SDx Pragma Reference
Guide

UG1253 (v2019.1) June 5, 2019

& XILINX

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1253

& XILINX

Revision History

The following table shows the revision history for this document.

Section

| Revision Summary

06/05/2019 Version 2019.1

pragma SDS data mem_attribute

Changed AXI_DMA to AXIDMA.

pragma HLS clock

Added pragma.

pragma HLS stable

Added pragma.

01/24/2019 Version 2018.3

Chapter 4: HLS Pragmas

Removed pragma HLS Protocol

General updates

Editorial updates.

12/05/2018 Version 2018.3

Chapter 2: OpenCL Attributes

* Added xcl_latency.
* Added xcl_loop_tripcount.

* Added <II_number> to xcl_pipeline_loop.

Chapter 3: SDS Pragmas

Added FASTDMA to pragma SDS data data_mover.

10/02/2018 Version 2018.2.xdf

| No changes for release.

07/02/2018 Version 2018.2

pragma HLS array_map

Added discussion of clock cycle expectations for horizontal
and vertical array mapping.

pragma HLS interface

Added details of specifying burst mode, and added 1atency
option.

06/06/2018 Version 2018.2

Chapter 3: SDS Pragmas

Removed pragma SDS PARTITION

Chapter 4: HLS Pragmas

Removed pragma HLS CLOCK

04/04/2018 Version 2018.1

Entire document

Minor editorial updates for 2018.1 release.

UG1253 (v2019.1) June 5, 2019
SDx Pragma Reference Guide

[Send Feedback] WWW.Xi|inX.C0n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=2

& XILINX

Table of Contents

REVISION HISTOKY ...ttt sess s sssssssssesssssssssssssssssssssasens 2
Chapter 1: INtrodUCtioN........... et ssssssssssens 5
Chapter 2: OpenCL Attributes........... et eensenees 8
AIWAYS_INTIN@ ..ttt sttt e e et s b e s be et e st e sba e be st e sae e besatesaaen 9
OPENCI_UNFOI_NINT ..ttt sb e et sae b esaeesees 10
FEQU_WOIK _GrOUP_SIZE.. ettt ettt ettt b e st s e e s st e s e e b e e e s st esneeeesnees 12
AV Z<Tol 0/ o 1= o 11 o | SO OO OO PRRPRRPRR 13
WOIK_GroUP_SIZE_NINt.cciiiiiiiiieieeeceeetee ettt ettt a e sae et e s aesanenbaens 15
XCl_array _PartitiON....cceceieeeeeeee ettt sttt r st b et reenes 16
(e I 1 1 VA €= 1 =] o 1= OSSO P RSO S U PRORPRRPO 19
pCel 1o F=1 2= [0,V 2R 21
Dol I = 1 (=] o Loy V2O OO ST O SRR PRRPRRRPR 23
XCI_IOOP_ErIPCOUNT....ciiiieteeee ettt st ettt be st st e b e et e st e sbeebe s e e sas 24
XCl_MAX_WOIK_GrOUP_SIZE...cueieiiieeieeieeiee ettt sttt sttt s e sb e s ae e s st e s e e e e s st esneeneenees 25
b (el I o1 o X< 11 a TN [Yo] o FUu OO OO PRRPPRRPR 27
XCl_PIPeIINE_WOIKITEMIS....oiiiiiiiieetecetet ettt sae e b st saa e 28
XCl_reqd_pipe_dePth......cooieeeeee st st sae e r e 29
XCl_zero_global_WOrK_OffSeL........oi et 31
Chapter 3: SDS Pragmas.........enninenenensesesssens 32
Pragma SDS @SYNCuuuuuiiiiiiiiiiiiiiiiiiitre e a e s 33
pragma SDS data aCCeSS_PatterN.... .ottt 35
pragma SDS data buffer_depth.........ciiee e 36
Pragma SDS data COPY.ccuuinerrieriirieeienterieesieste st e rteste st estestesaeessesbesaaessesbesasesseensesssensesnsesane 38
Pragma SDS data data_MOVETcoerieierienieeee sttt ettt et sre s esae e b ens 41
pragma SDS data mem_attribDULE........cooiiieeeeeee e e 43
Pragma SDS data SYS_POIT...ciiiiiriirieeieriereerieste st esteste st estessse st e ssessaesssessasssesssesseessesssensens 44
Pragma SDS data ZEIr0_COPY....uiriirerrierierieeiesitesieestestesstestesstesseesseessesssesseessesssessaessessesssessens 46
Pragma SDS FESOUICE....ccocuiiiiiiiiiiiiiiteccte sttt ba e s s ra e s s ra e s ssbe s ssneessnnee s 47
Pragma SDS TraCe......uiiiiiiiiieeeee e s 48

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 3

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=3

& XILINX

Pragma SDS Wait. .. .oiiiiiiiiieeeeee ettt r e s 49
Chapter 4: HLS Pragmas..........irnenesensnsenesssssesssssssssssssssssssssssssssssssssssnes 51
Pragma HLS @llOCatioN....cc.uiiiiiieieeeeeee ettt ettt ne s 52
Pragma HLS array_Map. ..ottt 54
Pragma HLS array_partitioN.......coccoieeiiinieiieenieeseesieseesre ettt ssessreesaessreesresssaesasessanens 57
Pragma HLS array_reSNape......c ettt sttt sttt st sbe et snesaeesneens 59
Pragma HLS ClOCK.... .ottt sttt et ne e ae 61
Pragma HLS data_PacK......cceereeieieeeeeeeeeee ettt ne e 62
Pragma HLS datafloW.....cuiiiiiiiiiicceeeetee ettt sae s 65
Pragma HLS dePeNAENCE.......couiiiiiieieeteetete ettt st sr ettt s ae e sas 68
pragma HLS eXpression_bDalanCe...........co ettt s 70
pragma HLS fuNCtioN_iNSTaNtiate........coeeirieiieieiereseseeeeeteteee ettt 71
Pragma HLS INJIN@...ciiiieiieieeiceceet ettt sttt st sas et s st e st e sbe et e ssaesbaebesssens 73
Pragma HLS INTEITACE.......cooiiieieeeeee ettt st sttt saeebeens 75
Pragma HLS [GtENCY ..ottt ettt b e st e sae e be e e sneens 81
Pragma HLS 100D _flatten.......cuoiieeeeee ettt 83
Pragma HLS I00P_MEIGe.....iiiiiiiiiiieeiertesee sttt sttt ettt s bt e sb e s ae s e e be e b e s s e sbaenne 85
Pragma HLS I0OP_triPCOUNT.....c..iiiiiieeteeteeeee ettt ettt be s ssaesaeesneens 86
Pragma HLS OCCUITENCE. ...ttt sttt s sb e s s se e s ne e 88
Pragma HLS PIPeliNe. .. ettt ne e r e 89
Pragma HLS FESEL.....eiiiiieeieeeeecte ettt sttt e st e s s b e e s s st e s ssseessaaesensnessnsnens 91
Pragma HLS FESOUICE....cccuviiiiieiiteceectee ettt sttt e s st e s s b e s be e s sbaesssnaesns 92
Pragma HLS StAble... ..ottt ettt et st a et be e saeen 94
Pragma HLS Stream.. ..ot 95
Pragma HLS L0 ittt s s rr e s rae e s rae s snn e e snneesnneesannes 96
Pragma HLS UNFOL..c..couiiiieeeeeeeeet ettt sttt st ae et sanesaees 97
Appendix A: Additional Resources and Legal Notices........................... 101
XIlINX RESOUICES.....ceuiiiieieieriieiteitetet ettt et s bt sttt et b et sb e sbesbe et et e e e b enbesbene 101
Documentation Navigator and Design HUDS.........cccoeriiiirieniieceeeeeseeee et 101
RETEIEINCES. ..ttt ettt st et b sttt e st e st et e s besbeebe e st et e aetenbens 101
Please Read: Important Legal NOTICES.......cuviviiniiiinientineeiese ettt sve e se e saessesseens 102

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/_] 4

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=4

& XILINX

Chapter 1

Introduction

The Xilinx® SDx™ tools, including the SDAccel™ environment, the SDSoC™ environment, and the
Vivado® High-Level Synthesis (HLS) tool, provide an out-of-the-box experience for system
programmers looking to partition elements of a software application to run in an FPGA-based
hardware kernel, and having that hardware work seamlessly with the rest of the application
running in a processor or embedded processor.

The out-of-the-box experience provides adequate results for many applications. However, you
might also need to optimize the hardware logic to extract the best quality of results from the
hardware partition; to improve the performance of the kernel, the data throughput, reduce the
latency, or reduce the resources used by the kernel. In this case, certain attributes, directives, or
pragmas, can be used to direct the compilation and synthesis of the hardware kernel, or to
optimize the function of the data mover operating between the processor and the hardware
logic.

This guide describes the different forms and types of pragmas available for use in the OpenCL™
C language, or in standard C/C++ language definitions of a system-level application in the SDx
development environment.

e OpenCL attributes are defined in the OpenCL language standard, and apply optimizations to
the hardware kernel.

e Xilinx provides additional OpenCL attributes that are named starting with xcl_.

e SDS pragmas are defined for use with C or C++ language, and apply to the interface, data
mover, and hardware kernel in SDSoC design projects.

e HLS pragmas are defined for use with C or C++ language and can be used in the SDx flow to
apply optimizations to the hardware kernel in the Vivado HLS tool.

e Directives are the Vivado HLS tool Tcl commands that can be applied to the hardware
partition, like HLS pragmas, but are not discussed in any detail here. Refer to the Vivado Design
Suite User Guide: High-Level Synthesis (UG902) for more information.

The goal of kernel optimization is to create processing logic that can consume all the data as
soon as it arrives at the kernel interfaces. This is generally achieved by expanding the processing
code to match the data path with techniques, such as function pipelining, loop unrolling, array
partitioning, dataflowing, etc. The attributes and pragmas described here are provided to assist
your optimization effort.

You can apply optimization pragmas and attributes to the following objects and scopes:

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 5

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=5

iv Xl Ll NX Chapter 1: Introduction
A 0

¢ Interfaces: When you apply pragmas to an interface, the SDx development environment
applies the directive to the top-level function, because the top-level function is the scope that
contains the interface.

e Functions: When you apply pragmas to functions, SDx development environment applies the
directive to all objects within the scope of the function. The effect of any directive stops at
the next level of function hierarchy. The only exception is a directive that supports or uses a
recursive option, such as the PIPELINE pragmas that recursively unrolls all loops in the
hierarchy.

e Loops: When you apply pragmas to loops, SDx development environment applies the directive
to all objects within the scope of the loop. For example, if you apply a LOOP_MERGE directive
to a loop, SDx development environment applies the pragmas to any sub-loops within the
loop but not to the loop itself.

e Arrays: When you apply pragmas to arrays, SDx development environment applies the
directive to the scope that contains the array.

e Regions: When you apply pragmas to regions, SDx development environment applies the
directive to the entire scope of the region. A region is any area enclosed within two braces, as
shown in the following example:

{

the scope between these braces is a region

3

O TIP: Apply optimizations to a region in the same way you apply them to functions and loops.

e You can label loops and regions to make it easier to identify them in your code. The following
example shows labeled and unlabeled loops and regions:

// Example of a loop with a label
My_For_Loop:for(i=0; di<3;4i++ {

printf("This loop has the label My_For_Loop \n'");
3

// Example of a region with no label

{
printf("The scope between these braces has NO label");

}

// Example of a NAMED region

My_Region: {

printf("The scope between these braces HAS the label My_Region");
}

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 6

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=6

iv Xl Ll NX Chapter 1: Introduction
A 0

e When specifying values for arguments of attributes or pragmas, you can use literal values (for
example, 1, 55, 3.14), or pass a macro using #define. The following example shows an
attribute and pragma with literal values:

__attribute__((xcl_array_partition(cyclic,5,1)));
#pragma HLS ARRAY_PARTITION variable = k_matrix_val cyclic factor=5
This example uses defined macros:

#define E 5
#pragma HLS ARRAY_PARTITION variable = k_matrix_val cyclic factor=E

__attribute__((xcl_array_partition(cyclic,E,1)));

IMPORTANT! For both attributes and pragmas, do not use declared constants to specify values as they are not
supported.

UG1253 (v2019.1) June 5, 2019 www.xilinx.com
SDx Pragma Reference Guide [_‘Send’_]Feedback 7

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=7

& XILINX

Chapter 2

OpenCL Attributes

Optimizations in OpenCL

This section describes OpenCL™ attributes that can be added to source code to assist system
optimization by the SDAccel™ development environment, and Vivado® High-Level Synthesis
(HLS) tool synthesis.

The SDx™ environment provides OpenCL attributes to optimize your code for data movement
and kernel performance. The goal of data movement optimization is to maximize the system level
data throughput by maximizing interface bandwidth usage and DDR bandwidth usage. The goal
of kernel computation optimization is to create processing logic that can consume all the data as
soon as they arrive at kernel interfaces. This is generally achieved by expanding the processing
code to match the data path with techniques such as function inlining and pipelining, loop
unrolling, array partitioning, dataflowing, etc.

The OpenCL attributes include the types specified below:

Table 1: OpenCL Attributes by Type

Type Attributes

Kernel Optimization
* reqd_work_group_size

* vec_type_hint

* work_group_size_hint

* xcl_latency

* xcl_max_work_group_size

* xcl_zero_global_work_offset

Function Inlining
* always_inline

Task-level Pipeline
* xcl_dataflow

* xcl_reqd_pipe_depth

Pipeline
* xcl_pipeline_loop

* xcl_pipeline_workitems

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 8

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=8

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

Table 1: OpenCL Attributes by Type (cont'd)

Type Attributes

Loop Optimization
* opencl_unroll_hint

* xcl_loop_tripcount

* xcl_pipeline_loop

Array Optimization
* xcl_array_partition

* xcl_array_reshape

Note: Array variables only accept a single array optimization attribute.

O TIP: The SDAccel compiler also supports many of the standard attributes supported by gcc, such as:

e ALWAYS_INLINE
e NOINLINE

e UNROLL

e NOUNROLL

always_inline

Description

The ALWAYS_INLINE attribute indicates that a function must be inlined. This attribute is a
standard feature of GCC, and a standard feature of the SDx tool compilers.

O TIP: The NOINLINE attribute is also a standard feature of GCC, and is also supported by SDx tool compilers.

This attribute enables a compiler optimization to have a function inlined into the calling function.

The inlined function is dissolved and no longer appears as a separate level of hierarchy in the
RTL.

In some cases, inlining a function allows operations within the function to be shared and
optimized more effectively with surrounding operations in the calling function. However, an
inlined function can no longer be shared with other functions, so the logic might be duplicated
between the inlined function and a separate instance of the function which can be more broadly
shared. While this can improve performance, this will also increase the area required for
implementing the RTL.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 9

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=9

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

For OpenCL kernels, the SDx compiler uses its own rules to inline or not inline a function. To
directly control inlining functions, use the ALWAYS_INLINE or NOINLINE attributes.

By default, inlining is only performed on the next level of function hierarchy, not sub-functions.

ﬁ? IMPORTANT! When used with the XCL_DATAFLOW attribute, the compiler will ignore the ALWAYS_INLINE
attribute and not inline the function.

Syntax

Place the attribute in the OpenCL API source before the function definition to always have it
inlined whenever the function is called.

__attribute__((always_inline))

Examples

This example adds the ALWAYS_INLINE attribute to function foo:

__attribute__((always_inline))
void foo (a, b, ¢, d) {

}
This example prevents the inlining of the function foo:

__attribute__((noinline))
void foo (a, b, ¢, d) {

See Also

e https:/gcc.gnu.org
e SDAccel Environment Profiling and Optimization Guide (UG1207)

opencl_unroll_hint

Description

i} IMPORTANT! This is a compiler hint which the compiler may ignore.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 10

https://gcc.gnu.org
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=10

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

Loop unrolling is the first optimization technique available in the SDAccel development
environment. The purpose of the loop unroll optimization is to expose concurrency to the
compiler. This newly exposed concurrency reduces latency and improves performance, but also
consumes more FPGA fabric resources.

The OPENCL_UNROLL_HINT attribute is part of the OpenCL Language Specification, and
specifies that loops (for, while, do) can be unrolled by the OpenCL compiler.

The OPENCL_UNROLL_HINT attribute qualifier must appear immediately before the loop to be
affected. You can use this attribute to specify full unrolling of the loop, partial unrolling by a
specified amount, or to disable unrolling of the loop.

Syntax

Place the attribute in the OpenCL source before the loop definition:
__attribute__((opencl_unroll_hint(<n>)))

Where:

e <n> is an optional loop unrolling factor and must be a positive integer, or compile time
constant expression. An unroll factor of 1 disables unrolling.

O TIP: If <n> is not specified, the compiler automatically determines the unrolling factor for the loop.

Example 1

The following example unrolls the for loop by a factor of 2. This results in two parallel loop
iterations instead of four sequential iterations for the compute unit to complete the operation.

__attribute__((opencl_unroll_hint(2)))
for(int i = 0; i < LENGTH; 4i++) {
bufcl[i] = bufalil * bufblil;

3

Conceptually the compiler transforms the loop above to the following code:

for(int i = 0; i < LENGTH; i+=2) {
bufcl[i] = bufalil] * bufblil;
bufc[i+1] = bufali+1l] * bufbl[i+1];
1

See Also

e SDAccel Environment Profiling and Optimization Guide (UG1207)
e https:/www.khronos.org/

e The OpenCL C Specification

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] A

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.khronos.org/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=11

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

reqd_work_group_size

Description

When OpenCL API kernels are submitted for execution on an OpenCL device, they execute
within an index space, called an ND range, which can have 1, 2, or 3 dimensions. This is called the
global size in the OpenCL API. The work-group size defines the amount of the ND range that can
be processed by a single invocation of a kernel compute unit. The work-group size is also called
the local size in the OpenCL API. The OpenCL compiler can determine the work-group size based
on the properties of the kernel and selected device. After the work-group size (local size) is
determined, the ND range (global size) is divided automatically into work-groups, and the work-
groups are scheduled for execution on the device.

Although the OpenCL compiler can define the work-group size, the specification of the
REQD_WORK_GROUP_SIZE attribute on the kernel to define the work-group size is highly
recommended for FPGA implementations of the kernel. The attribute is recommended for
performance optimization during the generation of the custom logic for a kernel. See OpenCL
Execution Model in the SDAccel Environment Profiling and Optimization Guide (UG1207) for more
information.

O TIP: In the case of an FPGA implementation, the specification of the REQD_WORK_GROUP_SIZE attribute is
highly recommended as it can be used for performance optimization during the generation of the custom logic for
a kernel.

OpenCL kernel functions are executed exactly one time for each point in the ND range index
space. This unit of work for each point in the ND range is called a work-item. Work-items are
organized into work-groups, which are the unit of work scheduled onto compute units. The
optional REQD_WORK_GROUP_SIZE attribute defines the work-group size of a compute unit
that must be used as the 1ocal_work_size argument to clEnqueueNDRangeKernel. This
allows the compiler to optimize the generated code appropriately for this kernel.

Syntax

Place this attribute before the kernel definition, or before the primary function specified for the
kernel:

__attribute__((reqd_work_group_size(<X>, <Y>, <Z>)))

Where:

o <X>, <Y>, <Z>: Specifies the ND range of the kernel. This represents each dimension of a
three dimensional matrix specifying the size of the work-group for the kernel.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 12

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1.xdf;d=ug1207-sdaccel-optimization-guide.pdf;a=xOpenclExecutionModel
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1.xdf;d=ug1207-sdaccel-optimization-guide.pdf;a=xOpenclExecutionModel
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=12

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

Examples

The following OpenCL C kernel code shows a vector addition design where two arrays of data
are summed into a third array. The required size of the work-group is 16x1x1. This kernel will
execute 16 times to produce a valid result.

