
management unit (PMU) for communication with the PL.

• 16 shared interrupts and four inter-processor interrupts.
• Dedicated interfaces from the gigabit Ethernet controller (GEM) and the DisplayPort

protocol.
Embedded Processor Hardware Design 48
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=48
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=48

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
Advanced Configuration

The Advanced Configuration page, shown in the following figure, is only available when the
Switch to Advanced Mode check box is enabled. It can be accessed by selected the
Advanced Configuration option in the Page Navigator.

Various advanced options can be enabled from this page.

PCIe Configuration

In the Advanced Configuration Mode, the PCIe Configuration option is available in the Page
Navigator. When the PCIe interface is enabled under I/O Configuration > High Speed >
PCIe, then advanced parameters for the PCIe interface can be entered in this page, shown
in the following figure.

X-Ref Target - Figure 2-29

Figure 2‐29: Advanced Configurations Page

X-Ref Target - Figure 2-30

Figure 2‐30: PCIe Configurations Page
Embedded Processor Hardware Design 49
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=49
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=49

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
Isolation Configuration

The Zynq UltraScale+ MPSoC processor can simultaneously run multiple processors. You
can physically and logically isolate these subsystems from one another, and at times allow
them to exchange/communicate information in a controlled manner. The Zynq UltraScale+
MPSoC device IP lets you capture these subsystems in several ways to suite your needs. You
can partition your application using AXI transaction based inhibitors as well as physically
isolated ones by not sharing any logic (such as utilizing the fabric to create truly isolated
systems at signal level to ensure there are no signal connections between two or more
subsystems).

The Isolation Configuration tab of PCW focuses on letting you define these subsystems
using AXI transaction inhibitors and Arm® Trustzone infrastructure. For the Zynq
UltraScale+ MPSoC processor, these AXI transaction inhibitors take the form of the Xilinx
Memory Protection Unit (XMPU) and the Xilinx Peripheral Protection Unit (XPPU) to block
transactions between AXI Masters and Slaves. These two physical blocks are interspersed
throughout the Zynq UltraScale+ MPSoC processor to allow you finer control of your access
policy needs between subsystems.

Figure 2-31 shows the Isolation Configuration page.
Embedded Processor Hardware Design 50
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=50
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=50

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
Validation IP
The Zynq UltraScale+ MPSoC Verification Intellectual Property (VIP) supports the functional
simulation of Zynq UltraScale+ MPSoC based applications. It is targeted to enable the
functional verification of Programmable Logic (PL) by mimicking the Processor System
(PS)-PL interfaces and OCM/DDR memories of PS logic. This VIP is delivered as a package of
System Verilog modules.

VIP operation is controlled by using a sequence of System Verilog tasks contained in a
System Verilog-syntax file. The following is a brief list of features. See Zynq UltraScale+
MPSoC Verification IP (DS941) [Ref 2] for more detail.

Features

• Pin compatible and Verilog-based simulation model.
• Supports all AXI interfaces.

X-Ref Target - Figure 2-31

Figure 2‐31: Isolation Configurations Page
Embedded Processor Hardware Design 51
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=51
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=51

Chapter 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
• AXI 4.0 compliant.
• 32, 64, and 128-bit Data-width for AXI_HP, 128-bit for AXI_ACP.
• Sparse memory model (for DDR) and a RAM model (for OCM).
• System Verilog task-based API.
• Delivered in the Vivado Design Suite.
• Blocking and non-blocking interrupt support.
• ID width support as per the Zynq UltraScale+ MPSoC specification.
• Support for all Zynq UltraScale+ MPSoC supported burst lengths and burst sizes.
• Support for FIXED, INCR and WRAP transaction types. Protocol checking provided by

the AXI VIP models.
• Read/Write request capabilities.

Finishing the Design
Review the following topics in Chapter 1, Introduction, for information related to
completing your design:

• Completing Connections Using Designer Assistance
• Making Manual Connections in a Design
• Manually Creating and Connecting to I/O Ports
• Enhanced Designer Assistance
• Platform Board Flow in IP Integrator
• Memory-Mapping in the Address Editor
• Running Design Rule Checks
• Integrating a Block Design in the Top-Level Design
Embedded Processor Hardware Design 52
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=52
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=52

Chapter 3

Using a Zynq-7000 Processor in an
Embedded Design

Introduction
This chapter describes how to use the Xilinx® Vivado® Design Suite flow for using the
Zynq®-7000 SoC device.

The examples target the Xilinx ZC702 Rev 1.0 evaluation board and the tool versions in the
2019.x Vivado Design Suite release.

IMPORTANT: The Vivado IP integrator is the replacement for Xilinx Platform Studio (XPS) for
embedded processor designs, including designs targeting Zynq devices and MicroBlaze™ processors.
XPS only supports designs targeting MicroBlaze processors. Both IP integrator and XPS are available
from the Vivado integrated design environment (IDE).

Designing with Zynq-7000 Processors
The Vivado IDE uses the IP integrator tool for embedded development. The IP integrator is
a GUI-based interface that lets you stitch together complex IP subsystems.

A variety of IP are available in the Vivado IDE IP catalog to accommodate complex designs.
You can also add custom IP to the IP catalog. See the Vivado Design Suite User Guide:
Designing IP Subsystems Using IP Integrator (UG994) [Ref 23] for more information.

Additionally, you can package IP using the Vivado IP packager tool. See Vivado Design Suite
User Guide: Creating and Packaging Custom IP (UG1118) [Ref 27].
Embedded Processor Hardware Design 53
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=53
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=53

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
Creating an IP Integrator Design with the Zynq-7000 Processor

To create an IP integrator design with the Zynq-7000 processor, do the following steps:

1. Click the IP integrator Create Block Design option to open the Create Block Design
dialog box, where you can enter the Design Name, as shown in the following figure.

2. Use this dialog box for the additional entries:

° Create the Block Design as a part of a project, or in a different location that you can
specify in the Directory field.

° Specify the source type by setting the field Specify source set from the pull-down
menu.

The Block Design window opens, as shown in the following figure.

3. In the empty block design canvas, you are prompted to Add IP from the IP catalog.

X-Ref Target - Figure 3-1

Figure 3‐1: Create Block Design Dialog Box

X-Ref Target - Figure 3-2

Figure 3‐2: Block Design Window
Embedded Processor Hardware Design 54
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=54
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=54

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
You can also right-click in the canvas and select Add IP, as shown below.

4. Using the Search box opened, search for and select the ZYNQ7 Processing System,
shown in the following figure.

When you select the Zynq IP, the Vivado IP integrator adds the IP to the design, and a
graphical representation of the processing system displays, as shown in the following
figure.

X-Ref Target - Figure 3-3

Figure 3‐3: Adding IP in the Block Design Canvas

X-Ref Target - Figure 3-4

Figure 3‐4: Search for Zynq in the IP Catalog

X-Ref Target - Figure 3-5

Figure 3‐5: Graphical Display of Default ZYNQ7 Processing System
Embedded Processor Hardware Design 55
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=55
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=55

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
The corresponding Tcl command is create_bd_cell; the syntax is, as follows:

create_bd_cell -type ip -vlnv xilinx.com:ip:processing_system7:5.5
processing_system7_0

5. Double-click the processing system graphic to invoke the Re-customize IP process,
which displays the Re-customize IP for the ZYNQ7 Processing System dialog box as
shown in the following figure.

6. Review the contents of the block design.
7. The green colored blocks in the ZYNQ7 processing system (PS) are configurable items.

You can click a green block to open the coordinating configuration options.
Alternatively, you can select the options from the Page Navigator on the left, as shown
in Figure 3-6.

Note the four buttons at the top of the dialog box shown in Figure 3-9:

° Documentation: Opens the documentation page of the Xilinx website, where you
can find documentation pertaining to Zynq.

° Presets: Lets you view information about the available preset options. You can save
the current configuration of PS7 to a file or apply a pre-existing configuration to
configure the current instance of the processors.

X-Ref Target - Figure 3-6

Figure 3‐6: ZYNQ7 Processing System Configuration Dialog Box
Embedded Processor Hardware Design 56
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug835-vivado-tcl-commands.pdf;a=xcreate_bd_cell
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=56
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=56

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
- Presets can also be applied to a target board. The available options are Default,
ZC702, ZC706, and Zedboard as seen in the following figure.

• IP Location: Lets you create IP either locally to the project or at a remote location.

• Import XPS Settings: If you have an XML file describing the configuration of a Zynq
processor from a XPS-based project, you can use this button to import that settings file
to configure the Zynq processor.

Overview of the Zynq-7000 Block Design and
Configuration Window
The Zynq-7000 SoC Technical Reference Manual (UG585) [Ref 6] provides details on the
default options available in the Page Navigator. The following subsections describe in brief
the Page Navigator selection options.

Processing System (PS)-Programmable Logic (PL) Configuration
Options

The PS-PL Configuration option tree displays with the collapsed options as shown in
Figure 3-9.

X-Ref Target - Figure 3-7

Figure 3‐7: Preset Options

X-Ref Target - Figure 3-8

Figure 3‐8: Specify IP Location
Embedded Processor Hardware Design 57
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=57
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=57

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
General Options

When you expand General Options, the selections, shown in Figure 3-10, are available.

X-Ref Target - Figure 3-9

Figure 3‐9: PL-PS Configuration Pane
Embedded Processor Hardware Design 58
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=58
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=58

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
X-Ref Target - Figure 3-10

Figure 3‐10: General Options (First Tier)
Embedded Processor Hardware Design 59
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=59
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=59

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
MIO and EMIO Configuration

From the Page Navigator, you can view and configure I/O pins by either clicking the
Peripheral I/O Pins option or MIO Configuration option.

The Zynq-7000 device PS has over 20 peripherals available. You can route these peripherals
directly to the dedicated Multiplexed I/Os (MIO) on the device, or through the extended
multiplexed I/Os (EMIOs) routing to the fabric.

The configuration interface also lets you select I/O standards and slew settings for the MIO.
When you enable a peripheral, a check mark appears next to the I/O peripheral block. The
block design depicts the status of enabled and disabled peripherals.

X-Ref Target - Figure 3-11

Figure 3‐11: Configuring Peripheral I/O Pins Using Peripheral I/O Pins Menu
Embedded Processor Hardware Design 60
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=60
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=60

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
From the MIO Configuration option, you can do the same as shown in the following figure.

Chapter 2, “Signals, Interfaces, and Pins” of the Zynq-7000 SoC Technical Reference Manual
(UG585) [Ref 6] describes the MIOs and EMIOs for the 7z010 CLG225 device.

Pin Limitations

The 32 MIO pins available in the 7z010 CLG225 device restrict the functionality of the PS as
follows:

° Either one USB or one Ethernet controller is available using MIO.

° Cannot boot from SDIO.

° No NOR/SRAM interfacing.

° The width of NAND flash is limited to 8 bits.

Bank Settings

After you select peripherals, the individual I/O signals for the peripheral appear in the
respective MIO locations. Use this section primarily for selecting I/O standards for the
various peripherals. The PS MIO I/O buffers split into two voltage domains. Within each
domain, each MIO is independently programmable.

X-Ref Target - Figure 3-12

Figure 3‐12: Configuring Peripheral I/O Pins Using MIO Configuration Menu
Embedded Processor Hardware Design 61
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=61
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=61

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
There are two I/O voltage banks:

° Bank 0 consists of pins 0:15

° Bank 1 consists of pins 16:53

Each MIO pin is individually programmed for voltage signaling:

° 1.8 and 2.5/3.3 volts

° CMOS single-ended or HSTL differential receiver mode

IMPORTANT: The entire bank must have the same voltage, but the pins can have different I/O
standards.

When you configure MIOs in the MIO Configuration dialog box on the Zynq tab, you can
view a read-only image of the peripheral and respective MIO selections. The left side of the
window lists the available peripherals. A check mark on the peripheral indicates that a
peripheral is selected.

Flash Memory Interfaces

Select one of the following in the configuration wizard:

• Quad-SPI Flash
• SRAM/NOR Flash
• NAND Flash

Quad-SPI Flash

The following figure shows the available options for Quad SPI Flash.
X-Ref Target - Figure 3-13

Figure 3‐13: Quad SPI Flash Options
Embedded Processor Hardware Design 62
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=62
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=62

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
Key features of the linear Quad-SPI Flash controller are:

° Single or dual 1x and 2x read support

° 32-bit APB 3.0 interface for I/O mode that allows full device operations including
program, read, and configuration

° 32-bit AXI linear address mapping interface for read operations

° Single chip select line support

° Write protection signal support

° Four-bit bidirectional I/O signals

° Read speeds of x1, x2, and x4

° Write speeds of x1 and x4

° 100 MHz maximum Quad-SPI clock at master mode

° 252-byte entry FIFO depth to improve Quad-SPI read efficiency

° Support for Quad-SPI device up to 128 Mb density

° Support for dual Quad-SPI with two Quad-SPI devices in parallel

Additionally, the linear address mapping mode features include:

° Regular read-only memory access through the AXI interface

° Up to two SPI flash memories

° Up to 16 MB addressing space for one memory and 32 MB for two memories

° AXI read acceptance capability of four

° Both AXI incrementing and wrapping-address burst read

° Automatically converts normal memory read operation to SPI protocol, and vice
versa

° Serial, Dual, and Quad-SPI modes
Embedded Processor Hardware Design 63
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=63
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=63

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
SRAM/NOR Flash

The following figure shows the options for SRAM/NOR flash devices.

The SRAM/NOR controller has the following features:

° 8-bit data bus width

° One chip select with up to 26 address signals (64 MB)

° Two chip selects with up to 25 address signals (32 MB + 32 MB)

° 16-word read and 16-word write data FIFOs

° 8-word command FIFO

° Programmable I/O cycle timing on a per-chip select basis

° Asynchronous memory operating mode

NAND Flash

Figure 3-15 shows the NAND flash options.

X-Ref Target - Figure 3-14

Figure 3‐14: SRAM/NOR Flash Configuration Options
Embedded Processor Hardware Design 64
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=64
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=64

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
The NAND controller has the following features:

° 8/16-bit I/O width with one chip select signal

° ONFI specification 1.0

° 16-word read and 16-word write data FIFOs

° 8-word command FIFO

° Programmable I/O cycle timing

° ECC assist

° Asynchronous memory operating mode

Clock Configuration

X-Ref Target - Figure 3-15

Figure 3‐15: NAND Controller Options

X-Ref Target - Figure 3-16

Figure 3‐16: Clock Configuration
Embedded Processor Hardware Design 65
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=65
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=65

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
You can configure clocks in the Zynq-7000 device using one of the following methods:

° From the Page Navigator, click Clock Configuration.

° In the Zynq block design, click the Clock Configuration block.

The following figure shows a collapsed view of the Clock Configuration page.
X-Ref Target - Figure 3-17

Figure 3‐17: Clock Configuration Page (Collapsed)
Embedded Processor Hardware Design 66
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=66
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=66

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
The following figure shows an expanded view of the Clock Configuration page.

The Zynq-7000 SoC Technical Reference Manual (UG585) [Ref 6] describes the clocking of
the PS in detail. The Zynq clocking dialog box lets you set the peripheral clocks. The
peripherals on the PS typically allow clock source selection from internal PLLs or from an
external clock source. Most of the clocks can select the PLL to generate the clock.

Because the same PLL generates multiple frequencies, it might not be possible to get the
exact frequency entered in the Requested Frequency (MHz) column. The achievable
frequency is in the Actual Frequency (MHz) column.

Note: The frequency for a specific peripheral depends on many factors, such as input frequency,
frequency for other peripherals driven from the same PLL, and restrictions from the architecture.
Details of the M & D values chosen by the tool are available in the log file.

DDR Configuration

To configure DDR, in the Zynq-7000 block design, click the DDR2/3, LPDDR2 Controller
block.

X-Ref Target - Figure 3-18

Figure 3‐18: Processor and Memory Clock Configurations Page (Expanded)

X-Ref Target - Figure 3-19

Figure 3‐19: DDR Controller
Embedded Processor Hardware Design 67
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=67
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=67

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
The DDR memory controller supports DDR2, DDR3, DDR3L, and LPDDR2 devices and
consists of three major blocks: an AXI memory port interface - DDR interface (DDRI), a core
controller with transaction scheduler (DDRC), and a controller with digital PHY (DDRP).

The DDRI block interfaces with four 64-bit synchronous AXI interfaces to serve multiple AXI
masters simultaneously. Each AXI interface has a dedicated transaction FIFO. The DDRC
contains two 32-entry content addressable memories (CAMs) to perform DDR data service
scheduling to maximize DDR memory efficiency. It also contains a “fly-by” channel for a
low-latency channel to allow access to DDR memory without going through the CAM.

The PHY processes read and write requests from the controller and translates them into
specific signals within the timing constraints of the target DDR memory. The PHY uses
signals from the controller to produce internal signals that connect to the pins using the
digital PHYs. The DDR pins connect directly to the DDR device(s) using the PCB signal
traces.

The system accesses the DDR using the DDRI through its four 64-bit AXI memory ports:

° One AXI port is dedicated to the L2-cache for the CPUs and ACP

° Two ports are dedicated to the AXI_HP interfaces

° The other masters on the AXI interconnect share the fourth port

The DDRI arbitrates the requests from the eight ports (four reads and four writes). The
arbiter selects a request and passes it to the DDR controller and transaction scheduler
(DDRC).

The arbitration is based on a combination of how long the request has been waiting, the
urgency of the request, and if the request is within the same page as the previous request.

The DDRC receives requests from the DDRI through a single interface for both read and
write flows. Read requests include a tag field that the DDR returns with the data. The DDR
controller PHY (DDRP) drives the DDR transactions.

Note: 8-bit interfaces are not supported; however, 8-bit parts can be used to create 16/32-bit
interfaces.

Figure 3-20 shows the DDR controller Configurations page.
Embedded Processor Hardware Design 68
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=68
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=68

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
GIC - Interrupt Controller

You can configure the Generic Interrupt Controller (GIC) in one of two methods:

• In the Page Navigator, click Interrupts.
• In the Zynq block design, click the GIC block, shown in the following figure.

X-Ref Target - Figure 3-20

Figure 3‐20: DDR Controller Configurations Page

X-Ref Target - Figure 3-21

Figure 3‐21: Generic Interrupt Controller
Embedded Processor Hardware Design 69
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=69
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=69

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
The following figure shows the Interrupt Port Configuration page.

GIC is a centralized resource for managing interrupts sent to the CPUs from the PS and PL.
The controller enables, disables, masks, and prioritizes the interrupt sources and sends
them to the selected CPU (or CPUs) in a programmed manner as the CPU interface accepts
the next interrupt. In addition, the controller supports security extension for implementing
a security-aware system.

• The controller is based on the Arm® Generic Interrupt Controller architecture version
1.0 (GIC v1), non-vectored.

• The private bus on the CPU accesses the registers for fast read/write response by
avoiding temporary blockage or other bottlenecks in the Interconnect.

• The interrupt distributor centralizes all interrupt sources before dispatching the one
with the highest priority to the individual CPUs.

The GIC ensures that, when you target an interrupt to several CPUs, only one CPU takes the
interrupt at a time. All interrupt sources contain a unique interrupt ID number. All interrupt
sources have their own configurable priority and list of targeted CPUs.

X-Ref Target - Figure 3-22

Figure 3‐22: GIC Interrupts
Embedded Processor Hardware Design 70
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=70
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=70

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
Both the Zynq-7000 SoC Technical Reference Manual (UG585) [Ref 6] and the Zynq-7000 SoC
Software Developers Guide (UG821) [Ref 9] contain information regarding the logic blocks in
the Zynq-7000 device.

Interconnect between PS and PL

AXI_HP Interfaces

The four AXI_HP interfaces provide PL bus masters with high-bandwidth data paths to the
DDR and OCM memories. Each interface includes two FIFO buffers for read and write traffic.
The PL to the memory Interconnect routes the high-speed AXI_HP ports either to two DDR
memory ports or to the OCM. The AXI_HP interfaces are also referenced as AXI FIFO
interfaces (AFI), to emphasize their buffering capabilities.

