
SDSoC Profiling and
Optimization Guide

UG1235 (v2019.1) May 22, 2019

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1235

Revision History
The following table shows the revision history for this document.

Section Revision Summary

05/22/2019 Version 2019.1

General Updates Editorial updates only. No technical changes.

Revision History

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=2

Table of Contents
Revision History...2

Chapter 1: Introduction.. 5
Software Acceleration with SDSoC.. 6
Execution Model of an SDSoC Application... 7
SDSoC Build Process... 9

Chapter 2: Estimating Performance.. 11
Profiling and Instrumenting Code to Measure Performance..11
SDSCC/SDS++ Performance Estimation Flow Options..13

Chapter 3: Improving System Performance.. 15
Improving Hardware Function Parallelism.. 15
Increasing System Parallelism and Concurrency.. 18
Data Motion Network Generation in SDSoC.. 21

Chapter 4: Optimizing the Hardware Function... 27
Understanding the Hardware Function Optimization Methodology..................................27
Baselining Hardware Functions...30
Optimizing Metrics ...31
Pipelining for Performance..32
Optimizing Structures for Performance...37
Reducing Latency.. 39
Reducing Area..40
Design Optimization Workflow..42
Optimization Guidelines...43
Hardware Function Interfacing... 53

Chapter 5: Memory Access Optimizations..54
Data Motion Optimization..55
Data Access Patterns.. 58

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=3

Chapter 6: Performance Measurement Using the AXI
Performance Monitor.. 74
Create a Standalone Project and Implementing APM..74
Monitor the Standalone Instrumented System...75
Create a Linux Project and Implement APM..76
Monitor the Linux Instrumented System... 77
Analyzing the Performance..79

Chapter 7: Real-World Examples..81
Top-Down: Optical Flow Algorithm... 81
Bottom-Up: Stereo Vision Algorithm.. 91

Appendix A: Additional Resources and Legal Notices........................... 101
Xilinx Resources...101
Documentation Navigator and Design Hubs.. 101
References..101
Training Resources..102
Please Read: Important Legal Notices... 103

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=4

Chapter 1

Introduction
The Zynq®-7000 SoC processor and the Zynq® UltraScale+™ MPSoC processor integrate the
software programmability of an Arm®-based processor with the hardware programmability of an
FPGA, enabling key analytics and hardware acceleration while integrating CPU, DSP, ASSP, and
mixed-signal functionality on a single device. The SDSoC™ environment is a tool suite that
includes an Eclipse-based integrated development environment (IDE) for implementing
heterogeneous embedded systems using the Zynq platforms.

The SDSoC environment includes system compilers that transform C/C++ programs into
complete hardware/software systems with selected functions compiled into programmable logic
to enable hardware acceleration of the select functions. This guide provides software
programmers with an understanding of the underlying hardware used to provide the
acceleration, including factors that might limit or improve performance, and a methodology to
help achieve the highest system performance.

A detailed knowledge of hardware is not required to get started with the SDSoC environment.
However, an understanding of the hardware resources available on the device and how a
hardware function achieves very high performance through increased parallelism helps you select
the appropriate compiler optimization directives to meet your performance needs.

The methodology can be summarized as follows:

1. Identify functions to be accelerated in hardware. Profiling your software can help identify
compute intensive regions.

2. Optimize the hardware function code to achieve performance targets using the Vivado®

High-Level Synthesis (HLS) tool coding guidelines.

3. Optimize data transfers between the CPU processor system (PS) and hardware functions
programmable logic (PL). This step can involve restructuring data accesses to be burst-
friendly, and to select data movers as described in this document.

After providing an understanding of how hardware acceleration is achieved, this guide concludes
with a number of real-world examples demonstrating the methodology for use in your own
SDSoC-based applications.

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=5

Software Acceleration with SDSoC
When compared with processor architectures, the structures that comprise the programmable
logic (PL) in a Xilinx device enable a high degree of parallelism in application execution. The
custom processing architecture generated by the sds++/sdscc (referred to as sds++) system
compiler for a hardware function in an accelerator presents a different execution paradigm from
CPU execution, and provides an opportunity for significant performance gains. While you can re-
target an existing embedded processor application for acceleration in PL, writing your application
to use the source code libraries of existing hardware functions, such as the Xilinx xfOpenCV
library, or modifying your code to better use the PL device architecture, yields significant
performance gains and power reduction.

CPUs have fixed resources and offer limited opportunities for parallelization of tasks or
operations. A processor, regardless of its type, executes a program as a sequence of instructions
generated by processor compiler tools, which transform an algorithm expressed in C/C++ into
assembly language constructs that are native to the target processor. Even a simple operation,
such as the multiplication of two values, results in multiple assembly instructions that must be
executed across multiple clock cycles.

An FPGA is an inherently parallel processing device capable of implementing any function that
can run on a processor. Xilinx devices have an abundance of resources that can be programmed
and configured to implement any custom architecture and achieve virtually any level of
parallelism. Unlike a processor, where all computations share the same ALU, the FPGA
programming logic acts as a blank canvas to define and implement your acceleration functions.
The FPGA compiler creates a unique circuit optimized for each application or algorithm; for
example, only implementing multiply and accumulate hardware for a neural net—not a whole
ALU.

The sds++ system compiler invoked with the -c option compiles a file into a hardware IP by
invoking the Vivado High-Level Synthesis (HLS) tool on the desired function definition. Before
calling the HLS tool, the sds++ compiler translates #pragma SDS into pragmas understood by
the HLS tool. The HLS tool performs hardware-oriented transformations and optimizations,
including scheduling, pipelining, and dataflow operations to increase concurrency.

The sds++ linker analyzes program dataflow involving calls into and between hardware
functions, mapping into a system hardware data motion network, and software control code
(called stubs) to orchestrate accelerators and data transfers through data movers. As described in
the following section, the sds++ linker performs data transfer scheduling to identify operations
that can be shared, and to insert wait barrier API calls into stubs to ensure program semantics are
preserved.

Chapter 1: Introduction

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 6Send Feedback

https://github.com/Xilinx/xfopencv
https://github.com/Xilinx/xfopencv
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=6

Execution Model of an SDSoC Application
The execution model for an SDSoC environment application can be understood in terms of the
normal execution of a C++ program running on the target CPU after the platform has booted. It is
useful to understand how a C++ binary executable interfaces to hardware.

The set of declared hardware functions within a program is compiled into hardware accelerators
that are accessed with the standard C runtime through calls into these functions. Each hardware
function call in effect invokes the accelerator as a task and each of the arguments to the function
is transferred between the CPU and the accelerator, accessible by the program after accelerator
task completion. Data transfers between memory and accelerators are accomplished through
data movers, such as a DMA engine, automatically inserted into the system by the sds++ system
compiler taking into account user data mover pragmas such as zero_copy.

Figure 1: Architecture of an SDSoC System

SDSoC Platform

DDR Banks

Zynq

Embedded Processor (PS Region)
Operating System Drivers

Application Code

Peripherals
(Vision, Graphics, Measurement...)

Programmable Logic
(PL Region)

Hardware Function Accelerators
Data Movers

Direct I/O Access

X21358-082418

Chapter 1: Introduction

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=7

To ensure program correctness, the system compiler intercepts each call to a hardware function,
and replaces it with a call to a generated stub function that has an identical signature but with a
derived name. The stub function orchestrates all data movement and accelerator operation,
synchronizing software and accelerator hardware at the exit of the hardware function call. Within
the stub, all accelerator and data mover control is realized through a set of send and receive APIs
provided by the sds_lib library.

When program dataflow between hardware function calls involves array arguments that are not
accessed after the function calls have been invoked within the program (other than destructors
or free() calls), and when the hardware accelerators can be connected using streams, the
system compiler transfers data from one hardware accelerator to the next through direct
hardware stream connections, rather than implementing a round trip to and from memory. This
optimization can result in significant performance gains and reduction in hardware resources.

At a high-level, the SDSoC program execution model includes the following steps:

1. Initialization of the sds_lib library occurs during the program constructor before entering
main().

2. Within a program, every call to a hardware function is intercepted by a function call into a
stub function with the same function signature (other than name) as the original function.
Within the stub function, the following steps occur:

a. A synchronous accelerator task control command is sent to the hardware.

b. For each argument to the hardware function, an asynchronous data transfer request is
sent to the appropriate data mover, with an associated wait() handle. A non-void return
value is treated as an implicit output scalar argument.

c. A barrier wait() is issued for each transfer request. If a data transfer between
accelerators is implemented as a direct hardware stream, the barrier wait() for this
transfer occurs in the stub function for the last in the chain of accelerator functions for
this argument.

3. Clean up of the sds_lib library occurs during the program destructor, upon exiting main().

TIP: Steps 2a–2c ensure that program correctness is preserved at the entrance and exit of accelerator pipelines
while enabling concurrent execution within the pipelines.

Sometimes, the programmer has insight of the potential concurrent execution of accelerator
tasks that cannot be automatically inferred by the system compiler. In this case, the sds++
system compiler supports a #pragma SDS async(ID) that can be inserted immediately
preceding a call to a hardware function. This pragma instructs the compiler to generate a stub
function without any barrier wait() calls for data transfers. As a result, after issuing all data
transfer requests, control returns to the program, enabling concurrent execution of the program
while the accelerator is running. In this case, it is your responsibility to insert a #pragma SDS
wait(ID) within the program at appropriate synchronization points, which are resolved into
sds_wait(ID) API calls to correctly synchronize hardware accelerators, their implicit data
movers, and the CPU.

Chapter 1: Introduction

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=8

IMPORTANT! Every async(ID) pragma requires a matching wait(ID) pragma.

SDSoC Build Process
The SDSoC build process uses a standard compilation and linking process. Similar to g++, the
sds++ system compiler invokes sub-processes to accomplish compilation and linking.

As shown in the following figure, compilation is extended not only to object code that runs on
the CPU, but it also includes compilation and linking of hardware functions into IP blocks using
the Vivado High-Level Synthesis (HLS) tool, and creating standard object files (.o) using the
target CPU toolchain. System linking consists of program analysis of caller/callee relationships for
all hardware functions, and the generation of an application-specific hardware/software network
to implement every hardware function call. The sds++ system compiler invokes all necessary
tools, including Vivado HLS (function compiler), the Vivado Design Suite to implement the
generated hardware system, and the Arm compiler and sds++ linker to create the application
binaries that run on the CPU invoking the accelerator (stubs) for each hardware function by
outputting a complete bootable system for an SD card.

Figure 2: SDSoC Build Process

Embedded Process
 Application

Hardware
Functions

SDS++
Compilation

HLS Function
Compile

GNU Arm
Toolchain

SDS++
Linking

Vivado
Design Suite

Update SW
Image

C/C++

Arm Build
Steps

Application
Executable

(.elf)

RTL, C/C++

Programmable Logic
Build Steps

FPGA Binary
(Bitstream)

Bootable System Image

Embedded System Source Code

X21126-041119

The compilation process includes the following tasks:

1. Analyzing the code and running a compilation for the main application on the Arm core, as
well as a separate compilation for each of the hardware accelerators.

2. Compiling the application code through standard GNU Arm compilation tools with an object
(.o) file produced as final output.

Chapter 1: Introduction

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=9

3. Running the hardware accelerated functions through the HLS tool to start the process of
custom hardware creation with an object (.o) file as output.

After compilation, the linking process includes the following tasks:

1. Analyzing the data movement through the design and modifying the hardware platform to
accept the accelerators.

2. Implementing the hardware accelerators into the programmable logic (PL) region using the
Vivado Design Suite to run synthesis and implementation, and generate the bitstream for the
device.

3. Updating the software images with hardware access APIs to call the hardware functions from
the embedded processor application.

4. Producing an integrated SD card image that can boot the board with the application in an
Executable and Linkable Format (ELF) file.

Chapter 1: Introduction

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=10

Chapter 2

Estimating Performance

Profiling and Instrumenting Code to Measure
Performance

The first major task in profiling and instrumenting code is to identify portions of application code
that are suitable for implementation in hardware, and that significantly improve overall
performance when run in hardware. Compute intensive regions of code are good candidates for
hardware acceleration, especially when it is possible to stream data between hardware, the CPU,
and memory to overlap the computation with the communication. Software profiling is a
standard way to identify the most CPU-intensive portions of your program. An example of a
function that would not do well for acceleration is one that takes more time to transfer data to/
from the accelerator than to compute the result. The SDSoC™ environment includes all
performance and profiling capabilities that are included in the Xilinx® SDK tool, including gprof,
the non-intrusive Target Communication Framework (TCF) profiler, and the Performance Analysis
perspective within Eclipse.

To run the TCF Profiler for a standalone application, use the following steps:

1. Set the active build configuration to Debug by right-clicking the project in the Project
Explorer and selecting Build Configurations → Set Active → Debug.

2. Launch the debugger by right-clicking the project name in the Project Explorer and selecting
Debug As → Launch on hardware (SDx Application Debugger).

Note: The board must be connected to your computer and powered on. The application automatically
breaks at the entry to main().

3. Launch the TCF Profiler by selecting Window → Show View → Other. In the window that is
produced, expand Debug, and select TCF profiler.

4. To start the TCF Profiler, click the green Start button at the top of the TCF Profiler tab.

5. Enable Aggregate per function in the Profiler Configuration dialog box.

6. To start the profiling, click the Resume button or press F8. The program runs to completion
and breaks at the exit() function.

7. View the results in the TCF Profiler tab.

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=11

Profiling provides a statistical method for finding highly used regions of code based on sampling
the CPU program counter and correlating to the program in execution. Another way to measure
program performance is to instrument the application to determine the actual duration between
different parts of a program in execution.

Using the TCF Profiler provides more in-depth information related to either a standalone or a
Linux OS application. As seen in the previous steps, no additional compilation flags were needed
to use the Profiler.

Note: This type of profiling for hardware requires a JTAG connection.

The sds_lib library included in the SDSoC environment provides a simple, source code
annotation-based, time-stamping API that can be used to measure application performance, as
shown in the following example:

/*
 * @return value of free-running 64-bit Zynq(TM) global counter
 */
unsigned long long sds_clock_counter(void);

Using this API to collect timestamps and differences between them, you can determine duration
of key parts of your program. For example, you can measure data transfer or overall round trip
execution time for hardware functions, as shown in the following code snippet:

class perf_counter
{
public:
 uint64_t tot, cnt, calls;
 perf_counter() : tot(0), cnt(0), calls(0) {};
 inline void reset() { tot = cnt = calls = 0; }
 inline void start() { cnt = sds_clock_counter(); calls++; };
 inline void stop() { tot += (sds_clock_counter() - cnt); };
 inline uint64_t avg_cpu_cycles() { return (tot / calls); };
};

extern void f();
void measure_f_runtime()
{
 perf_counter f_ctr;
 f_ctr.start();
 f()
 f_ctr.stop();
 std::cout << "Cpu cycles f(): " << f_ctr.avg_cpu_cycles()
 << std::endl;
}

The performance estimation feature within the SDSoC environment employs this API by
automatically instrumenting functions selected for hardware implementation, measuring actual
runtimes by running the application on the target, and then comparing actual times with
estimated times for the hardware functions.

Chapter 2: Estimating Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=12

Note: While off-loading CPU-intensive functions is one of the most reliable heuristics to partition your
application, it is not guaranteed to improve system performance without algorithmic modification to
optimize memory accesses. A CPU almost always has much faster random access to external memory than
you can achieve from programmable logic, due to multi-level caching and a faster clock speed (typically 2x
to 8x faster than programmable logic). Extensive manipulation of pointer variables over a large address
range, for example, a sort routine that sorts indices over a large index set, while very well-suited for a CPU,
could become a liability when moving a function into programmable logic. This does not mean that such
compute functions are not good candidates for hardware, only that code or algorithm restructuring could
be required. This is a known issue for DSP and GPU coprocessors.

SDSCC/SDS++ Performance Estimation Flow
Options

A full bitstream compile can take much more time than a software compile, so the sds++/sdscc
(referred to as sds++) applications provide performance estimation options to compute the
estimated runtime improvement for a set of hardware function calls.

In the Application Project Settings pane, to invoke the estimator, select the Estimate
Performance check box. This enables performance estimation for the current build configuration
and builds the project.

Figure 3: Setting Estimate Performance in Application Project Settings

Estimating the speed-up is a two phase process:

1. The SDSoC environment compiles the hardware functions and generates the system. Instead
of synthesizing the system to bitstream, the sds++ computes an estimate of the
performance based on estimated latencies for the hardware functions and data transfer time
estimates for the callers of hardware functions.

2. In the generated Performance Report, to determine a performance baseline and the
performance estimate, select Click Here to run an instrumented version of the software on
the target.

Chapter 2: Estimating Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=13

See the SDSoC Environment Getting Started Tutorial (UG1028) for a tutorial on how to use the
Performance Report.

You can also generate a performance estimate from the command line. As a first pass to gather
data about software runtime, use the -perf-funcs option to specify functions to profile and -
perf-root to specify the root function encompassing calls to the profiled functions.

The sds++ system compiler then automatically instruments these functions to collect runtime
data when the application is run on a board. When you run an instrumented application on the
target, the program creates a file on the SD card called swdata.xml, which contains the runtime
performance data for the run.

Copy the swdata.xml to the host, and run a build that estimates the performance gain on a per
hardware function caller basis and for the top-level function specified by the –perf-root
function in the first pass run. Use the –perf-est option to specify swdata.xml as input data
for this build.

The following table specifies the sds++ system compiler options normally used to build an
application.

Table 1: Commonly used sds++ options

Option Description

-perf-funcs function_name_list Specifies a comma separated list of all functions to be profiled in the
instrumented software application.

-perf-root function_name Specifies the root function encompassing all calls to the profiled
functions. The default is the function main.

-perf-est data_file Specifies the file containing runtime data generated by the
instrumented software application when run on the target. Estimate
performance gains for hardware accelerated functions. The default
name for this file is swdata.xml.

-perf-est-hw-only Runs the estimation flow without running the first pass to collect
software run data. Using this option provides hardware latency and
resource estimates without providing a comparison against baseline.

CAUTION! After running the sd_card image on the board for collecting profile data, type cd /; sync;
umount /mnt;. This ensures that the swdata.xml file is written out to the SD card.

Chapter 2: Estimating Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 14Send Feedback

https://github.com/Xilinx/SDSoC-Tutorials/tree/master/getting-started-tutorial
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=14

Chapter 3

Improving System Performance
This chapter describes underlying principles and inference rules within the SDSoC™ system
compiler to assist the programmer to improve overall system performance through the following:

• Increased parallelism in the hardware function.

• Increased system parallelism and concurrency.

• Improved access to external memory from programmable logic.

• An understanding of the data motion network (default behavior and user specification).

There are many factors that affect overall system performance. A well-designed system generally
balances computation and communication, so that all hardware components remain occupied
doing meaningful work.

• Some applications are compute-bound; for these applications, concentrate on maximizing
throughput and minimizing latency in hardware accelerators.

• Other applications might be memory-bound, in which case, you might need to restructure
algorithms to increase temporal and spatial locality in the hardware; for example, adding copy-
loops or memcopy to pull blocks of data into hardware rather than making random array
accesses to external memory.

Control over the various aspects of optimization is provided through the use of pragmas in the
code. For a complete description of the available pragmas, refer to the SDx Pragma Reference
Guide (UG1253).

Related Information
Improving Hardware Function Parallelism
Increasing System Parallelism and Concurrency
Memory Access Optimizations
Data Motion Network Generation in SDSoC

Improving Hardware Function Parallelism
This section provides a concise introduction to writing efficient code that can be cross-compiled
into programmable logic.

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 15Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=15

The SDSoC environment employs the Vivado® High-Level Synthesis (HLS) tool as a
programmable logic cross-compiler to transform C/C++ functions into hardware.

By applying the principles described in this section, you can dramatically increase the
performance of the synthesized functions, which can lead to significant increases in overall
system performance for your application.

Top-Level Hardware Function Guidelines
This section describes coding guidelines to ensure that the Vivado HLS tool hardware function
has a consistent interface with object code generated by the Arm® core GNU toolchain.

Use Standard C99 Data Types for Top-Level Hardware Function Arguments

1. Avoid using arrays of bool. An array of bool has a different memory layout between the
GNU Arm cross compiler and the HLS tool.

2. Avoid using hls::stream at the hardware function top-level interface. This data type helps
the HLS tool compiler synthesize efficient logic within a hardware function but does not
apply to application software.

