
SDAccel Environment
Profiling and Optimization
Guide

UG1207 (v2019.1) June 5, 2019

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1207

Revision History
The following table shows the revision history for this document.

Section Revision Summary

06/05/2019 Version 2019.1

Profile Summary Report Updated Data Interpretation to reflect current view.

Waveform View Updated images and text in Data Interpretation Waveform
View and Data Interpretation Live Waveform to reflect
current waveform views.

Memory Data Transfer Types Added information about data transfer types.

Top Level Dataflow Added discussion about the use of top level dataflow
optimization.

General updates Updated figures and minor editorial changes.

Revision History

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=2

Table of Contents
Revision History...2

Chapter 1: Introduction.. 5
SDAccel Execution Model... 5
SDAccel Build Process... 7
SDAccel Optimization Flow Overview... 10

Chapter 2: SDAccel Profiling and Optimization Features...................... 16
System Estimate.. 16
HLS Report... 21
Profile Summary Report... 24
Application Timeline .. 30
Waveform View..38
Guidance.. 45
Using Implementation Tools... 48

Chapter 3: Kernel Optimization..51
Interface Attributes (Detailed Kernel Trace)..51
Optimizing Computational Parallelism...61
Optimizing Compute Units...73
Optimizing Memory Architecture..76

Chapter 4: Host Optimization.. 82
Reducing Overhead of Kernel Enqueing.. 82
Data Transfers... 83
Compute Unit Scheduling.. 88
Using the clEnqueueMigrateMemObjects API to Transfer Data...91

Chapter 5: Topological Optimization...92
Multiple Compute Units... 92
Using Multiple DDR Banks... 92

Appendix A: Examples..96

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=3

Appendix B: Additional Resources and Legal Notices............................. 97
Xilinx Resources...97
Documentation Navigator and Design Hubs...97
References..97
Please Read: Important Legal Notices... 98

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=4

Chapter 1

Introduction
This guide presents all SDx™ development environment features related to performance analysis
of the design. It is also logically structured to assist in the actual performance improvement
effort. Dedicated sections are available for the main components of the SDAccel™ environment
performance bottlenecks, namely accelerator, PCIe® bus transfer, and host code. Each of these
sections is structured to guide the developer from recognizing bottlenecks all the way to solution
approaches to increase overall system performance.

Note: Performance optimization assumes, as a starting point, a working design intended for performance
improvement. If erroneous behavior is encountered, look for guidance in SDAccel Environment Debugging
Guide (UG1281).

Similarly, the general concepts regarding coding of host code or accelerator kernels are not explained here;
these concepts are introduced in the SDAccel Environment Programmers Guide (UG1277).

SDAccel Execution Model
In the SDAccel framework, an application program is split between a host application and
hardware accelerated kernels with a communication channel between them. The host
application, written in C/C++ and using API abstractions like OpenCL, runs on an x86 server
while hardware accelerated kernels run within the Xilinx FPGA. The API calls, managed by the
Xilinx Runtime (XRT), are used to communicate with the hardware accelerators. Communication
between the host x86 machine and the accelerator board, including control and data transfers,
occurs across the PCIe bus. While control information is transferred between specific memory
locations in hardware, global memory is used to transfer data between the host application and
the kernels. Global memory is accessible by both the host processor and hardware accelerators,
while host memory is only accessible by the host application.

For instance, in a typical application, the host will first transfer data, to be operated on by the
kernel, from host memory into global memory. The kernel would subsequently operate on the
data, storing results back to the global memory. Upon kernel completion, the host would transfer
the results back into the host memory. Data transfers between the host and global memory
introduce latency which can be costly to the overall acceleration. To achieve acceleration in a real
system, the benefits achieved by hardware acceleration kernels must outweigh the extra latency
of the data transfers. The general structure of this acceleration platform is shown in the following
figure.

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 5Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1281-sdaccel-debugging-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=5

Figure 1: Architecture of an SDAccel Application

Custom Application

OpenCL API

Xilinx Runtime (XRT)

Drivers

Custom Kernels

AXI Interfaces

Global Memory

DMA

x86 Host CPU FPGA Device

PCIe

X21835-103118

The FPGA hardware platform, on the right-hand side, contains the hardware accelerated kernels,
global memory along with the DMA for memory transfers. Kernels can have one or more global
memory interfaces and are programmable. The SDAccel execution model can be broken down
into these steps:

1. The host application writes the data needed by a kernel into the global memory of the
attached device through the PCIe interface.

2. The host application sets up the kernel with its input parameters.

3. The host application triggers the execution of the kernel function on the FPGA.

4. The kernel performs the required computation while reading data from global memory, as
necessary.

5. The kernel writes data back to global memory and notifies the host that it has completed its
task.

6. The host application reads data back from global memory into the host memory and
continues processing as needed.

Chapter 1: Introduction

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=6

The FPGA can accommodate multiple kernel instances at one time; this can occur between
different types of kernels or multiple instances of the same kernel. The XRT transparently
orchestrates the communication between the host application and the kernels in the accelerator.
The number of instances of a kernel is determined by compilation options.

SDAccel Build Process
The SDAccel environment offers all of the features of a standard software development
environment:

• Optimized compiler for host applications

• Cross-compilers for the FPGA

• Robust debugging environment to help identify and resolve issues in the code

• Performance profilers to identify bottlenecks and optimize the code

Within this environment, the build process uses a standard compilation and linking process for
both the software elements, and the hardware elements of the project. As shown in the following
figure, the host application is built through one process using standard GCC compiler, and the
FPGA binary is built through a separate process using the Xilinx xocc compiler.

Figure 2: Software/Hardware Build Process

X22015-112618

Chapter 1: Introduction

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=7

1. Host application build process using GCC:

• Each host application source file is compiled to an object file (.o).

• The object files (.o) are linked with the Xilinx SDAccel runtime shared library to create the
executable (.exe).

2. FPGA build process is highlighted in the following figure:

• Each kernel is independently compiled to a Xilinx object (.xo) file.

○ C/C++ and OpenCL C kernels are compiled for implementation on an FPGA using the
xocc compiler. This step leverages the Vivado® HLS compiler. Pragmas and attributes
supported by Vivado HLS can be used in C/C++ and OpenCL C kernel source code to
specify the desired kernel micro-architecture and control the result of the compilation
process.

○ RTL kernels are compiled using the package_xo utility. The RTL kernel wizard in the
SDAccel environment can be used to simplify this process.

• The kernel .xo files are linked with the hardware platform (shell) to create the FPGA
binary (.xclbin). Important architectural aspects are determined during the link step. In
particular, this is where connections from kernel ports to global memory banks are
established and where the number of instances for each kernel is specified.

○ When the build target is software or hardware emulation, as described below, xocc
generates simulation models of the device contents.

○ When the build target is the system (actual hardware), xocc generates the FPGA binary
for the device leveraging the Vivado Design Suite to run synthesis and implementation.

Chapter 1: Introduction

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=8

Figure 3: FPGA Build Process

xocc -link Shell

.xclbin

OpenCL

xocc -c

.xo

C/C++

xocc -c

.xo

RTL

package_xo

.xo

X21155-111518

Note: The xocc compiler automatically uses the Vivado HLS and Vivado Design Suite tools to build the
kernels to run on the FPGA platform. It uses these tools with predefined settings which have proven to
provide good quality of results. Using the SDAccel environment and the xocc compiler does not require
knowledge of these tools; however, hardware-savvy developers can fully leverage these tools and use all
their available features to implement kernels.

Build Targets

The SDAccel tool build process generates the host application executable (.exe) and the FPGA
binary (.xclbin). The SDAccel build target defines the nature of FPGA binary generated by the
build process.

The SDAccel tool provides three different build targets, two emulation targets used for debug
and validation purposes, and the default hardware target used to generate the actual FPGA
binary:

• Software Emulation (sw_emu): Both the host application code and the kernel code are
compiled to run on the x86 processor. This allows iterative algorithm refinement through fast
build-and-run loops. This target is useful for identifying syntax errors, performing source-level
debugging of the kernel code running together with application, and verifying the behavior of
the system.

Chapter 1: Introduction

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=9

• Hardware Emulation (hw_emu): The kernel code is compiled into a hardware model (RTL)
which is run in a dedicated simulator. This build and run loop takes longer but provides a
detailed, cycle-accurate, view of kernel activity. This target is useful for testing the
functionality of the logic that will go in the FPGA and for getting initial performance
estimates.

• System (hw): The kernel code is compiled into a hardware model (RTL) and is then
implemented on the FPGA device, resulting in a binary that will run on the actual FPGA.

SDAccel Optimization Flow Overview
SDAccel environment is a complete software development environment for creating, compiling,
and optimizing C/C++/OpenCL applications to be accelerated on Xilinx FPGAs. The SDAccel
environment includes the three recommended flows for optimizing an application. For
information on each flow, refer to the following:

• Baselining Functionalities and Performance

• Optimizing Data Movement

• Optimizing Kernel Computation

Baselining Functionalities and Performance
Before starting any optimization efforts, it is important to understand the performance of your
application. This is achieved by baselining the application in terms of functionalities and
performance.

Chapter 1: Introduction

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=10

Figure 4: Baselining Functionalities and Performance Flow

Run application on processor

Profile application to identify
bottlenecks and select functions to be

accelerated.

Convert host code to use OpenCL APIs
Convert target functions to CL or C/C++

kernels

Run Software Emulation Verify Function
Correctness

Run Hardware Emulation

Analyze Kernel Compilation Reports,
Profile Summary, Timeline Trace, Device

HW Transactions

Build and Run application on FPGA
acceleration card

Analyze Profile Summary
Analyze Timeline Trace

Function/Performance baselined

X22238-042419

Identify Bottlenecks

The first step is to identify the bottlenecks of the current application running on your existing
platform. The most effective way is to run the application with profiling tools, like valgrind,
callgrind, and GNU gprof. The profiling data generated by these tools show the call graph
with the number of calls to all functions and their execution time. The functions that consume
the most execution time are good candidates to be offloaded and accelerated onto FPGAs.

Chapter 1: Introduction

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=11

Convert Target Functions

After the target functions are selected, convert them to OpenCL C kernels or C/C++ kernels
without any optimization. The application code calling these kernels will also need to be
converted to use OpenCL APIs for data movement and task scheduling.

TIP: Keep everything as simple as possible and minimize changes to the existing code, so you can quickly
generate a working design on the FPGA and get the baselined performance and resource number.

Run Software and Hardware Emulation

Next, run software and hardware emulation to verify the function correctness and generate
profiling data on the host code and the kernels. Analyze the kernel compilation reports, profile
summary, timeline trace, and device hardware transactions to understand the baselined
performance estimate such as timing, interval, and latency and resource utilization, such as DSP
and block RAM.

Build and Run the Application

The last step in baselining is building and running the application on an FPGA acceleration card.
Analyze the reports from the system compilation and the profiling data from application
execution to see the actual performance and resource utilization.

TIP: Save all the reports during baselining, so you can reference and compare the results during optimization.

Chapter 1: Introduction

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=12

Optimizing Data Movement
Figure 5: Optimizing Data Movement Flow

Optimize data movement that maximizes
utilization of PCIe link, DDR bank, on-chip

memories with only data transfer code

Run Software Emulation Verify Function
Correctness

Run Hardware Emulation

Analyze Kernel Compilation, Reports,
Profile Summary, Timeline Trace, Device

HW Transactions

Build and Run application on FPGA
acceleration card

Analyze Profile Summary
Analyze Timeline Trace

Data Movement Optimized

Goal met?

Goal met?

X22239-042419

In the OpenCL API, all data is first transferred from the host memory to the global memory on
the device and then from the global memory to the kernel for computation. The computation
results are written back from the kernel to the global memory and then from the global memory
to the host memory. A key factor in determining strategies for kernel optimization is
understanding how data can be efficiently moved around.

RECOMMENDED: Before optimizing computation, first optimize the data movement in the application.

Chapter 1: Introduction

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=13

During data movement optimization, it is important to isolate data transfer code from
computation code because inefficiency in computation might cause stalls in data movement.

RECOMMENDED: Xilinx recommends that you modify the host code and kernels with data transfer code only
for this optimization step.

The goal is to maximize the system level data throughput by maximizing PCIe bandwidth usage
and DDR bandwidth usage. To achieve this goal, it usually takes multiple iterations of running
software emulation, hardware emulation, as well as execution on FPGAs.

Chapter 1: Introduction

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=14

Optimizing Kernel Computation
Figure 6: Optimizing Kernel Computation Flow

Optimize kernels with both data
movement and computation code

following optimization guide

Run Software Emulation Verify
Function Correctness

Run Hardware Emulation

Analyze Kernel Compilation,
Reports, Profile Summary, Timeline

Trace, Device HW Transactions

Build and Run application on FPGA
acceleration card

Analyze Profile Summary
Analyze Timeline Trace

Application Optimized

Goal met?

Goal met?

X22240-042419

One of the key benefits of an FPGA is that you can create custom logic for your specific
application. The goal of kernel computation optimization is to create processing logic that can
consume all the data as soon as they arrive at kernel interfaces. The key metric during this step is
the initiation interval (II). This is generally achieved by expanding the processing code to match
the data path with techniques, such as function pipelining, loop unrolling, array partitioning, data
flowing, etc. The SDAccel environment produces various compilation reports and profiling data
during hardware emulation and system run to assist your optimization effort. Refer to Chapter 2:
SDAccel Profiling and Optimization Features for details on the compilation and profiling report.

Chapter 1: Introduction

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=15

Chapter 2

SDAccel Profiling and Optimization
Features

The SDAccel™ environment generates various reports on the kernel resource and performance
during compilation. It also collects profiling data during application execution in emulation mode
and on the FPGA acceleration card. The reports and profiling data provide you with information
on performance bottlenecks in the application and optimization techniques that can be used to
improve performance. This chapter describes how to generate the reports and collect, display,
and read the profiling results in the SDAccel environment.

System Estimate
In the SDAccel development environment, generating FPGA binary files is the step with the
longest execution time. The execution time is also most affected by the FPGA architecture and
the number of compute units placed on the FPGA fabric. Therefore, it is essential for the you to
have a quicker way to understand the performance of the application before running it on the
hardware, so you can spend more time iterating and optimizing your applications instead of
waiting for the FPGA programming file to generate.

The system estimate in the SDAccel development environment takes into account the target
hardware device and each compute unit in the application. Although an exact performance
metric can only be measured by running the application on the FPGA, the estimation report in
the development environment provides an accurate representation of the expected behavior.