IMPORTANT: You must enable the PL level shifters using LVL_SHFTR_EN before PL logic communication
can occur.

Enable these interfaces by selecting PS-PL Configuration from the Page Navigator and
expanding the HP Slave AXI Interface option as shown in Figure 3-24.

X-Ref Target - Figure 3-23

Figure 3‐23: AXI_HP Interfaces
Embedded Processor Hardware Design 71
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=71
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=71

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
The interfaces provide a high-throughput data path between PL masters and PS memories
including the DDR and on-chip RAM. The main features include:

• 32- or 64-bit data wide master interfaces (independently programmed per port)
• Efficient dynamic upsizing to 64 bits for aligned transfers in 32-bit interface mode,

controllable using AxCACHE
• Automatic expansion to 64-bits for unaligned 32-bit transfers in 32-bit interface mode
• Programmable release threshold of write commands
• Asynchronous clock frequency domain crossing for all AXI interfaces between the PL

and PS
• Smoothing out of “long-latency” transfers using 1 KB (128 by 64 bit) data FIFOs for

both reads and writes
• QoS signaling available from PL ports
• Command and Data FIFO fill-level counts available to the PL
• Standard AXI 3.0 interfaces support
• Programmable command issuance to the interconnect, separately for read and write

commands

X-Ref Target - Figure 3-24

Figure 3‐24: Enabling AXI HP Interfaces
Embedded Processor Hardware Design 72
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=72
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=72

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
• Large slave interface read acceptance capability in the range of 14 to 70 commands
(burst length dependent)

• Large slave interface write acceptance capability in the range of 8 to 32 commands
(burst length dependent)

AXI ACP Interface

The Accelerator Coherency Port (ACP) provides low-latency access to programmable logic
masters, with optional coherency and L1 and L2 cache.

From a system perspective, the ACP interface has similar connectivity as the APU CPUs. Due
to this close connectivity, the ACP directly competes for resource access outside of the APU
block.

IMPORTANT: You must enable the PL level shifters using LVL_SHFTR_EN before PL logic communication
can occur.

In the ZYNQ7 block design, click the 64b AXI ACP Slave Ports block to configure the
AXI_ACP.

Alternatively, select the PS-PL Configuration and expand ACP Slave AXI Interface.

The following figure shows the ACP AXI Slave Configuration page.

X-Ref Target - Figure 3-25

Figure 3‐25: AXI ACP Configuration

X-Ref Target - Figure 3-26

Figure 3‐26: ACP Slave AXI Interface Page
Embedded Processor Hardware Design 73
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=73
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=73

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
AXI GP Interfaces

AXI_GP features include:

° Standard AXI protocol

° Data bus width: 32

° Master port ID width: 12

° Master port issuing capability: 8 reads, 8 writes

° Slave port ID width: 6

° Slave port acceptance capability: 8 reads, 8 writes

These interfaces are connected directly to the ports of the master interconnect and the
slave interconnect without additional FIFO buffering, unlike the AXI_HP interfaces, which
have elaborate FIFO buffering to increase performance and throughput. Therefore, the
performance is constrained by the ports of the master interconnect and the slave
interconnect. These interfaces are for general-purpose use only; they are not intended to
achieve high performance.

IMPORTANT: You must enable the PL level shifters using LVL_SHFTR_EN before PL logic communication
can occur.

In the ZYNQ7 block design, click the following block to configure the AXI_GP interface.

Alternatively, in the Page Navigator, select the PS-PL Configuration and expand the GP
Master AXI Interface and GP Slave AXI Interface options.

Figure 3-28 shows the GP AXI Master and Slave Configuration page.

X-Ref Target - Figure 3-27

Figure 3‐27: AXI GP Configuration
Embedded Processor Hardware Design 74
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=74
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=74

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
PS-PL Cross Trigger Interface

An embedded cross trigger (ECT) is the cross-triggering mechanism. Through ECT, a
CoreSight™ technology component can interact with other components by sending and
receiving triggers. ECT is implemented with two components:

° Cross trigger matrix (CTM)

° Cross trigger interface (CTI)

One or more CTMs form an event broadcasting network with multiple channels. A CTI
listens to one or more channels for an event, maps a received event into a trigger, and sends
the trigger to one or more CoreSight components connected to the CTI. A CTI also
combines and maps the triggers from the connected CoreSight technology components
and broadcasts them as events on one or more channels. Both CTM and CTI are CoreSight
technology components of the control and access class.

ECT is configured with:

° Four broadcast channels

° Four CTIs
Note: Power-down is not supported.

You can enable cross-triggering by selecting the PS-PL Cross Trigger Interface in the ZYNQ7
Processing System configuration dialog box, shown in the following figure.

X-Ref Target - Figure 3-28

Figure 3‐28: GP Master and Slave AXI Interfaces
Embedded Processor Hardware Design 75
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=75
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=75

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
Using the Programmable Logic (PL)
The PL provides a rich architecture of user-configurable capabilities, as follows:

• Configurable logic blocks (CLB)

° 6-input look-up tables (LUTs) with memory capability within the LUT

° Register and shift register functionality

° Adders that can be cascaded
• 36 Kb block RAM
• Dual ports, up to 72 bits wide
• Configurable as dual 18 Kb
• Programmable FIFO logic
• Built-in error correction circuitry
• Digital signal processing - DSP48E1 Slice

° 25 × 18 two's complement multiplier/accumulator high-resolution (48 bit) signal
processor

° Power-saving 25-bit pre-adder to optimize symmetrical filter applications

° Advanced features: optional pipelining, optional ALU, and dedicated buses for
cascading

X-Ref Target - Figure 3-29

Figure 3‐29: PS-PL Cross Trigger Interface
Embedded Processor Hardware Design 76
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=76
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=76

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
• Clock management:

° UHigh-speed buffers and routing for low-skew clock distribution

° Frequency synthesis and phase shifting

° Low-jitter clock generation and jitter filtering
• Configurable I/Os

° High-performance SelectIO™ technology

° High-frequency decoupling capacitors within the package for enhanced signal
integrity

° Digitally controlled impedance that can be tri-state for lowest power, high-speed
I/O operation

° High range (HR) I/Os support 1.2 V to 3.3 V

° High performance (HP) I/Os support 1.2 V to 1.8 V (7z030, 7z045, and 7z100
devices)

• Low-power gigabit transceivers

° (7z030, 7z045, and 7z100 devices)

° High-performance transceivers capable of up to 12.5 Gb/s (GTX)

° Low-power mode optimized for chip-to-chip interfaces

° Advanced transmit pre- and post-emphasis, and receiver linear (CTLE) and decision
feedback equalization (DFE), including adaptive equalization for additional margin

• Analog-to-digital converter (XADC)

° Dual 12-bit 1 MSPS analog-to-digital converters (ADCs)

° Up to 17 flexible and user-configurable analog inputs

° On-chip or external reference option

° On-chip temperature (±4°C max error) and power supply (±1% max error) sensors

° Continuous JTAG access to ADC measurements
• Integrated interface blocks for PCI Express designs (7z030, 7z045, and 7z100 devices)

° Compatible to the PCI Express™ base specification 2.1 with Endpoint and Root Port
capability

° Supports Gen1 (2.5 Gb/s) and Gen2 (5.0 Gb/s) speeds
• Advanced configuration options, advanced error reporting (AER), end-to-end CRC

(ECRC)
Embedded Processor Hardware Design 77
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=77
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=77

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
Creating Custom Logic

The Vivado® IP packager lets you and third-party IP developers use the Vivado IDE to
prepare an intellectual property (IP) design for use in the Vivado IP catalog. The IP user can
then instantiate this third-party IP into a design in the Vivado Design Suite.

When IP developers use the Vivado Design Suite IP packaging flow, the IP user has a
consistent experience whether using Xilinx IP, third-party IP, or customer-developed IP
within the Vivado Design Suite.

IP developers can use the IP packager feature to package IP files and associated data into
a ZIP file. The IP user receives this generated ZIP file and installs the IP into the Vivado
Design Suite IP catalog. The IP user then customizes the IP through parameter selections
and generates an instance of the IP.

See the Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator
(UG994) [Ref 23] and the Vivado Design Suite Tutorial: Designing IP Subsystems Using IP
Integrator (UG995) [Ref 24] for more information.

RECOMMENDED: To verify the proper packaging of the IP before handing it off to the IP user, Xilinx®
recommends that the IP developer run each IP module completely through the IP user flow to validate
that the IP is ready for use.

Zynq-7000 Processing System Verification

The Zynq®-7000 SoC Verification IP (VIP) is developed for customers designing
Zynq-based applications. It enables the functional verification of PL logic by mimicking the
PS-PL interfaces in PS logic. This VIP is delivered as a package of encrypted Verilog
modules. VIP operation is controlled by using a sequence of Verilog tasks contained in a
Verilog-syntax file. For more information on the Zynq VIP, see the Zynq-7000 SoC
Verification IP Data Sheet (DS940) [Ref 1].

Features

• Pin compatible and Verilog-based simulation model
• Supports all AXI interfaces

° AXI 3.0 compliant
• 32/64–bit data-width for AXI_HP, 32-bit for AXI_GP and 64-bit for AXI_ACP
• Sparse memory model (for DDR) and a RAM model (for OCM)
• SystemVerilog task-based API
• Delivered in Vivado Design Suite
• Blocking and non-blocking interrupt support
Embedded Processor Hardware Design 78
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=78
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=78

Chapter 3: Using a Zynq-7000 Processor in an Embedded Design
• ID width support as per the Zynq-7000 specification
• Support for FIXED, INCR, and WRAP transaction types
• Support for all Zynq-7000 supported burst lengths and burst sizes
• Protocol checking, provided by the AXI VIP models
• Read/Write request capabilities
• System address decode for OCM/DDR transactions

Additional Features

• System address decode for register map read transactions (only default value of the
registers can be read)

• Support for static remap of AXI_GP0 and AXI_GP1
• Configurable latency for read/write responses
• First-level arbitration scheme based on the priority indicated by the AXI QoS signals
• Datapath connectivity between any AXI master in PL and the PS memories and register

map
• Parameters to enable and configure AXI master and slave ports
• APIs to set the traffic profile and latencies for different AXI master and slave ports
• Support for FPGA logic clock generation
• Soft reset control for the PL
• API support to pre-load the memories, read/wait for the interrupts from PL, and checks

for certain data patterns to be updated at certain memory location
• All unused interface signals that output to the PL are tied to a valid value
• Semantic checks on all other unused interface signals
Embedded Processor Hardware Design 79
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=79
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=79

Chapter 4

Using a MicroBlaze Processor in an
Embedded Design

Introduction to MicroBlaze Processor Design
The Vivado® IDE IP integrator is a powerful tool that lets you stitch together a
processor-based system.

The MicroBlaze™ embedded processor is a reduced instruction set computer (RISC) core,
optimized for implementation in Xilinx® Field Programmable Gate Arrays (FPGAs).

The following figure shows a functional block design of the MicroBlaze core.
X-Ref Target - Figure 4-1

Figure 4‐1: Block Design of MicroBlaze Core

Bus
IF

I-C
ache

Instruction
Buffer

Instruction
Buffer

Branch
Target Cache

Program
Counter

M_AXI_IC Memory Management Unit (MMU)

ITLB DTLBUTLB

Bus
IF

D
-C

ache

M_AXI_DC

M_AXI_DP

DLMB

M0_AXIS ..
M15_AXIS

S0_AXIS ..
S15_AXIS

Special
Purpose
Registers

Instruction
Decode

Register File
32 registers

ALU

Shift

Barrel Shift

Multiplier

Divider

FPU

Instruction-side
Bus interface

Data-side
Bus interface

Optional MicroBlaze feature

M_AXI_IP

ILMB

M_ACE_DCM_ACE_IC

X19738-100318
Embedded Processor Hardware Design 80
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=80
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=80

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
The MicroBlaze processor is highly configurable: you can select a specific set of features
required by your design. The fixed feature set of the processor includes:

• Thirty-two 32-bit or 64-bit general purpose registers
• 32-bit instruction word with three operands and two addressing modes
• 32-bit address bus, extensible to 64-bits
• Single issue pipeline

In addition to these fixed features, the MicroBlaze processor has parameterized values that
allow selective enabling of additional functionality.

RECOMMENDED: Older (deprecated) versions of MicroBlaze support a subset of the optional features
described in this manual. Only the latest (preferred) version of MicroBlaze (v11.0) supports all options.
Xilinx recommends that new designs use the latest preferred version of the MicroBlaze processor.

See the MicroBlaze Processor Reference Guide (UG984) [Ref 22] for more information.

MicroBlaze can be implemented either as a 32-bit processor or a 64-bit processor,
depending on user requirements. In general, Xilinx recommends that you select the 32-bit
processor implementation unless specific requirements cannot be met. The 64-bit
processor extends general-purpose registers to 64 bits, provides additional instructions to
handle 64-bit data, and can transparently address instructions and data using up to a 64-bit
address. In addition, the floating point unit (FPU) is extended to support double precision.

Another useful document reference is the MicroBlaze Triple Modular Redundancy (TMR)
Subsystem (PG268) [Ref 3], which provides soft error detection, correction and recovery for
Xilinx devices. The guide describes the IP cores that are part of the solution, and explains
typical use cases.

Creating a MicroBlaze Processor Design
Designing with a MicroBlaze processor in the Xilinx Vivado IP integrator is different than it
was in the legacy ISE® Design Suite and the Embedded Development Kit (EDK).

The Vivado IDE uses the IP integrator tool for embedded development. The IP integrator is
a GUI-based interface that lets you stitch together complex IP subsystems.

A variety of IP are available in the Vivado IDE IP catalog to meet the needs of complex
designs. You can also add custom IP to the IP catalog.
Embedded Processor Hardware Design 81
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=81
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=81

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Designing with the MicroBlaze Processor

1. In the Flow navigator panel, under IP integrator, click the Create Block Design button to
open the Create Block Design dialog box.

2. Type the Design Name, as shown in the following figure.

The Block Design window opens, as shown in the following figure.

3. Within the empty design, use either the Add IP button on the design canvas, or
right-click in the canvas, and select Add IP.

X-Ref Target - Figure 4-2

Figure 4‐2: Create Block Design Dialog Box

X-Ref Target - Figure 4-3

Figure 4‐3: The Block Design Canvas
Embedded Processor Hardware Design 82
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=82
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=82

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
A Search box opens to let you search for and select the MicroBlaze processor, as shown
in the following figure.

When you select the MicroBlaze IP, the Vivado IP integrator adds the IP to the design,
and a graphical representation of the processing system displays, as shown in the
following figure.

Note: The Tcl command is as follows:
create_bd_cell -type ip -vlnv xilinx.com:ip:microblaze:11.0 microblaze_0

4. Double-click the MicroBlaze IP in the canvas to invoke the Re-customize IP process,
which displays the Re-customize IP configuration page for the MicroBlaze processor,
shown in Figure 4-6.

X-Ref Target - Figure 4-4

Figure 4‐4: Search the IP Catalog for MicroBlaze

X-Ref Target - Figure 4-5

Figure 4‐5: MicroBlaze Processor in Block Design Canvas
Embedded Processor Hardware Design 83
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=83
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=83

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Using the MicroBlaze Configuration Window
The following figure shows the Welcome page of the MicroBlaze configuration wizard.

The MicroBlaze Configuration wizard provides the following:

• Predefined configuration templates for one-click configuration.
• Estimates of MicroBlaze relative frequency, area, and performance, giving immediate

feedback based on selected configuration options.
• Page by page guidance through the configuration process.
• Tool tips for all configuration options to understand the effect of each option.
• An Advanced button that provides a tabbed interface for direct access to all of the

configuration options, see MicroBlaze Configuration Wizard: Advanced Mode.

X-Ref Target - Figure 4-6

Figure 4‐6: MicroBlaze Configuration Wizard
Embedded Processor Hardware Design 84
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=84
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=84

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
IMPORTANT: Interrupt & Reset and PVR options are only accessible through the Advanced mode.

The MicroBlaze Configuration wizard includes the following pages which are shown
depending on the options selected on the Welcome page:

• Welcome Page: Shows the Predefined Configurations and General Settings. See the
MicroBlaze Configuration Wizard: Welcome Page for more information.

• General: Shows the selection of execution units and optimization settings (this General
information is persistent). See the MicroBlaze Configuration Wizard: General Page for
more information.

• Exceptions: Shows the Exceptions page when you select Enable Selections that option
on the Welcome Page. See the MicroBlaze Configuration Wizard: MMU Page for more
information.

• Cache: Cache settings page is shown when you select Use Instructions and Data
Caches. See the MicroBlaze Configuration Wizard: Cache Page for more information.

• MMU: Shows the MMU settings page when you select Use Memory Management on
the Welcome Page. See the MicroBlaze Configuration Wizard: MMU Page for more
information.

• Debug: Shows the number of breakpoints and watchpoints when you select Enable
MicroBlaze Debug Module Interface. See the MicroBlaze Configuration Wizard:
Debug Page for more information.

• Buses: Shows the Bus settings, which are persistent, as the last page of the
configuration wizard. See the MicroBlaze Configuration Wizard: Buses Page for more
information.

The left portion of the dialog box shows the relative values of the frequency, area, and
performance for the current settings, BRAM, and DSP numbers:

• Frequency: Estimated frequency percentage relative to the maximum achievable
frequency with this architecture and speed grade, which gives an indication of the
relative frequency that can be achieved with the current settings.
Note: This is an estimate based on a set of predefined benchmarks, which can deviate up to 30%
from the actual value. Do not take this estimation as a guarantee that the system can reach a
corresponding frequency.

• Area: Estimated area percentage in LUTs relative to the maximum area using this
architecture, which gives an indication of the relative MicroBlaze area achievable with
the current settings.
Note: This is an estimate, which can deviate up to 5% from the actual value. Do not take this
estimation as a guarantee that the implemented area matches this value.

• Performance: Indicates the relative MicroBlaze processor performance achievable with
the current settings, relative to the maximum possible performance.
Embedded Processor Hardware Design 85
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=85
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=85

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Note: This is an estimate based on a set of benchmarks, and actual performance can vary
significantly depending on the user application.

• BRAMs: Total number of block RAMs used by the MicroBlaze processor. The instruction
and data caches, and the branch target cache use block RAMs, as well as the memory
management unit (MMU), which uses one block RAM in virtual or protected mode with
32-bit mode, and two with 64-bit mode.

• DSP48: Total number of DSP48 used by the MicroBlaze processor. The integer
multiplier, and the floating point unit (FPU) use this total value to implement float
multiplication.

MicroBlaze Configuration Wizard: Welcome Page

The simplest way to use the MicroBlaze™ Configuration wizard is to select one of the ten
predefined templates, each defining a complete MicroBlaze configuration. You can use a
predefined template as a starting point for a specific application, using the wizard to refine
the configuration, by adapting performance, frequency, or area.

When you modify an option, you received direct feedback that shows the estimated relative
change in performance, frequency, and area in the information display.

The three presets are:

• Microcontroller preset: Microcontroller preset suitable for microcontroller designs.
Area optimized, with no caches and debug enabled.

• Real-time preset: Real-time preset geared towards real-time control. Performance
optimized, small caches and debug enabled, most execution units.

• Application preset: Application preset design for high performance applications.
Performance optimized, large caches and debug enabled, and all execution units
including floating-point.

The other options are:

• Minimum Area: The smallest possible MicroBlaze core. No caches or debug.
• Maximum Performance: Maximum possible performance. Large caches and debug, as

well as all execution units.
• Maximum Frequency: Maximum achievable frequency. Small caches and no debug,

with few execution units.
• Linux with MMU: Settings suitable to get high performance when running Linux with

MMU. Memory Management enabled, large caches and debug, and all execution units.
• Low-end Linux with MMU: Settings corresponding to the MicroBlaze Embedded

Reference System. Provides suitable settings for Linux development on low-end
systems. Memory Management enabled, small caches and debug.
Embedded Processor Hardware Design 86
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=86
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=86

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
• Typical: Settings giving a reasonable compromise between performance, area, and
frequency. Suitable for standalone programs, and low-overhead kernels. Caches and
debug enabled.