#include <clc.h>

// For VHLS OpenCL C kernels, the full work group is synthesized
__attribute__ ((reqd_work_group_size(16, 1, 1)))
__kernel void

vadd(__global int¥* a,

__global int* b,

__global int* c)

{

int idx = get_global_id(0);

clidx] = alidx] + bl[didx];

}

See Also
e SDAccel Environment Profiling and Optimization Guide (UG1207)
e https:/www.khronos.org/

e The OpenCL C Specification

vec_type_hint

*

Description

IMPORTANT! This is a compiler hint which the compiler may ignore.

The optional __attribute__((vec_type_hint (<type>))) is part of the OpenCL
Language Specification, and hints to the OpenCL compiler representing the computational width
of the kernel, providing a basis for calculating processor bandwidth usage when the compiler is
looking to auto-vectorize the code.

By default, the kernel is assumed to have the __attribute__((vec_type_hint (int)))
qualifier. This lets you specify a different vectorization type.

Implicit in autovectorization is the assumption that any libraries called from the kernel must be
re-compilable at runtime to handle cases where the compiler decides to merge or separate
workitems. This means that these libraries can never be hard-coded binaries or that hard-coded
binaries must be accompanied either by source or some re-targetable intermediate
representation. This might be a code security question for some.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 13

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.khronos.org/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=13

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

Syntax
Place this attribute before the kernel definition, or before the primary function specified for the
kernel:
__attribute__((vec_type_hint(<type>)))
Where:

e <type>:is one of the built-in vector types listed in the following table, or the constituent
scalar element types.

Note: When not specified, the kernel is assumed to have an INT type.

Table 2: Vector Types

Type Description
char<n> A vector of <n> 8-bit signed two's complement integer values.
uchar<n> A vector of <n> 8-bit unsigned integer values.
short<n> A vector of <n> 16-bit signed two’s complement integer values.
ushort<n> A vector of <n> 16-bit unsigned integer values.
int<n> A vector of <n> 32-bit signed two’s complement integer values.
uint<n> A vector of <n> 32-bit unsigned integer values.
long<n> A vector of <n> 64-bit signed two’s complement integer values.
ulong<n> A vector of <n> 64-bit unsigned integer values.
float<n> A vector of <n> 32-bit floating-point values.
double<n> A vector of <n> 64-bit floating-point values.

Note: <n> is assumed to be 1 when not specified. The vector data type names defined above where <n> is
any value other than 2, 3, 4, 8 and 16, are also reserved. Therefore, < n> can only be specified as 2,3,4,8,
and 16.

Examples

The following example autovectorizes assuming double-wide integer as the basic computation
width:

#include <clc.h>

// For VHLS OpenCL C kernels, the full work group is synthesized
__attribute__((vec_type_hint(double)))

__attribute__ ((reqd_-work_group_size(1l6, 1, 1)))

__kernel void

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 14

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=14

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

See Also

e SDAccel Environment Profiling and Optimization Guide (UG1207)
e https:/www.khronos.org/

e The OpenCL C Specification

work_group_size_hint

*

Description

IMPORTANT! This is a compiler hint, which the compiler may ignore.

The work-group size in the OpenCL API standard defines the size of the ND range space that can
be handled by a single invocation of a kernel compute unit. When OpenCL kernels are submitted
for execution on an OpenCL device, they execute within an index space, called an ND range,
which can have 1, 2, or 3 dimensions. See "OpenCL Execution Model" in SDAccel Environment
Profiling and Optimization Guide (UG1207) for more information.

OpenCL kernel functions are executed exactly one time for each point in the ND range index
space. This unit of work for each point in the ND range is called a work-item. Unlike for loops in
C, where loop iterations are executed sequentially and in-order, an OpenCL runtime and device is
free to execute work-items in parallel and in any order.

Work-items are organized into work-groups, which are the unit of work scheduled onto compute
units. The optional WORK_GROUP_SIZE_HINT attribute is part of the OpenCL Language
Specification, and is a hint to the compiler that indicates the work-group size value most likely to
be specified by the 1ocal_work_size argument to c1EnqueueNDRangeKernel. This allows
the compiler to optimize the generated code according to the expected value.

TIP: In the case of an FPGA implementation, the specification of the REQD_WORK_GROUP_SIZE attribute,
instead of the WORK_GROUP_SIZE_HINT is highly recommended because it can be used for performance
optimization during the generation of the custom logic for a kernel.

Syntax

Place this attribute before the kernel definition, or before the primary function specified for the
kernel:

__attribute__((work_group_size_hint(<X>, <Y>, <Z>)))

Where:

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 15

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.khronos.org/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=15

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

o <X>, <Y>, <Z>: Specifies the ND range of the kernel. This represents each dimension of a
three dimensional matrix specifying the size of the work-group for the kernel.

Examples

The following example is a hint to the compiler that the kernel will most likely be executed with a
work-group size of 1:

__attribute__((work_group_size_hint(1, 1, 1)))
__kernel void

See Also

e SDAccel Environment Profiling and Optimization Guide (UG1207)
e https:/www.khronos.org/

e The OpenCL C Specification

xcl_array_partition

#

Description

IMPORTANT! Array variables only accept one attribute. While XCL_ARRAY_PARTITION does support multi-
dimensional arrays, you can only reshape one dimension of the array with a single attribute.

An advantage of using the FPGA over other compute devices for OpenCL programs is the ability
for the application programmer to customize the memory architecture all throughout the system
and into the compute unit. By default, the SDAccel compiler generates a memory architecture
within the compute unit that maximizes local and private memory bandwidth based on static
code analysis of the kernel code. Further optimization of these memories is possible based on
attributes in the kernel source code, which can be used to specify physical layouts and
implementations of local and private memories. The attribute in the SDAccel compiler to control
the physical layout of memories in a compute unitis array_partition.

For one-dimensional arrays, the XCL_ARRAY_PARTITION attribute implements an array declared
within kernel code as multiple physical memories instead of a single physical memory. The
selection of which partitioning scheme to use depends on the specific application and its
performance goals. The array partitioning schemes available in the SDAccel tool compiler are
cyclic, block,and complete.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 16

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.khronos.org/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=16

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

Syntax

Place the attribute with the definition of the array variable:

__attribute__((xcl_array_partition(<type>, <factor>,
<dimension>)))

Where:

o <type>: Specifies one of the following partition types:

cyclic: Cyclic partitioning is the implementation of an array as a set of smaller physical
memories that can be accessed simultaneously by the logic in the compute unit. The array
is partitioned cyclically by putting one element into each memory before coming back to
the first memory to repeat the cycle until the array is fully partitioned.

block: Block partitioning is the physical implementation of an array as a set of smaller
memories that can be accessed simultaneously by the logic inside of the compute unit. In
this case, each memory block is filled with elements from the array before moving on to the
next memory.

. complete: Complete partitioning decomposes the array into individual elements. For a
one-dimensional array, this corresponds to resolving a memory into individual registers.
The default <type>is complete.

e <factor>: For cyclic type partitioning, the < factor> specifies how many physical memories
to partition the original array into in the kernel code. For block type partitioning, the
<factor> specifies the number of elements from the original array to store in each physical
memory.

i} IMPORTANT! For comple te type partitioning, the <fact or>> is not specified.

e <dimension>: Specifies which array dimension to partition. Specified as an integer from 1 to
<N>. SDAccel environment supports arrays of N dimensions and can partition the array on
any single dimension.

Example 1
For example, consider the following array declaration:

int buffer[16];

The integer array, named buffer, stores 16 values that are 32-bits wide each. Cyclic partitioning
can be applied to this array with the following declaration:

int buffer[16] __attribute__((xcl_array_partition(cyclic,4,1)));

In this example, the cyclic <partition_type> attribute tells the SDAccel compiler to distribute
the contents of the array among four physical memories. This attribute increases the immediate
memory bandwidth for operations accessing the array buffer by a factor of four.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 17

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=17

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

All arrays inside of a compute unit in the context of the SDAccel environment are capable of
sustaining a maximum of two concurrent accesses. By dividing the original array in the code into
four physical memories, the resulting compute unit can sustain a maximum of eight concurrent
accesses to the array buffer.

Example 2

Using the same integer array as found in Example 1, block partitioning can be applied to the array
with the following declaration:

int buffer[16] __attribute__((xcl_array_partition(block,4,1)));

Because the size of the block is four, the SDAccel compiler will generate four physical memories,
sequentially filling each memory with data from the array.

Example 3

Using the same integer array as found in Example 1, complete partitioning can be applied to the
array with the following declaration:

int buffer[16] __attribute__((xcl_array_partition(complete, 1)));

In this example, the array is completely partitioned into distributed RAM, or 16 independent
registers in the programmable logic of the kernel. Because complete is the default, the same
effect can also be accomplished with the following declaration:

int buffer[16] __attribute__((xcl_array_partition));

While this creates an implementation with the highest possible memory bandwidth, it is not
suited to all applications. The way in which data is accessed by the kernel code through either
constant or data dependent indexes affects the amount of supporting logic that the SDAccel
compiler has to build around each register to ensure functional equivalence with the usage in the
original code. As a general best practice guideline for the SDx environment, the complete
partitioning attribute is best suited for arrays in which at least one dimension of the array is
accessed through the use of constant indexes.

See Also

e xcl_array_reshape

pragma HLS array_partition
SDAccel Environment Profiling and Optimization Guide (UG1207)
Vivado Design Suite User Guide: High-Level Synthesis (UG902)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 18

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=18

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

xcl_array_reshape

#

Description

IMPORTANT! Array variables only accept one attribute. While the XCL_ARRAY_RESHAPE attribute does
support multi-dimensional arrays, you can only reshape one dimension of the array with a single attribute.

This attribute combines array partitioning with vertical array mapping.

The XCL_ARRAY_RESHAPE attribute combines the effect of XCL_ARRAY_PARTITION, breaking
an array into smaller arrays, and concatenating elements of arrays by increasing bit-widths. This
reduces the number of block RAM consumed while providing parallel access to the data. This
attribute creates a new array with fewer elements but with greater bit-width, allowing more data
to be accessed in a single clock cycle.

Given the following code:

void foo (...) {

int arrayl[N] __attribute__((xcl_array_reshape(block, 2, 1)));
int array2[N] __attribute__((xcl_array_reshape(cycle, 2, 1)));
int array3[N] __attribute__((xcl_array_reshape(complete, 1)));

The ARRAY_RESHAPE attribute transforms the arrays into the form shown in the following
figure:

Figure 1: ARRAY_RESHAPE

array1[N] array4[N/2]
I—:> MSB | N/2 N-2 N-1
[oT 1T 27T . TN3]N2[N1] [block LSB 0 7 N/2-1)
array2[N] array5[N/2]
: MSB 1 N-3 N-1
(oI z1 - ITmsINelm] [oeic > Voo 2 ~ N2
array6[1]
array3[N] MSB [N1
(0T 7 121 - N3 N2 NT] |complete > N-2
1
LSB

X14307-110217

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 19

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=19

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

Syntax

Place the attribute with the definition of the array variable:

__attribute__((xcl_array_reshape(<type>,<factor>,
<dimension>)))

Where:

o <type>: Specifies one of the following partition types:

cyclic: Cyclic partitioning is the implementation of an array as a set of smaller physical
memories that can be accessed simultaneously by the logic in the compute unit. The array
is partitioned cyclically by putting one element into each memory before coming back to
the first memory to repeat the cycle until the array is fully partitioned.

block: Block partitioning is the physical implementation of an array as a set of smaller
memories that can be accessed simultaneously by the logic inside of the compute unit. In
this case, each memory block is filled with elements from the array before moving on to the
next memory.

. complete: Complete partitioning decomposes the array into individual elements. For a
one-dimensional array, this corresponds to resolving a memory into individual registers.
The default <type>is complete.

e <factor>: For cyclic type partitioning, the < factor> specifies how many physical memories
to partition the original array into in the kernel code. For Block type partitioning, the
<factor> specifies the number of elements from the original array to store in each physical
memory.

i} IMPORTANT! For comp1ete type partitioning, the < fac t or>should not be specified.

e <dimension>: Specifies which array dimension to partition. Specified as an integer from 1 to
<N>. SDAccel environment supports arrays of <N> dimensions and can partition the array on
any single dimension.

Example 1

Reshapes (partition and maps) an 8-bit array with 17 elements, AB[17], into a new 32-bit array
with five elements using block mapping.

int AB[17] __attribute__((xcl_array_reshape(block,4,1)));

O TIP: A <factor>of 4 indicates that the array should be divided into four. As a result, the 17 elements are
reshaped into an array of five elements, with four times the bit-width. In this case, the last element, AB[17], is
mapped to the lower eight bits of the fifth element, and the rest of the fifth element is empty.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 20

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=20

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

Example 2

Reshapes the two-dimensional array AB[6][4] into a new array of dimension [6][2], in which
dimension 2 has twice the bit-width:

int AB[6][4] __attribute__((xcl_array_reshape(block,2,2)));

Example 3

Reshapes the three-dimensional 8-bit array, AB[4][2][2] in function foo, into a new single
element array (a register), 128 bits wide (4*2*2*8):

int AB[4][2][2] __attribute__((xcl_array_reshape(complete,0)));

O TIP: A <dimension> of 0 means to reshape all dimensions of the array.

See Also

e xcl_array_partition

e pragma HLS array_reshape

e SDAccel Environment Profiling and Optimization Guide (UG1207)
e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

xcl dataflow

Description

The XCL_DATAFLOW attribute enables task-level pipelining, allowing functions and loops to
overlap in their operation, increasing the concurrency of the register transfer level (RTL)
implementation, and increasing the overall throughput of the design.

All operations are performed sequentially in a C description. In the absence of any directives that
limit resources (such as pragma HLS allocation), the Vivado High-Level Synthesis (HLS) tool
seeks to minimize latency and improve concurrency. However, data dependencies can limit this.
For example, functions or loops that access arrays must finish all read/write accesses to the
arrays before they complete. This prevents the next function or loop that consumes the data
from starting operation. The dataflow optimization enables the operations in a function or loop
to start operation before the previous function or loop completes all its operations.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 21

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=21

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

When dataflow optimization is specified, the HLS tool analyzes the dataflow between sequential
functions or loops and create channels (based on ping-pong RAMs or FIFOs) that allow consumer
functions or loops to start operation before the producer functions or loops have completed.
This allows functions or loops to operate in parallel, which decreases latency and improves the
throughput of the RTL.

If no initiation interval (number of cycles between the start of one function or loop and the next)
is specified, the HLS tool attempts to minimize the initiation interval and start operation as soon
as data is available.

O TIP: The HLS tool provides dataflow configuration settings. The config_dataflowcommand specifies the
default memory channel and FIFO depth used in dataflow optimization. Refer to the Vivado Design Suite User
Guide: High-Level Synthesis (UG902) for more information.

For the DATAFLOW optimization to work, the data must flow through the design from one task
to the next. The following coding styles prevent the HLS tool from performing the DATAFLOW
optimization, refer to Vivado Design Suite User Guide: High-Level Synthesis (UG902) for more
information:

e Single-producer-consumer violations
e Bypassing tasks

e Feedback between tasks

e Conditional execution of tasks

¢ Loops with multiple exit conditions

i} IMPORTANT! If any of these coding styles are present, the HLS tool issues a message and does not perform
DATAFLOW optimization.

Finally, the DATAFLOW optimization has no hierarchical implementation. If a sub-function or
loop contains additional tasks that might benefit from the DATAFLOW optimization, you must
apply the optimization to the loop, the sub-function, or inline the sub-function.

Syntax
Assign the XCL_DATAFLOW attribute before the function definition or the loop definition:

__attribute__((xcl_dataflow))

Examples

Specifies dataflow optimization within function foo.

__attribute__((xcl_dataflow))
void foo (a, b, c, d) {

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 22

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=22

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

See Also

e pragma HLS dataflow

e SDAccel Environment Profiling and Optimization Guide (UG1207)
e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

xcl_latency

Description

The XCL_LATENCY attribute specifies a minimum, or maximum latency value, or both, for the
completion of functions, loops, and regions. Latency is defined as the number of clock cycles
required to produce an output. Function or region latency is the number of clock cycles required
for the code to compute all output values, and return. Loop latency is the number of cycles to
execute all iterations of the loop. See "Performance Metrics Example" of Vivado Design Suite User
Guide: High-Level Synthesis (UG902).

TheVivado High-Level Synthesis (HLS) tool always tries to minimize latency in the design. When
the XCL_LATENCY attribute is specified, the tool behavior is as follows:

e When latency is greater than the minimum, or less than the maximum: The constraint is
satisfied. No further optimizations are performed.

e When latency is less than the minimum: If the HLS tool can achieve less than the minimum
specified latency, it extends the latency to the specified value, potentially increasing sharing.

e When latency is greater than the maximum: If the HLS tool cannot schedule within the
maximum limit, it increases effort to achieve the specified constraint. If it still fails to meet the
maximum latency, it issues a warning, and produces a design with the smallest achievable
latency in excess of the maximum.

O TIP: You can also use the XCL_LATENCY attribute to limit the efforts of the tool to find a optimum solution.
Specifying latency constraints for scopes within the code: loops, functions, or regions, reduces the possible
solutions within that scope and improves tool runtime. Refer to "Improving Run Time and Capacity" of Vivado
Design Suite User Guide: High-Level Synthesis (UG902) for more information.

Syntax

Assign the XCL_LATENCY attribute before the body of the function, loop, or region:
__attribute__((xcl_latency(min, max)))

Where:

e <min>: Specifies the minimum latency for the function, loop, or region of code.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 23

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=23

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

e <max>: Specifies the maximum latency for the function, loop, or region of code.

Example 1

The for loop in the test function is specified to have a minimum latency of 4 and a maximum

latency of 8:
__kernel void test(__global float *A, __global float *B, __global float *C,
int 4id)
{

for (unsigned int i = 0; i < 4id; di++)
__attribute__((xcl_latency(4, 12))) {

Clid] = A[4id] = B[did];

}
}
See Also

e pragma HLS latency
e SDAccel Environment Profiling and Optimization Guide (UG1207)
e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

xcl_loop_tripcount

Description

The XCL_LOOP_TRIPCOUNT attribute can be applied to a loop to manually specify the total
number of iterations performed by the loop.

i} IMPORTANT! The XCL_LOOP_TRIPCOUNT attribute is for analysis only, and does not impact the results of
synthesis.

The Vivado High-Level Synthesis (HLS) reports the total latency of each loop, which is the
number of clock cycles to execute all iterations of the loop. The loop latency is therefore a
function of the number of loop iterations, or tripcount.

The tripcount can be a constant value. It may depend on the value of variables used in the loop
expression (for example, x<y), or depend on control statements used inside the loop. In some
cases, the HLS tool cannot determine the tripcount, and the latency is unknown. This includes
cases in which the variables used to determine the tripcount are:

e Input arguments, or

e Variables calculated by dynamic operation.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 24

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=24

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

In cases where the loop latency is unknown or cannot be calculated, the
XCL_LOOP_TRIPCOUNT attribute lets you specify minimum, maximum, and average iterations
for a loop. This lets the tool analyze how the loop latency contributes to the total design latency
in the reports, and helps you determine appropriate optimizations for the design.

Syntax
Place the attribute in the OpenCL source before the loop declaration:

__—attribute__((xcl_loop_tripcount(<min>, <max>, <average>)))

Where:

e <min>: Specifies the minimum number of loop iterations.
e <max>: Specifies the maximum number of loop iterations.

e <avg>: Specifies the average number of loop iterations.

Examples

In this example the WHILE loop in function f is specified to have a minimum tripcount of 2, a
maximum tripcount of 64, and an average tripcount of 33:

__kernel void f(__global int *a) {
unsigned i = 0;
__attribute__((xcl_loop_tripcount(2, 64, 33)))
while(i < 64) {
ali]l = 1;
i++;
}
}

See Also

e pragma HLS loop_tripcount
e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

xcl_max_work_group_size

Description

Use this attribute instead of REQD_WORK_GROUP_SIZE when you need to specify a larger
kernel than the 4K size.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 25

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=25

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

Extends the default maximum work group size supported in the SDx environment by the
reqd_work_group_size attribute. SDx environment supports work size larger than 4096 with
the XCL_MAX_WORK_GROUP_SIZE attribute.