Omit HLS Interface Directives for Top-Level Hardware Function Arguments

Although supported, a top-level hardware function should not, in general, contain HLS interface
pragmas. The sdcc/sds++ (referred to as sds++) system compiler automatically generates the
appropriate HLS tool interface directives.

There are two SDSoC environment pragmas you can specify for a top-level hardware function to
guide the sds++ system compiler to generate the required HLS tool interface directives:

• #pragma SDS data zero_copy(): Use to generate a shared memory interface
implemented as an AXI master interface in hardware.

• #pragma SDS data access_pattern(argument:SEQUENTIAL): Use to generate a
streaming interface implemented as a FIFO interface in hardware.

If you specify the interface using #pragma HLS interface for a top-level function argument,
the SDSoC environment does not generate the HLS tool interface directive for that argument;
you should ensure that the generated hardware interface is consistent with all other function
argument hardware interfaces.

RECOMMENDED: Because a function with the incompatible HLS tool interface types can result in cryptic sds+
+ system compiler error messages, it is strongly recommended (though not absolutely mandatory) that you omit
HLS interface pragmas.

Chapter 3: Improving System Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=16

Using Vivado Design Suite HLS Libraries
This section describes how to use the Vivado HLS tool libraries with the SDSoC environment.

The HLS tool libraries are provided as source code with the HLS installation tool in the SDSoC
environment. Consequently, you can use these libraries as you would any other source code that
you plan to cross-compile for programmable logic using the HLS tool. In particular, ensure that
the source code conforms to the rules described in Hardware Function Argument Types in the
SDSoC Environment Programmers Guide (UG1278), which might require you to provide a C/C++
wrapper function to ensure the functions export a software interface to your application.

In the SDSoC IDE, the synthesizeable finite impulse response (FIR) example template for all basic
platforms provides an example that uses an HLS tool library. You can find several additional code
examples that employ the HLS tool libraries in the samples/hls_lib directory. For example,
samples/hls_lib/hls_math contains an example to implement and uses a square root
function.

The file my_sqrt.h contains:

#ifndef _MY_SQRT_H_
#define _MY_SQRT_H_

#ifdef __SDSVHLS__
#include "hls_math.h"
#else
// The hls_math.h file includes hdl_fpo.h which contains actual code and
// will cause linker error in the ARM compiler, hence we add the function
// prototypes here
static float sqrtf(float x);
#endif

void my_sqrt(float x, float *ret);

#endif // _SQRT_H_

The file my_sqrt.cpp contains:

#include "my_sqrt.h"

void my_sqrt(float x, float *ret)
{
 *ret = sqrtf(x);
}

The makefile has the commands to compile these files:

sds++ -c -hw my_sqrt –sds-pf zc702 my_sqrt.cpp
sds++ -c my_sqrt_test.cpp
sds++ my_sqrt.o my_sqrt_test.o -o my_sqrt_test.elf

Chapter 3: Improving System Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 17Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf;a=xHardwareFunctionArgumentTypes
https://www.xilinx.com/cgi-bin/docs/ndoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=17

Increasing System Parallelism and
Concurrency

Increasing the level of concurrent execution is a standard way to increase overall system
performance, and increasing the level of parallel execution is a standard way to increase
concurrency. Programmable logic is well-suited to implement architectures with application-
specific accelerators that run concurrently, especially communicating through flow-controlled
streams that synchronize between data producers and consumers.

In the SDSoC environment, you influence the macro-architecture parallelism at the function and
data mover level, and the micro-architecture parallelism within hardware accelerators. By
understanding how the sds++/sdscc (referred to as sds++) compiler infers system
connectivity and data movers, you can structure application code and apply pragmas, as needed,
to control hardware connectivity between accelerators and software, data mover selection,
number of accelerator instances for a given hardware function, and task level software control.

You can control the micro-architecture parallelism, concurrency, and throughput for hardware
functions within the Vivado HLS tool, or within the IP, you incorporate as C-callable and linkable
libraries.

At the system level, the sds++ compiler chains together hardware functions when the data flow
between them does not require transferring arguments out of programmable logic and back to
system memory.

For example, consider the code in the following figure, where mmult and madd functions have
been selected for hardware.

Figure 4: Hardware/Software Connectivity with Direct Connection

transfer
 tmp1

bool mmultadd_test(float *A, float *B, float *C, float *Ds, float *D)
{
 float tmpl[A_NROWS * A_NCOLS], tmp2[A_NROWS * A_NCOLS];
 for (int I = 0; ii < NUM_TESTS; i++) {
 mmultadd_init(A, B, C, Ds, D);

 mmult(A, B, tmp1);
 //std::cout << “tmp1[0] = “ << tmp1[0] << std::end1;
 madd(tmp1, C, D);

 mmult_golden(A, B, tmp2);
 madd_golden(tmp2, C, Ds);

 if (!mmult_result_check(D, Ds))
 return false;
 }
 return true;
}

Call
madd madd

Call
mmult mmult

transfer B

transfer A

transfer C

transfer D

X14763-042519

Chapter 3: Improving System Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=18

Because the intermediate array variable tmp1 is used only to pass data between the two
hardware functions, the sds++ compiler chains the two functions together in hardware with a
direct connection between them.

It is instructive to consider a timeline for the calls to hardware, as shown in the following figure:

Figure 5: Timeline for mmult/madd Function Calls

mmult
setup

setup
DM for A

setup
DM for B

madd
setup

setup
DM for C

setup
DM for D

wait for all transfers and mmult, madd
to

complete and cleanup

send
A

send
B

send
C send D

mmult compute

madd compute

CPU

DMs

Accelerators

X14764-121417

The program preserves the original program semantics, but instead of the standard Arm core
procedure calling sequence, each hardware function call is broken into multiple phases involving
setup, execution, and cleanup, both for the data movers (DM) and the accelerators. The CPU, in
turn, sets up each hardware function (that is, the underlying IP control interface), and the data
transfers for the function call with non-blocking APIs, and then waits for all calls and transfers to
complete.

In the example shown in the following figure, the mmult and madd functions run concurrently
whenever their inputs become available. The ensemble of function calls is orchestrated in the
compiled program by control code automatically generated by the sds++ system compiler
according to the program, data mover, and accelerator structure.

In general, it is impossible for the sds++ system compiler to determine side effects of function
calls in your application code (for example, sds++ might have no access to source code for
functions within linked libraries), so any intermediate access of a variable occurring lexically
between hardware function calls requires the compiler to transfer data back to memory.

For example, an injudicious simple change to uncomment the debug print statement (in the
"wrong place"), as shown in the following figure, can result in a significantly different data
transfer graph and consequently, an entirely different generated system and application
performance.

Chapter 3: Improving System Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=19

Figure 6: Hardware/Software Connectivity with Broken Direct Connection

bool mmultadd_test(float *A, float *B, float *C, float *Ds, float *D)
{
 float tmpl[A_NROWS * A_NCOLS], tmp2[A_NROWS * A_NCOLS];
 for (int I = 0; ii < NUM_TESTS; i++) {
 mmultadd_init(A, B, C, Ds, D);

 mmult(A, B, tmp1); //std::cout << “tmp1[0] = “ << tmp1[0] <<
std::end1;
 madd(tmp1, C, D);

 mmult_golden(A, B, tmp2);
 madd_golden(tmp2, C, Ds);

 if (!mmult_result_check(D, Ds))
 return false;
 }
 return true;
}

Call
madd madd

Call
mmult mmult

transfer B

transfer A

transfer D

transfer tmp1

transfer C

transfer tmp1

X14765-042419

A program can invoke a single hardware function from multiple call sites. In this case, the sds++
system compiler behaves as follows. If any of the function calls results in "direct connection" data
flow, then the sds++ system compiler creates an instance of the hardware function that services
every similar direct connection, and an instance of the hardware function that services the
remaining calls between memory (software) and PL.

To achieve high performance in PL, one of the best methods is structuring your application code
with "direct connection" data flow between hardware functions. You can create deep pipelines of
accelerators connected with data streams, increasing the opportunity for concurrent execution.

There is another way in which you can increase parallelism and concurrency using the sds++
system compiler. You can direct the system compiler to create multiple instances of a hardware
function by inserting the following pragma immediately preceding a call to the function.

#pragma SDS resource(<id>) // <id> a non-negative integer

This pragma creates a hardware instance that is referenced by <id>.

A simple code snippet that creates two instances of a hardware function mmult is as follows.

{
#pragma SDS resource(1)
 mmult(A, B, C); // instance 1
#pragma SDS resource(2)
 mmult(D, E, F); // instance 2
}

If creating multiple instances of an accelerator is not what you want, using the sds_async
mechanism gives the programmer ability to handle the "hardware threads" explicitly to achieve
very high levels of parallelism and concurrency. However, like any explicit multi-threaded
programming model, it requires careful attention to synchronization details to avoid non-
deterministic behavior or deadlocks. For more information , refer to the SDSoC Environment
Programmers Guide (UG1278).

Chapter 3: Improving System Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 20Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=20

Data Motion Network Generation in SDSoC
This section describes:

• Components that make up the data motion network in the SDSoC environment, and also
provides guidelines to help you understand the data motion network generated by the SDSoC
compiler.

• Guidelines to help you guide the data motion network generation by using appropriate SDSoC
pragmas.

Every transfer between the software program and a hardware function requires a data mover,
which consists of a hardware component that moves the data, and an operating system-specific
library function. The following table lists supported data movers and various properties for each:

Table 2: SDSoC Data Movers Table

SDSoC Data Mover Vivado® IP Data
Mover

Accelerator IP Port
Types Transfer Size Contiguous Memory

Only

axi_dma_simple axi_dma bram, ap_fifo, axis ≤ 32 MB Yes

axi_dma_sg axi_dma bram, ap_fifo, axis N/A No
(but recommended)

axi_fifo axi_fifo_mm_s bram, ap_fifo, axis ≤ 300 B No

zero_copy accelerator IP aximm master N/A Yes

• For array arguments, the data mover inference is based on transfer size, hardware function
port mapping, and function call site information. The selection of data movers is a trade off
between performance and resource, for example:

○ The axi_dma_simple data mover is the most efficient bulk transfer engine and supports
up to 32 MB transfers, so it is best for transfers under that limit.

○ The axi_fifo data mover does not require as many hardware resources as the DMA, but
due to its slower transfer rates, is preferred only for payloads of up to 300 bytes.

○ The axi_dma_sg (scatter-gather DMA) data mover provides slower DMA performance
and consumes more hardware resources but has fewer limitations, and in the absence of
any pragma directives, is often the best default data mover.

You can specify the data mover selection by inserting a pragma into program source immediately
before the function declaration; for example:

#pragma SDS data data_mover(A:AXI_DMA_SIMPLE)

Note: #pragma SDS is always treated as a rule, not a hint, so you must ensure that their use conforms
with the data mover requirements in the previous table.

The data motion network in the SDSoC environment is made up of three components:

Chapter 3: Improving System Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=21

• The memory system ports on the PS (A)

• Data movers between the PS and accelerators as well as among accelerators (B)

• The hardware interface on an accelerator (C)

The following figure illustrates these three components.

Figure 7: Data Motion Network Components

PS AcceleratorData Mover (B)A C

X22627-051019

Without any SDS pragma, the SDSoC environment automatically generates the data motion
network based on an analysis of the source code; however, the SDSoC environment also
provides pragmas for you to guide the data motion network generation. See the SDx Pragma
Reference Guide (UG1253).

System Port
A system port connects a data mover to the PS. It can be an acceptance filter ID (AFI)—which
corresponds to high-performance ports, memory interface generator (MIG)—which is a PL-based
DDR memory controller, or a stream port on the Zynq®-7000 SoC or Zynq® UltraScale+™
MPSoC processors.

The AFI port is a non-cache-coherent port. If needed, cache coherency, such as cache flushing
and cache invalidation, is maintained by software.

The AFI port depends on the cache requirement of the transferred data, the cache attribute of
the data, and the data size. If the data is allocated with sds_alloc_non_cacheable() or
sds_register_dmabuf(), it is better to connect to the AFI port to avoid cache flushing/
invalidation.

Note: These functions can be found in the sds_lib.h and described in the environment APIs in the
SDSoC Environment Programmers Guide (UG1278).

The SDSoC system compiler analyzes these memory attributes for the data transactions with the
accelerator, and connects data movers to the appropriate system port.

To override the compiler decision, or in some cases where the compiler is not able to do such
analysis, you can use the following pragma to specify the system port:

#pragma SDS data sys_port(arg:ip_port)

Chapter 3: Improving System Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 22Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=22

For example, the following function directly connects to a FIFO AXI interface. This is where
ip_port can be either AFI or MIG:

#pragma SDS data sys_port:(A:fifo_S_AXI)*
void foo(int* A, int* B, int* C);

This function can also be used for a streaming interface:

#pragma SDS data sys_port:(A:stream_fifo_S_AXIS)*
void foo(int* A, int* B, int* C)

Note: For more information about AXI functionality in the Vivado® High Level Synthesis (HLS) tool, see the
Vivado Design Suite User Guide: High-Level Synthesis (UG902).

Use the following sds++ system compiler command to see the list of system ports for the
platform:

sds++ -sds-pf-info <platform> -verbose

Data Mover
The data mover transfers data between the PS and accelerators and among accelerators. The
SDSoC environment can generate various types of data movers based on the properties and size
of the data being transferred.

• Scalar: Scalar data is always transferred by the AXI_LITE data mover.

• Array: The sds++ system compiler can generate the following data movers:

• AXI_DMA_SG

• AXI_DMA_SIMPLE

• AXI_FIFO

• zero_copy (accelerator-mastered AXI4 bus)

• AXI_LITE (depending on the memory attributes and data size of the array)

For example, if the array is allocated using malloc(), the memory is not physically
contiguous, and SDSoC environment generates a scatter-gather DMA (AXI_DMA_SG);
however, if the data size is less than 300 bytes, AXI_FIFO is generated instead because the
data transfer time is less than AXI_DMA_SG, and it occupies much less PL resource.

• Struct or Class: The implementation of a struct depends on how the struct is passed to the
hardware —passed by value, passed by reference, or as an array of structs—and the type of
data mover selected. The following table shows the various implementations..

Chapter 3: Improving System Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 23Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=23

Table 3: Struct Implementations

Struct Pass
Method

Default (no
pragma)

#pragma SDS
data zero_copy

(arg)

#pragma SDS
data zero_copy

(arg[0:SIZE])
#pragma SDS

data copy (arg)
#pragma SDS

data copy
(arg[0:SIZE])

pass by value
(struct RGB
arg)

Each field is
flattened and
passed
individually as a
scalar or an array.

This is not
supported and will
result in an error.

This is not
supported and will
result in an error.

The struct is
packed into a
single wide scalar.

Each field is
flattened and
passed
individually as a
scalar or an array.
The value of SIZE
is ignored.

pass by pointer
(struct RGB
*arg) or reference
(struct RGB
&arg)

Each field is
flattened and
passed
individually as a
scalar or an array.

The struct is
packed into a
single wide scalar
and transferred as
a single value.
The data is
transferred to the
hardware
accelerator
through an AXI4
bus.

Thestruct is
packed into a
single wide scalar.
The number of
data values
transferred to the
hardware
accelerator
through an AXI4
bus is defined by
the value of SIZE.

The struct is
packed into a
single wide scalar.

The struct is
packed into a
single wide scalar.
The number of
data values
transferred to the
hardware
accelerator using
an AXIDMA_SG or
AXIDMA_SIMPLE is
defined by the
value of SIZE.

array of struct
(struct RGB
arg[1024])

Each struct
element of the
array is packed
into a single wide
scalar.

Each struct
element of the
array is packed
into a single wide
scalar.
The data is
transferred to the
hardware
accelerator using
an AXI4 bus.

Each struct
element of the
array is packed
into a single wide
scalar.
The data is
transferred to the
hardware
accelerator using
an AXI4 bus.
The value of SIZE
overrides the
array size and
determines the
number of data
values transferred
to the accelerator.

Each struct
element of the
array is packed
into a single wide
scalar.
The data is
transferred to the
hardware
accelerator using
a data mover such
as AXI_DMA_SG or
AXI_DMA_SIMPLE.

Each struct
element of the
array is packed
into a single wide
scalar.
The data is
transferred to the
hardware
accelerator using
a data mover such
as AXI_DMA_SG or
AXI_DMA_SIMPLE.
The value of SIZE
overrides the
array size and
determines the
number of data
values transferred
to the accelerator.

Determining which data mover to use for transferring an array depends on two attributes of the
array, data size and physical memory contiguity. For example, if the memory size is one MB and
not physically contiguous (allocated by malloc()), use AXI_DMA_SG. The following table shows
the applicability of these data movers.

Table 4: Data Mover Selection

Data Mover Physical Memory Contiguity Data Size (bytes)

AXI_DMA_SG Either > 300
AXI_DMA_Simple Contiguous < 32M
AXI_FIFO Non-contiguous < 300

Chapter 3: Improving System Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=24

Normally, the SDSoC cross-compiler analyzes the array that is transferred to the hardware
accelerator for these two attributes, and selects the appropriate data mover accordingly.
However, there are cases where such analysis is not possible. At that time, the SDSoC cross-
compiler issues a warning message, as shown in the following example, that states that it is
unable to determine the memory attributes using SDS pragmas.

WARNING: [DMAnalysis 83-4492] Unable to determine the memory attributes
passed to rgb_data_in of function img_process at
C:/simple_sobel/src/main_app.c:84

The following pragma specifies the memory attributes:

#pragma SDS data mem_attribute(function_argument:contiguity)

The contiguity can be either PHYSICAL_CONTIGUOUS or NON_PHYSICAL_CONTIGUOUS.
Use the following pragma to specify the data size:

#pragma SDS data copy(function_argument[offset:size])

The size can be a number or an arbitrary expression.

Zero Copy Data Mover
The zero copy data mover is unique because it covers both the accelerator interface and the data
mover. The syntax of this pragma is:

#pragma SDS data zero_copy(arg[offset:size])

The [offset:size] is optional, and only needed if the data transfer size for an array cannot
be determined at compile time.

By default, the SDSoC environment assumes copy semantics for an array argument, meaning the
data is explicitly copied from the PS to the accelerator through a data mover. When this
ZERO_COPY pragma is specified, SDSoC environment generates an AXI-Master interface for
the specified argument on the accelerator, which grabs the data from the PS as specified in the
accelerator code.

To use the ZERO_COPY pragma, the memory corresponding to the array must be physically
contiguous, that is allocated with sds_alloc.

Accelerator Interface
The accelerator interface generated in depends on the data type of the argument.

• Scalar: For a scalar argument, the register interface is generated to pass in and/or out of the
accelerator.

Chapter 3: Improving System Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=25

• Arrays: The hardware interface on an accelerator for transferring an array can be either a
RAM interface or a streaming interface, depending on how the accelerator accesses the data
in the array.

The RAM interface allows the data to be accessed randomly within the accelerator; however,
it requires the entire array to be transferred to the accelerator before any memory accesses
can happen within the accelerator. Moreover, the use of this interface requires block RAM
resources on the accelerator side to store the array.

The streaming interface, on the other hand, does not require memory to store the whole array,
it allows the accelerator to pipeline the processing of array elements; for example, the
accelerator can start processing a new array element while the previous ones are still being
processed. However, the streaming interface requires the accelerator to access the array in a
strict sequential order, and the amount of data transferred must be the same as the
accelerator expects.

The SDSoC environment, by default, generates the RAM interface for an array; however, the
SDSoC environment provides pragmas to direct it to generate the streaming interface.

• struct or class: The implementation of a struct depends on how the struct is passed to
the hardware—passed by value, passed by reference, or as an arrays of structs—and the
type of data mover selected. The previous table shows the various implementations.

The following SDS pragma can be used to guide the interface generation for the accelerator.

#pragma SDS data access_pattern(function_argument:pattern)

Where pattern can either be RANDOM or SEQUENTIAL, and arg can be an array argument
name of the accelerator function.

If an array argument's access pattern is specified as RANDOM, a RAM interface is generated. If it
is specified as SEQUENTIAL, a streaming interface is generated.

Note:

• The default access pattern for an array argument is RANDOM.

• The specified access pattern must be consistent with the behavior of the accelerator function. For
SEQUENTIAL access patterns, the function must access every array element in a strict sequential order.

• This pragma only applies to arguments without the zero_copy pragma.

