
Zynq-7000 All
Programmable SoC:
Embedded Design
Tutorial

A Hands-On Guide to Effective
Embedded System Design

UG1165 (v2017.3) November 23, 2017
UG1165 (v2018.3) December 5, 2018

This tutorial was validated with 2017.3 and will no longer be updated. Minor procedural differences
might be required when using later releases.

UG1165 (v2019.1) May 22, 2019

Zynq-7000 AP SoC: Embedded Design Tutorial 2
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Date Version Revision

11/23/2017 2017.3 Verified for 2017.3 version of Vivado® Design Suite, Xilinx® SDK, and PetaLinux
Tools.

Send Feedback
UG1165 (v2018.3) December 5, 2018

12/05/2018: Released with Vivado® Design Suite 2018.3 without changes from 2017.3.

UG1165 (v2019.1) May 22, 2019

05/22/2019: Released with Vivado® Design Suite 2019.1 without changes from 2017.3.

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=2

Table of Contents
Revision History . 2

Chapter 1: Introduction
About This Guide . 5
How Zynq Devices Simplify Embedded Processor Design. 7
How the Vivado Tools Expedite the Design Process . 10
What You Need to Set Up Before Starting . 10

Chapter 2: Using the Zynq SoC Processing System
Embedded System Configuration . 14
Example Project: Creating a New Embedded Project with Zynq SoC. 15
Example Project: Running the “Hello World” Application . 27
Additional Information . 31

Chapter 3: Using the GP Port in Zynq Devices
Adding IP in PL to the Zynq SoC Processing System . 32
Standalone Application Software for the Design. 42

Chapter 4: Debugging with SDK
Xilinx System Debugger . 45
Debugging Software Using SDK. 47

Chapter 5: Using the HP Slave Port with AXI CDMA IP
Integrating AXI CDMA with the Zynq SoC PS HP Slave Port . 50
Standalone Application Software for the Design. 56
Linux OS Based Application Software for the CDMA System . 59
Running Linux CDMA Application Using SDK . 60

Chapter 6: Linux Booting and Debug in SDK
Requirements . 69
Booting Linux on a Zynq SoC Board . 70
Zynq-7000 AP SoC: Embedded Design Tutorial 3
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=3

Chapter 7: Creating Custom IP and Device Driver for Linux
Requirements . 92
Creating Peripheral IP . 93
Integrating Peripheral IP with PS GP Master Port . 98
Linux-Based Device Driver Development . 101
Loading Module into Running Kernel and Application Execution . 103

Chapter 8: Software Profiling Using SDK
Profiling an Application in SDK with System Debugger. 107
Additional Design Support Options . 109

Chapter 9: Linux OS Aware Debugging Using SDK
Setting up Linux OS Aware Debugging . 111
Debugging Linux Processes and Threads Using OS Aware Debug . 114

Appendix A: Additional Resources and Legal Notices
Xilinx Resources . 123
Solution Centers. 123
Documentation Navigator and Design Hubs . 123
Xilinx Documentation Navigator. 124
Design Files for This Tutorial . 124
Xilinx Resources . 124
Training Resources. 126
Please Read: Important Legal Notices . 126
Zynq-7000 AP SoC: Embedded Design Tutorial 4
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=4

Chapter 1

Introduction

About This Guide
This document provides an introduction to using the Xilinx® Vivado® Design Suite flow for
using the Zynq®-7000 All Programmable SoC device. The examples are targeted for the
Xilinx ZC702 Rev 1.1 evaluation board and the tool version used is Vivado and the Xilinx
Software Development Kit (SDK) 2017.3.

Note: To install SDK as part of the Vivado Design Suite, you must choose to include SDK in the
installer. See Xilinx Software Development Kit, page 9.

The examples in this document were created using the Xilinx tools running on Windows 7,
64-bit operating system, and PetaLinux on Linux 64-bit operating system. Other versions of
the tools running on other Window installs might provide varied results. These examples
focus on introducing you to the following aspects of embedded design.

Note: The sequence mentioned in the tutorial steps for booting Linux on the hardware is specific to
the PetaLinux tools released for 2017.3, which must be installed on the Linux host machine for
exercising the Linux portions of this document.

• Chapter 2, Using the Zynq SoC Processing System describes creation of a system with
the Zynq SoC Processing System (PS) and running a simple "Hello World" application.
This chapter is an introduction into the hardware and software tools using a simple
design as the example.

