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Chapter 1

SDAccel Compilation Flow and
Execution Model

The SDAccel™ development environment is a heterogeneous system architecture platform to
accelerate compute intensive tasks using Xilinx® FPGA devices. The SDAccel environment
contains a Host x86 machine that is connected to one or more Xilinx FPGA devices through a
PCIe® bus, as shown below.

Figure 1:   SDAccel Architecture

Programming Model
The SDAccel environment supports heterogeneous computing using the industry standard
OpenCL protocol (https://www.khronos.org/opencl/). The host program executes on the Host
CPU and offloads compute intensive tasks to execute on Xilinx FPGA devices using the OpenCL
programming paradigm. Unlike a CPU (or GPU), the FPGA can be thought of as a blank canvas
which does not have predefined instruction sets or fixed word size, and is capable of running the
same or different instructions in parallel to greatly improve the performance of your applications.
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Device Topology
In the SDAccel environment, devices are one or more FPGAs connected to a host x86 machine
through a PCIe bus. The FPGA contains a programmable region that implements and executes
kernels. The FPGA platform contains one or more global memory banks. The data transfer from
the host machine to kernels and from kernels to the host happens through these global memory
banks. The kernels running on the FPGA can have one or more memory interfaces. The
connection from the global memory banks to those memory interfaces are configurable, as their
features are determined by the kernel compilation options.

The programmable logic of Xilinx devices can implement multiple kernels at the same time,
allowing for significant task parallelism. A single kernel can also be instantiated multiple times.
The number of instances of a kernel is programmable and determined by the kernel compilation
options.

Figure 2:   SDAccel Architecture

The diagram above illustrates the flexible connections from the host application to multiple
kernels through the global memory banks. The FPGA board device shown above contains four
DDR memory banks. The programmable logic of the FPGA is running two kernels, Kernel A and
Kernel B. Each kernel has two memory interfaces one for reading the data and another for
writing. Also, note that there are two instances of Kernel A, totaling three simultaneous kernel
instances on the FPGA.

In the diagram, the first instance of Kernel A: CU1 uses a single memory interface for reading and
writing. Kernel B and the second instance of Kernel A: CU2 use different memory interfaces for
reading, and writing, with Kernel B essentially passing data directly to Kernel A: CU2 through the
global memory.

RECOMMENDED: To achieve the best performance, the global memory banks to kernel interface connections
should carefully be defined as discussed in Connecting Kernel Ports to Global Memory.
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SDAccel Build Process
The SDAccel environment offers all of the features of a standard software development
environment:

• Optimized compiler for host applications

• Cross-compilers for the FPGA

• Robust debugging environment to help identify and resolve issues in the code

• Performance profilers to identify bottlenecks and optimize the code

Within this environment, the build process uses a standard compilation and linking process for
both the software elements, and the hardware elements of the project. As shown in the following
figure, the host application is built through one process using standard GCC compiler, and the
FPGA binary is built through a separate process using the Xilinx xocc compiler.

Figure 3:   Software/Hardware Build Process

X22015-112618

1. Host application build process using GCC:

• Each host application source file is compiled to an object file (.o).

• The object files (.o) are linked with the Xilinx SDAccel runtime shared library to create the
executable (.exe).
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2. FPGA build process is highlighted in the following figure:

• Each kernel is independently compiled to a Xilinx object (.xo) file.

○ C/C++ and OpenCL C kernels are compiled for implementation on an FPGA using the
xocc compiler. This step leverages the Vivado® HLS compiler. Pragmas and attributes
supported by Vivado HLS can be used in C/C++ and OpenCL C kernel source code to
specify the desired kernel micro-architecture and control the result of the compilation
process.

○ RTL kernels are compiled using the package_xo utility. The RTL kernel wizard in the
SDAccel environment can be used to simplify this process.

• The kernel .xo files are linked with the hardware platform (shell) to create the FPGA
binary (.xclbin). Important architectural aspects are determined during the link step. In
particular, this is where connections from kernel ports to global memory banks are
established and where the number of instances for each kernel is specified.

○ When the build target is software or hardware emulation, as described below, xocc
generates simulation models of the device contents.

○ When the build target is the system (actual hardware), xocc generates the FPGA binary
for the device leveraging the Vivado Design Suite to run synthesis and implementation.

Figure 4:   FPGA Build Process
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Note: The xocc compiler automatically uses the Vivado HLS and Vivado Design Suite tools to build the
kernels to run on the FPGA platform. It uses these tools with predefined settings which have proven to
provide good quality of results. Using the SDAccel environment and the xocc compiler does not require
knowledge of these tools; however, hardware-savvy developers can fully leverage these tools and use all
their available features to implement kernels.

Build Targets

The SDAccel tool build process generates the host application executable (.exe) and the FPGA
binary (.xclbin). The SDAccel build target defines the nature of FPGA binary generated by the
build process.

The SDAccel tool provides three different build targets, two emulation targets used for debug
and validation purposes, and the default hardware target used to generate the actual FPGA
binary:

• Software Emulation (sw_emu): Both the host application code and the kernel code are
compiled to run on the x86 processor. This allows iterative algorithm refinement through fast
build-and-run loops. This target is useful for identifying syntax errors, performing source-level
debugging of the kernel code running together with application, and verifying the behavior of
the system.

• Hardware Emulation (hw_emu): The kernel code is compiled into a hardware model (RTL)
which is run in a dedicated simulator. This build and run loop takes longer but provides a
detailed, cycle-accurate, view of kernel activity. This target is useful for testing the
functionality of the logic that will go in the FPGA and for getting initial performance
estimates.

• System (hw): The kernel code is compiled into a hardware model (RTL) and is then
implemented on the FPGA device, resulting in a binary that will run on the actual FPGA.

SDAccel Execution Model
In the SDAccel framework, an application program is split between a host application and
hardware accelerated kernels with a communication channel between them. The host
application, written in C/C++ and using API abstractions like OpenCL, runs on an x86 server
while hardware accelerated kernels run within the Xilinx FPGA. The API calls, managed by the
Xilinx Runtime (XRT), are used to communicate with the hardware accelerators. Communication
between the host x86 machine and the accelerator board, including control and data transfers,
occurs across the PCIe bus. While control information is transferred between specific memory
locations in hardware, global memory is used to transfer data between the host application and
the kernels. Global memory is accessible by both the host processor and hardware accelerators,
while host memory is only accessible by the host application.
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For instance, in a typical application, the host will first transfer data, to be operated on by the
kernel, from host memory into global memory. The kernel would subsequently operate on the
data, storing results back to the global memory. Upon kernel completion, the host would transfer
the results back into the host memory. Data transfers between the host and global memory
introduce latency which can be costly to the overall acceleration. To achieve acceleration in a real
system, the benefits achieved by hardware acceleration kernels must outweigh the extra latency
of the data transfers. The general structure of this acceleration platform is shown in the following
figure.

Figure 5:   Architecture of an SDAccel Application
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The FPGA hardware platform, on the right-hand side, contains the hardware accelerated kernels,
global memory along with the DMA for memory transfers. Kernels can have one or more global
memory interfaces and are programmable. The SDAccel execution model can be broken down
into these steps:

1. The host application writes the data needed by a kernel into the global memory of the
attached device through the PCIe interface.

2. The host application sets up the kernel with its input parameters.

3. The host application triggers the execution of the kernel function on the FPGA.
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4. The kernel performs the required computation while reading data from global memory, as
necessary.

5. The kernel writes data back to global memory and notifies the host that it has completed its
task.

6. The host application reads data back from global memory into the host memory and
continues processing as needed.

The FPGA can accommodate multiple kernel instances at one time; this can occur between
different types of kernels or multiple instances of the same kernel. The XRT transparently
orchestrates the communication between the host application and the kernels in the accelerator.
The number of instances of a kernel is determined by compilation options.

SDAccel Emulation Flows
The SDAccel environment development flow can be divided into two distinct steps. The first step
is to compile the host and kernel code to generate the executables. The second step is to run the
executables in a heterogeneous system comprised of the Host CPU and SDAccel environment
accelerator platform. However, the kernel compilation process is long and can take several hours
depending on the size of the kernels and the architecture of the target FPGA. Therefore, to save
time and shorten the debug cycle before the kernel compilation process, the SDAccel
environment provides two other build targets for testing purposes: software emulation and
hardware emulation. The compilation and execution of these emulation targets are significantly
faster, and do not require the actual FPGA board to be run. These emulation flows abstract the
FPGA board, and its connection to the host machine, into software models to validate the
combined functionality of the host and kernel code, as well as providing some performance
estimates early in the design process. These performance estimates are just estimates, but they
can greatly help debugging and identifying performance bottlenecks. Refer to the SDAccel
Environment Debugging Guide (UG1281) for more information on debugging using software and
hardware emulation flows.

Software Emulation Flow

Compilation of the software emulation target is the fastest. It is mainly used for checking the
functional correctness when the host and kernel code are running together. The xocc compiler
does the minimum transformation of the kernel code in order to run it in conjunction with the
host code, so this software emulation flow helps to check functional correctness at the very early
stage of the final binary creation. The software emulation flow can be used for algorithm
refinement, debugging functional issues, and letting developers iterate quickly through the code
to make improvements.
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Hardware Emulation Flow

In the hardware emulation flow, the xocc compiler generates a model of the kernel in a
hardware description language (RTL Verilog). The hardware emulation flow helps to check the
functional correctness of the final binary creation after synthesis of the RTL from the C, C++, or
OpenCL kernel code. The hardware emulation flow offers great debug capability with the
waveform viewer if the system does not work as expected.

Table 1:   Comparison of Emulation Flows with Hardware Execution

Software Emulation Hardware Emulation Hardware Execution

Host application runs with a C/C++ or
OpenCL model of the kernels.

Host application runs with a simulated
RTL model of the kernels.

Host application runs with actual
hardware implementation of the
kernels.

Confirm functional correctness of the
system.

Test the host / kernel integration, get
performance estimates.

Confirm that the system runs correctly
and with desired performance.

Fastest turnaround time. Best debug capabilities, moderate
compilation time.

Final FPGA implementation and run
provides accurate performance result
with long build time.

SDAccel Example Designs
SDAccel Examples on GitHub

Xilinx provides many examples for programming with the SDAccel environment in the GitHub
repository to help beginning users get familiar with the coding style of host and kernel code, and
for more experienced users to use as a source of coding examples. All examples are available
with host code, kernel code, and Makefile associated with the compilation flow and runtime flow.
The following is one such example to get a basic understanding of the file structure of a standard
example.

Inverse Discrete Cosine Transform (IDCT) Example

Look at the IDCT example design that demonstrates the key coding organization required for the
SDAccel environment.

The Readme.md file discusses in detail how to run this example in both emulation and FPGA
execution flows using the provided Makefile.

Inside the ./src directory, you can find host code idct.cpp, and kernel code
krnl_idct.cpp.

In the following chapters you will learn the basic required knowledge to program the host code
and kernel code for the SDAccel environment. During this process you might refer to the above
design as an example.
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Organization of this Guide
The remaining chapters are organized as follows:

• Chapter 2: Programming the Host Application: Describes writing host code in C or C++ using
the OpenCL API targeted for Xilinx FPGA devices. This chapter assumes the user has prior
knowledge of OpenCL. It discusses coding practices to follow when writing an effective host
application interfacing with acceleration kernels running on Xilinx FPGA devices.

• Chapter 3: Programming C/C++ Kernels: Describes different elements of writing high-
performance, compute-intensive kernel code to implement on an FPGA device.

• Chapter 4: Configuring the System Architecture: Discusses integrating and connecting the
host application to one or more kernel instances during the linking process.
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Chapter 2

Programming the Host Application
In the SDAccel™ environment, host code is written in C or C++ language using the industry
standard OpenCL™ API. The SDAccel environment provides an OpenCL 1.2 embedded profile
conformant runtime API.

Note: The SDAccel environment supports the OpenCL Installable Client Driver (ICD) extension
(cl_khr_icd). This extension allows multiple implementations of OpenCL to co-exist on the same
system. Refer to Appendix B: OpenCL Installable Client Driver Loader for details and installation
instructions.

The SDAccel environment consists of a host x86 CPU and compute devices running on a Xilinx®

FPGA.

In general, the structure of the host code can be divided into three sections:

1. Setting up the environment.

2. Core command execution including executing one or more kernels.

3. Post processing and FPGA release.

The following sections discuss each of the above topics in detail.