Note: The actual workgroup size limit is dependent on the Xilinx device selected for the platform.

Syntax

Place this attribute before the kernel definition, or before the primary function specified for the
kernel:

__attribute__((xcl_max_work_group_size(<X>, <Y>, <Z>)))

Where:

o <X>, <Y>, <Z>: Specifies the ND range of the kernel. This represents each dimension of a
three dimensional matrix specifying the size of the work-group for the kernel.

Example 1

Below is the kernel source code for an un-optimized adder. No attributes were specified for this
design, other than the work size equal to the size of the matrices (for example, 64x64). That is,
iterating over an entire workgroup will fully add the input matrices, a and b, and output the
result. All three are global integer pointers, which means each value in the matrices is four bytes,
and is stored in off-chip DDR global memory.

#define RANK 64

__kernel __attribute__ ((regd_work_group_size(RANK, RANK, 1)))

void madd(__global int* a, __global int* b, __global int* output) {
int index = get_local_id(1)*get_local_size(0) + get_local_id(0);
output[index] = al[index] + blindex];

}

This local work size of (64, 64, 1) is the same as the global work size. It should be noted that this
setting creates a total work size of 4096.

Note: This is the largest work size that SDAccel environment supports with the standard OpenCL attribute
REQD_WORK_GROUP_SIZE. SDAccel environment supports work size larger than 4096 with the Xilinx
attribute xc1_max_work_group_size.

Any matrix larger than 64x64 would need to only use one dimension to define the work size.
That is, a 128x128 matrix could be operated on by a kernel with a work size of (128, 1, 1), where
each invocation operates on an entire row, or column of data.

See Also

e SDAccel Environment Profiling and Optimization Guide (UG1207)
e https:/www.khronos.org/

e The OpenCL C Specification

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 26

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.khronos.org/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=26

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

xcl_pipeline_loop

Description
You can pipeline a loop to improve latency and maximize kernel throughput and performance.

Although unrolling loops increases concurrency, it does not address the issue of keeping all
elements in a kernel data path busy at all times. Even in an unrolled case, loop control
dependencies can lead to sequential behavior. The sequential behavior of operations results in
idle hardware and a loss of performance.

Xilinx addresses this issue by introducing a vendor extension on top of the OpenCL 2.0 API
specification for loop pipelining using the XCL_PIPELINE_LOOP attribute.

By default, the XOCC compiler automatically pipelines loops with a trip count more than 64, or
unrolls loops with a trip count less than 64. This should provide good results. However, you can
choose to pipeline loops (instead of the automatic unrolling) by explicitly specifying the
NOUNROLL attribute and XCL_PIPELINE_LOOP attribute before the loop.

Syntax

Place the attribute in the OpenCL source before the loop definition:
__attribute__((xcl_pipeline_loop(<II_number>)))
Where:

e <|l_number>: Specifies the desired initiation interval (Il) for the pipeline. The Vivado High-
Level Synthesis (HLS) tool tries to meet this request, however, based on data dependencies
the loop might have a larger initiation interval. When the Il is not specified, the default is 1.

Example 1
The following example specifies an |l target of 3 for the for loop in the specified function:

__kernel void f(__global int *a) {

__attribute__((xcl_pipeline_loop(3)))
for (unsigned i = 0; 1 < 64; ++1)
ali] = 4
}
See Also

e pragma HLS pipeline
e SDAccel Environment Profiling and Optimization Guide (UG1207)
e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 27

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=27

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

xcl_pipeline_workitems

Description

Pipeline a work item to improve latency and throughput. Work item pipelining is the extension of
loop pipelining to the kernel work group. This is necessary for maximizing kernel throughput and
performance.

Syntax

Place the attribute in the OpenCL API source before the elements to pipeline:

__attribute__((xcl_pipeline_workitems))

Example 1

In order to handle the reqd_work_group_size attribute in the following example, SDAccel
tool automatically inserts a loop nest to handle the three-dimensional characteristics of the ND
range (3,1,1). As a result of the added loop nest, the execution profile of this kernel is like an
unpipelined loop. Adding the XCL_PIPELINE_WORKITEMS attribute adds concurrency and
improves the throughput of the code.

kernel
__attribute__ ((reqd_work_group_size(3,1,1)))
void fool(...)

{

__attribute__((xcl_pipeline_workitems)) {
int tid = get_global_id(0);

op_Read(tid);

op_Compute(tid) ;

op_Write(tid);

}

j..

Example 2

The following example adds the work-item pipeline to the appropriate elements of the kernel:

__kernel __attribute__ ((reqd_work_group_size(8, &8, 1)))

void madd(__global int* a, __global int* b, __global int* output)
{

int rank = get_local_size(0);

__local unsigned int bufal[64];

__local unsigned int bufb[64];
__attribute__((xcl_pipeline_workitems)) {
int x = get_local_id(0);

int y = get_local_id(1);

bufal[x*rank + y] alx*rank + yl;
bufb[x*rank + y] blx*rank + y]l;

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 28

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=28

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

3
barrier (CLK_LOCAL_MEM_FENCE) ;

__attribute__((xcl_pipeline_workitems)) {

int index = get_local_id(1)*rank + get_local_id(0);
output[index] = bufal[index] + bufbl[index];

}

}

See Also

e pragma HLS pipeline
e SDAccel Environment Profiling and Optimization Guide (UG1207)
e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

xcl_reqd_pipe_depth

#

Description

IMPORTANT! Pipes must be declared in lower case alphanumerics. In addition, print £ () is hot supported
with variables used in pipes.

The OpenCL framework 2.0 specification introduces a new memory object called pipe. A pipe
stores data organized as a FIFO. Pipes can be used to stream data from one kernel to another
inside the FPGA without having to use the external memory, which greatly improves the overall
system latency.

In the SDAccel development environment, pipes must be statically defined outside of all kernel
functions:. The depth of a pipe must be specified by using the XCL_REQD_PIPE_DEPTH attribute
in the pipe declaration:

pipe int p0 __attribute__((xcl_reqd_pipe_depth(512)));

Pipes can only be accessed using standard OpenCL read_pipe () and write_pipe () built-in
functions in non-blocking mode, or using Xilinx extended read_pipe_block() and
write_pipe_block () functions in blocking mode.

IMPORTANT! A given pipe can have one and only one producer and consumer in different kernels.

Pipe objects are not accessible from the host CPU. The status of pipes can be queried using
OpenCL get_pipe_num_packets () and get_pipe_max_packets () built-in functions. See
The OpenCL C Specification from Khronos OpenCL Working Group for more details on these built-
in functions.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 29

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=29

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

Syntax

This attribute must be assigned at the declaration of the pipe object:
pipe int <id> __attribute__((xcl_reqd_pipe_depth(<n>)));

Where:

e <id>: Specifies an identifier for the pipe, which must consist of lower-case alphanumerics. For
example <infifol> not <inFifol>.

e <n>: Specifies the depth of the pipe. Valid depth values are 16, 32, 64, 128, 256, 512, 1024,
2048, 4096, 8192, 16384, 32768.

Examples

The following is the dataflow_pipes_oc1l example from Xilinx GitHub that use pipes to pass
data from one processing stage to the next using blocking read_pipe_block() and
write_pipe_block () functions:

pipe int pO __attribute__((xcl_reqd_pipe_depth(32)));

pipe int pl __attribute__((xcl_reqd_pipe_depth(32)));

// Input Stage Kernel : Read Data from Global Memory and write into Pipe PO
kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))

void dinput_stage(__global int *input, dint size)

{

__attribute__((xcl_pipeline_loop))

mem_rd: for (int i = 0 ; 4 < sdize ; i++)

{

//blocking Write command to pipe PO
write_pipe_block(pO, &inputlil);

}

}

// Adder Stage Kernel: Read Input data from Pipe PO and write the result
// into Pipe P1

kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void adder_stage(int dinc, int size)

{

__attribute__((xcl_pipeline_loop))

execute: for(int 4 = 0 ; i < size ; di++)

{

int input_data, output_data;

//blocking read command to Pipe PO

read_pipe_block(p0O, &input_data);

output_data = input_data + dinc;

//blocking write command to Pipe P1
write_pipe_block(pl, &output_data);

}

}

// Output Stage Kernel: Read result from Pipe Pl and write the result to
// Global Memory

kernel __attribute__ ((regqd_work_group_size(1, 1, 1)))
void output_stage(__global int *output, int size)

{

__attribute__((xcl_pipeline_loop))

mem_wr: for (int i = 0 ; i < sdize ; di++)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 30

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/dataflow
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=30

iv Xl I_l NX Chapter 2: OpenCL Attributes
A ®

{

//blocking read command to Pipe P1
read_pipe_block(pl, &outputl[il);

}

}

See Also

e SDAccel Environment Profiling and Optimization Guide (UG1207)
e https:/www.khronos.org/

e The OpenCL C Specification

xcl_zero_global_work_offset

Description

If you use c1EnqueueNDRangeKernel with the global_work_offset setto NULL or all
zeros, you can use this attribute to tell the compiler that the global_work_offset is always
zero.

This attribute can improve memory performance when you have memory accesses like:
Alget_global_4id(x)] =

Note: You can specify REQD_WORK_GROUP_SIZE, VEC_TYPE_HINT, and
XCL_ZERO_GLOBAL_WORK_OFFSET together to maximize performance.

Syntax

Place this attribute before the kernel definition, or before the primary function specified for the
kernel:

__kernel __attribute__((xcl_zero_global_work_offset))

void test (__global short *input, __global short ¥output, __constant short

*constants) { 1}

See Also

e reqd_work_group_size

e vec_type_hint

e clEnqueueNDRangeKernel

e SDAccel Environment Profiling and Optimization Guide (UG1207)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 31

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.khronos.org/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/clEnqueueNDRangeKernel.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=31

& XILINX

Chapter 3

SDS Pragmas

Optimizations in SDSoC

This section describes pragmas for the SDSoC™ system compilers, sdscc and sds++ to assist
system optimization.

The SDSoC environment system compilers target a base platform and invoke the Vivado® High-
Level Synthesis (HLS) tool to compile synthesizeable C/C++ functions into programmable logic.
Using the SDSoC IDE, or sdscc/sds++ command line options, you select functions from your
source program to run in hardware, specify accelerator and system clocks, and set properties on
data transfers.

In the SDSoC environment, you control the system generation process by structuring hardware
functions and calls to hardware functions to balance communication and computation, and by
inserting pragmas into your source code to guide the system compiler. The SDSoC compiler
automatically chooses the best possible system port to use for any data transfer, but allows you
to override this selection by using pragmas. You can also specify pragmas to select different data
movers for your hardware function arguments, and use pragmas to control the number of data
elements that are transferred to/from the hardware function.

All pragmas specific to the SDSoC environment are prefixed with #pragma SDS and should be
inserted into C/C++ source code, either immediately prior to a function declaration or at a
function call site for optimization of a specific function call.

#pragma SDS data access_pattern(in_a:SEQENTIAL, out_b:SEQUENTIAL)
void f1l(int in_al[20], int out_b[20]);

The SDS pragmas include the types specified below:

Table 3: SDS Pragmas by Type

Type Pragmas

Data Access Patterns
* pragma SDS data access_pattern

Data Transfer Size
* pragma SDS data copy

* pragma SDS data zero_copy

Memory Attributes
* pragma SDS data mem_attribute

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 32

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=32

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

Table 3: SDS Pragmas by Type (cont'd)

Type Pragmas

Data Mover Type
* pragma SDS data data_mover

SDSoC Platform Interfaces to External
Memory * pragma SDS data sys_port

Hardware Buffer Depth
* pragma SDS data buffer_depth

Asynchronous Function Execution
* pragma SDS async

* pragma SDS wait

Specifying Resource Binding . <bs
pragma resource

Hardware/Software Tracing
* pragma SDS trace

pragma SDS async

Description

The ASYNC pragma must be paired with the WAIT pragma to support manual control of the
hardware function synchronization.

The ASYNC pragma is specified immediately preceding a call to a hardware function, directing
the compiler not to automatically generate the wait based on data flow analysis. The WAIT
pragma must be inserted at an appropriate point in the program to direct the CPU to wait until
the associated AsYNC function call with the same ID has completed.

In the presence of an ASYNC pragma, the SDSoC system compiler does not generate an
sds_wait () inthe stub function for the associated call. The program must contain the
matching sds_wait (ID) or #pragma SDS wait (ID) at an appropriate point to synchronize
the controlling thread running on the CPU with the hardware function thread. An advantage of
using the #pragma SDS wait (ID) overthe sds_wait (ID) function call is that the source
code can then be compiled by compilers other than the SDSoC compiler, like gcc, that does not
interpret either ASYNC, or WAIT pragmas.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 33

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=33

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

Syntax

Place the pragma in the C source immediately before the function call:

#pragma SDS async(<ID>)

#pragma SDS wait (<ID>)
Where:

e <ID>:ls auser-defined ID for the ASYNC/WAIT pair specified as a compile time unsigned
integer constant.

Example 1

The following code snippet shows an example of using these pragmas with different IDs:

{
#pragma SDS async (1)
mmult (A, B, C);
#pragma SDS async(2)
mmult (D, E, F);

#pragma SDS wait (1)
#pragma SDS wait(2)
}

The program running on the hardware first transfers A and B to the mmult hardware and returns
immediately. Then the program transfers D and E to the mmult hardware and returns
immediately. When the program later executes to the point of #pragma SDS wait (1), it waits
for the output C to be ready. When the program later executes to the point of #pragma SDS
wait (2), it waits for the output F to be ready.

Example 2

The following code snippet shows an example of using these pragmas with the same ID to
pipeline the data transfer and accelerator execution:

for (int i = 0; i < pipeline_depth; i++) {
#pragma SDS async (1)
mmult_accel (A[i%NUM_MAT], B[i%NUM_MAT], C[i%NUM_MAT]) ;

for (int i = pipeline_depth; i < NUM_TESTS; i++) {
#pragma SDS wait (1)
#pragma SDS async (1)
mmult_accel (A[i%NUM_MAT], B[i%NUM_MAT], C[i%NUM_MAT]) ;

for (int i = 0; i < pipeline_depth; i++) {
#pragma SDS wait (1)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 34

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=34

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

In the above example, the first loop ramps up the pipeline with a depth of pipeline_depth,
the second loop executes the pipeline, and the third loop ramps down the pipeline. The hardware
buffer depth (pragma SDS data buffer_depth) should be set to the same value as
pipeline_depth. The goal of this pipeline is to transfer data to the accelerator for the next
execution while the current execution is not finished. Refer to "Increasing System Parallelism and
Concurrency" in SDSoC Environment Profiling and Optimization Guide (UG1235) for more
information.

See Also

e SDSoC Environment Profiling and Optimization Guide (UG1235)
e SDSoC Environment User Guide (UG1027)

pragma SDS data access_pattern

Description

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration.

This pragma specifies the data access pattern in the hardware function. The SDSoC compiler
checks the value of this pragma to determine the hardware interface to synthesize. If the access
pattern is SEQUENTIAL, a streaming interface (such as ap_fifo) will be generated. Otherwise,
with RANDOM access pattern, a RAM interface will be generated. Refer to Data Motion Network
Generation in SDSoC in the SDSoC Environment Profiling and Optimization Guide (UG1235) for
more information on the use of this pragma in data motion network generation.

Syntax
The syntax for this pragma is:
#pragma SDS data access_pattern(ArrayName:<pattern>)
Where:
e ArrayName: Specifies one of the formal parameters of the function to assign the pragma to.

e <pattern>: can be either SEQUENTIAL or RANDOM. The default is RANDOM.

Example 1
The following code snippet shows an example of using this pragma for the array argument (2):

#pragma SDS data access_pattern(A:SEQUENTIAL)
void foo(int A[1024], int B[1024]);

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 35

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf;a=xDataMotionNetworkGenerationInSdsoc
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf;a=xDataMotionNetworkGenerationInSdsoc
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=35

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

In the example shown above, a streaming interface will be generated for argument 2, while a
RAM interface will be generated for argument B. The access pattern for argument A must be
A[O], A[1], A[2], ..., A[1023], and all elements must be accessed only once. On the other hand,
argument B can be accessed in a random fashion, and each element can be accessed zero or
more times.

Example 2

The following code snippet shows an example of using this pragma for a pointer argument:

#pragma SDS data access_pattern(A:SEQUENTIAL)
#pragma SDS data copy(A[0:1024])
void foo(int *A, int B[1024]);

In the above example, if argument A is intended to be a streaming port, the two pragmas shown
must be applied. Without these, SDSoC tool synthesizes argument A as a register (IN, OUT, or
INOUT based on the usage of A in function foo).

Example 3

The following code snippet shows the combination of the ZERO_COPY pragma and the
ACCESS_PATTERN pragma:

#pragma SDS data zero_copy(A)
#pragma SDS data access_pattern(A:SEQUENTIAL)
void foo(int A[1024], 4int B[1024]):

In the above example, the ACCESS_PATTERN pragma is ignored. After the ZERO_COPY pragma
is applied to an argument, an AXI Master interface will be synthesized for that argument. Refer to
Zero Copy Data Mover in the SDSoC Environment Profiling and Optimization Guide (UG1235) for
more information.

See Also

e SDSoC Environment Profiling and Optimization Guide (UG1235)
e SDSoC Environment User Guide (UG1027)

pragma SDS data buffer_depth

Description

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration, and applies to all the callers
of the function.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 36

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf;a=xZeroCopyDataMover
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=36

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

This pragma only applies to arrays that map to block RAM or FIFO interfaces. For a block RAM-
mapped array, the <BufferDepth> value specifies hardware multi-buffer depth. For a FIFO-
mapped array, the <BufferDepth> value specifies the depth of the hardware FIFO allocated for
the array. For this pragma, the following must be true:

e BRAM: 1 < <BufferDepth> < 4, and 2 < ArraySize < 16384.
e FIFO: <BufferDepth> = 2", where 4 < n < 20.

O TIP: When the pragma is not specified, the default <buffer_depth> is 1.

Syntax

The syntax of this pragma is:

#pragma SDS data buffer_depth(ArrayName:<BufferDepth>)
Where:

e ArrayName: Specifies one of the formal parameters of the function to assign the pragma to.
e <BufferDepth>: must be a compile-time constant value.
e Multiple arrays can be specified as a comma separated list in one pragma. For example:

#pragma SDS data buffer_depth(ArrayNamel:BufferDepthl,
ArrayName?2:BufferDepth2)

Example 1
This example specifies a multi-buffer of size 4 used for the RAM interface of argument a:

#pragma SDS data buffer_depth(a:4)
void foo(int a[l1024], b[1024);

See Also

e SDSoC Environment Profiling and Optimization Guide (UG1235)
e SDSoC Environment User Guide (UG1027)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 37

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=37

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

pragma SDS data copy

Description

The pragma SDS data copy | zero_copy must be specified immediately preceding a
function declaration, or immediately preceding another #pragma SDS bound to the function
declaration.

i} IMPORTANT! The COPY pragma and the ZERO_ COPY pragma are mutually exclusive and should not be
specified together on the same object.

The COPY pragma implies that data is explicitly copied between the host processor memory and
the hardware function. A suitable data mover performs the data transfer. See "Improving System
Performance" in SDSoC Environment Profiling and Optimization Guide (UG1235) for more
information.

The ZERO_COPY means that the hardware function accesses the data directly from shared
memory through an AXI master bus interface.

i} IMPORTANT! By default, the SDSoC compiler assumes the COPY pragma for an array argument, meaning the
data is explicitly copied from the processor to the accelerator via a data mover.