GUI Flow
This report is automatically generated during the hardware emulation flow. There is one report
generated for each kernel and a top report for the complete binary container. It is easy to access
the reports from the Assistant window in the Emulation-HW folder.

The following figure shows the Assistant window with a System Estimate report for the
binary_container_1 and the kernel with the name run.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=16

Figure 7: System Estimate Report in the Assistant Window

Command Line
The following command generates the system performance estimate report
system_estimate.xtxt for all kernels in kernel.cl:

xocc -c -t hw_emu --platform xilinx:adm-pcie-7v3:1ddr:3.0 --report estimate
kernel.cl

The performance estimate report generated by the xocc -report estimate option provides
information on every binary container in the application, as well as every compute unit in the
design. The report is structured as follows:

• Target device information

• Summary of every kernel in the application

• Detailed information on every binary container in the solution

Data Interpretation
The following example report file represents the information generated for the estimate report:

Design Name: _xocc_compile_kernel_bin.dir
Target Device: xilinx:adm-pcie-ku3:2ddr-xpr:3.3
Target Clock: 200MHz
Total number of kernels: 1

Kernel Summary
Kernel Name Type Target OpenCL Library Compute Units
------------- ---- ------------------ -------------- -------------
smithwaterman clc fpga0:OCL_REGION_0 xcl_xocc 1

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=17

--
OpenCL Binary: xcl_xocc
Kernels mapped to: clc_region

Timing Information (MHz)
Compute Unit Kernel Name Module Name Target Frequency
--------------- ------------- ------------- ----------------
smithwaterman_1 smithwaterman smithwaterman 200

Estimated Frequency

202.020203

Latency Information (clock cycles)
Compute Unit Kernel Name Module Name Start Interval
--------------- ------------- ------------- --------------
smithwaterman_1 smithwaterman smithwaterman 29468

Best Case Avg Case Worst Case
--------- -------- ----------
29467 29467 29467

Area Information
Compute Unit Kernel Name Module Name FF LUT DSP BRAM
--------------- ------------- ------------- ---- ---- --- ----
smithwaterman_1 smithwaterman smithwaterman 2925 4304 1 10

Design and Target Device Summary

All design estimate reports begin with an application summary and information about the target
device. The device information is provided in the following section of the report:

Design Name: _xocc_compile_kernel_bin.dir
Target Device: xilinx:adm-pcie-ku3:2ddr-xpr:3.3
Target Clock: 200MHz
Total number of kernels: 1

For the design summary, the only information that is provided is the design name and the
selection of the target device. The other information provided in this section is the target board
and the clock frequency.

• Target Device: The name of the board that runs the application compiled by the SDAccel
development environment.

• Target Clock: Defines how fast the logic runs for compute units mapped to the FPGA fabric.
Both of these parameters are fixed by the device developer.

These parameters cannot be modified from within the SDAccel environment.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=18

Kernel Summary

The Kernel Summary section lists all of the kernels defined for the current SDAccel solution. The
following example shows the kernel summary:

Kernel Summary
Kernel Name Type Target OpenCL Library Compute Units
------------- ---- ------------------ -------------- -------------
smithwaterman clc fpga0:OCL_REGION_0 xcl_xocc 1

In addition to the kernel name, the summary also provides the execution target and type of the
input source. Because there is a difference in compilation and optimization methodology for
OpenCL™, C, and C/C++ source files, the type of kernel source file is specified.

The Kernel Summary section is the last summary information in the report. From here, detailed
information on each compute unit binary container is presented.

Timing Information

For each binary container, the detail section begins with the execution target of all compute
units. It also provides timing information for every compute unit. As a general rule, if an
estimated frequency is higher than that of the device target, the compute unit will be able to run
in the device. If the estimated frequency is below the target frequency, the kernel code for the
compute unit needs to be further optimized for the compute unit to run correctly on the FPGA
fabric. This information is shown in the following example:

OpenCL Binary: xcl_xocc
Kernels mapped to: clc_region

Timing Information (MHz)
Compute Unit Kernel Name Module Name Target Frequency
--------------- ------------- ------------- ----------------
smithwaterman_1 smithwaterman smithwaterman 200

Estimated Frequency

202.020203

It is important to understand the difference between the target and estimated frequencies.
Compute units are not placed in isolation into the FPGA fabric. Compute units are placed as part
of a valid FPGA design that can include other components defined by the device developer to
support a class of applications.

Because the compute unit custom logic is generated one kernel at a time, an estimated
frequency that is higher than the device target indicates to the developer using the SDAccel
environment that there should not be any timing problems during the creation of the FPGA
programming files.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=19

Latency Information

The latency information presents the execution profile of each compute unit in the binary
container. When analyzing this data, it is important to keep in mind that all values are measured
from the compute unit boundary through the custom logic. In-system latencies associated with
data transfers to global memory are not reported as part of these values. Also, the latency
numbers reported are only for compute units targeted at the FPGA fabric. The following is an
example of the latency report:

Latency Information (clock cycles)
Compute Unit Kernel Name Module Name Start Interval Best Case
--------------- ------------- ------------- -------------- ---------
smithwaterman_1 smithwaterman smithwaterman 29468 29467

Avg Case Worst Case
-------- ----------
29467 29467

The latency report is divided into the following fields:

• Start interval

• Best case latency

• Average case latency

• Worst case latency

The start interval defines the number of clock cycles that has to pass between invocations of a
compute unit for a given kernel.

The best, average, and worst case latency numbers refer to how much time it takes the compute
unit to generate the results of one ND Range data tile for the kernel. For cases where the kernel
does not have data dependent computation loops, the latency values will be the same. Data
dependent execution of loops introduces data specific latency variation that is captured by the
latency report.

The interval or latency numbers will be reported as "undef" for kernels with one or more
conditions listed below:

• OpenCL kernels that do not have explicit reqd_work_group_size(x,y,z)

• Kernels that have loops with variable bounds

Note: In case of undefined counters, consider using the TRIPCOUNT pragma.

Note: The latency information reflects estimates based on the analysis of the loop transformations and
exploited parallelism of the model. These advanced transformations such as pipelining and data flow can
heavily change the actual throughput numbers. Therefore, latency can only be used as relative guides
between different runs.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=20

Area Information

There are a limited number of fundamental building blocks available in each FPGA. These
fundamental blocks (FF, LUT, DSP, block RAM) are used by SDAccel development environment to
generate the custom logic for each compute unit in the design. The number of each fundamental
resource needed to implement the custom logic in a compute unit determines how many
compute units can be simultaneously loaded into the FPGA fabric. The following example shows
the area information reported for a compute unit:

Area Information
Compute Unit Kernel Name Module Name FF LUT DSP BRAM
--------------- ------------- ------------- ---- ---- --- ----
smithwaterman_1 smithwaterman smithwaterman 2925 4304 1 10

HLS Report
After compiling a kernel using the SDx™ development environment GUI or the XOCC command
line, the Vivado® High-Level Synthesis (HLS) tool HLS report is available. The HLS report includes
details about the performance and logic usage of the custom-generated hardware logic from user
kernel code. These details provide advanced users many insights into the kernel compilation
results to guide kernel optimization.

GUI Flow
After compiling a kernel using the SDx environment GUI, you can view the HLS Report in the
Assistant window. The report is under the Emulation-HW or System build configuration, and has
the <binary container> name, and the <kernel> name. This is illustrated in the following Assistant
window:

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=21

Figure 8: Assistant Window

Command Line
The HLS Report is designed to be viewed by the SDAccel environment GUI. However, for
command line users, a textual representation of this report is also published. This report can be
found inside the report directory situated under the kernel synthesis directory in the Vivado HLS
tool solution directory.

Because the xocc command generates several additional levels of hierarchy above this synthesis
directory, it is best to simply locate the file by name:

find . -name <module>_csynth.rpt

Where <module> is the name of the kernel.

Note: The find command also supports the look up using wildcards such that the following command will
look up all synthesis reports in any subdirectory:

find . -name "*_csynth.rpt"

Data Interpretation
The left pane of the HLS Report shows the module hierarchy. Each module generated as part of
the high level synthesis run is represented in this hierarchy. You can select any of these modules
to present the synthesis details of the module in the right side of the Synthesis Report window.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=22

Figure 9: HLS Report Window

The Synthesis Report is separated into several sections, namely:

• General Information

• Performance Estimates (timing and latency)

• Utilization Estimates

• Interface Information

If this information is part of a hierarchical block, it will sum up the information of the blocks
contained in the hierarchy. Due to this fact, the hierarchy can also be navigated from within the
report, when it is clear which instance contributes what to the overall design.

CAUTION! Regarding the absolute counts of cycles and latency, these numbers are based on estimates identified
during synthesis, especially with advanced transformations, such as pipelining and dataflow; these numbers
might not accurately reflect the final results. If you encounter question marks in the report, this might be due to
variable bound loops, and you are encouraged to set trip counts for such loops to have some relative estimates
presented in this report.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=23

Profile Summary Report
The SDAccel environment runtime automatically collects profiling data on host applications.
After the application finishes execution, the profile summary is saved in HTML, CSV, and Google
Protocol Buffer formats in the solution report directory or working directory. These reports can
be reviewed in a web browser, spreadsheet viewer, or the integrated Profile Summary view in the
SDAccel environment. The profile reports are generated in both SDAccel GUI and XOCC
command line flows.

GUI Flow
When you compile and execute an application from SDAccel environment, the profile summary is
automatically generated.

To control the generation of profile information, simply edit the run configuration through the
context menu of the build configuration, and select Run → Run Configurations.

After the configuration is run, the Assistant window enables easy access to the report from
below the Run Configuration item. After the run configuration has executed, modifying the
configuration can now be initiated directly through the context menu of the run configuration
item in the Assistant window.

Figure 10: Profile Summary access in SDAccel GUI Flow

Double-click the report to open it.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=24

Command Line
Command line users execute standalone applications outside the SDAccel environment. To
generate the profile summary data, you can compile your design without any additional options.
However, linking the bitstream file (xclbin) requires the --profile_kernel option.

The argument provided through the --profile_kernel option can be used to limit data
collection, which might be required in large systems. The general syntax for the
profile_kernel option with respect to the profile summary report is:

--profile_kernel <[data]:<[kernel_name|all]:[compute_unit_name|all]:
[interface_name|all]:[counters|all]>

The following three fields can be specified to determine which interface the performance
monitor is applied to:

• kernel_name

• compute_unit_name

• interface_name

However, you can also specify the keyword all to apply the monitoring to all existing kernels,
compute units, and interfaces with a single option. The last option, <counters|all> allows
you to restrict the information gathering to just counters for large designs, while all (default)
will include the collection of actual trace information.

Note: The profile_kernel option is additive and can be used multiple times on the link line.

If the profile = true option is specified in the sdaccel.ini file, when the program is
executed, a profile_summary.csv file is created.

[Debug]
profile = true

The .csv file needs to be manually converted to Google Protocol Buffer format (.xprf) before the
profiling result can be viewed in the integrated Profile Summary view. The following command
line example generates an .xprf file from the .csv input file:

sdx_analyze profile profile_summary.csv

Display the Profile Summary

Use the following methods to display the SDAccel environment Profile Summary view created
from the command line.

1. To display the report in your web browser of choice, do the following:

a. Run the following command:

sdx_analyze profile -i profile_summary.csv -f html

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=25

This creates an HTML file representing the data. that can be opened by the web browser
of your choice. The file contains the same profiling result as presented in GUI Flow.

b. Navigate to the file location, and double-click the generated HTML file.

2. To display the report in the integrated SDAccel Profile Summary view, do the following:

a. Use the following command to convert the .csv data file into the protobuf format.

sdx_analyze profile -i profile_summary.csv -f protobuf

b. Start SDAccel tool GUI by running the sdx command:

$sdx

c. Choose the default workspace when prompted.

d. Select File → Open File.

e. Browse to and then open the .xprf file created by the sdx_analyze command run in
step a.

The following figure shows the Profile Summary view that displays OpenCL API calls,
kernel executions, data transfers, and profile rule checks (PRCs).

Data Interpretation
The profile summary includes a number of useful statistics for your OpenCL application. This can
provide you with a general idea of the functional bottlenecks in your application. The profile
summary consists of the following sections:

• Top Operations:

• Top Data Transfer: Kernels and Global Memory: This table displays the profile data for top
data transfers between FPGA and device memory.

• Device: Name of device

• Compute Unit: Name of compute unit

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=26

• Number of Transfers: Sum of write and read AXI transactions monitored on device

• Average Bytes per Transfer: (Total Read Bytes + Total Write Bytes) / (Total Read AXI
Transactions + Total Write AXI Transactions)

• Transfer Efficiency (%): (Average Bytes per Transfer) / min(4K, (Memory Bit Width/8 *
256))

AXI4 specification limits the max burst length to 256 and max burst size to 4K bytes.

• Total Data Transfer (MB): (Total Read Bytes + Total Write Bytes) / 1.0e6

• Total Write (MB): (Total Write Bytes) / 1.0e6

• Total Read (MB): (Total Read Bytes) / 1.0e6

• Transfer Rate (MB/s): (Total Data Transfer) / (Compute Unit Total Time)

• Top Kernel Execution:

• Kernel Instance Address: Host address of kernel instance (in hex)

• Kernel: Name of kernel

• Context ID: Context ID on host

• Command Queue ID: Command queue ID on host

• Device: Name of device where kernel was executed (format: <device>-<ID>)

• Start Time (ms): Start time of execution (in ms)

• Duration (ms): Duration of execution (in ms)

• Global Work Size: NDRange of kernel

• Local Work Size: Work group size of kernel

• Top Memory Writes: Host and Device Global Memory:

• Buffer Address: Host address of buffer (in hex)

• Context ID: Context ID on host

• Command Queue ID: Command queue ID on host

• Start Time (ms): Start time of write transfer (in ms)

• Duration (ms): Duration of write transfer (in ms)

• Buffer Size (KB): Size of write transfer (in KB)

• Writing Rate (MB/s): Writing Rate = (Buffer Size) / (Duration)

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=27

• Top Memory Reads: Host and Device Global Memory:

• Buffer Address: Host address of buffer (in hex)

• Context ID: Context ID on host

• Command Queue ID: Command queue ID on host

• Start Time (ms): Start time of read transfer (in ms)

• Duration (ms): Duration of read transfer (in ms)

• Buffer Size (KB): Size of read transfer (in KB)

• Reading Rate (MB/s): Reading Rate = (Buffer Size) / (Duration)

• Kernels & Compute Units:

• Kernel Execution (includes estimated device times): This table displays the profile data
summary for all kernel functions scheduled and executed.