Related Information
Zero Copy Data Mover

Chapter 3: Improving System Performance

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=26

Chapter 4

Optimizing the Hardware Function
The SDSoC™ environment employs heterogeneous cross-compilation, with Arm® CPU-specific
compilers for the Zynq®-7000 and Zynq® UltraScale+™ MPSoC processor CPUs, and the
Vivado® High-Level Synthesis (HLS) tool as a programmable logic (PL) cross-compiler for
hardware functions. This section explains the default behavior and optimization directives
associated with the HLS cross-compiler.

The default behavior of the HLS tool is to execute functions and loops in a sequential manner
such that the hardware is an accurate reflection of the C/C++ code. Optimization directives can
be used to enhance the performance of the hardware function, allowing pipelining which
substantially increases the performance of the functions. This chapter outlines a general
methodology for optimizing your design for high performance.

There are many possible goals when trying to optimize a design using the HLS tool. The
methodology assumes you want to create a design with the highest possible performance,
processing one sample of new input data every clock cycle, and so addresses those optimizations
before the ones used for reducing latency or resources.

Detailed explanations of the optimizations discussed here are provided in the Vivado Design Suite
User Guide: High-Level Synthesis (UG902).

RECOMMENDED: Xilinx® recommends reviewing the methodology and obtaining a global perspective of
hardware function optimization before reviewing the details of specific optimization.

Related Information
Real-World Examples

Understanding the Hardware Function
Optimization Methodology

Hardware functions are synthesized in the PL by the VivadoHLS tool compiler. This compiler
automatically translates C/C++ code into an FPGA hardware implementation, and as with all
compilers, does so using compiler defaults.

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 27Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=27

In addition to the compiler defaults, the HLS tool provides a number of optimizations that are
applied to the C/C++ code through the use of pragmas in the code. This chapter explains the
optimizations that can be applied and a recommended methodology for applying them.

There are two flows for optimizing the hardware functions:

• Top-down flow: In this flow, program decomposition into hardware functions proceeds top-
down within the SDSoC environment, letting the system cross-compiler create pipelines of
functions that automatically operate in dataflow mode. The microarchitecture for each
hardware function is optimized using the HLS tool.

• Bottom-up flow: In this flow, the hardware functions are optimized in isolation from the
system using the HLS tool compiler provided in the Vivado Design Suite. The hardware
functions are analyzed, optimizations directives can be applied to create an implementation
other than the default, and the resulting optimized hardware functions are then incorporated
into the SDSoC environment.

The bottom-up flow is often used in organizations where the software and hardware are
optimized by different teams and can be used by software programmers who wish to take
advantage of existing hardware implementations from within their organization or from partners.
Both flows are supported, and the same optimization methodology is used in either case. Both
workflows result in the same high-performance system. Xilinx sees the choice as a workflow
decision made by individual teams and organizations and provides no recommendation on which
flow to use.

The optimization methodology for hardware functions is shown in the following figure:

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=28

Figure 8: Hardware Function Optimization Methodology

Simulate Design - Validate The C function

Synthesize Design - Baseline design

1: Initial Optimizations - Define interfaces (and data packing)
 - Define loop trip counts

2: Pipeline for Performance - Pipeline and dataflow

3: Optimize Structures for Performance - Partition memories and ports
 - Remove false dependencies

4: Reduce Latency - Optionally specify latency requirements

5: Improve Area - Optionally recover resources through sharing

X15638-110617

This figure details all the steps in the methodology and the subsequent sections in this chapter
explain the optimizations in detail.

Note: When optimizing code, the build should be done in Release configuration and not Debug
configuration due to the -O optimization. Debug should be used to confirm that the functions and system
are working, and Release should be used to confirm performance optimizations.

IMPORTANT! Designs will reach the optimum performance after Step 3.

• Step 1: See Optimizing Metrics, and review the topics in this chapter prior to attempting to
optimize.

• Step 2: See Pipelining for Performance

• Step 3: See Optimizing Structures for Performance

• Step 4: See Reducing Latency. This step is used to minimize or specifically control the latency
through the design and is required only for applications where this is of concern.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=29

• Step 5: See Reducing Area. This topic explains how to reduce the resources required for
hardware implementation and is typically applied only when larger hardware functions fail to
implement in the available resources. The FPGA has a fixed number of resources, and there is
typically no benefit in creating a smaller implementation if the performance goals have been
met.

Baselining Hardware Functions
Before you perform any hardware function optimization, it is important to understand the
performance achieved with the existing code and compiler defaults, and appreciate how
performance is measured. Select the functions to implement hardware and build the project.

After you build a project, a report is available in the Hardware Reports section of the IDE. The
report is also available from <project name>/<build_config>/_sds/vhls/
<hw_function>/solution/syn/report/<hw_function>.rpt. This report details the
performance estimates and usage estimates.

The key factors in the performance estimates are ordered by the timing, interval (which includes
loop initiation interval), and latency.

• The timing summary shows the target and estimated clock period. If the estimated clock
period is greater than the target, the hardware will not function at this clock period. Reduce the
clock period by using the Project Settings → Data Motion Network Clock Frequency option.
Alternatively, because this is only an estimate at this point in the flow, it might be possible to
proceed through the remainder of the flow if the estimate only exceeds the target by 20%.
Further optimizations are applied when the bitstream is generated, and it might still be
possible to satisfy the timing requirements. However, this is an indication that the hardware
function is not guaranteed to meet timing.

• The function initiation interval (II) is the number of clock cycles before the function can accept
new inputs and is generally the most critical performance metric in any system. In an ideal
hardware function, the hardware processes data at the rate of one sample per clock cycle. If
the largest data set passed into the hardware is size <N> (for example: my_array[<N>]), the
most optimal II is <N> + 1. This means the hardware function processes <N> data samples in
<N> clock cycles and can accept new data one clock cycle after all <N> samples are
processed. It is possible to create a hardware function with an II <N>; however, this requires
greater resources in the programmable logic (PL) with typically little benefit. Often, this
hardware function is ideal because it consumes and produces data at a rate faster than the
rest of the system.

• The loop initiation interval is the number of clock cycles before the next iteration of a loop
starts to process data. This metric becomes important as you delve deeper into the analysis to
locate and remove performance bottlenecks.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=30

• The latency is the number of clock cycles required for the function to compute all output
values. This is simply the lag from when data is applied until when it is ready. For most
applications this is of little concern, especially when the latency of the hardware function
vastly exceeds that of the software or system functions, such as DMA; however, it is a
performance metric that you should review and confirm is not an issue for your application.

• The loop iteration latency is the number of clock cycles it takes to complete one iteration of a
loop, and the loop latency is the number of cycles to execute all iterations of the loop. See
Optimizing Metrics.

The Area Estimates section of the report details how many resources are required in the PL to
implement the hardware function and how many are available. The key metric here is the
Utilization (%). The utilization (%) should not exceed 100% for any of the resources. A figure greater
than 100% means there are not enough resources to implement the hardware function, and a
larger FPGA device might be required. As with the timing, at this point in the flow, this is an
estimate. If the numbers are only slightly over 100%, it might be possible for the hardware to be
optimized during bitstream creation.

You should already have an understanding of the required performance of your system and what
metrics are required from the hardware functions; however, even if you are unfamiliar with
hardware concepts such as clock cycles, you are now aware that the highest performing
hardware functions have an II = <N> + 1, where <N> is the largest data set processed by the
function. With an understanding of the current design performance and a set of baseline
performance metrics, you can now proceed to apply optimization directives to the hardware
functions.

Optimizing Metrics
The following table shows the first directive for you to consider adding to your design.

Table 5: Optimization Strategy Step 1: Optimization For Metrics

Directives and Configurations Description

LOOP_TRIPCOUNT Used for loops that have variable bounds. Provides an estimate for the
loop iteration count. This has no impact on synthesis, only on reporting.

A common issue when hardware functions are first compiled is report files showing the latency
and interval as a question mark “?” rather than as numerical values. If the design has loops with
variable loop bounds, the compiler cannot determine the latency or II and uses the “?” to indicate
this condition. Variable loop bounds are where the loop iteration limit cannot be resolved at
compile time, as when the loop iteration limit is an input argument to the hardware function,
such as variable height, width, or depth parameters.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=31

To resolve this condition, use the hardware function report to locate the lowest level loop, which
fails to report a numerical value, and use the LOOP_TRIPCOUNT directive to apply an estimated
tripcount. The tripcount is the minimum, average, and/or maximum number of expected
iterations. This allows values for latency and interval to be reported and allows implementations
with different optimizations to be compared.

Because the LOOP_TRIPCOUNT value is only used for reporting and has no impact on the
resulting hardware implementation, any value can be used. However, an accurate expected value
results in more useful reports.

Pipelining for Performance
The next stage in creating a high-performance design is to pipeline the functions, loops, and
operations. Pipelining results in the greatest level of concurrency and a very high level of
performance. The following table shows the directives you can use for pipelining.

Table 6: Optimization Strategy Step 2: Pipeline for Performance

Directives and Configurations Description

PIPELINE Reduces the initiation interval by allowing the concurrent execution of
operations within a loop or function.

DATAFLOW Enables task-level pipelining, allowing functions and loops to execute
concurrently. Used to minimize interval.

RESOURCE Specifies pipelining on the hardware resource used to implement a
variable (array, arithmetic operation).

Config Compile Allows loops to be automatically pipelined based on their iteration count
when using the bottom-up flow.

At this stage of the optimization process, you want to create as much concurrent operation as
possible. You can apply the PIPELINE directive to functions and loops. You can use the
DATAFLOW directive at the level that contains the functions and loops to make them work in
parallel. Although rarely required, the RESOURCE directive can be used to squeeze out the
highest levels of performance.

A recommended strategy is to work from the bottom up and be aware of the following:

• Some functions and loops contain sub-functions. If the sub-function is not pipelined, the
function above it might show limited improvement when it is pipelined. The non-pipelined
sub-function will be the limiting factor.

• Some functions and loops contain sub-loops. When you use the PIPELINE directive, the
directive automatically unrolls all loops in the hierarchy below. This can create a great deal of
logic. It might make more sense to pipeline the loops in the hierarchy below.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=32

• For cases where it does make sense to pipeline the upper hierarchy and unroll any loops lower
in the hierarchy, loops with variable bounds cannot be unrolled, and any loops and functions
in the hierarchy above these loops cannot be pipelined. To address this issue, pipeline these
loops with variable bounds, and use the DATAFLOW optimization to ensure the pipelined
loops operate concurrently to maximize the performance of the tasks that contains the loops.
Alternatively, rewrite the loop to remove the variable bound. Apply a maximum upper bound
with a conditional break.

The basic strategy at this point in the optimization process is to pipeline the tasks (functions and
loops) as much as possible. For detailed information on which functions and loops to pipeline, see
Hardware Function Pipeline Strategies.

Although not commonly used, you can also apply pipelining at the operator level. For example,
wire routing in the FPGA can introduce large and unanticipated delays that make it difficult for
the design to be implemented at the required clock frequency. In this case, you can use the
RESOURCE directive to pipeline specific operations such as multipliers, adders, and block RAM
to add additional pipeline register stages at the logic level and allow the hardware function to
process data at the highest possible performance level without the need for recursion.

Note: The configuration commands are used to change the optimization default settings and are only
available from within the Vivado® HLS tool when using a bottom-up flow. For more details, see the Vivado
Design Suite User Guide: High-Level Synthesis (UG902).

Hardware Function Pipeline Strategies
The key optimization directives for obtaining a high-performance design are the PIPELINE and
DATAFLOW directives. This section discusses in detail how to apply these directives for various
C code architectures.

There are two types of C/C++ functions: those that are frame-based and those that are sampled-
based. No matter which coding style is used, the hardware function can be implemented with the
same performance in both cases. The difference is only in how the optimization directives are
applied.

Frame-Based C Code

The primary characteristic of a frame-based coding style is that the function processes multiple
data samples—a frame of data—typically supplied as an array or pointer with data accessed
through pointer arithmetic during each transaction (a transaction is considered to be one
complete execution of the C function). In this coding style, the data is typically processed
through a series of loops or nested loops.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 33Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=33

The following is an example outline of frame-based C code:

void foo(
 data_t in1[HEIGHT][WIDTH],
 data_t in2[HEIGHT][WIDTH],
 data_t out[HEIGHT][WIDTH] {
 Loop1: for(int i = 0; i < HEIGHT; i++) {
 Loop2: for(int j = 0; j < WIDTH; j++) {
 out[i][j] = in1[i][j] * in2[i][j];
 Loop3: for(int k = 0; k < NUM_BITS; k++) {

 }
 }
 }

When seeking to pipeline any C/C++ code for maximum performance in hardware, you want to
place the pipeline optimization directive at the level where a sample of data is processed.

The above example is representative of code used to process an image or video frame and can be
used to highlight how to effectively pipeline hardware functions. Two sets of input are provided
as frames of data to the function, and the output is also a frame of data. There are multiple
locations where this function can be pipelined:

• At the level of function foo.

• At the level of loop Loop1.

• At the level of loop Loop2.

• At the level of loop Loop3.

There are advantages and disadvantages for placing the PIPELINE directive at various locations.
Understanding them helps guide you to the best location to place the pipeline directive in your
code.

• Function Level: The function accepts a frame of data as input (in1 and in2). If the function is
pipelined with II = 1—read a new set of inputs every clock cycle—this informs the compiler
to read all HEIGHT*WIDTH values of in1 and in2 in a single clock cycle. This is a lot of data
to read in one cycle and is unlikely the design you want.

If the PIPELINE directive is applied to function foo, all loops in the hierarchy below this level
must be unrolled. This is a requirement for pipelining, namely, there cannot be sequential logic
inside the pipeline. This would create HEIGHT*WIDTH*NUM_ELEMENT copies of the logic,
which would lead to a large design.

Because the data is accessed in a sequential manner, the arrays on the interface to the
hardware function can be implemented as multiple types of hardware interface:

• Block RAM interface

• AXI4 interface

• AXI4-Lite interface

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=34

• AXI4-Stream interface

• FIFO interface

A block RAM interface can be implemented as a dual-port interface supplying two samples
per clock. The other interface types can only supply one sample per clock. This would result in
a bottleneck; there would be a highly parallel but large hardware design unable to process all
the data in parallel, resulting in a waste of hardware resources.

• Loop1 Level: The logic in Loop1 processes an entire row of the two-dimensional matrix.
Placing the PIPELINE directive here would create a design which seeks to process one row in
each clock cycle. Again, this would unroll the loops below and create additional logic. To make
use of the additional hardware, transfer an entire row of data each clock cycle: an array of
HEIGHT data words, with each word being WIDTH* <number of bits in data_t> bits wide.

Because it is unlikely the host code running on the PS can process such large data words, this
would again be a case where there are many highly parallel hardware resources that cannot
operate in parallel due to bandwidth limitations.

• Loop2 Level: The logic in Loop2 seeks to process one sample from the arrays. In an image
algorithm, this is the level of a single pixel. This is the level to pipeline if the design is to
process one sample per clock cycle. This is also the rate at which the interfaces consume and
produce data to and from the PS.

This causes Loop3 to be completely unrolled and process one sample per clock. It is a
requirement that all the operations in Loop3 execute in parallel. In a typical design, the logic in
Loop3 is a shift register or is processing bits within a word. To execute at one sample per
clock, you want these processes to occur in parallel and hence you want to unroll the loop.
The hardware function created by pipelining Loop2 processes one data sample per clock and
creates parallel logic only where needed to achieve the required level of data throughput.

• Loop3 Level: As stated above, given that Loop2 operates on each data sample or pixel, Loop3
will typically be doing bit-level or data shifting tasks, so this level is doing multiple operations
per pixel. Pipelining this level would mean performing each operation in this loop once per
clock and thus NUM_BITS clocks per pixel: processing at the rate of multiple clocks per pixel
or data sample.

For example, Loop3 might contain a shift register holding the previous pixels required for a
windowing or convolution algorithm. Adding the PIPELINE directive at this level informs the
compiler to shift one data value every clock cycle. The design would only return to the logic in
Loop2 and read the next inputs after NUM_BITS iterations resulting in a very slow data
processing rate.

The ideal location to pipeline in this example is Loop2.

When dealing with frame-based code you will want to pipeline at the loop level and typically
pipeline the loop that operates at the level of a sample. If in doubt, place a print command into
the C code and to confirm this is the level you wish to execute on each clock cycle.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=35

For cases where there are multiple loops at the same level of hierarchy—the example above
shows only a set of nested loops—the best location to place the PIPELINE directive can be
determined for each loop and then the DATAFLOW directive applied to the function to
ensure each of the loops executes in a concurrent manner.

Sample-Based C Code

An example outline of sample-based C code is shown below. The primary characteristic of this
coding style is that the function processes a single data sample during each transaction.

void foo (data_t *in, data_t *out) {
 static data_t acc;
 Loop1: for (int i=N-1;i>=0;i--) {
 acc+= ..some calculation..;
 }
 *out=acc>>N;
}

Another characteristic of sample-based coding style is that the function often contains a static
variable: a variable whose value must be remembered between invocations of the function, such
as an accumulator or sample counter.

With sample-based code, the location of the PIPELINE directive is clear, namely, to achieve an II
= 1 and process one data value each clock cycle, for which the function must be pipelined.

This unrolls any loops inside the function and creates additional hardware logic, but there is no
way around this. If Loop1 is not pipelined, it takes a minimum of N clock cycles to complete. Only
then can the function read the next x input value.

When dealing with C code that processes at the sample level, the strategy is always to pipeline
the function.

In this type of coding style, the loops are typically operating on arrays and performing a shift
register or line buffer functions. It is not uncommon to partition these arrays into individual
elements as discussed in Optimizing Structures for Performance to ensure all samples are shifted
in a single clock cycle. If the array is implemented in a block RAM, only a maximum of two
samples can be read or written in each clock cycle, creating a data processing bottleneck.

The solution here is to pipeline function foo. Doing so results in a design that processes one
sample per clock.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=36

Optimizing Structures for Performance
C code can contain descriptions that prevent a function or loop from being pipelined with the
required performance. This is often implied by the structure of the C code or the default logic
structures used to implement the PL. In some cases, this might require a code modification, but in
most cases these issues can be addressed using additional optimization directives.

The following example shows a case where an optimization directive is used to improve the
structure of the implementation and the performance of pipelining. In this initial example, the
PIPELINE directive is added to a loop to improve the performance of the loop. This example code
shows a loop being used inside a function.

#include "bottleneck.h"
dout_t bottleneck(...) {
 ...
 SUM_LOOP: for(i=3;i<N;i=i+4) {
#pragma HLS PIPELINE
 sum += mem[i] + mem[i-1] + mem[i-2] + mem[i-3];
 }
 ...
}

When the code above is compiled into hardware, the following message appears as output:

INFO: [SCHED 61] Pipelining loop 'SUM_LOOP'.
WARNING: [SCHED 69] Unable to schedule 'load' operation ('mem_load_2',
bottleneck.c:62) on array 'mem' due to limited memory ports.
INFO: [SCHED 61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.
I

The issue in this example is that arrays are implemented using the efficient block RAM resources
in the PL. This results in a small, cost-efficient, fast design. The disadvantage of block RAM is
that, like other memories, such as DDR or SRAM, they have a limited number of data ports,
typically a maximum of two.

In the code above, four data values from mem are required to compute the value of sum. Because
mem is an array and implemented in a block RAM that only has two data ports, only two values
can be read (or written) in each clock cycle. With this configuration, it is impossible to compute
the value of sum in one clock cycle and thus consume or produce data with an II of 1 (process
one data sample per clock).

The memory port limitation issue can be solved by using the ARRAY_PARTITION directive on the
mem array. This directive partitions arrays into smaller arrays, improving the data structure by
providing more data ports and allowing a higher performance pipeline.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=37

With the additional directive shown below, array mem is partitioned into two dual-port memories
so that all four reads can occur in one clock cycle. There are multiple options to partitioning an
array. In this case, cyclic partitioning with a factor of two ensures the first partition contains
elements 0, 2, 4, and so forth, from the original array and the second partition contains elements
1, 3, 5, and so forth. Because the partitioning ensures there are now two dual-port block RAMs
(with a total of four data ports), this allows elements 0, 1, 2, and 3 to be read in a single clock
cycle.

Note: The ARRAY_PARTITION directive cannot be used on arrays which are arguments of the function
selected as an accelerator.