• Chapter 3, Using the GP Port in Zynq Devices describes how to create a system using
the Zynq SoC PS and the Programmable Logic (PL, or "fabric") and how to use a simple
application to exercise both the PS and PL.

• Chapter 4, Debugging with SDK provides an introduction into debugging software
using the debug features of the Xilinx Software Development Kit (SDK). This chapter
uses the previous design and runs the software bare metal (without an OS) to show
how to debug.

• Chapter 5, Using the HP Slave Port with AXI CDMA IP provides information about
booting the Linux OS on the Zynq SoC board and application development with
PetaLinux tools. This chapter also introduces the different devices Zynq SoC can boot
from and how to program these devices.
Zynq-7000 AP SoC: Embedded Design Tutorial 5
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=5

Chapter 1: Introduction
• Chapter 6, Linux Booting and Debug in SDK describes the steps to boot the Linux OS
on the Zynq SoC board with PetaLinux Tools. This chapter provides information about
instantiating the AXI CDMA IP in Fabric and integration with the High Performance (HP)
64 bit slave port.

• Chapter 7, Creating Custom IP and Device Driver for Linux guides you through creating
Intellectual Property (IP) using the Create and Package New IP wizard. It describes
Linux-based device driver development and kernel compilation. You will also design a
system using your created IP for the Zynq device.

• Chapter 8, Software Profiling Using SDK describes the profiling feature for the
Standalone BSP and the Application related to AXI CDMA, which is created in
Chapter 6. This highlights how to look at software and see if there are any bottlenecks.

• Chapter 9, Linux OS Aware Debugging Using SDK describes the Linux OS aware
debugging feature and exercises it for Linux kernel and a basic Linux example. This is
different from the Linux process debug already available in SDK. You can debug the
Linux OS running on the Zynq ARM 9 processor cores and multiple application
processes/threads running on the Linux OS simultaneously.

• Appendix A, Additional Resources and Legal Notices provides links to additional
resources related to this guide.

Example Project
The best way to learn a tool is to use it. So, this guide provides opportunities for you to
work with the tools under discussion. Specifications for sample projects are given in the
example sections, along with an explanation of what is happening behind the scenes. Each
chapter and examples are meant to showcase different aspects of embedded design. The
example takes you through the entire flow to complete the learning and then moves on to
another topic.

Additional Documentation
Additional documentation is listed in Appendix A, Additional Resources and Legal Notices.
Zynq-7000 AP SoC: Embedded Design Tutorial 6
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=6

Chapter 1: Introduction
How Zynq Devices Simplify Embedded Processor
Design
Embedded systems are complex. Hardware and software portions of an embedded design
are projects in themselves. Merging the two design components so that they function as
one system creates additional challenges. Add an FPGA design project to the mix, and your
design has the potential to become very complicated.

The Zynq SoC solution reduces this complexity by offering an ARM Cortex-A9 dual core,
along with programmable logic, all within a single SoC.

To simplify the design process, Xilinx offers the Vivado Design Suite and the Xilinx Software
Development Kit (SDK). This set of tools provides you with everything you need to simplify
embedded system design for a device that merges an SoC with an FPGA. This combination
of tools offers hardware and software application design, debugging capability, code
execution, and transfer of the design onto actual boards for verification and validation.

Note: To install SDK as part of the Vivado Design Suite, you must elect to include SDK in the installer.
For more details, see Xilinx Software Development Kit, page 9.

The Vivado Design Suite, System Edition
Xilinx offers a broad range of development system tools, collectively called the Vivado
Design Suite. Various Vivado Design Suite Editions can be used for embedded system
development. In this guide we will utilize the System Edition. The Vivado Design Suite
Editions are shown in Figure 1-1.
Zynq-7000 AP SoC: Embedded Design Tutorial 7
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=7

Chapter 1: Introduction
Other Vivado Components
Other Vivado components include:

• Embedded/Soft IP for the Xilinx embedded processors

• Documentation

• Sample projects

X-Ref Target - Figure 1-1

Figure 1-1: Vivado Design Suite Editions
Zynq-7000 AP SoC: Embedded Design Tutorial 8
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=8

Chapter 1: Introduction
Xilinx Software Development Kit
The Software Development Kit (SDK) is an integrated development environment,
complementary to Vivado, that is used for C/C++ embedded software application creation
and verification. SDK is built on the Eclipse open-source framework and might appear
familiar to you or members of your design team.

When you install the Vivado Design Suite, SDK is available as an optional software tool that
you must choose to include in your installation. For more details, see Installation
Requirements, page 11.