Syntax

The syntax for this pragma is:

#pragma SDS data copylzero_copy(ArrayName[<offset>:<length>])

Where:

e ArrayName[<offset>:<length>]:specifies the function parameter or argument to
assign the pragma to, and the array dimension and data transfer size.

e ArrayName: must be one of the formal parameters of the function definition, not from the
prototype (where parameter names are optional) but from the function definition.

e <offset>: Optionally specifies the number of elements from the first element in the array. It
must be specified as a compile-time constant.

i} IMPORTANT! The <offset> value is currently ignored, and should be specified as 0.

e <length>: Specifies the number of elements transferred from the array for the specified
dimension. It can be an arbitrary expression as long as the expression can be resolved at
runtime inside the function.

O TIP: As shown in the examples below, <length> can be a C arithmetic expression involving other scalar
arguments of the same function.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 38

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=38

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

e For a multi-dimensional array, each dimension should be separately specified. For example, for
a two-dimensional array, use:

pragma SDS data copy(ArrayNamel[offset_diml:lengthl][offset_dim2:1length2])

e Multiple arrays can be specified in the same pragma, using a comma separated list. For
example, use:

pragma SDS data copy(ArrayNamel[offsetl:lengthl],
ArrayName2[offset2:length2])

o The [<offset>:<length>] argument is optional, and is only needed if the data transfer
size for an array cannot be determined at compile time. When this is not specified, the copy
or ZERO_COPY pragma is only used to select between copying the memory to/from the
accelerator through a data mover versus directly accessing the processor memory by the
accelerator. To determine the array size, the SDSoC compiler analyzes the callers to the
accelerator function to determine the transfer size based on the memory allocation APIs for
the array, for example, malloc or sds_alloc. If the analysis fails, it checks the argument
type to see if the argument type has a compile-time array size and uses that size as the data
transfer size. If the data transfer size cannot be determined, the compiler generates an error
message so that you can specify the data size with [<offset_dim>:<length>]. If the data
size is different between the caller and the callee, or different between multiple callers, the
compiler also generates an error message so that you can correct the source code or use this
pragma to override the compiler analysis.

Example 1

The following example applies the COPY pragma to both the "A" and "B" arguments of the
accelerator function foo right before the function declaration. Notice the <1ength> option is
specified as an expression, size*size:

#pragma SDS data copy(A[O:size*size], B[O:size*sizel)
void foo(int *A, int *B, int size);

The SDSoC system compiler will replace the body of the function foo with accelerator control,
data transfer, and data synchronization code. The following code snippet shows the data transfer
part:

void _pO_foo_0(int *A, dint *B, int size)

{

cf_send_i(&(_pO_swinst_foo_0.A), A, (size*size) * 4, & _pO_request_0);
cf_receive_i(&(_pO_swinst_foo_0.B), B, (size*size) * 4, & _pO_request_1);

3

As shown above, the offset value size*size is used to tell the SDSoC runtime the number of
elements of arrays "A" and "B."

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 39

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=39

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

o TIP: The cf_send_iand cf_receive_ i functions require the number of bytes to transfer, so the compiler
will multiply the number of elements specified by <1ength>with the number of bytes for each element (4 in this
case).

Example 2

The following code snippet shows an example of applying the ZERO_COPY pragma, instead of
the COPY pragma above:

#pragma SDS data zero_copy(A[O:size*sdize], B[O:size*size])
void foo(int *A, dint *B, int size);

The body of function foo becomes:

void _pO_foo_0(int *A, dint *B, int size)

{

cf_send_ref_i(&(_pO_swinst_foo_0.A), A, (size*size) * 4,

& _pO_request_0) ;
cf_receive_ref_i(&(_pO_swinst_foo_0.B), B, (size*sigze) * 4,

& _pO_request_1);

}

The cf_send_ref_iand cf_receive_ref_i functions only transfer the reference or pointer
of the array to the accelerator, and the accelerator accesses the processor memory directly.

Example 3

The following example shows a ZERO_COPY pragma with multiple arrays specified to generate a
direct memory interface with DDR and the hardware function:

#pragma SDS data zero_copy(inl[0:mat_dim*mat_dim], in2[0:mat_dim¥*mat_dim],
out[0:mat_dim*mat_dim])
void matmul_partition_accel(dint *dinl, // Read-Only Matrix 1

int *in2, // Read-Only Matrix 2

int *out, // Output Result

int mat_dim); // Matrix Dim (assumed only
square matrix)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 40

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=40

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

Example 4

A DATA COPY pragma instructs the compiler to insert the transfer size expression into the
corresponding send/receive call within stub function body. As a result, it is essential that the
argument names used in the function declaration match the argument names in the function
definition. The following code snippet illustrates a common mistake: using an argument name in
the function declaration that is different from the argument name used in the function definition:

"foo.h"
#pragma SDS data copy(in_A[0:1024])
void foo(int #*4in_A, int *out_B);

"foo.cpp"

#include "foo.h"

void foo(int *A, 4int *B)

{
Any C/C++ compiler will ignore the argument name in the function declaration, because the C/C
++ standard makes the argument name in the function declaration optional. Only the argument
name in the function definition is used by the compiler. However, the SDSoC compiler will issue a
warning when trying to apply the pragma:

WARNING: [SDSoC 0-0] Cannot find argument in_A in accelerator function
foo(int *A, int *B)
See Also

e SDSoC Environment Profiling and Optimization Guide (UG1235)
e SDSoC Environment User Guide (UG1027)

pragma SDS data data_mover

#

Description

IMPORTANT! This pragma is not recommended for normal use. Only use this pragma if the compiler-generated
data mover type does not meet the design requirement.

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration. This pragma applies to all
the callers of the bound function.

By default, the SDSoC compiler chooses the type of the data mover automatically by analyzing
the code. The DATA_MOVER pragma can be used to override the compiler default. This pragma
specifies the HW IP type, or DataMover, used to transfer an array argument.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 41

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=41

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

The FASTDMA data mover supports a wider data-width to support higher bandwidth for data
transfer. For Zyng® UltraScale+™ MPSoC the data-width is from 64-bits to 256-bits. For
Zynqg-7000 the data-width is 64-bits.

The SDSoC™ compiler automatically assigns an instance of the data mover HW IP to use for
transferring the corresponding array. The : id can be specified to assign a specific data mover
instance for the associated formal parameter. If more than two formal parameters have the same
DataMover and the same id, they will share the same data mover HW IP instance.

i} IMPORTANT! An additional requirement for using the AXIDMA_SIMPLE data mover is that the corresponding
array must be allocated using sds_alloc ().

Syntax

The syntax for this pragma is:
#pragma SDS data data_mover(ArrayName:DataMover/[:id])

Where:

e ArrayName: Specifies one of the formal parameters of the function to assign the pragma to.
e DataMover: Must be one of the following:

AXIFIFO: used for non-contiguous memory, <300 bytes.
AXIDMA_SIMPLE: used for contiguous memory, <32MB.
AXIDMA _SG: can be used for either contiguous or non-contiguous memory, >300 bytes.

FASTDMA: contiguous memory only. The pragma is required when FASTDMA is desired.

: id: is optional, but must be specified as a positive integer when it is used.

Multiple arrays can be specified in one pragma, separated by a comma (,). For example:

#pragma SDS data data_mover (ArrayNamel:DataMover([:id],
ArrayName?2:DataMover[:id])

Example 1
The following code snippet shows an example of specifying the data mover ID in the pragma:

#pragma SDS data data_mover (A:AXIDMA_SG:1, B:AXIDMA_SG:1)
void foo(int A[1024], int B[1024]);

In the example above, the same instance of the AXIDMA_SG IP is shared to transfer data for
arguments A, and B, because the same data mover ID has been specified.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 42

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=42

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

Example 2

The following example uses the FASTDMA data mover:

#pragma SDS data

data_mover (A:FASTDMA,B:FASTDMA,C:FASTDMA ,D:AXIDMA_SIMPLE,E:AXIDMA_SIMPLE)
void foo(float A[1024], float B[1024], float C[1024], int D[1024], int
E[1024]);

The compiler will transfer arrays A, B, and C with individual FASTDMA data movers, and arrays
D, E with individual AXIDMA_SIMPLE data movers.

See Also

e SDSoC Environment Profiling and Optimization Guide (UG1235)
e SDSoC Environment User Guide (UG1027)

pragma SDS data mem_attribute

Description

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration. This pragma applies to all
the callers of the function.

For an operating system like Linux that supports virtual memory, user-space allocated memory is
paged, which can affect system performance. The SDSoC runtime also provides an API to
allocate physically contiguous memory. The pragmas in this section can be used to tell the
compiler whether the arguments have been allocated in physically contiguous memory.

Syntax

The syntax for this pragma is:

#pragma SDS data mem_attribute(ArrayName:contiguity)

Where:

e ArrayName: Specifies one of the formal parameters of the function to assign the pragma to.

e Contiguity: Must be specified as either PHYSICAL_CONTIGUOUS or
NON_PHYSICAL_CONTIGUOUS. The default value is NON_PHYSICAL_CONTIGUOUS:

PHYSICAL_CONTIGUOUS means that all memory corresponding to the associated
ArrayName is allocated using sds_alloc.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 43

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=43

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

NON_PHYSICAL_CONTIGUOUS means that all memory corresponding to the associated
ArrayName is allocated using malloc or as a free variable on the stack. This helps the
SDSoC compiler select the optimal data mover.

e Multiple arrays can be specified in one pragma, separated by a comma (,). For example:

#pragma SDS data mem_attribute(ArrayName:contiguity, ArrayName:contiguity)

Example 1

The following code snippet shows an example of specifying the contiguity attribute:

#pragma SDS data mem_attribute(A:PHYSICAL_CONTIGUOUS)
void foo(int A[1024], int B[1024]);

In the example above, the user tells the SDSoC compiler that array A is allocated in the memory
block that is physically contiguous. The SDSoC compiler then chooses AXIDMA_SIMPLE instead
of AXIDMA_SG, because the former is smaller and faster for transferring physically contiguous
memory.

See Also

e SDSoC Environment Profiling and Optimization Guide (UG1235)
e SDSoC Environment User Guide (UG1027)

pragma SDS data sys_port

Description

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration, and applies to all the callers
of the function.

This pragma overrides the SDSoC compiler default choice of memory port. If the SYS_PORT
pragma is not specified for an array argument, the interface to the external memory is
automatically determined by the SDSoC system compilers (sdscc/sds++) based on array memory
attributes (cacheable or non-cacheable), array size, data mover used, etc.

The Zyng®-7000 device provides a cache coherent interface (S_AXI_ACP) between
programmable logic and external memory, and high-performance ports (S_AXI_HP) for non-cache
coherent access. The Zyng® UltraScale+™ MPSoC provides a cache coherent interface
(S_AXI_HPCn_FPD), and non-cache coherent interface called (S_AX|_HPn_FPD).

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 44

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=44

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

Syntax

The syntax for this pragma is:
#pragma SDS data sys_port(<param_name>:<port>)

Where:

e <param_name>: Specifies one of the formal parameters of the function to assign the pragma
to.

e <port>: The SDSoC compiler recognizes predefined memory port types: ACP for Zyng-7000
devices only, HPC, HP, or MIG, which represent cache coherent access (ACP, HPC), high speed
non-coherent access (HP), or memory accessible through a soft memory controller
implemented in PL logic (MIG). You can also use a specific platform port name for the <port>,
but this is not recommended unless the compiler does not select the correct port, which could
occur for a stream port in the platform. To get a list of platform ports, in a terminal shell, run

sds++ -sds-pf-info <platform>.

For example, the sds++ -sds-pfm-info =zcul02 command returns the following under
System Ports:

System Ports

Use the system port name in a sysport pragma, for example
#pragma SDS data sys_port(parameter_name:system_port_name)

System Port Name (Vivado BD instance name, Vivado BD port name)
ps_e_S_AXI_HPCO_FPD (ps_e, S_AXI_HPCO_FPD)

ps_e_S_AXI_HPC1_FPD (ps_e, S_AXI_HPC1_FPD)

ps-e_S_AXI_HPO_FPD (ps_e, S_AXI_HPO_FPD)

ps_e_S_AXI_HP1_FPD (ps_e, S_AXI_HP1_FPD)

ps_e_S_AXI_HP2_FPD (ps_e, S_AXI_HP2_FPD)

ps-e_S_AXI_HP3_FPD (ps_e, S_AXI_HP3_FPD)

In this case, the SYS_PORT pragma could be defined as:

#pragma SDS data sys_port(Arrayl:ps_e_S_AXI_HPCO_FPD)

If <port> is defined using the HPC shortcut, then the argument, Array1, could be assigned to
either HPCO, or HPC1, by the SDSoC compiler.

When the platform is created, the designer could specify a shortcut for a specific platform
port, using the PFM. AXI_PORT property. Refer to SDSoC Environment Platform Development
Guide (UG1146) for more information on PFM properties. For example:

set_property PFM.AXI_PORT {M_AXIS {type "M_AXIS" sptag "Counter'}} \
[get_bd_cells /stream_fifo]

This defines a SYS_PORT tag, "Counter”, which can be specified in the pragma as:

#pragma SDS data sys_port(Arrayl:Counter)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/_] 45

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=45

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

This would be the same as declaring the following:
#pragma SDS data sys_port(Arrayl:stream_fifo_M_AXIS)
e Multiple arguments can be specified in one pragma, separated by commas:

#pragma SDS data sys_port(paraml:port, param2:port)

Example 1

The following code snippet shows an example of using this pragma:

#pragma SDS data sys_port(A:HP)
void foo(int A[1024], 4int B[1024]):

In the above example, if the caller passes an array (A) allocated with cache coherent calls, such as
malloc, or sds_alloc, the SDSoC compiler uses an HP platform interface even though this
might not be the best choice.

See Also
e SDSoC Environment Profiling and Optimization Guide (UG1235)
e SDSoC Environment User Guide (UG1027)

pragma SDS data zero_copy

Description

O TIP: Refer to pragma SDS data copy for a complete description of the ZERO_COPY pragma.

The COPY pragma implies that data is explicitly copied between the host processor memory and
the hardware function, using a suitable data mover for the transfer. The ZERO_COPY pragma
means that the hardware function accesses the data directly from shared memory through an
AXI master bus interface.

ﬁ? IMPORTANT! The COPY pragma and the ZERO_COPY pragma are mutually exclusive and should not be
specified together on the same object.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 46

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=46

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

Example 1

The following example shows a ZERO_COPY pragma with multiple arrays specified to generate a
direct memory interface with DDR and the hardware function:

#pragma SDS data zero_copy(inl[0:mat_dim*mat_dim], in2[0:mat_dim*mat_dim],
out[0:mat_dim*mat_dim])
void matmul_partition_accel(dint *dinl, // Read-Only Matrix 1

int *in2, // Read-Only Matrix 2

int *out, // Output Result

int mat_dim); // Matrix Dim (assumed only
square matrix)

i} IMPORTANT! The array argument passed to a ZERO_COPY data mover must be physically contiguous. Passing
a malloc'd buffer to a ZERO_COPY data mover will result in undefined behavior.

See Also

e SDSoC Environment Profiling and Optimization Guide (UG1235)

pragma SDS resource

Description
This pragma can be used at function call sites to manually specify resource binding.

The RESOURCE pragma is specified immediately preceding a call to a hardware function,
directing the compiler to bind the caller to a specified accelerator instance. The SDSoC compiler
identifies when multiple resource IDs have been specified for a function, and automatically
generates a hardware accelerator and data motion network realizing the hardware functions in
programmable logic.

Syntax

The syntax of the pragma is:
#pragma SDS resource(<ID>)

Where:

e <|D>: Must be a compile time unsigned integer constant. For the same function, each unique
ID represents a unique instance of the hardware accelerator.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 47

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=47

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

Example 1

The following code snippet shows an example of using this pragma with a different ID:

{

#pragma SDS resource(1)

mmult (A, B, C);

#pragma SDS resource(2)

mmult (D, E, F);
}
In the previous example, the first call to function mmult will be bound to an accelerator with an
ID of 1, and the second call to mmult will be bound to another accelerator with an ID of 2.

See Also

e SDSoC Environment Profiling and Optimization Guide (UG1235)
e SDSoC Environment User Guide (UG1027)

pragma SDS trace

Description

The SDSoC environment tracing feature provides a detailed view of what is happening in the
system during execution of an application, through the use of hardware/software event tracing.
See the SDSoC Environment User Guide (UG1027) for more information.

This pragma specifies the trace insertion for the accelerator with granularity at the function level
or the argument level, to let you monitor the activity on the accelerator for debug purposes.
When tracing is enabled, tracing instrumentation is automatically inserted into the software
code, and hardware monitors are inserted into the hardware system during implementation of
the hardware logic. You can monitor either the complete accelerator function, or an individual
parameter of the function.

The type of trace can be sw, HW, or both. HW trace means the "start" and "stop" of the
corresponding hardware component, such as the start and stop of the hardware accelerator, or
the start and stop of data transfer of the specified argument. This lets you monitor activity
moving onto, and off of, the hardware. The sw trace lets you observe the software stub for the
hardware accelerated function, to monitor the function, and arguments on the software side of
the transaction. You can also monitor both the hardware, and software transactions.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 48

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=48

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

Syntax

This pragma must be specified immediately preceding a function declaration, or immediately
preceding another #pragma SDS bound to the function declaration.

#pragma SDS trace(<varl>[:SW|:HW][,<var2>[:SW|:HW]])
Where:

e <var>: Specifies either the function name, or one of the parameters of the function.

e [:SWI:HW]: Specifies either HW tracing or SW tracing. The absence of this option indicates
that both HW and SW traces are inserted.

Example 1
The following example traces the specified function, foo:

#pragma SDS monitor trace(foo)
void foo(int a, int b);

O TIP: The absence of either :Hwor :Swindicates that both traces are inserted for the accelerator.

Example 2

The following example demonstrates using this pragma to trace multiple arguments of the
function.

#pragma SDS monitor trace(a, b:SW, c:HW)
void foo(int a, int b, int *c);

In the previous example, both HW and SWw traces are inserted for argument a. Only the sw trace is
inserted for argument b. For argument c, only the HWw trace is inserted.
See Also

e SDSoC Environment Profiling and Optimization Guide (UG1235)
e SDSoC Environment User Guide (UG1027)

pragma SDS wait

Description

O TIP: Refer to the ASYNC pragma for more information.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 49

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=49

iv Xl I_l NX Chapter 3: SDS Pragmas
A ®

The WAIT pragma must be paired with the ASYNC pragma to support manual control of the
hardware function synchronization.

The ASYNC pragma is specified immediately preceding a call to a hardware function, directing
the compiler not to automatically generate the wait based on data flow analysis. The WAIT
pragma must be inserted at an appropriate point in the program to direct the CPU to wait until
the associated ASYNC function call with the same ID has completed.

See Also

e SDSoC Environment Profiling and Optimization Guide (UG1235)
e SDSoC Environment User Guide (UG1027)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 50

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=50

& XILINX

Chapter 4

HLS Pragmas

Optimizations in Vivado HLS

In both SDAccel™ and SDSoC™ development environments, the hardware kernel must be
synthesized from the OpenCL™, C, or C++ language into the register transfer level (RTL) that can
be implemented into the programmable logic of a Xilinx® device. The Vivado® High-Level
Synthesis (HLS) tool synthesizes RTL from the OpenCL, C, and C++ language descriptions.

The HLS tool is intended to work with your SDAccel or SDSoC development environment project
without interaction. However, the HLS tool also provides pragmas that can be used to optimize
the design: reduce latency, improve throughput performance, and reduce area and device
resource usage of the resulting RTL code. These pragmas can be added directly to the source
code for the kernel.

i} IMPORTANT! Although the SDSoC environment supports the use of HLS pragmas, it does not support pragmas
applied to any argument of the function interface (interface, array partition, or data_pack pragmas). Refer to
"Optimizing the Hardware Function" in the SDSoC Environment Profiling and Optimization Guide (UG1235) for
more information.