#include "bottleneck.h"
dout_t bottleneck(...) {
#pragma HLS ARRAY_PARTITION variable=mem cyclic factor=2 dim=1
 ...
 SUM_LOOP: for(i=3;i<N;i=i+4) {
#pragma HLS PIPELINE
 sum += mem[i] + mem[i-1] + mem[i-2] + mem[i-3];
 }
 ...
}

Other such issues might be encountered when trying to pipeline loops and functions. The
following table lists the directives that are likely to address these issues by helping to reduce
bottlenecks in data structures.

Table 7: Optimization Strategy Step 3: Optimize Structures for Performance

Directives and Configurations Description

ARRAY_PARTITION Partitions large arrays into multiple smaller arrays or into individual
registers to improve access to data and remove block RAM bottlenecks.

DEPENDENCE Provides additional information that can overcome loop-carry
dependencies and allow loops to be pipelined (or pipelined with lower
intervals).

INLINE Inlines a function, removing all function hierarchy. Enables logic
optimization across function boundaries and improves latency/interval
by reducing function call overhead.

UNROLL Unrolls for-loops to create multiple independent operations rather than
a single collection of operations, allowing greater hardware parallelism.
This also allows for partial unrolling of loops.

Config Array Partition This configuration determines how arrays are automatically partitioned,
including global arrays, and if the partitioning impacts array ports.

Config Compile Controls synthesis specific optimizations such as the automatic loop
pipelining and floating point math optimizations.

Config Schedule Determines the effort level to use during the synthesis scheduling
phase, the verbosity of the output messages, and to specify if II should
be relaxed in pipelined tasks to achieve timing.

Config Unroll Allows all loops below the specified number of loop iterations to be
automatically unrolled.

In addition to the ARRAY_PARTITION directive, the configuration for array partitioning can be
used to automatically partition arrays.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=38

The DEPENDENCE directive might be required to remove implied dependencies when pipelining
loops. Such dependencies are reported by message SCHED-68.

@W [SCHED-68] Target II not met due to carried dependence(s)

The INLINE directive removes function boundaries. This can be used to bring logic or loops up
one level of hierarchy. It might be more efficient to pipeline the logic in a function by including it
in the function above it, and merging loops into the function above them where the DATAFLOW
optimization can be used to execute all the loops concurrently without the overhead of the
intermediate sub-function call. This might lead to a higher performing design.

The UNROLL directive might be required for cases where a loop cannot be pipelined with the
required II. If a loop can only be pipelined with II = 4, it will constrain the other loops and
functions in the system to be limited to II = 4. In some cases, it might be worth unrolling or
partially unrolling the loop to create more logic, and remove a potential bottleneck. If the loop
can only achieve II = 4, unrolling the loop by a factor of 4 creates logic that can process four
iterations of the loop in parallel and achieve II = 1.

The configuration commands are used to change the optimization default settings and are only
available from within the Vivado HLS tool when using a bottom-up flow. For more details, see the
Vivado Design Suite User Guide: High-Level Synthesis (UG902). If optimization directives cannot be
used to improve the initiation interval, it might require changes to the code. See examples of
such in the same guide.

Reducing Latency
When the compiler finishes minimizing the initiation interval (II), it automatically seeks to
minimize the latency. The optimization directives listed in the following table can help specify a
particular latency or inform the compiler to achieve a latency lower than the one produced,
namely, instruct the compiler to satisfy the latency directive even if it results in a higher II. This
could result in a lower performance design.

Latency directive are generally not required because most applications have a required
throughput but no required latency. When hardware functions are integrated with a processor,
the latency of the processor is generally the limiting factor in the system.

If the loops and functions are not pipelined, the throughput is limited by the latency because the
task does not start reading the next set of inputs until the current task has completed.

Table 8: Optimization Strategy Step 4: Reduce Latency

Directive Description

LATENCY Allows a minimum and maximum latency constraint to be specified.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 39Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=39

Table 8: Optimization Strategy Step 4: Reduce Latency (cont'd)

Directive Description

LOOP_FLATTEN Allows nested loops to be collapsed into a single loop. This removes the
loop transition overhead and improves the latency. Nested loops are
automatically flattened when the PIPELINE directive is applied.

LOOP_MERGE Merges consecutive loops to reduce overall latency, increase logic
resource sharing, and improve logic optimization.

The loop optimization directives can be used to flatten a loop hierarchy or merge consecutive
loops together. The benefit to the latency is due to the fact that it typically costs a clock cycle in
the control logic to enter and leave the logic created by a loop. The fewer the number of
transitions between loops, the lesser number of clock cycles a design takes to complete.

Reducing Area
In hardware, the number of resources required to implement a logic function is referred to as the
design area. Design area also refers to how much area the resource used on the fixed-size PL
fabric. The area is important when the hardware is too large to be implemented in the target
device, and when the hardware function consumes a very high percentage (> 90%) of the
available area. This can result in difficulties when trying to wire the hardware logic together
because the wires themselves require resources.

After meeting the required performance target or initiation interval (II), the next step might be to
reduce the area while maintaining the same performance. This step can be optimal because there
is no advantage to reducing the area if the hardware function is operating at the required
performance, and no other hardware functions are to be implemented in the remaining space in
the PL.

The most common area optimization is the optimization of dataflow memory channels to reduce
the number of block RAM resources required to implement the hardware function. Each device
has a limited number of block RAM resources.

If you used the DATAFLOW optimization, and the compiler cannot determine whether the tasks
in the design are streaming data, it implements the memory channels between dataflow tasks
using ping-pong buffers. These require two block RAMs each of size <N>, where <N> is the
number of samples to be transferred between the tasks (typically the size of the array passed
between tasks). If the design is pipelined and the data is streaming from one task to the next with
values produced and consumed in a sequential manner, you can greatly reduce the area by using
the STREAM directive to specify that the arrays are to be implemented in a streaming manner
that uses a simple FIFO for which you can specify the depth. FIFOs with a small depth are
implemented using registers and the PL fabric has many registers.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=40

For most applications, the depth can be specified as 1, which results in the memory channel
being implemented as a simple register. If the algorithm implements data compression or
extrapolation, where some tasks consume more data than they produce or produce more data
than they consume, some arrays must be specified with a higher depth:

• For tasks which produce and consume data at the same rate, specify the array between them
to stream with a depth of 1.

• For tasks which reduce the data rate by a factor of X-to-1, specify arrays at the input of the
task to stream with a depth of X. All arrays prior to this in the function should also have a
depth of X to ensure the hardware function does not stall because the FIFOs are full.

• For tasks which increase the data rate by a factor of 1-to-Y, specify arrays at the output of the
task to stream with a depth of Y. All arrays after this in the function should also have a depth
of Y to ensure the hardware function does not stall because the FIFOs are full.

Note: If the depth is set too small, the hardware function will stall (hang) during hardware emulation,
resulting in lower performance or even deadlock in some cases, due to full FIFOs causing the rest of the
system to wait.

The following table lists the other directives and configurations to consider when attempting to
minimize the resources used to implement the design.

Table 9: Optimization Strategy Step 5: Reduce Area

Directives and Configurations Description

ALLOCATION Specifies a limit for the number of operations, hardware resources, or
functions used. This can force the sharing of hardware resources but
might increase latency.

ARRAY_MAP Combines multiple smaller arrays into a single large array to help reduce
the number of block RAM resources.

ARRAY_RESHAPE Reshapes an array from one with many elements to one with greater
word width. Useful for improving block RAM accesses without increasing
the number of block RAM.

DATA_PACK Packs the data fields of an internal struct into a single scalar with a wider
word width, allowing a single control signal to control all fields.

LOOP_MERGE Merges consecutive loops to reduce overall latency, increase sharing,
and improve logic optimization.

OCCURRENCE Used when pipelining functions or loops to specify that the code in a
location is executed at a lesser rate than the code in the enclosing
function or loop.

RESOURCE Specifies that a specific hardware resource (core) is used to implement a
variable (array, arithmetic operation).

STREAM Specifies that a specific memory channel is to be implemented as a FIFO
with an optional specific depth.

Config Bind Determines the effort level to use during the synthesis binding phase
and can be used to globally minimize the number of operations used.

Config Dataflow This configuration specifies the default memory channel and FIFO depth
in dataflow optimization.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=41

The ALLOCATION and RESOURCE directives are used to limit the number of operations and to
select which cores (hardware resources) are used to implement the operations. For example, you
could limit the function or loop to using only one multiplier, and specify it to be implemented
using a pipelined multiplier.

If the ARRAY_PARITION directive is used to improve the initiation interval you might want to
consider using the ARRAY_RESHAPE directive instead. The ARRAY_RESHAPE optimization
performs a similar task to array partitioning, however, the reshape optimization recombines the
elements created by partitioning into a single block RAM with wider data ports. This might
prevent an increase in the number of block RAM resources required.

If the C code contains a series of loops with similar indexing, merging the loops with the
LOOP_MERGE directive might allow some optimizations to occur. Finally, in cases where a
section of code in a pipeline region is only required to operate at an initiation interval lower than
the rest of the region, the OCCURENCE directive is used to indicate that this logic can be
optimized to execute at a lower rate.

Note: The configuration commands are used to change the optimization default settings and are only
available from within the Vivado HLS tool when using a bottom-up flow. For more information, see the
Vivado Design Suite User Guide: High-Level Synthesis (UG902).

Design Optimization Workflow
Before performing any optimizations, it is recommended to create a new build configuration
within the project. Using different build configurations allows one set of results to be compared
against a different set of results. In addition to the standard Debug and Release configurations,
custom configurations with more useful names (for example, Opt_ver1 and UnOpt_ver) might
be created in the window using the Project Settings →  Manage Build Configurations for the
Project toolbar button.

Different build configurations allow you to compare not only the results, but also the log files and
even output RTL files used to implement the FPGA (the RTL files are only recommended for
users very familiar with hardware design).

The basic optimization strategy for a high-performance design is:

• Create an initial or baseline design.

• Pipeline the loops and functions. Apply the DATAFLOW optimization to execute loops and
functions concurrently.

• Address any issues that limit pipelining, such as array bottlenecks and loop dependencies (with
ARRAY_PARTITION and DEPENDENCE directives).

• Specify a specific latency or reduce the size of the dataflow memory channels and use the
ALLOCATION and RESOURCES directives to further reduce area.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 42Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=42

Note: It might sometimes be necessary to make adjustments to the code to meet performance.

In summary, the goal is to always meet performance first, before reducing area. If the strategy is
to create a design with the fewest resources, omit the steps to improving performance, although
the baseline results might be very close to the smallest possible design.

Throughout the optimization process, it is highly recommended to review the console output (or
log file) after compilation. When the compiler cannot reach the specified performance goals of an
optimization, it automatically relaxes the goals (except the clock frequency) and creates a design
with the goals that can be satisfied. It is important to review the output from the compilation log
files and reports to understand what optimizations have been performed.

For specific details on applying optimizations, refer to Vivado Design Suite User Guide: High-Level
Synthesis (UG902).

Optimization Guidelines
This section documents several fundamental optimization techniques to enhance hardware
function performance using the Vivado HLS tool. These techniques include: function inlining,
loop and function pipelining, loop unrolling, increasing local memory bandwidth, and streaming
data flow between loops and functions.

Related Information
Function Inlining
Loop Pipelining and Loop Unrolling
Increasing Local Memory Bandwidth
Data Flow Pipelining

Function Inlining
Similar to function inlining of software functions, it can be beneficial to inline hardware functions.

Function inlining replaces a function call by substituting a copy of the function body after
resolving the actual and formal arguments. After that, the inlined function is dissolved and no
longer appears as a separate level of hierarchy. Function inlining allows operations within the
inlined function be optimized more effectively with surrounding operations, thus improving the
overall latency or the initiation interval for a loop.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 43Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=43

To inline a function, put #pragma HLS inline at the beginning of the body of the desired
function. The following code snippet directs the Vivado HLS tool to inline the mmult_kernel
function:

void mmult_kernel(float in_A[A_NROWS][A_NCOLS],
 float in_B[A_NCOLS][B_NCOLS],
 float out_C[A_NROWS][B_NCOLS])
{
#pragma HLS INLINE
 int index_a, index_b, index_d;
 // rest of code body omitted
}

Loop Pipelining and Loop Unrolling
Both loop pipelining and loop unrolling improve the performance of the hardware functions by
exploiting the parallelism between loop iterations. The basic concepts of loop pipelining and loop
unrolling and example codes to apply these techniques are shown and the limiting factors to
achieve optimal performance using these techniques are discussed.

Loop Pipelining

In sequential languages such as C/C++, the operations in a loop are executed sequentially, and
the next iteration of the loop can only begin when the last operation in the current loop iteration
is complete. Loop pipelining allows the operations in a loop to be implemented in a concurrent
manner as shown in the following figure.

Figure 9: Loop Pipelining

Loop:for(i=1;i<3;i++) {
 op_Read;
 op_Compute; op_Write;
}

Without Pipelining

RD

CMP

WR

Initiation Interval = 3 cycles

Latency = 3 cycles

Loop Latency = 6 cycles

RD CMP WR RD CMP WR

Initiation Interval = 1 cycle

Latency = 3 cycles

Loop Latency = 4 cycles

RD CMP WR

RD CMP WR

With Pipelining

X14770-042319

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=44

As shown in the previous figure, without pipelining, there are three clock cycles between the two
RD operations, and it requires six clock cycles for the entire loop to finish. However, with
pipelining, there is only one clock cycle between the two RD operations, and it requires four clock
cycles for the entire loop to finish, that is, the next iteration of the loop can start before the
current iteration is finished.

An important term for loop pipelining is called initiation interval (II), which is the number of clock
cycles between the start times of consecutive loop iterations. In the above figure, the II is one
because there is only one clock cycle between the start times of consecutive loop iterations.

To pipeline a loop, put #pragma HLS pipeline at the beginning of the loop body, as
illustrated in the following code snippet. The Vivado HLS tool tries to pipeline the loop with
minimum II.

for (index_a = 0; index_a < A_NROWS; index_a++) {
 for (index_b = 0; index_b < B_NCOLS; index_b++) {
#pragma HLS PIPELINE II=1
 float result = 0;
 for (index_d = 0; index_d < A_NCOLS; index_d++) {
 float product_term = in_A[index_a][index_d] * in_B[index_d]
[index_b];
 result += product_term;
 }
 out_C[index_a * B_NCOLS + index_b] = result;
 }
}

Loop Unrolling

Loop unrolling is another technique to exploit parallelism between loop iterations. It creates
multiple copies of the loop body and adjust the loop iteration counter accordingly. The following
code snippet shows a normal rolled loop:

int sum = 0;
for(int i = 0; i < 10; i++) {
 sum += a[i];
}

After the loop is unrolled by a factor of two, the loop becomes:

int sum = 0;
for(int i = 0; i < 10; i+=2) {
 sum += a[i];
 sum += a[i+1];
}

Unrolling a loop by a factor of <N> creates <N> copies of the loop body, the loop variable
referenced by each copy is updated accordingly (such as the a[i+1] in the above code snippet),
and the loop iteration counter is also updated accordingly (such as the i+=2 in the above code
snippet).

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=45

Loop unrolling creates more operations in each loop iteration, so that the Vivado HLS tool can
exploit more parallelism among these operations. More parallelism means more throughput and
higher system performance.

• When the factor <N> is less than the total number of loop iterations (10 in the example
above), it is called a partial unroll.

• When the factor <N> is the same as the number of loop iterations, it is called a full unroll.
While full unroll requires that the loop bounds are known at compile time, it exposes the most
parallelism.

To unroll a loop, put #pragma HLS unroll [factor=N] at the beginning of the loop.
Without the optional factor=N, the loop will be fully unrolled.

int sum = 0;
for(int i = 0; i < 10; i++) {
#pragma HLS unroll factor=2
 sum += a[i];
}

Factors Limiting the Parallelism Achieved by Loop Pipelining and
Loop Unrolling

Both loop pipelining and loop unrolling exploit the parallelism between loop iterations. However,
parallelism between loop iterations is limited by two main factors:

• The data dependencies between loop iterations.

• The number of available hardware resources.

A data dependence from an operation in one iteration to another operation in a subsequent
iteration is called a loop-carried dependence. It implies that the operation in the subsequent
iteration cannot start until the operation in the current iteration has finished computing the data
input for the operation in subsequent iteration. Loop-carried dependencies fundamentally limit
the initiation interval that can be achieved using loop pipelining and the parallelism that can be
exploited using loop unrolling.

The following example demonstrates loop-carried dependencies among operations producing
and consuming variables a and b.

while (a != b) {
 if (a > b)
 a –= b;
 else
 b –= a;
}

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=46

Operations in the next iteration of this loop can not start until the current iteration has
calculated and updated the values of a and b. Array accesses are a common source of loop-
carried dependencies, as shown in the following example:

for (i = 1; i < N; i++)
 mem[i] = mem[i-1] + i;

In this case, the next iteration of the loop must wait until the current iteration updates the
content of the array. In case of loop pipelining, the minimum initiation interval (II) is the total
number of clock cycles required for the memory read, the add operation, and the memory write

Another performance limiting factor for loop pipelining and loop unrolling is the number of
available hardware resources. The following figure shows an example the issues created by
resource limitations, which in this case prevents the loop to be pipelined with an initiation
interval of 1.

Figure 10: Resource Contention

void foo(m[2]…) {

 op_Read_m[0];
 op_Read_m[1];
 op_Compute;
 op_Write;

}

(A) Pipeline with II=1

RD

CMP

WR

RD

(B) Pipeline with II=2

RD CMP WR

RD RD CMP WR

RD

II=1

RD RD CMP WR

RD RD CMP WR

II=2

X14768-042319

In this example, if the loop is pipelined with an initiation interval of one, there are two read
operations. If the memory has only a single port, then the two read operations cannot be
executed simultaneously and must be executed in two cycles. So the minimal initiation interval
can only be two, as shown in part (B) of the figure. The same can happen with other hardware
resources. For example, if the op_compute is implemented with a DSP core which cannot
accept new inputs every cycle, and there is only one such DSP core. Then op_compute cannot
be issued to the DSP core each cycle, and an initiation interval of one is not possible.

Increasing Local Memory Bandwidth
This section shows several ways provided by the Vivado HLS tool to increase local memory
bandwidth, which can be used together with loop pipelining and loop unrolling to improve
system performance.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=47

Arrays are intuitive and useful constructs in C/C++ programs. They allow for the algorithm to be
easily captured and understood. In the HLS tool, each array is implemented by default with a
single port memory resource; however, such memory implementation might not be the most
ideal memory architecture for performance- oriented programs. Refer to Loop Pipelining and
Loop Unrolling for an example of resource contention caused by limited memory ports.

Array Partitioning

Arrays can be partitioned into smaller arrays. Physical implementation of memories have only a
limited number of read ports and write ports, which can limit the throughput of a load/store
intensive algorithm. The memory bandwidth can sometimes be improved by splitting up the
original array (implemented as a single memory resource) into multiple smaller arrays
(implemented as multiple memories), effectively increasing the number of load/store ports.

The Vivado HLS tool provides three types of array partitioning, as shown in the following figure.

• block: The original array is split into equally sized blocks of consecutive elements of the
original array.

• cyclic: The original array is split into equally sized blocks interleaving the elements of the
original array.

• complete: The default operation is to split the array into its individual elements. This
corresponds to implementing an array as a collection of registers rather than as a memory.

Figure 11: Multi-dimension Array Partitioning

0 1 2 ... N-3 N-2 N-1

0 1 ... (N/2-1)

N/2 ... N-2 N-1

0 2 ... N-2

1 ... N-3 N-1

0

1
N-1

...

N-3

N-2

2

X14774-121417

To partition an array in the HLS tool, insert this in the hardware function source code:

#pragma HLS array_partition variable=<variable> <block, cyclic, complete>
factor=<int> dim=<int>

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=48

For block and cyclic partitioning, the factor option can be used to specify the number of arrays
which are created. In the figure above, a factor of two is used, dividing the array into two smaller
arrays. If the number of elements in the array is not an integer multiple of the factor, the last
array will have fewer than average elements.

When partitioning multi-dimensional arrays, the dim option can be used to specify which
dimension is partitioned. The following figure shows an example of partitioning different
dimensions of a multi-dimensional array.