Note: For multithreading the host program, exercise caution when calling a fork() system call from an
SDAccel environment application. The fork() does not duplicate all the runtime threads. Hence the child
process cannot run as a complete application in the SDAccel environment. It is advisable to use the
posix_spawn() system call to launch another process from the SDAccel environment application.

Setting Up the OpenCL Environment
The host code in the SDAccel environment follows OpenCL programming paradigm. To set the
environment properly, the host application should identify the standard OpenCL models. They
are: platform, devices, context, command queue, and program.

TIP: The host code examples and API commands used in this document follow the OpenCL C API. The IDCT
example referred to in SDAccel Example Designs is also written with the C API. However, the SDAccel runtime
environment also supports the OpenCL C++ wrapper API, and many of the examples in the GitHub repository
are written using the C++ API. Refer to https://www.khronos.org/registry/OpenCL/specs/opencl-
cplusplus-1.2.pdf for more information on this C++ wrapper API.

Chapter 2: Programming the Host Application

UG1277 (v2019.1) May 22, 2019  www.xilinx.com
SDAccel Programmers Guide  14Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/vision/idct
https://github.com/Xilinx/SDAccel_Examples/tree/master/vision/idct
https://github.com/Xilinx/SDAccel_Examples
https://www.khronos.org/registry/OpenCL/specs/opencl-cplusplus-1.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-cplusplus-1.2.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1277&Title=SDAccel%20Programmers%20Guide&releaseVersion=2019.1&docPage=14


Platform
From the very beginning the host code should identify the platform composed of Xilinx FPGA as
one or more devices. The host code segment below is standard coding to identify the Xilinx
device based platform.

cl_platform_id platform_id;         // platform id

err = clGetPlatformIDs(16, platforms, &platform_count);
    
// Find Xilinx Platform
for (unsigned int iplat=0; iplat<platform_count; iplat++) {
  err = clGetPlatformInfo(platforms[iplat], 
    CL_PLATFORM_VENDOR, 
    1000, 
    (void *)cl_platform_vendor,
    NULL);

  if (strcmp(cl_platform_vendor, "Xilinx") == 0) { 
  // Xilinx Platform found
  platform_id = platforms[iplat];
  }
}

The OpenCL API call clGetPlatformIDs is used to discover the set of available OpenCL platforms
for a given system. Thereafter, clGetPlatformInfo is used to identify the Xilinx device based
platform by matching cl_platform_vendor with the string "Xilinx".

RECOMMENDED: Though it is not explicitly shown in the preceding code, or in other host code examples used
throughout this chapter, it is always a good coding practice to use error checking after each of the OpenCL API
calls. This can help debugging and improve productivity when you are debugging the host and kernel code in the
emulation flow, or during hardware execution. Below is an error checking code example for
clGetPlatformIDs command:

err = clGetPlatformIDs(16, platforms, &platform_count);
if (err != CL_SUCCESS) {
  printf("Error: Failed to find an OpenCL platform!\n");
  printf("Test failed\n");
  exit(1);
}

Devices
After the platform detection, the Xilinx FPGA devices attached to the platform are identified. The
SDAccel environment supports one or more Xilinx FPGA devices working together.
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The following code demonstrates finding all the Xilinx devices (with a upper limit of 16) by using
API clGetDeviceIDs and printing their names.

cl_device_id devices[16];  // compute device id
char cl_device_name[1001];
    
err = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_ACCELERATOR, 
  16, devices, &num_devices);
    
printf("INFO: Found %d devices\n", num_devices);
    
//iterate all devices to select the target device.
for (uint i=0; i<num_devices; i++) {
  err = clGetDeviceInfo(devices[i], CL_DEVICE_NAME, 1024, cl_device_name, 
0);
  printf("CL_DEVICE_NAME %s\n", cl_device_name);
}

IMPORTANT! The clGetDeviceIDs API is called with the device_typeand
CL_DEVICE_TYPE_ACCELERATOR to receive all the available Xilinx devices.

Sub-Devices

In the SDAccel environment, sometimes devices contain multiple kernel instances of a single
kernel or of different kernels. The OpenCL API clCreateSubDevices allows the host code to
divide the device into multiple sub-devices containing one kernel instance per sub-device.
Currently, the SDAccel environment supports equally divided sub-devices each containing only
one kernel instance.

The following example shows:

1. The sub-devices are created by equal partition to execute one kernel instance per sub-device.

2. Iterating over the sub-device list and using a separate context and command queue to
execute the kernel on each of them.

3. The API related to kernel execution (and corresponding buffer related) code is not shown for
the sake of simplicity, but would be described inside the function run_cu.

cl_uint num_devices = 0;
  cl_device_partition_property props[3] = {CL_DEVICE_PARTITION_EQUALLY,1,0};
  
  // Get the number of sub-devices
  clCreateSubDevices(device,props,0,nullptr,&num_devices);  
  
  // Container to hold the sub-devices
  std::vector<cl_device_id> devices(num_devices);  

  // Second call of clCreateSubDevices    
  // We get sub-device handles in devices.data()
  clCreateSubDevices(device,props,num_devices,devices.data(),nullptr); 

  // Iterating over sub-devices
  std::for_each(devices.begin(),devices.end(),[kernel](cl_device_id sdev) {
      
      // Context for sub-device
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      auto context = clCreateContext(0,1,&sdev,nullptr,nullptr,&err);  
      
      // Command-queue for sub-device
      auto queue = clCreateCommandQueue(context,sdev,
      CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE,&err); 
      
      // Execute the kernel on the sub-device using local context and 
    queue run_cu(context,queue,kernel); // Function not shown 
  });

IMPORTANT! As shown in the above example, create separate context for each and every sub-devices. Though
OpenCL allows to create a context that can hold multiple devices and sub-devices, for Xilinx Runtime it is
recommended to separate each device and sub-device into a separate context.

Context
The OpenCL context creation process is straightforward. The API clCreateContext is used to
create a context that contains one or more Xilinx devices that will communicate with the host
machine.

context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);

In the code example above, the API clCreateContext is used to create a context that contains
one Xilinx device. You can create only one context for a device from a host program. However,
the host program should use multiple contexts if sub-devices are used; one context for each sub-
device.

Command Queues
One or more command queues for each device is created using the clCreateCommandQueue
API. The FPGA device can contain multiple kernels. When developing the host application, there
are two main programming approaches to execute kernels on a device:

1. Single out-of-order command queue: Multiple kernel executions can be requested through
the same command queue. The SDAccel runtime environment dispatches those kernels as
soon as possible in any order allowing concurrent kernel execution on the FPGA.

2. Multiple in-order command queue: Each kernel execution will be requested from different in-
order command queues. In such cases, the SDAccel runtime environment can dispatch
kernels from any command queue with the intention of improving performance by running
them concurrently on the FPGA.
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The following is an example of standard API calls to create in-order and out-of-order command
queues.

// Out-of-order Command queue
commands = clCreateCommandQueue(context, device_id, 
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err);

// In-order Command Queue
commands = clCreateCommandQueue(context, device_id, 0, &err);

Program
As described in the SDAccel Build Process, the host and kernel code are compiled separately to
create separate executable files: the host application (.exe) and the FPGA binary (.xclbin).
When the host application is executed it must load the .xclbin using the 
clCreateProgramWithBinary API.

The following code example shows how the standard OpenCL API is used to build the program
from the .xclbin file:

unsigned char *kernelbinary;
char *xclbin = argv[1];

printf("INFO: loading xclbin %s\n", xclbin);
 
int size=load_file_to_memory(xclbin, (char **) &kernelbinary);
size_t size_var = size; 

cl_program program = clCreateProgramWithBinary(context, 1, &device_id, 
                     &size_var,(const unsigned char **) &kernelbinary, 
                     &status, &err);

// Function 
int load_file_to_memory(const char *filename, char **result)
{
  uint size = 0;
  FILE *f = fopen(filename, "rb");
  if (f == NULL) {
    *result = NULL;
    return -1; // -1 means file opening fail
  }
  fseek(f, 0, SEEK_END);
  size = ftell(f);
  fseek(f, 0, SEEK_SET);
  *result = (char *)malloc(size+1);
  if (size != fread(*result, sizeof(char), size, f)) {
    free(*result);
    return -2; // -2 means file reading fail
  }
  fclose(f);
  (*result)[size] = 0;
  return size;
}

The above example performs the following steps:
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1. The kernel binary file, .xclbin, is passed in from the command line argument, argv[1].

TIP: Passing the .xclbin through a command line argument is specific to this example. You can also hardcode
the kernel binary file in the application, use an environment variable, read it from a custom initialization file or
any other suitable mechanism.

2. The load_file_to_memory function is used to load the file contents in the host machine
memory space.

3. The API clCreateProgramWithBinary is used to complete the program creation
process.

Executing Commands in the FPGA Device
Once the OpenCL environment is initialized, the host application is ready to issue commands to
the device and interact with the kernels. Such commands include:

1. Setting up the kernels.

2. Buffer transfer to/from the FPGA.

3. Kernel execution on FPGA.

4. Event synchronization.

Setting Up the Kernels
After the initialization of all the preliminaries such as context, command queues, and program,
the host application should identify the kernels required to execute on the device and setting up
their arguments.

Kernels Identification

At the beginning, the clCreateKernel API should be used to access the kernels present inside
the .xclbin file. The kernel handle (cl_kernel type) denotes a kernel object that now can be
used in the rest of the host program.

kernel1 = (program, "<kernel_name_1>", &err);            
kernel2 = clCreateKernel(program, "<kernel_name_2>", &err);  // etc

Setting Kernel Arguments

In the SDAccel environment framework, two types of kernel arguments can be set:

1. The scalar arguments are used for small data transfer, such as constant or configuration type
data. These are write-only arguments.
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2. The buffer arguments are used for large data transfer.

The kernel arguments can be set using the clSetKernelArg command as shown below. The
following example shows setting kernel arguments for two scalar and two buffer arguments.

cl_mem dev_buf1 = clCreateBuffer(context, CL_MEM_WRITE, size, 
&host_mem_ptr1, NULL);
cl_mem dev_buf2 = clCreateBuffer(context, CL_MEM_READ, size, 
&host_mem_ptr2, NULL);

int err = 0;
// Setting up scalar arguments
cl_uint scalar_arg_image_width = 3840;
err |= clSetKernelArg(kernel, 0, sizeof(cl_uint), &scalar_arg_image_width); 
cl_uint scalar_arg_image_height = 2160; 
err |= clSetKernelArg(kernel, 1, sizeof(cl_uint), 
&scalar_arg_image_height); 
    
// Setting up buffer arguments
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &dev_buf1);
err |= clSetKernelArg(kernel, 3, sizeof(cl_mem), &dev_buf2);

IMPORTANT! Though OpenCL allows setting kernel arguments any time before the kernel enqueuing, Xilinx
recommends setting kernel arguments as early as possible. This helps Xilinx Runtime determine the buffer
location on the device. Therefore, set the kernel arguments before performing any enqueue operation (for
example, clEmqueueMigrateMemObjects) on any buffer.

Buffer Transfer to/from the FPGA Device
Interactions between the host application and kernels rely on transferring data to and from
global memory in the device. The method to send data back and forth from the FPGA is using 
clCreateBuffer, clEnqueueWriteBuffer, and clEnqueueReadBuffer commands.

RECOMMENDED: Xilinx recommends using clEnqueueMigrateMemObjects instead of
clEnqueueReadBuffer and clEnqueueWriteBuffer.

The following code example demonstrates this:

int host_mem_ptr[MAX_LENGTH]; // host memory for input vector
// Fill the memory input
for(int i=0; i<MAX_LENGTH; i++) {
  host_mem_ptr[i] = <... >   
}
cl_mem dev_mem_ptr = clCreateBuffer(context,  CL_MEM_READ_WRITE, 
                     sizeof(int) * number_of_words, NULL, NULL);

err = clEnqueueWriteBuffer(commands, dev_mem_ptr, CL_TRUE, 0,
      sizeof(int) * number_of_words, host_mem_ptr, 0, NULL, NULL);

IMPORTANT! A single buffer cannot be bigger than 4 GB.

Note: To maximize throughput from host to global memory, sending very small buffers is not very effective.
Xilinx recommends keeping the buffer size at least 2 MB if possible.
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For simple applications the example code above would be sufficient to transfer data from the
host to the device memory. However, there are a number of coding practices you should adopt to
maximize performance and fine-grain control.