• Kernel: Name of kernel

• Number of Enqueues: Number of times kernel is enqueued

• Total Time (ms): Sum of runtimes of all enqueues (measured from START to END in
the OpenCL API execution model)

• Minimum Time (ms): Minimum runtime of all enqueues

• Total Time (ms): Sum of runtimes of all enqueues (measured from START to END in
the OpenCL API execution model)

• Average Time (ms): (Total Time) / (Number of Enqueues)

• Maximum Time (ms): Maximum runtime of all enqueues

• Compute Unit Utilization (includes estimated device times): This table displays the
summary profile data for all compute units on the FPGA.

• Device: Name of device (format: <device>-<ID>)

• Compute Unit: Name of Compute Unit

• Kernel: Kernel this Compute Unit is associated with

• Global Work Size: NDRange of kernel (format is x:y:z)

• Local Work Size: Local work group size (format is x:y:z)

• Number of Calls: Number of times the Compute Unit is called

• Dataflow Execution: Indicates if top level dataflow execution is enabled

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=28

• Maximum Overlapping Executions: How much executions were actually operating in
parallel at some point during execution

• Dataflow Acceleration: Estimated improvement due to dataflow acceleration

• Total Time (ms): Sum of runtimes of all calls

• Minimum Time (ms): Minimum runtime of all calls

• Average Time (ms): (Total Time) / (Number of Work Groups)

• Maximum Time (ms): Maximum runtime of all calls

• Clock Frequency (MHz): Clock frequency used for a given accelerator (in MHz)

• Data Transfers:

• Data Transfer: Host and Global Memory: This table displays the profile data for all read
and write transfers between the host and device memory through the PCI Express® link.

• Context:Number of Devices: Context ID and number of devices in context

• Transfer Type: READ or WRITE

• Number of Transfers: Number of host data transfers

Note: Might contain printf transfers

• Transfer Rate (MB/s): (Total Bytes Sent) / (Total Time in usec), where Total Time includes
software overhead

• Average Bandwidth Utilization (%): (Transfer Rate) / (Max. Transfer Rate), where Max.
Transfer Rate = (256/8 bytes) * (300 MHz) = 9.6 GBps

• Average Size (KB): (Total KB sent) / (number of transfers)

• Total Time (ms): Sum of transfer times

• Average Time (ms): (Total Time) / (number of transfers)

• Data Transfer: Kernels and Global Memory: This table displays the profile data for all
read and write transfers between the FPGA and device memory.

• Device: Name of device

• Compute Unit/Port Name: <Name of Compute Unit>/<Name of Port>

• Kernel Arguments: List of arguments connected to this port

• DDR Bank: DDR bank number this port is connected to

• Transfer Type: READ or WRITE

• Number of Transfers: Number of AXI transactions monitored on device

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=29

Note: Might contain printf transfers)

• Transfer Rate (MB/s): (Total Bytes Sent) / (Compute Unit Total Time)

• Compute Unit Total Time: Total execution time of compute unit

• Total Bytes Sent: Sum of bytes across all transactions

• Average Bandwidth Utilization (%): (Transfer Rate) / (0.6 *Max. Transfer Rate), where
Max. Transfer Rate = (512/8 bytes) * (300 MHz) = 19200 MBps

• Average Size (KB): (Total KB sent) / (number of AXI transactions)

• Average Latency (ns): (Total latency of all transaction) / (number of AXI transactions)

• OpenCL API Calls: This table displays the profile data for all OpenCL host API function
calls executed in the host application.

• API Name: Name of API function (for example, clCreateProgramWithBinary,
clEnqueueNDRangeKernel)

• Number of Calls: Number of calls to this API

• Total Time (ms): Sum of runtimes of all calls

• Minimum Time (ms): Minimum runtime of all calls

• Average Time (ms): (Total Time) / (Number of Calls)

• Maximum Time (ms): Maximum runtime of all calls

Application Timeline
The Application Timeline window collects and displays host and device events on a common
timeline to help you understand and visualize the overall health and performance of your
systems. These events include:

• OpenCL API calls from the host code.

• Device trace data including AXI transaction start/stop, kernel start/stop, etc.

While useful for debugging and profiling the application, timeline and device trace data are not
collected by default because the runtime needs to periodically unload the trace data from the
FPGA, which can add additional time to the overall application execution. However, the device
data is collected with dedicated hardware inside the FPGA, so the data collection does not affect
kernel functionality on the FPGA. The following sections describe setups required to enable time
and device data collection.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=30

Turning on device profiling is intrusive and can negatively affect overall performance. This feature
should be used for system performance debugging only.

Note: Device profiling can be used in Emulation-HW without negative impact.

GUI Flow
Timeline and device trace data collection is part of run configuration for an SDAccel™ project
created from the integrated SDAccel environment. Follow the steps below to enable it:

1. Instrumenting the code is required for System execution. This is done through the Hardware
Function Settings dialog box. In the Assistant window, right-click the kernel under the System
[Hardware] configuration, and select the Settings Command.

With respect to application timeline functionality, you can enable Data Transfer, Execute
Profile, and Stall Profiling. These options are instrumenting all ports of each instance of any
kernel. As these options insert additional hardware, instrumenting all ports might be too
much. Towards that end, more control is available through command line options as detailed
in the Command Line section. These options are only valid for system runs. During hardware
emulation, this data is generated by default.

• Data Transfer: This option enables monitoring of data ports.

• Execute Profiling: This option provides minimum port data collection during system run.
This option records the execution times of the compute units. Execute profiling is enabled
by default for data and stall profiling.

• Stall Profiling: This option includes the stall monitoring logic in the bitstream.

2. Specify what information is actually going to be reported during a run.

Note: Only information actually exposed from the hardware during system execution is reported.

To configure reporting, click the down arrow next to the Debug or Run button, and then
select Run Configurations to open the Run Configurations window.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=31

3. In the Run Configurations window, click the Profile tab.

Ensure the Enable profiling check box is selected. This enables basic profiling support. With
respect to trace data, ensure that Generate timeline trace report actually gathers the
information in the build config you are running.

Default implies that no trace data capturing is supported in system execution, but enabled by
default in hardware emulation.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=32

You can also select the amount of information to gather during runtime. Select the granularity
for trace data collection independently for Data Transfer Trace and Stall Trace.

The Data Transfer Trace options are as follows:

• Coarse: Show compute unit transfer activity from beginning of first transfer to end of last
transfer (before compute unit transfer ends).

• Fine: Show all AXI-level burst data transfers.

• None: Turn off reading and reporting of device-level trace during runtime.

The Stall Trace Options are as follows:

• None: Turn off any stall trace information gathering.

• All: Record all stall trace information.

• External Memory Stall: Memory stalls to DDR (for example, AXI4 read from DDR).

• Internal Dataflow Stall: Intra-kernel streams (for example, writing to a full FIFO between
data flow blocks).

• Inter CU Pipe Stall: Inter-kernel pipe (for example, writing to a full OpenCL™ pipe between
kernels).

If you have multiple run configurations for the same project, you must change the profile
settings for each run configuration.

4. After running configurations, in the Assistant window, double-click Application Timeline to
open the Application Timeline window.

Command Line
Complete the following steps to enable timeline and device trace data collection in the command
line flow:

1. This step is responsible for the FPGA bitstream instrumentation with SDx Accel Monitors
(SAM) and SDx Performance Monitors (SPMs). The instrumentation is performed through the
--profile_kernel, which has three distinct instrumentation options (data, stall, and
exec).

Note: The --profile_kernel option is ignored except for system compilation and linking. During
hardware emulation, this data is generated by default.

The --profile_kernel option has three fields that are required to determine the specific
kernel interface to which the monitors are applied. However, if resource usage is not an issue,
the keyword all enables you to apply the monitoring to all existing kernels, compute units,
and interfaces with a single option. Otherwise, you can specify the kernel_name,
compute_unit_name, and interface_name explicitly to limit instrumentation. The last
option, <counters|all> allows you to restrict the information gathering to just counters
for large designs, while all (default) includes the collection of actual trace information.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=33

Note: The --profile_kernel option is additive and can be used multiple times on the link line.

• data: This option enables monitoring of data ports through SAM and SPM IPs. This
option needs to be set only during linking.

-l --profile_kernel <[data]:<[kernel_name|all]:[compute_unit_name|all]:
[interface_name|all]:[counters|all]>

• stall: This option needs to be applied during compilation:

-c --profile_kernel <[stall]:<[kernel_name|all]:[compute_unit_name|
all]:[counters|all]>

and during linking:

-l --profile_kernel <[stall]:<[kernel_name|all]:[compute_unit_name|
all]:[counters|all]>

This option includes the stall monitoring logic (using SAM IP) in the bitstream. However, it
does require that stall ports are present on the kernel interface. To facilitate this, the
option is required for compilation of the C/C++/OpenCL API kernel modules.

• exec: This option provides minimum port data collection during system run. It simply
records the execution times of the kernel through the use of SAM IP. This feature is by
default enabled on any port that uses the data or stall data collection. This option needs to
be provided only during linking.

-l --profile_kernel <[exec]:<[kernel_name|all]:[compute_unit_name|
all]>:[counters|all]

2. After the kernels are instrumented, data gathering must be enabled during runtime execution.
Do this through the use of the sdaccel.ini file that is in the same directory as the host
executable. The following sdaccel.ini file will enable maximum information gathering
during runtime:

[Debug]
profile=true
timeline_trace=true
data_transfer_trace=coarse
stall_trace=all

• profile=<true|false>: When this option is specified as true, basic profile monitoring
is enabled. Without any additional options, this implies that the host runtime logging
profile summary is enabled. However, without this option enabled, no monitoring is
performed at all.

• timeline_trace=<true|false>: This option will enable timeline trace information
gathering of the data. Without adding profile IP into the FPGA (data), it will only show host
information. At a minimum, to get more compute unit start and end execution times in the
timeline trace, the compute unit needs to be linked with --profile_kernel exec.

• data_transfer_trace=<coarse|fine|off>: This option enables device-level AXI
data transfers trace:

○ coarse: Show compute unit transfer activity from beginning of first transfer to end of
last transfer (before compute unit transfer ends).

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=34

○ fine: Show all AXI-level burst data transfers.

○ off: Turn off reading and reporting of device-level trace during runtime.

• stall_trace=<dataflow|memory|pipe|all|off>: Specify what types of stalls to
capture and report in timeline trace. The default is off.

○ off: Turn off any stall trace information gathering.

Note: Enabling stall tracing can often fill the trace buffer, which results in incomplete and
potentially corrupt timeline traces. This can be avoided by setting trace_stall=off.

○ all: Record all stall trace information.

○ dataflow: Intra-kernel streams (for example, writing to full FIFO between dataflow
blocks).

○ memory: External memory stalls (for example, AXI4 read from the DDR.

○ pipe: Inter-kernel pipe (for example, writing to full OpenCL pipe between kernels).

3. To allow User Function analysis in the Application Timeline it is necessary to run the
waveform tool as part of the Emulation flow. This requires to launch the waveform tool
through the sdaccel.ini file.

[Emulation]
launch_waveform=batch

• launch_waveform=<gui|batch>: This option automatically starts the waveform tool
during emulation. See Waveform View for more details.

○ gui: Start the graphical user interface for the life waveform view

○ batch: Start the waveform processing as a background process.

4. In command line mode, CSV files are generated to capture the trace data. These CSV reports
need to be converted to the Application Timeline format using the sdx_analyze utility
before they can be opened and displayed in the SDAccel environment GUI.

sdx_analyze trace timeline_trace.csv -k timeline_kernels.csv -f wdb

This creates the timeline_trace.wdb file by default, which can be opened from the GUI.
The timeline_kernels.csv file contains specific kernel trace data which might not
always be available. In this case, the option -k timeline_kernels.csv should be
omitted from the sdx_analyze command.

5. To view the timeline report host and device waveforms, do the following:

a. Start the SDx environment by running the command:

$sdx

b. Choose a workspace when prompted.

c. Select File → Open File, browse to the .wdb file generated during hardware emulation or
system run, and open it.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=35

Data Interpretation
The following figure shows the Application Timeline window that displays host and device events
on a common timeline. This information helps you to understand details of application execution
and identify potential areas for improvements.

Figure 11: Application Timeline Window

The Application Timeline window trace includes two main sections:

• Host: Shows the trace of all the activity originating from the host side.

• Device: Shows the activity of the compute-units on the FPGA.

Under the host, different activities are categorized as OpenCL™ API calls, Data Transfer, and
Kernels.

The complete tree has the following structure:

• Host:

• OpenCL API Calls: All OpenCL API calls are traced here. The activity time is measured from
the host perspective.

• General: All general OpenCL API calls, such as clCreateProgramWithBinary(),
clCreateContext(), and clCreateCommandQueue, are traced here.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=36

• Queue: OpenCL API calls that are associated with a specific command queue are traced
here. This includes commands, such as clEnqueueMigrateMemObjects,
clEnqueueNDRangeKernel, and so on. If the user application creates multiple
command queues, then this section shows as many queues and activities under it.

• Data Transfer: In this section, the DMA transfers are traced. The data transfer from the
host to the device appear under Write, and the transfers from device to host appear under
Read. The additional section Copy traces direct communication between kernels.

• Kernel Enqueues: The active kernel executions are shown here. The kernels here should
not be confused with your kernels/compute-unit on the device. In this instance, kernels
refers to the NDRangeKernels and the tasks created by the
clEnqueueNDRangeKernels() and clEnqueueTask()APIs, and these are plotted
against the time measured from the host’s perspective. Multiple kernels can be scheduled
to be executed at the same time and they are traced from the point they are scheduled to
run until the end of kernel execution. This is the reason for multiple entries. The number of
rows depend on the number of overlapping kernel executions.

Note: Overlapping of the kernels should not be mistaken for actual real parallel execution on the
device as the process might not be ready to actually execute right away.

• Device "name":

• Binary Container "name":

• Accelerator "name": This is the name of the compute unit (also known as accelerator) on
the FPGA.

• User Functions: In the case of the Vivado HLS tool kernels, functions that are
implemented as data flow processes are traced here. The trace for these functions
show the number of active instances of these functions that are currently executing
in parallel. These names are generated in hw emulation when waveform is enabled.

Note: Function level activity is only possible in Hardware Emulation.