• Frequency Optimized: Designed to provide all MicroBlaze features, including MMU,
while still achieving high frequency by utilizing the frequency optimized 8-stage
pipeline.

The following figure shows the Predefined Configurations in the Configuration wizard.

Select Processor Implementation

Select 32-bit or 64-bit processor implementation. The 64-bit processor extends all registers
to 64 bits, provides additional instructions to handle 64-bit data, and can address up to 4 EB
instructions and data using up to a 64-bit address. The extended addressing is selected on
the General tab.

X-Ref Target - Figure 4-7

Figure 4‐7: MicroBlaze Predefined Configuration Settings
Embedded Processor Hardware Design 87
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=87
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=87

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
The compiler automatically generates a 64-bit executable when 64-bit mode is selected.

General Settings

If a pre-defined template is not used, you can select the options from the pages, which are
available for fine-tuning the MicroBlaze processor, based on your design needs. As you
position the mouse over these different options, a tooltip informs you what the particular
option means. The following bullets detail these options.

• Select implementation optimization: When set to:

° PERFORMANCE: Implementation is selected to optimize computational
performance, using a five-stage pipeline.

° AREA: Implementation is selected to optimize area, using a three-stage pipeline
with lower instruction throughput.

° FREQUENCY: Implementation is selected to optimize MicroBlaze frequency, using
an eight-stage pipeline.

RECOMMENDED: It is recommended to select AREA optimization on architectures with limited
resources such as Artix 7 or Spartan 7 devices. Selecting FREQUENCY optimization is recommended
in order to reach system frequency targets, particularly with cache-based external memory, MMU,
and/or large LMB memory. However, if performance is critical, AREA or FREQUENCY optimization
should not be selected, because some instructions require additional clock cycles to execute.

Note: You cannot use the Memory Management Unit (MMU), Branch Target Cache, Instruction
Cache Streams, Instruction Cache Victims, Data Cache Victims, and AXI Coherency Extension
(ACE) with area optimization.

• Enable MicroBlaze Debug Module Interface: Enable debug to be able to download
and debug programs using Xilinx System Debugger (XSDB).

RECOMMENDED: Unless area resources are very critical, it is recommended that debugging be
always enabled.

• Use Instruction and Data Caches: You can use MicroBlaze with an optional instruction
cache for improved performance when executing code that resides outside the LMB
address range.

The instruction cache has the following features:

° Direct mapped (1-way associative)

° User selectable cacheable memory address range

° Configurable cache and tag size

° Caching over AXI4 interface (M_AXI_IC) or CacheLink (XCL) interface

° Option to use 4 or 8 word cache line
Embedded Processor Hardware Design 88
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=88
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=88

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
° Cache on and off controlled using a bit in the MSR

° Optional WIC instruction to invalidate instruction cache lines

° Optional stream buffers to improve performance by speculatively pre-fetching
instructions

° Optional victim cache to improve performance by saving evicted cache lines

° Optional parity protection; invalidates cache lines if Block RAM bit error is detected

° Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

Activating caches significantly improves performance when using external memory,
even if you must select small cache sizes to reduce resource usage.

• Enable Exceptions: Enables exceptions when using an operating system with exception
support, or when explicitly adding exception handlers in a standalone program.

• Use Memory Management: Enables Memory Management if planning to use an
operating system - such as Linux -with support for virtual memory of memory
protection.
Note: When you enable area optimized MicroBlaze or stack protection, the Memory
Management Unit is not available.

• Enable Discrete Ports: Enables discrete ports on the MicroBlaze instance, which is
useful for:

° Generating software breaks (Ext_BRK, Ext_NM_BRK)

° Managing processor sleep and wakeup (Sleep, Hibernate, Suspend, Wakeup,
Dbg_Wakeup)

° Handling debug events (Debug_Stop, MB_Halted)

° Signaling error when using fault tolerance (MB_Error)

° Pausing the processor (Pause, Pause_Ack, Dbg_Continue)

° Setting reset mode (Reset_Mode)
Embedded Processor Hardware Design 89
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=89
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=89

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
MicroBlaze Configuration Wizard: General Page

The following figure shows the General page of the MicroBlaze Configuration wizard.

Instructions

• Enable Barrel Shifter: Enables a hardware barrel shifter in MicroBlaze. This parameter
enables the instructions bsrl, bsra, bsll, bsrli, bsrai, bslli, bsifi, and bsefi.
With the 64-bit processor implementation the corresponding long instructions are also
enabled. Enabling the barrel shifter can dramatically improve the performance of an
application, but increases the size of the processor. The compiler uses the barrel shift
instructions automatically if this parameter is enabled.

• Enable Floating Point Unit: Enables a floating point unit (FPU) based on the IEEE-754
standard. Single-precision is available with the 32-bit processor implementation, and
double-precision is added with the 64-bit implementation. Using the FPU significantly
improves the floating point performance of the application and significantly increases
the size of MicroBlaze.

Setting this parameter to BASIC enables add, subtract, multiply, divide and
compare instructions. Setting it to EXTENDED also enables convert and
square-root instructions. The compiler automatically uses the FPU instructions
corresponding to setting of this parameter.

X-Ref Target - Figure 4-8

Figure 4‐8: General Page of the MicroBlaze Configuration Wizard
Embedded Processor Hardware Design 90
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=90
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=90

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
• Enable Integer Multiplier: Enables a hardware integer multiplier in MicroBlaze. This
parameter enables the instructions mul and muli when set to MUL32.

When set to MUL64, this enables the additional instructions: mulh, mulhu, and mulhsu
for 64-bit multiplication. This parameter can be set to NONE to free up DSP48
primitives in the device for other uses. Setting this parameter to NONE has a minor
effect on the area of the MicroBlaze processor. When this parameter is enabled, the
compiler uses the mul instructions automatically.

• Enable Integer Divider: Enables a hardware integer divider in MicroBlaze. This
parameter enables the instructions, idiv and idivu. Enabling this parameter can
improve the performance of an application that performs integer division, but increases
the size of the processor. When this parameter is enabled, the compiler uses the idiv
instructions automatically.

• Enable Additional Machine Status Register Instructions: Enables additional machine
status register (MSR) instructions for setting and clearing bits in the MSR. This
parameter enables the instructions msrset and msrclr. Enabling this parameter
improves the performance of changing bits in the MSR.

• Enable Pattern Comparator: Enables pattern compare instructions pcmpbf, pcmpeq,
and pcmpne.

The pattern compare bytes find (pcmpbf) instructions return the position of the first
byte that matches between two words and improves the performance of string and
pattern matching operations. The SDK libraries use the pcmpbf instructions
automatically when this parameter is enabled.

The pcmpeq and pcmpne instructions return 1 or 0 based on the equality of the two
words. These instructions improve the performance of setting flags and the compiler
uses them automatically. With the 64-bit processor implementation, the corresponding
long instructions are also enabled.

Selecting this option also enables count leading zeroes instruction, clz. The clz
instruction can improve performance of priority decoding, and normalization.

• Enable Reversed Load/Store and Swap Instructions: Enables reversed load/store and
swap instructions lbur, lhur, lwr, sbr, shr, swr, swapb, and swaph. With the 64-bit
processor implementation, the long reversed load/store instructions llr and slr are
also enabled. The reversed load/store instructions read or write data with opposite
endianness, and the swap instructions allow swapping bytes or half-words in registers.
These instructions are mainly useful to improve performance when dealing with
big-endian network access with a little-endian MicroBlaze.

• Enable Additional Stream Instructions: Provides additional functionality when using
AXI4-Stream links, including dynamic access instruction getd and putd that use
registers to select the interface.
Embedded Processor Hardware Design 91
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=91
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=91

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
The instructions are also extended with variants that provide:

° Atomic get, getd, put, and putd instructions

° Test-only get and getd instructions

° get and getd instructions that generate a stream exception if the control bit is not
set

IMPORTANT: The extended stream instructions must be enabled to use these additional instructions,
and at least one stream link must be selected. The stream exception must be enabled to use instructions
that generate stream exceptions.

• Select Extended Addressing: Set the memory addressing capability. With the 32-bit
processor implementation, this enables additional load/store instructions to be able to
access a larger address space than 4GB (32-bit address). With the 64-bit processor
implementation, the extended address is handled by normal load/store instructions.
The data side LMB and AXI bus addresses are extended to the number of address bits
corresponding to the selected memory size. The available choices are:

° NONE (32-bit address, no additional instructions)

° 64GB (36-bit address)

° 1TB (40-bit address)

° 16TB (44-bit address)

° 256TB (48-bit address)

° 16EB (64-bit address)

° 4PB (52-bit address)

For more information, including software usage and limitations, see the MicroBlaze
Processor Reference Guide (UG984) [Ref 22].

Optimization

• Select implementation optimization: This option is the same as in the General
Settings options.

• Enable Branch Target Cache: When set, implements the branch target, which improves
branch performance by predicting conditional branches and caching branch targets.

TIP: The Enable Branch Target Cache option is not enabled when Select implementation
optimization is set to AREA on the MicroBlaze Configuration Wizard: Welcome Page. Conversely,
enabling Branch Target Cache disables the Area option in Select implementation optimization.

• Branch Target Cache Size: Specify the size of the cache for branch targets.
Embedded Processor Hardware Design 92
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=92
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=92

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Fault Tolerance

• Auto/Manual: Determines if the Vivado tool will automatically enable fault tolerance,
or if you will specify it manually.

• Enable Fault Tolerance Support: When enabled, MicroBlaze protects internal block
RAM with parity, and supports error correcting codes (ECC) in LMB block RAM,
including exception handling of ECC errors. This prevents a bit flip in block RAM from
affecting the processor function.

° If this value is auto-computed (by not overriding it), fault tolerance is automatically
enabled in MicroBlaze when ECC is enabled in connected LMB BRAM controllers.

° If fault tolerance is explicitly enabled, the IP integrator tool enables ECC
automatically in connected LMB BRAM Controllers.

° If fault tolerance is explicitly disabled, ECC in connected LMB BRAM controllers is
not affected.

MicroBlaze Configuration Wizard: Cache Page

The following figure shows the Cache options page for the MicroBlaze configuration.

• Enable Instruction Cache: Uses this cache only when it is also enabled in software by
setting the instruction cache enable (ICE) bit in the machine status register (MSR).

The Instruction Cache configurable options are:

° Size in Bytes: Specifies the size of the instruction cache if C_USE_ICACHE is
enabled. Not all architectures permit all sizes.

X-Ref Target - Figure 4-9

Figure 4‐9: Cache Options Page of the MicroBlaze Configuration Wizard
Embedded Processor Hardware Design 93
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=93
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=93

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
° Line Length: Select between 4, 8, or 16 word cache line length for cache
miss-transfers from external instruction memory.

° Base Address: Specifies the base address of the instruction cache. This parameter is
used only if C_USE_ICACHE is enabled.

° High Address: Specifies the high address of the instruction cache. This parameter is
used only if C_USE_ICACHE is enabled.

° Enable Writes: When enabled, one can invalidate instruction cache lines with the
wic instruction. This parameter is used only if C_USE_ICACHE is enabled.

° Use Cache for All Memory Accesses: When enabled, uses the dedicated cache
interface on MicroBlaze is for all accesses within the cacheable range to external
instruction memory, even when the instruction cache is disabled.

Otherwise, the instruction cache uses the peripheral AXI for these accesses when the
instruction cache is disabled.

When enabled, an external memory controller must provide only a cache interface
MicroBlaze instruction memory. Enable this parameter when using AXI Coherency
Extension (ACE).

° Use Distributed RAM for Tags: Uses the instruction cache tags to hold the address
and a valid bit for each cache line. When enabled, the instruction cache tags are
stored in Distributed RAM instead of block RAM. This saves block RAM, and can
increase the maximum frequency.

° Data Width: Specifies the instruction cache bus width when using AXI Interconnect.
The width can be set to:
- 32-bit: Bursts are used to transfer cache lines for 32-bit words depending on

the cache line length,
- Full Cache line: A single transfer is performed for each cache line, with data

width 128, 256, or 512 bits depending on cache line length
- 512-bit: Performs a single transfer, but uses only 128 or 256 bits, with 4 or 8

word cache line lengths.

The two wide settings require that the cache size is at least 8 KB, 16KB, or 32KB
depending upon cache line length. To reduce the AXI interconnect size, this
setting must match the interconnect data width. In most cases, you can obtain
the best performance with the wide settings.

Note: This setting is not available with area optimization, AXI Coherency Extension
(ACE), or when you enable fault tolerance.

° Number of Streams: Specifies the number of stream buffers used by the
instruction cache. A stream buffer is used to speculatively pre-fetch instructions,
before the processor requests them. This often improves performance, because the
processor spends less time waiting for instruction to be fetched from memory.
Embedded Processor Hardware Design 94
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=94
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=94

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Note: To be able to use instruction cache streams, do not enable area optimization or AXI
Coherency Extension (ACE).

° Number of Victims: Specifies the number of instruction cache victims to save. A
victim is a cache line that is evicted from the cache. If no victims are saved, all
evicted lines must be read from memory again, when they are needed. By saving
the most recent lines, they can be fetched much faster, thus improving
performance.

RECOMMENDED: It is possible to save 2, 4, or 8 cache lines. The more cache lines that are
saved, the better performance becomes. The recommended value is 8 lines.

Note: To be able to use instruction cache victims, do not enable area optimization or AXI
Coherency Extension (ACE).

• Enable Data Cache: Uses this cache only when it is also enabled in software by setting
the data cache enable (DCE) bit in the machine status register (MSR).

Data Cache Features:

° Size in Bytes: Specifies the size of the data cache if C_USE_DCACHE is enabled. Not
all architectures permit all sizes.

° Line Length: Select between 4, 8, or 16 word cache line length for cache
miss-transfers from external memory.

° Base Address: Specifies the base address of the data cache. This parameter is used
only if C_USE_DCACHE is enabled.

° High Address: Specifies the high address of the data cache. This parameter is used
only if C_USE_DCACHE is enabled.

° Enable Writes: When enabled, one can invalidate data cache lines with the wdc
instruction. This parameter is used only if C_USE_DCACHE is enabled.

° Use Cache for All Memory Accesses: When enabled, uses the dedicated cache
interface on MicroBlaze is for all accesses within the cacheable range to external
memory, even when the data cache is disabled.

Otherwise, the data cache uses the peripheral AXI for these accesses when the data
cache is disabled. When enabled, an external memory controller must provide only a
cache interface MicroBlaze data memory. Enable this parameter when using AXI
Coherency Extension (ACE).

° Use Distributed RAM for Tags: Uses the data cache tags to hold the address and a
valid bit for each cache line. When enabled, the data cache tags are stored in
Distributed RAM instead of block RAM. This saves block RAM, and can increase the
maximum frequency.
Embedded Processor Hardware Design 95
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=95
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=95

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
° Data Width: Specifies the data cache bus width when using AXI Interconnect. The
width can be set to:
- 32-bit: Bursts are used to transfer cache lines for 32-bit words depending on

the cache line length
- Full Cache line: A single transfer is performed for each cache line, with data

width 128, 256, or 512 bits depending on cache line length
- 512-bit: Performs a single transfer, but uses only 128 or 256 bits, with 4 or 8

word cache line lengths

The two wide settings require that the cache size is at least 8 KB, 16KB, or 32KB
depending upon cache line length. To reduce the AXI Interconnect size, this
setting must match the interconnect data width. In most cases, you can obtain
the best performance with the wide settings.

Note: This setting is not available with area optimization, AXI Coherency Extension
(ACE), or when you enable fault tolerance.

° Enable Write-back Storage Policy: This parameter enables use of a write-back
data storage policy. When this policy is in effect, the data cache only writes data to
memory when necessary, which improves performance in most cases. With
write-back enabled, data is stored by writing an entire cache line. Using write-back
also requires that the cache is flushed by software when appropriate, to ensure that
data is available in memory; for example, when using direct memory access (DMA).
When not enabled, a write-through policy is used, which always writes data to
memory immediately.

TIP: When the MMU is enabled, setting this parameter allows individual selection of storage policy
for each TLB entry.

° Number of Victims: Specifies the number of data cache victims to save. A victim is
a cache line that is evicted from the cache. If no victims are saved, all evicted lines
must be read from memory again, when they are needed. By saving the most recent
lines, they can be fetched much faster, thus improving performance.

RECOMMENDED: It is possible to save 2, 4, or 8 cache lines. The more cache lines that are saved,
the better performance becomes. The recommended value is 8 lines.

Note: To be able to use data cache victims, do not enable area optimization or AXI Coherency
Extension (ACE).
Embedded Processor Hardware Design 96
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=96
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=96

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
MicroBlaze Configuration Wizard: MMU Page

The following figure shows the MMU page of the MicroBlaze Configuration.

Memory Management

The Memory Management field specifies the implementation of the memory
management unit (MMU).

• To disable the MMU, set this parameter to None (0), which is the default.
• To enable only the User Mode and Privileged Mode instructions, set this parameter to

USERMODE (1). To enable Memory Protection, set the parameter to PROTECTION (2).
• To enable full MMU functionality, including virtual memory address translation, set this

parameter to VIRTUAL (3).

When USERMODE is set, it enables the Privileged Instruction exception. When
PROTECTION or VIRTUAL is set, it enables the Privileged Instruction exception and the
four MMU exceptions (Data Storage, Instruction Storage, Data TLB Miss, and Instruction TLB
Miss).

Memory Management Features

• Data Shadow Translation Look-Aside Buffer Size: Defines the size of the instruction
shadow translation look-aside buffer (TLB). This TLB caches data address translation
information, to improve performance of the translation. The selection is a trade-off
between smaller size and better performance: the default value is 4.

• Instruction Shadow Translation Look-Aside Buffer Size: Defines the size of the
instruction shadow translation look-aside buffer (TLB). This TLB caches instruction
address translation information to improve performance of the translation. The
selection is a trade-off between smaller size and better performance: the default value
is 2.

X-Ref Target - Figure 4-10

Figure 4‐10: MicroBlaze Configuration Wizard MMU Page
Embedded Processor Hardware Design 97
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=97
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=97

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
• Enable Access to Memory Management Special Registers: Enables access to the
memory management special register using the MFS and MTS instructions:

° Minimal (0) only allows writing TLBLO, TLBHI, and TLBX.

° Read (1) adds reading to TLBLO, TLBHI, TLBX, PID, and ZPR.

° Write (2) allows writing all registers, and reading TLBX.

° Full (3) adds reading of TLBLO, TLBHI, TLBX, PID, and ZPR.

In many cases, it is not necessary for the software to have full read access. For example,
this is the case for Linux memory management code. It is then safe to set access to
Write, to save area. When using static memory protection, access can be set to
Minimal, because the software then has no need to use TLBSX, PID, and ZPR.

• Number of Memory Protection Zones: Specifies the number of memory protection
zones to implement. In many cases memory management software does not use all
available zones. For example, the Linux memory management code only uses two
zones. In this case, it is safe to reduce the number of implemented zones, to save area.

• Privileged Instructions: Specifies which instructions to allow in User Mode.

° Full Protection (0): Ensures full protection between processes.

° Allow Stream Instructions (1): Makes it possible to use AXI4-Stream instructions in
User Mode.

° Allow Extended Address Instruction (2): Makes it possible to use extended
load/store instructions when available.

° Allow Both (3): Allows both types of instructions.

CAUTION! It is strongly discouraged to change this setting from Full Protection, unless it is
necessary for performance reasons.
Embedded Processor Hardware Design 98
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=98
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=98

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
MicroBlaze Configuration Wizard: Debug Page

Debug Options

MicroBlaze Debug Module Interface

• BASIC: Enables the MicroBlaze Debug Module (MDM) interface to MicroBlaze
processor for debugging. With this option, you can use Xilinx System Debugger (XSDB)
to debug the processor over the Joint Test Action Group (JTAG) boundary-scan
interface.