Using clEnqueueMigrateMemObjects

Xilinx recommends using clEnqueueMigrateMemObjects instead of clEnqueueWriteBuffer
or clEnqueueReadBuffer to improve the performance. There are two main parts of a cl_mem
object: host side pointer and device side pointer. Before the kernel starts its operation, the device
side pointer is implicitly allocated on the device side memory (for example, on a specific location
inside the device global memory) and the buffer becomes a resident on the device. However, by
using clEnqueueMigrateMemObjects this allocation and data transfer occur upfront, much
ahead of the kernel execution. This especially helps to enable software pipelining if the host is
executing the same kernel multiple times, because data transfer for the next transaction can
happen when kernel is still operating on the previous data set, and thus hide the data transfer
latency of successive kernel executions.

The following code example is modified to use clEnqueueMigrateMemObjects:

int host_mem_ptr[MAX_LENGTH]; // host memory for input vector
      
// Fill the memory input
for(int i=0; i<MAX_LENGTH; i++) {
  host_mem_ptr[i] = <... >   
}

cl_mem dev_mem_ptr = clCreateBuffer(context,  
                     CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
                     sizeof(int) * number_of_words, host_mem_ptr, NULL); 

clSetKernelArg(kernel, 0, sizeof(cl_mem), &dev_mem_ptr); 

err = clEnqueueMigrateMemObjects(commands, 1, dev_mem_ptr, 0, 0, 
      NULL, NULL);

Allocating Page-Aligned Host Memory

Xilinx Runtime allocates the memory space in 4K boundary for internal memory management. If
the host memory pointer is not aligned to a page boundary, the Xilinx Runtime performs extra
memcpy to make it aligned. Hence you should align the host memory pointer with the 4K
boundary to save the extra memory copy operation.

The following is an example of how posix_memalign is used instead of malloc for the host
memory space pointer.

int *host_mem_ptr; // = (int*) malloc(MAX_LENGTH*sizeof(int));
// Aligning memory in 4K boundary
posix_memalign(&host_mem_ptr,4096,MAX_LENGTH*sizeof(int)); 
 
// Fill the memory input       
for(int i=0; i<MAX_LENGTH; i++) {
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  host_mem_ptr[i] = <... >   
}

cl_mem dev_mem_ptr = clCreateBuffer(context, 
                     CL_MEM_READ_WRITE ,  
                     sizeof(int) * number_of_words, host_mem_ptr, NULL); 

err = clEnqueueMigrateMemObjects(commands, 1, dev_mem_ptr, 0, 0, 
      NULL, NULL);

Using clEnqueueMapBuffer

Another approach for creating and managing buffers is to use clEnqueueMapBuffer. With this
approach, it is not necessary to create a host space pointer aligned to 4K boundary. The
clEnqueueMapBuffer API maps the specified buffer and returns a pointer created by the
Xilinx Runtime to this mapped region. Then, fill the host side pointer with your data, followed by
clEnqueueMigrateMemObject to transfer the data to and from the device. Below is an
example that uses this style. Note CL_MEM_USE_HOST_PTR is not used for clCreateBuffer.

// Two cl_mem buffer, for read and write by kernel
cl_mem dev_mem_read_ptr = clCreateBuffer(context,  
                     CL_MEM_READ_ONLY,
                     sizeof(int) * number_of_words, NULL, NULL); 

cl_mem dev_mem_write_ptr = clCreateBuffer(context,  
                     CL_MEM_WRITE_ONLY,
                     sizeof(int) * number_of_words, NULL, NULL); 

// Setting arguments
clSetKernelArg(kernel, 0, sizeof(cl_mem), &dev_mem_read_ptr); 
clSetKernelArg(kernel, 1, sizeof(cl_mem), &dev_mem_write_ptr); 

// Get Host side pointer of the cl_mem buffer object
auto host_write_ptr = 
clEnqueueMapBuffer(queue,dev_mem_read_ptr,true,CL_MAP_WRITE,0,bytes,0,nullpt
r,nullptr,&err);
auto host_read_ptr = 
clEnqueueMapBuffer(queue,dev_mem_write_ptr,true,CL_MAP_READ,0,bytes,0,nullpt
r,nullptr,&err);

// Fill up the host_write_ptr to send the data to the FPGA

for(int i=0; i< MAX; i++) {
    host_write_ptr[i] = <.... > 
}

// Migrate
cl_mem mems[2] = {host_write_ptr,host_read_ptr};
clEnqueueMigrateMemObjects(queue,2,mems,0,0,nullptr,&migrate_event));

// Schedule the kernel
clEnqueueTask(queue,kernel,1,&migrate_event,&enqueue_event);

// Migrate data back to host
clEnqueueMigrateMemObjects(queue, 1, &dev_mem_write_ptr, 
                           CL_MIGRATE_MEM_OBJECT_HOST,1,&enqueue_event, 
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&data_read_event);
     
clWaitForEvents(1,&data_read_event);

// Now use the data from the host_read_ptr

Buffer Allocation on the Device

By default, all the memory interfaces from all the kernels are connected to a single default global
memory bank when kernels are linked. As a result, only one compute unit (CU) can transfer data
to and from the global memory bank at a time, limiting the overall performance of the
application. If the FPGA contains only one global memory bank, then this is the only option.
However, if the device contains multiple global memory banks, you can customize the global
memory bank connections by modifying the default connection. This topic is discussed in greater
detail in Connecting Kernel Ports to Global Memory. Overall performance is improved by
enabling multiple kernel memory interfaces to concurrently read and write data from separate
global memory banks.

As in the SDAccel environment the host code and the kernel code are compiled independently.
Xilinx Runtime needs to detect the kernel's memory connection to send the data to the correct
memory location from the host code. The latest 2019.1 Xilinx Runtime will automatically find the
buffer location from the kernel binary files if clSetKernelArgs is used before any enqueue
operation on the buffer, for example clEnqueueMigrateMemObject.

Before the 2019.1 release, the OpenCL host code required a Xilinx extension
(cl_mem_ext_ptr) to specify the exact buffer location on the device. Though this method is
still supported, it is no longer necessary and is not documented in this version of the guide. For
more information on specifying buffer location using cl_mem_ext_ptr, see the earlier version
of this guide.

Sub-Buffers

Though not very common, using sub-buffer can be very useful in specific situations. The
following sections discuss the scenarios where using sub-buffers can be beneficial.

Reading a Specific Portion from the Device Buffer

Consider a kernel that is producing different amounts of data depending on the input to the
kernel. A simple example can be a compression engine where the output size varies depending
on the input data pattern and similarity. The host can still read the whole output buffer by using
clEnqueueMigrateMemObjects, but that is a suboptimal approach as more than required
memory transfer would take place. Ideally the host only needs to read the exact amount of data
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that kernel has written. One of the techniques can be adopted by kernel is to write a size
information of the output data at the start of the output written data. If using
clEnqueueReadBuffer, the host code can use clEnqueueReadBuffer two times, first for
reading the size of the data, and the second to read exact amount of data by using the size
information from the first read.

clEnqueueReadBuffer(command_queue,device_write_ptr, CL_FALSE, 0, 
sizeof(int) * 1, 
                    &kernel_write_size, 0, nullptr, &size_read_event);
clEnqueueReadBuffer(command_queue,device_write_ptr, CL_FALSE, 
DATA_READ_OFFSET, 
                    kernel_write_size, host_ptr, 1, &size_read_event, 
&data_read_event);

With clEnqueueMigrateMemObject, which is recommended over clEnqueueReadBuffer
or clEnqueueWriteBuffer, you can adopt a similar approach by using sub-buffers. The
following sample code is shown below (note that this is not the complete API arguments).

//Create a small subbuffer
cl_buffer_region buffer_info_1={0,1*sizeof(int)}; 
cl_mem size_info = clCreateSubBuffer (device_write_ptr, CL_MEM_WRITE_ONLY, 
                                       CL_BUFFER_CREATE_TYPE_REGION, 
&buffer_info_1,&err);
// Map the subbuffer into the host space
auto size_info_host_ptr = clEnqueueMapBuffer(queue,size_info,,,, );

// Read only the subbuffer portion
clEnqueueMigrateMemObjects(queue, 1, 
&size_info,CL_MIGRATE_MEM_OBJECT_HOST,,,);
                          

// Retrive size information from the already mapped size_info_host_ptr
kernel_write_size = ........... 
 
 
// Create sub-buffer again for required amount        
cl_buffer_region buffer_info_2={DATA_READ_OFFSET, kernel_write_size};
cl_mem  buffer_seg = clCreateSubBuffer (device_write_ptr, 
CL_MEM_WRITE_ONLY, 
                     CL_BUFFER_CREATE_TYPE_REGION, &buffer_info_2,&err);

// Map the subbuffer into the host space
auto read_mem_host_ptr = clEnqueueMapBuffer(queue, buffer_seg,,,);

// Migrate the subbuffer
clEnqueueMigrateMemObjects(queue, 1, 
&buffer_seg,CL_MIGRATE_MEM_OBJECT_HOST,,,);

// Now use the read data from already mapped read_mem_host_ptr

Chapter 2: Programming the Host Application

UG1277 (v2019.1) May 22, 2019  www.xilinx.com
SDAccel Programmers Guide  24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1277&Title=SDAccel%20Programmers%20Guide&releaseVersion=2019.1&docPage=24


Device Buffer Shared by Multiple Memory Ports or Multiple Kernels

Sometimes memory ports of the kernels only require small amounts of data. Managing and
sending multiple number of small sized buffers can have potential performance issues.
Alternatively, the host can create a large size buffer divided into small sub-buffers. Each sub-
buffer assigns a kernel argument for each of the memory ports which requires small amounts of
data. This can improve performance as Xilinx Runtime handles a large buffer instead of several
small buffers.

Once sub-buffers are created they are used in the host code similar to regular buffers.

Kernel Execution
Assuming the kernel is compiled to a single hardware instance (or CU) on the FPGA, the simplest
method of executing the kernel is using clEnqueueTask as shown below.

err = clEnqueueTask(commands, kernel, 0, NULL, NULL);

The Xilinx Runtime schedules the workload (the data passed through OpenCL buffers through
the kernel arguments) and schedules the kernel to compute intensive tasks on the FPGA.

IMPORTANT! Though using clEnqueueNDRangeKernel is supported (only for OpenCL kernel), Xilinx
recommends using clEnqueueTask.

There are various methods you can execute the kernel, multiple kernels, or multiple instances of
the same kernel on the FPGA. Those are discussed in the next section.

Single Kernel Invocation for the Entire Task and Data Parallelism

Often the complete compute intensive task is defined inside a single kernel and the kernel is
executed only one time to work on the entire data range. As there is a overhead of multiple
kernel executions, this approach certainly helps in many cases. Though the kernel is executed
only one time and works on the entire range of the data, the parallelism (and thereby
acceleration) is achieved on the FPGA inside the kernel hardware. Most of the time (if properly
coded), kernel is capable of achieving parallelism by various technique such as instruction-level
parallelism (loop pipeline) and function-level parallelism (dataflow). You will learn about different
kernel coding techniques in Chapter 3: Programming C/C++ Kernels.

However, the above mentioned single clEnqueueTask is not always feasible due to various
practical reasons. For example, the kernel code can become too big and complex to optimize if it
attempts to perform all compute intensive task in a single execution. Another possible case is
when the host is receiving data over time and not all the data at the same time. Therefore,
depending on the situation and application, there are different ways to use clEnqueueTask to
break the data and the task into multiple clEnqueueTask commands as discussed in the next
sections.
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Task Parallelism by Using Multiple Different Kernels

Sometimes multiple kernels can be designed performing different task on the FPGA in parallel.
By using the multiple clEnqueueTask command (through a out-of-order command queue), it is
possible to allow multiple kernels (performing different task) working in parallel on the FPGA.
This enables the task parallelism on the FPGA.

Spatial Data Parallelism: Increase Number of Compute Units

If a single kernel has been compiled into multiple hardware instances (or CUs), clEnqueueTask
can be called multiple times (using a out-of-order queue) to enable data parallelism. Each call of
clEnqueueTask would schedule a workload in different CUs working on the different data sets
in parallel.

Temporal Data Parallelism: Host to Kernel Dataflow

To understand this approach, assume a kernel has only one CU on the FPGA and the host
requires to use the CU multiple times on different sets of data. As shown in Using
clEnqueueMigrateMemObjects, by using clEnqueueMigrateMemObjects it is possible to
send data to the device global memory ahead of time (the data is transferred for the next kernel
execution), and thus hiding the data transfer latency by the kernel execution, enabling software
pipelining.

However, by default, the kernel can start operating on the next set of data only when it is
finished working on the current set of data. Though clEnqueueMigrateMemObject hides the
data transfer execution time, the kernel executions still remain sequential.