Figure 12: Multi-dimension Array Partitioning

my_array[10][6][4]

Dimension 1
Dimension 2
Dimension 3

Dimension 0
(All dimensions)

X14769-121417

Array Reshaping

Arrays can also be reshaped to increase the memory bandwidth. Reshaping takes different
elements from a dimension in the original array, and combines them into a single wider element.
Array reshaping is similar to array partitioning, but instead of partitioning into multiple arrays, it
widens array elements. The following figure illustrates the concept of array reshaping.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=49

Figure 13: Array Reshaping

0 1 2 ... N-3 N-2 N-1
0 1 ... (N/2-1)

N/2 ... N-2 N-1

0 2 ... N-2

1 ... N-3 N-1

N-1

array1[N]

0 1 2 ... N-3 N-2 N-1

array2[N]

0 1 2 ... N-3 N-2 N-1

array3[N]

MSB

LSB

array4[N/2]

array5[N/2]
MSB

LSB

N-2
...
1
0

array6[1]
MSB

LSB
X14773-121417

To use array reshaping in the Vivado HLS tool, insert this in the hardware function source code:

#pragma HLS array_reshape variable=<variable> <block, cyclic, complete>
factor=<int> dim=<int>

The options have the same meaning as the array partition pragma.

Data Flow Pipelining
The previously discussed optimization techniques are all "fine grain" parallelizing optimizations at
the level of operators, such as multiplier, adder, and memory load/store operations. These
techniques optimize the parallelism between these operators. Data flow pipelining on the other
hand, exploits the "coarse grain" parallelism at the level of functions and loops. Data flow
pipelining can increase the concurrency between functions and loops.

Function Data Flow Pipelining

The default behavior for a series of function calls in the Vivado HLS tool is to complete a
function before starting the next function. In the following figure, part (A) shows the latency
without function data flow pipelining. Assuming it takes eight cycles for the three functions to
complete, the code requires eight cycles before a new input can be processed by func_A and
also eight cycles before an output is written by func_C (assume the output is written at the end
of func_C).

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=50

Figure 14: Function Data Flow Pipelining

8 cycles

func_A

8 cycles

3 cycles

5 cycles

func_B func_C func_A func_A

func_B func_B

func_C func_C

void top (a,b,c,d) {
 …
 func_A(a,b,i1);
 func_B(c,i1,i2);
 func_C(i2,d);

 return d;
}

(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

func_A
func_B
func_C

X14772-121417

An example execution with data flow pipelining is shown in the part (B) of the figure above.
Assuming the execution of func_A takes three cycles, func_A can begin processing a new input
every three clock cycles rather than waiting for all the three functions to complete, resulting in
increased throughput, The complete execution to produce an output then requires only five clock
cycles, resulting in shorter overall latency.

The HLS tool implements function data flow pipelining by inserting "channels" between the
functions. These channels are implemented as either ping-pong buffers or FIFOs, depending on
the access patterns of the producer and the consumer of the data.

• If a function parameter (producer or consumer) is an array, the corresponding channel is
implemented as a multi-buffer using standard memory accesses (with associated address and
control signals).

• For scalar, pointer and reference parameters, as well as the function return, the channel is
implemented as a FIFO, which uses less hardware resources (no address generation), but
requires that the data is accessed sequentially.

To use function data flow pipelining, put #pragma HLS dataflow where the data flow
optimization is desired. The following code snippet shows an example:

void top(a, b, c, d) {
#pragma HLS dataflow
 func_A(a, b, i1);
 func_B(c, i1, i2);
 func_C(i2, d);
}

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=51

Loop Dataflow Pipelining

Data flow pipelining can also be applied to loops in similar manner as it can be applied to
functions. It enables a sequence of loops, normally executed sequentially, to execute
concurrently. Data flow pipelining should be applied to a function, loop or region which contains
either all function or all loops: do not apply on a scope which contains a mixture of loops and
functions.

The following figure shows the advantages data flow pipelining can produce when applied to
loops. Without data flow pipelining, loop N must execute and complete all iterations before loop
M can begin. The same applies to the relationship between loops M and P. In this example, it is
eight cycles before loop N can start processing the next value and eight cycles before an output is
written (assuming the output is written when loop P finishes).

Figure 15: Loop Data Flow Pipelining

8 cycles

Loop_N

8 cycles

3 cycles

5 cycles

Loop_M Loop_P Loop_N Loop_N

Loop_M Loop_M

Loop_P Loop_P

void top (...) {

 N:for(i =1;i<N;i++) {
 ...
 }

M:while(j<M) {
 ...
 } ;

P:for(k=1;k<P;k- -) {
 ...
 }

}

(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

Loop_N

Loop_M

Loop_P

X14771-051419

With data flow pipelining, these loops can operate concurrently. An example execution with data
flow pipelining is shown in part (B) of the figure above. Assuming the loop M takes three cycles to
execute, the code can accept new inputs every three cycles. Similarly, it can produce an output
value every five cycles, using the same hardware resources. The Vivado HLS tool automatically
inserts channels between the loops to ensure data can flow asynchronously from one loop to the
next. As with data flow pipelining, the channels between the loops are implemented either as
multi-buffers or FIFOs.

To use loop data flow pipelining, put #pragma HLS dataflow where you want the data flow
optimization.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=52

Hardware Function Interfacing
After defining what function is needed for acceleration, there are a few key items to ensure
compilation is valid. The Vivado HLS tool data types (ap_int, ap_uint, ap_fixed, etc.) cannot
be part of the function parameter list that the software part of the application calls. These data
types are unique to the HLS tool and have no bearing outside of the intended tool and associated
compiler.

For example, if the following function was written in the HLS tool, the parameter list needs to be
adjusted, and the function body has to handle moving the data from the HLS tool to a more
generic data type, as shown below:

void foo(ap_int *a, ap_int *b, ap_int *c) { /* Function body */ }

This needs to be modified if using local variables:

void foo(int *a, int *b, int *c) {
 ap_int *local_a = a;
 ap_int *local_b = b;
 ap_int *local_c = c;
 // Remaining function body
}

IMPORTANT! Initializing local variables with input data can consume too much memory in the accelerator.
Therefore, casting the input data types to the appropriate HLS data types will work instead.

Chapter 4: Optimizing the Hardware Function

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=53

Chapter 5

Memory Access Optimizations
Efficient memory accesses are critical to the performance of hardware functions running on an
FPGA. The first category of optimizations that can be made to a hardware function is improving
memory accesses and the data transfer rate between the PS and PL.

Data is often stored in an external memory. Accesses to an off-chip can take time and reduce the
system performance. To reduce the memory access times and improve the runtime in high-
performance systems, data can be stored in a local cache.

In addition to these memories, an FPGA provides local memory, where small and medium-sized
data blocks can be stored and efficiently accessed. The memory architecture of a system, which
uses FPGAs to accelerate performance, is similar to that of a CPU+GPU or CPU+DSP system,
where consideration is given to making the most common memory accesses through the most
local memory.

The following techniques can help improve the design of a hardware function by minimizing the
latency impact of accessing and storing the data through the extensive use of local memories.

• Data Motion Optimization: This includes the transfer of data between the PS and the PL
components. The SDSoC™ environment implements a default data motion architecture based
on the arguments of the functions selected for the PL. However, it could use optimization
directives to ensure data is stored in contiguous memory. This would improve the efficiency of
the data transfer. A scatter-gather transfer could also be used to transfer very large sets of
data more efficiently.

• Data Access Patterns: An FPGA excels at processing data quickly, in a highly concurrent
manner. Poor data access patterns interrupt the flow of data and leave the computational
power of an FPGA underused. Good data access patterns minimize the use of re-reading data
and increase the use of conditional branching to process one sample in multiple ways.

• On-Chip Memories: On-chip memories (that is, programmable logic RAM, or PLRAM) use the
block RAM on the FPGA, and are physically located near the computation. They allow one-
cycle reads and writes, which drastically improve memory access performance. Copying data
using optimal and efficient data access patterns from the DDR to these local memories can be
done very quickly using burst transactions and can considerably improve performance.
Performance could also be improved by using optimal data access patterns, such as burst
transactions, to efficiently copy the data from the DDR to these local memories.

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=54

Data Motion Optimization
The data motion network is the hardware used to connect the program running on the PS to the
hardware function implemented in the PL fabric. The SDSoC environment automatically creates a
data motion network based on the data types; however, directives can be used to optimize the
implementation for both speed and hardware resources. The default data motion networks
created for each data type are:

• Scalar: Scalar data types are always transferred by the AXI_LITE data mover. This is a
memory-mapped interface that requires very few hardware resources to implement,
consisting of single word read/write transfers with handshaking. This makes it the ideal choice
for function arguments that are only transferred once per invocation. These types rarely need
to be addressed when optimizing the system.

• Array: Arrays contain multiple data values and are more efficiently transferred using fast DMA
transfers. The SDSoC environment provides a number of options to control both the efficiency
of the hardware and the resources used to implement the hardware, even allowing for the
selection of specific data movers.

• Pointers: By default, in the absence of any pragmas, a pointer argument is taken to be a scalar,
even though in C/C++ it might denote a one-dimensional array type. If a pointer is written to
or read from multiple times, pragmas should be used to ensure the efficient transfer of data.

• Struct: A single struct is flattened, and each data member uses its own data mover
depending on whether it is a scalar or array. For an array of struct, the data motion network
is the same as an array discussed previously.

With an understanding of the SDSoC environment default behavior, select the most optimum
data motion network based on your own particular needs.

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=55

Memory Allocation
The sds++/sdscc (referred to as sds++) compiler analyzes your program and selects data
movers to match the requirements for each hardware function call between software and
hardware, based on payload size, hardware interface on the accelerator, and properties of the
function arguments. When the compiler can guarantee an array argument is located in physically
contiguous memory, it can use the most efficient data movers. Allocating or memory-mapping
arrays with the following sds_lib library functions can inform the compiler that memory is
physically contiguous.

// guarantees physically contiguous memory
sds_alloc(size_t size);

// paddr must point to contiguous memory
sds_mmap(void *paddr, size_t size, void *vaddr);

// assumes physically contiguous memory
sds_register_dmabuf(void *vaddr, int fd);

It is possible that due to the program structure, the sds++ compiler cannot definitively deduce
the memory contiguity, and when this occurs, it issues a warning message, as shown:

WARNING: [DMAnalysis 83-4492] Unable to determine the memory attributes
passed to foo_arg_A of function foo at foo.cpp:102

You can inform the compiler that the data is allocated in a physically contiguous memory by
inserting the following pragma immediately before the function declaration.

Note: The pragma does not guarantee physically contiguous allocation of memory; your code must use
sds_alloc to allocate such memory).

#pragma SDS data mem_attribute (A:PHYSICAL_CONTIGUOUS) // default is
NON_PHYSICAL_CONTIGUOUS

It is important to know how the data will be used, because it helps determine what data movers
to use. This is because some require contiguous allocation, and others do not. For example, if the
data to be used is random, it will use a scatter-gather DMA, which causes these types of
overhead:

• walking page tables

• pinning pages

• creating descriptors

• cleaning up when the accelerator is completed

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=56

Copy and Shared Memory Semantics
By default, hardware function calls involve copy-in, copy-out semantics for function arguments.
It is possible to impose a shared memory model for hardware function arguments, but you must
keep in mind that while throughput on burst transfers is quite good, the latency to external DDR
from the programmable logic is significantly higher than it is for the CPU. The following pragma,
inserted immediately preceding the function declaration, is used to declare that a variable
transfer employs shared memory semantics.

#pragma SDS data zero_copy(A[0:<array_size>]) // array_size = number of
elements

Within a synthesizable hardware function, it is usually inefficient to read/write single words from
the shared memory (specified using the ZERO_COPY pragma). A more efficient approach is to
employ a pipelined for-loop to read/write data from memory in bursts and store it in a local
memory.

For copy and zero-copy memory semantics, another efficient alternative is to stream data
between programmable logic and external DDR to maximize memory efficiency. This stores data
in local memory within a hardware function whenever you need to make non-sequential and
repeated accesses to variables. For example, video applications typically have data coming in as
pixel streams and implement line buffers in FPGA memory to support multiple accesses to the
pixel stream data.

To declare to the sds++/sdscc (referred to as sds++) compiler command that a hardware
function can admit streaming access for an array data transfer (that is, each element is accessed
precisely once in index order), insert the following pragma immediately preceding the function
prototype.

#pragma SDS data access_pattern(A:SEQUENTIAL) // access pattern =
SEQUENTIAL | RANDOM

For arrays passed as pointer typed arguments to hardware functions, sometimes the compilers
can infer transfer size, but if they cannot, they issue the following message:

WARNING: [DMAnalysis 83-4439] Cannot determine data size for argument p of
function foo

Use the following to specify the size of the data to be transferred.

#pragma SDS data copy(p[0:<array_size>]) // for example, int *p

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=57

You can vary the data transfer size on a per function call basis to avoid transferring data that is
not required by a hardware function by setting <array_size> in the pragma definition to be an
expression defined in the scope of the function call (that is, all variables in the size expression
must be scalar arguments to the function), for example:

#pragma SDS data copy(A[0:L+2*T/3]) // scalar arguments L, T to same
function

The sds++ compiler implements function call interfaces by creating stub functions that have a
specific synchronization code (such as cf_wait()) to preserve program behavior and ensure
consistency.

Related Information
Execution Model of an SDSoC Application

Data Cache Coherency
The sds++/sdscc (referred to as sds++) compiler automatically generates software
configuration code for each data mover required by the system, including interfacing to
underlying device drivers, as needed. The default assumption is that the system compiler
maintains cache coherency for the memory allocated to arrays passed between the CPU and
hardware functions; consequently, the compiler might generate code to perform a cache flush
before transferring data to a hardware function and to perform a cache-invalidate before
transferring data from a hardware function to the memory. Both actions are necessary for
correctness, but have performance implications. When using Zynq® device HP ports, for
example, you can override the default when you know that the CPU will not access the memory
indicating that the correctness of the application does not depend on cache coherency. To avoid
the overhead of unnecessary cache flushes, use the following API to allocate memory.

void *sds_alloc_non_cacheable(size_t size)

A typical use case of non-cacheable memory is a video application where some frame buffers are
accessed by programmable logic but not the CPU.

Data Access Patterns
Designers select an FPGA to implement C code due to the superior performance of the FPGA—
the parallel architecture of an FPGA allows it to perform operations much faster than the
inherently sequential operations of a processor, and users typically want to take advantage of
that performance.

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=58

The focus here is on understanding the impact that the access patterns inherent in the C code
might have on the results. Although the access patterns of most concern are those into and out
of the hardware function, it is worth considering the access patterns within functions as any
bottlenecks within the hardware function will negatively impact the transfer rate into and out of
the function.

To highlight how some data access patterns can negatively impact performance and demonstrate
how other patterns can be used to fully embrace the parallelism and high performance
capabilities of an FPGA, this section reviews an image convolution algorithm.

• The first part reviews the algorithm and highlights the data access aspects that limit the
performance in an FPGA.

• The second part shows how the algorithm might be written to achieve the highest
performance possible.

Algorithm with Poor Data Access Patterns
A standard convolution function applied to an image is used here to demonstrate how the C
code can negatively impact the performance that is possible from an FPGA. In this example, a
horizontal and then vertical convolution is performed on the data. Because the data at the edge
of the image lies outside the convolution windows, the final step is to address the data around
the border.

The algorithm structure can be summarized as follows:

• A horizontal convolution.

• Followed by a vertical convolution.

• Followed by a manipulation of the border pixels.

static void convolution_orig(
 int width,
 int height,
 const T *src,
 T *dst,
 const T *hcoeff,
 const T *vcoeff) {
 T local[MAX_IMG_ROWS*MAX_IMG_COLS];

// Horizontal convolution
 HconvH:for(int row = 0; row < height; row++){
 HconvWfor(int col = border_width; col < width - border_width; col++){
 Hconv:for(int i = - border_width; i <= border_width; i++){
 ...
 }
 }
 }

// Vertical convolution
 VconvH:for(int row = border_width; row < height - border_width; row++){
 VconvW:for(int col = 0; col < width; col++){
 Vconv:for(int i = - border_width; i <= border_width; i++){

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=59

 }
 }
 }

// Border pixels
 Top_Border:for(int col = 0; col < border_width; col++){
 }
 Side_Border:for(int row = border_width; row < height - border_width; row+
+){
 }
 Bottom_Border:for(int = height - border_width; row < height; row++){
 }
}

Standard Horizontal Convolution

The first step is to perform the convolution in the horizontal direction, as shown in the following
figure.

Figure 16: Convolution in Horizontal Direction

First Output Second Output Final Output

src

Hsamp

local

Hcoeff

Hsamp

Hcoeff

Hsamp

Hcoeff

X14296-121417

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=60

The convolution is performed using K samples of data and K convolution coefficients. In the
figure above, K is shown as 5, however, the value of K is defined in the code. To perform the
convolution, a minimum of K data samples are required. The convolution window cannot start at
the first pixel because the window would need to include pixels that are outside the image.

By performing a symmetric convolution, the first K data samples from input src can be
convolved with the horizontal coefficients, and the first output calculated. To calculate the
second output, the next set of K data samples is used. This calculation proceeds along each row
until the final output is written.

The C code for performing this operation is shown below.

const int conv_size = K;

const int border_width = int(conv_size / 2);

#ifndef __SYNTHESIS__

T * const local = new T[MAX_IMG_ROWS*MAX_IMG_COLS];

#else // Static storage allocation for HLS, dynamic otherwise

T local[MAX_IMG_ROWS*MAX_IMG_COLS];

#endif

Clear_Local:for(int i = 0; i < height * width; i++){

 local[i]=0;

}

// Horizontal convolution

HconvH:for(int col = 0; col < height; col++){

 HconvWfor(int row = border_width; row < width - border_width; row++){

 int pixel = col * width + row;

 Hconv:for(int i = - border_width; i <= border_width; i++){

 local[pixel] += src[pixel + i] * hcoeff[i + border_width];

 }

 }

}

The code is straightforward; however, there are some issues with this C code that will negatively
impact the quality of the hardware results.

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=61

The first issue is the large storage requirements during C compilation. The intermediate results in
the algorithm are stored in an internal local array. This requires an array of HEIGHT*WIDTH,
which for a standard video image of 1920*1080 will hold 2,073,600 values.

• For the compilers targeting Zynq®-7000 SoC or Zynq® UltraScale+™ MPSoC devices, as well
as many host systems, this amount of local storage can lead to stack overflows at runtime (for
example, running on the target device, or running co-sim flows within the Vivado® High-Level
Synthesis (HLS) tool). The data for a local array is placed on the stack and not the heap, which
is managed by the OS. When cross-compiling with arm-linux-gnueabihf-g++ use the -
Wl,"-z stacksize=4194304" linker option to allocate sufficient stack space.

Note: The syntax for this option varies for different linkers

• When a function will only be run in hardware, a useful way to avoid such issues is to use the
__SYNTHESIS__ macro. This macro is automatically defined by the system compiler when
the hardware function is synthesized into hardware. The code shown above uses dynamic
memory allocation during C simulation to avoid any compilation issues and only uses static
storage during synthesis. A downside of using this macro is the code verified by C simulation
is not the same code that is synthesized. In this case, however, the code is not complex, and
the behavior will be the same.

• The main issue with this local array is the quality of the FPGA implementation. Because this is
an array it will be implemented using internal FPGA block RAM. This is a very large memory to
implement inside the FPGA. It might require a larger and more costly FPGA device. The use of
block RAM can be minimized by using the DATAFLOW optimization and streaming the data
through small efficient FIFOs, but this will require the data to be used in a streaming
sequential manner. There is currently no such requirement.

The next issue relates to the performance: the initialization for the local array. The
Clear_Local loop is used to set the values in array local to zero. Even if this loop is pipelined in
the hardware to execute in a high-performance manner, this operation still requires
approximately two million clock cycles (HEIGHT*WIDTH) to implement. While this memory is
being initialized, the system cannot perform any image processing. This same initialization of the
data could be performed using a temporary variable inside loop HConv to initialize the
accumulation before the write.

Finally, the throughput of the data, and thus the system performance, is fundamentally limited by
the data access pattern.

• To create the first convolved output, the first K values are read from the input.

• To calculate the second output, a new value is read, and then the same K-1 values are re-read.

One of the keys to a high-performance FPGA is to minimize the access to and from the PS. Each
access for data, which has previously been fetched, negatively impacts the performance of the
system. An FPGA is capable of performing many concurrent calculations at once and reaching
very high performance, but not while the flow of data is constantly interrupted by re-reading
values.

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=62

Note: To maximize performance, data should only be accessed once from the PS and small units of local
storage (small to medium sized arrays) should be used for data which must be reused.

With the code shown above, the data cannot be continuously streamed directly from the
processor using a operation because the data is required to be re-read time and again.