• EXTENDED: Enables enhanced debug features of MicroBlaze such as Cross-Trigger,
Trace, and Profiling.

• NONE: Disables this option after you finish debugging to reduce the size of the
MicroBlaze processor.

Hardware Breakpoints

IMPORTANT: The following options are only applied if C_DEBUG_ENABLED is on. The MicroBlaze
processor takes a noticeable frequency hit as the numbers are increased.

• Number of PC Breakpoints: Specifies the number of program counter (PC) hardware
breakpoints Xilinx System Debugger (XSDB) can set.

• Number of Write Address Watchpoints: Specifies the number of write address
watchpoints XSDB can set.

X-Ref Target - Figure 4-11

Figure 4‐11: MicroBlaze Configuration Wizard Debug Page
Embedded Processor Hardware Design 99
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=99
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=99

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
• Number of Read Address Watchpoints: Specifies the number of read address
watchpoints XSDB can set.

RECOMMENDED: It is recommended that these two options be set to 0 if you are not using
watchpoints for debugging.

Interface

This option is only available when using Advanced Mode.

• MicroBlaze Debug Connection: Select the type of interface for connecting the
MicroBlaze Debug Module (MDM). SERIAL is the default JTAG interface, which is
generally recommended and uses the least amount of resources. PARALLEL provides
synchronous parallel access to MicroBlaze debug registers, with better performance
and timing. AXI is a subset of PARALLEL, providing an AXI4-Lite interface that can be
connected through AXI register slices or AXI clock converters to further improve
timing.

Performance Monitoring

With extended debugging, MicroBlaze provides the following performance monitoring
counters to count various events and to measure latency during program execution:

• C_DEBUG_EVENT_COUNTERS: Configures the event counters.
• C_DEBUG_LATENCY_COUNTERS: Configures the latency counters.
• C_DEBUG_COUNTER_WIDTH: Sets the counter width to 32, 48, or 64 bits.

With the default configuration, the counter width is set to 32 bits and there are five event
counters and one latency counter.

Trace and Profiling

With extended debugging, MicroBlaze provides program trace, storing information in the
embedded trace buffer (ETB) to enable program execution tracing. Users can also toggle
the Auto switch and select the External Trace check box, if desired.

Use the parameter C_DEBUG_TRACE_SIZE to configure the size of the embedded trace
buffer from 8KB to 128KB, or the external trace buffer from 32B to 8 KB.

RECOMMENDED: It is recommended to always keep the external trace buffer set to 8KB, to avoid buffer
overflow.

By setting C_DEBUG_TRACE_SIZE to 0 (None), program trace is disabled.
Embedded Processor Hardware Design 100
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=100
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=100

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Extended debugging also provides non-intrusive profiling, storing program execution
statistics in a profiling buffer. The buffer is divided into a number of bins, each counting the
number of executed instructions or clock cycles within a certain address range.

Use the parameter C_DEBUG_PROFILE_SIZE to configure the size of the profiling buffer from
4K to 128K. By setting the parameter to 0 (None), profiling is disabled.

MicroBlaze Configuration Wizard: Buses Page

Local Memory Bus Interfaces

• Enable Local Memory Bus Instruction Interface: Enables LMB instruction interface.
When this instruction is set as shown in Figure 4-12, the Local Memory Bus (LMB)
instruction interface is available.

A typical MicroBlaze system uses this interface to provide fast local memory for
instructions. Normally, it connects to an LMB bus using an LMB Bus Interface Controller
to access a common block RAM.

• Enable Local Memory Bus Data Interface: Enables LMB data interface. When this
parameter is set, the local memory bus (LMB) data interface is available. A typical
MicroBlaze system uses this interface to provide fast local memory for data and
vectors. Normally, it connects to an LMB bus using an LMB Bus Interface Controller to
access a common block RAM.

AXI and ACE Interfaces

• Select Bus Interface: When this parameter is set to AXI, then AXI is selected for both
peripheral and cache access. When this parameter is set to ACE, then AXI is selected for
peripheral access and ACE is selected for cache access, providing cache coherency
support.
Note: To be able to use ACE, area optimization, write-back data cache, instruction cache
streams, or victims cache data widths other than 32-bit must not be set. You must set Use Cache
for All Memory Accesses for both caches.

• Enable Peripheral AXI Interface Instruction Interface: When this parameter is set,
the peripheral AXI4-Lite instruction interface is available. In many cases, this interface is
not needed, in particular if the Instruction Cache is enabled and
C_ICACHE_ALWAYS_USED is set.

• Enable Peripheral AXI Data Interface: When this parameter is set, the peripheral AXI
data interface is available. This interface usually connects to peripheral I/O using
AXI4-Lite, but it can be connected to memory also. If you enable exclusive access, the
AXI4 protocol is used.
Embedded Processor Hardware Design 101
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=101
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=101

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Stream Interfaces

• Number of Stream Links: Specifies the number of pairs of AXI4-Stream link interfaces.
Each pair contains a master and a slave interface. The interface provides a
unidirectional, point-to-point communication channel between MicroBlaze and a
hardware accelerator or co-processor. This is a low-latency interface, which provides
access between the MicroBlaze register file and the FPGA fabric.

Other Interfaces

• Enable Trace Bus Interface: When this parameter is set, the Trace bus interface is
available. This interface is useful for debugging, execution statistics and performance
analysis. In particular, connecting interface to a ChipScope™ Logic Analyzer (ILA) allows
tracing program execution with clock cycle accuracy.

The MicroBlaze Trace interface can be used to view the processor software execution in
simulation and in hardware. It is sufficient to enable the interface without actually
connecting it, to get access to the signals in simulation, and to add them to an ILA in
hardware.

The waveform can be related to the assembler and source code by looking at the
executable object dump. In SDK this can be viewed by double-clicking on the generated
ELF file. It is also possible to generate an object dump from the ELF file with
interspersed source code using the mb-objdump command. The Trace_PC and
Trace_Instruction signals correspond to the address and instruction in the object
dump. Note that these, and most other signals, are only valid when
Trace_Valid_Instr is set.

Memory access addresses are shown using the Trace_Data_Address signal, which is
valid when either Trace_Data_Read or Trace_Data_Write is set. Instruction results
are written to a MicroBlaze destination register indicated by Trace_Reg_Addr when
the Trace_Reg_Write signal is set, with the value shown by the
Trace_New_Reg_Value signal.

The Trace_Exception_Kind signal, valid when Trace_Exception_Taken is set,
indicates interrupts, breaks and exceptions. This can be useful to find error conditions or
interrupt related issues.

For a complete description of all the Trace bus interface signals, see Chapter 3, "Trace
Interface Description" in MicroBlaze Processor Reference Guide (UG984) [Ref 22].

• Lockstep Interface: When you enable lockstep support, two MicroBlaze cores run the
same program in lockstep, and you can compare their outputs to detect errors.

° When set to NONE, no lockstep interfaces are enabled.

° When set to LOCKSTEP_MASTER, it enables the Lockstep_Master_Out and
Lockstep_Out output ports.

° When set to LOCKSTEP_SLAVE, it does the following:
Embedded Processor Hardware Design 102
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=102
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=102

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
- Enables the Lockstep_Slave_In input port and Lockstep_Out output
ports.

- Sets the C_LOCSTEP_SLAVE parameter to 1.

The slave processor is visible as a CPU, and can have private LMB memory.

• LOCKSTEP_HIDDEN_SLAVE behaves the same way as LOCKSTEP_SLAVE, except that
the slave processor is not visible as a CPU. This setting is recommended, except when
using private LMB memory. When this option is enabled, additional options become
available under the Local Memory Bus Interfaces and AXI and ACE Interfaces section
as shown in Figure 4-12. These options are explained below.

° Use Monitor Interface for Local Memory Bus Instruction Interface: Select
Monitor Interface for LMB instruction interface. This can be used to simplify
connection of LMB for a lockstep slave processor when private LMB memory is not
used.

° Use Monitor Interface for Local Memory Bus Data Interface: Select Monitor
Interface for LMB data interface. This can be used to simplify connection of LMB for
a lockstep slave processor when private LMB memory is not used.

° Use Monitor Interface for Peripheral AXI Instruction Interface: Select Monitor
Interface for AXI peripheral data interface. This can be used to simplify connection
of AXI for a lockstep slave processor.

X-Ref Target - Figure 4-12

Figure 4‐12: MicroBlaze Configuration Wizard Buses Page
Embedded Processor Hardware Design 103
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=103
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=103

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
° Use Monitor Interface for Peripheral AXI Data Interface: Select Monitor
Interface for AXI peripheral data interface. This can be used to simplify connection
of AXI for a lockstep slave processor.

° Use Monitor Interface for Cache AXI Instruction Interface: Select Monitor
Interface for AXI cache instruction interface. This can be used to simplify connection
of AXI for a lockstep slave processor.

° Use Monitor Interface for Cache AXI Data Interface: Select Monitor Interface for
AXI cache data interface. This can be used to simplify connection of AXI for a
lockstep slave processor.

There is also a monitor option for interrupt on the Interrupt & Reset tab:

• Use Monitor Interface for Interrupt: Select Monitor Interface for the interrupt
interface. This can be used to simplify connection of interrupt for a lockstep slave
processor when a common interrupt source is used.

MicroBlaze Configuration Wizard: Advanced Mode

Accessible through the Advanced button on the Welcome page of the MicroBlaze
Configuration wizard, the Advanced mode provides a tabbed interface that lets you interact
directly with the various configuration options. Figure 4-13 shows the Advance Mode
Interrupt and Reset options.

The tabbed interface of the Advanced mode provides access to each of the pages of the
MicroBlaze Configuration wizard as follows:

X-Ref Target - Figure 4-13

Figure 4‐13: Advanced Mode: Interrupt and Reset Tab
Embedded Processor Hardware Design 104
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=104
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=104

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
• MicroBlaze Configuration Wizard: General Page
• MicroBlaze Configuration Wizard: Cache Page
• MicroBlaze Configuration Wizard: MMU Page
• MicroBlaze Configuration Wizard: Debug Page
• MicroBlaze Configuration Wizard: Buses Page

In addition, the Exception, Interrupt & Reset and PVR tabs are only available through the
Advanced mode interface.

MicroBlaze Advanced Mode Exception Tab

The following figure shows the MicroBlaze Exception options page.

IMPORTANT: You must provide your own exception handler.

Math Exceptions

• Enable Floating Point Unit Exceptions: Enables exceptions generated by the floating
point unit (FPU). The FPU throws exceptions for all of the IEEE standard conditions:
underflow, overflow, divide-by-zero, and illegal operations. In addition, the MicroBlaze
FPU throws a de-normalized operand exception.

X-Ref Target - Figure 4-14

Figure 4‐14: Exception Options in the MicroBlaze Configuration Wizard
Embedded Processor Hardware Design 105
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=105
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=105

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
• Enable Integer Divide Exception: Causes an exception if the divisor (rA) provided to
the idiv or idivu instruction is zero, or if an overflow occurs for idiv.

Bus Exceptions

• Enable Instruction-side AXI Exception: Causes an exception if there is an error on the
instruction-side AXI bus.

• Enable Data-side AXI Exception: Causes an exception if there is an error on the
data-side AXI bus.

Other Exceptions

• Enable Illegal Instruction Exception: Causes an exception if the major opcode is
invalid.

• Enable Unaligned Data Exception: When enabled, the tools automatically insert
software to handle unaligned accesses.

• Generated Illegal Instruction Exception for NULL Instructions: MicroBlaze compiler
does not generate, nor do SDK libraries use the NULL instruction code (0x00000000).
This code can only exist legally if it is hand-assembled. Executing a NULL instruction
normally means that the processor has jumped outside the initialized instruction
memory.

If C_OPCODE_0x0_ILLEGAL is set, MicroBlaze traps this condition; otherwise, it treats
the command as a NOP. This setting is only available if you have enabled Illegal
Instruction Exception.

• Enable Stream Exception: Enables stream exception handling for Advanced eXtensible
Interface (AXI) read accesses.

IMPORTANT: You must enable additional stream instructions to use stream exception handling.

• Enable Stack Protection: Ensures that memory accesses using the stack pointer (R1) to
ensure they are within the limits set by the stack low register (SLR) and stack high
register (SHR). If the check fails with exceptions enabled, a stack protection violation
exception occurs. The Xilinx System Debugger (XSDB) also reports if the check fails.

MicroBlaze Advanced Mode Interrupt & Reset Tab

Figure 4-13 shows the Interrupt & Reset tab of the MicroBlaze Configuration wizard.

Interrupt

• Sense Interrupt on Edge vs. Level (Auto): Specifies whether the MicroBlaze processor
senses interrupts on edge or level.
Embedded Processor Hardware Design 106
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=106
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=106

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
° If this parameter is enabled, then MicroBlaze only detects an interrupt on the edge
specified by C_EDGE_IS_POSITIVE.

° If this parameter is disabled, whenever the interrupt is high an interrupt will be
triggered.
Note: If an interrupt is generated and handled while the interrupt input remains high,
another interrupt will be generated.

• Sense Interrupt on Rising vs. Falling Edge (Auto): Specifies whether the MicroBlaze
processor detects interrupts on the rising or falling edges if C_INTERRUPT_IS_EDGE
is set to 1.

• Use Interrupt: Specifies whether the MicroBlaze processor interrupt input is enabled.
Selecting NORMAL enables interrupts. Selecting FAST also enables low-latency
interrupt handling.

Reset

• Specify MSR Reset Value: Specify reset value for select MSR bits.

° Setting ICE (=0x0020) enables instruction cache at reset.

° Setting DCE (=0x0080) enables data cache at reset.

° Setting EIP (=0x0200) sets exception in progress at reset.

° Setting EE (=0x0100) enables exceptions at reset.

° Setting BIP (=0x0008) sets break in progress at reset.

° Setting IE (=0x0002) enables interrupts at reset.

TIP: Enabling caches at reset will allow execution to start immediately from external memory and
can thus be used to reduce or eliminate the need for LMB memory.

Vectors

• Vector Base Address: Change the base address used for MicroBlaze vectors. This
affects the vectors for Reset, User Vector, Interrupt, Break, and Hardware Exception. See
the MicroBlaze Processor Reference Guide (UG984) [Ref 22] for more information.
Normally the base address is 0x00000000 in Local Memory, but if this address is used
for other purposes, this parameter allows the vectors to be moved to another address.
The 7 least significant bits (LSBs) in the address must be zero.

MicroBlaze Advanced Mode PVR Tab

The following figure shows the PVR tab of the MicroBlaze Configuration wizard. See the
MicroBlaze Processor Reference Guide (UG984) [Ref 22] for more information on Processor
Version Register (PVR).
Embedded Processor Hardware Design 107
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=107
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=107

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Processor Version Registers

• Specifies Processor Version Register: PVR options are, as follows:

° None (0): The default, disables the PVR.

° Basic (1): Enables only the first PVR.

° Full (2): Enables all PVRs.
• Specifies USER1 Bits in Processor Version Register: This parameter specifies the

USER1 bits, 24 through 31, in the PVR. This parameter is only used if C_PVR is set to
Basic (1) or Full (2).

• Specifies USER2 Bits in Processor Version Register: This parameter specifies the
value of the second processor version register (USER2). This parameter is only used if
C_PVR is set to Full (2).

Cross-Trigger Feature of MicroBlaze Processors
With basic debugging, cross trigger support is provided by two signals: DBG_STOP and
MB_Halted.

• When the DBG_STOP input is set to 1, MicroBlaze halts after a few instructions. XSDB
detects that MicroBlaze has halted, and indicates where the halt occurred. The signal
can be used to halt MicroBlaze processors at any external event, such as when an
Integrated Logic Analyzer (ILA) is triggered.

• The MB_Halted output signal is set to 1 whenever the MicroBlaze processor is halted,
such as after a breakpoint or watchpoint is hit, after a stop XSDB command, or when
the DBG_STOP input is set.

The output is cleared when MicroBlaze execution is resumed by an XSDB command.

X-Ref Target - Figure 4-15

Figure 4‐15: MicroBlaze Configuration Wizard PVR Page
Embedded Processor Hardware Design 108
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=108
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=108

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
IMPORTANT: The DBG_STOP and MB_Halted pins are hidden. To see those pins, you must enable the
Enable Discrete Ports option on the Welcome page of the MicroBlaze Configuration dialog box, as
shown in Figure 4-16.

You can use the MB_Halted signal to trigger an Integrated Logic Analyzer (ILA), or halt
other MicroBlaze cores in a multiprocessor system by connecting the signal to their
DBG_STOP inputs. The following figure shows the discrete port and the Enable Discrete
Ports check box.

With extended debugging, cross trigger support is available in conjunction with the MDM.
The MDM provides programmable cross triggering between all connected processors, as
well as external trigger inputs and outputs. For details, see the MicroBlaze Debug Module
(MDM) v3.1 Product Guide (PG115) [Ref 4].

To enable extended debug, set the MicroBlaze Debug Module Interface to EXTENDED in
the Debug Page of the MicroBlaze Configuration Wizard as shown in the following figure.

MicroBlaze can handle up to eight cross trigger actions. Cross trigger actions are generated
by the corresponding MDM cross trigger outputs, connected using the Debug bus, shown
in Figure 4-17.

X-Ref Target - Figure 4-16

Figure 4‐16: Enable Discrete Ports Option
Embedded Processor Hardware Design 109
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=109
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=109

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
You can also set the Extended Debug option when running Block Automation for the
MicroBlaze processor, as shown in Figure 4-18.

Next, in the MicroBlaze Debug Module (MDM) configuration dialog box, the Enable Cross
Trigger check box is enabled, as highlighted in Figure 4-19.

X-Ref Target - Figure 4-17

Figure 4‐17: Enable EXTENDED Debug for MicroBlaze

X-Ref Target - Figure 4-18

Figure 4‐18: Extended Debug Option
Embedded Processor Hardware Design 110
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=110
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=110

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
You can also select up to four external trigger inputs and external trigger outputs. When
enabled, the block design updates to show the MDM details, as shown in the following
figure.

Next, run Connection Automation, shown in the following figure, to connect the cross
trigger signals to an ILA.

X-Ref Target - Figure 4-19

Figure 4‐19: Enable Cross Trigger Check Box in MDM

X-Ref Target - Figure 4-20

Figure 4‐20: MDM in Block Design After Enabling Cross Trigger
Embedded Processor Hardware Design 111
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=111
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=111

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Leaving the settings of Auto, as shown in the following figure, on both
TRIG_IN_0/TRIG_OUT_0 in the Run Connection Automation dialog box, instantiates a
new ILA and connects the TRIG_IN_0/TRIG_OUT_0 signal of the MDM to the
corresponding pin of the System ILA.

The following figure show the resulting block design.

X-Ref Target - Figure 4-21

Figure 4‐21: Connecting the TRIG_IN_0 Interface Pin to an ILA

X-Ref Target - Figure 4-22

Figure 4‐22: Run Connection Automation Confirmation Dialog Box

X-Ref Target - Figure 4-23

Figure 4‐23: Block Design After Connecting Cross Trigger Pins to the ILA
Embedded Processor Hardware Design 112
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=112
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=112

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Custom Logic
The Vivado IP packager lets you and third party IP developers use the Vivado IDE to prepare
an Intellectual Property (IP) design for use in the Vivado IP catalog. The IP user can then
instantiate this third party IP into a design in the Vivado Design Suite.

When IP developers use the Vivado® Design Suite IP packaging flow, the IP user has a
consistent experience whether using Xilinx IP, third-party IP, or customer-developed IP
within the Vivado Design Suite.

IP developers can use the IP packager feature to package IP files and associated data into
a ZIP file. The IP user receives this generated ZIP file, installs the IP into the Vivado Design
Suite IP catalog. The IP user then customizes the IP through parameter selections and
generates an instance of the IP. See Vivado Design Suite User Guide: Creating and Packaging
Custom IP (UG1118) [Ref 27] for more information.