• Function: "name a"

• Function: "name b"

• Read: A compute unit reads from the DDR over AXI-MM ports. The trace of data a
read by a compute unit is shown here. The activity is shown as transaction and the
tooltip for each transaction shows more details of the AXI transaction. These names
are generated when --profile_kernel data is used.

• m_axi_<bundle name>(port)

• Write: A compute unit writes to the DDR over AXI-MM ports. The trace of data
written by a compute unit is shown here. The activity is shown as transactions and
the tool-tip for each transaction shows more details of the AXI transaction. This is
generated when --profile_kernel data is used.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=37

• m_axi_<bundle name>(port)

Waveform View
The SDx development environment can generate a waveform view and launch a live waveform
viewer when running hardware emulation. It displays in-depth details on the emulation results at
system level, compute unit level, and at function level. The details include data transfers between
the kernel and global memory, data flow through inter-kernel pipes as well as data flow through
intra-kernel pipes. They provide many insights into the performance bottleneck from the system
level down to individual function call to help developers optimize their applications.

By default, the waveform view and live waveform viewer are not enabled. This is because the
views require that the runtime generates a simulation waveform during hardware emulation,
which consumes more time and disk space. The following sections describe the setup required to
enable data collection.

Note: The waveform view allows you to look directly at the device transactions from within the SDx
development environment. In contrast, the live waveform capability actually spawns the simulation
waveform view that visualizes the hardware transactions in addition to potential user-selected internal
signals.

GUI Flow
Follow the steps below to enable waveform data collection and to open the viewer:

1. Open the Application Project Settings window, and select the Kernel debug check box.

2. Click the down arrow next to the Run button, and select Run Configurations to open the Run
Configurations window.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=38

3. On the Run Configurations window, click Main, and select the Use waveform for kernel
debugging check box.

Optionally:

• To bring up the Simulation window to view the Live Waveform while the hardware
emulation is running, deselect Launch live waveform.

• To enable basic profiling, select Enable profiling.

4. If you have multiple run configurations for the same project, change the profile settings for
each run configuration.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=39

5. If you have not selected the Live Waveform viewer to be launched automatically, open the
Waveform view from the SDx Development Environment.

In the SDx Development Environment, double-click Waveform in the Assistant window to
open the Waveform view window.

Command Line
Use the following instructions to enable waveform data collection from the Command Line
during hardware emulation and open the viewer:

1. Turn on debug code generation during kernel compilation.

xocc -g -t hw_emu ...

2. Create an sdaccel.ini file in the same directory as the host executable with the contents
below:

[Debug]
profile=true
timeline_trace=true

This enables maximum observability. The options in detail are:

• profile=<true|false>: Setting this option to true, enables profile monitoring. Without any
additional options, this implies that the host runtime logging profile summary is enabled.
However, without this option enabled, no monitoring is performed at all.

• timeline_trace=<true|false>: This option enables timeline trace information gathering of
the data.

3. To see the live waveform and additional simulation waveforms, add the following to the
emulation section in the sdaccel.ini:

[Emulation]
launch_waveform=gui

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=40

• launch_waveform=<batch|gui>: The gui option enables the Live Waveform viewer, while
the batch option will record the waveform activity for post-processing.

A Live Waveform viewer is spawned during the execution of the hardware emulation, which
allows you to examine the waveforms in detail.

4. Execute hardware emulation. The hardware transaction data is collected in the file
<hardware_platform>-<device_id>-<xclbin_name>.wdb.

5. If no Live Waveform viewer was requested, follow the steps below to open the Waveform
view:

a. Start the SDx IDE by running the following command: $sdx.

b. Choose a workspace when prompted.

c. Select File → Open File, browse to the .wdb file generated during hardware emulation.

Alternatively, xsim can be used to open the .wdb file using the following command: xsim --
gui <file>.wdb. For more details about xsim, refer to Vivado Design Suite User Guide: Logic
Simulation (UG900).

Data Interpretation Waveform View
The following image shows the Waveform view:

Figure 12: Waveform View

The waveform view is organized hierarchically for easy navigation.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 41Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=41

Note: This view is based on the actual waveforms generated during hardware emulation (Kernel Trace). This
allows this view to descend all the way down to the individual signals responsible for the abstracted data.
However, as it is post processing the data, no additional signals can be added, and some of the runtime
analysis such as DATAFLOW transactions cannot be visualized.

The hierarchy tree and descriptions are:

• HLS Process Summary: This summary section contains a hierarchical representation of the
activity report of each sequential process contained within the generated RTL. Visualizing the
active processes within the HLS design allows to profile in detail which process is active for
how long within each activation of the top module. Therefore, this view enables the analysis
with respect to individual process performance as well as the overall concurrent execution of
independent processes. According to Amdahl’s Law, processes dominating the overall
execution have the highest potential to improve performance, if process execution time can
be reduced.

• Device “name”: Target device name.

• Binary Container “name”: Binary container name.

• Kernel “name” 1:1:1: For each kernel and for each compute unit of that kernel, this
section breaks down the activities originating from the compute unit.

• Compute Unit: “name”: Compute unit name.

• CU Stalls (%): Stall signals are provided by the HLS tool to inform you when a
portion of their circuit is stalling because of external memory accesses, internal
streams (that is, dataflow), or external streams (that is, OpenCL pipes). The stall
bus, shown in detailed kernel trace, compiles all of the lowest level stall signals and
reports the percentage that are stalling at any point in time. This provides a factor
of how much of the kernel is stalling at any point in the simulation.

For example, if there are 100 lowest level stall signals, and 10 are active on a given
clock cycle, then the CU Stall percentage is 10%. If one goes inactive, then it
would be 9%.

• Data Transfers: This shows the read/write data transfer accesses originating from
each Master AXI port of the compute unit to the DDR.

• User Functions: This information is available for the HLS tool kernels and shows
the user functions.

• Function: "name":

• Dataflow/Pipeline Activity: This shows the number of parallel executions of
the function if the function is implemented as a dataflow process.

• Active Iterations: This shows the currently active iterations of the
dataflow. The number of rows is dynamically incremented to
accommodate the visualization of any concurrent execution.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=42

• StallNoContinue: This is a stall signal that tells if there were any output
stalls experienced by the dataflow processes (function is done, but it has
not received a continue from the adjacent dataflow process).

• RTL Signals: These are the underlying RTL control signals that were used
to interpret the above transaction view of the dataflow process.

• Function Stalls: Shows the different types of stalls experienced by the
process.

• External Memory: Stalls experienced while accessing the DDR memory.

• External Stream: Stalls triggered by streaming.

• Function I/O: Actual interface signals grouped according to their associated
block interfaces.

• Function: "name": Function name.

• Function: "name": Function name.

Data Interpretation Live Waveform
The following figure shows the live waveform viewer while running hardware emulation.

Figure 13: Live Waveform Viewer

The live waveform viewer is organized hierarchically for easy navigation. Below are the hierarchy
tree and descriptions.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=43

Note: As the live waveform viewer is presented only as part of the actual hardware simulation run (xsim),
you can annotate extra signals and internals of the register transfer (RTL) to the same view. Also, all
grouped and combined groups can be fully expanded to the actual contributing signals. For more
information on working with xsim, refer to Vivado Design Suite User Guide: Logic Simulation (UG900).

• HLS Process Summary: This summary section contains a hierarchical representation of the
activity report of each sequential process contained within the generated RTL. Visualizing the
active processes within the HLS design allows to profile in detail which process is active for
how long within each activation of the top module. Therefore, this view enables the analysis
with respect to individual process performance as well as the overall concurrent execution of
independent processes. According to Amdahl’s Law, processes dominating the overall
execution have the highest potential to improve performance if process execution time can be
reduced.

• Device "name": Target device name.

• Binary Container "name": Binary container name.

• Kernel "name" 1:1:1: For each kernel and for each compute unit of that kernel this
section breaks down the activities originating from the compute unit.

• Compute Unit: "name": Compute unit name.

• CU Stalls (%): Stall signals are provided by the Vivado HLS tool to inform you
when a portion of the circuit is stalling because of external memory accesses,
internal streams (that is, dataflow), or external streams (that is, OpenCL™ pipes).
The stall bus shown in detailed kernel trace compiles all of the lowest level stall
signals and reports the percentage that are stalling at any point in time. This
provides a factor of how much of the kernel is stalling at any point in the
simulation.

For example: If there are 100 lowest level stall signals, and 10 are active on a given
clock cycle, then the CU Stall percentage is 10%. If one goes inactive, then it
would be 9%.

• Data Transfers: This shows the read/write data transfer accesses originating from
each Master AXI port of the compute unit to the DDR.

• User Functions: This information is available for the HLS kernels and shows the
user functions.

• Function: "name":

• Dataflow/Pipeline Activity: This shows the number of parallel executions of
the function if the function is implemented as a dataflow process

• Active Iterations: This shows the currently active iterations of the
dataflow. The number of rows is dynamically incremented to
accommodate the visualization of any concurrent execution.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 44Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=44

• StallNoContinue: This is a stall signal that tells if there were any output
stalls experienced by the dataflow processes (function is done, but it has
not received a continue from the adjacent dataflow process).

• RTL Signals: These are the underlying RTL control signals that were used
to interpret the above transaction view of the dataflow process.

• Function Stalls: Shows the different types of stalls experienced by the
process.

• External Memory: Stalls experienced while accessing the DDR memory.

• External Stream: Stalls triggered by streaming.

• Function I/O: Actual interface signals grouped according to their associated
block interfaces.

• Function: "name": Function name

• Function: "name": Function name

Guidance
The Guidance view is designed to provide you with feedback throughout the development
process. It presents in a single location all issues encountered from building the actual design all
the way through runtime analysis.

It is crucial to understand that the Guidance view is intended to help you to identify potential
issues in the design. These issues might be source code related or due to missed tool
optimizations. Also, the rules are generic rules based on experiences on a vast set of reference
designs. Nevertheless, these rules might not be applicable for a specific design. Therefore, it is up
to you to understand the specific guidance rules, and take appropriate action based on your
specific algorithm and requirements.

GUI Flow
The Guidance view is automatically populated and displayed in the lower central tab view. After
running hardware emulation, the Guidance view might look like the following:

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=45

Figure 14: Guidance View

Note: You can produce the Guidance view through the Vivado HLS tool post-compilation, but you will not
get Profile Rule Checks.

To simplify visualizing the guidance information, the GUI flow allows you to search, and filter the
Guidance view to locate specific guidance rule entries. It is also possible to collapse or expand
the tree view or even suppress the hierarchical tree representation and visualize a condensed
representation of the guidance rules. Finally, you can select what is shown in the Guidance view.
You can enable or disable the visualization of warnings, as well as met rules, and restrict the
specific content based on the source of the messages such as build and emulation.

By default, the Guidance view shows all guidance information for the project selected in the
drop-down.

To restrict the content to an individual build or run step, do the following:

1. Use the command Window → Preferences

2. Select the category Xilinx Sdx → Guidance.

3. Deselect Group guidance rule checks by project.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=46

Command Line
The Guidance data is best analyzed through the GUI, which consolidates all guidance information
for the flow. Nevertheless, the tool automatically generates HTML files containing the guidance
information. As guidance information is generated throughout the tool flow, several guidance
files are generated. The simplest way to locate the guidance reports is to search for the
guidance.html files.

find . -name "*guidance.html" -print

This command lists all guidance files generated, which can be opened with any web browser.

Data Interpretation
The Guidance view places each entry in a separate row. Each row might contain the name of the
guidance rule, threshold value, actual value, and a brief but specific description of the rule. The
last field provides a link to reference material intended to assist in understanding and resolving
any of the rule violations.

In the GUI Guidance view, guidance rules are grouped by categories and unique IDs in the Name
column and annotated with symbols representing the severity. These are listed individually in the
HTML report. In addition, as the HTML report does not show tooltips, a full Name column is
included in the HTML report as well.

The following list describes all fields and their purpose as included in the HTML guidance reports.

• Id: Each guidance rule is assigned a unique id. Use this id to uniquely identify a specific
message from the guidance report.

• Name: The Name column displays a mnemonic name uniquely identifying the guidance rule.
These names are designed to assist in memorizing specific guidance rules in the view.

• Severity: The Severity column allows the easy identification of the importance of a guidance
rule.

• Full Name: The Full Name provides a less cryptic name compared to the mnemonic name in
the Name column.

• Categories: Most messages are grouped within different categories. This allows the GUI to
display groups of messages within logical categories under common tree nodes in the
Guidance view.

• Threshold: The Threshold column displays an expected threshold value, which determines
whether or not a rule is met. The threshold values are determined from many applications that
follow good design and coding practices.

• Actual: The Actual column displays the values actually encountered on the specific design.
This value is compared against the expected value to see if the rule is met.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=47

• Details: The Details column provides a brief but specific message describing the specifics of
the current rule.

• Resolution: The Resolution column provides a pointer to common ways the model source
code or tool transformations can be modified to meet the current rule. Clicking the link brings
up a pop-up window or the documentation with tips and code snippets that you can apply to
the specific issue.

Using Implementation Tools
Exploring Kernel Optimizations Using Vivado HLS
All kernel optimizations using OpenCL or C/C++ can be performed from within the SDAccel
environment. The primary performance optimizations, such as those discussed in this chapter
(pipelining function and loops, applying dataflow to enable greater concurrency between
functions and loops, unrolling loops, etc.), are performed by the Xilinx® FPGA design tool,
Vivado® HLS tool.

The SDAccel environment automatically calls the HLS tool. However, to use the GUI analysis
capabilities, you must launch the HLS tool directly from within the SDAccel environment. Using
the HLS tool in standalone mode enables the following enhancements to the optimization
methodology:

• Focusing solely on the kernel optimization, there is no requirement to execute emulation.

• The ability to create multiple solutions, compare their results, and explore the solution space
to find the most optimum design.

• The ability to use the interactive Analysis Perspective to analyze the design performance.

IMPORTANT! Only the kernel source code is incorporated back into the SDAccel environment. After exploring
the optimization space, ensure that all optimizations are applied to the kernel source code as OpenCL attributes
or C/C++ pragmas.

To open the HLS tool in standalone mode, from the Assistant window, right-click the hardware
function object, and select Open HLS Project, as shown in the following figure.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=48

Figure 15: Open HLS Project

Controlling FPGA Implementation with the Vivado
Design Suite
The SDAccel development environment provides a smooth flow from an OpenCL/C/C++ model
all the way to an FPGA accelerated implementation. In most cases, this flow completely abstracts
away the underlying fact that the programmable region in the FPGA is configured to implement
the kernel functionality. This fully isolates the developer from typical hardware constraints such
as routing delays and kernel placement. However, in some cases these concerns will have to be
looked at especially when large designs are to be implemented. Towards this end, the
development environment allows you to fully control the Vivado Design Suite backend tool.