Standard Vertical Convolution

The next step is to perform the vertical convolution shown in the following figure.

Figure 17: Vertical Convolution

First Output Second Output Final Output

local

Vsamp

dst

Vcoeff

Vsamp

Vcoeff

Vsamp

Vconv

X14299-011519

The process for the vertical convolution is similar to the horizontal convolution. A set of K data
samples is required to convolve with the convolution coefficients, Vcoeff in this case. After the
first output is created using the first K samples in the vertical direction, the next set of K values is
used to create the second output. The process continues down through each column until the
final output is created.

After the vertical convolution, the image is now smaller than the source image src, due to both
the horizontal and vertical border effect.

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=63

The following is the code for performing these operations:

Clear_Dst:for(int i = 0; i < height * width; i++){
 dst[i]=0;
}
// Vertical convolution
VconvH:for(int col = border_width; col < height - border_width; col++){
 VconvW:for(int row = 0; row < width; row++){
 int pixel = col * width + row;
 Vconv:for(int i = - border_width; i <= border_width; i++){
 int offset = i * width;
 dst[pixel] += local[pixel + offset] * vcoeff[i + border_width];
 }
 }
}

This code highlights similar issues to those already discussed with the horizontal convolution
code:

• Many clock cycles are spent to set the values in the output image dst to zero. In this case,
approximately another two million cycles for a 1920*1080 image size.

• There are multiple accesses per pixel to re-read data stored in array local.

• There are multiple writes per pixel to the output array/port dst.

The access patterns in the code above in fact creates the requirement to have such a large local
array. The algorithm requires the data on row K to be available to perform the first calculation.
Processing data down the rows before proceeding to the next column requires the entire image
to be stored locally. This requires that all values be stored and results in large local storage on the
FPGA.

In addition, when you reach the stage where you wish to use compiler directives to optimize the
performance of the hardware function, the flow of data between the horizontal and vertical loop
cannot be managed using a FIFO (a high-performance and low-resource unit), because the data is
not streamed out of array local, a FIFO can only be used with sequential access patterns.
Instead, this code which requires arbitrary/random accesses requires a ping-pong block RAM to
improve performance. This doubles the memory requirements for the implementation of the local
array to approximately four million data samples, which is too large for an FPGA.

Standard Border Pixel Convolution

The final step in performing the convolution is to create the data around the border. These pixels
can be created by simply reusing the nearest pixel in the convolved output. The following figures
shows how this is achieved.

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=64

Figure 18: Standard Border Pixel Convolution

Top Left Top Row Top Right

Left and Right Edges Bottom Left and Bottom
Row

Bottom Right

dst

dst

X14294-011519

The border region is populated with the nearest valid value. The following code performs the
operations shown in the previous figure.

int border_width_offset = border_width * width;
int border_height_offset = (height - border_width - 1) * width;

// Border pixels

Top_Border:for(int col = 0; col < border_width; col++){
 int offset = col * width;
 for(int row = 0; row < border_width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[border_width_offset + border_width];
 }
 for(int row = border_width; row < width - border_width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[border_width_offset + row];
 }
 for(int row = width - border_width; row < width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[border_width_offset + width - border_width - 1];
 }
}

Side_Border:for(int col = border_width; col < height - border_width; col++){
 int offset = col * width;
 for(int row = 0; row < border_width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[offset + border_width];

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=65

 }
 for(int row = width - border_width; row < width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[offset + width - border_width - 1];
 }
}

Bottom_Border:for(int col = height - border_width; col < height; col++){
 int offset = col * width;
 for(int row = 0; row < border_width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[border_height_offset + border_width];
 }
 for(int row = border_width; row < width - border_width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[border_height_offset + row];
 }
 for(int row = width - border_width; row < width; row++){
 int pixel = offset + row;
 dst[pixel] = dst[border_height_offset + width - border_width - 1];
 }
}

The code suffers from the same repeated access for data. The data stored outside the FPGA in
the array dst must now be available to be read as input data re-read multiple times. Even in the
first loop, dst[border_width_offset + border_width] is read multiple times but the
values of border_width_offset and border_width do not change.

This code is very intuitive to both read and write. When implemented with the SDSoC
environment it is approximately 120M clock cycles, which meets or slightly exceeds the
performance of a CPU. However, as shown in the next section, optimal data access patterns
ensure this same algorithm can be implemented on the FPGA at a rate of one pixel per clock
cycle, or approximately 2M clock cycles.

The summary from this review is that the following poor data access patterns negatively impact
the performance and size of the FPGA implementation:

• Multiple accesses to read and then re-read data. Use local storage where possible.

• Accessing data in an arbitrary or random access manner. This requires the data to be stored
locally in arrays and costs resources.

• Setting default values in arrays costs clock cycles and performance.

Algorithm with Optimal Data Access Patterns
The key to implementing the convolution example reviewed in the previous section as a high-
performance design with minimal resources is doing the following:

• Maximize the flow of data through the system. Refrain from using any coding techniques or
algorithm behavior that inhibits the continuous flow of data.

• Maximize the reuse of data. Use local caches to ensure there are no requirements to re-read
data and the incoming data can keep flowing.

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=66

• Use conditional branching. This is expensive on a CPU, GPU, or DSP but optimal in an FPGA.

The first step is to understand how data flows through the system into and out of the FPGA. The
convolution algorithm is performed on an image. When data from an image is produced and
consumed, it is transferred in a standard raster-scan manner as shown in the following figure.

Figure 19: Raster-Scan

Width

Height

X14298-121417

If the data is transferred to the FPGA in a streaming manner, the FPGA should process it in a
streaming manner and transfer it back from the FPGA in this manner.

The convolution algorithm shown below embraces this style of coding. At this level of abstraction
a concise view of the code is shown. However, there are now intermediate buffers, hconv and
vconv, between each loop. Because these are accessed in a streaming manner, they are
optimized into single registers in the final implementation.

template<typename T, int K>
static void convolution_strm(
int width,
int height,
T src[TEST_IMG_ROWS][TEST_IMG_COLS],
T dst[TEST_IMG_ROWS][TEST_IMG_COLS],
const T *hcoeff,
const T *vcoeff)
{

T hconv_buffer[MAX_IMG_COLS*MAX_IMG_ROWS];

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=67

T vconv_buffer[MAX_IMG_COLS*MAX_IMG_ROWS];
T *phconv, *pvconv;

// These assertions let HLS know the upper bounds of loops
assert(height < MAX_IMG_ROWS);
assert(width < MAX_IMG_COLS);
assert(vconv_xlim < MAX_IMG_COLS - (K - 1));
// Horizontal convolution
HConvH:for(int col = 0; col < height; col++) {
 HConvW:for(int row = 0; row < width; row++) {
 HConv:for(int i = 0; i < K; i++) {
 }
 }
}
// Vertical convolution
VConvH:for(int col = 0; col < height; col++) {
 VConvW:for(int row = 0; row < vconv_xlim; row++) {
 VConv:for(int i = 0; i < K; i++) {
 }
 }
}
Border:for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j++) {
 }
}

All three processing loops now embrace conditional branching to ensure the continuous
processing of data.

Optimal Horizontal Convolution

The algorithm must use the K previous samples to compute the convolution result. It therefore
copies the sample into a temporary cache hwin. This use of local storage means there is no need
to re-read values from the PS and interrupt the flow of data. For the first calculation, there are
not enough values in hwin to compute a result, so conditionally, no output values are written. To
perform the calculation in a more efficient manner for FPGA implementation, the horizontal
convolution is computed.

The algorithm keeps reading input samples and caching them into hwin. Each time it reads a new
sample, it pushes an unneeded sample out of hwin. The first time an output value can be written
is after the Kth input has been read. An output value can now be written. The algorithm proceeds
in this manner along the rows until the final sample has been read. At that point, only the last K
samples are stored in hwin; all that is required to compute the convolution.

As shown below, the code to perform these operations uses both local storage to prevent re-
reads from the PL (the reads from local storage can be performed in parallel in the final
implementation), and the extensive use of conditional branching to ensure each new data sample
can be processed in a different manner.

// Horizontal convolution
phconv=hconv_buffer; // set / reset pointer to start of buffer

// These assertions let HLS know the upper bounds of loops
assert(height < MAX_IMG_ROWS);

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=68

assert(width < MAX_IMG_COLS);
assert(vconv_xlim < MAX_IMG_COLS - (K - 1));
HConvH:for(int col = 0; col < height; col++) {
 HConvW:for(int row = 0; row < width; row++) {
#pragma HLS PIPELINE
 T in_val = *src++;
 // Reset pixel value on-the-fly - eliminates an O(height*width) loop
 T out_val = 0;
 HConv:for(int i = 0; i < K; i++) {
 hwin[i] = i < K - 1 ? hwin[i + 1] : in_val;
 out_val += hwin[i] * hcoeff[i];
 }
 if (row >= K - 1) {
 *phconv++=out_val;
 }
 }
}

An interesting point to note in the code above is the use of the temporary variable out_val to
perform the convolution calculation. This variable is set to zero before the calculation is
performed, negating the need to spend two million clock cycles to reset the values, as in the
previous example.

Throughout the entire process, the samples in the src input are processed in a raster-streaming
manner. Every sample is read in turn. The outputs from the task are either discarded or used, but
the task keeps constantly computing. This represents a difference from code written to perform
on a CPU.

Optimal Vertical Convolution

The vertical convolution represents a challenge to the streaming data model preferred by an
FPGA. The data must be accessed by column but you do not wish to store the entire image. The
solution is to use line buffers, as shown in the following figure.

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=69

Figure 20: Line Buffers

First Calculation First Output Final Output

hconv

vconv

Vconv Vconv Vconv

X14300-011519

Again, the samples are read in a streaming manner, this time from the local buffer hconv. The
algorithm requires at least K-1 lines of data before it can process the first sample. All the
calculations performed before this are discarded through the use of conditionals.

A line buffer allows K-1 lines of data to be stored. Each time a new sample is read, another
sample is pushed out the line buffer. An interesting point to note here is that the newest sample
is used in the calculation, and then the sample is stored into the line buffer and the old sample
ejected out. This ensures that only K-1 lines are required to be cached rather than an unknown
number of lines, and minimizes the use of local storage. Although a line buffer does require
multiple lines to be stored locally, the convolution kernel size K is always much less than the
1080 lines in a full video image.

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=70

The first calculation can be performed when the first sample on the Kth line is read. The
algorithm then proceeds to output values until the final pixel is read.

// Vertical convolution
phconv=hconv_buffer; // set/reset pointer to start of buffer
pvconv=vconv_buffer; // set/reset pointer to start of buffer
VConvH:for(int col = 0; col < height; col++) {
 VConvW:for(int row = 0; row < vconv_xlim; row++) {
#pragma HLS DEPENDENCE variable=linebuf inter false
#pragma HLS PIPELINE
 T in_val = *phconv++;
 // Reset pixel value on-the-fly - eliminates an O(height*width) loop
 T out_val = 0;
 VConv:for(int i = 0; i < K; i++) {
 T vwin_val = i < K - 1 ? linebuf[i][row] : in_val;
 out_val += vwin_val * vcoeff[i];
 if (i > 0)
 linebuf[i - 1][row] = vwin_val;
 }
 if (col >= K - 1) {
 *pvconv++ = out_val;
 }
}

The code processes all the samples in the design in a streaming manner. The task is constantly
running. Following a coding style where you minimize the number of re-reads (or re-writes) forces
you to cache the data locally. This is an ideal strategy when targeting an FPGA.

Optimal Border Pixel Convolution

The final step in the algorithm is to replicate the edge pixels into the border region. To ensure the
constant flow of data and data reuse, the algorithm makes use of local caching. The following
figure shows how the border samples are aligned into the image.

• Each sample is read from the vconv output from the vertical convolution.

• The sample is then cached as one of four possible pixel types.

• The sample is then written to the output stream.

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=71

Figure 21: Border Sample Alignment

First Output Middle Output Final Output

vconv

Left Edge Border

dst

Right Edge Raw Pixel

Left Edge Border

Right Edge Raw Pixel

Left Edge Border

Right Edge Raw Pixel

Border

Raw Pixel

Border

Right Edge

Left Edge
X14295-110617

The code for determining the location of the border pixels is shown here.

// Border pixels
pvconv=vconv_buffer; // set/reset pointer to start of buffer
Border:for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j++) {
 T pix_in, l_edge_pix, r_edge_pix, pix_out;
#pragma HLS PIPELINE
 if (i == 0 || (i > border_width && i < height - border_width)) {
 // read a pixel out of the video stream and cache it for
 // immediate use and later replication purposes
 if (j < width - (K - 1)) {
 pix_in = *pvconv++;
 borderbuf[j] = pix_in;
 }
 if (j == 0) {
 l_edge_pix = pix_in;
 }
 if (j == width - K) {
 r_edge_pix = pix_in;
 }
 }

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=72

 // Select output value from the appropriate cache resource
 if (j <= border_width) {
 pix_out = l_edge_pix;
 } else if (j >= width - border_width - 1) {
 pix_out = r_edge_pix;
 } else {
 pix_out = borderbuf[j - border_width];
 }
 *dst++=pix_out;
 }
}

A notable difference with this new code is the extensive use of conditionals inside the tasks. This
allows the task, after it is pipelined, to continuously process data. The result of the conditionals
does not impact the execution of the pipeline. The result will impact the output values, but the
pipeline with keep processing as long as input samples are available.

Optimal Data Access Patterns

The following list summarizes how to ensure your data access patterns result in the most optimal
performance on an FPGA.

• Minimize data input reads. After data has been read into the block, it can easily feed many
parallel paths but the inputs to the hardware function can be bottlenecks to performance.
Read data once and use a local cache if the data must be reused.

• Minimize accesses to arrays, especially large arrays. Arrays are implemented in block RAM
which like I/O ports only have a limited number of ports and can be bottlenecks to
performance. Arrays can be partitioned into smaller arrays and even individual registers but
partitioning large arrays will result in many registers being used. Use small localized caches to
hold results such as accumulations and then write the final result to the array.

• Seek to perform conditional branching inside pipelined tasks rather than conditionally execute
tasks, even pipelined tasks. Conditionals are implemented as separate paths in the pipeline.
Allowing the data from one task to flow into the next task with the conditional performed
inside the next task will result in a higher performing system.

• Minimize output writes for the same reason as input reads, namely, that ports are bottlenecks.
Replicating additional accesses only pushes the issue further back into the system.

For C code which processes data in a streaming manner, consider employing a coding style that
promotes read-once/write-once to function arguments because this ensures the function can be
efficiently implemented in an FPGA. It is much more productive to design an algorithm in C that
results in a high-performance FPGA implementation than debug why the FPGA is not operating
at the performance required.

Chapter 5: Memory Access Optimizations

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=73

Chapter 6

Performance Measurement Using
the AXI Performance Monitor

The AXI Performance Monitor (APM) module is used to monitor basic information about data
transfers between the PS Arm® cores and the hardware in the PL. It captures statistics such as
number of read/write transactions, throughput, and latency for the AXI transactions on the
busses in the system.

This section demonstrates how to insert an APM core into the system, monitor the instrumented
system, and view the performance data produced.

Create a Standalone Project and
Implementing APM

1. Open the SDSoC™ environment, and create a new SDSoC project/workspace using any
platform or operating system selection. Select the Matrix Multiplication and Addition
template.

2. In Application Project Settings, select Insert AXI Performance Monitor.

Enabling this option and building the project adds the APM IP core to your hardware system.
The APM IP uses a small amount of resources in the programmable logic. The SDSoC
environment connects the APM to the hardware/software interface ports, which are the
general purpose (GP) and high performance (HP) ports.

Chapter 6: Performance Measurement Using the AXI Performance Monitor

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=74

3. Select the mmult and madd functions to be implemented in hardware. Clean and build the
project using the Debug configuration (selected by default).

Monitor the Standalone Instrumented System
To monitor the system, do the following:

1. After the build completes, connect the board to your computer, and power up the board.

2. Click the Run → Debug Configurations button to open the window.

3. Select Xilinx SDx Application Debugger in the Debug configurations tree.

4. Click New Launch Configuration to create a new SDx Application Debugger configuration.

5. For Debug Type, select Standalone Application Debug.

6. For Connection, select Local.

7. Select the Performance Analysis check box in the Main tab.

After you select Performance Analysis, the performance analysis options are populated
automatically in the Main tab.

8. Click Apply, and then click Debug.

If prompted to switch perspectives, click Yes.

Chapter 6: Performance Measurement Using the AXI Performance Monitor

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=75

9. After the Debug Perspective opens, click Window → Perspective, and select Performance
Analysis in the Open Perspective dialog, and click OK.

10. To resume the application, select the Debug tab, and click Resume.

If prompted to switch perspectives, click No to stay on the Performance Analysis perspective.

Create a Linux Project and Implement APM
1. Open the SDSoC environment, and create a new project/workspace using any platform or

operating system selection. Select the Matrix Multiplication and Addition Template.

2. In SDx Application Project Settings, select Insert AXI Performance Monitor.

Enabling this option, and building the project adds the APM IP core to your hardware system.
The APM IP uses a small amount of resources in the programmable logic. The SDSoC
environment connects the APM to the hardware/software interface ports, which are the GP
and HP.

Chapter 6: Performance Measurement Using the AXI Performance Monitor

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=76

3. Select the mmult and madd functions to be implemented in hardware.

4. Clean and build the project using the Debug configuration, which is selected by default.

The following figure shows the APM Counter:

Monitor the Linux Instrumented System
1. With the completed build, copy the contents of the sd_card directory onto a SD card, and

boot Linux on the board.

2. Connect the board to your computer using both UART and JTAG cables.

3. Set up the Linux TCF agent target connection with the IP address of the board. See the SDK
Help topic on TCF for more information.

4. Click the Run → Debug Configuration menu to open Debug Configurations.

5. Select Xilinx Sdx Application Debugger in the Debug configuration tree.

6. Click New Launch Configuration to create a new Application Debugger configuration.

7. For Debug Type, select Linux Application Debug.

Chapter 6: Performance Measurement Using the AXI Performance Monitor

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 77Send Feedback

https://www.xilinx.com/html_docs/xilinx2018_3/SDK_Doc/xsct/connections/reference_connections_connect.html?hl=tcf
https://www.xilinx.com/html_docs/xilinx2018_3/SDK_Doc/xsct/connections/reference_connections_connect.html?hl=tcf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=77

8. For Connection, select Local.

9. Select the Performance Analysis check box.

After the Performance Analysis check box is selected, all the performance analysis options is
populated automatically in the Main tab.

10. Click Apply.

11. Click Debug.

If prompted to switch perspective to Debug, click Yes.

12. After Debug Perspective is displayed, click Window → Perspective, and then select
Performance Analysis in the Open Perspective dialog.

13. Click OK.

14. Select the Debug tab, and click on Resume to resume the application.

If prompted to switch perspectives, click No to stay on the Performance Analysis perspective.

15. After your program completes execution, click the Stop Analysis button.

If prompted by the Confirm Perspective Switch dialog box to stay in the Performance
Analysis perspective, click No.

Chapter 6: Performance Measurement Using the AXI Performance Monitor

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=78

16. Scroll through the analysis plots in the lower portion of the perspective to view different
performance statistics.

17. Click in any plot area to show a bigger version in the middle of the perspective.

The orange box allows you to focus on a particular time slice of data.

Analyzing the Performance
In this system, the APM is connected to the one port in use between the PS, PL, and the GP port.

Figure 22: APM Performance Count

The multiplier and adder accelerator cores are both connected to the accelerator coherency port
(ACP) for data input and output.

The GP port is used to issue control commands and get the status of the accelerator cores only,
not for data transfer. The blue Slot 0 is connected to the GP port, and the green Slot 1 is connect
to the ACP.

Note: The ACP port is not supported on Zynq UltraScale+ MPSoC device for SDSoC environment flows.

The APM is configured in Profile mode with two monitoring slots for each port (ACP and GP).
Profile mode provides event counting functionality for each slot. The type of statistics computed
by the APM for both reading and writing include:

• Transaction Count: Total number of requests that occur on the bus.

• Byte Counter: Total number of bytes sent (used for write throughput calculation).

• Latency: Time between the start of the address issuance and the last element sent.

Chapter 6: Performance Measurement Using the AXI Performance Monitor

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=79

The latency and byte counter statistics are used by the APM to automatically compute the
throughput (in MB/s). The latency and throughput values shown are for the 50 ms time interval.