RECOMMENDED: To verify the proper packaging of the IP before handing it off to the IP user, Xilinx
recommends that the IP developer run each IP module completely through the IP user flow to verify
that the IP is ready for use.

Embedded IP Catalog
The Vivado IDE IP catalog is a unified repository that lets you search, review detailed
information, and view associated documentation for the IP. After you add the third-party or
customer IP to the Vivado Design Suite IP catalog, you can access the IP through the Vivado
Design Suite flows. The following figure shows a portion of the Vivado IDE IP catalog.
Embedded Processor Hardware Design 113
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=113
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=113

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Completing Connections
After you have configured the MicroBlaze processor, you can start to instantiate other IP
that constitutes your design.

In the IP integrator canvas, right-click and select Add IP. You can use two built-in features of
the IP integrator to complete the rest of the IP subsystem design: the Block Automation and
Connection Automation features assist you with putting together a basic microprocessor
system in the IP integrator tool and/or connecting ports to external I/O ports.

Block Automation

The Block Automation feature is available when you instantiate a microprocessor in the
block design of the IP integrator tool.

Note: The block design must specify a part or board that uses a specific processor to make that
processor accessible through the IP catalog.
1. Click Run Block Automation to get assistance with putting together a simple

MicroBlaze System.

X-Ref Target - Figure 4-24

Figure 4‐24: IP Catalog

X-Ref Target - Figure 4-25

Figure 4‐25: Run Block Automation Using Designer Assistance
Embedded Processor Hardware Design 114
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=114
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=114

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
The Run Block Automation dialog box lets you provide input about basic features that
the microprocessor system requires. The following figure shows the Block Automation
dialog box.

The MicroBlaze Preset option provides a convenient way of configuring the processor
settings according to the particular use case: microcontroller, real-time, or application. If
necessary, further configuration can be done in the MicroBlaze Configuration wizard.

2. Select the required options and click OK.

The Run Block Automation creates the following MicroBlaze system.

X-Ref Target - Figure 4-26

Figure 4‐26: Run Block Automation Dialog Box for MicroBlaze
Embedded Processor Hardware Design 115
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=115
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=115

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Using Connection Automation

When the IP integrator tool determines that a potential connection exists among the
instantiated IP in the canvas, it opens the Connection Automation feature.

In the following figure, two IP, the GPIO and the UARTLite, are instantiated along with the
MicroBlaze processor subsystem.

When you click the Run Connection Automation link, the following dialog box, shown in
Figure 4-29, opens.

X-Ref Target - Figure 4-27

Figure 4‐27: MicroBlaze Design After Running Block Automation

X-Ref Target - Figure 4-28

Figure 4‐28: Using Connection Automation Feature of IP Integrator
Embedded Processor Hardware Design 116
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=116
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=116

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
The IP integrator determines that there is a potential connection for the following objects:

• The Proc Sys Rst IP ext_reset_in pin must connect to a reset source, which can be
either an internal reset source or an external input port.

• The Clocking Wizard CLK_IN_1_D pin must connect to either an internal clock source
or an external input port.

• The AXI GPIO s_axi interface must connect to a master AXI interface.
• The AXI GPIO core gpio interface must connect to external I/Os.
• The Uartlite IP s_axi interface must connect to a master AXI interface.
• The Uartlite IP uart interface must connect to external I/Os.

When you run connection automation on each of those available options, the block design
looks like Figure 4-30.

X-Ref Target - Figure 4-29

Figure 4‐29: The Run Connection Automation Dialog Box
Embedded Processor Hardware Design 117
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=117
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=117

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Completing the Design

See the following sections in Chapter 1, Introduction for common considerations in an
embedded design:

• Platform Board Flow in IP Integrator
• Making Manual Connections in a Design
• Manually Creating and Connecting to I/O Ports
• Memory-Mapping in the Address Editor
• Running Design Rule Checks
• Integrating a Block Design in the Top-Level Design

MicroBlaze Processor Constraints

The IP integrator generates constraints for IP generated within the tool during output
products generation; however, you must generate constraints for any custom IP or
higher-level code.

A constraint set is a set of XDC files that contain design constraints, which you can apply to
your design. There are two types of design constraints:

• Physical constraints define pin placement, and absolute, or relative placement of cells
such as: BRAMs, LUTs, Flip-Flops, and device configuration settings.

• Timing constraints, written in industry standard SDC, define the frequency
requirements for the design. Without timing constraints, the Vivado Design Suite
optimizes the design solely for wire length and routing congestion.

X-Ref Target - Figure 4-30

Figure 4‐30: Running Connection Automation for a Sample MicroBlaze Design
Embedded Processor Hardware Design 118
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=118
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=118

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Note: Without timing constraints, Vivado implementation makes no effort to assess or improve
the performance of the design.

IMPORTANT: The Vivado Design Suite does not support UCF format. For information on migrating
UCF constraints to XDC commands see the ISE to Vivado Design Suite Migration Guide (UG911)
[Ref 18] for more information.

The options on how to use constraint sets, are, as follows:

• Multiple constraints files within a constraint set.
• Constraint sets with separate physical and timing constraint files.
• A master constraints file, and direct design changes to a new constraints file.
• Multiple constraint sets for a project, and make different constraint sets active for

different implementation runs to test different approaches.
• Separate constraint sets for synthesis and for implementation.
• Different constraint files to apply during synthesis, simulation, and implementation to

help meet your design objectives.

Separating constraints by function into different constraint files can make your overall
constraint strategy more clear, and facilitate being able to target timing and
implementation changes.

Organizing design constraints into multiple constraint sets can help you do the following:

• Target different Xilinx FPGAs for the same project. Different physical and timing
constraints could be necessary for different target parts.

• Perform “what-if” design exploration. Using constraint sets to explore different
scenarios for floorplanning and over-constraining the design.

• Manage constraint changes. Override master constraints with local changes in a
separate constraint file.

TIP: A good way to validate the timing constraints is to run the report_timing_summary command
on the synthesized design. Problematic constraints must be addressed before implementation.

For more information on defining and working with constraints that affect placement and
routing, see the Vivado Design Suite User Guide: Using Constraints (UG903) [Ref 16].

Taking the Design through Synthesis, Implementation, and
Bitstream Generation

After you complete the design and constrain it appropriately, you can run synthesis and
implementation, and then you can generate a bitstream.
Embedded Processor Hardware Design 119
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=119
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=119

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Exporting Hardware to the Software Development Kit (SDK)

See Using the Software Development Kit (SDK) in Chapter 1 for more information. In
general, after you generate the bitstream for your design, you are ready to export your
hardware definition to SDK.

This action exports the necessary XML files needed for SDK to understand the IP used in the
design and also the memory mapping from the perspective of the processor. After a
bitstream is generated and the design is exported, you can then download the device and
run the software on the processor.

TIP: If you want to start software development before a bitstream is created, you can export the
hardware definition to SDK after generating the design.

1. Select File > Export > Export Hardware.

This launches the Export Hardware for SDK dialog box, where you can choose the
available export options, as shown in the following figure.

2. After the hardware is exported, select File > Launch SDK to launch SDK.

After you export the hardware definition to SDK, and launch SDK, you can start writing your
software application. Also, you can perform more debug and software from SDK.

Alternatively, you can import the software ELF file back into a Vivado IDE project, and
integrate that file with an FPGA bitstream for further download and testing.

X-Ref Target - Figure 4-31

Figure 4‐31: Export Hardware for SDK Dialog Box
Embedded Processor Hardware Design 120
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=120
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=120

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Multiple MicroBlaze Processor Designs
Multiple MicroBlaze processors can be included in a block design. The configurations of
these multiple MicroBlaze designs may vary based on design needs. A simple dual
MicroBlaze design is discussed in the following sections.

Instantiate MicroBlaze IP Cores

Create a block design and instantiate two instances of MicroBlaze IP as shown. Note that
the Run Block Automation link becomes active in the banner.

Click the Run Block Automation link to run block automation on both the MicroBlaze
instances. Again, the options here varies on the design requirements.

For example:

• Both the MicroBlaze processors might run from a single system clock or they could be
totally independent.

• They could share the Clocking Wizard IP or they could have independent Clocking
Wizard IP.

This topology shows two independent Clocking Wizard IP for each MicroBlaze processor as
in Figure 4-33.

X-Ref Target - Figure 4-32

Figure 4‐32: Multiple MicroBlaze Instances in a Block Design
Embedded Processor Hardware Design 121
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=121
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=121

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
The block design looks like Figure 4-34:

X-Ref Target - Figure 4-33

Figure 4‐33: Block Automation Dialog Box for Dual MicroBlaze Design
Embedded Processor Hardware Design 122
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=122
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=122

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Note: Both the MicroBlaze processors share the same MicroBlaze Debug Module that is
automatically configured to support two debug interfaces.

At this point you can add peripherals to your design as needed. In this case, two instances
of Uartlite, one GPIO and a AXI BRAM Controller were added.

• The Uartlite IP is connected to each of the MicroBlaze processor instances.
• The GPIO is connected to one instance of the MicroBlaze IP.
• Finally, the AXI BRAM Controller controlling the Block Memory Generator is shared by

both MicroBlaze processors.
• The input clock to one of the Clocking Wizard IP is the on-board System Differential

Clock while the other Clocking Wizard is tied to the on-board PCIe Clock.

Run Connection Automation

Note: Run Connection Automation link is active at the top of the block design banner. Click Run
Connection Automation. Check the All Automation check-box (15 out of 15 selected), as shown in
Figure 4-35.

X-Ref Target - Figure 4-34

Figure 4‐34: Block Design After Running Block Automation
Embedded Processor Hardware Design 123
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=123
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=123

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Make the selections listed in Table 4-1 for each automation.

X-Ref Target - Figure 4-35

Figure 4‐35: Connection Automation Dialog Box

Table 4‐1: Connection Automation Options

Connection More Information Setting

axi_bram_ctrl_0
• BRAM_PORTA

The only option for this automation
is to instantiate a new Block
Memory Generator as shown under
options.

Leave the Blk_Mme_Gen to its default
option of Auto.

axi_bram_ctrl_0
• BRAM_PORTB

The Run Connection Automation
dialog box gives you two choices:
• Instantiate a new BMG and

connect the PORTB of the AXI
BRAM Controller to the BMG IP.

• Use the previously instantiated
BMG core and automatically
configure it to be a true
dual-ported memory and
connected to PORTB of the AXI
BRAM Controller.

Leave the Blk_Mem_Gen option to its
default value of Auto.
Embedded Processor Hardware Design 124
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=124
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=124

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
axi_bram_ctrl_0
• S_AXI

The Master Field can be set to
either /microblaze_0 or
/microblaze_1.

Leave it to the default value of
/microblaze_0.

axi_gpio_0
• GPIO

The GPIO interface can be tied to
several on-board interfaces.

Set the Selected Board Part Interface to
led_8bits (LED).

axi_gpio_0
• S_AXI

The Master field is set to its default
value of /microblaze_0 (Periph).
All other fields is set to its default
value of Auto.

Keep the default settings.

axi_uartlite_0
• S_AXI

The Master field is set to its default
value of /microblaze_0 (Periph).
All other fields is set to its default
value of Auto.

Keep the default settings.

axi_uartlite_0
• UART

Set the Select Board Part Interface
to the rs232_uart interface present
on-board or tie it to a custom
interface.

Keep the default setting of rs232_uart
(UART).

axi_uartlite_1
• S_AXI

The Master field is set to its default
value of /microblaze_1 (Periph).
All other fields is set to its default
value of Auto.

Keep the default settings.

axi_uartlite_0
• UART

The Select Board Part Interface can
be set to the rs232_uart interface
present on-board or can be tied to
a custom interface.

Because you already used the
rs232_uart (UART) interface on the
board to connect to the /uartlite_0
instance, set the Select Board Part
Interface option to Custom.

clk_wiz_1
• CLK_IN1_D

The input clock source of the
Clocking Wizard can be tied to the
several on-board clock sources or it
can be tied to a Custom input clock.

Leave the Select Board Part Interface
field to sys_diff_clock (System
differential clock).

clk_wiz_1
• reset

The reset pin of the Clocking
Wizard can be tied to either the
on-board reset source or to a
custom input pin.

Leave the Select Board Part Interface to
its default value of reset (FPGA Reset).

microblaze_1_clk_wiz_1
• CLK_IN1_D

The input clock source of the
Clocking Wizard can be tied to the
several on-board clock sources or it
can be tied to a Custom input clock.

Leave the Select Board Part Interface
field to New External Port (100 MHz).

microblaze_1_clk_wiz_1
• reset

The reset pin of the Clocking
Wizard can be tied to either the
on-board reset source or to a
custom input pin.

Leave the Select Board Part Interface to
its default value of reset (FPGA Reset).

Table 4‐1: Connection Automation Options (Cont’d)

Connection More Information Setting
Embedded Processor Hardware Design 125
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=125
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=125

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
After running connection automation, one instance of the Microblaze (microblaze_0) is
connected to three slaves AXI BRAM Controller (axi_bram_ctrl_0), AXI Uartlite
(axi_uartlite_0) and AXI GPIO (axi_gpio_0). The other instance of MicroBlaze
(microblaze_1) is connected to the AXI Uartlite (axi_uartlite_1).

Re-Customizing AXI Interconnects

If you want the microblaze_1 instance of MicroBlaze to access the AXI BRAM Controller
(axi_bram_ctrl_0), then the two interconnects instances must be reconfigured.

1. Double-click the AXI Interconnect (microblaze_1_axi_periph).

The Re-customize IP dialog box opens.

2. From the drop-down menu, set the Number of Master Interfaces field to 2, as shown
in Figure 4-36.

rst_clk_wiz_1_100M
• ext_reset_in

The reset pin of the Processor
System Reset IP can be tied to
either the on-board reset source or
to a custom input pin.

Leave the Select Board Part Interface to
its default value of reset (FPGA Reset).

rst_microblaze_1_clk_wiz_1_100M
• ext_reset_in

The reset pin of the Processor
System Reset IP can be tied to
either the on-board reset source or
to a custom input pin.

Leave the Select Board Part Interface to
its default value of reset (FPGA Reset).

Table 4‐1: Connection Automation Options (Cont’d)

Connection More Information Setting
Embedded Processor Hardware Design 126
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=126
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=126

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
Similarly, re-customize the microblaze_axi_periph instance such that the Number of
Slave Interfaces field is set to 2.

3. After that, you can connect the Master Interface M01_AXI of
microblaze_1_axi_periph to the S01_AXI slave interface of
microblaze_0_axi_periph.

4. Connect the clocks and resets accordingly as well, as shown in the following figure.

X-Ref Target - Figure 4-36

Figure 4‐36: Re-customize IP Dialog Box

X-Ref Target - Figure 4-37

Figure 4‐37: Connecting the two AXI Interconnects
Embedded Processor Hardware Design 127
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=127
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=127

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
By doing this, you made the microblaze_1 access all the slaves accessible by
microblaze_0. This is an optional decision.

Mapping and Excluding Unwanted Slaves

If you want to access the AXI BRAM Controller from microblaze_1, you can exclude the
other slaves from the microblaze_1 memory space. This can be done in the address
editor. As can be seen in Figure 4-38, the microblaze_1 memory space has three
unmapped slaves.

1. First, assign addresses to all the unmapped slaves by selecting them, right-clicking, and
selecting Assign Address from the context menu.

2. Next, “exclude” the unwanted slaves from the memory map of microblaze_1 by
selecting them in the address editor, right-clicking, and selecting Exclude Segment, as
shown in Figure 4-40.

X-Ref Target - Figure 4-38

Figure 4‐38: microblaze_1 Memory Map

X-Ref Target - Figure 4-39

Figure 4‐39: Mapping Unmapped Slaves
Embedded Processor Hardware Design 128
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=128
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=128

Chapter 4: Using a MicroBlaze Processor in an Embedded Design
The address editor now looks as follows.

After you complete the design in this way, the rest of the design flow is the same as any
other Block design flow.

X-Ref Target - Figure 4-40

Figure 4‐40: Excluding Unwanted Slaves from Memory Map

X-Ref Target - Figure 4-41

X-Ref Target - Figure 4-42X-Ref Target - Figure 4-43

Figure 4‐43: Excluded Slaves
Embedded Processor Hardware Design 129
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=129
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=129

Chapter 5

Designing with the Memory IP Core

Overview
The Xilinx® memory IP is a combined pre-engineered controller and physical layer (PHY)
for interfacing UltraScale™ architecture and 7 series™ FPGA user designs with AMBA®
advanced extensible interface (AXI4) slave interfaces to DDR2, DDR3, or DDR4 SDRAM,
QDRII+ SRAM, or RLDRAM 3 devices.

For more information, see the following:

• UltraScale Architecture FPGAs Memory IP (PG150) [Ref 5]
• Zynq-7000 SoC and 7 Series Devices Memory Interface Solutions (UG586) [Ref 7]

This chapter provides information about using, customizing, and simulating a LogiCORE™
IP DDR4, DDR3, or DDR2 SDRAM memory interface core in the Vivado IP integrator tool.
This chapter describes the core architecture and provides details on customizing and
interfacing to the core.

TIP: Although the information in this chapter is tailored for the KC705, Kintex®-7 board, the
differences for UltraScale devices, and the KCU105 board, are highlighted throughout this text. These
guidelines can also be applied to Xilinx devices on custom boards.

Adding the Memory IP
To add the Memory IP core to a block design, right-click in the IP integrator design canvas
and select Add IP. A searchable IP catalog opens. When you type the first few letters of an
IP name, in this case Memory IP, only the IP cores matching the name are listed.

Alternatively, you can click the Add IP button on the toolbar at the top of the canvas .
Embedded Processor Hardware Design 130
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=130
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=130

Chapter 5: Designing with the Memory IP Core
Double-click to select the Memory Interface Generator IP and add it to your block design.

This places the Memory IP core into the IP integrator block design.

1. To make changes to the Memory IP configuration, right-click the block to open the
menu, and click Customize Block. You can also double-click the Memory IP block to
open the Xilinx Memory Interface Generator dialog box.

The following figure shows both the Memory IP and the 7 series IP core in the
upper-left, and the DDR4 Memory IP core for UltraScale devices in the lower-right. The
Memory IP that is available in the IP catalog depends on the target part or platform
board selected for your project. There are separate IP cores to support DDR3 and DDR4
memory controllers for UltraScale devices.

X-Ref Target - Figure 5-1

Figure 5‐1: Add the Memory IP by Searching in the IP Catalog

X-Ref Target - Figure 5-2

Figure 5‐2: Instantiate the Memory IP Core in the Block Design
Embedded Processor Hardware Design 131
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=131
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=131

Chapter 5: Designing with the Memory IP Core
This example targets the KC705 board for the project. As shown in the following figure,
the Board tab of the platform board flow is available to let you select components to
interface to your design.

2. From the Board tab, drag and drop the DDR3 SDRAM component into the block design
canvas.
Note: In the case of the UltraScale KCU105 board, you can also use the DDR4 SDRAM
component.

To connect the memory controller to the memory components on the target platform
board, the Vivado® IP integrator connects the SYS_CLK and DDR interfaces of the Memory
IP to external interface ports, as seen in the following figure.

TIP: You can also begin by simply dragging and dropping the DDR SDRAM component from the Board
tab into an empty block design. In this case, the Vivado IP integrator instantiates the Memory IP onto
the canvas and connects the SYS_CLK and DDR interfaces of the Memory IP to the components on the
platform board.

X-Ref Target - Figure 5-3

Figure 5‐3: Instantiating the Memory IP Core using Platform Board Flow

X-Ref Target - Figure 5-4

Figure 5‐4: Board Flow Connects SYS_CLK and DDR3 Interfaces
Embedded Processor Hardware Design 132
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=132
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=132

Chapter 5: Designing with the Memory IP Core
3. Select the Run Connection Automation link at the top of the design canvas, as seen in
the following figure. This connects the Memory IP to the system FPGA reset on the
platform board.