The SDAccel environment calls the Vivado Design Suite to automatically run RTL synthesis and
implementation. You also have the option of launching the design suite directly from within the
SDAccel environment. When invoking the Vivado Integrated Design Environment (IDE) in
standalone mode in the SDAccel environment, you can open the Vivado synthesis project or the
Vivado implementation project to edit, manage, and control the project.

The Vivado project can be opened in the SDAccel environment after the build targeting the
system configuration has completed.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=49

To open Vivado IDE in standalone mode, from the Xilinx drop-down menu, select Vivado
Integration and Open Vivado Project. Choose between the Vivado synthesis and implementation
projects, and click OK.

Using the Vivado IDE in standalone mode enables the exploration of various synthesis and
implementation options for further optimizing the kernel for performance and area. Familiarity
with the design suite is recommended to make the most use of these features.

IMPORTANT! The optimization switches applied in the standalone project are not automatically incorporated
back into the SDAccel environment. After exploring the optimization space, ensure that all optimization
parameters are passed to the SDAccel environment using the -–xp option for xocc. For example:

 --xp "vivado_prop:run.impl_1.{STEPS.PLACE_DESIGN.ARGS.TCL.POST}={<File and
path>}"

This optimization flow is supported in the command line flow by calling xocc –interactive
to bring up the Vivado IDE, on the current project. In the IDE, generate a DCP, which can be
saved and reused during linking with xocc. The specific options are:

• --interactive allows the Vivado IDE to be launched from within the xocc environment,
with the right project loaded.

• --reuse_impl allows a pre-implemented and timing closed Vivado tool design checkpoint
(.dcp) file to be brought in and used directly in SDx environment flow for xclbin generation.

Chapter 2: SDAccel Profiling and Optimization Features

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=50

Chapter 3

Kernel Optimization
One of the key advantages of an FPGA is its flexibility and capacity to create customized designs
specifically for your algorithm. This enables various implementation choices to trade off
algorithm throughput vs. power consumption. The downside of creating custom logic is that the
design needs to go through the traditional FPGA design flow.

The following guidelines help manage the design complexity and achieve the desired design
goals.

Interface Attributes (Detailed Kernel Trace)
The detailed kernel trace provides easy access to the AXI transactions and their properties. The
AXI transactions are presented for the global memory, as well as the Kernel side (Kernel "pass"
1:1:1) of the AXI interconnect. The following figure illustrates a typical kernel trace of a newly
accelerated algorithm.

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=51

Figure 16: Accelerated Algorithm Kernel Trace

The following fields are the most important in respect to performance:

• Burst Length: Describes how many beats are sent within one transaction

• Burst Size: Describes the number of bytes being transferred as part of one beat

Given a burst length of 1 and just 4 Bytes per package, it will require many individual AXI
transactions to transfer any reasonable amount of data.

Note: The SDAccel™ environment never creates burst sizes less than 4 bytes, even if smaller data is
transmitted. In this case, if consecutive items are accessed without AXI bursts enabled, you can observe
multiple AXI reads to the same address.

Therefore, small burst lengths, as well as burst sizes, considerably less than 512-bits are good
opportunities to optimize interface performance. The following sections show improved
implementations:

• Using Burst Data Transfers

• Using AXI4 Data Width

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=52

Top Level Dataflow
Top level dataflow optimization provides the capability to the kernels to executed in a parallel
processing architecture by overlapping multiple kernel execution. In cases of long kernel latency,
this optimization is useful and will improve the performance of the overall application. Xilinx
recommends enabling this optimization only to kernels which have dataflow at the top function
by applying the interface pragma ap_ctrl_chain to the return port (along with s_axilite).

#pragma HLS INTERFACE ap_ctrl_chain port=return bundle=control

The following example is provided to illustrate that both the ap_ctrl_chain and s_axilite
option is required for the return port to enable top level dataflow.

void N_stage_Adders(int *input, int *output, int incr, int size)
{
 …
 #pragma HLS INTERFACE s_axilite port=return bundle=control
 #pragma HLS INTERFACE ap_ctrl_chain port=return bundle=control
 …
 …
 #pragma HLS dataflow
 read_input(input,streamArray[0],size);
 compute_loop: for (int i = 0 ; i < STAGES ; i++)
 {
 #pragma HLS UNROLL
 adder(streamArray[i],streamArray[i+1],incr,size);
 }
 write_result(output,streamArray[STAGES],size);
}

Note: The profiling capability for this optimization is currently only available in hardware.

Using Burst Data Transfers
Transferring data in bursts hides the memory access latency and improves bandwidth usage and
efficiency of the memory controller.

RECOMMENDED: Infer burst transfers from successive requests of data from consecutive address locations.
Refer to "Inferring Burst Transfer from/to Global Memory" in SDAccel Environment Programmers Guide
(UG1277) for more details.

If burst data transfers occur, the detailed kernel trace will reflect the higher burst rate as a larger
burst length number:

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 53Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=53

Figure 17: Burst Data Transfer with Detailed Kernel Trace

In the previous figure, it is also possible to observe that the memory data transfers following the
AXI interconnect are actually implemented rather differently (shorter transaction time). If you
hover over these transactions, you would see that the AXI interconnect has packed the 16x4
Byte transaction into a single burst transaction of 1x64 Bytes. This effectively uses the AXI4
bandwidth which is even more favorable. The next section focuses on this optimization
technique in more detail.

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=54

Burst inference is heavily dependent on coding style and access pattern. To avoid potential
modeling pitfalls, refer to the SDAccel Environment Programmers Guide (UG1277). However, you
can ease burst detection and improve performance by isolating data transfer and computation, as
shown in the following code snippet:

void kernel(T in[1024], T out[1024]) {
 T tmpIn[1024];
 T tmpOu[1024];
 read(in, tmpIn);
 process(tmpIn, tmpOut);
 write(tmpOut, out);
}

In short, the function read is responsible for reading from the AXI input to an internal variable
(tmpIn). The computation is implemented by the function process working on the internal
variables tmpIn and tmpOut. The function write takes the produced output and writes to the
AXI output.

The isolation of the read and write function from the computation results in:

• Simple control structures (loops) in the read/write function which makes burst detection
simpler.

• Isolation of the computational function away from the AXI interfaces, simplifies potential
kernel optimization. See the Kernel Optimization chapter for more information.

• Internal variables are mapped to on-chip memory, which allow faster access compared to AXI
transactions. Acceleration platforms supported in SDAccel environment can have as much as
10 MB on-chip memories that can be used as pipes, local memories, and private memories.
Using these resources effectively can greatly improve the efficiency and performance of your
applications.

Using AXI4 Data Width
The user data width between the kernel and the memory controller can be configured by the
SDAccel environment compiler based on the data types of the kernel arguments. To maximize the
data throughput, Xilinx recommends that you choose data types mapping to the full data width
on the memory controller. The memory controller in all supported acceleration cards supports
512-bit user interface, which can be mapped to OpenCL™ vector data types, such as int16 or
C/C++ arbitrary precision data type ap_int<512>.

As shown on the following figure, you can observe burst AXI transactions (Burst Length 16) and a
512-bit beat size (Burst Size 64 Bytes).

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 55Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=55

Figure 18: Burst AXI Transactions

This example shows good interface configuration as it maximizes AXI data width and also shows
actual burst transactions.

Complex structs or classes, used to declare interfaces, can lead to very complex hardware
interfaces due to memory layout and data packing differences. This can introduce potential
issues that are very difficult to debug in a complex system.

RECOMMENDED: Use simple structs for kernel arguments that can be packed to a power of two boundary.
Refer to the Custom Data Type Example in kernel_to_gmem category at Xilinx On-boarding Example GitHub for
the recommended way to use structs.

OpenCL API Attributes

The OpenCL API provides attributes to support a more automatic approach to incrementing AXI
data width usage. The change of the interface data types, as stated above, is supported in the
API as well but will require the same code changes as C/C++ to the algorithm to accommodate
the larger input vector.

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 56Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=56

To eliminate manual code modifications, the following OpenCL attributes are interpreted to
perform data path widening and vectorization of the algorithm. A detailed description can be
found in the SDx Pragma Reference Guide (UG1253).

• vec_type_hint

• reqd_work_group_size

• xcl_zero_global_work_offset

In the following example, examine the combined functionality on the following case:

__attribute__((reqd_work_group_size(64, 1, 1)))
__attribute__((vec_type_hint(int)))
__attribute__((xcl_zero_global_work_offset))
__kernel void vector_add(__global int* c, __global const int* a, __global
const int* b) {
 size_t idx = get_global_id(0);
 c[idx] = a[idx] + b[idx];
}

In this case, the hard coded interface is a 32-bit wide data path (int *c, int* a, int *b),
which drastically limits the memory throughput if implemented directly. However, the automatic
widening and transformation is applied, based on the values of the three attributes.

• __attribute__((vec_type_hint(int))): Declares that int is the main type used for computation
and memory transfer (32-bit). This knowledge is used to calculate the vectorization/widening
factor based on the target bandwidth of the AXI interface (512-bits). In this example the
factor would be 16 = 512-bits / 32-bit. This implies that in theory, 16 values could be
processed if vectorization can be applied.

• __attribute__((reqd_work_group_size(X, Y, Z))): Defines the total number of work items (where
X, Y, and Z are positive constants). X*Y*Z is the maximum number of work items therefore
defining the maximum possible vectorization factor which would saturate the memory
bandwidth. In this example, the total number of work items is 64*1*1=64.

The actual vectorization factor to be applied will be the greatest common divider of the
vectorization factor defined by the actual coded type or the vec_type_hint, and the maximum
possible vectorization factor defined through reqd_work_group_size.

The quotient of maximum possible vectorization factor divided by the actual vectorization
factor provides the remaining loop count of the OpenCL description. As this loop is pipelined,
it can be advantageous to have several remaining loop iterations to take advantage of a
pipelined implementation. This is especially true if the vectorized OpenCL code has long
latency.

There is one optional parameter that is highly recommended to be specified for performance
optimization on OpenCL interfaces.

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 57Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=57

• The __attribute__((xcl_zero_global_work_offset)) instructs the compiler that no global offset
parameter is used at runtime, and all accesses are aligned. This gives the compiler valuable
information with regard to alignment of the work groups, which in turn usually propagate to
the alignment of the memory accesses (less hardware).

It should be noted, that the application of these transformations changes the actual design to be
synthesized. Partially unrolled loops require reshaping of local arrays in which data is stored. This
usually behaves nicely, but can interact poorly in rare situations.

For example:

• For partitioned arrays, when the partition factor is not divisible by the unrolling/vectorization
factor.

○ The resulting access requires a lot of multiplexers and will create a difficult problem for the
scheduler (might severely increase memory usage and compilation time), Xilinx
recommends that you use partitioning factors that are powers of two (as the vectorization
factor is always a power of two).

• If the loop being vectorized has an unrelated resource constraint, the scheduler complains
about II not being met.

○ This is not necessarily correlated with a loss of performance (usually it is still performing
better) because the II is computed on the unrolled loop (which has therefore a multiplied
throughput for each iteration).

○ The scheduler informs you of the possible resources constraints and resolving those will
further improve the performance.

○ Note that a common occurrence is that a local array does not get automatically reshaped
(usually because it is accessed in a later section of the code in non-vectorizable way).

Reducing Kernel-to-Kernel Communication Latency
with OpenCL Pipes
This section specifically applies to OpenCL kernels. For C++ kernels, kernel-to-kernel streaming is
provided. This is discussed in Memory Data Transfer Types.

The OpenCL API 2.0 specification introduces a new memory object called a pipe. A pipe stores
data organized as a FIFO. Pipe objects can only be accessed using built-in functions that read
from and write to a pipe. Pipe objects are not accessible from the host. Pipes can be used to
stream data from one kernel to another inside the FPGA without having to use the external
memory, which greatly improves the overall system latency.

In the SDAccel development environment, pipes must be statically defined outside of all kernel
functions; dynamic pipe allocation using the OpenCL 2.x clCreatePipe API is not currently
supported. The depth of a pipe must be specified by using the xcl_reqd_pipe_depth attribute in
the pipe declaration.

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=58

The valid depth values are as follows:

• 16
• 32
• 64
• 128
• 256
• 512
• 1024
• 2048
• 4096
• 8192
• 16384
• 32768

A given pipe can have one and only one producer and consumer in different kernels.

pipe int p0 __attribute__((xcl_reqd_pipe_depth(32)));

Pipes can be accessed using standard OpenCL read_pipe() and write_pipe() built-in
functions in non-blocking mode or using the Xilinx extended read_pipe_block() and
write_pipe_block() functions in blocking mode. The status of pipes can be queried using
OpenCL get_pipe_num_packets() and get_pipe_max_packets() built-in functions. See
the OpenCL C Specification, Version 2.0 from Khronos Group for more details on these built-in
functions.

The following function signatures are the currently supported pipe functions, where gentype
indicates the built-in OpenCL C scalar integer or floating-point data types.

int read_pipe_block (pipe gentype p, gentype *ptr)
int write_pipe_block (pipe gentype p, const gentype *ptr)

The following “Blocking Pipes Example” from SDAccel Getting Started Examples on GitHub uses
pipes to pass data from one processing stage to the next using blocking
read_pipe_block() and write_pipe_block() functions:

pipe int p0 __attribute__((xcl_reqd_pipe_depth(32)));
pipe int p1 __attribute__((xcl_reqd_pipe_depth(32)));
// Input Stage Kernel : Read Data from Global Memory and write into Pipe P0
kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void input_stage(__global int *input, int size)
{
 __attribute__((xcl_pipeline_loop))
 mem_rd: for (int i = 0 ; i < size ; i++)
 {
 //blocking Write command to pipe P0
 write_pipe_block(p0, &input[i]);
 }
}

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 59Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=59

// Adder Stage Kernel: Read Input data from Pipe P0 and write the result
// into Pipe P1
kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void adder_stage(int inc, int size)
{
 __attribute__((xcl_pipeline_loop))
 execute: for(int i = 0 ; i < size ; i++)
 {
 int input_data, output_data;
 //blocking read command to Pipe P0
 read_pipe_block(p0, &input_data);
 output_data = input_data + inc;
 //blocking write command to Pipe P1
 write_pipe_block(p1, &output_data);
 }
}
// Output Stage Kernel: Read result from Pipe P1 and write the result to
Global
// Memory
kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void output_stage(__global int *output, int size)
{
 __attribute__((xcl_pipeline_loop))
 mem_wr: for (int i = 0 ; i < size ; i++)
 {
 //blocking read command to Pipe P1
 read_pipe_block(p1, &output[i]);
 }
}

The Device Traceline view shows the detailed activities and stalls on the OpenCL pipes after
hardware emulation is run. This information can be used to choose the correct FIFO sizes to
achieve the optimal application area and performance.