The HLS pragmas include the optimization types specified below:

Table 4: Vivado HLS Pragmas by Type

Type Attributes

Kernel Optimization
* pragma HLS allocation

* pragma HLS expression_balance
* pragma HLS latency

* pragma HLS reset

* pragma HLS resource

* pragma HLS top

Function Inlining
* pragma HLS inline

* pragma HLS function_instantiate

Interface Synthesis
* pragma HLS interface

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 51

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=51

& XILINX

Table 4: Vivado HLS Pragmas by Type (cont'd)

Chapter 4: HLS Pragmas

Type

Attributes

Task-level Pipeline

pragma HLS dataflow

pragma HLS stream

Pipeline

pragma HLS pipeline

pragma HLS occurrence

Loop Unrolling

pragma HLS unroll

pragma HLS dependence

Loop Optimization

pragma HLS loop_flatten
pragma HLS loop_merge

pragma HLS loop_tripcount

Array Optimization

pragma HLS array_map
pragma HLS array_partition

pragma HLS array_reshape

Structure Packing

pragma HLS data_pack

pragma HLS allocation

Description

Specifies instance restrictions to limit resource allocation in the implemented kernel. This defines
and can limit the number of register transfer level (RTL) instances and hardware resources used
to implement specific functions, loops, operations or cores. The ALLOCATION pragma is
specified inside the body of a function, a loop, or a region of code.

For example, if the C source has four instances of a function foo_sub, the ALLOCATION

pragma can ensure that there is only one instance of foo_sub in the final RTL. All four instances
of the C function are implemented using the same RTL block. This reduces resources used by the
function, but negatively impacts performance.

UG1253 (v2019.1) June 5, 2019
SDx Pragma Reference Guide

[Send Feedback] WWW.ininx.COSn;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=52

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

The operations in the C code, such as additions, multiplications, array reads, and writes, can be
limited by the ALLOCATION pragma. Cores, which operators are mapped to during synthesis,
can be limited in the same manner as the operators. Instead of limiting the total number of
multiplication operations, you can choose to limit the number of combinational multiplier cores,
forcing any remaining multiplications to be performed using pipelined multipliers (or vice versa).

The ALLOCATION pragma applies to the scope it is specified within: a function, a loop, or a
region of code. However, you can use the -min_op argument of the config_bind command
to globally minimize operators throughout the design.

O TIP: For more information refer to "Controlling Hardware Resources" and config_bindin Vivado Design Suite
User Guide: High-Level Synthesis (UG902).

Syntax
Place the pragma inside the body of the function, loop, or region where it will apply.

#pragma HLS allocation instances=<list> \
limit=<value> <type>

Where:

e instances=<1ist>: Specifies the names of functions, operators, or cores.
e limit=<value>: Optionally specifies the limit of instances to be used in the kernel.

e <type>: Specifies that the allocation applies to a function, an operation, or a core (hardware
component) used to create the design (such as adders, multipliers, pipelined multipliers, and
block RAM). The type is specified as one of the following::

function: Specifies that the allocation applies to the functions listed in the instances=
list. The function can be any function in the original C or C++ code that has not been:

- Inlined by the pragma HLS inline,orthe set_directive_inline command, or
- Inlined automatically by the Vivado High-Level Synthesis (HLS) tool.

operation: Specifies that the allocation applies to the operations listed in the
instances-= list. Refer to Vivado Design Suite User Guide: High-Level Synthesis (UG902) for
a complete list of the operations that can be limited using the ALLOCATION pragma.

core: Specifies that the ALLOCATION applies to the cores, which are the specific
hardware components used to create the design (such as adders, multipliers, pipelined
multipliers, and block RAM). The actual core to use is specified in the instances= option.
In the case of cores, you can specify which the tool should use, or you can define a limit for
the specified core.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 53

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=53

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Example 1

Given a design with multiple instances of function foo, this example limits the number of
instances of foo in the RTL for the hardware kernel to 2.

#pragma HLS allocation instances=foo limit=2 function

Example 2

Limits the number of multiplier operations used in the implementation of the function my_ func
to 1. This limit does not apply to any multipliers outside of my_ func, or multipliers that might
reside in sub-functions of my_ func.

O TIP: To limit the multipliers used in the implementation of any sub-functions, specify an allocation directive on
the sub-functions or inline the sub-function into function my_ func.

void my_func(data_t angle) {
#fpragma HLS allocation instances=mul limit=1 operation

See Also

e pragma HLS function_instantiate
e pragma HLS inline

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS array_map

Description
Combines multiple smaller arrays into a single large array to help reduce block RAM resources.

Designers typically use the pragma HLS array_map command (with the same instance=
target) to combine multiple smaller arrays into a single larger array. This larger array can then be
targeted to a single larger memory (RAM or FIFO) resource.

Each array is mapped into a block RAM or UltraRAM, when supported by the device. The basic
block RAM unit provided in an FPGA is 18K. If many small arrays do not use the full 18K, a better
use of the block RAM resources is to map many small arrays into a single larger array.

O TIP: If a block RAM is larger than 18K, they are automatically mapped into multiple 18K units.

The ARRAY_MAP pragma supports two ways of mapping small arrays into a larger one:

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 54

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=54

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

¢ Horizontal mapping: this corresponds to creating a new array by concatenating the original
arrays. Physically, this gets implemented as a single array with more elements.

e Vertical mapping: this corresponds to creating a new array by concatenating the original
words in the array. Physically, this gets implemented as a single array with a larger bit-width.

The arrays are concatenated in the order that the pragmas are specified, starting at:

o Target element zero for horizontal mapping, or

e Bit zero for vertical mapping.

Syntax

Place the pragma in the C source within the boundaries of the function where the array variable
is defined.

#pragma HLS array_map variable=<name> instance=<instance> \
<mode> offset=<int>

Where:

e variable=<name>: A required argument that specifies the array variable to be mapped into
the new target array <instance>.

e instance=<instance>: Specifies the name of the new array to merge arrays into.
o <mode>: Optionally specifies the array map as being either horizontal or vertical.

« Horizontal mapping is the default <mode>, and concatenates the arrays to form a new
array with more elements. Remapping the original N arrays will require N cycles with 1 port
block RAM, or ceiling (N/2) cycles with a 2 port block RAM.

Vertical mapping concatenates the array to form a new array with longer words.
Remapping the original N arrays is similar to the horizontal mapping above except when
the same index is used: this will require only 1 cycle.

e offset=<int>: Applies to horizontal type array mapping only. The offset specifies an
integer value offset to apply before mapping the array into the new array <instance>. For
example:

Element O of the array variable maps to element <int> of the new target.

Other elements map to <int+1>, <int+2>... of the new target.

i} IMPORTANT! If an offset is not specified, the Vivado High-Level Synthesis (HLS) tool calculates the required
offset automatically to avoid overlapping array elements.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 55

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=55

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Example 1

Arrays arrayl and array?2 in function foo are mapped into a single array, specified as array3
in the following example:

void foo (...) {

int8 arrayl[M];

intl12 array2[N];

#pragma HLS ARRAY_MAP variable=arrayl instance=array3 horizontal
#pragma HLS ARRAY_MAP variable=array?2 instance=array3 horizontal
loop_1: fo
arrayl[i]
array2[i]

(i=0;di<M;di++) {

n n =

j..
j..

Example 2

This example provides a horizontal mapping of array A[10] and array B[15] in function foo into a
single new array AB[25].

e Element AB[O] will be the same as A[O].
¢ Element AB[10] will be the same as B[0] because no o f fset = option is specified.

¢ The bit-width of array AB[25] will be the maximum bit-width of either A[10] or B[15].

#pragma HLS array_map variable=A instance=AB horizontal
#pragma HLS array_map variable=B instance=AB horizontal

Example 3

The following example performs a vertical concatenation of arrays C and D into a new array CD,
with the bit-width of C and D combined. The number of elements in CD is the maximum of the
original arrays, C or D:

#pragma HLS array_map variable=C instance=CD vertical
#fpragma HLS array_map variable=D instance=CD vertical

See Also
e pragma HLS array_partition
e pragma HLS array_reshape

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 56

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=56

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

pragma HLS array_partition

Description
Partitions an array into smaller arrays or individual elements and provides the following:

e Results in RTL with multiple small memories or multiple registers instead of one large memory.
e Effectively increases the amount of read and write ports for the storage.
e Potentially improves the throughput of the design.

e Requires more memory instances or registers.

Syntax

Place the pragma in the C source within the boundaries of the function where the array variable
is defined.

#fpragma HLS array_partition variable=<name> \
<type> factor=<int> dim=<int>

where

e variable=<name>: A required argument that specifies the array variable to be partitioned.

e <type>: Optionally specifies the partition type. The default type is complete. The following
types are supported:

cyclic: Cyclic partitioning creates smaller arrays by interleaving elements from the
original array. The array is partitioned cyclically by putting one element into each new array
before coming back to the first array to repeat the cycle until the array is fully partitioned.
For example, if factor=3 is used:

- Element O is assigned to the first new array

- Element 1 is assigned to the second new array.

- Element 2 is assigned to the third new array.

- Element 3 is assigned to the first new array again.

block: Block partitioning creates smaller arrays from consecutive blocks of the original
array. This effectively splits the array into N equal blocks, where N is the integer defined by
the factor= argument.

complete: Complete partitioning decomposes the array into individual elements. For a
one-dimensional array, this corresponds to resolving a memory into individual registers.
This is the default <type>.

e factor=<int>: Specifies the number of smaller arrays that are to be created.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 57

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=57

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

#

IMPORTANT! For complete type partitioning, the factor is not specified. For block and cyclic partitioning the
factor-=isrequired.

e dim=<int>: Specifies which dimension of a multi-dimensional array to partition. Specified as
an integer from O to <N>, for an array with <N> dimensions:

. If avalue of O is used, all dimensions of a multi-dimensional array are partitioned with the
specified type and factor options.

Any non-zero value partitions only the specified dimension. For example, if a value 1 is
used, only the first dimension is partitioned.

Example 1

This example partitions the 13 element array, AB[13], into four arrays using block partitioning:

#pragma HLS array_partition variable=AB block factor=4

TIP:
Because four is not an integer factor of 13:

e Three of the new arrays have three elements each,

e One array has four elements (AB[9:12]).

Example 2

This example partitions dimension two of the two-dimensional array, AB[6][4] into two new
arrays of dimension [6][2]:

#pragma HLS array_partition variable=AB block factor=2 dim=2

Example 3

This example partitions the second dimension of the two-dimensional in_local array into
individual elements.

int in_local[MAX_SIZE] [MAX_DIM];
ffpragma HLS ARRAY_PARTITION variable=in_local complete dim=2

See Also

e pragma HLS array_map

e pragma HLS array_reshape

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)
e xcl_array_partition

e SDAccel Environment Profiling and Optimization Guide (UG1207)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 58

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=58

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

pragma HLS array_reshape

Description
Combines array partitioning with vertical array mapping.

The ARRAY_RESHAPE pragma combines the effect of ARRAY_PARTITION, breaking an array
into smaller arrays, with the effect of the vertical type of ARRAY_MAP, concatenating elements
of arrays by increasing bit-widths. This reduces the number of block RAM consumed while
providing the primary benefit of partitioning: parallel access to the data. This pragma creates a
new array with fewer elements but with greater bit-width, allowing more data to be accessed in a
single clock cycle.

Given the following code:

void foo (...) {

int arrayl[N];

int array2[N];

int array3[N];

#pragma HLS ARRAY_RESHAPE variable=arrayl block factor=2 dim=1
#pragma HLS ARRAY_RESHAPE variable=array2 cycle factor=2 dim=1
#pragma HLS ARRAY_RESHAPE variable=array3 complete dim=1

The ARRAY_RESHAPE pragma transforms the arrays into the form shown in the following figure:

Figure 2: ARRAY_RESHAPE Pragma

array1 IN] array4[N/2]
|—:> MSB [N/2 N-2 N-1
[T 1T 2T " IT~N3[N2[N1] [block LSB 0 ; N/21)
array2[N] array5[N/2]
- MSB[1 N-3 N-1
[0z - Imslnelni] [oclic > T 2 L N2
array6[1]
array3[N] MSB [N-1
[0 [T [2] - [NS[Na[Ni] [complete > N-2
:
LSB

X14307-110217

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 59

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=59

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Syntax

Place the pragma in the C source within the region of a function where the array variable is
defines.

#pragma HLS array_reshape variable=<name> \
<type> factor=<int> dim=<int>

Where:

e <name>: A required argument that specifies the array variable to be reshaped.

o <type>: Optionally specifies the partition type. The default type is complete. The following
types are supported:

cyclic: Cyclic reshaping creates smaller arrays by interleaving elements from the original
array. For example, if factor=3 is used, element O is assigned to the first new array,
element 1 to the second new array, element 2 is assigned to the third new array, and then
element 3 is assigned to the first new array again. The final array is a vertical concatenation
(word concatenation, to create longer words) of the new arrays into a single array.

block: Block reshaping creates smaller arrays from consecutive blocks of the original
array. This effectively splits the array into <N> equal blocks where <N> is the integer
defined by factor=, and then combines the <N> blocks into a single array with word-
width*N.

. complete: Complete reshaping decomposes the array into temporary individual elements
and then recombines them into an array with a wider word. For a one-dimension array this
is equivalent to creating a very-wide register (if the original array was N elements of M bits,
the result is a register with N*M bits). This is the default type of array reshaping.

e factor=<int>:Specifies the amount to divide the current array by (or the number of
temporary arrays to create). A factor of 2 splits the array in half, while doubling the bit-width.
A factor of 3 divides the array into three, with triple the bit-width.

i} IMPORTANT! For complete type partitioning, the factor is not specified. For block and cyclic reshaping the
factor-=isrequired.

e dim=<int>: Specifies which dimension of a multi-dimensional array to partition. Specified as
an integer from O to <N>, for an array with <N> dimensions:

If a value of O is used, all dimensions of a multi-dimensional array are partitioned with the
specified type and factor options.

Any non-zero value partitions only the specified dimension. For example, if a value 1 is
used, only the first dimension is partitioned.

e object: A keyword relevant for container arrays only. When the keyword is specified the
ARRAY_RESHAPE pragma applies to the objects in the container, reshaping all dimensions of
the objects within the container, but all dimensions of the container itself are preserved.
When the keyword is not specified the pragma applies to the container array and not the
objects.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 60

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=60

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Example 1

Reshapes (partition and maps) an 8-bit array with 17 elements, AB[17], into a new 32-bit array
with five elements using block mapping.

#pragma HLS array_reshape variable=AB block factor=4

O TIP: factor=4 indicates that the array should be divided into four. So 17 elements is reshaped into an array of 5
elements, with four times the bit-width. In this case, the last element, AB[17], is mapped to the lower eight bits of
the fifth element, and the rest of the fifth element is empty.

Example 2

Reshapes the two-dimensional array AB[6][4] into a new array of dimension [6][2], in which
dimension 2 has twice the bit-width:

#pragma HLS array_reshape variable=AB block factor=2 dim=2

Example 3

Reshapes the three-dimensional 8-bit array, AB[4][2][2] in function foo, into a new single
element array (a register), 128 bits wide (4*2*2*8):

#pragma HLS array_reshape variable=AB complete dim=0

O TIP: dim=0 means to reshape all dimensions of the array.

See Also

pragma HLS array_map

pragma HLS array_partition
Vivado Design Suite User Guide: High-Level Synthesis (UG902)
SDAccel Environment Profiling and Optimization Guide (UG1207)

pragma HLS clock

Description

Applies the named clock to the specified function.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 61

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=61

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

C and C++ designs support only a single clock that applies to all functions in the design.
However, SystemC designs (SC_MODULES) support multiple clocks. Multiple named clocks can
be specified using the create_clock command, and specific clocks can be applied to different
functions using the CLOCK pragma. Each SC_MODULE is synthesized using the specified clock.
Syntax

Place the pragma in the C source within the boundaries of a function.
#pragma HLS clock domain=<clock>

Where:

e domain=<clock>: Specifies the name of a clock as defined by the create_clock
command.

Examples

The following example shows a SystemC design where the top-level function, foo_top, has two
clocks: fast_clock and slow_clock. The top-level function uses the fast_clock, and the
sub-function foo_sub uses the slow_clock:

void foo_top (a, b, c, d) {
#pragma HLS clock domain=fast_clock

}
void foo_sub() {
#fpragma HLS clock domain=slow_clock

The HLS command create_clock defines the clocks as follows:

create_clock -period 15 fast_clk
create_clock -period 60 slow_clk

See Also

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS data_pack

Description

Packs the data fields of a st ruct into a single scalar with a wider word width.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 62

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=62

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

The DATA_PACK pragma is used for packing all the elements of a st ruct into a single wide
vector to reduce the memory required for the variable, while allowing all members of the
struct to be read and written to simultaneously. The bit alignment of the resulting new wide-
word can be inferred from the declaration order of the st ruct fields. The first field takes the
LSB of the vector, and the final element of the st ruct is aligned with the MSB of the vector.

If the st ruct contains arrays, the DATA_PACK pragma performs a similar operation as the
ARRAY_RESHAPE pragma and combines the reshaped array with the other elements in the
struct. Any arrays declared inside the st ruct are completely partitioned and reshaped into a
wide scalar and packed with other scalar fields. However, a st ruct cannot be optimized with
DATA_PACK and ARRAY_PARTITION or ARRAY_RESHAPE, as those pragmas are mutually
exclusive.

i} IMPORTANT! You should exercise some caution when using the DATA_PACK optimization on st ruct objects
with large arrays. If an array has 4096 elements of type int, this will result in a vector (and port) of width
4096*32=131072 bits. The Vivado High-Level Synthesis (HLS) tool can create this RTL design, however it is very
unlikely logic synthesis will be able to route this during the FPGA implementation.

In general, Xilinx recommends that you use arbitrary precision (or bit-accurate) data types.
Standard C types are based on 8-bit boundaries (8-bit, 16-bit, 32-bit, and 64-bit); however, using
arbitrary precision data types in a design lets you specify the exact bit-sizes in the C code prior to
synthesis. The bit-accurate widths result in hardware operators that are smaller and faster. This
allows more logic to be placed in the FPGA and for the logic to execute at higher clock
frequencies. However, the DATA_PACK pragma also lets you align data in the packed struct
along 8-bit boundaries, if needed.

If a struct portis to be implemented with an AXI4 interface you should consider using the
DATA_PACK <byte_pad> option to automatically align member elements of the st ruct to 8-bit
boundaries. The AXI4-Stream protocol requires that TDATA ports of the IP have a width in
multiples of 8. It is a specification violation to define an AXI4-Stream IP with a TDATA port width
that is not a multiple of 8, therefore, it is a requirement to round up TDATA widths to byte
multiples. Refer to "Interface Synthesis and Structs" in Vivado Design Suite User Guide: High-Level
Synthesis (UG902) for more information.

Syntax

Place the pragma near the definition of the st ruct variable to pack:

#pragma HLS data_pack variable=<variable> \
instance=<name> <byte_pad>

Where:

e variable=<variable>:is the variable to be packed.

e instance=<name>: Specifies the name of resultant variable after packing. If no <name> is
specified, the input <variable> is used.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 63

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=63

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

e <byte_pad>: Optionally specifies whether to pack data on an 8-bit boundary (8-bit, 16-bit,
24-bit, etc.). The two supported values for this option are:

. struct_level: Pack the whole struct first, then pad it upward to the next 8-bit
boundary.

. field_level: First pad each individual element (field) of the st ruct on an 8-bit
boundary, then pack the struct.

O TIP: Deciding whether multiple fields of data should be concatenated together before (fie1d_1evel) or after
(struct_level)alignment to byte boundaries is generally determined by considering how atomic the data is.
Atomic information is data that can be interpreted on its own, whereas non-atomic information is incomplete for
the purpose of interpreting the data. For example, atomic data can consist of all the bits of information in a
floating point number. However, the exponent bits in the floating point number alone would not be atomic. When
packing information into TDATA, generally non-atomic bits of data are concatenated together (regardless of bit
width) until they form atomic units. The atomic units are then aligned to byte boundaries using pad bits where
necessary.