Note: For the KCU105 board, the Run Connection Automation dialog box includes both the
CO_SYS_CLK and the sys_rst interfaces for the Memory IP.

Making Connections with Block Automation

As an alternative to dragging and dropping the DDR SDRAM component from the Board
tab, you could use the Block Automation feature of IP integrator to configure the Memory
IP and tie its SYS_CLK and DDR3 interfaces to the board interfaces.

1. Because the Memory IP core provides the clocking for the entire KC705 board, you
should Run Block Automation, shown in the following figure, for the Memory IP core
prior to adding a clock controller.

X-Ref Target - Figure 5-5

Figure 5‐5: Run Connection Automation for Memory IP

X-Ref Target - Figure 5-6

Figure 5‐6: Configuring Memory IP using Block Automation
Embedded Processor Hardware Design 133
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=133
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=133

Chapter 5: Designing with the Memory IP Core
This opens the Run Block Automation dialog box as shown in Figure 5-7.

The Run Block Automation dialog box shows the available IP. In this case, the block
design only has the Memory IP you previously added.

2. Ensure the Memory IP is selected, and click OK.

The SYS_CLK and DDR interfaces of the Memory IP are connected to the DDR memory
components on the platform board. The Memory IP core is configured for 400 MHz
operation with the correct pins selected to interface to the KC705 board. Figure 5-8
shows the Memory IP core after running Block Automation.

Adding a Clocking Wizard

If the design requires clocking in addition to the clock generated by the Memory IP core,
you need to add a Clocking wizard IP into the block design.

1. Select the Add IP command, type Clock into the search field, and select the Clocking
Wizard IP. Figure 5-9 shows a Clock Wizard IP with a Memory IP core within a design.

X-Ref Target - Figure 5-7

Figure 5‐7: Run Block Automation Dialog Box

X-Ref Target - Figure 5-8

Figure 5‐8: Memory IP Core in Block Design After Running Block Automation
Embedded Processor Hardware Design 134
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=134
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=134

Chapter 5: Designing with the Memory IP Core
Follow these steps to connect the Clocking Wizard to the Memory IP core:

2. Connect the ui_clk or ui_addn_clk_0 output of the Memory IP, as well as any other
clocks generated, to the clk_in1 input of the Clocking wizard, as shown in the
following figure.

TIP: Make sure to use the appropriate output clock pin with the desired frequency.

3. For the UltraScale Memory IP, connect the c0_ddr4_ui_clk pin to the Clocking
Wizard, as shown in the following figure.

4. Connect the ui_clk_sync_rst pin of the Memory IP core to the reset pin of the
Clocking wizard, as shown below.

5. For the UltraScale Memory IP, connect the c0_ddr4_ui_clk_sync_rst pin to the
Clocking wizard, shown in Figure 5-11.

X-Ref Target - Figure 5-9

Figure 5‐9: Clocking Wizard

X-Ref Target - Figure 5-10

Figure 5‐10: Connect ui_clk to clk_in1
Embedded Processor Hardware Design 135
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=135
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=135

Chapter 5: Designing with the Memory IP Core
6. Configure the Clocking wizard to generate any required clocks for the design, by
double-clicking the IP.

Adding an AXI Master

To complete the Memory IP design, an AXI master such as a Zynq processor or a MicroBlaze
embedded processor, or an external processor is required. The following procedure lists the
steps to instantiate a MicroBlaze processor into the block design.

1. Select the Add IP command, type Micro into the search field, and select the MicroBlaze
processor to add it to the design.

2. Click Run Block Automation to construct a basic MicroBlaze system, and configure the
settings in the dialog box as follows:

° Preset: None (or the one that is desired)

° Local Memory: Select the required amount of local memory from pull-down menu.

° Local Memory ECC: Turn on ECC if desired.

° Cache Configuration: Select the required amount of Cache memory.

° Debug Module: Specify the type of debug module from the pull-down menu.

° Peripheral AXI Interconnect: This option must be enabled.

° Interrupt Controller: Optional.

° Clock Connection: Select the clock source from the pull-down menu.

Figure 5-12 shows the Run Block Automation page.

X-Ref Target - Figure 5-11

Figure 5‐11: Connect ui_clk_sync_rst to the Reset Port
Embedded Processor Hardware Design 136
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=136
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=136

Chapter 5: Designing with the Memory IP Core
3. Click OK.

The Run Block Automation adds and connects IP needed to support the MicroBlaze
processor into the block design. The block design should look similar to the following
figure; however, notice that the Memory IP core is not yet connected to the MicroBlaze
processor.

X-Ref Target - Figure 5-12

Figure 5‐12: Run Block Automation Settings

X-Ref Target - Figure 5-13

Figure 5‐13: Block Design After Running Block Automation for MicroBlaze
Embedded Processor Hardware Design 137
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=137
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=137

Chapter 5: Designing with the Memory IP Core
4. At the top of the design canvas, click Run Connection Automation to connect the
Memory IP core to the MicroBlaze processor. The Run Connection Automation dialog
box opens, as shown in Figure 5-14.

5. Select the S_AXI interface of the mig_7series_0.
Note: For the UltraScale Memory IP, select the C0_DDR4_S_AXI interface of the mig_0.

The /microblaze_0 (Cached) option should be selected by default.

6. You have a choice to select either the AXI Interconnect or the AXI SmartConnect
for the Interconnect IP. For high bandwidth application (such as the Memory IP), the
Auto option selects the AXI SmartConnect IP.

7. Leave the rest of the options to their default values.
8. Click OK.

This instantiates an AXI Interconnect and makes the required connection between the
Memory IP core and the MicroBlaze processor, as shown in the following diagram.

X-Ref Target - Figure 5-14

Figure 5‐14: Run Connection Automation Dialog Box to Connect Memory IP to MicroBlaze
Embedded Processor Hardware Design 138
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=138
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=138

Chapter 5: Designing with the Memory IP Core
From here you can complete any remaining connections to the design, such as connecting
to an external reset source, or connecting any interrupt sources through a concat IP to the
MicroBlaze processor.

Creating a Memory Map

To generate the address map for this design, click the Address Editor tab above the
diagram. The memory map is automatically created as IP, and added to the design. You can
set the addresses manually by entering values in the Offset Address and Range columns.
See this link in the Vivado Design Suite User Guide: Designing IP Subsystems Using IP
Integrator (UG994) [Ref 23] for more information. The following figure shows the Address
Editor.

TIP: The Address Editor tab only appears if the diagram contains an IP block that functions as a bus
master, such as the MicroBlaze processor in the following diagram.

X-Ref Target - Figure 5-15

Figure 5‐15: Memory IP/MicroBlaze Connections

X-Ref Target - Figure 5-16

Figure 5‐16: Address Editor
Embedded Processor Hardware Design 139
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf;a=xCreatingaMemoryMap
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=139
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=139

Chapter 5: Designing with the Memory IP Core
Running Design Rule Checks

The Vivado IP integrator runs basic design rule checks in real time as you create the design.
However, problems can occur during design creation. For example, the frequency on a clock
pin might not be set correctly. To run a comprehensive design check, click the Validate
Design button .

If the design is free of warnings and errors, a successful validation dialog box displays.

Implementing the Design

Now you can implement the design, generate the bitstream, and create the software
application in SDK.
Embedded Processor Hardware Design 140
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=140
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=140

Chapter 6

Reset and Clock Topologies in IP
Integrator

Overview
To create designs with IP integrator that function correctly on the target hardware, you must
understand reset and clocking considerations. This chapter provides information about
clock and reset connectivity at the system level. In the Vivado® IP integrator, you can use
the Xilinx® platform board flow, which enables you to configure IP in your design to
connect to board components using signal interfaces in an automated manner. You can also
make all the connections manually. The examples and overall flow described in this chapter
use the platform board flow, but the considerations are valid for all block designs.

For designs using the Memory IP core, the core provides the clock source, and the primary
clock from the board oscillator must be connected directly to the Memory IP core. For more
information, see Designing with the Memory IP Core in Chapter 5.

The Memory IP core can generate up to five additional clocks (Memory IP core for
UltraScale devices can generate only four additional clocks), which you can use for resetting
the design as needed. For designs that contain a Memory IP core, ensure that the primary
onboard clock is connected to memory controller, and then use the user clock (ui_clock
or the ui_addn_clk_x) as additional clock sources for the rest of the design.

For IP integrator designs with platform board flow, specific IP (for example, Memory IP and
Clocking Wizard) support board-level clock configuration. For the rest of the system,
clocking can be derived from the supported IP. Similarly, for driving reset signals,
board-level reset configuration is supported by a specific reset IP (for example,
proc_sys_reset). You can use other IP that also require external reset but are not
currently supported by the platform board flow.

The following sections describe the reset topologies for different types of designs.
Embedded Processor Hardware Design 141
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=141
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=141

Chapter 6: Reset and Clock Topologies in IP Integrator
MicroBlaze Design without a Memory IP Core
For any design that uses a MicroBlaze™ processor without a Memory IP core, you can
instantiate a Clocking Wizard IP to generate the clocks required. For the platform board
flow, you can configure the connection as follows:

1. After instantiating a MicroBlaze processor in the design, click the Run Block
Automation link. This creates the MicroBlaze subsystem, as shown in the following
figure.

2. In the Run Block Automation dialog box, select the New Clocking Wizard option to
instantiate the Clocking Wizard IP, and click OK, as shown in the following figure.

Running Block Automation also instantiates and connects the Proc Sys Reset IP to the
various blocks in the design.

X-Ref Target - Figure 6-1

Figure 6‐1: Run Block Automation on the MicroBlaze

X-Ref Target - Figure 6-2

Figure 6‐2: Run Block Automation Dialog Box for the MicroBlaze
Embedded Processor Hardware Design 142
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=142
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=142

Chapter 6: Reset and Clock Topologies in IP Integrator
The IP integrator canvas looks like the following figure.

3. Click Run Connection Automation and select /clk_wiz_1/CLK_IN1_D to connect the
on-board clock to the input of the Clocking Wizard IP, according to the board definition.
Note: You can customize the Clocking Wizard to generate the various clocks required by the
design.

X-Ref Target - Figure 6-3

Figure 6‐3: Effect of Running Block Automation

X-Ref Target - Figure 6-4

Figure 6‐4: Running Connection Automation on the Clocking Wizard
Embedded Processor Hardware Design 143
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=143
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=143

Chapter 6: Reset and Clock Topologies in IP Integrator
4. In the Run Connection Automation dialog box, select sys_diff_clock to select the board
interface for the target board, or select Custom to tie a different input clock source to
the Clocking Wizard IP, then click OK.

5. For the reset pin of the Clocking Wizard, select the dedicated reset interface on the
target board or a Custom reset input source.

X-Ref Target - Figure 6-5

Figure 6‐5: Connecting On-board sys_diff_clock to CLK_IN1_D Pin of Clocking Wizard

X-Ref Target - Figure 6-6

Figure 6‐6: Connect the On-Board Reset
Embedded Processor Hardware Design 144
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=144
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=144

Chapter 6: Reset and Clock Topologies in IP Integrator
Note: Steps 4 and 5 above can also be done by dragging and dropping the System Differential
Clock under the Clock Sources folder and FPGA Reset from the Reset folder in the Board tab.

6. For the ext_reset_in pin for the Processor System Reset block choose the same reset
source as chosen for the Clocking Wizard in the step above or a Custom reset source.

After you make your choice and click OK, the IP integrator canvas looks like the
following figure.

CAUTION! If the platform board flow is not used, ensure that the “locked” output of the Clocking
Wizard is connected to the “dcm_locked” input of Proc_Sys_Reset.

MicroBlaze Design with a Memory IP Core
RECOMMENDED: As mentioned in the introduction, the Memory IP is a clock source, and Xilinx
recommends that you connect the on-board clock directly to the Memory IP core.

The Memory IP core provides a user clock (ui_clock) and up to five additional clocks (four
in case of UltraScale Memory IP) that can be used in the rest of the design. You can
configure the connection, as follows:

1. When using the platform board flow automation in a design that contains the Memory
IP, add the Memory IP first (or drag and drop the DDR3 SDRAM/DDR4 SDRAM interface
from the Board window which instantiates the Memory IP core and configures it for the
board), and then run Block Automation. This connects the on-board clock to the
Memory IP core.

You can then customize Memory IP to generate additional clocks, as shown in
Figure 6-8.

X-Ref Target - Figure 6-7

Figure 6‐7: On-Board Reset Connected to the Proc Sys Reset IP
Embedded Processor Hardware Design 145
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=145
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=145

Chapter 6: Reset and Clock Topologies in IP Integrator
2. After configuring the MIG to generate additional clocks, click the Run Connection
Automation link at the top of the banner.

The Run Connection Automation dialog box states that the ddr3_sdram interface is
available, as shown in Figure 6-9.

3. Click OK.

X-Ref Target - Figure 6-8

Figure 6‐8: Customization Dialog Box for the MIG Core to Generate Additional Clocks
Embedded Processor Hardware Design 146
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=146
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=146

Chapter 6: Reset and Clock Topologies in IP Integrator
This connects the interface ports to the Memory IP, as shown in the following figure.

4. Add the MicroBlaze processor to the design and run Block Automation, as shown in the
Figure 6-11.

X-Ref Target - Figure 6-9

Figure 6‐9: Running Block Automation on the Memory IP Core

X-Ref Target - Figure 6-10

Figure 6‐10: Block Automation Creates the DDR3 SDRAM

X-Ref Target - Figure 6-11

Figure 6‐11: Instantiate and Run Block Automation on the MicroBlaze
Embedded Processor Hardware Design 147
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=147
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=147

Chapter 6: Reset and Clock Topologies in IP Integrator
5. In the Clock Connection field of the Run Block Automation dialog box, select the
Memory IP ui_clk (/mig_7series_0/ui_clk or mig_7series/u_addn_clk_0) as the clock
source for the MicroBlaze processor, as shown in the following figure, and click OK.

TIP: The mig_7series_0/ui_addn_clk_0 is selected by default.

This creates a MicroBlaze subsystem and connects the ui_addn_clk_0 as the input
source clock to the subsystem, as shown by the highlighted net in the following figure.

6. Make the following additional connections:
a. Click Connection Automation and select /mig_7series/S_AXI to connect the

Memory IP to MicroBlaze.

X-Ref Target - Figure 6-12

Figure 6‐12: Run Block Automation Options for the MicroBlaze Processor

X-Ref Target - Figure 6-13

Figure 6‐13: Connect the Output Clock from the Memory IP Core to Clock the Design
Embedded Processor Hardware Design 148
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=148
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=148

Chapter 6: Reset and Clock Topologies in IP Integrator
b. In the Run Connection Automation dialog box select /microblaze_0 (Cached)
option for the S_AXI interface.

c. Leave all other settings for S_AXI to their default value of Auto.

d. Connect the on-board reset to the sys_rst input of the Memory IP.
e. Connect the ext_reset_in of the rst_mig_7_series_0_100M Processor

System Reset block to reset (FPGA Reset).
f. Click OK.

The following figure shows the completed connection for MB-Memory IP with Designer
Assistance.

X-Ref Target - Figure 6-14

Figure 6‐14: Run Connection Automation Dialog Box

X-Ref Target - Figure 6-15

Figure 6‐15: Connect reset and mmcp_locked Pins
Embedded Processor Hardware Design 149
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=149
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=149

Chapter 6: Reset and Clock Topologies in IP Integrator
Zynq Design without PL Logic
For Zynq designs without programmable logic (PL), all the clocks are contained in the
ZYNQ7 Processing System IP. Use the following steps to add a Zynq design without PL.

1. After adding the ZYNQ7 Processing System IP, click Run Block Automation and select
/processing_system7_0, as shown in the following figure.

2. The Run Block Automation states that the FIXED_IO and the DDR interfaces will be
connected to external ports, as shown in Figure 6-17.

3. Click OK.

X-Ref Target - Figure 6-16

Figure 6‐16: Run Block Automation on Zynq

X-Ref Target - Figure 6-17

Figure 6‐17: Run Block Automation on the ZYNQ7 Processor
Embedded Processor Hardware Design 150
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=150
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=150

Chapter 6: Reset and Clock Topologies in IP Integrator
4. Double-click the ZYNQ7 Processing System to re-customize the IP.
5. Set the specific clocks in the Re-Customize IP dialog box Clocking Configuration page,

shown below.
X-Ref Target - Figure 6-18

Figure 6‐18: Clock Configuration Options for the ZYNQ7 Processing System
Embedded Processor Hardware Design 151
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=151
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=151

Chapter 6: Reset and Clock Topologies in IP Integrator
Zynq-7000 Design with PL Logic
RECOMMENDED: For designs with a Zynq-7000 processor that contain custom logic in the PL fabric
(but without Memory IP), source the clocking and reset for the PL portion of the design from the PS. You
can use any of the PL Fabric Clocks: FCLK_CLK0, FCLK_CLK1, FCLK_CLK2, and FCLK_CLK3: for the clock
source. You can use the associated resets these clocks: FCLK_RESET0_N, FCLK_RESET1_N,
FCLK_RESET2_N, and FCLK_RESET3_N: for resetting the PL.

Use the following steps to add a Zynq-7000 processor design with PL.

1. After adding the ZYNQ7 Processing System IP, click Run Block Automation and select
/processing_system7_0.

The Run Block Automation dialog box states that the FIXED_IO and the DDR interfaces
will be connected to external ports, as shown in Figure 6-20.

X-Ref Target - Figure 6-19

Figure 6‐19: Run Block Automation on the ZYNQ7 Processing System
Embedded Processor Hardware Design 152
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=152
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=152

Chapter 6: Reset and Clock Topologies in IP Integrator
2. Click OK.
3. Double-click the ZYNQ7 Processing System to re-customize the IP.

Figure 6-21 shows the re-customization page.

X-Ref Target - Figure 6-20

Figure 6‐20: Run Block Automation Dialog Box for the ZYNQ7 Processing System
Embedded Processor Hardware Design 153
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=153
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=153

Chapter 6: Reset and Clock Topologies in IP Integrator
4. In the Re-customize IP dialog box, click Clock Configuration in the Page Navigator and
then expand PL Fabric Clocks, as shown in Figure 6-22.

X-Ref Target - Figure 6-21

Figure 6‐21: Re-Customize the ZYNQ7 Processing System
Embedded Processor Hardware Design 154
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=154
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=154

Chapter 6: Reset and Clock Topologies in IP Integrator
5. Click PS-PL Configuration in the Page Navigator and expand General.
6. Expand Enable Clock Resets and select the appropriate resets for the PL fabric, as

shown in Figure 6-23.

X-Ref Target - Figure 6-22

Figure 6‐22: Specify the Frequency of the Fabric Clock
Embedded Processor Hardware Design 155
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=155
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=155

Chapter 6: Reset and Clock Topologies in IP Integrator
7. Instantiate an IP such as AXI GPIO in the PL fabric. Then, click Run Connection
Automation.

The Run Connection Automation dialog box states that the S_AXI port of the GPIO will
be connected to the ZYNQ7 Processing System master interface M_AXI_GP0, as shown
in Figure 6-24.

8. Click OK.

X-Ref Target - Figure 6-23

Figure 6‐23: Enable the Resets to the PL Fabric
Embedded Processor Hardware Design 156
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=156
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=156

Chapter 6: Reset and Clock Topologies in IP Integrator
The clock and resets in the IP integrator design should look as shown in the following
figure.

X-Ref Target - Figure 6-24

Figure 6‐24: Run Connection Automation Dialog Box to Connect GPIO

X-Ref Target - Figure 6-25

Figure 6‐25: Using the Output Clock from the ZYNQ PS7 IP to Clock the Design
Embedded Processor Hardware Design 157
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=157
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=157

Chapter 6: Reset and Clock Topologies in IP Integrator
Zynq Design with a Memory IP Core in the PL
RECOMMENDED: For Zynq designs that include a Memory IP core in the PL, it is recommended that the
input clock to the Memory IP core use an external clock source instead of the PS Fabric clock. The
external clock from an on-board oscillator would be cleaner in terms of jitter when compared to clocks
from the PS. You can use PS Fabric clocks for other portions of the PL design if required.