By enabling the host to kernel dataflow, it is even possible to further improve the performance
by restarting the kernel while the kernel is still working on the previous sets of data. If the kernel
is optimized in a manner such that it is capable of accepting the new data (for the next kernel
operation) even when it is still working on the previous data (to achieve this the kernel has to be
compiled in a certain manner, see Enabling Host to Kernel Dataflow), the XRT restarts the kernel
as soon as possible, thus overlapping the multiple kernel executions.

This allows temporal parallelism between host to kernel where each section of the kernel
hardware is working on a specific data set from the different clEnqueueTask command in a
pipelined manner. However, the host still needs to fill the command queue ahead of the time (by
software pipelining) so that kernel can restart as soon as it is ready to accept the new set of data.

The following is a conceptual diagram for the host to kernel dataflow.
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Figure 6:   Host to Kernel Dataflow
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For advanced designs, you can effectively use both the spatial parallelism (using more hardware
resources or CUs) and software pipeline (clEnqueueMigrateMemObjects) combined with
temporal parallelism (by host to kernel dataflow, particularly overlapping kernel executions on
each CU). If needed, you can potentially combine all the techniques together.

Symmetrical and Asymmetrical Compute Units

During the kernel linking process, a kernel can have multiple CUs on the FPGA.

Symmetrical Compute Units

CUs are considered asymmetrical when they do not have identical connections to global memory
(when they do not have exactly the same --sp options). As a result, the Xilinx Runtime can use
them interchangeably. A call to clEnqueueTask can result in the invocation of any one instance
in a group of symmetrical CUs.

Asymmetrical Compute Units

CUs are considered asymmetrical when they do not have identical connections to global memory
(when they do not have exactly the same --sp options). Using the same setup of the input (and
output) buffers, it is not possible to execute both of these CUs interchangeably. So these are not
execution agnostic from the Xilinx Runtime perspective.

Kernel Handle and Compute Units

The first time clSetKernelArg is called for a given kernel object, the Xilinx Runtime selects a
group of symmetrical CUs for the subsequent executions of this kernel. When clEnqueueTask
is called, any of the symmetrical CUs in that group can be used.

If all CUs for a given kernel are symmetrical, a single kernel object is sufficient to access any of
these CUs. If there are asymmetrical CUs, the application will need to create as many kernel
objects as there are groups of asymmetrical CUs to ensure all of them can be used.
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Creating Kernel Objects for Specific Compute Units

From the 2019.1 release, the Xilinx Runtime provides the capability to get kernel handles for
specific CUs or a group of CUs. The syntax of this style is shown below:

// Create kernel object only for a specific compute unit
kernel1 = clCreateKernel(program, "<kernel_name_1>:{comp_unit_name_1}", 
&err);

// Create kernel object for two specific compute units
kernel1 = clCreateKernel(program, "<kernel_name_1>:
{comp_unit_name_1,comp_unit_name_2}", &err);

This gives control within the application over which specific CU instance is used. This can be
useful in the case of asymmetrical CUs or to perform explicit load and priority management of
CUs.

Using Compute Unit Name to Get Handle of All Asymmetrical Compute Units

If a kernel has CUs that are not all symmetrical, the enhanced clCreateKernel with the CU
name can be used. In this case, the host needs to manage each symmetrical CU group separately
with different cl_kernel handle. The following shows a hypothetical example.

Assume the kernel mykernel has five CUs: K1, K2, K3, K4, and K5. Also consider the CUs K1,
K2, and K3 are having symmetrical connection on the device and can be considered as a group of
symmetrical CUs. Similarly, CUs named K4 and K5 form another group of symmetrical CU. The
code segment below shows how two cl_kernel handles are used to manage the two groups of
symmetrical CUs.

// Kernel handle for Symmetrical compute unit group 1: K1,K2,K3

  cl_kernel kernel_handle1 = clCreateKernel(program,"mykernel:
{K1,K2,K3}",&err);

  for(i=0; i<3; i++) {
      // Creating buffers for the kernel_handle1
      .....
      // Setting kernel arguments for kernel_handle1
      .....
      // Enqueue buffers for the kernel_handle1
      .....
      // Possible candidates of the executions K1,K2 or K3
      clEnqueueTask(commands, kernel_handle1, 0, NULL, NULL); 
     

     //
   }

  // Kernel handle for Symmetrical compute unit group 1: K4, K5

  cl_kernel kernel_handle2 = clCreateKernel(program,"mykernel:
{K4,K5}",&err);

  for(int i=0; i<2; i++) {
      // Creating buffers for the kernel_handle2
      .....
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      // Setting kernel arguments for kernel_handle2
      .....
      // Enqueue buffers for the kernel_handle2
      .....
      // Possible candidates of the executions K4 or K5
      clEnqueueTask(commands, kernel_handle2, 0, NULL, NULL);
  }

Event Synchronization
All OpenCL clEnqueueXXX API calls are asynchronous. These commands will return
immediately after the command is enqueued in the command queue. To resolve the
dependencies among the commands, an API call such as clWaitForEvents or clFinish can be used
to pause or block execution of the host program.

Example usage of clWaitForEvents and clFinish commands are shown below:

err = clEnqueueTask(command_queue, kernel, 0, NULL, NULL);
 
// Execution will wait here until all commands in the command queue are 
finished
clFinish(command_queue); 
  
// Read back the results from the device to verify the output
cl_event readevent;
int host_mem_output_ptr[MAX_LENGTH]; // host memory for output vector
   
clEnqueueReadBuffer(command_queue, dev_mem_ptr, CL_TRUE, 0, sizeof(int) * 
number_of_words, 
  host_mem_output_ptr, 0, NULL, &readevent );

clWaitForEvents(1, &readevent); // Wait for clEnqueueReadBuffer event to 
finish
   
// Check Results
// Compare Golden values with host_mem_output_ptr 

Note how the synchronization APIs have been added in the above example.

1. The clFinish API has been explicitly used to block the host execution until the Kernel
execution is finished. This is necessary otherwise the host can attempt to read back from the
FPGA buffer too early and may read garbage data.

2. The data transfer from FPGA memory to the local host machine is done through
clEnqueueReadBuffer. Here the last argument of clEnqueueReadBuffer returns an
event object that identifies this particular read command and can be used to query the event,
or wait for this particular command to complete. The clWaitForEvents specifies that one
event, and waits to ensure the data transfer is finished before checking the data from the
host side memory.
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Post Processing and FPGA Cleanup
At the end of the host code, all the allocated resources should be released by using proper
release functions. The SDAccel environment may not able to generate a correct performance
related profile and analysis report if resources are not properly released.

clReleaseCommandQueue(Command_Queue);
clReleaseContext(Context);
clReleaseDevice(Target_Device_ID); 
clReleaseKernel(Kernel);
clReleaseProgram(Program);
free(Platform_IDs);
free(Device_IDs);

Summary
As discussed in earlier topics, the recommended coding style for the host application in the
SDAccel environment includes the following points:

1. Add error checking after each OpenCL API call for debugging purpose, if required.

2. In the SDAccel environment, one or more kernels are separately pre-compiled to
the .xclbin file. The API clCreateProgramWithBinary is used to build the program
from the kernel binary.

3. Use buffer for setting the kernel argument (clSetKernelArg) before any enqueue
operation on the buffer.

4. Transfer data back and forth from the host code to the FPGAs by using
clEnqueueMigrateMemObjects.

5. Use posix_memalign to align the host memory pointer at 4K boundary.

6. Preferably use the out-of-order command queue for concurrent command execution on the
FPGA.

7. Use synchronization commands to resolve dependencies of the asynchronous OpenCL API
calls.
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Chapter 3

Programming C/C++ Kernels
In the SDAccel™ environment, the kernel code is generally a compute-intensive part of the
algorithm and meant to be accelerated on the FPGA. The SDAccel environment supports the
kernel code written in C, OpenCL™, and also in RTL. This guide mainly focuses on the C kernel
coding style.

During the runtime, the C/C++ kernel executable is called through the host code executable. As
the host code and the kernel code are developed and compiled independently, there could be a
name mangling issue if one of the code is written in C and another in C++. To avoid this issue, it is
good practice to put the kernel function declaration inside a header file wrapped around the
extern "C" linkage.

extern "C" {
           void kernel_function(int *in, int *out, int size);
        }

Data Types
As it is faster to write and verify the code by using native C data types such as int, float, or
double, it is a common practice to use these data types when coding for the first time.
However, the code is implemented in hardware, and all the operator sizes used in the hardware
are dependent on the data types used in the accelerator code. The default native C/C++ data
types can result in larger and slower hardware resources that can limit the performance of the
kernel. Instead, consider using bit-accurate data types to ensure the code is optimized for
implementation in hardware. Using bit-accurate, or arbitrary precision data types, results in
hardware operators which are smaller and faster. This allows more logic to be placed into the
programmable logic and also allows the logic to execute at higher clock frequencies while using
less power.

Consider using bit-accurate data types instead of native C/C++ data types in your code.

RECOMMENDED: Consider using bit-accurate data types instead of native C/C++ data types in your code.
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In the following sections, the two most common arbitrary precision data types (arbitrary
precision integer type and arbitrary precision fixed-point type) supported by the xocc compiler
are discussed. Note that these data types should be used for C/C++ kernels only, not for OpenCL
kernel (or inside the host code).

Arbitrary Precision Integer Types
Arbitrary precision integer data types are defined by ap_int or ap_uint for signed and
unsigned integer respectively inside the header file ap_int.h. To use arbitrary precision integer
data type:

• Add header file ap_int.h to the source code.

• Change the bit types to ap_int<N> or ap_uint<N>, where N is a bit-size from 1 to 1024.

The following example shows how the header file is added and the two variables are
implemented to use 9-bit integer and 10-bit unsigned integer.

#include “ap_int.h” 
ap_int<9> var1 // 9 bit signed integer
ap_uint<10> var2 // 10 bit unsigned integer

Arbitrary Precision Fixed-Point Data Types
Some existing applications use floating point data types as they are written for other hardware
architectures. However, fixed-point data types are a useful replacement for floating point types
which require many clock cycles to complete. Carefully evaluate trade-offs in power, cost,
productivity, and precision when choosing to implement floating-point vs. fixed-point arithmetic
for your application and accelerators.

As discussed in Deep Learning with INT8 Optimization on Xilinx Devices (WP486), using fixed-point
arithmetic instead of floating point for applications like machine learning can increase power
efficiency, and lower the total power required. Unless the entire range of the floating-point type
is required, the same accuracy can often be implemented with a fixed-point type resulting in the
same accuracy with smaller and faster hardware. The paper Reduce Power and Cost by Converting
from Floating Point to Fixed Point (WP491) provides some examples of this conversion.

Fixed-point data types model the data as an integer and fraction bits. The fixed-point data type
requires the ap_fixed header, and supports both a signed and unsigned form as follows:

• Header file: ap_fixed.h

• Signed fixed point: ap_fixed<W,I,Q,O,N>

• Unsigned fixed point: ap_ufixed<W,I,Q,O,N>

○ W = Total width < 1024 bits

Chapter 3: Programming C/C++ Kernels

UG1277 (v2019.1) May 22, 2019  www.xilinx.com
SDAccel Programmers Guide  32Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp486-deep-learning-int8.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=white_papers;d=wp491-floating-to-fixed-point.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1277&Title=SDAccel%20Programmers%20Guide&releaseVersion=2019.1&docPage=32


○ I = Integer bit width. The value of I must be less than or equal to the width (W). The
number of bits to represent the fractional part is W minus I. Only a constant integer
expression can be used to specify the integer width.

○ Q = Quantization mode. Only predefined enumerated values can be used to specify Q. The
accepted values are:

- AP_RND: Rounding to plus infinity.

- AP_RND_ZERO: Rounding to zero.

- AP_RND_MIN_INF: Rounding to minus infinity.

- AP_RND_INF: Rounding to infinity.

- AP_RND_CONV: Convergent rounding.

- AP_TRN: Truncation. This is the default value when Q is not specified.

- AP_TRN_ZERO: Truncation to zero.

○ O = Overflow mode. Only predefined enumerated values can be used to specify O. The
accepted values are:

- AP_SAT: Saturation.

- AP_SAT_ZERO: Saturation to zero.

- AP_SAT_SYM: Symmetrical saturation.

- AP_WRAP: Wrap-around. This is the default value when O is not specified.

- AP_WRAP_SM: Sign magnitude wrap-around.