Example 1

Packs struct array AB[17] with three 8-bit field fields (R, G, B) into a new 17 element array of
24-bits.

typedef struct{
unsigned char R, G, B;
1 pixel;

pixel AB[17];
#fpragma HLS data_pack variable=AB

Example 2

Packs struct pointer AB with three 8-bit fields (typedef struct {unsigned char R, G,
B:;} pixel)infunction foo, into a new 24-bit pointer.

typedef struct{
unsigned char R, G, B;
1 pixel;

pixel AB;
#pragma HLS data_pack variable=AB

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 64

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=64

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Example 3

In this example the DATA_PACK pragma is specified for in and out argumentsto rgb_to_hsv

function to instruct the compiler to do pack the structure on an 8-bit boundary to improve the
memory access:

void rgb_to_hsv(RGBcolor* in, // Access global memory as RGBcolor struct-
wise

HSVcolor* out, // Access Global Memory as HSVcolor struct-
wise

int size) {
#pragma HLS data_pack variable=in struct_level
fpragma HLS data_pack variable=out struct_level

See Also
e pragma HLS array_partition
e pragma HLS array_reshape

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS dataflow

Description

The DATAFLOW pragma enables task-level pipelining, allowing functions and loops to overlap in
their operation, increasing the concurrency of the register transfer level (RTL) implementation,
and increasing the overall throughput of the design.

All operations are performed sequentially in a C description. In the absence of any directives that
limit resources (such as pragma HLS allocation), the Vivado High-Level Synthesis (HLS) tool
seeks to minimize latency and improve concurrency. However, data dependencies can limit this.
For example, functions or loops that access arrays must finish all read/write accesses to the
arrays before they complete. This prevents the next function or loop that consumes the data
from starting operation. The DATAFLOW optimization enables the operations in a function or
loop to start operation before the previous function or loop completes all its operations.

UG1253 (v2019.1) June 5, 2019

www.Xilinx.com
SDx Pragma Reference Guide [_‘Send’_]Feedback 65

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=65

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Figure 3: DATAFLOW Pragma

void top (a,b,c,d) {
func_A(a,b,i1); func_A
func_B(c,i1,i2); [funcB |
fune_C(i2.)
return d;
}
< > B
8 cycles 3 cycles
ULCW NN fune B] func.C | func_A func_A
[_func.B |
) 8 cycles o) 5 cycles o
(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

X14266-110217

When the DATAFLOW pragma is specified, the HLS tool analyzes the dataflow between
sequential functions or loops and creates channels (based on ping pong RAMs or FIFOs) that
allow consumer functions or loops to start operation before the producer functions or loops have
completed. This allows functions or loops to operate in parallel, which decreases latency and
improves the throughput of the RTL.

If no initiation interval (number of cycles between the start of one function or loop and the next)
is specified, the HLS tool attempts to minimize the initiation interval and start operation as soon
as data is available.

O TIP: The config_datarflowcommand specifies the default memory channel and FIFO depth used in dataflow
optimization. Refer to the config_datafIlowcommand in the Vivado Design Suite User Guide: High-Level
Synthesis (UG902) for more information.

For the DATAFLOW optimization to work, the data must flow through the design from one task
to the next. The following coding styles prevent the HLS tool from performing the DATAFLOW
optimization:

e Single-producer-consumer violations
e Bypassing tasks

e Feedback between tasks

e Conditional execution of tasks

e Loops with multiple exit conditions

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 66

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=66

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

ﬁ? IMPORTANT! If any of these coding styles are present, the HLS tool issues a message and does not perform
DATAFLOW optimization.

You can use the STABLE pragma to mark variables within DATAFLOW regions to be stable to
avoid concurrent read or write of variables.

Finally, the DATAFLOW optimization has no hierarchical implementation. If a sub-function or
loop contains additional tasks that might benefit from the DATAFLOW optimization, you must
apply the optimization to the loop, the sub-function, or inline the sub-function.

Syntax
Place the pragma in the C source within the boundaries of the region, function, or loop.

ffipragma HLS dataflow

Example 1

Specifies DATAFLOW optimization within the loop wr_loop_7.

wr_loop_j: for (int j = 0; j < TILE_PER_ROW; ++3j) {
#pragma HLS DATAFLOW
wr_buf_loop_m: for (int m = 0; m < HEIGHT; ++m) {
wr_buf_loop_n: for (int n = 0; n < WIDTH; ++n) {
#pragma HLS PIPELINE
// should burst WIDTH in WORD beat
outFifo >> tilelm][n];
}

}
wr_loop_m: for (int m = 0; m < HEIGHT; ++m) {

wr_loop_n: for (int n = 0; n < WIDTH; ++n) {

#pragma HLS PIPELINE

outx [HEIGHT*TILE_PER_ROW*WIDTH#*i+TILE_PER_ROW*WIDTH*m+WIDTH*j+n] =
tile[m]l[n];

}

}

See Also

e pragma HLS allocation

e pragma HLS stable

e xcl_dataflow

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

e SDAccel Environment Profiling and Optimization Guide (UG1207)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 67

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=67

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

pragma HLS dependence

Description

The DEPENDENCE pragma is used to provide additional information that can overcome loop-
carry dependencies and allow loops to be pipelined (or pipelined with lower intervals).

The Vivado High-Level Synthesis (HLS) tool automatically detects the following dependencies:
e Within loops (loop-independent dependence), or
e Between different iterations of a loop (loop-carry dependence).

These dependencies impact when operations can be scheduled, especially during function and
loop pipelining.

¢ Loop-independent dependence: The same element is accessed in the same loop iteration.

£ 0;4i<N;i++) {

o
A
y

" — R

(i=
il=x;
Ali];

}
e Loop-carry dependence: The same element is accessed in a different loop iteration.

for (4i=0;di<N;i++) {
Ali]=A[i-1]1*2;
}

Under certain complex scenarios automatic dependence analysis can be too conservative and fail
to filter out false dependencies. Under some circumstances, such as variable dependent array
indexing, or when an external requirement needs to be enforced (for example, two inputs are
never the same index), the dependence analysis might be too conservative. The DEPENDENCE
pragma allows you to explicitly specify the dependence and resolve a false dependence.

i} IMPORTANT! Specifying a false dependency, when in fact the dependency is not false, can result in incorrect
hardware. Be sure dependencies are correct (true or false) before specifying them.

Syntax

Place the pragma within the boundaries of the function where the dependence is defined.

#pragma HLS dependence variable=<variable> <class> \
<type> <direction> distance=<int> <dependent>

Where:

e variable=<variable>: Optionally specifies the variable to consider for the dependence.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 68

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=68

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

e <class>: Optionally specifies a class of variables in which the dependence needs clarification.
Valid values include array or pointer.

TIP: <class> and variable-=do not need to be specified together as you can either specify a variable or a class
of variables within a function.

e <type>: Valid values include intra or inter. Specifies whether the dependence is:

intra: dependence within the same loop iteration. When dependence <type> is specified
as intra, and <dependent> is false, the HLS tool might move operations freely within a
loop, increasing their mobility and potentially improving performance or area. When
<dependent> is specified as true, the operations must be performed in the order specified.

inter: dependence between different loop iterations. This is the default <type>. If
dependence <type> is specified as inter, and <dependent> is false, it allows the HLS tool
to perform operations in parallel if the function or loop is pipelined, or the loop is unrolled,
or partially unrolled, and prevents such concurrent operation when <dependent> is
specified as true.

e <direction>: Valid values include RAW, WAR, or WAW. This is relevant for loop-carry
dependencies only, and specifies the direction for a dependence:

RAW (Read-After-Write - true dependence) The write instruction uses a value used by the
read instruction.

WAR (Write-After-Read - anti dependence) The read instruction gets a value that is
overwritten by the write instruction.

. WAW (Write-After-Write - output dependence) Two write instructions write to the same
location, in a certain order.

e distance=<int>: Specifies the inter-iteration distance for array access. Relevant only for
loop-carry dependencies where dependence is set to true.

e <dependent>: Specifies whether a dependence needs to be enforced (t rue) or removed
(false). The defaultis true.

Example 1

In the following example, the HLS tool does not have any knowledge about the value of cols
and conservatively assumes that there is always a dependence between the write to buff_A[1]
[col] and theread from buff_A[1][col].Inan algorithm such as this, it is unlikely co1s will
ever be zero, but the HLS tool cannot make assumptions about data dependencies. To overcome
this deficiency, you can use the DEPENDENCE pragma to state that there is no dependence
between loop iterations (in this case, for both buff_A and buf f_B).

void foo(int rows, dint cols, ...)
for (row = 0; row < rows + 1; row++) {
for (col = 0; col < cols + 1; col++) {
#pragma HLS PIPELINE II=1
#pragma HLS dependence variable=buff_A inter false
#pragma HLS dependence variable=buff_B inter false
if (col < cols) {

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 69

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=69

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

buff_A[2][col] = buff_A[lllcoll; // read from buff_A[l]l[coll
buff_A[1l]l[col] = buff_A[0][col]; // write to buff_A[1][col]
buff_B[1][col] = buff_B[O0][col];

temp = buff_A[0][col];

Example 2

Removes the dependence between Var1 in the same iterations of 1oop_1 in function foo.

#pragma HLS dependence variable=Varl intra false

Example 3

Defines the dependence on all arrays in 1oop_2 of function foo to inform the HLS tool that all
reads must happen after writes (RAW) in the same loop iteration.

#pragma HLS dependence array intra RAW true

See Also

e pragma HLS pipeline

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)
e xcl_pipeline_loop

e SDAccel Environment Profiling and Optimization Guide (UG1207)

pragma HLS expression_balance

Description

Sometimes a C-based specification is written with a sequence of operations resulting in a long
chain of operations in RTL. With a small clock period, this can increase the latency in the design.
By default, the Vivado High-Level Synthesis (HLS) tool rearranges the operations using
associative and commutative properties. This rearrangement creates a balanced tree that can
shorten the chain, potentially reducing latency in the design at the cost of extra hardware.

The EXPRESSION_BALANCE pragma allows this expression balancing to be disabled, or to be
expressly enabled, within a specified scope.

Syntax

Place the pragma in the C source within the boundaries of the required location.

#pragma HLS expression_balance off

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 70

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=70

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Where:

e of f: Turns off expression balancing at this location.

O TIP: Leaving this option out of the pragma enables expression balancing, which is the default mode.

Example 1

This example explicitly enables expression balancing in function my_Func:

void my_func(char inval, char incr) {
#pragma HLS expression_balance

Example 2

Disables expression balancing within function my_Func:

void my_func(char inval, char incr) {
#pragma HLS expression_balance off

See Also

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS function_instantiate

Description

The FUNCTION_INSTANTIATE pragma is an optimization technique that has the area benefits of
maintaining the function hierarchy but provides an additional powerful option: performing
targeted local optimizations on specific instances of a function. This can simplify the control logic
around the function call and potentially improve latency and throughput.

By default:

e Functions remain as separate hierarchy blocks in the register transfer level (RTL).

e All instances of a function, at the same level of hierarchy, make use of a single RTL
implementation (block).

The FUNCTION_INSTANTIATE pragma is used to create a unique RTL implementation for each
instance of a function, allowing each instance to be locally optimized according to the function
call. This pragma exploits the fact that some inputs to a function may be a constant value when
the function is called, and uses this to both simplify the surrounding control structures and
produce smaller more optimized function blocks.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 71

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=71

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Without the FUNCTION_INSTANTIATE pragma, the following code results in a single RTL
implementation of function foo_sub for all three instances of the function in foo. Each
instance of function foo_sub is implemented in an identical manner. This is fine for function
reuse and reducing the area required for each instance call of a function, but means that the
control logic inside the function must be more complex to account for the variation in each call of
foo_sub.

char foo_sub(char inval, char incr) {

#pragma HLS function_instantiate variable=incr
return inval + incr;

}

void foo(char invall, char inval2, char inval3,
char *outvall, char *outval2, char * outval3)
{
*outvall
*outval?2
*outval3

3

foo_sub(invall, 1);
foo_sub(inval2, 2);
foo_sub(inval3, 3);

In the code sample above, the FUNCTION_INSTANTIATE pragma results in three different
implementations of function foo_sub, each independently optimized for the incr argument,
reducing the area and improving the performance of the function. After
FUNCTION_INSTANTIATE optimization, foo_sub is effectively be transformed into three
separate functions, each optimized for the specified values of incr.

Syntax
Place the pragma in the C source within the boundaries of the required location.

#pragma HLS function_instantiate variable=<variable>

Where:

e variable=<variable>: A required argument that defines the function argument to use as
a constant.

Example 1

In the following example, the FUNCTION_INSTANTIATE pragma placed in function swInt)
allows each instance of function swInt to be independently optimized with respect to the maxv
function argument:

void swInt(unsigned int *readRefPacked, short *maxr, short *maxc, short
*maxv) {
#pragma HLS function_instantiate variable=maxv
uint2_t d2bit[MAXCOL] ;
uint2_t g2bit [MAXROW] ;
#pragma HLS array partition variable=d2bit,g2bit cyclic factor=FACTOR

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 72

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=72

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

intTo2bit<MAXCOL/16>((readRefPacked + MAXROW/16), d2bit);
intTo2bit<MAXROW/16>(readRefPacked, g2bit);
sw(d2bit, g2bit, maxr, maxc, maxv);

See Also

e pragma HLS allocation
e pragma HLS inline

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS inline

Description

Removes a function as a separate entity in the hierarchy. After inlining, the function is dissolved
into the calling function and no longer appears as a separate level of hierarchy in the register
transfer level (RTL). In some cases, inlining a function allows operations within the function to be
shared and optimized more effectively with surrounding operations. An inlined function cannot
be shared. This can increase area required for implementing the RTL.

The INLINE pragma applies differently to the scope it is defined in depending on how it is
specified:

e INLINE: Without arguments, the pragma means that the function it is specified in should be
inlined upward into any calling functions or regions.

e INLINE OFF: Specifies that the function it is specified in should NOT be inlined upward into
any calling functions or regions. This disables the inline of a specific function that may be
automatically inlined, or inlined as part of a region or recursion.

e INLINE REGION: This applies the pragma to the region or the body of the function it is
assigned in. It applies downward, inlining the contents of the region or function, but not
inlining recursively through the hierarchy.

e INLINE RECURSIVE: This applies the pragma to the region or the body of the function it is
assigned in. It applies downward, recursively inlining the contents of the region or function.

By default, inlining is only performed on the next level of function hierarchy, not sub-functions.
However, the recursive option lets you specify inlining through levels of the hierarchy.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 73

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=73

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Syntax

Place the pragma in the C source within the body of the function or region of code.
#pragma HLS inline <region | recursive | off>

Where:

e region: Optionally specifies that all functions in the specified region (or contained within the
body of the function) are to be inlined, applies to the scope of the region.

e recursive: By default, only one level of function inlining is performed, and functions within
the specified function are not inlined. The recursive option inlines all functions recursively
within the specified function or region.

e o ff: Disables function inlining to prevent specified functions from being inlined. For example,
if recursive is specified in a function, this option can prevent a particular called function
from being inlined when all others are.

O TIP: The Vivado High-Level Synthesis (HLS) tool automatically inlines small functions, and using the INLINE
pragma with the o £ £ option may be used to prevent this automatic inlining.

Example 1

This example inlines all functions within the region it is specified in, in this case the body of
foo_top, but does not inline any lower level functions within those functions.

void foo_top { a, b, c, d} {
#pragma HLS inline region

Example 2

The following example, inlines all functions within the body of foo_top, inlining recursively
down through the function hierarchy, except function foo_sub is not inlined. The recursive
pragma is placed in function foo_top. The pragma to disable inlining is placed in the function

foo_sub:

foo_sub (p, q) {
#pragma HLS inline off
int g1 = g + 10;
fool(pl,q);// foo_3

}
void foo_top { a, b, c, d} {
#pragma HLS inline region recursive

foo(a,b);//foo_1
foo(a,c);//foo_2
foo_sub(a,d);

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/_] 74

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=74

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Note: Notice in this example, that INLINE applies downward to the contents of function foo_top, but
applies upward to the code calling foo_sub.

Example 3

This example inlines the copy_output function into any functions or regions calling
copy-_output.

void copy_output(int *out, int out_lcl[OSize * OSize], int output) {
#pragma HLS INLINE

// Calculate each work_item's result update location

int stride = output * OSize * OSize;

// Work_item updates output filter/image in DDR

writeOut: for(int itr = 0; itr < OSize * OSize; ditr++) {
#pragma HLS PIPELINE
out[stride + itr] = out_lcllitr];
}
See Also

e pragma HLS allocation
e pragma HLS function_instantiate

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS interface

Description

In C-based design, all input and output operations are performed, in zero time, through formal
function arguments. In a register transfer level (RTL) design, these same input and output
operations must be performed through a port in the design interface and typically operate using
a specific input/output (I/O) protocol. For more information, refer to "Managing Interfaces" in the
Vivado Design Suite User Guide: High-Level Synthesis (UG902).

The INTERFACE pragma specifies how RTL ports are created from the function definition during
interface synthesis.

The ports in the RTL implementation are derived from the following:

¢ Any function-level protocol that is specified: Function-level protocols, also called block-level
I/O protocols, provide signals to control when the function starts operation, and indicate
when function operation ends, is idle, and is ready for new inputs. The implementation of a
function-level protocol is:

. Specified by the <mode>values ap_ctrl_none,ap_ctrl_hsoOrap_ctrl_chain.The
ap_ctrl_hs block-level I/O protocol is the default.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 75

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=75

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Are associated with the function name.

Function arguments: Each function argument can be specified to have its own port-level (I/O)
interface protocol, such as valid handshake (ap_v1d), or acknowledge handshake (ap_ack).
Port-level interface protocols are created for each argument in the top-level function and the
function return, if the function returns a value. The default 1/O protocol created depends on
the type of C argument. After the block-level protocol has been used to start the operation of
the block, the port-level I/O protocols are used to sequence data into and out of the block.

Global variables accessed by the top-level function, and defined outside its scope:

If a global variable is accessed, but all read and write operations are local to the function,
the resource is created in the RTL design. There is no need for an I/O port in the RTL. If the
global variable is expected to be an external source or destination, specify its interface in a
similar manner as standard function arguments. See the Examples below.

When the INTERFACE pragma is used on sub-functions, only the register option can be used.
The <mode> option is not supported on sub-functions.

O TIP: The Vivado High-Level Synthesis (HLS) tool automatically determines the I/O protocol used by any sub-
functions. You cannot control these ports except to specify whether the port is registered.

Specifying Burst Mode

When specifying burst-mode for interfaces, using the max_read_burst_length or
max_write_burst_length options (as described in the Syntax section) there are limitations
and related considerations that are derived from the AXI standard:

1.

The burst length should be less than, or equal to 256 words per transaction, because ARLEN
& AWLEN are 8 bits; the actual burst length is AXLEN+1.

In total, less than 4 KB is transferred per burst transaction.
Do not cross the 4 KB address boundary.

The bus width is specified as a power of 2, between 32-bits and 512-bits (i.e. 32, 64, 128,
256, 512 bits) or in bytes: 4, 8, 16, 32, 64.

With the 4KB limit, the max burst length for a bus width of:

32-bits is 256 words transferred in a single burst transaction. In this case, the total bytes
transferred per transaction would be 1024.

64-bits is 256 words transferred in a single burst transaction. The total bytes transferred per
transaction would be 2048.

128-bits is 256 words transferred in a single burst transaction. The total bytes transferred per
transaction would be 4096.

256-bits is 128 words transferred in a single burst transaction. The total bytes transferred per
transaction would be 4096.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 76

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=76

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

e 512-bits is 64 words transferred in a single burst transaction. The total bytes transferred per
transaction would be 4096.

Note: The IP generated by the HLS tool might not actually perform the maximum burst length as this is
design dependent. For example, pipelined accesses from a for-loop of 100 iterations when
max_read_burst_lengthoOrmax_write_burst_length is set to 128, will not fill the max burst
length.