1. Add the Memory IP and configure according to design requirements.
2. Then, connect the input clock source to the SYS_CLK input of the Memory IP core by

right-clicking SYS_CLK in the block design and selecting Make External.
3. If the design uses a MicroBlaze processor, add it to the design and run Block

Automation. The Run Block Automation dialog box opens.
4. Specify /mig_7series_0/ui_clk or the /mig_7_series_0/ui_addn_clk_0 (if the Memory IP

core has been configured to have ui_addn_clk_x pins) as the input clock.

TIP: mig_7series_0/ui_addn_clk_0 (100 MHz) is selected by default.

5. Click OK.

X-Ref Target - Figure 6-26

Figure 6‐26: Specifying MicroBlaze Options
Embedded Processor Hardware Design 158
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=158
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=158

Chapter 6: Reset and Clock Topologies in IP Integrator
The block design looks like the following figure.

6. Click Run Connection Automation link to complete rest of the connections. The Run
Connection Automation dialog box opens.

7. Select all available connections with their default values, as shown in the following
figure.

X-Ref Target - Figure 6-27

Figure 6‐27: Block Design after Running Block Automation on the MicroBlaze

X-Ref Target - Figure 6-28

Figure 6‐28: Complete the Block Design using Connection Automation
Embedded Processor Hardware Design 159
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=159
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=159

Chapter 6: Reset and Clock Topologies in IP Integrator
8. The connected design should look like the following figure.

Designs with Memory IP and the Clocking Wizard
For designs that require specific clock frequencies not generated by the Memory IP core,
you can instantiate a Clocking Wizard IP and use the ui_clock output of the Memory IP as
the clock input for the IP Clocking wizard.

You also need to make the following additional connections:

1. Connect the onboard reset to the Clocking wizard reset input in addition to the Memory
IP.

2. Connect the mmcm_locked pin of the Memory IP and locked pin of Clocking wizard to
the Util_Vector_Logic IP configured to the AND operation. Then, connect the
output of the Util_Vector_Logic to the dcm_locked input of Proc_Sys_Reset.

X-Ref Target - Figure 6-29

Figure 6‐29: Complete the Block Design
Embedded Processor Hardware Design 160
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=160
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=160

Chapter 7

Using UpdateMEM to Update BIT files
with MMI and ELF Data

Overview
A single device, with one or more embedded processors as well as programmable logic,
needs a single boot image, which must contain the merged CPU software and FPGA
bitstream images. The UpdateMEM utility (updatemem) is a data translation tool to map
contiguous blocks of data across multiple block RAMs that constitute a contiguous logical
address space.

With the combination of Zynq®-7000 SoC devices or Microblaze embedded processors, on
the UltraScale™ architecture or 7 series devices, UpdateMEM merges the CPU software
image of an executable and linkable format (ELF) file into the FPGA bitstream created by the
Vivado® Design Suite and the write_bitstream command, by mapping the ELF data
onto the memory map information (MMI) for the block RAMs in the design. As a result, the
software for an embedded processor can be initialized from block RAM-built address
spaces within an FPGA bitstream. This provides a powerful and flexible means of merging
parts of CPU software and FPGA design tool flows.

The Vivado Design Suite automatically merges an associated ELF file for an embedded
processor design when generating the device bitstream. If you have associated the ELF file
using the Tools > Associate ELF Files command from the Vivado IDE, then the Vivado
Design Suite merges the data as needed.

Use the Associate ELF Files command to add the SCOPED_TO_REF and
SCOPED_TO_CELLS properties to the associated ELF files, as follows:

° The SCOPED_TO_REF property associates the ELF file with all instances of the
specified hierarchical module, or block design.

° The SCOPED_TO_CELLS associates the ELF file with specified instances of the
specified embedded processor cells.

You can also run the UpdateMEM command at any time to manually associate the ELF file
and MMI file with the BIT file of the implemented design.

IMPORTANT: UpdateMEM can only be used to update unencrypted bitstream files.
Embedded Processor Hardware Design 161
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug835-vivado-tcl-commands.pdf;a=xwrite_bitstream
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=161
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=161

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
Using UpdateMEM
For embedded processor based designs, the UpdateMEM (updatemem) command merges
CPU software images into bitstream files, to initialize the block RAM memory within the
target Xilinx device. The UpdateMEM command can also take an ELF file or CPU Software
Image as an input and write out MEM files for simulation purposes. The UpdateMEM
command takes the following inputs:

• A bitstream (BIT) file, which is initially generated by the Vivado Design Suite
implementation tools. You can create a bitstream file from an implemented design
using the write_bitstream Tcl command. A bitstream (BIT) file is a binary data file
that contains a bit image of the design, to be downloaded to a Xilinx device. The
UpdateMEM command reads a BIT file as an input, and writes a BIT file as its output.

• The memory-map information (MMI) file is a text file that describes how individual
block RAMs on the Xilinx device are grouped together to form a contiguous address
space called an address block.

The Vivado Design Suite writes the MMI file automatically and places that file into the
<project>.runs/impl_1 folder when generating the bitstream, or you can manually
write that information using the write_mem_info command. The UpdateMEM
command uses the MMI file to identify the physical BRAM resources that map to a
specific address range. For more information on the MMI file, see BRAM Memory Map
Info (MMI) File.

• The Vivado Design Suite writes the SMI file (memory-map information file for
simulation) automatically and places that file into the
<project>.sim/sim_x/behav folder when simulation is run on the design.

• An executable and linkable format (ELF) file, which is a product of the software
development kit (SDK), is a binary data file that contains an executable program image
ready for running on an embedded processor. The ELF file contains the data to be
mapped by UpdateMEM into the address ranges of the BRAMs.

• Optionally, a memory (MEM) file is a manually created text file that describes
contiguous blocks of data to initialize or populate a specified address space. The
UpdateMEM command can use the MEM file in place of an ELF file. See Memory (MEM)
Files for more information.

• An instance ID of the embedded processor in the design, to associate the ELF or MEM
file with the processor.

The UpdateMEM command populates contiguous blocks of data defined in ELF or MEM
files, across multiple block RAMs of a Xilinx device mapped by the MMI file. The
UpdateMEM command merges the memory information into a bitstream file for
configuring and programming the target Xilinx device.
Embedded Processor Hardware Design 162
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=162
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=162

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
The UpdateMEM command also lets you merge multiple data files for multiple processors
in designs that have more than one embedded processor. In this case, the -data and
-proc options must be specified in pairs, with the first -data file providing the software
image or memory content for the first -proc specified. The second -data applies to the
second -proc, and so on.

This command returns the name of the bitstream file created from the inputs, or returns an
error if it fails.

Arguments for updatemem

• -meminfo <arg>: (Required) Name of the memory mapping information (MMI) file
for the implemented design or memory mapping information for simulation (SMI) file.
This file can be generated using the write_mem_info Tcl command.

• -data <arg>: (Required) Name of the Executable and Linkable Format (ELF) file, or a
MEM file to map into BRAM addresses.

• -writememfile: Output.mem file. Translates the ELF file and writes the information to
the specified.mem file, which can be used in simulation flows. This option is applicable
only to processor based designs. This argument is still supported but not
recommended to be used.

• -bit <arg>: (Required) Name of the bit input bitstream (BIT) file. If the file extension
is missing, an extension of .bit is assumed.
Note: The UpdateMEM command can only be used with unencrypted bitstream files.

• -proc <arg>: (Required) Instance path of the embedded processor.

TIP: You can specify multiple processors for the UpdateMEM command in cases where a design has
multiple embedded processors. In this case the -data and -proc options must be specified in pairs,
with the first -data argument applying to the first -proc argument. However, the UpdateMEM
command can take either an ELF file or a MEM file in a single run, but cannot use both -data formats
at the same time even when specifying multiple processors.

• -out <arg>: (Required) Specify the name of output file, without suffix. The file has a
suffix of .bit applied automatically.

• -force: (Optional) Overwrite the specified output file if it already exists.
• -debug: Hidden debug flag to output initialization strings in the block memory.

Examples

The following example reads the specified MEM info file, ELF file, and bitstream file, and
generates the merged bitstream file:

updatemem -meminfo top.mmi -data hello_world.elf -bit top.bit \
-proc design_1_i/microblaze_1 -out top_meminfo.bit
Embedded Processor Hardware Design 163
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=163
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=163

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
The following example shows the use of UpdateMEM in a block design that has two
embedded microblaze processors, one with an associated ELF file, and the other using a
MEM file. Notice this requires two passes of the updatemem command, with the output
bitstream of the first acting as the input bitstream of the second:

updatemem -bit top.bit -meminfo top.mmi -data top1.elf \
-proc system_i/microblaze_1 -out first_out.bit

updatemem -bit first_out.bit -meminfo top.mmi -data top2.mem \
-proc system_i/microblaze_2 -out top_out.bit

To convert an ELF file into a MEM file for simulation flows, use the following command:

updatemem -data top1.elf -meminfo top1.smi -proc design_1_i/microblaze_0

Memory (MEM) Files
A Memory (MEM) file is a manually edited text file that describes contiguous blocks of data.
that can be used in place of the ELF file. The format of MEM files is an industry standard,
consisting of two basic elements:

• Hexadecimal address specifier: An address specifier is indicated by an @ character
followed by the hexadecimal address value. There are no spaces between the @
character and the first hexadecimal character.

• Hexadecimal data values: Hexadecimal data values follow the hexadecimal address
value, separated by spaces, tabs, or carriage-return characters.

Because the MEM file is in hexadecimal format, each character represents four bits, or a
nibble, in the memory.

Hexadecimal data values can consist of as many hexadecimal characters as desired.
However, when a value has an odd number of hexadecimal characters, the first hexadecimal
character is assumed to be a zero. For example, hexadecimal values A, C74, and 84F21 are
interpreted as the values 0A, 0C74, and 084F21 respectively.

IMPORTANT: The common 0x hexadecimal prefix is not allowed. Using this prefix on MEM file
hexadecimal values is flagged as a syntax error.

There must be at least one data value following an address, up to as many data values that
belong to the previous address value. Following is an example of the most common MEM
file format:

@0000 3A @0001 7B @0002 C4 @0003 56 @0004 02
@0005 6F @0006 89...
Embedded Processor Hardware Design 164
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=164
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=164

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
UpdateMEM requires a less redundant format. An address specifier is used only once at the
beginning of a contiguous block of data. The previous example is rewritten as:

@0000 3A 7B C4 56 02 6F 89...

The address for each successive data value is derived according to its distance from the
previous address specifier. A MEM file can have as many contiguous data blocks as
required. While the gap of address ranges between data blocks can be any size, no two data
blocks can overlap an address range.

TIP: UpdateMEM allows the free-form use of both // and /*...*/ commenting styles in the MEM file.

The Vivado Design Suite also supports a MEM File format for memory initialization as
described at this link in the Vivado Design Suite User Guide: Synthesis (UG901) [Ref 15]. The
MEM File format supported by the Vivado Design Suite is different from the file format
supported by UpdateMEM.

You should define the MEM file structure for Vivado tools to match the synthesis view of the
memory as an array, which adheres to the Verilog language specification. The MEM file
used for UpdateMEM should include spaces to match the <Datawidth> tag as defined in
the memory map info (MMI) file. For more information, see MMI File Syntax.

According to the Verilog language specification, the memory is treated as an array, so for
Vivado synthesis the MEM file for a 64k memory (256x256 array) should look as follows:

@00000000
aa
bb

Note: White space and/or comments are used to separate the numbers.

For the UpdateMem command, which has a post implementation physical view of the
memory, the MEM file should look as follows:

@00000000
aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb

Note: For UpdateMEM, the spaces that separate the words are determined by the MSB and LSB
attributes of the <Datawidth> tag defined in the MMI file.
Embedded Processor Hardware Design 165
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug901-vivado-synthesis.pdf;a=xInitializingRAMContents
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=165
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=165

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
BRAM Memory Map Info (MMI) File
The following are design considerations for block RAM-implemented address spaces, and
the definition of memory map info files:

• The block RAMs come in fixed-size widths and depths, where CPU address spaces
might need to be much larger in width and depth than a single block RAM.
Consequently, multiple block RAMs must be logically grouped together to form a
single CPU address space as seen in Figure 7-1.

• A single CPU bus access is often multiple bytes wide of data, for example, 32 or 64 bits
(4 or 8 bytes) at a time.

• CPU bus accesses of multiple data bytes might also access multiple block RAMs to
obtain that data. Therefore, byte-linear CPU data must be interleaved by the bit width
of each block RAM and by the number of block RAMs in a single bus access. However,
the relationship of CPU addresses to block RAM locations must be regular and easily
calculable.

• CPU data must be located in a block RAM-constructed memory space relative to the
CPU linear addressing scheme, and not to the logical grouping of multiple block RAMs.

• Address space must be contiguous, and in whole multiples of the CPU bus width. Bus
bit lane interleaving is allowed only in the sizes supported by the Virtex® device block
RAM port sizes.

• Addressing must account for the differences in instruction and data memory space.
Because instruction space is not writable, there are no address width restrictions.
However, data space is writable and usually requires the ability to write individual bytes.
For this reason, each bus bit lane must be addressable.

• The size of the memory map and the location of the individual block RAMs affect the
access time. Evaluate the access time after implementation to verify that it meets the
design specifications.
Embedded Processor Hardware Design 166
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=166
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=166

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data

The address space in the figure above consists of four bus blocks: Bus Block 0 through 3.

• CPU bus accesses are 8 block RAMs (64 bits) wide, with each column of block RAMs
occupying an 8-bit wide slice of a CPU bus access called a Bit Lane.

• Each row of 8 block RAMs in a bus access are grouped together in a Bus Block. Hence,
each Bus Block is 64 bits wide and 4096 bytes in size.

• The entire collection of block RAMs is grouped together into a contiguous address
space called an Address Block.

The upper right corner address is 0xFFFFC000, and the lower left corner address is
0xFFFFFFFF. Because a bus access obtains 8 data bytes across 8 block RAMs, byte-linear
CPU data must be interleaved by 8 bytes in the block RAMs.

X-Ref Target - Figure 7-1

Figure 7‐1: Block RAM Address Space
Embedded Processor Hardware Design 167
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=167
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=167

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
In this example using a 64-bit data word indexed by bytes from left to right as [0:7], [8:15]:

° Byte 0 goes into the first byte location of bit lane block RAM7, byte 1 goes into the
first byte location of Bit Lane block RAM6; and so forth, to byte 7.

° CPU data byte 8 goes into the second byte location of Bit Lane block RAM7, byte 9
goes into the second byte location of Bit Lane block RAM6 and so forth, repeating
until CPU data byte 15.

° This interleave pattern repeats until every block RAM in the first bus block is filled.

° This process repeats for each successive bus block until the entire memory space is
filled, or the input data is exhausted.

As described in MMI File Syntax, the order in which bit lanes and bus blocks are defined
controls the filling order. For the sake of this example, assume that bit lanes are defined
from left to right, and bus blocks are defined from top to bottom.

This process is called bit lane mapping, because these formulas are not restricted to
byte-wide data. This is similar, but not identical, to the process embedded software
programmers use when programmed CPU code is placed into the banks of fixed-size
EPROM devices.

The important distinctions to note between the two processes are, as follows:

• Embedded system developers generally use a custom software tool for byte-lane
mapping for a fixed number and organization of byte-wide storage devices. Because
the number and organization of the devices cannot change, these tools assume a
specific device arrangement. Consequently, little or no configuration options are
provided.

By contrast, the number and organization of FPGA block RAMs are completely
configurable (within FPGA limits). Any tool for byte-lane mapping for block RAMs must
support a large set of device arrangements.

• Existing byte-lane mapping tools assume an ascending order of the physical addressing
of byte-wide devices because that is how board-level hardware is built. By contrast,
FPGA block RAMs have no fixed usage constraints and can be grouped together with
block RAMs anywhere within the FPGA fabric. Although this example displays block
RAMs in ascending order, block RAMs can be configured in any order.
Embedded Processor Hardware Design 168
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=168
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=168

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
Memory Map Information File (MMI) Features

A memory map information (MMI) file is an XML file designed for computer parsing. It is
similar to high-level computer programming languages in using the following features:

• Block structures by XML keyword tags or directives. MMI maintains similar structures in
groups or blocks of data. MMI creates blocks to delineate address space, bus access
groupings, and comments.

• Symbolic name usage: MMI uses names and keywords to refer to groups or entities
(improving readability), and uses names to refer to address space groupings and Block
RAMs.

MMI observes the following conventions:

• Keywords are case-sensitive
• Indenting is for clarity only.
• White space is ignored except where it delineates items or keywords.
• Line endings are ignored. You can have as many items as you want on a single line.
• Numbers can be entered as decimal or hexadecimal. Hexadecimal numbers use the

0xXXX notation form.

CAUTION! MMI file does not get generated if a design does not contain a processor or XPM Memories.

MMI File Syntax

The memory map info (MMI) file is an XML file that syntactically describes how individual
block RAMs make up a contiguous logical data space. You can create an MMI file from an
open implemented design in the Vivado Design Suite using the write_mem_info Tcl
command. The implemented design provides the needed placement information of the
block RAM resources.

UpdateMEM uses the MMI file as input to direct the translation of data into the proper
initialization form. The Example MMI file below shows the XML-based syntax used to
describe the organization of block RAM usage.

<?xml version=”1.0” encoding=”UTF-8”?>
<MemInfo Version=”1” Minor=”0”>
 <Processor Endianness=”Little” InstPath=”design_1_i/microblaze_0”>
 <AddressSpace
Name=”design_1_i_microblaze_0.design_1_i_microblaze_0_local_memory_dlmb_bram_if_cnt
lr” Begin=”0” End=”8191”>
 <BusBlock>
 <BitLane MemType=”RAMB32” Placement=”X2Y17”>
 <DataWidth MSB=”15” LSB=”0”/>
 <AddressRange Begin=”0” End=”2047”/>
 <Parity ON=”false” NumBits=”0”/>
Embedded Processor Hardware Design 169
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=169
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=169

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
 </BitLane>
 <BitLane MemType=”RAMB32” Placement=”X3Y17”>
 <DataWidth MSB=”31” LSB=”16”/>
 <AddressRange Begin=”0” End=”2047”/>
 <Parity ON=”false” NumBits=”0”/>
 </BitLane>
 </BusBlock>
 </AddressSpace>
 </Processor>
 <Processor Endianness=”Little” InstPath=”design_1_i/microblaze_1”>
 <AddressSpace
Name=”design_1_i_microblaze_1.design_1_i_microblaze_1_local_memory_dlmb_bram_if_cnt
lr” Begin=”0” End=”8191”>
 <BusBlock>
 <BitLane MemType=”RAMB32” Placement=”X4Y13”>
 <DataWidth MSB=”15” LSB=”0”/>
 <AddressRange Begin=”0” End=”2047”/>
 <Parity ON=”false” NumBits=”0”/>
 </BitLane>
 <BitLane MemType=”RAMB32” Placement=”X4Y14”>
 <DataWidth MSB=”31” LSB=”16”/>
 <AddressRange Begin=”0” End=”2047”/>
 <Parity ON=”false” NumBits=”0”/>
 </BitLane>
 </BusBlock>
 </AddressSpace>
 </Processor>
 <Processor Endianness="Little" InstPath="design_1_i/processing_system7_0">
 <AddressSpace Name="design_1_i_processing_system7_0.design_1_i_axi_bram_ctrl_0"
Begin="1073741824" End="1073750015">
 <BusBlock>
 <BitLane MemType="RAMB32" Placement="X2Y18">
 <DataWidth MSB="15" LSB="0"/>
 <AddressRange Begin="0" End="2047"/>
 <Parity ON="false" NumBits="0"/>
 </BitLane>
 <BitLane MemType="RAMB32" Placement="X2Y19">
 <DataWidth MSB="31" LSB="16"/>
 <AddressRange Begin="0" End="2047"/>
 <Parity ON="false" NumBits="0"/>
 </BitLane>
 </BusBlock>
 </AddressSpace>
 </Processor>
 <Config>
 <Option Name="Part" Val="xc7z020clg484-1"/>
 </Config>
</MemInfo>

Address Map Definitions (Multiple Processor Support)

UpdateMEM supports multiple processors using the following XML tags:

<Processor Endianness=”Little” InstPath=”design_1_i/processing_system7_0”>
</Processor>
Embedded Processor Hardware Design 170
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=170
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=170

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
IMPORTANT: Although Processor Endianness is defined in the MMI file, it is not supported by
UpdateMEM.