○ N = The number of saturation bits in the overflow WRAP modes. Only a constant integer
expression can be used as the parameter value. The default value is zero.

TIP: The ap_fixed and ap_ufixed data types permit shorthand definition, with only W and I being required,
and other parameters assigned default values. However, to define Q or N, you must also specify the parameters
before those, even if you just specify the default values.

In the example code below, the ap_fixed type is used to define a signed 18-bit variable with 6
bits representing the integer value above the binary point, and by implication, 12 bits
representing the fractional value below the binary point. The quantization mode is set to round
to plus infinity (AP_RND). Because the overflow mode and saturation bits are not specified, the
defaults AP_WRAP and 0 are used.

#include <ap_fixed.h>
...
  ap_fixed<18,6,AP_RND> my_type;
...
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When performing calculations where the variables have different numbers of bits (W), or
different precision (I), the binary point is automatically aligned. See the "C++ Arbitrary Precision
Fixed-Point Types" in the Vivado Design Suite User Guide: High-Level Synthesis (UG902) for more
information on using fixed-point data types.

Interfaces
Two types of data transfer occur from the host machine to and from the kernels on the FPGA
device: data transferred through the global memory memory banks, and scalar data.

Memory Data Inputs and Outputs
The main data processed by the kernel computation, often in a large volume, should be
transferred through the global memory banks on the FPGA board. The host machine transfers a
large chunk of data to one or more global memory bank(s). The kernel accesses the data from
those global memory banks, preferably in burst. After the kernel finishes the computation, the
resulting data is transferred back to the host machine through the global memory banks.

When writing the kernel interface description, pragmas are used to denote the interfaces coming
to and from the global memory banks.

Memory Data

void cnn( int *pixel, // Input pixel
  int *weights, // Input Weight Matrix
  int *out, // Output pixel
  ... // Other input or Output ports

#pragma HLS INTERFACE m_axi port=pixel offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=weights offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=out offset=slave bundle=gmem

In the example above, there are three large data interfaces. The two inputs are pixel and
weights and one output, out. These inputs and outputs connected to the global memory bank
are specified in C code by using HLS INTERFACE m_axi pragmas as shown above.

The bundle keyword specifies the name of the port. The compiler will create a port for each
unique bundle name. When the same name is used for different interfaces, this results in these
interfaces being mapped to same port.
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Sharing ports helps saves FPGA resources, but can limit the performance of the kernel because
all the memory transfers have to go through a single port. The bandwidth and throughput of the
kernel can be increased by creating multiple ports (using different bundle names).

void cnn( int *pixel, // Input pixel
  int *weights, // Input Weight Matrix
  int *out, // Output pixel
  ... // Other input or Output ports
           
#pragma HLS INTERFACE m_axi port=pixel offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=weights offset=slave bundle=gmem1
#pragma HLS INTERFACE m_axi port=out offset=slave bundle=gmem

In the above example, the bundle attribute is used to create two distinct ports: gmem and
gmem1. The kernel will access pixel and out through the gmem port while weights will be
accessed through the gmem1 port. As a result, the kernel will be able to make parallel accesses to
pixel and weights, potentially improving the throughput of the kernel.

For this performance potential to be fully realized, it is also necessary to connect these different
ports to different global memory banks. This is done during the xocc linking stage using the --
sp switch. For more details about this option, see the Configuring the System Architecture.

Memory Interface Data Width Considerations

In the SDAccel environment, the maximum data width from the global memory to and from the
kernel is 512 bits. To maximize the data transfer rate, using this full data width is recommended.
The kernel code should be modified to take advantage of the full bit width.

Because a native integer type is used in the prior example, the full data transfer bandwidth is not
used. As discussed previously in Data Types, arbitrary precision data types ap_int or ap_uint
can be used to achieve bit-accurate data width for this purpose.

void cnn( ap_uint<512> *pixel, // Input pixel
  int *weights, // Input Weight Matrix 
  ap_uint<512> *out, // Output pixel
  ... // Other input or output ports
           
#pragma HLS INTERFACE m_axi port=pixel offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=weights offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=out offset=slave bundle=gmem

The example above shows the output (out) interface using the ap_uint data type to make use
of the full transfer width of 512 bits.

The data width of the memory interfaces should be a power of 2. For data width less than 32,
use native C data types. Use ap_int/ap_uint for data widths greater than 32 and with power
of 2 increment.
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Reading and Writing by Burst

Accessing the global memory bank interface from the kernel has a large latency. So global
memory data transfer should be done in burst. To infer the burst, a pipelined loop coding style is
recommended as shown below:

hls::stream<datatype_t> str;

INPUT_READ: for(int i=0; i<INPUT_SIZE; i++) {
  #pragma HLS PIPELINE
  str.write(inp[i]); // Reading from Input interface
}

In the above code example, a pipelined for loop is used to read data from the input memory
interface, and writes to an internal hls::stream variable. The above coding style reads from
the global memory bank in burst.

It is a recommended coding style to implement the for loop operation in the example above
inside a separate function, and apply the dataflow optimization from the top level as shown
below:

top_function(datatype_t * m_in, // Memory data Input
  datatype_t * m_out, // Memory data Output
  int inp1,     // Other Input
  int inp2) {   // Other Input
#pragma HLS DATAFLOW

hls::stream<datatype_t> in_var1;   // Internal stream to transfer
hls::stream<datatype_t> out_var1;  // data through the dataflow region

read_function(m_in, inp1); // Read function contains pipelined for loop 
                           // to infer burst

execute_function(in_var1, out_var1, inp1, inp2); // Core compute function

write_function(out_var1, m_out); // Write function contains pipelined for 
loop 
                                 // to infer burst
}

TIP: The Dataflow Optimization is discussed in a later topic.

Scalar Data Inputs
Scalar inputs are typically control variables that are directly loaded from the host machine. They
can be thought of as programming data or parameters under which the main kernel computation
takes place. These kernel inputs are write-only from the host side. These interfaces are specified
in the kernel code as shown below:

void process_image(int *input, int *output, int width, int height) {
  #pragma HLS INTERFACE s_axilite port=width bundle=control
  #pragma HLS INTERFACE s_axilite port=height bundle=control
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In the example above, there are two scalar inputs specify the image width and height. These
inputs are specified using the #pragma HLS INTERFACE s_axilite. These data inputs
come to the kernel directly from the host machine and not using global memory bank.

IMPORTANT! Currently, the SDAccel environment supports one and only one control interface bundle for each
kernel. Hence the bundle name should be same for all scalar data inputs. In the preceding example the same
bundle name, control, is used for all control inputs.

Enabling Host to Kernel Dataflow
As discussed in the Kernel Execution, if a kernel is capable of accepting more data while it is still
operating on data from the previous transactions, the SDAccel runtime can send the next batch
of data. The kernel then works on multiple data sets at the same time at the different portion of
the hardware, and thus improve the latency and the performance. However, the kernel has to be
compiled with the following ap_ctrl_chain pragma:

void kernel_name( int *inputs,
                  ...         )// Other input or Output ports
{
#pragma HLS INTERFACE  .....   // Other interface pragmas
#pragma HLS INTERFACE ap_ctrl_chain port=return bundle=control

IMPORTANT! To take the advantage of the host to kernel pipeline, the kernel has to be pipelined at the loop-
level and task-level (more information about the kernel pipelining technique such as loop pipeline and dataflow
are discussed later in the chapter).

Loops
Loops are an important aspect for a high performance accelerator. Generally, loops are either
pipelined or unrolled to take advantage of the highly distributed and parallel FPGA architecture
to provide a performance boost compared to running on a CPU.

By default, loops are neither pipelined nor unrolled. Each iteration of the loop takes at least one
clock cycle to execute in hardware. Thinking from the hardware perspective, there is an implicit
wait until clock for the loop body. The next iteration of a loop only starts when the previous
iteration is finished.
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Loop Pipelining
By default, every iteration of a loop only starts when the previous iteration has finished. In the
loop example below, a single iteration of the loop adds two variables and stores the result in a
third variable. Assume that in hardware this loop takes three cycles to finish one iteration. Also,
assume that the loop variable len is 20, that is, the vadd loop runs for 20 iterations in the
kernel. Therefore, it requires a total of 60 clock cycles (20 iterations * 3 cycles) to complete all
the operations of this loop.

vadd: for(int i = 0; i < len; i++) {
  c[i] = a[i] + b[i];
}

TIP: It is good practice to always label a loop as shown in the above code example (vadd:…). This practice helps
with debugging when working in the SDAccel environment. Note that the labels generate warnings during
compilation, which can be safely ignored.

Pipelining the loop executes subsequent iterations in a pipelined manner. This means that
subsequent iterations of the loop overlap and run concurrently, executing at different sections of
the loop-body. Pipelining a loop can be enabled by the pragma HLS PIPELINE. Note that the
pragma is placed inside the body of the loop.

vadd: for(int i = 0; i < len; i++) {
  #pragma HLS PIPELINE
  c[i] = a[i] + b[i];
}

In the example above, it is assumed that every iteration of the loop takes three cycles: read, add,
and write. Without pipelining, each successive iteration of the loop starts in every third cycle.
With pipelining the loop can start subsequent iterations of the loop in fewer than three cycles,
such as in every second cycle, or in every cycle.

The number of cycles it takes to start the next iteration of a loop is called the initiation interval
(II) of the pipelined loop. So II = 2 means each successive iteration of the loop starts every two
cycles. An II = 1 is the ideal case, where each iteration of the loop starts in the very next cycle.
When you use the pragma HLS PIPELINE the compiler always tries to achieve II = 1
performance.

The following figure illustrates the difference in execution between pipelined and non-pipelined
loops. In this figure, (A) shows the default sequential operation where there are three clock cycles
between each input read (II = 3), and it requires eight clock cycles before the last output write is
performed.
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Figure 7:   Loop Pipelining

void func(m,n,o) { 
    for (i=2;i>=0;i--) {
       op_Read;
       op_Compute;
       op_Write;

  }
}    
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In the pipelined version of the loop shown in (B), a new input sample is read every cycle (II = 1)
and the final output is written after only four clock cycles: substantially improving both the II and
latency while using the same hardware resources.

IMPORTANT! Pipelining a loop causes any loops nested inside the pipelined loop to get unrolled.

If there are data dependencies inside a loop it might not be possible to achieve II = 1, and a larger
initiation interval might be the result. Loop dependencies are discussed in Loop Dependencies.

Loop Unrolling
The compiler can also unroll a loop, either partially or completely to perform multiple loop
iterations in parallel. This is done using the HLS UNROLL pragma. Unrolling a loop can lead to a
very fast design, with significant parallelism. However, because all the operations of the loop
iterations are executed in parallel, a large amount of programmable logic resource are required to
implement the hardware. As a result, the compiler can face challenges dealing with such a large
number of resources and can face capacity problems that slow down the kernel compilation
process. It is a good guideline to unroll loops that have a small loop body, or a small number of
iterations.

vadd: for(int i = 0; i < 20; i++) {
  #pragma HLS UNROLL
  c[i] = a[i] + b[i];
}

In the preceding example, you can see pragma HLS UNROLL has been inserted into the body of
the loop to instruct the compiler to unroll the loop completely. All 20 iterations of the loop are
executed in parallel if that is permitted by any data dependency.
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Completely unrolling a loop can consume significant device resources, while partially unrolling
the loop provides some performance improvement without causing a significant impact on
hardware resources.

Partially Unrolled Loop

To completely unroll a loop, the loop must have a constant bound (20 in the example above).
However, partial unrolling is possible for loops with a variable bound. A partially unrolled loop
means that only a certain number of loop iterations can be executed in parallel.

The following code examples illustrates how partially unrolled loops work:

array_sum:for(int i=0;i<4;i++){
  #pragma HLS UNROLL factor=2
  sum += arr[i];
}

In the above example the UNROLL pragma is given a factor of 2. This is the equivalent of
manually duplicating the loop body and running the two loops concurrently for half as many
iterations. The following code shows how this would be written. This transformation allows two
iterations of the above loop to execute in parallel.

array_sum_unrolled:for(int i=0;i<2;i+=2){
  // Manual unroll by a factor 2
  sum += arr[i];
  sum += arr[i+1];
}

Just like data dependencies inside a loop impact the initiation interval of a pipelined loop, an
unrolled loop performs operations in parallel only if data dependencies allow it. If operations in
one iteration of the loop require the result from a previous iteration, they cannot execute in
parallel, but execute as soon as the data from one iteration is available to the next.