However, if the design is doing longer accesses in the source code than the specified maximum burst
length, the access will be split into smaller bursts. For example, a pipelined for-loop with 100 accesses and
max_read_burst_lengthormax_write_burst_length setto 64, will be split into 2 transactions,
one of the max burst length (or 64) and one transaction of the remaining data (burst of length 36 words).

Syntax

Place the pragma within the boundaries of the function.

#pragma HLS interface <mode> port=<name> bundle=<string> \
register register_mode=<mode> depth=<int> offset=<string> \
clock=<string> name=<string> \

num_read_outstanding=<int> num_write_outstanding=<int> \
max_read_burst_length=<int> max_write_burst_length=<int>

Where:

e <mode>: Specifies the interface protocol mode for function arguments, global variables used
by the function, or the block-level control protocols. For detailed descriptions of these
different modes see "Interface Synthesis Reference" in the Vivado Design Suite User Guide:
High-Level Synthesis (UG902). The mode can be specified as one of the following:

. ap_none: No protocol. The interface is a data port.

. ap_stable: No protocol. The interface is a data port. The HLS tool assumes the data port
is always stable after reset, which allows internal optimizations to remove unnecessary
registers.

- ap_vld: Implements the data port with an associated valid port to indicate when the
data is valid for reading or writing.

« ap-_ack: Implements the data port with an associated acknowledge port to acknowledge
that the data was read or written.

. ap_hs: Implements the data port with associated valid and acknowledge ports to
provide a two-way handshake to indicate when the data is valid for reading and writing and
to acknowledge that the data was read or written.

. ap_ovld: Implements the output data port with an associated valid port to indicate
when the data is valid for reading or writing.

IMPORTANT! The HLS tool implements the input argument or the input half of any read/write arguments with
mode ap_none.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 77

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=77

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

ap_fifo: Implements the port with a standard FIFO interface using data input and output
ports with associated active-Low FIFO empty and full ports.

Note: You can only use this interface on read arguments or write arguments. The ap_fifo mode
does not support bidirectional read/write arguments.

ap_bus: Implements pointer and pass-by-reference ports as a bus interface.

ap_memory: Implements array arguments as a standard RAM interface. If you use the RTL
design in the Vivado IP integrator, the memory interface appears as discrete ports.

+ bram: Implements array arguments as a standard RAM interface. If you use the RTL design
in the IP integrator, the memory interface appears as a single port.

axis: Implements all ports as an AXI4-Stream interface.

s_axilite: Implements all ports as an AXI4-Lite interface. The HLS tool produces an
associated set of C driver files during the Export RTL process.

m_axi: Implements all ports as an AXI4 interface. You can use the config_interface
command to specify either 32-bit (default) or 64-bit address ports and to control any
address offset.

ap_ctrl_none: No block-level I/O protocol.

Note: Using the ap_ctrl_none mode might prevent the design from being verified using the
C/RTL co-simulation feature.

ap_ctrl_hs:Implements a set of block-level control ports to start the design operation
and to indicate when the design is idle, done, and ready for new input data.

Note: The ap_ctrl_hs mode is the default block-level I/O protocol.

ap_ctrl_chain: Implements a set of block-level control ports to start the design
operation, continue operation, and indicate when the design is idle, done, and ready
for new input data.

Note: The ap_ctrl_chain interface mode is similar to ap_ctrl_hs but provides an additional
input signal ap_continue to apply back pressure. Xilinx recommends using the ap_ctrl_chain
block-level I/O protocol when chaining the HLS tool blocks together.

e port=<name>: Specifies the name of the function argument, function return, or global
variable which the INTERFACE pragma applies to.

O TIP: Block-level 1/0 protocols (ap_ctrl_none, ap_ctrl_hs,0r ap_ctrl_chazin)can be assigned to a port
for the function return value.

e bundle=<string>: Groups function arguments into AXI interface ports. By default, the HLS
tool groups all function arguments specified as an AX|4-Lite (s_axilite) interface into a
single AXI4-Lite port. Similarly, all function arguments specified as an AXI4 (m_ax1) interface
are grouped into a single AXI4 port. This option explicitly groups all interface ports with the
same bundle=<string> into the same AXI interface port and names the RTL port the value
specified by <string>.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 78

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=78

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

ﬁ? IMPORTANT! When specifying the bundle=name you should use all lower-case characters.

e register: An optional keyword to register the signal and any relevant protocol signals, and
causes the signals to persist until at least the last cycle of the function execution. This option
applies to the following interface modes:

ap-none
ap—_ack

o ap-vld
ap-ovld
ap_hs
ap_stable
axis

s_axilite

O TIP: The -register_iooption of the config_interface command globally controls registering all
inputs/outputs on the top function. Refer to the Vivado Design Suite User Guide: High-Level Synthesis (UG902)
for more information.

® register_mode= <forwardl|reverse |both|off>:Used with the register keyword,
this option specifies if registers are placed on the forward path (TDATA and TVALID), the
reverse path (TREADY), on both paths (TDATA, TVALID, and TREADY), or if none of the
port signals are to be registered (o f £). The default register_mode is both. AXI4-Stream
(ax1s) side-channel signals are considered to be data signals and are registered whenever the
TDATA is registered.

e depth=<int>: Specifies the maximum number of samples for the test bench to process. This
setting indicates the maximum size of the FIFO needed in the verification adapter that the
HLS tool creates for RTL co-simulation.

O TIP: While depthis usually an option, it is required for m_ ax i interfaces.

e offset=<string>: Controls the address offset in AXI4-Lite (s_axilite)and AXI4
(m_ax1i) interfaces.

For the s_axilite interface, <string> specifies the address in the register map.

For the m_axi interface, <string> specifies on of the following values:

- direct: Generate a scalar input offset port.

- slave: Generate an offset port and automatically map it to an AXl4-Lite slave interface.

- off: Do not generate an offset port.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 79

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=79

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

O TIP: The -m_axi_offset option of the config_interface command globally controls the offset ports of
all M_AXl interfaces in the design.

e clock=<name>: Optionally specified only for interface mode s_axilite. This defines the
clock signal to use for the interface. By default, the AXl4-Lite interface clock is the same clock
as the system clock. This option is used to specify a separate clock for the AXI4-Lite
(s_axilite)interface.

O TIP: If the bund1e option is used to group multiple top-level function arguments into a single AXI4-Lite
interface, the clock option need only be specified on one of the bundle members.

e latency=<value> Whenmode is m_ax1i, this specifies the expected latency of the AXI4
interface, allowing the design to initiate a bus request a number of cycles (latency) before the
read or write is expected. If this figure it too low, the design will be ready too soon and may
stall waiting for the bus. If this figure is too high, bus access may be granted but the bus may
stall waiting on the design to start the access.

e num_read_outstanding=<int>: For AXl4 (m_axi) interfaces, this option specifies how
many read requests can be made to the AXI4 bus, without a response, before the design stalls.
This implies internal storage in the design, a FIFO of size:
num_read_outstanding™max_read_burst_length*word_size.

e num_write_outstanding=<int>: For AXl4 (m_axi) interfaces, this option specifies how
many write requests can be made to the AXI4 bus, without a response, before the design
stalls. This implies internal storage in the design, a FIFO of size:
num_write_outstanding™max_write_burst_length*word_size

e max_read_burst_length=<int>: For AXl4 (m_ax1i) interfaces, this option specifies the
maximum number of data values read during a burst transfer.

e max_write_burst_length=<int>:For AXl4 (m_ax1i) interfaces, this option specifies the
maximum number of data values written during a burst transfer.

O TIP: If the port is a read-only port, then set the num_write_outstanding=1and
max_write_burst_Jlength=2to conserve memory resources. For write-only ports, set the

num_read_outstanding=1and max_read_burst_length=2.

e name=<string>: This option is used to rename the port based on your own specification.
The generated RTL port will use this name.

Example 1
In this example, both function arguments are implemented using an AXI4-Stream interface:

void example(int A[50], int B[50]) {
//Set the HLS native interface types
#pragma HLS INTERFACE axis port=A
f#fpragma HLS INTERFACE axis port=3B

int 1i;
for(i = 0; i < 50; di++){
B[i]l = A[4i] + 5;

}
3

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 80

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=80

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Example 2

The following turns off block-level I/0 protocols, and is assigned to the function return value:
#pragma HLS interface ap_ctrl_none port=return

The function argument InData is specified to use the ap_v1d interface, and also indicates the
input should be registered:

ffpragma HLS interface ap_vld register port=InData

This exposes the global variable 1ookup_table as a port on the RTL design, with an
ap_memory interface:

pragma HLS interface ap_memory port=lookup_table

Example 3

This example defines the INTERFACE standards for the ports of the top-level transpose
function. Notice the use of the bundle= option to group signals.

// TOP LEVEL - TRANSPOSE

void transpose(int#* dinput, int* output) {
fpragma HLS INTERFACE m_axi port=input offset=slave bundle=gmemO
#fpragma HLS INTERFACE m_axi port=output offset=slave bundle=gmeml

ffpragma HLS INTERFACE s_axilite port=input bundle=control
#pragma HLS INTERFACE s_axilite port=output bundle=control
#pragma HLS INTERFACE s_axilite port=return bundle=control

#pragma HLS dataflow

See Also

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS latency

Description

Specifies a minimum or maximum latency value, or both, for the completion of functions, loops,
and regions.

e Latency: Number of clock cycles required to produce an output.

¢ Function latency: Number of clock cycles required for the function to compute all output
values, and return.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 81

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=81

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

e Loop latency: Number of cycles to execute all iterations of the loop.

See "Performance Metrics Example" of Vivado Design Suite User Guide: High-Level Synthesis
(UG902).

The Vivado High-Level Synthesis (HLS) tool always tries to minimize latency in the design. When
the LATENCY pragma is specified, the tool behavior is as follows:

e Latency is greater than the minimum, or less than the maximum: The constraint is satisfied. No
further optimizations are performed.

e Latency is less than the minimum: If the HLS tool can achieve less than the minimum specified
latency, it extends the latency to the specified value, potentially increasing sharing.

e Latency is greater than the maximum: If HLS tool cannot schedule within the maximum limit, it
increases effort to achieve the specified constraint. If it still fails to meet the maximum
latency, it issues a warning, and produces a design with the smallest achievable latency in
excess of the maximum.

O TIP: You can also use the LATENCY pragma to limit the efforts of the tool to find an optimum solution. Specifying
latency constraints for scopes within the code: loops, functions, or regions, reduces the possible solutions within
that scope and improves tool runtime. Refer to "Improving Run Time and Capacity" of Vivado Design Suite User
Guide: High-Level Synthesis (UG902) for more information.

Syntax

Place the pragma within the boundary of a function, loop, or region of code where the latency
must be managed.

fpragma HLS latency min=<int> max=<int>

Where:

e min=<int>: Optionally specifies the minimum latency for the function, loop, or region of
code.

e max=<int>: Optionally specifies the maximum latency for the function, loop, or region of
code.

Note: Although both min and max are described as optional, one must be specified.

Example 1

Function foo is specified to have a minimum latency of 4 and a maximum latency of 8:

int foo(char x, char a, char b, char c) {
#pragma HLS latency min=4 max=8
char vy;
y = x*a+b+c;
return y

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 82

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=82

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Example 2

In the following example, 1oop_1 is specified to have a maximum latency of 12. Place the
pragma in the loop body as shown:

void foo (num_samples, ...) {
int 4i;
loop_1: for(i=0;i< num_samples;i++) {
#pragma HLS latency max=12

result = a + b;
}
}

Example 3

The following example creates a code region and groups signals that need to change in the same
clock cycle by specifying zero latency:

// create a region { } with a latency = 0
{

f#fpragma HLS LATENCY max=0 min=0

*data = OxFF;

*data_vld = 1;
1

See Also

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS loop_flatten

Description
Allows nested loops to be flattened into a single loop hierarchy with improved latency.

In the register transfer level (RTL) implementation, it requires one clock cycle to move from an
outer loop to an inner loop, and from an inner loop to an outer loop. Flattening nested loops
allows them to be optimized as a single loop. This saves clock cycles, potentially allowing for
greater optimization of the loop body logic.

Apply the LOOP_FLATTEN pragma to the loop body of the inner-most loop in the loop hierarchy.
Only perfect and semi-perfect loops can be flattened in this manner:

e Perfect loop nests:

Only the innermost loop has loop body content.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 83

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=83

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

There is no logic specified between the loop statements.
All loop bounds are constant.

e Semi-perfect loop nests:

Only the innermost loop has loop body content.
- There is no logic specified between the loop statements.
. The outermost loop bound can be a variable.

e Imperfect loop nests: When the inner loop has variable bounds (or the loop body is not
exclusively inside the inner loop), try to restructure the code, or unroll the loops in the loop
body to create a perfect loop nest.

Syntax

Place the pragma in the C source within the boundaries of the nested loop.
#pragma HLS loop_flatten off

Where:

e off:ls an optional keyword that prevents flattening from taking place. Can prevent some
loops from being flattened while all others in the specified location are flattened.

Note: The presence of the LOOP_FLATTEN pragma enables the optimization.

Example 1

Flattens 100p_1 in function foo and all (perfect or semi-perfect) loops above it in the loop
hierarchy, into a single loop. Place the pragma in the body of 1oop_1.

void foo (num_samples, ...) {
int 1i;

loop_1: for(i=0;i< num_samples;i++) {
#pragma HLS loop_flatten

result = a + b;
}
}

Example 2

Prevents loop flattening in 1oop_1:

loop_1: for(i=0;i< num_samples;i++) {
#pragma HLS loop_flatten off

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/_] 84

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=84

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

See Also

e pragma HLS loop_merge
e pragma HLS loop_tripcount
e pragma HLS unroll

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS loop_merge

Description

Merge consecutive loops into a single loop to reduce overall latency, increase sharing, and
improve logic optimization. Merging loops:

e Reduces the number of clock cycles required in the register transfer level (RTL) to transition
between the loop-body implementations.

¢ Allows the loops be implemented in parallel (if possible).

The LOOP_MERGE pragma will seek to merge all loops within the scope it is placed. For example,
if you apply a LOOP_MERGE pragma in the body of a loop, the Vivado High-Level Synthesis
(HLS) tool applies the pragma to any sub-loops within the loop but not to the loop itself.

The rules for merging loops are:

e If the loop bounds are variables, they must have the same value (number of iterations).

e If the loop bounds are constants, the maximum constant value is used as the bound of the
merged loop.

e Loops with both variable bounds and constant bounds cannot be merged.

e The code between loops to be merged cannot have side effects. Multiple execution of this
code should generate the same results (a=b is allowed, a=a+1 is not).

¢ Loops cannot be merged when they contain FIFO reads. Merging changes the order of the
reads. Reads from a FIFO or FIFO interface must always be in sequence.

Syntax
Place the pragma in the C source within the required scope or region of code:
#pragma HLS loop_merge force

where

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 85

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=85

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

#

e force: An optional keyword to force loops to be merged even when the HLS tool issues a
warning.

IMPORTANT! In this case, you must manually insure that the merged loop will function correctly.

Examples

Merges all consecutive loops in function foo into a single loop.

void foo (num_samples, ...) {
#pragma HLS loop_merge
int i;

loop_-1: for(i=0;i< num_samples;i++) {

All loops inside 1oop_2 (but not 1oop_2 itself) are merged by using the force option. Place the
pragma in the body of 1oop_2.

loop-2: for(i=0;i< num_samples;i++) {
#pragma HLS loop_merge force

See Also

e pragma HLS loop_flatten

e pragma HLS loop_tripcount

e pragma HLS unroll

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS loop_tripcount

Description

The LOOP_TRIPCOUNT pragma can be applied to a loop to manually specify the total number of
iterations performed by a loop.

IMPORTANT! The LOOP_TRIPCOUNT pragma is for analysis only, and does not impact the results of synthesis.

The Vivado High-Level Synthesis (HLS) tool reports the total latency of each loop, which is the
number of clock cycles to execute all iterations of the loop. The loop latency is therefore a
function of the number of loop iterations, or tripcount.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 86

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=86

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

The tripcount can be a constant value. It may depend on the value of variables used in the loop
expression (for example, x < y), or depend on control statements used inside the loop. In some
cases, the HLS tool cannot determine the tripcount, and the latency is unknown. This includes
cases in which the variables used to determine the tripcount are:

e Input arguments or

e Variables calculated by dynamic operation.

In cases where the loop latency is unknown or cannot be calculated, the LOOP_TRIPCOUNT
pragma lets you specify minimum and maximum iterations for a loop. This allows the tool analyze
how the loop latency contributes to the total design latency in the reports, and helps you
determine appropriate optimizations for the design.

Syntax

Place the pragma in the C source within the body of the loop:
#pragma HLS loop_tripcount min=<int> max=<int> avg=<int>

Where:

e max= <int>: Specifies the maximum number of loop iterations.
e min-= <int>: Specifies the minimum number of loop iterations.

e avg= <int>: Specifies the average number of loop iterations.

Examples

In the following example, 1oop_1 in function foo is specified to have a minimum tripcount of 12
and a maximum tripcount of 16:

void foo (num_samples, ...) {
int 1i;

loop_1: for(i=0;i< num_samples;i++) {
#fpragma HLS loop_tripcount min=12 max=16

result = a + b;

}
3

See Also

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 87

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=87

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

pragma HLS occurrence

Description

When pipelining functions or loops, the OCCURRENCE pragma specifies that the code in a
region is executed less frequently than the code in the enclosing function or loop. This allows the
code that is executed less often to be pipelined at a slower rate, and potentially shared within the
top-level pipeline. To determine the OCCURRENCE:

e Aloop iterates <N> times.

e However, part of the loop body is enabled by a conditional statement, and as a result only
executes <M> times, where <N> is an integer multiple of <M>.

e The conditional code has an occurrence that is N/M times slower than the rest of the loop
body.

For example, in a loop that executes 10 times, a conditional statement within the loop only
executes two times has an occurrence of 5 (or 10/2).

Identifying a region with the OCCURRENCE pragma allows the functions and loops in that region
to be pipelined with a higher initiation interval that is slower than the enclosing function or loop.

Syntax

Place the pragma in the C source within a region of code.
#pragma HLS occurrence cycle=<int>
Where:

e cycle=<int>: Specifies the occurrence N/M:

<N> is the number of times the enclosing function or loop is executed.

<M> is the number of times the conditional region is executed.

Sﬁ? IMPORTANT! <N> must be an integer multiple of <M>.

Examples

In this example, the region Cond_Region has an occurrence of 4 (it executes at a rate four times
less often than the surrounding code that contains it):

Cond_Region: {
#pragma HLS occurrence cycle=4

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 88

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=88

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

See Also
e pragma HLS pipeline
e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS pipeline

Description

The PIPELINE pragma reduces the initiation interval (Il) for a function or loop by allowing the
concurrent execution of operations.

A pipelined function or loop can process new inputs every <N> clock cycles, where <N> is the Il
of the loop or function. The default Il for the PIPELINE pragma is 1, which processes a new input
every clock cycle. You can also specify the initiation interval through the use of the Il option for
the pragma.

Pipelining a loop allows the operations of the loop to be implemented in a concurrent manner as
shown in the following figure. In the following figure, (A) shows the default sequential operation
where there are 3 clock cycles between each input read (II=3), and it requires 8 clock cycles
before the last output write is performed.

Figure 4: Loop Pipeline

void func(m,n,o) {

for (i=2;i>=0;i-) {
op_Read;
op_Compute;
op_Write;

}
}

I
|
[I e O A I

3cycles 1 cycle
R IETHEDE e ETNEIE o ETEDE LN ovR] k|
- > N ove] k|
8 cycles L ove | we |
“«——
4 cycles
(A) Without Loop Pipelining (B) With Loop Pipelining

X14277-110217

IMPORTANT! Loop pipelining can be prevented by loop carry dependencies. You can use the DEPENDENCE
pragma to provide additional information that can overcome loop-carry dependencies and allow loops to be
pipelined (or pipelined with lower intervals).