Address Space Definitions

The outermost definition of an address space comprises the following components:

<AddressSpace Name=”design_1_i_processing_system7_0.design_1_i_axi_bram_ctrl_0”
Begin=”1073741824” End=”1073750015”>
</AddressSpace>

The ADDRESS_SPACE and /ADDRESS_SPACE tags define a single contiguous address
space. The mandatory Name= following the ADDRESS_SPACE tag provides a symbolic name
for the entire address space. Referring to the address space name is the same as referring to
the entire contents of the address space.

An MMI file can contain multiple ADDRESS_SPACE definitions, even for the same address
space, as long as each ADDRESS_SPACE name is unique.

Next is the beginning and ending address values that the Address Space occupies by using
the Begin= and End= pair.

BusBlock Definitions (Bus Accesses)

Inside an ADDRESS_SPACE definition are a variable number of sub-block definitions called
BusBlocks, as shown in the following example:

<BusBlock>
</BusBlock>

Each Bus Block contains block RAM Bit Lane definitions that are accessed by a parallel CPU
bus access.

The order in which the bus blocks are specified defines which part of the address space a
Bus Block occupies. The lowest addressed Bus Block is defined first, and the highest
addressed Bus Block is defined last. The top-to-bottom order in which Bus Blocks are
defined also controls the order in which UpdateMEM fills those Bus Blocks with data.

Bit-Lane Definitions (Memory Device Usage)

A bit-lane definition determines which bits in a CPU bus access are assigned to particular
block RAMs. Each definition takes the form of MemType with Placement data, followed by
the bit numbers and AddressRange the bit lane occupies. The syntax is, as follows:

<BitLane MemType=”RAMB32” Placement=”X2Y19”>
 <DataWidth MSB=”31” LSB=”16”/>
 <AddressRange Begin=”0” End=”2047”/>
 <Parity ON=”false” NumBits=”0”/>
 </BitLane>
Embedded Processor Hardware Design 171
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=171
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=171

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
IMPORTANT: Although bit-lane parity is defined in the MMI file, it is not supported by UpdateMEM.

Typically, the bit numbers are given in the following order:

<DataWidth MSB=bit_num LSB=bit_num>

If the order is reversed to have the least significant bit (LSB) first and the most significant
bit (MSB) second, UpdateMEM bit-reverses the bit-lane value before placing it into the
block RAM.

As with BusBlocks, the order in which bit-lanes are defined is important. But in the case of
bit-lanes, the order infers which part of BusBlock CPU access a bit-lane occupies. The first
bit-lane defined is inferred to be the most significant bit-lane value, and the last defined is
the least significant bit-lane value. In the following figure, the most significant bit-lane is
BRAM7, and the least significant bit-lane is BRAM0. As seen in Example Block RAM Address
Space Layout, this corresponds with the order in which the Bit Lanes are defined.

When UpdateMEM inputs data, it takes data from data input files in Bit Lane sized chunks,
from the most right value first to the left most. For example, if the first 64 bits of input data
are 0xB47DDE02826A8419 then the value 0xB4 is the first value to be set into a Block
RAM.

Given the Bit Lane order, BRAM7 is set to 0xB4, BRAM6 to 0x7D, and so on until BRAM0 is
set to 0x19. This process repeats for each successive Bus Block access BRAM set until the
memory space is filled or until the input data is exhausted. The figure below expands the
first Bus Block to illustrate this process.

X-Ref Target - Figure 7-2

Figure 7‐2: Bit Lane Fill Order
Embedded Processor Hardware Design 172
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=172
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=172

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
The Bit Lane definitions must match the hardware configuration. If the MMI is defined
differently from the way the hardware actually works, the data retrieved from the memory
components will be incorrect.

Bit Lane definitions also have some optional syntax, depending on what device type
keyword is used in the Address Block definition.

When specifying block RAM cells, the physical row and column location within the FPGA
device can be indicated. Following are examples of the physical row and column location:

Placement=”X3Y5”

Use the Placement= keyword to assign the corresponding block RAM to a specific
resource location in the FPGA device. In this case the block RAM is placed at column 3 and
row 5 in the FPGA device.

In addition to using correct syntax for bit-lane and BusBlock definitions, you must take into
account the following limitations:

• While the examples in this document use only byte-wide data widths for clarity, the
same principles apply to any data width for which a block RAM is configured.

• There cannot be any gaps or overlaps in bit-lane numbering. All bit-lanes in an Address
Block must be the same number of bits wide.

• The bit-lane widths are valid for the memory device specified by the device type
keyword.

• The amount of byte storage occupied by the Bit Lane block RAMs in a BusBlock must
equal the range of addresses inferred by the start and end addresses for a BusBlock.

° All BusBlocks must be the same number of bytes in size.

° A block RAM instance name can be specified only once.

° A BusBlock must contain one or more valid bit-lane definitions.

° An address Block must contain one or more valid BusBlock definitions.

UpdateMEM checks for all these conditions and transmits an error message if it detects a
violation.
Embedded Processor Hardware Design 173
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=173
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=173

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
Xilinx Parameterized Macros (XPM) Memories
XPM is a tool for creating RAM and ROM structures according to user-specified
requirements. Within the XPM code, you specify a number of generics including memory
size, clocking mode, ECC mode, and so forth. These requirements are then converted by the
Vivado synthesis tool into the appropriate size and style of memory array.

XPMs are simple, lightweight, in-line customizable, solutions for common HDL flow use
cases. They can also be considered as simple parameterizable IP. XPMs are synthesizable
SystemVerilog-based HDL delivered with the Vivado Design Suite.

For details on XPMs, see the Vivado Design Suite User Guide: System-Level Design Entry
(UG895) [Ref 14].

For details on the various XPMs and their parameterization options, see the UltraScale
Architecture Libraries Guide (UG974) [Ref 21].

Note: In the 2018.1 Vivado release and beyond, XPMs are enabled automatically in project mode,
and in non-project mode are used automatically during synthesis/implementation.

Because XPMs are used in RTL flows (or non-processor based designs), the UpdateMEM
command needs a MEM (.mem) file as an argument; it cannot take an ELF file as an
argument.

The limitations to using UpdateMEM with XPM memories are, as follows:

° ROM configurations need a MEM file prior to synthesis.

° ECC is not supported.

Using XPM Memory in Vivado

To use XPM Memory in Vivado you need to create design sources for the XPM memory.
Follow the following steps to create XPM memory.

1. Launch Vivado and create a Project.
2. In the Sources window, right-click Design Sources, and select Add Sources from the

context menu.
Embedded Processor Hardware Design 174
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=174
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=174

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
3. In the Add or Create Design Sources page, click Create File.

4. In the Create Source File dialog box, specify the HDL language of your choice from the
File type drop-down menu, and type a name for the memory block being created in the
File name field.

5. Keep the File location to its default value <Local to Project>.

X-Ref Target - Figure 7-3

Figure 7‐3: Add Sources Dialog Box

X-Ref Target - Figure 7-4

Figure 7‐4: Create a New Source File
Embedded Processor Hardware Design 175
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=175
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=175

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
6. Click OK, as shown in the following figure.

7. In the Add or Create Design Sources page, click Finish.

8. The Define Module dialog box opens. Click Cancel to dismiss the dialog box.
9. The Define Module dialog box asks to confirm that you indeed do not want to create the

template for the HDL file.
10. Click Yes.

This example copies a pre-existing XPRM template in the next steps into the HDL file.

X-Ref Target - Figure 7-5

Figure 7‐5: Create Source File Dialog Box

X-Ref Target - Figure 7-6

Figure 7‐6: Add Sources Dialog Box
Embedded Processor Hardware Design 176
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=176
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=176

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
11. Now you can see the newly created Verilog file in the Sources window.

12. In the Flow Navigator, under Project Manager, click Language Templates.

13. The Language Template dialog box opens. In the Search field type xpm and select the
template for the appropriate HDL code (VHDL/Verilog), shown in Figure 7-9.

X-Ref Target - Figure 7-7

Figure 7‐7: New HDL File in Sources Window

X-Ref Target - Figure 7-8

Figure 7‐8: New HDL File in Sources Window
Embedded Processor Hardware Design 177
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=177
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=177

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
14. Cut and paste the template for the Single Port RAM memory and add the instantiation
template to the HDL file. Complete the definition of the HDL file by adding the
appropriate entity and/or module definition.

15. Integrate your XPM memory block with the rest of the design. You can use the IP
Integrator tool to integrate the XPM memory as a RTL module.

16. Set the appropriate depth of the memory instantiated in the Address Editor.

X-Ref Target - Figure 7-9

Figure 7‐9: Language Template Dialog Box

X-Ref Target - Figure 7-10

Figure 7‐10: Block Design with XPM Memory Added as an RTL Module
Embedded Processor Hardware Design 178
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=178
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=178

Chapter 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
17. Generate output products, synthesize, implement, and create the bitstream for the
design.

18. If you have a mem file, you can use that to populate the initialization strings of the XPM
memory using the following updatemem command as an example:
updatemem -meminfo <mmi_file_name>.mmi -data <mem_file_name>.mem -bit <bit file
name>.bit -proc <path to xpm memory instance> -out <output bit file name>.bit

19. You can also use the -debug switch to see the init_strings of the XPM memory.
Below is an example of using the -debug switch.
updatemem -debug -meminfo <mmi_file_name>.mmi -data <mem_file_name>.mem -bit <bit
file name>.bit -proc <path to xpm memory instance> -out <output bit file name>.bit >
dmp.txt<

X-Ref Target - Figure 7-11

Figure 7‐11: Block Design with XPM Memory Added as an RTL Module
Embedded Processor Hardware Design 179
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=179
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=179

Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see
Xilinx Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

See the Xilinx Memory Interface Solution Center for information regarding the Memory IP.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page.
Embedded Processor Hardware Design 180
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/support/answers/34243.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=180
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=180

Appendix A: Additional Resources and Legal Notices
References
1. Zynq-7000 SoC Verification IP Data Sheet (DS940)
2. Zynq UltraScale+ MPSoC Verification IP (DS941)
3. MicroBlaze Triple Modular Redundancy (TMR) Subsystem (PG268)
4. MicroBlaze Debug Module (MDM) LogiCORE IP Product Guide (PG115)
5. UltraScale Architecture-Based FPGAs Memory IP LogicCORE IP Product Guide (PG150)
6. Zynq-7000 SoC Technical Reference Manual (UG585)
7. 7 Series FPGAs Memory Interface Solutions User Guide (UG586)
8. Xilinx Software Development Kit (SDK) Help (UG782)
9. Zynq-7000 SoC Software Developers Guide (UG821)
10. Vivado Design Suite Tcl Command Reference Guide (UG835)
11. Zynq-7000 SoC Packaging and Pinout Product Specification (UG865)
12. Vivado Design Suite User Guide: Design Flows Overview (UG892)
13. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)
14. Vivado Design Suite User Guide: System-Level Design Entry (UG895)
15. Vivado Design Suite User Guide: Synthesis (UG901)
16. Vivado Design Suite User Guide: Using Constraints (UG903)
17. Vivado Design Suite User Guide: Partial Reconfiguration (UG909)
18. ISE to Vivado Design Suite Migration Guide (UG911)
19. Zynq-7000 SoC PCB Design Guide (UG933)
20. Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940)
21. UltraScale Architecture Libraries Guide (UG974)
22. MicroBlaze Processor Reference Guide (UG984)
23. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
24. Vivado Design Suite Tutorial: Designing IP Subsystems Using IP Integrator (UG995)
25. Zynq UltraScale+ MPSoC Packaging and Pinout Product Specification (UG1075)
26. Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085)
27. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)
28. Zynq UltraScale+ MPSoC Software Developer Guide (UG1137)
Embedded Processor Hardware Design 181
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=mdm;v=latest;d=pg115-mdm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug933-Zynq-7000-PCB.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=SDK_Doc/index.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug865-Zynq-7000-Pkg-Pinout.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=ultrascale_memory_ip;v=latest;d=pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1075-zynq-ultrascale-pkg-pinout.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+doc;d=mig_7series/v1_9/ug586_7Series_MIS.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug995-vivado-ip-subsystems-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=tmr;v=v1_0;d=pg268-tmr.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=processing_system7_vip;v=latest;d=ds940-zynq-vip.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=zynq_ultra_ps_e_vip;v=v1_0;d=ds941-zynq-ultra-ps-e-vip.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=181
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=181

Appendix A: Additional Resources and Legal Notices
Training Resources

Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

1. Vivado Design Suite QuickTake Video: Designing with Vivado IP Integrator
2. Vivado Design Suite QuickTake Video: Targeting Zynq Devices Using Vivado IP

Integrator
3. Designing FPGAs Using the Vivado Design Suite 2
4. Embedded Systems Design Training Course
5. Advanced Features and Techniques of Embedded Systems Software Design Training

Course

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2013-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCIe, and PCI Express are trademarks
of PCI-SIG and used under license. All other trademarks are the property of their respective owners.
Embedded Processor Hardware Design 182
UG898 (v2019.1) June 4, 2019 www.xilinx.com

Send FeedbackSend Feedback

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=embedded-systems-design.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=advanced-embedded-systems-design.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=advanced-embedded-systems-design.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/targeting-zynq-using-vivado-ip-integrator.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/targeting-zynq-using-vivado-ip-integrator.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/designing-with-vivado-ip-integrator.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=182
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG898&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Embedded%20Processor%20Hardware%20Design&releaseVersion=2019.1&docPage=182

	Vivado Design Suite User Guide: Embedded Processor Hardware Design
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Overview
	Device Tools Flow Overview
	General Steps for Creating an Embedded Processor Design
	Embedded IP Catalog

	Completing Connections Using Designer Assistance
	Block Automation
	Using Connection Automation

	Making Manual Connections in a Design
	Manually Creating and Connecting to I/O Ports
	Enhanced Designer Assistance
	Platform Board Flow in IP Integrator
	Memory-Mapping in the Address Editor
	Running Design Rule Checks
	Integrating a Block Design in the Top-Level Design
	Generating Output Products
	Creating an HDL Wrapper

	Vivado Pin Planner View of PS I/O
	Vivado IDE Generated Embedded Files
	Using the Software Development Kit (SDK)
	SDK Availability
	Exporting a Hardware Description

	Ch. 2: Using a Zynq UltraScale+ MPSoC Device in an Embedded Design
	Introduction
	Designing Zynq UltraScale+ MPSoC Devices
	Creating a Design with the Zynq UltraScale+ Processing System

	Overview of Zynq UltraScale+ MPSoc Configurations
	Zynq UltraScale+ MPSoc Recustomization Window Information
	Configuring I/O Peripherals
	Low Speed Peripherals: Memory Interfaces
	QSPI
	NAND
	SD

	I/O Peripherals
	CAN
	I2C
	PJTAG
	PMU
	CSU
	SPI
	UART
	GPIO
	Processing Unit
	SWDT
	Trace
	TTC

	High Speed Peripherals
	Gigabit Ethernet Controller (GEM)
	USB
	PCIe
	Display Port
	SATA

	Reference Clocks

	Clock Configuration
	DDR
	PS - PL Configuration
	Advanced Configuration
	PCIe Configuration
	Isolation Configuration

	Validation IP
	Features

	Finishing the Design

	Ch. 3: Using a Zynq-7000 Processor in an Embedded Design
	Introduction
	Designing with Zynq-7000 Processors
	Creating an IP Integrator Design with the Zynq-7000 Processor

	Overview of the Zynq-7000 Block Design and Configuration Window
	Processing System (PS)-Programmable Logic (PL) Configuration Options
	General Options

	MIO and EMIO Configuration
	Pin Limitations
	Bank Settings
	Flash Memory Interfaces
	Quad-SPI Flash
	SRAM/NOR Flash
	NAND Flash

	Clock Configuration
	DDR Configuration
	GIC - Interrupt Controller
	Interconnect between PS and PL
	AXI_HP Interfaces

	AXI ACP Interface
	AXI GP Interfaces
	PS-PL Cross Trigger Interface

	Using the Programmable Logic (PL)
	Creating Custom Logic
	Zynq-7000 Processing System Verification
	Features
	Additional Features

	Ch. 4: Using a MicroBlaze Processor in an Embedded Design
	Introduction to MicroBlaze Processor Design
	Creating a MicroBlaze Processor Design
	Designing with the MicroBlaze Processor

	Using the MicroBlaze Configuration Window
	MicroBlaze Configuration Wizard: Welcome Page
	Select Processor Implementation
	General Settings

	MicroBlaze Configuration Wizard: General Page
	Instructions
	Optimization
	Fault Tolerance

	MicroBlaze Configuration Wizard: Cache Page
	MicroBlaze Configuration Wizard: MMU Page
	Memory Management
	Memory Management Features

	MicroBlaze Configuration Wizard: Debug Page
	Debug Options
	Hardware Breakpoints
	Interface

	Performance Monitoring
	Trace and Profiling

	MicroBlaze Configuration Wizard: Buses Page
	Local Memory Bus Interfaces
	AXI and ACE Interfaces
	Stream Interfaces
	Other Interfaces

	MicroBlaze Configuration Wizard: Advanced Mode
	MicroBlaze Advanced Mode Exception Tab
	Math Exceptions
	Bus Exceptions
	Other Exceptions
	MicroBlaze Advanced Mode Interrupt & Reset Tab
	Interrupt
	Reset
	Vectors

	MicroBlaze Advanced Mode PVR Tab
	Processor Version Registers

	Cross-Trigger Feature of MicroBlaze Processors
	Custom Logic
	Embedded IP Catalog
	Completing Connections
	Block Automation
	Using Connection Automation
	Completing the Design
	MicroBlaze Processor Constraints
	Taking the Design through Synthesis, Implementation, and Bitstream Generation
	Exporting Hardware to the Software Development Kit (SDK)

	Multiple MicroBlaze Processor Designs
	Instantiate MicroBlaze IP Cores
	Run Connection Automation
	Re-Customizing AXI Interconnects
	Mapping and Excluding Unwanted Slaves

	Ch. 5: Designing with the Memory IP Core
	Overview
	Adding the Memory IP
	Making Connections with Block Automation
	Adding a Clocking Wizard
	Adding an AXI Master
	Creating a Memory Map
	Running Design Rule Checks
	Implementing the Design

	Ch. 6: Reset and Clock Topologies in IP Integrator
	Overview
	MicroBlaze Design without a Memory IP Core
	MicroBlaze Design with a Memory IP Core
	Zynq Design without PL Logic
	Zynq-7000 Design with PL Logic
	Zynq Design with a Memory IP Core in the PL
	Designs with Memory IP and the Clocking Wizard

	Ch. 7: Using UpdateMEM to Update BIT files with MMI and ELF Data
	Overview
	Using UpdateMEM
	Arguments for updatemem
	Examples

	Memory (MEM) Files
	BRAM Memory Map Info (MMI) File
	Memory Map Information File (MMI) Features
	MMI File Syntax
	Address Map Definitions (Multiple Processor Support)
	Address Space Definitions
	BusBlock Definitions (Bus Accesses)
	Bit-Lane Definitions (Memory Device Usage)

	Xilinx Parameterized Macros (XPM) Memories
	Using XPM Memory in Vivado

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Resources

	Please Read: Important Legal Notices