RECOMMENDED: A good methodology is to PIPELINE loops first, and then UNROLL loops with small loop
bodies and limited iterations to improve performance further.
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Loop Dependencies
Data dependencies in loops can impact the results of loop pipelining or unrolling. These loop
dependencies can be within a single iteration of a loop or between different iterations of a loop.
The straightforward method to understand loop dependencies is to examine an extreme
example. In the following code example, the result of the loop is used as the loop continuation or
exit condition. Each iteration of the loop must finish before the next can start.

Minim_Loop: while (a != b) { 
  if (a > b) 
    a -= b; 
  else 
    b -= a;
}

This loop cannot be pipelined. The next iteration of the loop cannot begin until the previous
iteration ends.

Dealing with various types of dependencies with the xocc compiler is an extensive topic
requiring a detailed understanding of the high-level synthesis procedures underlying the
compiler. Refer to the Vivado Design Suite User Guide: High-Level Synthesis (UG902) for more
information on "Dependencies with Vivado HLS."

Nested Loops
Coding with nested loops is a common practice. Understanding how loops are pipelined in a
nested loop structure is key to achieving the desired performance.

If the pragma HLS PIPELINE is applied to a loop nested inside another loop, the xocc compiler
attempts to flatten the loops to create a single loop, and apply the PIPELINE pragma to the
constructed loop. The loop flattening helps in improving the performance of the kernel.

The compiler is able to flatten the following types of nested loops:

1. Perfect nested loop:

• Only the inner loop has a loop body.

• There is no logic or operations specified between the loop declarations.

• All the loop bounds are constant.

2. Semi-perfect nested loop:

• Only the inner loop has a loop body.

• There is no logic or operations specified between the loop declarations.

• The inner loop bound must be a constant, but the outer loop bound can be a variable.
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The following code example illustrates the structure of a perfect nested loop:

ROW_LOOP: for(int i=0; i< MAX_HEIGHT; i++) {
  COL_LOOP: For(int j=0; j< MAX_WIDTH; j++) {
    #pragma HLS PIPELINE
    // Main computation per pixel
  }
}

The above example shows a nested loop structure with two loops that performs some
computation on incoming pixel data. In most cases, you want to process a pixel in every cycle,
hence PIPELINE is applied to the nested loop body structure. The compiler is able to flatten the
nested loop structure in the example because it is a perfect nested loop.

The nested loop in the preceding example contains no logic between the two loop declarations.
No logic is placed between the ROW_LOOP and COL_LOOP; all of the processing logic is inside the
COL_LOOP. Also, both the loops have a fixed number of iterations. These two criteria help the
xocc compiler flatten the loops and apply the PIPELINE constraint.

RECOMMENDED: If the outer loop has a variable boundary, then the compiler can still flatten the loop. You
should always try to have a constant boundary for the inner loop.

Sequential Loops
If there are multiple loops in the design, by default they do not overlap, and execute sequentially.
This section introduces the concept of dataflow optimization for sequential loops. Consider the
following code example:

void adder(unsigned int *in, unsigned int *out, int inc, int size) {

  unsigned int in_internal[MAX_SIZE];
  unsigned int out_internal[MAX_SIZE];
  mem_rd: for (int i = 0 ; i < size ; i++){
    #pragma HLS PIPELINE
    // Reading from the input vector "in" and saving to internal variable
    in_internal[i] = in[i];
  }
  compute: for (int i=0; i<size; i++) {
  #pragma HLS PIPELINE
    out_internal[i] = in_internal[i] + inc;
  } 

  mem_wr: for(int i=0; i<size; i++) {
  #pragma HLS PIPELINE
    out[i] = out_internal[i];
  }
}

In the previous example, three sequential loops are shown: mem_rd, compute, and mem_wr.

• The mem_rd loop reads input vector data from the memory interface and stores it in internal
storage.
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• The main compute loop reads from the internal storage and performs an increment operation
and saves the result to another internal storage.

• The mem_wr loop writes the data back to memory from the internal storage.

As described in Memory Data Inputs and Outputs, this code example is using two separate loops
for reading and writing from/to the memory input/output interfaces to infer burst read/write.

By default, these loops are executed sequentially without any overlap. First, the mem_rd loop
finishes reading all the input data before the compute loop starts its operation. Similarly, the
compute loop finishes processing the data before the mem_wr loop starts to write the data.
However, the execution of these loops can be overlapped, allowing the compute (or mem_wr)
loop to start as soon as there is enough data available to feed its operation, before the mem_rd
(or compute) loop has finished processing its data.

The loop execution can be overlapped using dataflow optimization as described in Dataflow
Optimization.

Dataflow Optimization
Dataflow optimization is a powerful technique to improve the kernel performance by enabling
tasklevel pipelining and parallelism inside the kernel. It allows the xocc compiler to schedule
multiple functions of the kernel to run concurrently to achieve higher throughput and lower
latency. This is also known as task-level parallelism.

The following figure shows a conceptual view of dataflow pipelining. The default behavior is to
execute and complete func_A, then func_B, and finally func_C. With the HLS DATAFLOW
pragma enabled, the compiler can schedule each function to execute as soon as data is available.
In this example, the original top function has a latency and interval of eight clock cycles. With
DATAFLOW optimization, the interval is reduced to only three clock cycles.
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Figure 8:   Dataflow Optimization
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Dataflow Coding Example
In the dataflow coding example you should notice the following:

1. The HLS DATAFLOW pragma is applied to instruct the compiler to enable dataflow
optimization. This is not a data mover, which deals with interfacing between the PS and PL,
but how the data flows through the accelerator.

2. The stream class is used as a data transferring channel between each of the functions in the
dataflow region.

TIP: The stream class infers a first-in first-out (FIFO) memory circuit in the programmable logic. This memory
circuit, which acts as a queue in software programming, provides data-level synchronization between the
functions and achieves better performance. For additional details on the hls::stream class, see the Vivado
Design Suite User Guide: High-Level Synthesis (UG902).

void compute_kernel(ap_int<256> *inx, ap_int<256> *outx, DTYPE alpha) {
  hls::stream<unsigned int>inFifo;
  #pragma HLS STREAM variable=inFifo depth=32
  hls::stream<unsigned int>outFifo; 
  #pragma HLS STREAM variable=outFifo depth=32

  #pragma HLS DATAFLOW
  read_data(inx, inFifo);
  // Do computation with the acquired data
  compute(inFifo, outFifo, alpha);
  write_data(outx, outFifo);
  return;
}

Chapter 3: Programming C/C++ Kernels

UG1277 (v2019.1) May 22, 2019  www.xilinx.com
SDAccel Programmers Guide  44Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1277&Title=SDAccel%20Programmers%20Guide&releaseVersion=2019.1&docPage=44


Canonical Forms of Dataflow Optimization
Xilinx recommends writing the code inside a dataflow region using canonical forms. There are
canonical forms for dataflow optimizations for both functions and loops.

• Functions: The canonical form coding guideline for dataflow inside a function specifies:

1. Use only the following types of variables inside the dataflow region:

a. Local non-static scalar/array/pointer variables.

b. Local static hls::stream variables.

2. Function calls transfer data only in the forward direction.

3. Array or hls::stream should have only one producer function and one consumer
function.

4. The function arguments (variables coming from outside the dataflow region) should only
be read, or written, not both. If performing both read and write on the same function
argument then read should happen before write.

5. The local variables (those that are transferring data in forward direction) should be written
before being read.

The following code example illustrates the canonical form for dataflow within a function. Note
that the first function (func1) reads the inputs and the last function (func3) writes the
outputs. Also note that one function creates output values that are passed to the next
function as input parameters.

void dataflow(Input0, Input1, Output0, Output1) {
  UserDataType C0, C1, C2;
  #pragma HLS DATAFLOW
  func1(read Input0, read Input1, write C0, write C1);
  func2(read C0, read C1, write C2);
  func3(read C2, write Output0, write Output1);
}

• Loop: The canonical form coding guideline for dataflow inside a loop body includes the coding
guidelines for a function defined above, and also specifies the following:

1. Initial value 0.

2. The loop condition is formed by a comparison of the loop variable with a numerical
constant or variable that does not vary inside the loop body.

3. Increment by 1.
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The following code example illustrates the canonical form for dataflow within a loop.

void dataflow(Input0, Input1, Output0, Output1) {
             UserDataType C0, C1, C2;
             for (int i = 0; i < N; ++i) {
                  #pragma HLS DATAFLOW
                 func1(read Input0, read Input1, write C0, write C1);
                 func2(read C0, read C0, read C1, write C2);
                 func3(read C2, write Output0, write Output1);
               }
}

Troubleshooting Dataflow
The following behaviors can prevent the xocc compiler from performing DATAFLOW
optimizations:

1. Single producer-consumer violations.

2. Bypassing tasks.

3. Feedback between tasks.

4. Conditional execution of tasks.

5. Loops with multiple exit conditions or conditions defined within the loop.

If any of the above conditions occur inside the dataflow region, you might need to re-architect
the code to successfully achieve dataflow optimization.

Array Configuration
The SDAccel compiler maps large arrays to the block Ram (BRAM) memory in the PL region.
These BRAM can have a maximum of two access points or ports. This can limit the performance
of the application as all the elements of an array cannot be accessed in parallel when
implemented in hardware.

Depending on the performance requirements, you might need to access some or all of the
elements of an array in the same clock cycle. To achieve this, the #pragma HLS
ARRAY_PARTITION can be used to instruct the compiler to split the elements of an array and
map it to smaller arrays, or to individual registers. The compiler provides three types of array
partitioning, as shown in the following figure. The three types of partitioning are:

• block: The original array is split into equally sized blocks of consecutive elements of the
original array.

• cyclic: The original array is split into equally sized blocks interleaving the elements of the
original array.
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• complete: Split the array into its individual elements. This corresponds to resolving a
memory into individual registers. This is the default for the ARRAY_PARTITION pragma.

Figure 9:   Partitioning Arrays
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For block and cyclic partitioning, the factor option specifies the number of arrays that are
created. In the preceding figure, a factor of 2 is used to split the array into two smaller arrays. If
the number of elements in the array is not an integer multiple of the factor, the later arrays will
have fewer elements.

When partitioning multi-dimensional arrays, the dimension option is used to specify which
dimension is partitioned. The following figure shows how the dimension option is used to
partition the following example code in three different ways:

void foo (...) {
  // my_array[dim=1][dim=2][dim=3] 
  // The following three pragma results are shown in the figure below
  // #pragma HLS ARRAY_PARTITION variable=my_array dim=3 <block|cyclic> 
factor=2
  // #pragma HLS ARRAY_PARTITION variable=my_array dim=1 <block|cyclic> 
factor=2
  // #pragma HLS ARRAY_PARTITION variable=my_array dim=0 complete
  int  my_array[10][6][4];
  ...   
}
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Figure 10:   Partitioning the Dimensions of an Array
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The examples in the figure demonstrate how partitioning dimension 3 results in four separate
arrays and partitioning dimension 1 results in 10 separate arrays. If 0 is specified as the
dimension, all dimensions are partitioned.

The Importance of Careful Partitioning

A complete partition of the array maps all the array elements to the individual registers. This
helps in improving the kernel performance because all of these registers can be accessed
concurrently in a same cycle.

CAUTION! Complete partitioning of the large arrays consumes a lot of PL region. It could even cause the
compilation process to slow down and face capacity issue. Partition the array only when it is needed. Consider
selectively partitioning a particular dimension or performing a block or cycle partitioning.

Choosing a Specific Dimension to Partition

Suppose A and B are two-dimensional arrays representing two matrices. Consider the following
Matrix Multiplication algorithm:

int A[64][64];
int B[64][64];
 
ROW_WISE: for (int i = 0; i < 64; i++) {
  COL_WISE : for (int j = 0; j < 64; j++) {
    #pragma HLS PIPELINE
    int result = 0;
    COMPUTE_LOOP: for (int k = 0; k < 64; k++) {
      result += A[i ][ k] * B[k ][ j];
    }
    C[i][ j] = result;
  }
}
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Due to the PIPELINE pragma, the ROW_WISE and COL_WISE loop is flattened together and
COMPUTE_LOOP is fully unrolled. To concurrently execute each iteration (k) of the
COMPUTE_LOOP, the code must access each column of matrix A and each row of matrix B in
parallel. Therefore, the matrix A should be split in the second dimension, and matrix B should be
split in the first dimension.