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 89

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=89

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

If the Vivado High-Level Synthesis (HLS) tool cannot create a design with the specified Il, it issues
a warning and creates a design with the lowest possible .

You can then analyze this design with the warning message to determine what steps must be
taken to create a design that satisfies the required initiation interval.

Syntax
Place the pragma in the C source within the body of the function or loop.
#fpragma HLS pipeline II=<int> enable_flush rewind

Where:

e II-=<int>:Specifies the desired initiation interval for the pipeline. The HLS tool tries to meet
this request. Based on data dependencies, the actual result might have a larger initiation
interval. The default Il is 1.

e enable_flush: Optional keyword that implements a pipeline that will flush and empty if the
data valid at the input of the pipeline goes inactive.

O TIP: This feature is only supported for pipelined functions: it is not supported for pipelined loops.

e rewind: Optional keyword that enables rewinding, or continuous loop pipelining with no
pause between one loop iteration ending and the next iteration starting. Rewinding is
effective only if there is one single loop (or a perfect loop nest) inside the top-level function.
The code segment before the loop:

Is considered as initialization.
Is executed only once in the pipeline.

Cannot contain any conditional operations (if-else).

O TIP: This feature is only supported for pipelined loops; it is not supported for pipelined functions.

Example 1

In this example function foo is pipelined with an initiation interval of 1:

void foo { a, b, c, d} {
#pragma HLS pipeline II=1

}

Note: The default value for Il is 1, so lI=1 is not required in this example.

See Also

e pragma HLS dependence

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 90

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=90

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

e xcl_pipeline_loop
e Vivado Design Suite User Guide: High-Level Synthesis (UG202)
e SDAccel Environment Profiling and Optimization Guide (UG1207)

pragma HLS reset

Description
The RESET pragma adds or removes resets for specific state variables (global or static).

The reset port is used in an FPGA to restore the registers and block RAM connected to the reset
port to an initial value any time the reset signal is applied. The presence and behavior of the
register transfer level (RTL) reset port is controlled using the config_rt1 configuration file. The
reset settings include the ability to set the polarity of the reset, and specify whether the reset is
synchronous or asynchronous, but more importantly it controls, through the reset option, which
registers are reset when the reset signal is applied. See "Clock, Reset, and RTL Output" in the
Vivado Design Suite User Guide: High-Level Synthesis (UG902) for more information.

Greater control over reset is provided through the RESET pragma. If a variable is a static or
global, the RESET pragma is used to explicitly add a reset, or the variable can be removed from
the reset by turning o f £ the pragma. This can be particularly useful when static or global arrays
are present in the design.

Syntax
Place the pragma in the C source within the boundaries of the variable life cycle.

#pragma HLS reset variable=<a> off

Where:

e variable=<a>: Specifies the variable to which the pragma is applied.

e off:Indicates that reset is not generated for the specified variable.

Example 1

This example adds reset to the variable a in function foo even when the global reset setting is

none OF control:

void foo(int in[3], char a, char b, char c, int out[3]) {
#pragma HLS reset variable=a

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 91

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=91

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Example 2

Removes reset from variable a in function foo even when the global reset setting is state or
all.

void foo(int in[3], char a, char b, char c, int out[3]) {
#pragma HLS reset variable=a off

See Also

Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS resource

Description

The RESOURCE pragma specifies that a specific library resource (core) is used to implement a
variable (array, arithmetic operation, or function argument) in the register transfer level (RTL). If
the RESOURCE pragma is not specified, the Vivado High-Level Synthesis (HLS) tool determines
the resource to use. The HLS tool implements the operations in the code using hardware cores.
When multiple cores in the library can implement the operation, you can specify which core to
use with the RESOURCE pragma. To generate a list of available cores, use the 1ist_core
command.

O TIP: The 1ist_corecommand obtains details on the cores available in the library. The 1ist_core canonly
be used in the HLS tool Tcl command interface, and a Xilinx device must be specified using the set_part
command. If a device has not been selected, the 1ist_corecommand does not have any effect.

For example, to specify which memory element in the library to use to implement an array, use
the RESOURCE pragma. This allows you control whether the array is implemented as a single or
a dual-port RAM, or in UltraRAM. This usage is important for arrays on the top-level function
interface, because the memory type associated with the array determines the ports needed in
the RTL.

You can use the 1atency= option to specify the latency of the core. For block RAMs on the
interface, the 1atency= option allows you to model off-chip, non-standard SRAMs at the
interface, for example supporting an SRAM with a latency of 2 or 3. For internal operations, the
latency= option allows the operation to be implemented using more pipelined stages. These
additional pipeline stages can help resolve timing issues during RTL synthesis.

For more information, see "Arrays on the Interface" in the Vivado Design Suite User Guide: High-
Level Synthesis (UG902).

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 92

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=92

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

IMPORTANT! To use the 1atency= option, the operation must have an available multi-stage core. The HLS
tool provides a multi-stage core for all basic arithmetic operations (add, subtract, multiply and divide), all floating-
point operations, and all block RAMs.

For best results, Xilinx recommends that you use -std=c99 for Cand - fno-builtin for C and
C++. To specify the C compile options, such as -std=c 99, use the Tcl command add_files
with the -cf1ags option. Alternatively, select the Edit CFLAGs button in the Project Settings
dialog box. See "Creating a New Synthesis Project" in the Vivado Design Suite User Guide: High-
Level Synthesis (UG902).

Syntax

Place the pragma in the C source within the body of the function where the variable is defined.

#pragma HLS resource variable=<variable> core=<core>\
latency=<int>

Where:

e variable=<variable>: A required argument that specifies the array, arithmetic operation, or
function argument to assign the RESOURCE pragma to.

e core=<core>: A required argument that specifies the core, as defined in the technology
library.

e latency-=<int>: Specifies the latency of the core.

Example 1

In the following example, a two-stage pipelined multiplier is specified to implement the
multiplication for variable <c> of the function foo. The HLS tool selects the core to use for
variable <d>.

int foo (int a, int b) {

int ¢, d;

#pragma HLS RESOURCE variable=c latency=2
c = a*b;

d = a*c;

return d;

3

Example 2

In the following example, the <coeffs[128]>variable is an argument to the top-level function
foo_top. This example specifies that coe f s is implemented with core RAM_1P from the
library:

#pragma HLS resource variable=coeffs core=RAM_1P

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 93

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=93

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

o TIP: The ports created in the RTL to access the values of coe £ £s are defined in the RAM_1P core.

See Also

Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS stable

Description

The STABLE pragma marks variables within a DATAFLOW region as being stable. The STABLE
pragma applies to both scalar and array variables whose content can be either written or read by
the process inside the DATAFLOW region. This pragma eliminates the extra synchronization
involved for the DATAFLOW region.

Syntax

Place the pragma in the C source within the boundaries of a region, function, or loop that is also
marked for DATAFLOW.

#pragma HLS stable variable=<name>

Where:

e variable=<name>: Specifies the name of a variable within the DATAFLOW region.

Examples

The following example specifies the array A as stable. If A is read by proc2, then it will not be
written by another process while the DATAFLOW region is being executed.

void foo(int A[...], int BI[..]
#pragma HLS dataflow
#pragma HLS stable variable=A
procl(...);
proc2 (A, ...);

See Also

e pragma HLS dataflow
e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/_] 94

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=94

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

pragma HLS stream

Description
By default, array variables are implemented as RAM:

e Top-level function array parameters are implemented as a RAM interface port.
e General arrays are implemented as RAMs for read-write access.

¢ In sub-functions involved in DATAFLOW optimizations, the array arguments are implemented
using a RAM ping pong buffer channel.

e Arrays involved in loop-based DATAFLOW optimizations are implemented as a RAM ping
pong buffer channel.

If the data stored in the array is consumed or produced in a sequential manner, a more efficient
communication mechanism is to use streaming data as specified by the STREAM pragma, where
FIFOs are used instead of RAMs,

i} IMPORTANT! When an argument of the top-level function is specified as INTERFACE type ap_ £i fo, the array
is automatically implemented as streaming.

Syntax

Place the pragma in the C source within the boundaries of the required location.
#pragma HLS stream variable=<variable> depth=<int> dim=<int> off

Where:

e variable=<variable>: Specifies the name of the array to implement as a streaming
interface.

e depth=<int>: Relevant only for array streaming in DATAFLOW channels. By default, the
depth of the FIFO implemented in the RTL is the same size as the array specified in the C
code. This option lets you modify the size of the FIFO and specify a different depth.

When the array is implemented in a DATAFLOW region, it is common to the use the depth-=
option to reduce the size of the FIFO. For example, in a DATAFLOW region when all loops and
functions are processing data at a rate of lI=1, there is no need for a large FIFO because data
is produced and consumed in each clock cycle. In this case, the depth= option may be used
to reduce the FIFO size to 1 to substantially reduce the area of the RTL design.

TIP: The config_dataflow -depthcommand provides the ability to stream all arrays in a DATAFLOW
region. The dep t h = option specified here overrides the config_dataflowcommand for the assigned

<variable>.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 95

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=95

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

e dim=<int>: Specifies the dimension of the array to be streamed. The default is dimension 1.
Specified as an integer from O to <N>, for an array with <N> dimensions.

e off: Disables streaming data. Relevant only for array streaming in dataflow channels.

O TIP: The config_dataflow -default_channel £ifocommand globallyimpliesa STREAMpragma on
all arrays in the design. The o £ option specified here overrides the config_dataf1owcommand for the
assigned variable, and restores the default of using a RAM ping pong buffer based channel.

Example 1

The following example specifies array A[10] to be streaming, and implemented as a FIFO:

#pragma HLS STREAM variable=A

Example 2

In this example array B is set to streaming with a FIFO depth of 12:

#pragma HLS STREAM variable=B depth=12

Example 3

Array C has streaming disabled. In the below example, it is assumed to be enabled by

config_dataflow:

#pragma HLS STREAM variable=C off

See Also

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS top

Description

Attaches a name to a function, which can then be used with the set _top command to
synthesize the function and any functions called from the specified top-level. This is typically
used to synthesize member functions of a class in C/C++.

Specify the pragma in an active solution, and then use the set_top command with the new
name.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 96

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=96

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Syntax

Place the pragma in the C source within the boundaries of the required location.
#pragma HLS top name=<string>

Where:

e name=<string>: Specifies the name to be used by the set _top command.

Examples

Function foo_long_name is designated the top-level function, and renamed to DESIGN_TOP.
After the pragma is placed in the code, the set _top command must still be issued from the Tcl
command line, or from the top-level specified in the GUI project settings.

void foo_long_name () {
#pragma HLS top name=DESIGN_TOP

}

set_top DESIGN_TOP

See Also

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)

pragma HLS unroll

Description

Unroll loops to create multiple independent operations rather than a single collection of
operations. The UNROLL pragma transforms loops by creating multiples copies of the loop body
in the register transfer level (RTL) design, which allows some or all loop iterations to occur in
parallel.

Loops in the C/C++ functions are kept rolled by default. When loops are rolled, synthesis creates
the logic for one iteration of the loop, and the RTL design executes this logic for each iteration of
the loop in sequence. A loop is executed for the number of iterations specified by the loop
induction variable. The number of iterations might also be impacted by logic inside the loop body
(for example, break conditions or modifications to a loop exit variable). Using the UNROLL
pragma you can unroll loops to increase data access and throughput.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 97

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=97

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

The UNROLL pragma allows the loop to be fully or partially unrolled. Fully unrolling the loop
creates a copy of the loop body in the RTL for each loop iteration, so the entire loop can be run
concurrently. Partially unrolling a loop lets you specify a factor <N>, to create <N> copies of the
loop body and reduce the loop iterations accordingly. To unroll a loop completely, the loop
bounds must be known at compile time. This is not required for partial unrolling.

Partial loop unrolling does not require <N> to be an integer factor of the maximum loop iteration
count. The Vivado High-Level-Synthesis (HLS) tool adds an exit check to ensure that partially
unrolled loops are functionally identical to the original loop. For example, given the following

code:

for(int i = 0; 1 < X; 4i++) {
pragma HLS unroll factor=2
ali]l = bli] + cl[dil;

3

Loop unrolling by a factor of 2 effectively transforms the code to look like the following code
where the break construct is used to ensure the functionality remains the same, and the loop
exits at the appropriate point:

for(int i = 0; 1 < X; 41 += 2) {
aldi] = bldi] + cl[di];
if (i+1 >= X) break;
ali+1] = bl[i+1] + c[i+1];

}

Because the maximum iteration count <X> is a variable, the HLS tool might not be able to
determine its value and so adds an exit check and control logic to partially unrolled loops.
However, if you know that the specified unrolling factor, 2 in this example, is an integer factor of
the maximum iteration count <X>, the skip_exit_check option lets you remove the exit
check and associated logic. This helps minimize the area and simplify the control logic.

O TIP: When the use of pragmas like DATA_PACK, ARRAY_PARTITION, or ARRAY_RESHAPE let more data be
accessed in a single clock cycle, the HLS tool automatically unrolls any loops consuming this data, if doing so
improves the throughput. The loop can be fully or partially unrolled to create enough hardware to consume the
additional data in a single clock cycle. This feature is controlled using the config_unrol1command. See
config_unrollin the Vivado Design Suite User Guide: High-Level Synthesis (UG902) for more information.

Syntax

Place the pragma in the C/C++ source within the body of the loop to unroll.
#pragma HLS unroll factor=<N> region skip_exit_check
Where:

e factor=<N>: Specifies a non-zero integer indicating that partial unrolling is requested. The
loop body is repeated the specified number of times, and the iteration information is adjusted
accordingly. If factor-= is not specified, the loop is fully unrolled.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 98

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=98

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

e region: An optional keyword that unrolls all loops within the body (region) of the specified
loop, without unrolling the enclosing loop itself.

e skip_exit_check: An optional keyword that applies only if partial unrolling is specified
with factor=. The elimination of the exit check is dependent on whether the loop iteration
count is known or unknown:

Fixed (known) bounds: No exit condition check is performed if the iteration count is a
multiple of the factor. If the iteration count is not an integer multiple of the factor, the tool:

1. Prevents unrolling.
2. Issues a warning that the exit check must be performed to proceed.

. Variable (unknown) bounds: The exit condition check is removed as requested. You must
ensure that:

1. The variable bounds is an integer multiple of the specified unroll factor.

2. No exit check is in fact required.

Example 1

The following example fully unrolls 1oop_1 in function foo. Place the pragma in the body of
loop_1 as shown:

loop_1: for(dnt i = 0; i < N; di++) {
#pragma HLS unroll
alil = bli] + cl[i];

}

Example 2

This example specifies an unroll factor of 4 to partially unroll 1oop_2 of function foo, and
removes the exit check:

void foo (...)
int8 arrayl[M
intl2 array?2l[

{
g
NI;
loop_2: for(i=0;i<M;di++) {

#pragma HLS unroll skip_exit_check factor=4

arrayl[i] oo
array2[i]

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 99

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=99

iv Xl I_l NX Chapter 4: HLS Pragmas
A ®

Example 3

The following example fully unrolls all loops inside 1oop_1 in function foo, but not 1oop_1
itself due to the presence of the region keyword:

void foo(int data_in[N], int scale, int data_outl[N], int data_out2[N]) {
int templ[N];
loop_1: for(int i = 0; i < N; 4i++) {
#pragma HLS unroll region
templ[i] = data_in[i] * scale;
loop_2: for(int j = 0; j < N; j++) {
data_outl[j] = templ[j] * 123;

}

loop_3: for(int k = 0; k < N; k++) {
data_out2[k] = templl[k] * 456;

}

See Also

e pragma HLS loop_flatten

e pragma HLS loop_merge

e pragma HLS loop_tripcount

e Vivado Design Suite User Guide: High-Level Synthesis (UG902)
e opencl_unroll_hint

e SDAccel Environment Profiling and Optimization Guide (UG1207)

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 100

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=100

& XILINX

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs

Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. DocNav is installed with
the SDSoC™ and SDAccel™ development environments. To open it:

e On Windows, select Start = All Programs — Xilinx Design Tools = DocNav.

e At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

¢ In DocNay, click the Design Hubs View tab.
e On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References

These documents provide supplemental material useful with this guide:

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 101

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=101

iv Xl Ll NX Appendix A: Additional Resources and Legal Notices
A ®

SDAccel Documents
1. SDAccel Environment User Guide (UG1023)
. SDAccel Environment Profiling and Optimization Guide (UG1207)

2
3. SDAccel Environment Getting Started Tutorial (UG1021)
4. SDAccel Environment Debugging Guide (UG1281)

SDSoC Documents

1. SDSoC Environment User Guide (UG1027)

2. SDSoC Environment Profiling and Optimization Guide (UG1235)
3. SDSoC Environment Tutorial: Introduction (UG1028)

4. SDSoC Environment Platform Development Guide (UG1146)

Additional Documents

1. SDx Pragma Reference Guide (UG1253)
2. Xilinx OpenCV User Guide (UG1233)

3. Platform Cable USB Il Data Sheet (DS593)

More Resources

1. Xilinx® licensing website: https:/www.xilinx.com/getproduct

2. SDSoC Developer Zone: https:/www.xilinx.com/products/design-tools/software-zone/
sdsoc.html.

3. SDAccel Developer Zone: https:/www.xilinx.com/products/design-tools/software-zone/
sdaccel.html

4. Xilinx End-User License Agreement (UG763)
5. Third Party End-User License Agreement (UG1254)

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L\/—] 102

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://github.com/Xilinx/SDAccel-Tutorials/blob/master/README.md
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1281-sdaccel-debugging-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1028-sdsoc-intro-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1233-xilinx-opencv-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds593.pdf
https://www.xilinx.com/getproduct
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=end-user-license-agreement.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1254-sdx-tplg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=102

iv Xl Ll NX Appendix A: Additional Resources and Legal Notices
A ®

negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https:/
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https:/www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2017-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc.
used by permission by Khronos. HDMI, HDMI logo, and High-Definition Multimedia Interface are
trademarks of HDMI Licensing LLC. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries. All other trademarks are the property of their respective owners.

UG1253 (v2019.1) June 5, 2019 send Feedback www.xilinx.com
SDx Pragma Reference Guide L/—] 103

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG1253&Title=SDx%20Pragma%20Reference%20Guide&releaseVersion=2019.1&docPage=103

	SDx Pragma Reference Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Ch. 2: OpenCL Attributes
	always_inline
	opencl_unroll_hint
	reqd_work_group_size
	vec_type_hint
	work_group_size_hint
	xcl_array_partition
	xcl_array_reshape
	xcl_dataflow
	xcl_latency
	xcl_loop_tripcount
	xcl_max_work_group_size
	xcl_pipeline_loop
	xcl_pipeline_workitems
	xcl_reqd_pipe_depth
	xcl_zero_global_work_offset

	Ch. 3: SDS Pragmas
	pragma SDS async
	pragma SDS data access_pattern
	pragma SDS data buffer_depth
	pragma SDS data copy
	pragma SDS data data_mover
	pragma SDS data mem_attribute
	pragma SDS data sys_port
	pragma SDS data zero_copy
	pragma SDS resource
	pragma SDS trace
	pragma SDS wait

	Ch. 4: HLS Pragmas
	pragma HLS allocation
	pragma HLS array_map
	pragma HLS array_partition
	pragma HLS array_reshape
	pragma HLS clock
	pragma HLS data_pack
	pragma HLS dataflow
	pragma HLS dependence
	pragma HLS expression_balance
	pragma HLS function_instantiate
	pragma HLS inline
	pragma HLS interface
	pragma HLS latency
	pragma HLS loop_flatten
	pragma HLS loop_merge
	pragma HLS loop_tripcount
	pragma HLS occurrence
	pragma HLS pipeline
	pragma HLS reset
	pragma HLS resource
	pragma HLS stable
	pragma HLS stream
	pragma HLS top
	pragma HLS unroll

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