For more information about the Eclipse development environment, see
http://www.eclipse.org.

Other SDK components include:

• Drivers and libraries for embedded software development

• GNU compiler and debugger for C/C++ software development targeting the ARM
Cortex-A9 MP processors in the Zynq SoC Processing System

PetaLinux Tools
The PetaLinux tools set is an Embedded Linux System Development Kit. It offers a full Linux
distribution which includes the Linux OS as well as a complete configuration, build, and
deploy environment for Xilinx silicon.

For more information, see the Embedded Design Tools Web page.

The PetaLinux Tools design hub provides information and links to documentation specific to
PetaLinux Tools. For more information, see Embedded Design Hub - PetaLinux Tools.
Zynq-7000 AP SoC: Embedded Design Tutorial 9
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

http://www.eclipse.org
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs;d=dh0016-petalinux-tools-hub.html
https://www.xilinx.com
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=9

Chapter 1: Introduction
How the Vivado Tools Expedite the Design Process
You can use the Vivado Design Suite tools to add design sources to your hardware. These
include the IP integrator, which simplifies the process of adding IP to your existing project
and creating connections for ports (such as clock and reset).

You can accomplish all your hardware system development using the Vivado tools along
with IP integrator. This includes specification of the microprocessor, peripherals, and the
interconnection of these components, along with their respective detailed configuration.

SDK is used for software development and is available either as part of the Vivado Design
Suite, or it can be installed and used without any other Xilinx tools installed on the machine
on which it is loaded. SDK can also be used to debug software applications.

The Zynq SoC Processing System (PS) can be booted and made to run without
programming the FPGA (programmable logic or PL). However, in order to use any soft IP in
the fabric, or to bond out PS peripherals using EMIO, programming of the PL is required.
You can program the PL in SDK.

For more information on the embedded design process, see the Vivado Design Suite
Tutorial: Embedded Processor Hardware Design (UG940) [Ref 6].

What You Need to Set Up Before Starting
Before discussing the tools in depth, you should make sure they are installed properly and
your environments match those required for the "Example Project" sections of this guide.

Hardware Requirements for this Guide
This tutorial targets the Zynq ZC702 Rev 1.1 evaluation board, and can also be used for Rev
1.0 boards. To use this guide, you need the following hardware items, which are included
with the evaluation board:

• The ZC702 evaluation board

• AC power adapter (12 VDC)

• USB Type-A to USB Mini-B cable (for UART communications)

• USB Type-A to USB Micro cable for programming and debugging via USB-Micro JTAG
connection

• SD-MMC flash card for Linux booting

• Ethernet cable to connect target board with host machine
Zynq-7000 AP SoC: Embedded Design Tutorial 10
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=10

Chapter 1: Introduction
Installation Requirements

Vivado Design Suite and SDK

Ensure that you have installed the 2017.3 software. Visit
https://www.xilinx.com/support/download.html to confirm that you have the latest
software version.

Ensure that you have both the Vivado Design Suite and SDK Tools installed. When you
install the Vivado Design Suite, SDK is available as an optional software tool that you must
elect to include in your installation by selecting the Software Development Kit check box,
as shown in the following figure. To install SDK by itself, you can deselect the other software
products and run the installer with only Software Development Kit selected.

For more information on installing the Vivado Design Suite and SDK, see the Vivado Design
Suite User Guide: Release Notes, Installation, and Licensing (UG973) [Ref 7].

IMPORTANT: Installation may not create an SDK desktop shortcut by default. You can launch the SDK
binary from C:\Xilinx\SDK\2017.3\bin\xsdk.bat.

X-Ref Target - Figure 1-2

Figure 1-2: Vivado Installer - Select Software Development Kit
Zynq-7000 AP SoC: Embedded Design Tutorial 11
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com/support/download.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=11

Chapter 1: Introduction
PetaLinux Tools

Install the PetaLinux Tools to run through the Linux portion of this tutorial. PetaLinux tools
run under the Linux host system running one of the following:

• RHEL 7.2/7.3 (64-bit)

• CentOS 7.2/7.3 (64-bit)

• Ubuntu 16.04.1 (64-bit)

This can use either a dedicated Linux host system or a virtual machine running one of these
Linux operating systems on your Windows development platform.

When you install PetaLinux Tools on your system of choice, you must do the following:

• Download PetaLinux 2017.3 SDK software from the Xilinx Website.

• Install the PetaLinux 2017.3 release package.