#pragma HLS ARRAY_PARTITION variable=A dim=2 complete
#pragma HLS ARRAY_PARTITION variable=B dim=1 complete

Choosing Between Cyclic and Block Partitions

Here the same matrix multiplication algorithm is used to demonstrate choosing between cyclic
and block partitioning and determining the appropriate factor, by understanding the array access
pattern of the underlying algorithm.

int A[64 * 64];
int B[64 * 64];
#pragma HLS ARRAY_PARTITION variable=A dim=1 cyclic factor=64
#pragma HLS ARRAY_PARTITION variable=B dim=1 block factor=64
 
ROW_WISE: for (int i = 0; i < 64; i++) {
  COL_WISE : for (int j = 0; j < 64; j++) {
    #pragma HLS PIPELINE
    int result = 0;
    COMPUTE_LOOP: for (int k = 0; k < 64; k++) {
      result += A[i * 64 +  k] * B[k * 64 + j];
    }
    C[i* 64 + j] = result;
  }
}

In this version of the code, A and B are now one-dimensional arrays. To access each column of
matrix A and each row of matrix B in parallel, cyclic and block partitions are used as shown in the
above example. To access each column of matrix A in parallel, cyclic partitioning is applied
with the factor specified as the row size, in this case 64. Similarly, to access each row of matrix
B in parallel, block partitioning is applied with the factor specified as the column size, or 64.

Minimizing Array Accesses with Caching

As arrays are mapped to BRAM with limited number of access ports, repeated array accesses can
limit the performance of the accelerator. You should have a good understanding of the array
access pattern of the algorithm, and limit the array accesses by locally caching the data to
improve the performance of the kernel.
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The following code example shows a case in which accesses to an array can limit performance in
the final implementation. In this example, there are three accesses to the array mem[N] to create
a summed result.

#include "array_mem_bottleneck.h"
dout_t array_mem_bottleneck(din_t mem[N]) {  
  dout_t sum=0;
  int i;
  SUM_LOOP:for(i=2;i<N;++i) 
    sum += mem[i] + mem[i-1] + mem[i-2];    
  return sum;
}

The code in the preceding example can be rewritten as shown in the following example to allow
the code to be pipelined with a II = 1. By performing pre-reads and manually pipelining the data
accesses, there is only one array read specified inside each iteration of the loop. This ensures that
only a single-port BRAM is needed to achieve the performance.

#include "array_mem_perform.h"
dout_t array_mem_perform(din_t mem[N]) {  
  din_t tmp0, tmp1, tmp2;
  dout_t sum=0;
  int i;
  tmp0 = mem[0];
  tmp1 = mem[1];
  SUM_LOOP:for (i = 2; i < N; i++) { 
    tmp2 = mem[i];
    sum += tmp2 + tmp1 + tmp0;
    tmp0 = tmp1;
    tmp1 = tmp2;
  }     
  return sum;
}

RECOMMENDED: Consider minimizing the array access by caching to local registers to improve the pipelining
performance depending on the algorithm.

For more detailed information related to the configuration of arrays, see the "Arrays" section in
the Vivado Design Suite User Guide: High-Level Synthesis (UG902).

Function Inlining
C code generally consists of several functions. By default, each function is compiled, and
optimized separately by the xocc compiler. A unique hardware module will be generated for the
function body and reused as needed.
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From performance perspective, in general it is better to inline the function, or dissolve the
function hierarchy. This helps xocc compiler to do optimization more globally across the
function boundary. For example, if a function is called inside a pipelined loop, then inlining the
function helps the compiler to do more aggressive optimization and results in a better pipeline
performance of the loop (lower initiation interval or II number).

The following INLINE pragma placed inside the function body instruct the compiler to inline the
function.

foo_sub (p, q) {
  #pragma HLS INLINE
  ....
  ...
}

However, if the function body is very big and called several times inside the main kernel function,
then inlining the function may cause capacity issues due to too many resources. In cases like that
you might not want to inline such functions, and let the xocc compiler optimize the function
separately in its local context.

Summary
As discussed in earlier topics, several important aspects of coding the kernel for FPGA
acceleration using C/C++ include the following points:

1. Consider using arbitrary precision data types, ap_int, and ap_fixed.

2. Understand kernel interfaces to determine scalar and memory interfaces. Use bundle switch
with different names if separate DDR memory banks will be specified in the linking stage.

3. Use Burst read and write coding style from and to the memory interface.

4. Consider exploiting the full width of DDR banks during the data transfer when selecting
width of memory data inputs and outputs.

5. Get the greatest performance boost using pipelining and dataflow.

6. Write perfect or semi-perfect nested loop structure so that the xocc compiler can flatten
and apply pipeline effectively.

7. Unroll loops with a small number of iterations and low operation count inside the loop body.

8. Consider understanding the array access pattern and apply complete partition to specific
dimensions or apply block or cyclic partitioning instead of a complete partition of the
whole array.

9. Minimize the array access by using local cache to improve kernel performance.

10. Consider inlining the function, specifically inside the pipelined region. Functions inside the
dataflow should not be inlined.
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Chapter 4

Configuring the System
Architecture

In Chapter 1: SDAccel Compilation Flow and Execution Model, you learned of the two distinct
phases in the SDAccel™ environment kernel build process:

1. Compilation stage: The compilation process is controlled by the xocc –c option. At the end
of the compilation stage one or more kernel functions are compiled into separate .xo files.
At this stage, the xocc compiler extracts the hardware intent from the C/C++ code and
associated pragmas. Refer to the SDx Command and Utility Reference Guide (UG1279) for more
information on the xocc compiler.

2. Linking stage: The linking stage is controlled by the xocc –l option. During the linking
process all the .xo files are integrated into the FPGA hardware.

If needed, the kernel linking process can be customized to improve the SDAccel environment
runtime performance. This chapter introduces a few such techniques.

Multiple Instances of a Kernel
By default, a single hardware instance is implemented from a kernel. If the host intends to
execute the same kernel multiple times, then multiple such kernel executions take place on the
same hardware instance sequentially. However, you can customize the kernel compilation (linking
stage) to create multiple hardware instances from a single kernel. This can improve execution
performance as the multiple kernel calls can now run concurrently, overlapping their execution
while running on separate hardware instances.

Multiple instances of the kernel can be created by using the xocc -–nk switch during linking.

For example, for a kernel name foo, two hardware instances can be implemented as follows:

# xocc -–nk <kernel name>:<number of instance>
xocc --nk foo:2 
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By default, the implemented instance names are <kernel_name>_1 and <kernel_name>_2.
However, you can optionally change the default instance names as shown below:

# xocc -–nk <kernel name>:<no of instance>:<name 1>.<name 2>…<name N> 
xocc --nk foo:3:fooA.fooB.fooC

This example implements three identical copies, or hardware instances of kernel foo, named
fooA, fooB, and fooC on the FPGA programmable logic.

Connecting Kernel Ports to Global Memory
By default, all kernel memory interfaces are connected to the same global memory bank. As a
result, only one kernel port at a time can transfer data to and from the memory bank, limiting the
performance of the application.

However, all off-the-shelf SDAccel platforms contain multiple global memory banks. During the
linking stage, it is possible to specify for each kernel port (or interface) which global memory bank
it should be connected to.

Proper configuration of kernel to memory connectivity is important to maximize bandwidth,
optimize data transfers, and improve overall performance.

Consider the following example:

void cnn( int *image, // Read-Only Image 
  int *weights, // Read-Only Weight Matrix
  int *out, // Output Filters/Images
  ... // Other input or Output ports

  #pragma HLS INTERFACE m_axi port=image offset=slave bundle=gmem
  #pragma HLS INTERFACE m_axi port=weights offset=slave bundle=gmem
  #pragma HLS INTERFACE m_axi port=out offset=slave bundle=gmem

The example shows two memory interface inputs for the kernel: image and weights. If both
are connected to the same memory bank, a concurrent transfer of both of these inputs into the
kernel is not possible.

The following steps are needed to implement separate memory bank connections for the image
and weights inputs:
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1. Specify separate bundle names for these inputs. This is discussed in Memory Data Inputs and
Outputs. However, for reference the code is shown here again.

void cnn( int *image, // Read-Only Image 
 int *weights, // Read-Only Weight Matrix
 int *out, // Output Filters/Images
 ... // Other input or Output ports
           
 #pragma HLS INTERFACE m_axi port=image offset=slave bundle=gmem
 #pragma HLS INTERFACE m_axi port=weights offset=slave bundle=gmem1
 #pragma HLS INTERFACE m_axi port=out offset=slave bundle=gmem

IMPORTANT! When specifying a bundle= name, you should use all lowercase characters to be able to assign it
to a specific memory bank using the --sp option.

The memory interface inputs image and weights are assigned different bundle names in
the example above.

2. Specify kernel port to global memory connection during the linking stage with the -–sp
switch:

--sp <kernel_instance_name>.<interface_name>:<bank name> 

Where:

• <kernel_instance_name> is the instance name of the kernel as specified by the --nk
option, described in Multiple Instances of a Kernel.

• <interface_name> is the name of the interface bundle defined by the HLS INTERFACE
pragma, including m_axi_ as a prefix, and the bundle= name when specified.

Note: It is also possible to use the <interface_name> (image, weights).

TIP: If the port is not specified as part of a bundle, then the <interface_name> is the specified port= name,
without the m_axi_ prefix.

• <bank_name> is denoted as DDR[0], DDR[1], etc. For a platform with four DDR banks,
the bank names are DDR[0], DDR[1], DDR[2], and DDR[3]. Some platforms also provide
support for PLRAM and HBM memory banks.

For the above example, considering a single instance of the cnn kernel, the -–sp switch can
be specified as follows:

--sp cnn_1.m_axi_gmem:DDR[0]  \            
-–sp cnn_1.m_axi_gmem1:DDR[1]

Note: Up to 15 kernel ports can be connected to a given memory bank. Therefore, if there are more than
15 ports in the entire design, it is not possible to rely on the default mapping and the --sp option must be
used to distribute connections across different banks.
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Summary
This section discusses two powerful ways to customize the kernel compilation to improve the
system performance during execution.

1. Consider creating multiple instances of a kernel on the fabric of the FPGA by specifying the
xocc --nk if the kernel is called multiple times from the host code.

2. Consider using the xocc --sp switch to customize the global memory connection to kernel
memory interfaces to achieve concurrent access.

Depending on the host and kernel design, these options can be exploited to improve the kernel
acceleration on Xilinx® FPGAs.
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Appendix A

SDAccel Streaming Platform

Streaming Data Transfers Between Host and
Kernel

Starting from the SDAccel™ 2019.1 release, SDAccel provides a new programming model which
supports the direct streaming of data from host to kernel and kernel to host without having to go
through global memory. This feature is an addition to the existing host to kernel and kernel to
host data transfer using global memories. By using streams, you can get some of the advantages
such as:

• The host application does not necessarily need to know the size of the data coming from the
kernel.

• Data resides on the host memory can be transferred to the kernel as soon as it is needed.
Similarly, the processed data can be transferred back when it is required.

This programming model uses minimal storage compared to the larger and slower global memory
bank, and thus improving the performance and power.

Host Coding Guidelines
Xilinx® provides new OpenCL™ APIs for streaming operation as extension APIs.

• clCreateStream(): Creates a read or write stream.

• clReleaseStream(): Frees the created stream and its associated memory.

• clWriteStream(): Writes data to stream.

• clReadStream(): Gets data from stream.

• clPollStreams(): Polls for any stream on the device to finish. Required only for non-
blocking stream operation.

The typical API flow is described below:

• Create the required number of the read/write streams by clCreateStream.

Appendix A: SDAccel Streaming Platform

UG1277 (v2019.1) May 22, 2019  www.xilinx.com
SDAccel Programmers Guide  56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1277&Title=SDAccel%20Programmers%20Guide&releaseVersion=2019.1&docPage=56


○ Streams should be directly attached to the OpenCL device object because it does not use
any command queue. A stream itself is a command queue that only passes the data to a
particular direction, either from host to kernel or from kernel to host.

○ An appropriate flag should be used to denote stream write/read operation (from the host
perspective).

○ To specify how the stream is connected to the device, a predefined extension pointer
(cl_mem_ext_ptr_t) should be used to denote the kernel and its argument the stream is
associated with.

In the code block below, a Read Stream (named read_stream) and a Write Stream
(named write_stream) are created.