Minimum, maximum, and averages also display for latency and throughput statistics.

Chapter 6: Performance Measurement Using the AXI Performance Monitor

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=80

Chapter 7

Real-World Examples
This chapter describes some real-world examples and shows the following:

• How these examples are optimized using both the top-down flow and bottom-up flow

○ The top-down flow is demonstrated using a Lucas-Kanade (LK) Optical Flow algorithm.

○ The bottom-up flow is demonstrated using a stereo vision block matching algorithm.

• What optimization directives were applied

• Why those directives were chosen

Top-Down: Optical Flow Algorithm
The Lucas-Kanade (LK) method is a widely used, differential method for optical flow estimation
or the estimation of movement of pixels between two related images. In this example system, the
related images are the current and previous images of a video stream. The LK method is a
compute intensive algorithm and works over a window of neighboring pixels using the least
square difference to find matching pixels.

The following code example shows how to implement this algorithm, where two input files are
read in, processed through function fpga_optflow, and the results written to an output file.

int main()
{
 FILE *f;
 pix_t *inY1 = (pix_t *)sds_alloc(HEIGHT*WIDTH);
 yuv_t *inCY1 = (yuv_t *)sds_alloc(HEIGHT*WIDTH*2);
 pix_t *inY2 = (pix_t *)sds_alloc(HEIGHT*WIDTH);
 yuv_t *inCY2 = (yuv_t *)sds_alloc(HEIGHT*WIDTH*2);
 yuv_t *outCY = (yuv_t *)sds_alloc(HEIGHT*WIDTH*2);
 printf("allocated buffers\n");

 f = fopen(FILEINAME,"rb");
 if (f == NULL) {
 printf("failed to open file %s\n", FILEINAME);
 return -1;
 }
 printf("opened file %s\n", FILEINAME);

 read_yuv_frame(inY1, WIDTH, WIDTH, HEIGHT, f);
 printf("read 1st %dx%d frame\n", WIDTH, HEIGHT);
 read_yuv_frame(inY2, WIDTH, WIDTH, HEIGHT, f);

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=81

 printf("read 2nd %dx%d frame\n", WIDTH, HEIGHT);

 fclose(f);
 printf("closed file %s\n", FILEINAME);

 convert_Y8toCY16(inY1, inCY1, HEIGHT*WIDTH);
 printf("converted 1st frame to 16bit\n");
 convert_Y8toCY16(inY2, inCY2, HEIGHT*WIDTH);
 printf("converted 2nd frame to 16bit\n");

 fpga_optflow(inCY1, inCY2, outCY, HEIGHT, WIDTH, WIDTH, 10.0);
 printf("computed optical flow\n");

 // write optical flow data image to disk
 write_yuv_file(outCY, WIDTH, WIDTH, HEIGHT, ONAME);

 sds_free(inY1);
 sds_free(inCY1);
 sds_free(inY2);
 sds_free(inCY2);
 sds_free(outCY);
 printf("freed buffers\n");

return 0;
}

This method is typical for a top-down design flow using standard C/C++ data types.

Function fpa_optflow is shown in the following code example and contains the following sub-
functions:

• readMatRows

• computeSum

• computeFlow

• getOutPix

• writeMatRows

int fpga_optflow (yuv_t *frame0, yuv_t *frame1, yuv_t *framef, int height,
int width, int stride, float clip_flowmag)
{
#ifdef COMPILEFORSW
 int img_pix_count = height*width;
#else
 int img_pix_count = 10;
#endif

 if (f0Stream == NULL) f0Stream = (pix_t *) malloc(sizeof(pix_t) *
img_pix_count);
 if (f1Stream == NULL) f1Stream = (pix_t *) malloc(sizeof(pix_t) *
img_pix_count);
 if (ffStream == NULL) ffStream = (yuv_t *) malloc(sizeof(yuv_t) *
img_pix_count);

 if (ixix == NULL) ixix = (int *) malloc(sizeof(int) * img_pix_count);
 if (ixiy == NULL) ixiy = (int *) malloc(sizeof(int) * img_pix_count);
 if (iyiy == NULL) iyiy = (int *) malloc(sizeof(int) * img_pix_count);
 if (dix == NULL) dix = (int *) malloc(sizeof(int) * img_pix_count);

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=82

 if (diy == NULL) diy = (int *) malloc(sizeof(int) * img_pix_count);

 if (fx == NULL) fx = (float *) malloc(sizeof(float) * img_pix_count);
 if (fy == NULL) fy = (float *) malloc(sizeof(float) * img_pix_count);

 readMatRows (frame0, f0Stream, height, width, stride);
 readMatRows (frame1, f1Stream, height, width, stride);

 computeSum (f0Stream, f1Stream, ixix, ixiy, iyiy, dix, diy, height,
width);
 computeFlow (ixix, ixiy, iyiy, dix, diy, fx, fy, height, width);
 getOutPix (fx, fy, ffStream, height, width, clip_flowmag);

 writeMatRows (ffStream, framef, height, width, stride);

 return 0;
}

In this example, all of the functions in fpga_optflow are processing live video data, and can
benefit from hardware acceleration with DMAs used to transfer the data to and from the PS. If all
five functions are annotated to be hardware functions, the topology of the system is shown in
the following figure:

Figure 23: System Topology

PS

DMA

DMA

DMA

readMatRows

readMatRows

writeMatRows

computeSum computeFlow

getOutPix

X22628-051019

The system can be compiled into hardware and event tracing used to analyze the performance in
detail.

The issue here is that it takes a long time to complete— approximately 15 seconds for a single
frame. To process HD video, the system should process 60 frames per second or one frame every
16.7 ms. You can use optimization directives, as described below, to ensure the system meets the
target performance.

Optical Flow Memory Access Optimization
The first task is to optimize the transfer of data. In this case, because the system will process
steaming video, where each sample is processed in consecutive order, the memory transfer
optimization is used to ensure the SDSoC™ environment interprets all accesses as sequential in
nature.

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=83

This is performed by adding SDS pragmas before the function signatures for all functions
involved.

#pragma SDS data access_pattern(matB:SEQUENTIAL, pixStream:SEQUENTIAL)
#pragma SDS data mem_attribute(matB:PHYSICAL_CONTIGUOUS)
#pragma SDS data copy(matB[0:stride*height])
void readMatRows (yuv_t *matB, pix_t* pixStream,
 int height, int width, int stride);

#pragma SDS data access_pattern(pixStream:SEQUENTIAL, dst:SEQUENTIAL)
#pragma SDS data mem_attribute(dst:PHYSICAL_CONTIGUOUS)
#pragma SDS data copy(dst[0:stride*height])
void writeMatRows (yuv_t* pixStream, yuv_t *dst,
 int height, int width, int stride);

#pragma SDS data access_pattern(f0Stream:SEQUENTIAL, f1Stream:SEQUENTIAL)
#pragma SDS data access_pattern(ixix_out:SEQUENTIAL, ixiy_out:SEQUENTIAL,
iyiy_out:SEQUENTIAL)
#pragma SDS data access_pattern(dix_out:SEQUENTIAL, diy_out:SEQUENTIAL)
void computeSum(pix_t* f0Stream, pix_t* f1Stream,
 int* ixix_out, int* ixiy_out, int* iyiy_out,
 int* dix_out, int* diy_out,
 int height, int width);

#pragma SDS data access_pattern(ixix:SEQUENTIAL, ixiy:SEQUENTIAL,
iyiy:SEQUENTIAL)
#pragma SDS data access_pattern(dix:SEQUENTIAL, diy:SEQUENTIAL)
#pragma SDS data access_pattern(fx_out:SEQUENTIAL, fy_out:SEQUENTIAL)
void computeFlow(int* ixix, int* ixiy, int* iyiy,
 int* dix, int* diy,
 float* fx_out, float* fy_out,
 int height, int width);

#pragma SDS data access_pattern(fx:SEQUENTIAL, fy:SEQUENTIAL,
out_pix:SEQUENTIAL)
void getOutPix (float* fx, float* fy, yuv_t* out_pix,
 int height, int width, float clip_flowmag);

For the readMatRows and writeMatRows function arguments, which interface to the
processor, the memory transfers are specified as sequential accesses from physically contiguous
memory, and the data should be copied to and from the hardware function, and not simply
accessed from the accelerator. This ensures the data is copied efficiently. The following options
are available:

• Sequential: The data is transferred in the same sequential manner as it is processed. This type
of transfer requires the least amount of hardware overhead for high data processing rates and
means an area efficient datamover is used.

• Contiguous: The data is accessed from contiguous memory. This ensures there is no scatter-
gather overhead in the data transfer rate and an efficient fast hardware datamover is used.
This directive is supported by the associated scs_alloc library call in the main() function,
which ensures data for these arguments is stored in contiguous memory.

• Copy: The data is copied to and from the accelerator, negating the need for data accesses
back to the CPU or DDR memory. Because pointers are used, the size of the data to be copied
is specified.

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=84

For the remaining hardware functions, the data transfers are specified as sequential, allowing the
most efficient hardware to be used to connect the functions in the programmable logic (PL)
fabric.

Optical Flow Hardware Function Optimization
The hardware functions also require optimization directives to execute at the highest level of
performance. These are already present in the design example. Reviewing these highlights the
lessons learned from Understanding the Hardware Function Optimization Methodology. Most of
the hardware functions in this design example are optimized using primarily the PIPELINE
directive, in a manner similar to the getOutPix function.

Review of the getOutPix function shows:

• The sub-functions have an INLINE optimization applied to ensure the logic from these
functions is merged with the function above. This automatically occurs for small functions, but
the use of this directive ensures the sub-functions are always inlined, and there is no need to
pipeline the sub-functions.

• The inner loop of the getOutPix function is the loop that processes data at the level of each
pixel and is optimized with the PIPELINE directive to ensure it processes one pixel per clock.

pix_t getLuma (float fx, float fy, float clip_flowmag)
{
#pragma HLS inline
 float rad = sqrtf (fx*fx + fy*fy);

 if (rad > clip_flowmag) rad = clip_flowmag; // clamp to MAX
 rad /= clip_flowmag; // convert 0..MAX to 0.0..1.0
 pix_t pix = (pix_t) (255.0f * rad);

 return pix;
}

pix_t getChroma (float f, float clip_flowmag)
{
#pragma HLS inline
 if (f > clip_flowmag) f = clip_flowmag; // clamp big positive f to
MAX
 if (f < (-clip_flowmag)) f = -clip_flowmag; // clamp big negative f to -
MAX
 f /= clip_flowmag; // convert -MAX..MAX to -1.0..1.0
 pix_t pix = (pix_t) (127.0f * f + 128.0f); // convert -1.0..1.0 to
-127..127 to 1..255

 return pix;
}

void getOutPix (float* fx,
 float* fy,
 yuv_t* out_pix,
 int height, int width, float clip_flowmag)
{
 int pix_index = 0;
 for (int r = 0; r < height; r++) {
 for (int c = 0; c < width; c++) {

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=85

 #pragma HLS PIPELINE
 float fx_ = fx[pix_index];
 float fy_ = fy[pix_index];

 pix_t outLuma = getLuma (fx_, fy_, clip_flowmag);
 pix_t outChroma = (c&1)? getChroma (fy_, clip_flowmag) : getChroma
(fx_, clip_flowmag);
 yuv_t yuvpix;

 yuvpix = ((yuv_t)outChroma << 8) | outLuma;

 out_pix[pix_index++] = yuvpix;
 }
 }
}

If you examine the computeSum function, you will find examples of the ARRAY_PARTITION and
DEPENDENCE directives. In this function, the ARRAY_PARTITION directive is used on array
img1Win. Because img1Win is an array, it is implemented by default in a block RAM, which has
a maximum of two ports, as shown in the following code summary:

• img1Win: Used in a for-loop that is pipelined to process 1 sample per clock cycle.

• img1Win: Read from 8 + (KMEDP1-1) + (KMEDP1-1) times within the for-loop.

• img1Win: Written to (KMEDP1-1) + (KMEDP1-1) times within the for-loop.

void computeSum(pix_t* f0Stream,
 pix_t* f1Stream,
 int* ixix_out,
 int* ixiy_out,
 int* iyiy_out,
 int* dix_out,
 int* diy_out)
{

 static pix_t img1Win [2 * KMEDP1], img2Win [1 * KMEDP1];
 #pragma HLS ARRAY_PARTITION variable=img1Win complete dim=0
 ...
 for (int r = 0; r < MAX_HEIGHT; r++) {
 for (int c = 0; c < MAX_WIDTH; c++) {
 #pragma HLS PIPELINE
 ...
 int cIxTopR = (img1Col_ [wrt] - img1Win [wrt*2 + 2-2]) /2 ;
 int cIyTopR = (img1Win [(wrt+1)*2 + 2-1] - img1Win [(wrt-1)*2 +
2-1]) /2;
 int delTopR = img1Win [wrt*2 + 2-1] - img2Win [wrt*1 + 1-1];
 ...
 int cIxBotR = (img1Col_ [wrb] - img1Win [wrb*2 + 2-2]) /2 ;
 int cIyBotR = (img1Win [(wrb+1)*2 + 2-1] - img1Win [(wrb-1)*2 +
2-1]) /2;
 int delBotR = img1Win [wrb*2 + 2-1] - img2Win [wrb*1 + 1-1];
 ...
 // shift windows
 for (int i = 0; i < KMEDP1; i++) {
 img1Win [i * 2] = img1Win [i * 2 + 1];
 }
 for (int i=0; i < KMEDP1; ++i) {
 img1Win [i*2 + 1] = img1Col_ [i];
 ...

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=86

 }
 ...
 } // for c
 } // for r
 ...
}

Because a block RAM only supports a maximum of two accesses per clock cycle, all of these
accesses cannot be made in one clock cycle. As noted previously in the methodology, the
ARRAY_PARTITION directive is used to partition the array into smaller blocks, in this case into
individual elements, by using the complete option. This enables parallel access to all elements of
the array at the same time and ensures that the for-loop processes data every clock cycle.

The final optimization directive worth reviewing is the DEPENDENCE directive. The csIxix
array has a DEPENDENCE directive applied to it. The array is read from and then written to using
different indices, as shown in the following code example, and performs these reads and writes
within a pipelined loop.

 void computeSum(pix_t* f0Stream,
 pix_t* f1Stream,
 int* ixix_out,
 int* ixiy_out,
 int* iyiy_out,
 int* dix_out,
 int* diy_out)
{
 ...
 static int csIxix [MAX_WIDTH], csIxiy [MAX_WIDTH], csIyiy [MAX_WIDTH],
csDix [MAX_WIDTH], csDiy [MAX_WIDTH];
 ...
 #pragma HLS DEPENDENCE variable=csIxix inter WAR false
 ...
 int zIdx= - (KMED-2);
 int nIdx = zIdx + KMED-2;

 for (int r = 0; r < MAX_HEIGHT; r++) {
 for (int c = 0; c < MAX_WIDTH; c++) {
 #pragma HLS PIPELINE
 ...
 if (zIdx >= 0) {
 csIxixL = csIxix [zIdx];
 ...
 }
 ...
 csIxix [nIdx] = csIxixR;
 ...
 zIdx++;
 if (zIdx == MAX_WIDTH) zIdx = 0;
 nIdx++;
 if (nIdx == MAX_WIDTH) nIdx = 0;
 ...
 } // for c
 } // for r
 ...
}

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=87

When a loop is pipelined in hardware, the accesses to the array overlap in time. The compiler
analyzes all accesses to an array and issues a warning if any condition exists where the write in
iteration N overwrites the data for iteration N + K, thus changing the value. The warning
prevents implementing a pipeline with II = 1.

The following example shows read and write operations for a loop over multiple iterations for an
array with indices 0 through 9. As in the code above, it is possible for the address counters to
differ between the read and write operations and to return to zero, before all loop iterations are
complete. The operations are shown overlapped in time, just like a pipelined implementation.

R4---------W8
 R5---------W9
 R6---------W0
 R7---------W1
 R8–––------W2
 R9--------W3
 R0--------W4
 R1--------W5
 R2--------W6

In sequential C code, where each iteration completes before the next starts, it is clear what order
the reads and writes occur. However, in a concurrent hardware pipeline, the accesses can overlap
and occur in different orders. As can be seen clearly above, it is possible for the read from index
8, as noted by R8, to occur in time before the write to index 8 (W8) which is meant to occur
some iterations before R8.

The compiler warns of this condition, and the DEPENDENCE directive is used with the setting
false to tell the compiler that there is no dependence on read-after-write, allowing the
compiler to create the pipelined hardware which performs with II=1.

The DEPENDENCE directive is typically used to inform the compiler of algorithm behaviors and
conditions external to the function of which is it unaware from static analysis of the code. If a
DEPENDENCE directive is set incorrectly, the issue will be discovered in hardware emulation, if
the results from the hardware are different from those achieved with the software.

Optical Flow Results
With both the data transfers and hardware functions optimized, the hardware functions are
recompiled, and the performance is analyzed using event traces. The figure below shows the start
of the event traces, and clearly shows the pipelined hardware functions do not execute until the
previous function has completed. Each hardware function begins to process data as soon as data
becomes available.

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=88

Figure 24: Trace Result

The complete view of the event traces shows all hardware functions and data transfers executing
in parallel for the highest performing system, as shown in the following figure.

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=89

Figure 25: Event Traces

To get the duration time, hover on top of one of the lanes to obtain a popup window that shows
the duration of the accelerator runtime. The execution time is just under 15.5 ms; this meets the
targeted 16.8 ms necessary to achieve 60 frames per second. The following figure shows the AXI
State View for trace legend:

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=90

Figure 26: AXI State View Trace Legend

• Software: Execution done on the Arm® processor core.

• Accelerator: Execution done in the accelerator(s).

• Transfer: Data being transferred from Arm core.

• Receive: Data being received by the Arm processor core.

Bottom-Up: Stereo Vision Algorithm
The stereo vision algorithm uses images from two cameras horizontally displaced from each
other. This provides two different views of the scene from different vantage points, similar to
human vision. To obtain the relative depth information from the scene, compare the two images
to build a disparity map. The disparity map encodes the relative positions of objects in the
horizontal coordinates such that the values are inversely proportional to the scene depth at the
corresponding pixel location.

The bottom-up methodology starts with a fully optimized hardware design that is already
synthesized using the Vivado® High-Level Synthesis (HLS) tool and then integrate the pre-
optimized hardware function with software in the SDSoC environment.

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=91

This flow allows hardware designers who are already knowledgeable with the HLS tool to build
and optimize the entire hardware function first, using advanced HLS tool features and then for
software programmers to leverage this existing work.

The following section uses the stereo vision design example to take you through the steps of
starting with an optimized hardware function in the HLS tool and build an application that
integrates the full system with hardware and software running on the board using the SDSoC
environment. The following figure shows the final system to be realized, and highlights the
existing stereo_remap_bm hardware function to be incorporated into the SDSoC environment.

Figure 27: Block Diagram of System

Application

Libraries

Linux

Stub

Drivers

AXI

stereo_remap_bm
Histogram
equalize

Histogram
equalize

PS

PL

Rectify
Stereo Block

Matching Overlay

X22779-051019

In the bottom-up flow, the general optimization methodology for the SDSoC environment, as
detailed in this guide, is reversed. By definition, you would start with an optimized hardware
function, and then seek to incorporate it into the SDSoC environment and optimize the data
transfers.

Stereo Vision Hardware Function Optimization
The following code example shows the existing stereo_remap_bm hardware function with the
optimization pragmas highlighted. Before reviewing the optimization directives, note the
following details about the function:

• The hardware function contains sub-functions readLRinput, writeDispOut, and
writeDispOut that have also been optimized.

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=92

• The hardware function also uses pre-optimized functions, prefixed with the namespace hls,
from the Vivado HLS tool video library, hls_video.h. These sub-functions use their own
data type of MAT.