Figure 19: Device Traceline View

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=60

Optimizing Computational Parallelism
By default, C/C++ does not model computational parallelism, as it always executes any algorithm
sequentially. Conversely, the OpenCL API does model computational parallelism with respect to
work groups, but it does not use any additional parallelism within the algorithm description.
However, fully configurable computational engines, like FPGAs, allow more freedom to exploit
computational parallelism.

Coding Data Parallelism
To leverage computational parallelism during the implementation of an algorithm on the FPGA, it
should be mentioned that the synthesis tool must be able to recognize computational parallelism
from the source code first. Loops and functions are prime candidates for reflecting computational
parallelism and compute units in the source description. However, even in this case, it is key to
verify that the implementation takes advantage of the computational parallelism as in some cases
the SDAccel tool might not be able to apply the desired transformation due to the structure of
the source code.

It is quite common, that some computational parallelism might not be reflected in the source
code to begin with. In this case, it will need to be added. A typical example is a kernel that might
be described to operate on a single input value, while the FPGA implementation might execute
computations more efficiently in parallel on multiple values. This kind of parallel modeling is
described in the Using Full AXI Data Width section. A 512-bit interface can be created using
OpenCL vector data types such as int16 or C/C++ arbitrary precision data type ap_int<512>.

Note: These vector types can also be used as a powerful way to model data parallelism within a kernel,
with up to 16 data paths operating in parallel in case of int16. Refer to the Median Filter Example in the
vision category at SDAccel Getting Started Examples on GitHub for the recommended way to use vectors.

Loop Parallelism
Loops are the basic C/C++/OpenCL™ API method of representing repetitive algorithmic code.
The following example illustrates various implementation aspects of a loop structure:

 for(int i = 0; i<255; i++) {
 out[i] = in[i]+in[i+1];
 }
 out[255] = in[255];

This code iterates over an array of values and adds consecutive values, except the last value. If
this loop is implemented as written, each loop iteration requires two cycles for implementation,
which results in a total of 510 cycles for implementation. This can be analyzed in detail in the
Schedule Viewer in the HLS Project:

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 61Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=61

Figure 20: Implemented Loop Structure in Schedule Viewer

This can also be analyzed in terms of total numbers and latency through the Vivado synthesis
results:

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=62

Figure 21: Synthesis Results Performance Estimates

The key numbers here are the latency numbers and total LUT usage. For example, depending on
the configuration, you could get latency of 511 and total LUT usage of 47. As you will see, these
values can widely vary based on the implementation choices. While this implementation will
require very little area, it results in significant latency.

Unrolling Loops

Unrolling a loop enables the full parallelism of the model to be exploited. To do this, you can
simply mark a loop to be unrolled and the tool will create the implementation with the most
parallelism possible. To mark a loop to unroll, an OpenCL API loop can be marked with the
UNROLL attribute:

__attribute__((opencl_unroll_hint))

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=63

or a C/C++ loop can use the UNROLL pragma:

#pragma HLS UNROLL

When applied to this specific example, the Schedule Viewer in the HLS Project will be:

Figure 22: Schedule Viewer

With an estimated performance of:

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=64

Figure 23: Performance Estimates

As you can see, the total latency was considerably improved to 127 cycles, and as expected, the
computational hardware was increased to 4845 LUTs to perform the same computation in
parallel.

However, if you analyze the for-loop, you might ask why this algorithm cannot be implemented in
a single cycle, as each addition is completely independent of the previous loop iteration. The
reason is the memory interface to be used for the out variable. The SDAccel environment uses
dual port memory by default for an array. However, this implies that at most two values can be
written to the memory per cycle. Therefore, to see a fully parallel implementation, you must
specify that the out variable is kept in registers, as shown in the following example:

#pragma HLS array_partition variable=out complete dim= 0

For more information see the pragma HLS array_partition section in SDx Pragma Reference Guide
(UG1253).

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 65Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=65

The results of this transformation can be observed in the following Schedule Viewer:

Figure 24: Transformation Results in Schedule Viewer

The associated estimates are:

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=66

Figure 25: Transformation Results Performance Estimates

As you can see, this code can be implemented as a combinatorial function requiring only a
fraction of the cycle to complete.

Pipelining Loops

Pipelining loops allows you to overlap iterations of a loop in time. Allowing iterations to operate
concurrently is often a good compromise, as resources can be shared between iterations (less
resource usage), while requiring less execution time compared to loops that are not unrolled.

Pipelining is enabled in C/C++ through the following pragma:

#pragma HLS PIPELINE

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=67

While the OpenCL API uses the following attribute:

__attribute__((xcl_pipeline_loop))

Note: The OpenCL API has an additional way of specifying loop pipelining. This has to do with the fact that
work item loops are not explicitly stated and pipelining these loops requires the attribute:

__attribute__((xcl_pipeline_workitems))

More details to any of these specifications are provided in the SDx Pragma Reference Guide (UG1253) and
the SDAccel Environment Programmers Guide (UG1277).

In this example, the Schedule Viewer in the HLS Project produces the following information:

Figure 26: Pipelining Loops in Schedule Viewer

With the overall estimates being:

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 68Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=68

Figure 27: Performance Estimates

Because each iteration of a loop only consumes two cycles of latency, there can only be a single
iteration overlap. This enables the total latency to be cut into half compared to the original,
resulting in 257 cycles of total latency. However, when compared to unrolling, this reduction in
latency was achieved using fewer resources.

In most cases, loop pipelining by itself can improve overall performance. However, the
effectiveness of the pipelining will depend on the structure of the loop. Some common
limitations are:

• Resources with limited availability such as memory ports or process channels can limit the
overlap of the iterations (II).

• Similarly, loop-carried dependencies, such as those created by variables conditions computed
in one iteration affecting the next, might increase the initial interval of the pipeline.

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=69

These are reported by the tool during high-level synthesis and can be observed and examined in
the Schedule Viewer. For the best possible performance, the code might have to be modified to
eliminate these limiting factors, or the tool needs to be instructed to eliminate some dependency
by restructuring the memory implementation of an array or breaking the dependencies all
together.

Task Parallelism
Task parallelism allows you to take advantage of data flow parallelism. In contrast to loop
parallelism, when task parallelism is deployed, full execution units (tasks) are allowed to operate
in parallel taking advantage of extra buffering introduced between the tasks.

Look at the following example:

void run (ap_uint<16> in[1024],
 ap_uint<16> out[1024]
) {
 ap_uint<16> tmp[128];
 for(int i = 0; i<8; i++) {
 processA(&(in[i*128]), tmp);
 processB(tmp, &(out[i*128]));
 }
}

When this code is executed, the function processA and processB are executed sequentially 128
times in a row. Given the combined latency for processA and processB in the loop is 278, the
total latency can be estimated as:

Figure 28: Performance Estimates

The extra cycle is due to loop setup and can be observed in the Schedule Viewer.

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=70

For C/C++ code, task parallelism is performed by adding the DATAFLOW pragma into the for-
loop:

#pragma HLS DATAFLOW

For OpenCL API code, add the attribute before the for-loop:

__attribute__ ((xcl_dataflow))

Refer to SDx Pragma Reference Guide (UG1253) and SDAccel Environment Programmers Guide
(UG1277) for more details regarding the specifics and limitations of these modifiers.

As illustrated by the estimates in the HLS Report, applying the transformation will considerably
improve the overall performance effectively using a double (ping pong) buffer scheme between
the tasks:

Figure 29: Performances Estimates

The overall latency of the design has almost halved in this case due to concurrent execution of
the different tasks of the different iterations. Given the 139 cycles per processing function and
the full overlap of the 128 iterations, this allows the total latency to be:

(1x only processA + 127x both processes + 1x only processB) * 139 cycles =
17931 cycles

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 71Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=71

Using task parallelism is a very powerful way improve performance when it comes to
implementation. However, the effectiveness of applying the DATAFLOW pragma to a specific
and arbitrary piece of code might vary vastly. The coding guidelines for applying DATAFLOW
effectively are provided in SDx Pragma Reference Guide (UG1253) and SDAccel Environment
Programmers Guide (UG1277). However, to understand the final implementation of the
DATAFLOW pragma, it is often necessary to actually look at the execution pattern of the
individual tasks. Towards that end, the SDAccel environment provides the Detailed Kernel Trace,
which nicely illustrates concurrent execution.

Figure 30: Detailed Kernel Trace

For this detailed kernel trace, the tool displays the start of the dataflowed loop, as shown in the
previous figure. It illustrates how processA is starting up right away with the beginning of the
loop, while processB waits until the completion of the processA before it can start up its first
iteration. However, while processB completes the first iteration of the loop, processA begins
operating on the second iteration and so forth.

A more abstract representation of this information is presented in the Application Timeline (Host
& Device) and Device Hardware Transaction View (device-only during hardware emulation).

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 72Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=72

Optimizing Compute Units
Data Width
One aspect for performance is the data width required for the implementation. The tool
propagates port widths throughout the algorithm. In some cases, especially when starting out
with an algorithmic description, the C/C++/OpenCL™ API code might only use large data types
such as integers even at the ports of the design. However, as the algorithm gets mapped to a
fully configurable implementation, smaller data types such as 10- or 12-bit might often suffice.
Towards that end it is beneficial to check the size of basic operations in the HLS Synthesis report
during optimization. In general, when the SDAccel environment maps an algorithm onto the
FPGA, much processing is required to comprehend the C/C++/OpenCL API structure and extract
operational dependencies. Therefore, to perform this mapping the SDAccel environment
generally partitions the source code into operational units which are then mapped onto the
FPGA. Several aspects influence the number and size of these operational units (ops) as seen by
the tool.

In the following figure, the basic operations and their bitwidth are reported.

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=73

Figure 31: Operations Utilization Estimates

Look for bit widths of 16, 32, and 64 bits commonly used in algorithmic descriptions, and verify
that the associated operation from the C/C++/OpenCL API source actually requires the bit width
to be this large. This can considerably improve the implementation of the algorithm, as smaller
operations require less computation time.

Fixed Point Arithmetic
Some applications use floating point computation only because they are optimized for other
hardware architectures. As explained in Deep Learning with INT8 Optimization on Xilinx Devices,
using fixed point arithmetic for applications, like deep learning. can save the power efficiency and
area significantly while keeping the same level of accuracy.

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 74Send Feedback

https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=74

RECOMMENDED: Explore fixed point arithmetic for your application before committing to using floating point
operations.

Macro Operations
It is sometimes advantageous to think about larger computational elements. The tool will operate
on the source code independently of the remaining source code, effectively mapping the
algorithm without consideration of surrounding operations onto the FPGA. When applied,
SDAccel tool keeps operational boundaries, effectively creating macro operations for specific
code. This uses the following principles:

• Operational locality to the mapping process.

• Reduction in complexity for the heuristics.

This might create vastly different results when applied. In C/C++ macro operations are created
with the help of

#pragma HLS inline off

While in the OpenCL API, the same kind of macro operation can be generated by not specifying
the following attribute, when defining a function.:

__attribute__((always_inline))

Using Optimized Libraries
The OpenCL specification provides many math built-in functions. All math built-in functions with
the native_ prefix are mapped to one or more native device instructions and will typically have
better performance compared to the corresponding functions (without the native_ prefix). The
accuracy and in some cases the input ranges of these functions is implementation-defined. In
SDAccel™ environment these native_ built-in functions use the equivalent functions in the
Vivado® HLS tool Math library, which are already optimized for Xilinx® FPGAs in terms of area
and performance.

RECOMMENDED: Xilinx recommends that you use native_ built-in functions or the HLS tool Math library if
the accuracy meets the application requirement.

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=75

Optimizing Memory Architecture
A key aspect of implementation is memory architecture. Because of the limited access
bandwidth, it can heavily impact the overall performance, as shown in the following example:

void run (ap_uint<16> in[256][4],
 ap_uint<16> out[256]
) {
 ...
 ap_uint<16> inMem[256][4];
 ap_uint<16> outMem[256];

 ... Preprocess input to local memory

 for(int j=0; j<256; j++) {
 #pragma HLS PIPELINE OFF
 ap_uint<16> sum = 0;
 for(int i = 0; i<4; i++) {

 sum += inMem[j][i];
 }
 outMem[j] = sum;
 }

 ... Postprocess write local memory to output
}

This code adds the four values associated with the inner dimension of the two dimensional input
array. If implemented without any additional modifications, it results in the following estimates:

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=76

Figure 32: Performance Estimates

The overall latency of 4608 (Loop 2) is due to 256 iterations of 18 cycles (16 cycles spent in the
inner loop, plus the reset of sum, plus the output being written). This is can be observed in the
Schedule Viewer in the HLS Project. The estimates become considerably better when unrolling
the inner loop.

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=77

Figure 33: Performance Estimates

However, this improvement is largely due to the fact that this process uses both ports of a dual
port memory. This can be seen from the Schedule Viewer in the HLS Project:

Figure 34: Schedule Viewer

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=78

As you can see, two read operations are performed per cycle to access all the values from the
memory to calculate the sum. This is often an undesired result as this completely blocks the
access to the memory. To further improve the results, the memory can be split into four smaller
memories along the second dimension:

#pragma HLS ARRAY_PARTITION variable=inMem complete dim=2

This results in four array reads, all executed on different memories using a single port:

Figure 35: Executed Four Arrays Results

Using a total of 256 * 4 cycles = 1024 cycles for loop 2.

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=79

Figure 36: Performance Estimates

Alternatively, the memory can be reshaped into to a single memory with four words in parallel.
This is performed through the following pragma:

#pragma HLS array_reshape variable=inMem complete dim=2

This results in the same latency as the array partitioning, but with a single memory using a single
port:

Figure 37: Latency Result

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=80

Although, either solution creates comparable results with respect to overall latency and
utilization, reshaping the array results in cleaner interfaces and less routing congestion making
this the preferred solution.