• Add common system packages and libraries to the workstation or virtual machine. For
more details, see the Installation Requirements from PetaLinux Tools Reference Guide
(UG1144) [Ref 11].

Prerequisites

• 8 GB RAM (recommended minimum for Xilinx tools)

• 2 GHz CPU clock or equivalent (minimum of 8 cores)

• 100 GB free HDD space

Extract the PetaLinux Package

By default, the installer installs the package as a subdirectory within the current directory.
Alternatively, you can specify an installation path. Run the downloaded PetaLinux installer.

Note: Ensure that the PetaLinux installation path is kept short. The PetaLinux build will fail if the path
exceeds 255 characters.

bash> ./petalinux-v2017.3-final-installer.run

PetaLinux is installed in the petalinux-v2017.3-final directory, directly underneath
the working directory of this command. If the installer is placed in the home directory
/home/user, PetaLinux is installed in /home/user/petalinux-v2017.3-final.

Refer to Chapter 6, Linux Booting and Debug in SDK for additional information about the
PetaLinux environment setup, project creation, and project usage examples. A detailed
guide on PetaLinux Installation and usage can be found in the PetaLinux Tools
Documentation: Reference Guide (UG1144) [Ref 11].
Zynq-7000 AP SoC: Embedded Design Tutorial 12
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=12

Chapter 1: Introduction
Software Licensing

Xilinx software uses FLEXnet licensing. When the software is first run, it performs a license
verification process. If the license verification does not find a valid license, the license
wizard guides you through the process of obtaining a license and ensuring that the license
can be used with the tools installed. If you do not need the full version of the software, you
can use an evaluation license.For installation instructions and information, see the Vivado
Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) [Ref 7].

Tutorial Design Files

See Design Files for This Tutorial, page 124 for information about downloading the design
files for this tutorial.
Zynq-7000 AP SoC: Embedded Design Tutorial 13
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=13

Chapter 2

Using the Zynq SoC Processing System
Now that you have been introduced to the Xilinx® Vivado® Design Suite, you will begin
looking at how to use it to develop an embedded system using the Zynq®-7000 AP SoC
Processing System (PS).

The Zynq SoC consists of ARM Cortex™-A9 cores, many hard intellectual property
components (IPs), and programmable logic (PL). This offering can be used in two ways:

• The Zynq SoC PS can be used in a standalone mode, without attaching any additional
fabric IP.

• IP cores can be instantiated in fabric and attached to the Zynq PS as a PS+PL
combination.

Embedded System Configuration
Creation of a Zynq device system design involves configuring the PS to select the
appropriate boot devices and peripherals. To start with, as long as the PS peripherals and
available MIO connections meet the design requirements, no bitstream is required. This
chapter guides you through creating a simple PS-based design that does not require a
bitstream.
Zynq-7000 AP SoC: Embedded Design Tutorial 14
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=14

Chapter 2: Using the Zynq SoC Processing System
Example Project: Creating a New Embedded Project
with Zynq SoC
For this example, you will launch the Vivado Design Suite and create a project with an
embedded processor system as the top level.

Starting Your Design
1. Start the Vivado Design Suite.

2. In the Vivado Quick Start page, click Create New Project to open the New Project
wizard.

3. Use the information in the table below to make selections in each of the wizard screens.

4. Click Finish. The New Project wizard closes and the project you just created opens in the
Vivado design tool.

Wizard Screen System Property Setting or Command to Use
Project Name Project name edt_tutorial

Project Location C:/designs

Create Project Subdirectory Leave this checked

Project Type Specify the type of sources for
your design. You can start with
RTL or a synthesized EDIF.

RTL Project

Do not specify sources at this
time check box

Leave this unchecked.

Add Sources Do not make any changes to this screen.

Add Existing IP Do not make any changes to this screen.

Add Constraints Do not make any changes to this screen.

Default Part Select Boards

Board ZYNQ-7 ZC702 Evaluation Board

New Project Summary Project Summary Review the project summary.
Zynq-7000 AP SoC: Embedded Design Tutorial 15
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=15

Chapter 2: Using the Zynq SoC Processing System
Creating an Embedded Processor Project
You will now use the Add Sources wizard to create an embedded processor project.

1. In the Flow Navigator, under IP Integrator, click Create Block Design.

The Create Block Design wizard opens.

2. Use the following information to make selections in the Create Block Design wizard.

3. Click OK.

The Diagram window view opens with a message that states that this design is empty. To
get started, you will next add some IP from the catalog.