#include "hls_video.h"
#include "top.h"
#include "transform.h"

void readLRinput (yuv_t *inLR,
 hls::Mat<IMG_HEIGHT, IMG_WIDTH, HLS_8UC1>& img_l,
 hls::Mat<IMG_HEIGHT, IMG_WIDTH, HLS_8UC1>& img_r,
 int height, int dual_width, int width, int stride)
{

 for (int i=0; i < height; ++i) {
#pragma HLS loop_tripcount min=1080 max=1080 avg=1080
 for (int j=0; j < stride; ++j) {
#pragma HLS loop_tripcount min=1920 max=1920 avg=1920
 #pragma HLS PIPELINE
 yuv_t tmpData = inLR [i*stride + j]; // from yuv_t array:
consume height*stride
 if (j < width)
 img_l.write (tmpData & 0x00FF); // to HLS_8UC1 stream
 else if (j < dual_width)
 img_r.write (tmpData & 0x00FF); // to HLS_8UC1 stream
 }
 }
}

void writeDispOut(hls::Mat<IMG_HEIGHT, IMG_WIDTH, HLS_8UC1>& img_d,
 yuv_t *dst,
 int height, int width, int stride)
{
 pix_t tmpOut;
 yuv_t outData;

 for (int i=0; i < height; ++i) {
#pragma HLS loop_tripcount min=1080 max=1080 avg=1080
 for (int j=0; j < stride; ++j) {
#pragma HLS loop_tripcount min=960 max=960 avg=960
#pragma HLS PIPELINE
 if (j < width) {
 tmpOut = img_d.read().val[0];
 outData = ((yuv_t) 0x8000) | ((yuv_t)tmpOut);
 dst [i*stride +j] = outData;
 }
 else {
 outData = (yuv_t) 0x8000;
 dst [i*stride +j] = outData;
 }
 }
 }
}

namespace hls {
void SaveAsGray(
 Mat<IMG_HEIGHT, IMG_WIDTH, HLS_16SC1>& src,
 Mat<IMG_HEIGHT, IMG_WIDTH, HLS_8UC1>& dst)
{
 int height = src.rows;
 int width = src.cols;
 for (int i = 0; i < height; i++) {

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=93

#pragma HLS loop_tripcount min=1080 max=1080 avg=1080
 for (int j = 0; j < width; j++) {
#pragma HLS loop_tripcount min=960 max=960 avg=960
#pragma HLS pipeline II=1
 Scalar<1, short> s;
 Scalar<1, unsigned char> d;
 src >> s;

 short uval = (short) (abs ((int)s.val[0]));

 // Scale to avoid overflow. The right scaling here for a
 // good picture depends on the NDISP parameter during
 // block matching.
 d.val[0] = (unsigned char)(uval >> 1);
 //d.val[0] = (unsigned char)(s.val[0] >> 1);
 dst << d;
 }
 }
}
} // namespace hls

int stereo_remap_bm_new(
 yuv_t *img_data_lr,
 yuv_t *img_data_disp,
 hls::Window<3, 3, param_T > &lcameraMA_l,
 hls::Window<3, 3, param_T > &lcameraMA_r,
 hls::Window<3, 3, param_T > &lirA_l,
 hls::Window<3, 3, param_T > &lirA_r,
 param_T (&ldistC_l)[5],
 param_T (&ldistC_r)[5],
 int height, // 1080
 int dual_width, // 1920 (two 960x1080 images side by side)
 int stride_in, // 1920 (two 960x1080 images side by side)
 int stride_out) // 960
{
 int width = dual_width/2; // 960

#pragma HLS DATAFLOW

 hls::Mat<IMG_HEIGHT, IMG_WIDTH, HLS_8UC1> img_l(height, width);
 hls::Mat<IMG_HEIGHT, IMG_WIDTH, HLS_8UC1> img_r(height, width);

 hls::Mat<IMG_HEIGHT, IMG_WIDTH, HLS_8UC1> img_l_remap(height,
width); // remapped left image
 hls::Mat<IMG_HEIGHT, IMG_WIDTH, HLS_8UC1> img_r_remap(height,
width); // remapped left image
 hls::Mat<IMG_HEIGHT, IMG_WIDTH, HLS_8UC1> img_d(height, width);

 hls::Mat<IMG_HEIGHT, IMG_WIDTH, HLS_16SC2> map1_l(height, width);
 hls::Mat<IMG_HEIGHT, IMG_WIDTH, HLS_16SC2> map1_r(height, width);
 hls::Mat<IMG_HEIGHT, IMG_WIDTH, HLS_16UC2> map2_l(height, width);
 hls::Mat<IMG_HEIGHT, IMG_WIDTH, HLS_16UC2> map2_r(height, width);

 hls::Mat<IMG_HEIGHT, IMG_WIDTH, HLS_16SC1> img_disp(height, width);
 hls::StereoBMState<15, 32, 32> state;

// ddr -> kernel streams: extract luma from left and right yuv images
// store it in single channel HLS_8UC1 left and right Mat's
 readLRinput (img_data_lr, img_l, img_r, height, dual_width, width,
stride_in);

//////////////////////// remap left and right images, all types are
HLS_8UC1 //////////

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=94

 hls::InitUndistortRectifyMapInverse(lcameraMA_l, ldistC_l, lirA_l,
map1_l, map2_l);
 hls::Remap<8>(img_l, img_l_remap, map1_l, map2_l, HLS_INTER_LINEAR);
 hls::InitUndistortRectifyMapInverse(lcameraMA_r, ldistC_r, lirA_r,
map1_r, map2_r);
 hls::Remap<8>(img_r, img_r_remap, map1_r, map2_r, HLS_INTER_LINEAR);

////////// find disparity of remapped images //////////
 hls::FindStereoCorrespondenceBM(img_l_remap, img_r_remap, img_disp,
state);
 hls::SaveAsGray(img_disp, img_d);

 // kernel stream -> ddr : output single wide
 writeDispOut (img_d, img_data_disp, height, width, stride_out);

 return 0;
}

int stereo_remap_bm(
 yuv_t *img_data_lr,
 yuv_t *img_data_disp,
 int height, // 1080
 int dual_width, // 1920 (two 960x1080 images side by side)
 int stride_in, // 1920 (two 960x1080 images side by side)
 int stride_out) // 960
{
//1920*1080
//#pragma HLS interface m_axi port=img_data_lr depth=2073600
//#pragma HLS interface m_axi port=img_data_disp depth=2073600

 hls::Window<3, 3, param_T > lcameraMA_l;
 hls::Window<3, 3, param_T > lcameraMA_r;
 hls::Window<3, 3, param_T > lirA_l;
 hls::Window<3, 3, param_T > lirA_r;
 param_T ldistC_l[5];
 param_T ldistC_r[5];

 for (int i=0; i<3; i++) {
 for (int j=0; j<3; j++) {
 lcameraMA_l.val[i][j]=cameraMA_l[i*3+j];
 lcameraMA_r.val[i][j]=cameraMA_r[i*3+j];
 lirA_l.val[i][j]=irA_l[i*3+j];
 lirA_r.val[i][j]=irA_r[i*3+j];
 }
 }
 for (int i=0; i<5; i++) {
 ldistC_l[i] = distC_l[i];
 ldistC_r[i] = distC_r[i];
 }

 int ret = stereo_remap_bm_new(img_data_lr,
 img_data_disp,
 lcameraMA_l,
 lcameraMA_r,
 lirA_l,
 lirA_r,
 ldistC_l,
 ldistC_r,
 height,

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=95

 dual_width,
 stride_in,
 stride_out);
 return ret;
}

As noted in Understanding the Hardware Function Optimization Methodology, the primary
optimization directives used are the PIPELINE and DATAFLOW directives. Additionally, the
LOOP_TRIPCOUNT directive is used.

Based on the recommendations for optimizing hardware functions, which process frames of data,
the PIPELINE directives are all applied to for-loops that process data at the sample level, or in
this case, the pixel level. This ensures hardware pipelining is used to achieve the highest
performing design.

The LOOP_TRIPCOUNT directives are used on for-loops, for which the upper bound of the loop
index is defined by a variable, and the exact value, which is unknown at compile time. The
estimated tripcount, or loop iteration count, allows the reports generated by the HLS tool to
include expected values for latency and initiation interval (II), instead of unknowns. This directive
has no impact on the hardware created—it only impacts reporting.

The top-level stereo_remap_bm function is composed of the optimized sub-functions and a
number of functions from the HLS tool video library (hls_video.h). For details about the
library functions provided by the HLS tool video library, refer to Vivado Design Suite User Guide:
High-Level Synthesis (UG902).

The functions provided in the HLS tool video library are already pre-optimized and contain all the
optimization directives to ensure they are implemented with the highest possible performance.
The top-level function is therefore composed of sub-functions that are all optimized, and it only
requires the DATAFLOW directive to ensure each sub-function starts to execute in hardware as
soon as data becomes available.

int stereo_remap_bm(..) {

#pragma HLS DATAFLOW
 readLRinput (img_data_lr, img_l, img_r, height, dual_width, width, stride
 hls::InitUndistortRectifyMapInverse(lcameraMA_l, ldistC_l, lirA_l,
map1_l, map2_l);
 hls::Remap<8>(img_l, img_l_remap, map1_l, map2_l, HLS_INTER_LINEAR);
 hls::InitUndistortRectifyMapInverse(lcameraMA_r, ldistC_r, lirA_r,
map1_r, map2_r);
 hls::Remap<8>(img_r, img_r_remap, map1_r, map2_r, HLS_INTER_LINEAR);
 hls::Duplicate(img_l_remap, img_l_remap_bm, img_l_remap_pt);
 hls::FindStereoCorrespondenceBM(img_l_remap_bm, img_r_remap, img_disp,
state);
 hls::SaveAsGray(img_disp, img_d);
 writeDispOut (img_l_remap_pt, img_d, img_data_disp, height, dual_width,
width, stride);

}

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 96Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=96

In general, the DATAFLOW optimization is not required because the SDSoC™ environment
automatically ensures that data is passed from one hardware function to the next, as soon as it
becomes available; however, in this example, the functions within stereo_remap_bm are using
the HLS tool data type hls::stream, which cannot be compiled on the Arm® processor and
cannot be used in the hardware function interface in the SDSoC environment. For this reason,
the top-level hardware function must be stereo_remap_bm and thus, the DATAFLOW
directive is used to achieve high-performance transfers between the sub-functions. If this were
not the case, the DATAFLOW directive could be removed and each sub-function within
stereo_remap_bm could be specified as a hardware function.

The hardware functions in this design example use the data type Mat, that is based on the HLS
tool data type hls::stream. The hls::stream data type can only be accessed in a sequential
manner. Data is pushed on and popped off.

• In software simulation, the hls::stream data type has infinite size.

• In hardware, the hls::stream data type is implemented as a single register and can only
store one data value at a time, because it is expected that the streaming data is consumed
before the previous value is overwritten.

By specifying the top-level stereo_remap_bm function as the hardware function, the effects of
these hardware types can be ignored in the software environment; however, when these
functions are incorporated into the SDSoC environment, they cannot be compiled on the Arm
processor, and the system can only be verified through hardware emulation, executing on the
target platform, or both.

IMPORTANT! When incorporating hardware functions that contain the HLS tool hardware data types into the
SDSoC environment, ensure the functions have been fully verified through C compilation and hardware
simulation within the HLS tool environment.

IMPORTANT! The hls::stream data type is designed for use within the HLS tool, but is unsuitable for
running software on embedded CPUs. Therefore, this type should not be part of the top-level hardware function
interface.

If any of the arguments of the hardware function use any HLS tool specific data types, the
function must be enclosed by a top-level C/C++ wrapper function that exposes only native C/C+
+ types in the function argument list.

Optimizing the Data Motion Network
After importing the pre-optimized hardware function into a project in the SDSoC environment,
the first task is to remove any interface optimizations. Based on the data types of the hardware
function and data access, the interface between the PS and the hardware function is managed
and automatically optimized. See Data Motion Optimization.

• Remove any INTERFACE directives present in the hardware function.

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=97

• Remove any DATA_PACK directives that reference variables present in the hardware function
argument list.

• Remove any of the Vivado HLS tool hardware data types by enclosing the top-level function
in wrappers that only use native C/C++ types for the function arguments.

In this example, the functions to be accelerated are captured inside a single top-level hardware
function, stereo_remap_bm.

int main() {

 unsigned char *inY = (unsigned char *)sds_alloc(HEIGHT*DUALWIDTH);
 unsigned short *inCY = (unsigned short *)sds_alloc(HEIGHT*DUALWIDTH*2);
 unsigned short *outCY = (unsigned short *)sds_alloc(HEIGHT*DUALWIDTH*2);
 unsigned char *outY = (unsigned char *)sds_alloc(HEIGHT*DUALWIDTH);

 // read double wide image from disk
 if (read_yuv_file(inY, DUALWIDTH, DUALWIDTH, HEIGHT, FILEINAME) != 0)
 return -1;

 convert_Y8toCY16(inY, inCY, HEIGHT*DUALWIDTH);

 stereo_remap_bm(inCY, outCY, HEIGHT, DUALWIDTH, DUALWIDTH);

 // write single wide image to disk
 convert_CY16toY8(outCY, outY, HEIGHT*DUALWIDTH);
 write_yuv_file(outY, DUALWIDTH, DUALWIDTH, HEIGHT, ONAME);

 // write single wide image to disk
 sds_free(inY);
 sds_free(inCY);
 sds_free(outCY);
 sds_free(outY);
 return 0;
}

The key to optimizing the memory accesses to the hardware is to review the data types passed
into the hardware function. Reviewing the function signature shows the key variables names to
optimize: the input and output data streams img_data_lr and img_data_disp.

int stereo_remap_bm(
 yuv_t *img_data_lr,
 yuv_t *img_data_disp,
 int height,
 int dual_width,
 int stride);

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=98

Because the data is transferred in a sequential manner, first ensure that the access pattern is
defined as SEQUENTIAL for both arguments. For the next optimization, ensure the data transfer
is not interrupted by a scatter gather DMA operation by specifying the memory_attribute as
PHYSICAL_CONTIGUOUS|NON_CACHEABLE. This also requires that the memory is allocated
with sds_alloc from sds_lib.

#include "sds_lib.h"
int main() {

 unsigned char *inY = (unsigned char *)sds_alloc(HEIGHT*DUALWIDTH);
 unsigned short *inCY = (unsigned short *)sds_alloc(HEIGHT*DUALWIDTH*2);
 unsigned short *outCY = (unsigned short *)sds_alloc(HEIGHT*DUALWIDTH*2);
 unsigned char *outY = (unsigned char *)sds_alloc(HEIGHT*DUALWIDTH);

}

Finally, the copy directive is used to ensure the data is explicitly copied to the accelerator, and
that the data is not accessed from shared memory.

#pragma SDS data access_pattern(img_data_lr:SEQUENTIAL)
#pragma SDS data mem_attribute(img_data_lr:PHYSICAL_CONTIGUOUS|
NON_CACHEABLE)
#pragma SDS data copy(img_data_lr[0:stride*height])
#pragma SDS data access_pattern(img_data_disp:SEQUENTIAL)
#pragma SDS data mem_attribute(img_data_disp:PHYSICAL_CONTIGUOUS|
NON_CACHEABLE)
#pragma SDS data copy(img_data_disp[0:stride*height])
int stereo_remap_bm(
 yuv_t *img_data_lr,
 yuv_t *img_data_disp,
 int height,
 int dual_width,
 int stride);

With these optimization directives, the memory access between the PS and PL is optimized for
the most efficient transfers.

Stereo Vision Results
After the hardware function optimized with the Vivado HLS tool is wrapped, as in this example,
to ensure the HLS tool hardware data types are not exposed at the interface of the hardware
function, any interface directives are removed and the data transfers optimized, the hardware
functions are recompiled, and the performance is analyzed using event traces.

The following figure shows the complete view of the event traces, and all hardware functions and
data transfers executing in parallel for the highest performing system.

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=99

Figure 28: Event Traces

To get the duration time, hover over one of the lanes to display a popup window that shows the
duration of the accelerator runtime. The execution time is 15.86 ms; this meets the targeted 16.8
ms necessary to achieve 60 frames per second for live video.

Chapter 7: Real-World Examples

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=100

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 101Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=101

1. SDSoC Environments Release Notes, Installation, and Licensing Guide (UG1294)

2. SDSoC Environment User Guide (UG1027)

3. SDSoC Environment Getting Started Tutorial (UG1028)

4. SDSoC Environment Tutorial: Platform Creation (UG1236)

5. SDSoC Environment Platform Development Guide (UG1146)

6. SDSoC Environment Profiling and Optimization Guide (UG1235)

7. SDx Command and Utility Reference Guide (UG1279)

8. SDSoC Environment Programmers Guide (UG1278)

9. SDSoC Environment Debugging Guide (UG1282)

10. SDx Pragma Reference Guide (UG1253)

11. UltraFast Embedded Design Methodology Guide (UG1046)

12. Zynq-7000 SoC Software Developers Guide (UG821)

13. Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137)

14. ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC User Guide (UG850)

15. ZCU102 Evaluation Board User Guide (UG1182)

16. PetaLinux Tools Documentation: Reference Guide (UG1144)

17. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

18. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

19. SDSoC Development Environment web page

20. Vivado® Design Suite Documentation

Training Resources
1. SDSoC Development Environment and Methodology

2. Advanced SDSoC Development Environment and Methodology

Appendix A: Additional Resources and Legal Notices

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 102Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1294-sdsoc-rnil.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://github.com/Xilinx/SDSoC-Tutorials/tree/master/getting-started-tutorial
https://github.com/Xilinx/SDSoC-Tutorials/tree/master/platform-creation-tutorial
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1282-sdsoc-debugging-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=zcu102;d=ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/training/courses/sdsoc-development-environment-method.html
https://www.xilinx.com/training/courses/advanced-sdsoc-development-environment-methodology.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=102

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Appendix A: Additional Resources and Legal Notices

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 103Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=103

Copyright

© Copyright 2016-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, ISE, Kintex, Spartan,
Versal, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. OpenCL and the OpenCL logo are trademarks of
Apple Inc. used by permission by Khronos. HDMI, HDMI logo, and High-Definition Multimedia
Interface are trademarks of HDMI Licensing LLC. AMBA, AMBA Designer, Arm, ARM1176JZ-S,
CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and
other countries. All other trademarks are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

UG1235 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Profiling and Optimization Guide 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1235&Title=SDSoC%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=104

	SDSoC Profiling and Optimization Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Software Acceleration with SDSoC
	Execution Model of an SDSoC Application
	SDSoC Build Process

	Ch. 2: Estimating Performance
	Profiling and Instrumenting Code to Measure Performance
	SDSCC/SDS++ Performance Estimation Flow Options

	Ch. 3: Improving System Performance
	Improving Hardware Function Parallelism
	Top-Level Hardware Function Guidelines
	Using Vivado Design Suite HLS Libraries

	Increasing System Parallelism and Concurrency
	Data Motion Network Generation in SDSoC
	System Port
	Data Mover
	Zero Copy Data Mover
	Accelerator Interface

	Ch. 4: Optimizing the Hardware Function
	Understanding the Hardware Function Optimization Methodology
	Baselining Hardware Functions
	Optimizing Metrics
	Pipelining for Performance
	Hardware Function Pipeline Strategies
	Frame-Based C Code
	Sample-Based C Code

	Optimizing Structures for Performance
	Reducing Latency
	Reducing Area
	Design Optimization Workflow
	Optimization Guidelines
	Function Inlining
	Loop Pipelining and Loop Unrolling
	Loop Pipelining
	Loop Unrolling
	Factors Limiting the Parallelism Achieved by Loop Pipelining and Loop Unrolling

	Increasing Local Memory Bandwidth
	Array Partitioning
	Array Reshaping

	Data Flow Pipelining
	Function Data Flow Pipelining
	Loop Dataflow Pipelining

	Hardware Function Interfacing

	Ch. 5: Memory Access Optimizations
	Data Motion Optimization
	Memory Allocation
	Copy and Shared Memory Semantics
	Data Cache Coherency

	Data Access Patterns
	Algorithm with Poor Data Access Patterns
	Standard Horizontal Convolution
	Standard Vertical Convolution
	Standard Border Pixel Convolution

	Algorithm with Optimal Data Access Patterns
	Optimal Horizontal Convolution
	Optimal Vertical Convolution
	Optimal Border Pixel Convolution
	Optimal Data Access Patterns

	Ch. 6: Performance Measurement Using the AXI Performance Monitor
	Create a Standalone Project and Implementing APM
	Monitor the Standalone Instrumented System
	Create a Linux Project and Implement APM
	Monitor the Linux Instrumented System
	Analyzing the Performance

	Ch. 7: Real-World Examples
	Top-Down: Optical Flow Algorithm
	Optical Flow Memory Access Optimization
	Optical Flow Hardware Function Optimization
	Optical Flow Results

	Bottom-Up: Stereo Vision Algorithm
	Stereo Vision Hardware Function Optimization
	Optimizing the Data Motion Network
	Stereo Vision Results

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