Note: This completes array optimization, in a real design the latency could be further improved by
exploiting loop parallelism (see the Loop Parallelism section).

void run (ap_uint<16> in[256][4],
 ap_uint<16> out[256]
) {
 ...

 ap_uint<16> inMem[256][4];
 ap_uint<16> outMem[256];
 #pragma HLS array_reshape variable=inMem complete dim=2

 ... Preprocess input to local memory

 for(int j=0; j<256; j++) {
 #pragma HLS PIPELINE OFF
 ap_uint<16> sum = 0;
 for(int i = 0; i<4; i++) {
 #pragma HLS UNROLL
 sum += inMem[j][i];
 }
 outMem[j] = sum;
 }

 ... Postprocess write local memory to output

}

Chapter 3: Kernel Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=81

Chapter 4

Host Optimization
This chapter focuses on host code optimization. The host code uses the OpenCL™ API to
schedule the individual compute unit executions and data transfers from and to the FPGA board.
As a result, you need to think about concurrent execution through the OpenCL queue(s). This
section discusses in detail common pitfalls and how to recognize and address them.

Reducing Overhead of Kernel Enqueing
The OpenCL API execution model supports data parallel and task parallel programming models.
Kernels are usually enqueued by the OpenCL runtime multiple times and then scheduled for
execution on the device. You must send the command to start the kernel in one of two ways:

• For the data parallel case, use the clEnqueueNDRange API.

• For the task parallel case, use the clEnqueueTask API.

The dispatching process is executed on the host processor, the actual commands, and kernel
arguments must to be sent to the FPGA through the PCIe® link. In the current Xilinx runtime
(XRT), the overhead of dispatching the command and arguments to the FPGA is between 30us
and 60us, depending the number of arguments on the kernel. You can reduce the impact of this
overhead by minimizing the number of times the kernel needs to be executed.

For the data parallel case, Xilinx recommends that you carefully choose the global and local work
sizes for your host code and kernel so that the global work size is a small multiple of the local
work size. Ideally, the global work size is the same as the local work size as shown in the
following code snippet:

size_t global = 1;
size_t local = 1;
clEnqueueNDRangeKernel(world.command_queue, kernel, 1, nullptr,
 &global, &local, 2, write_events.data(),
 &kernel_events[0]));

For the task parallel case, Xilinx recommends that you minimize the calls to clEnqueueTask.
Ideally, you should finish all the work load in a single call to clEnqueueTask.

Chapter 4: Host Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=82

Data Transfers
Memory Data Transfer Types
The FPGA memory hierarchy, as well as the PCIe-based host to compute unit data transfers,
provide a vast set of different data transfer options. To achieve maximum performance, these
options should be reviewed. The basic trade-offs are between:

• Kind of memory to be deployed

• Streaming data transfer

• No host memory data transfers between compute units

Note: For more information about using the --sp option, the --sc option, xlcbin --info command,
and the platforminform command, described in the sections below, refer to SDx Command and Utility
Reference Guide (UG1279).

Memory Hierarchy

FPGA accelerator cards include several different memory hierarchies available for communication
between host and kernels (CUs). For each memory hierarchy, there are different advantages and
disadvantages to consider for optimization purposes.

• DDR Memory: This memory is external to the FPGA. It is the largest of the memory options
but as a result has the longest latency to access.

• Usage (link flag): -sp [kernel|cu].[arg|port]:sptag

Values for sptag can be looked up through xclbin --info or the platforminfo
command.

• PL Memory: This memory is internal to the FPGA. It is usually smaller than the external DDR
memory, however, if supported by the platform, it has lower latency than the DDR memory.

• Usage (link flag): -sp [kernel|cu].[arg|port]:sptag

Values for sptag can be looked up through xclbin.info and platform info.

Streaming Data Transfer

When streams are deployed between compute units or a compute unit and the host, a sequential
data path is established. As a result, the transmitted data can only be received in the order sent.
The tool distinguishes two types of streaming data transfers, one between compute units and the
one between compute units and host.

• Kernel-to-Kernel: In case of kernel to kernel streaming communication, the ports are
connected through the -sc option:

Chapter 4: Host Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 83Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=83

Usage (link flag): -sc src.port:dst:port

This is supported in the SDAccel environment through the use of hls::streams based on the
ap_axiu data type on the kernel interfaces. This requires the ap_axi_sdata.h header file
to be included.

• Compute Unit to Host: Streaming data between compute units and host require QDMA
queues. As a result, this flow requires a QDMA platform.

This is supported in the SDAccel environment through the use of hls::streams based on the
qdma_axis data type on the kernel interfaces. The member field “last” is used to indicate
when a specified workload is completed. This allows streaming communication of various
length. For more details on host code modeling, refer to the SDAccel Environment Programmers
Guide (UG1277).

No Host Memory Data Transfers between Compute Units

In memory mapped data transfers, blocks of data are written to and from the memory associated
with the port. This enables the reader and writer to perform random access within the memory
buffer used for communication. The SDAccel environment allows efficient buffer-based
communication between kernels by using shared buffers between processes, which requires the
same memory, or with the help of the clEnqueueCopyBuffer API, which implements efficient
copying between buffers without host memory interaction.

Peer-to-Peer

The SDAccel development environment can support systems with multiple accelerator cards on a
single host to work together to accelerate large software systems. Specifically, for
communication between different accelerator cards, the development environment supports
direct peer-to-peer communication. This can be achieved by enabling the direct access of one of
the cards DDR memory space which enables direct communication (without host memory).

Enable Direct Access to DDR Memory Space

The following steps describe the setup from a local source buffer to an exported destination
buffer. However, before actually modifying the host code, it is important to enable peer-to-peer
communication. This is performed through the use of xbutil "xbutil p2p --enable" for the
receiving device. The whole DDR address space of the device will be mapped to the host I/O
memory space. For more information, refer to the SDx Command and Utility Reference Guide
(UG1279).

After that it is necessary to modify the host code to prepare for direct peer-to-peer
communication:

1. Create buf_dst with XCL_MEM_EXT_P2P_BUFFER flag.

There should not be any associated user space buffer (host buffer) for buf_dst.

Chapter 4: Host Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 84Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=84

2. Export and import the buf_dst, using the xclGetMemObjectFd
andxclGetMemObjectFromFd APIs, in context: buf_dst_exported.

3. Use the regular clEnqueueCopyBuffer API (src_command_queue, buf_src,
buf_dst_exported, 0,0, buffer_size,,,,) command to copy the buffers between the devices.

Note: As mentioned in the Step 1 and Step 2, the exported buffer should be a p2p buffer. If a non-p2p
buffer is exported and a copy operation is executed, the buffer would still be copied but through the host
memory and not directly from card-to-card. The card-to-card transfers will be reported separately in the
Profile Summary report.

More information about peer-to-peer connectivity can be found in the XRT documentation on
GitHub.

Overlapping Data Transfers with Kernel
Computation
Applications, such as database analytics, have a much larger data set than the available memory
on the acceleration device. They require the complete data to be transferred and processed in
blocks. Techniques that overlap the data transfers with the computation are critical to achieve
high performance for these applications.

The following code snippet shows the vector add kernel from the OpenCL Overlap Data
Transfers with Kernel Computation Example in the host category from Xilinx On-boarding
Example GitHub.

kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void vadd(global int* c,
 global const int* a,
 global const int* b,
 const int offset,
 const int elements)
{
 int end = offset + elements;
 vadd_loop: for (int x=offset; x<end; ++x) {
 c[x] = a[x] + b[x];
 }
}

For this example, there are four tasks to perform in the host application:

1. Write buffer a (Wa)

2. Write buffer b (Wb)

3. Execute vadd kernel

4. Read buffer c (Rc)

Chapter 4: Host Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 85Send Feedback

https://xilinx.github.io/XRT/master/html/p2p.html
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/host
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=85

The asynchronous nature of OpenCL data transfer and kernel execution APIs allows overlap of
data transfers and kernel execution, as shown in the following figure. In this example, double
buffering is used for all buffers so that the compute unit can process one set of buffers while the
host can operate on the other set of buffers. The OpenCL event object provides an easy way to
set up complex operation dependencies and synchronize host threads and device operations. The
arrows in the following figure show how event triggering can be set up to achieve optimal
performance.

Figure 38: Event Triggering Set Up

Wa0 Wb0 Wa1 Wb2

vadd vadd

Rc0

vadd

Rc1

Wa0 Wb0 Wa1 Wb2

X22780-042519

The following host code snippet enqueues the four tasks in a loop. It also sets up event
synchronization between different tasks to ensure that data dependencies are met for each task.
The double buffering is set up by passing different memory objects values to the
clEnqueueMigrateMemObjects API. The event synchronization is achieved by having each
API call wait for other event as well as trigger its own event when the API completes.

 for (size_t iteration_idx = 0;
 iteration_idx < num_iterations;
 iteration_idx++) {
 int flag = iteration_idx % 2;

 if (iteration_idx >= 2) {
 clWaitForEvents(1, &map_events[flag]);
 OCL_CHECK(clReleaseMemObject(buffer_a[flag]));
 OCL_CHECK(clReleaseMemObject(buffer_b[flag]));
 OCL_CHECK(clReleaseMemObject(buffer_c[flag]));
 OCL_CHECK(clReleaseEvent(read_events[flag]));
 OCL_CHECK(clReleaseEvent(kernel_events[flag]));
 }

 buffer_a[flag] = clCreateBuffer(world.context,
 CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
 bytes_per_iteration,
 &A[iteration_idx * elements_per_iteration],
 NULL);
 buffer_b[flag] = clCreateBuffer(world.context,
 CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
 bytes_per_iteration,
 &B[iteration_idx * elements_per_iteration],
 NULL);
 buffer_c[flag] = clCreateBuffer(world.context,
 CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR,
 bytes_per_iteration,
 &device_result[iteration_idx * elements_per_iteration],
 NULL);

 array<cl_event, 2> write_events;

Chapter 4: Host Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=86

 printf("Enqueueing Migrate Mem Object (Host to Device) calls\n");
 // These calls are asynchronous with respect to the main thread
 // because are passing the CL_FALSE as the third parameter.
 // Because we are passing the events from the previous kernel call
 // into the wait list, it will wait for the previous operations
 // to complete before continuing
 OCL_CHECK(clEnqueueMigrateMemObjects(
 world.command_queue, 1, &buffer_a[iteration_idx % 2],
 0 /* flags, 0 means from host */,
 0, NULL,
 &write_events[0]));
 set_callback(write_events[0], "ooo_queue");

 OCL_CHECK(clEnqueueMigrateMemObjects(
 world.command_queue, 1, &buffer_b[iteration_idx % 2],
 0 /* flags, 0 means from host */,
 0, NULL,
 &write_events[1]));
 set_callback(write_events[1], "ooo_queue");

 OCL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem),
 &buffer_c[iteration_idx % 2]));
 OCL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem),
 &buffer_a[iteration_idx % 2]));
 OCL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem),
 &buffer_b[iteration_idx % 2]));
 OCL_CHECK(clSetKernelArg(kernel, 3, sizeof(int),
 &elements_per_iteration));

 printf("Enqueueing NDRange kernel.\n");
 // This event needs to wait for the write buffer operations to complete
 // before executing. We are sending the write_events into its wait list
 // to ensure that the order of operations is correct.
 OCL_CHECK(clEnqueueNDRangeKernel(world.command_queue, kernel, 1,
 nullptr, &global, &local, 2 ,
 write_events.data(),
 &kernel_events[flag]));
 set_callback(kernel_events[flag], "ooo_queue");

 printf("Enqueueing Migrate Mem Object (Device to Host) calls\n");
 // This operation only needs to wait for the kernel call. This call will
 // potentially overlap the next kernel call as well as the next read
 // operations
 OCL_CHECK(clEnqueueMigrateMemObjects(world.command_queue, 1,
 &buffer_c[iteration_idx % 2],
 CL_MIGRATE_MEM_OBJECT_HOST, 1,
 &kernel_events[flag],
 &read_events[flag]));

 set_callback(read_events[flag], "ooo_queue");
 clEnqueueMapBuffer(world.command_queue, buffer_c[flag], CL_FALSE,
 CL_MAP_READ, 0, bytes_per_iteration, 1,
 &read_events[flag], &map_events[flag], 0);
 set_callback(map_events[flag], "ooo_queue");

 OCL_CHECK(clReleaseEvent(write_events[0]));
 OCL_CHECK(clReleaseEvent(write_events[1]));
 }

The Application Timeline view clearly shows that the data transfer time is completely hidden,
while the vadd_1 compute unit is running constantly.

Chapter 4: Host Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=87

Figure 39: Data Transfer Time Hidden in Application Timeline View

Buffer Memory Segmentation
Allocation and deallocation of memory buffers can lead to memory segmentation in the DDRs.
This might result in sub-optimal performance of compute units, even if they could theoretically
execute in parallel.

This problem occurs most often when multiple pthreads for different compute units are used, and
the threads allocate and release many device buffers with different sizes every time they
enqueue the kernels. In this case, the timeline trace will exhibit gaps between kernel executions
and it just seems the processes are sleeping.

Each buffer allocated by runtime should be continuous in hardware. For large memory, it might
take a lot of time to wait for that space to be freed, when many buffers are allocated and
deallocated. This can be resolved by allocating device buffer, and reusing it between different
enqueues of a kernel.

Compute Unit Scheduling
Scheduling kernel operations is key to overall system performance. This becomes even more
important when implementing multiple compute units (of the same kernel or of different kernels).
This section examines the different command queues responsible for scheduling the kernels.

Multiple In-Order Command Queues
The following figure shows an example with two in-order command queues, CQ0 and CQ1. The
scheduler dispatches commands from each queue in order, but commands from CQ0 and CQ1
can be pulled out by the scheduler in any order. You must manage synchronization between CQ0
and CQ1, if required.

Chapter 4: Host Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=88

Figure 40: Example with Two In-Order Command Queues

In-order CQ

Scheduler

PCIe

Device
DMA

CU0

CU1
In-order CQ

X22781-042519

The following code snippet from the Concurrent Kernel Execution Example in host category from
SDAccel Getting Started Examples on GitHub sets up multiple in-order command queues and
enqueues commands into each queue:

cl_command_queue ordered_queue1 = clCreateCommandQueue(
 world.context, world.device_id, CL_QUEUE_PROFILING_ENABLE, &err)

cl_command_queue ordered_queue2 = clCreateCommandQueue(
world.context, world.device_id, CL_QUEUE_PROFILING_ENABLE, &err);

clEnqueueNDRangeKernel(ordered_queue1, kernel_mscale, 1, offset,
 global, local, 0, nullptr,
 &kernel_events[0]));

clEnqueueNDRangeKernel(ordered_queue1, kernel_madd, 1, offset,
 global, local, 0, nullptr,
 &kernel_events[1]);

clEnqueueNDRangeKernel(ordered_queue2, kernel_mmult, 1, offset,
 global, local, 0, nullptr,
 &kernel_events[2]);

Single Out-of-Order Command Queue
The following figure shows an example with a single out-of-order command queue. The
scheduler can dispatch commands from the queue in any order. You must set up event
dependencies and synchronizations explicitly, if required.