#include <CL/cl_ext_xilinx.h> // Required for Xilinx Extension
 
// Device connection specification of the stream through extension 
pointer
cl_mem_ext_ptr_t  ext;  // Extension pointer
ext.param = kernel;     // The .param should be set to kernel 
                          (cl_kernel type)
ext.obj = nullptr;
 
// The .flag should be used to denote the kernel argument
// Create write stream for argument 3 of kernel
ext.flags = 3;
cl_stream write_stream = clCreateStream(device_id, 
CL_STREAM_WRITE_ONLY, CL_STREAM, &ext, &ret);
 
// Create read stream for argument 4 of kernel
ext.flags = 4;
cl_stream read_stream = clCreateStream(device_id, CL_STREAM_READ_ONLY, 
CL_STREAM, &ext,&ret);

• Set the remaining non-stream kernel arguments and enqueue the kernel. The following code
block shows typical kernel argument (non-stream arguments such as buffer and/or scalar)
setting and kernel enqueuing.

// Set kernel non-stream argument (if any)
clSetKernelArg(kernel, 0,...,...);
clSetKernelArg(kernel, 1,...,...);
clSetKernelArg(kernel, 2,...,...);
// Argument 3 and 4 are not set as those are already specified during 
    the clCreateStream through extension pointer
 
// Schedule kernel enqueue
clEnqueueTask(commands, kernel, . .. . );

• Initiate Read and Write transfer by clReadStream and clWriteStream.

○ Note the usage of attribute cl_stream_xfer_req associated with read and write
request.

○ The .flag is used to denote transfer mechanism.

• CL_STREAM_EOT: Currently, successful stream transfer mechanism depends on
identifying the end of the transfer by an End of Transfer signal. This flag is mandatory in
the current release.
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• CL_STREAM_NONBLOCKING: By default the Read and Write transfers are blocking.
For non-blocking transfer, CL_STREAM_NONBLOCKING has to be set.

○ The .priv_data is used to specify a string (as a name for tagging purpose) associated
with the transfer. This will help identify specific transfer completion when polling the
stream completion. It is required when using the non-blocking version of the API.

In the following code block, the stream read and write transfers are executed with the non-
blocking approach.

// Initiate the READ transfer
cl_stream_xfer_req rd_req {0};
 
rd_req.flags = CL_STREAM_EOT | CL_STREAM_NONBLOCKING;
rd_req.priv_data = (void*)"read"; // You can think this as tagging the 
                                     transfer with a name
 
clReadStream(read_stream, host_read_ptr, max_read_size, &rd_req, &ret);
 
// Initiating the WRITE transfer
cl_stream_xfer_req wr_req {0};
 
wr_req.flags = CL_STREAM_EOT | CL_STREAM_NONBLOCKING;
wr_req.priv_data = (void*)"write";
 
clWriteStream(write_stream, host_write_ptr, write_size, &wr_req , &ret);

• Poll all the streams for completion. For the non-blocking transfer, a polling API is provided to
ensure the read/write transfers are completed. For the blocking version of the API, polling is
not required.

○ The number of poll requests should be used through
cl_streams_poll_req_completions.

○ The clPollStreams is a blocking API. It returns the execution to the host code as soon
as it receives the notification that all stream requests have been completed, or until you
specify the timeout.

// Checking the request completion
   cl_streams_poll_req_completions poll_req[2] {0, 0}; // 2 Requests
 
   auto num_compl = 2;
   clPollStreams(device_id, poll_req, 2, 2, &num_compl, 5000, &ret);
   // Blocking API, waits for 2 poll request completion or 5000ms, 
      whichever occurs first

• Read and use the stream data in host.

○ After the successful poll request is completed, the host can read the data from the host
pointer.
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○ Also, the host can check the size of the data transferred to the host. For this purpose, the
host needs to find the correct poll request by matching priv_data and then fetching
nbytes (the number of bytes transferred) from the
cl_streams_poll_req_completions structure.

for (auto i=0; i<2; ++i) { 
    if(rd_req.priv_data == poll_req[i].priv_data) { // Identifying the 
                                                       read transfer
        // Getting read size, data size from kernel is unknown
        ssize_t result_size=poll_req[i].nbytes;      
        }
    }

The header file containing function prototype and argument description is available in the Xilinx
Runtime GitHub repository.

IMPORTANT! If the streaming kernel has multiple CUs, the host code needs to use a unique cl_kernel object
for each CU. The host code must use clCreateKernel with <kernel_name>:{compute_unit_name}
to get each CU, creating streams for them, and enqueuing them individually.

Kernel Coding Guidelines
The basic guidelines to develop stream-based C kernel is as follows:

• Use hls::stream with the qdma_axis<D,0,0,0> data type. The qdma_axis data type
needs the header file ap_axi_sdata.h.

• The qdma_axis<D,0,0,0> is a special class used for data transfer between host and kernel
when using the streaming platform. This is only used in the streaming kernel interface
interacting with the host, not with another kernel. The template parameter <D> denotes data
width. The remaining three parameters should be set to 0 (not to be used in the current
release).

• The following code block shows a simple kernel interface with one input stream and one
output stream.

#include "ap_axi_sdata.h"
#include "hls_stream.h"
 
//qdma_axis is the HLS class for stream data transfer between host and 
kernel for streaming platform
//It contains "data" and two sideband signals (last and keep) exposed to 
the user via class member function. 
typedef qdma_axis<64,0,0,0> datap;
 
void kernel_top (
             hls::stream<datap> &input,
             hls::stream<datap> &output,
             ..... , // Other Inputs/Outputs if any                   
             )
{
    #pragma HLS INTERFACE axis port=input
    #pragma HLS INTERFACE axis port=output
}
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• The qdma_axis data type contains three variables which should be used inside the kernel
code:

• data: Internally qdma_axis contains an ap_uint<D> that should be accessed by
the .get_data() and .set_data() method.

• The D must be 8, 16, 32, 64, 128, 256, or 512 bits wide.

• last: The last variable is used to indicate the last value of an incoming and outgoing
stream. When reading from the input stream, last is used to detect the end of the stream.
Similarly when kernel writes to an output stream transferred to the host, the last must be
set to indicate the end of stream.

• get_last/set_last: Accesses/sets the last variable used to denote the last data in
the stream.

• keep: In some special situation, keep signal can be used to truncate the last data to the
fewer number of bytes. However, keep should not be used to any data other than the last
data from the stream. So, in most of the cases, you should set keep to -1 for all the
outgoing data from the kernel.

• get_keep/set_keep: Accesses/sets the keep variable.

• For all the data before the last data, keep must be set to -1 to denote all bytes of the
data are valid.

• For the last data, the kernel has the flexibility to send fewer bytes. For example, for the
four bytes data transfer, the kernel can truncate the last data by sending one byte, two
bytes, or three bytes by using set_keep() function as below.

○ If the last data is one byte => .set_keep(1)

○ If the last data is two bytes => .set_keep(3)

○ If the last data is three bytes => .set_keep(7)

○ If the last data is all four bytes (similar to all non-last data) => .set_keep(-1)

• The following code block shows how the stream input is read. Note the usage of .last to
determine the last data.

// Stream Read
// Using "last" flag to determine the end of input-stream
// when kernel does not know the length of the input data
 hls::stream<ap_uint<64> >   internal_stream;
 while(true) {
        datap temp = input.read(); // "input" -> Input stream
        internal_stream << temp.get_data();  // Getting data from the 
        stream
        if(temp.get_last())  // Getting last signal to determine the 
        EOT (end of transfer). 
            break;
 }

• The following code block shows how the stream output is written. The set_keep is setting
-1 for all data (general case). Also, the kernel uses the set_last() to specify the last data of
the stream.
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IMPORTANT! For the proper functionality of the host and kernel system, it is very important to set the last bit
setting.

// Stream Write
for(int j = 0; j <....; j++) {
      datap t;
      t.set_data(...);
      t.set_keep(-1);        // keep flag -1 , all bytes are valid
      if(... )               // check if this is last data to be write
         t.set_last(1);      // Setting last data of the stream
      else
         t.set_last(0);
      output.write(t);       // output stream from the kernel
}

Streaming Data Transfers Between the
Kernels

The SDAccel environment also supports streaming data transfer between two kernels. Consider
the situation where one kernel is performing some part of the computation and the second
kernel is operating the rest after receiving the output data from the first kernel. Before SDx™
2019.1 version, the only method to transfer data from one kernel to another was through the
global memory. Now with kernel to kernel streaming support, data can move directly from one
kernel to another without having to transmit through global memory, improving performance.

Host Coding Guidelines
There is only one consideration from the host coding perspective for kernel to kernel streaming
data transfer, the kernel ports involved in kernel to kernel data transfer does not need
clSetKernelArg from the host code. The host code should set other kernel port arguments
that are directly interacting with the host with the clSetKernelArg command.

Kernel Coding Guidelines
The kernel streaming interface directly sending or receiving data to another kernel streaming
interface should be defined by hls::stream with the ap_axiu<D,0,0,0> data type. The
ap_axiu<D,0,0,0> data type needs the header file ap_axi_sdata.h.

IMPORTANT! Xilinx requires using the qdma_axis data type for host to kernel and kernel to host as described
in the previous section. On the other hand, the ap_axiu data type should be used for intra-kernel streaming
data transfer. Both of these data types are defined inside ap_axi_sdata.h file distributed with the SDAccel
release.
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The following example shows the streaming interfaces of the producer and consumer kernels.

// Producer kernel
// Producing stream output to another kernel on the FPGA
// The below code segment ignores all other inputs and outputs, if any

void kernel1 (.... , hls::stream<ap_axiu<32, 0, 0, 0> >& stream_out)    {
#pragma HLS interface axis port=stream_out
 
      
        for(int i = 0; i < ...; i++) {
            int a = ...... ;         // Internally generated data
            ap_axiu<32, 0, 0, 0> v;  // temporary storage for ap_axiu
            v.data = a;              // Writing the data
            stream_out.write(v);         // Writing to the output stream.
        }
    }
 
// Consumer kernel
// Consuming stream input from another kernel on the FPGA
// The below code segment ignores all other inputs and outputs, if any
void kernel2 (hls::stream<ap_axiu<32, 0, 0, 0> >& stream_in, .... )    {
#pragma HLS interface axis port=stream_in
 
        for(int i = 0; i < ....; i++) {
            ap_axiu<32, 0, 0, 0> v = stream_in.read(); // Reading from the 
            Input stream
            int a = v.data; // Extract the data
             
            // Do further processing
        }
 }

Linking the Kernels
Additionally, connect the streaming output port of the producer kernel to the streaming input
port of the consumer kernel by the --sc switch applied during the xocc link (-l) stage.

#Syntax:: xocc -l --sc <Source streaming port>:<Destination streaming port>
xocc -l --sc <kernel1 instance name>.stream_in:<kernel2 instance 
name>.stream_out
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Appendix B

OpenCL Installable Client Driver
Loader

A system can have multiple OpenCL™ platforms, each with its own driver and OpenCL version.
The SDAccel™ environment supports the OpenCL Installable Client Driver (ICD) extension
(cl_khr_icd). This extension allows multiple implementations of OpenCL to co-exist on the
same system. The ICD Loader acts as a supervisor for all installed platforms, and provides a
standard handler for all API calls.

Applications can choose an OpenCL platform from the list of installed platforms. Based on the
platform ID specified by the application, the ICD dispatches the OpenCL host calls to the right
runtime.

Xilinx does not provide the OpenCL ICD library, so the following should be used to install the
library on your preferred system.

Ubuntu

On Ubuntu the ICD library is packaged with the distribution. Install the following packages:

• ocl-icd-libopencl1

• opencl-headers

• ocl-icd-opencl-dev

Linux

For RHEL/CentOS 7.X use EPEL 7, install the following packages:

• ocl-icd

• ocl-icd-devel

• opencl-headers
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Appendix C

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. DocNav is installed with
the SDSoC™ and SDAccel™ development environments. To open it:

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.
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2. SDAccel Environment Profiling and Optimization Guide (UG1207)

3. SDAccel Environment Getting Started Tutorial (UG1021)

4. SDAccel™ Development Environment web page
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6. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

7. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

8. Vivado Design Suite User Guide: Partial Reconfiguration (UG909)

9. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

10. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)

11. Vivado Design Suite Properties Reference Guide (UG912)

12. Khronos Group web page: Documentation for the OpenCL standard

13. Xilinx® Virtex® UltraScale+™ FPGA VCU1525 Acceleration Development Kit

14. Xilinx® Kintex® UltraScale™ FPGA KCU1500 Acceleration Development Kit

15. Xilinx® Alveo™ web page

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
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www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2018-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc.
used by permission by Khronos. HDMI, HDMI logo, and High-Definition Multimedia Interface are
trademarks of HDMI Licensing LLC. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries. All other trademarks are the property of their respective owners.
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