Figure 41: Example with Single Out-of-Order Command Queue

Out-of-order CQ
Scheduler

PCIe

Device
DMA

CU0

CU1

X22783-042519

Chapter 4: Host Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 89Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/host
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=89

The following code snippet from the Concurrent Kernel Execution Example from SDAccel Getting
Started Examples on GitHub sets up a single out-of-order command queue and enqueues
commands:

cl_command_queue ooo_queue = clCreateCommandQueue(
 world.context, world.device_id,
 CL_QUEUE_PROFILING_ENABLE | CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE,
&err);

clEnqueueNDRangeKernel(ooo_queue, kernel_mscale, 1, offset, global,
 local, 0, nullptr, &ooo_events[0]);

clEnqueueNDRangeKernel(ooo_queue, kernel_madd, 1, offset, global,
 local, 1,
 &ooo_events[0], // Event from previous call
 &ooo_events[1]);

clEnqueueNDRangeKernel(ooo_queue, kernel_mmult, 1, offset, global,
 local, 0,
 nullptr, // Does not depend on previous call
 &ooo_events[2])

The following figure shows the Application Timeline view where that the compute unit mmult_1
is running in parallel with the compute units mscale_1 and madd_1, using both multiple in-
order queues and single out-of-order queue methods.

Figure 42: Application Timeline View Showing mult_1 Running with mscale_1 and
madd_1

Chapter 4: Host Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 90Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=90

Using the clEnqueueMigrateMemObjects API
to Transfer Data

The OpenCL framework provides a number of APIs for transferring data between the host and
the device. Typically, data movement APIs, such as clEnqueueWriteBuffer and
clEnqueueReadBuffer, implicitly migrate memory objects to the device after they are
enqueued. They do not guarantee when the data is transferred. This makes it difficult for the host
application to overlap the placements of the memory objects onto the device with the
computation carried out by kernels.

The OpenCL 1.2 framework introduced a new API, clEnqueueMigrateMemObjects. Using
this API, memory migration can be explicitly performed ahead of the dependent commands. This
allows the application to preemptively change the association of a memory object, through
regular command queue scheduling, to prepare for another upcoming command. This also
permits an application to overlap the placement of memory objects with other unrelated
operations before these memory objects are needed, potentially hiding transfer latencies. After
the event associated by the clEnqueueMigrateMemObjects API are marked CL_COMPLETE,
the memory objects specified in mem_objects are successfully migrated to the device associated
with command_queue.

The clEnqueueMigrateMemObjects API can also be used to direct the initial placement of a
memory object after creation, possibly avoiding the initial overhead of instantiating the object on
the first enqueued command to use it.

Another advantage of using the clEnqueueMigrateMemObjects API is that it can migrate
multiple memory objects in a single API call. This reduces the overhead of scheduling and calling
functions for transferring data for more than one memory object.

The following code snippet shows the usage of the clEnqueueMigrateMemObjects API from
the Vector Multiplication for XPR Device example in the host category from SDAccel Getting
Started Examples on GitHub.

int err = clEnqueueMigrateMemObjects(
 world.command_queue,
 1,
 &d_mul_c,
 CL_MIGRATE_MEM_OBJECT_HOST,
 0,
 NULL,
 NULL);

Chapter 4: Host Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 91Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=91

Chapter 5

Topological Optimization
This chapter focuses on the topological optimization, and looks at the attributes related to the
rough layout and implementation of multiple compute units and their impact on performance.

Multiple Compute Units
Depending on available resources on the FPGA, multiple compute units of the same kernel (or
different kernels) can be created to run in parallel, which improves the system processing time
and throughput.

Different kernels are provided as separate .xo files on the xocc link line. Multiple kernel compute
units can be added by using the --nk option:

xocc -l --nk <kernel_name:number(:compute_unit_name1.compute_unit_name2...)>

Note: Each of the individual kernels must be individually driven by the host code.

Using Multiple DDR Banks
In the SDAccel™ environment, supported acceleration cards provide one, two, or four DDR banks
and up to 80 GB/s raw DDR bandwidth.

RECOMMENDED: For kernels moving large amount of data between the FPGA and the DDR, Xilinx
recommends that you direct the SDAccel compiler and runtime library to use multiple DDR banks.

In addition to DDR banks, the host application can access PLRAM to transfer data directly to a
kernel. This feature is enabled using the xocc --sp option with compatible platforms.

To take advantage of multiple DDR banks or PLRAMs, use the --sp option to map the individual
arguments of the accelerator to the desired DDR banks or PLRAM in the xclbin. This mapping
will be automatically picked up by the host executable.

The following block diagram shows the Global Memory Two Banks Example from the
“kernel_to_gmem” category on SDAccel Getting Started Examples on GitHub that connects the
input pointer to DDR bank 0 and output pointer to DDR bank 1.

Chapter 5: Topological Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 92Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started/kernel_to_gmem
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=92

Figure 43: Global Memory Two Banks

Kernel

Memory
Interconnect/

Controller

Memory
Interconnect/

Controller

DDR0

DDR1

*input

*output

X22633-050619

Connecting Kernel Ports to Memory Banks

Creating Multiple AXI Interfaces

OpenCL™ kernels, C/C++ kernels, and RTL kernels have different methods for assigning function
parameters to AXI interfaces.

• For OpenCL kernels, the --max_memory_ports option is required to generate one AXI4
interface for each global pointer on the kernel argument. The AXI4 interface name is based on
the order of the global pointers on the argument list.

The following code is taken from the example gmem_2banks_ocl in the kernel_to_gmem
category from the SDAccel Getting Started Examples on GitHub:

__kernel __attribute__ ((reqd_work_group_size(1, 1, 1)))
void apply_watermark(__global const TYPE * __restrict input,
__global TYPE * __restrict output, int width, int height) {
 ...
}

In this example, the first global pointer input is assigned an AXI4 name xi_gmem0, and the
second global pointer output is assigned a name axi_gmem1.

• For C/C++ kernels, multiple AXI4 interfaces are generated by specifying different “bundle”
names in the HLS INTERFACE pragma for different global pointers. For more information,
refer to the SDAccel Environment Programmers Guide (UG1277).

The following is a code snippet from the gmem_2banks_c example that assigns the input
pointer to the bundle gmem0 and the output pointer to the bundle gmem1. The bundle name
can be any valid C string, and the AXI4 interface name generated will be
m_axi_<bundle_name>. For this example, the input pointer will have AXI4 interface name
as axi_gmem0, and the output pointer will have m_axi_gmem1.

#pragma HLS INTERFACE m_axi port=input offset=slave bundle=gmem0
#pragma HLS INTERFACE m_axi port=output offset=slave bundle=gmem1

Chapter 5: Topological Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 93Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1277-sdaccel-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=93

• For RTL kernels, the port names are generated during the import process by the RTL kernel
wizard. The default names proposed by the RTL kernel wizard are m00_axi and m01_axi. If
not changed, these names have to be used when assigning a DDR bank through the --sp
option.

Assigning AXI Interfaces to Global Memory

IMPORTANT! When using more than one DDR interface, Xilinx requires you to specify the DDR memory bank
for each kernel/CU using the --sp option, and specify in which SLR the kernel is placed. Refer to the XOCC
command in the SDx Command and Utility Reference Guide (UG1279) for details of the --sp command option,
and the SDAccel Environment User Guide (UG1023) for details on SLR placement.

AXI4 interfaces are connected to DDR banks using the --sp option. The --sp option value is in
the format of <kernel_instance_name>.<interface_name>:<DDR_bank_name>.

The complete list of DDR memories or alternative communication memories, such as PLRAM and
HBM, can be found through the platforminfo command.

Note: Not all global memory options are supported by all platforms.

The following is the command line example that connects the input pointer (M_AXI_GMEM0) to
DDR bank 0 and the output pointer (M_AXI_GMEM1) to DDR bank 1:

xocc --max_memory_ports apply_watermark
--sp apply_watermark_1.m_axi_gmem0:DDR[0]
--sp apply_watermark_1.m_axi_gmem1:DDR[1]

You can use the Device Hardware Transaction view to observe the actual DDR Bank
communication, and to analyze DDR usage.

Figure 44: Device Hardware Transaction View Transactions on DDR Bank

Chapter 5: Topological Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 94Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=94

Assigning Kernels to SLR regions

Assigning ports to DDR banks requires that the kernel will have to be physically routed on the
FPGA to connect to the assigned DDR. Currently, large FPGAs use stacked silicon devices with
several Super Logic Regions (SLRs). By default, the SDAccel environment will place the compute
units in the same SLR as the shell. This might not always be desirable, especially when specific
DDR banks are used that might be in another SLR region. As a result, Xilinx recommends to use
the --slr option to map kernels to be close to the used DDR memory. For example, the
apply_watermark_1 kernel can be mapped to SLR 1 by applying the following link option:

xocc -l --slr apply_watermark_1:SLR1

To better understand the platform attributes, such as the number of DDRs and SLR regions, use
platforminfo. For more information, refer to the SDx Command and Utility Reference Guide
(UG1279).

Chapter 5: Topological Optimization

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 95Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=95

Appendix A

Examples
To help you quickly get started with the SDAccel™ environment, the SDAccel Getting Started
Examples on GitHub hosts many examples to demonstrate good design practices, coding
guidelines, design pattern for common applications, and most importantly optimization
techniques to maximize application performance. The on-boarding examples are divided into
several main categories. Each category has various key concepts that are illustrated by individual
examples in both OpenCL™ C and C/C++, when applicable. All examples include a Makefile for
running software emulation, hardware emulation, and running on hardware, and a README.md
file that explains the example in detail.

Appendix A: Examples

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 96Send Feedback

https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://github.com/Xilinx/SDAccel_Examples/tree/master/getting_started
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=96

Appendix B

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. DocNav is installed with
the SDSoC™ and SDAccel™ development environments. To open it:

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
1. SDAccel Environment Release Notes, Installation, and Licensing Guide (UG1238)

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 97Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=97

2. SDAccel Environment Profiling and Optimization Guide (UG1207)

3. SDAccel Environment Getting Started Tutorial (UG1021)

4. SDAccel™ Development Environment web page

5. Vivado® Design Suite Documentation

6. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

7. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

8. Vivado Design Suite User Guide: Partial Reconfiguration (UG909)

9. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

10. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)

11. Vivado Design Suite Properties Reference Guide (UG912)

12. Khronos Group web page: Documentation for the OpenCL standard

13. Xilinx® Virtex® UltraScale+™ FPGA VCU1525 Acceleration Development Kit

14. Xilinx® Kintex® UltraScale™ FPGA KCU1500 Acceleration Development Kit

15. Xilinx® Alveo™ web page

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://

Appendix B: Additional Resources and Legal Notices

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 98Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1207-sdaccel-optimization-guide.pdf
https://github.com/Xilinx/SDAccel-Tutorials/blob/master/README.md
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug912-vivado-properties.pdf
http://www.khronos.org
https://www.xilinx.com/products/boards-and-kits/vcu1525-a.html
https://www.xilinx.com/products/boards-and-kits/dk-u1-kcu1500-g.html
https://www.xilinx.com/alveo
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=98

www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2016-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc.
used by permission by Khronos. HDMI, HDMI logo, and High-Definition Multimedia Interface are
trademarks of HDMI Licensing LLC. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries. All other trademarks are the property of their respective owners.

Appendix B: Additional Resources and Legal Notices

UG1207 (v2019.1) June 5, 2019 www.xilinx.com
SDAccel Environment Profiling and Optimization Guide 99Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1207&Title=%20SDAccel%20Environment%20Profiling%20and%20Optimization%20Guide&releaseVersion=2019.1&docPage=99

	 SDAccel Environment Profiling and Optimization Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	SDAccel Execution Model
	SDAccel Build Process
	SDAccel Optimization Flow Overview
	Baselining Functionalities and Performance
	Optimizing Data Movement
	Optimizing Kernel Computation

	Ch. 2: SDAccel Profiling and Optimization Features
	System Estimate
	GUI Flow
	Command Line
	Data Interpretation
	Design and Target Device Summary
	Kernel Summary
	Timing Information
	Latency Information
	Area Information

	HLS Report
	GUI Flow
	Command Line
	Data Interpretation

	Profile Summary Report
	GUI Flow
	Command Line
	Display the Profile Summary

	Data Interpretation

	Application Timeline
	GUI Flow
	Command Line
	Data Interpretation

	Waveform View
	GUI Flow
	Command Line
	Data Interpretation Waveform View
	Data Interpretation Live Waveform

	Guidance
	GUI Flow
	Command Line
	Data Interpretation

	Using Implementation Tools
	Exploring Kernel Optimizations Using Vivado HLS
	Controlling FPGA Implementation with the Vivado Design Suite

	Ch. 3: Kernel Optimization
	Interface Attributes (Detailed Kernel Trace)
	Top Level Dataflow
	Using Burst Data Transfers
	Using AXI4 Data Width
	OpenCL API Attributes

	Reducing Kernel-to-Kernel Communication Latency with OpenCL Pipes

	Optimizing Computational Parallelism
	Coding Data Parallelism
	Loop Parallelism
	Unrolling Loops
	Pipelining Loops

	Task Parallelism

	Optimizing Compute Units
	Data Width
	Fixed Point Arithmetic
	Macro Operations
	Using Optimized Libraries

	Optimizing Memory Architecture

	Ch. 4: Host Optimization
	Reducing Overhead of Kernel Enqueing
	Data Transfers
	Memory Data Transfer Types
	Peer-to-Peer
	Enable Direct Access to DDR Memory Space

	Overlapping Data Transfers with Kernel Computation
	Buffer Memory Segmentation

	Compute Unit Scheduling
	Multiple In-Order Command Queues
	Single Out-of-Order Command Queue

	Using the clEnqueueMigrateMemObjects API to Transfer Data

	Ch. 5: Topological Optimization
	Multiple Compute Units
	Using Multiple DDR Banks
	Connecting Kernel Ports to Memory Banks
	Creating Multiple AXI Interfaces
	Assigning AXI Interfaces to Global Memory
	Assigning Kernels to SLR regions

	Appx. A: Examples
	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Please Read: Important Legal Notices