4. Click the Add IP button .

5. In the search box, type zynq to find the Zynq device IP options.

6. Double-click the ZYNQ Processing System IP to add it to the Block Design.

The Zynq APSoC processing system IP block appears in the Diagram view, as shown in
Figure 2-2.

X-Ref Target - Figure 2-1

Figure 2-1: Create Block Design Button

Wizard Screen System Property Setting or Command to Use
Create Block Design Design Name tutorial_bd

Directory <Local to Project>

Specify Source Set Design Sources
Zynq-7000 AP SoC: Embedded Design Tutorial 16
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=16

Chapter 2: Using the Zynq SoC Processing System

Managing the Zynq7 Processing System in Vivado
Now that you have added the processor system for the Zynq SoC to the design, you can
begin managing the available options.

1. Double-click the ZYNQ7 Processing System block in the Block Diagram window.

X-Ref Target - Figure 2-2

Figure 2-2: Zynq SoC Processing System IP Block
Zynq-7000 AP SoC: Embedded Design Tutorial 17
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=17

Chapter 2: Using the Zynq SoC Processing System
The Re-customize IP dialog box opens, as shown Figure 2-3. Notice that by default, the
processor system does not have any peripherals connected.

2. You will use a preset template created for the ZC702 board. In the Re-customize IP
window, click the Presets button and select ZC702.

This configuration wizard enables many peripherals in the Processing System with some
multiplexed I/O (MIO) pins assigned to them as per the board layout of the ZC702
board. For example, UART1 is enabled and UART0 is disabled. This is because UART1 is
connected to the USB-UART connector through UART to the USB converter chip on the
ZC702 board.

Note the check marks that appear next to each peripheral name in the Zynq device
block diagram that signify the I/O Peripherals that are active.

X-Ref Target - Figure 2-3

Figure 2-3: Re-customize IP Dialog Box
Zynq-7000 AP SoC: Embedded Design Tutorial 18
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=18

Chapter 2: Using the Zynq SoC Processing System
3. In the block diagram, click one of the green I/O Peripherals. The MIO Configuration
window opens for the selected peripheral.

4. Click OK to close the Re-customize IP wizard. Vivado implements the changes that you
made to apply the ZC702 board presets.

X-Ref Target - Figure 2-4

Figure 2-4: I/O Peripherals with Active Peripherals Identified

X-Ref Target - Figure 2-5

Figure 2-5: MIO Configuration Window
Zynq-7000 AP SoC: Embedded Design Tutorial 19
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=19

Chapter 2: Using the Zynq SoC Processing System
In the Block Diagram window, notice the message stating that Designer assistance is
available, as shown in the following figure.

5. Click the Run Block Automation link.

The Run Block Automation dialog box opens.

Note that Cross Trigger In and Cross Trigger Out are disabled. For a detailed tutorial with
information about cross trigger set-up, refer to the Vivado Design Suite Tutorial:
Embedded Processor Hardware Design (UG940) [Ref 6].

6. Click OK to accept the default processor system options and make default pin
connections.

Validating the Design and Connecting Ports
Now, validate the design.

1. Right-click in the white space of the Block Diagram view and select Validate Design.
Alternatively, you can press the F6 key.

2. A critical error message appears, indicating that the M_AXI_GP0_ACLK must be
connected.

3. Click OK to clear the message.

X-Ref Target - Figure 2-6

Figure 2-6: Run Block Automation Link

X-Ref Target - Figure 2-7

Figure 2-7: Critical Message Dialog Box
Zynq-7000 AP SoC: Embedded Design Tutorial 20
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=20

Chapter 2: Using the Zynq SoC Processing System
4. In the Block Diagram view of the ZYNQ7 Processing System, locate the
M_AXI_GP0_ACLK port. Hover your mouse over the connector port until the pencil icon
appears.

5. Click the M_AXI_GP0_ACLK port and drag to the FCLK_CLK0 input port to make a
connection between the two ports.

6. Validate the design again to ensure there are no other errors. To do this, right-click in
the white space of the Block Diagram view and select Validate Design.

A message dialog box opens and states "Validation successful. There are no errors or
critical warnings in this design."

7. Click OK to close the message.

8. In the Block Design view, click the Sources tab.

9. Click Hierarchy.

10. Under Design Sources, right-click tutorial_bd and select Create HDL Wrapper.

The Create HDL Wrapper dialog box opens. You will use this dialog box to create a HDL
wrapper file for the processor subsystem.

TIP: The HDL wrapper is a top-level entity required by the design tools.

11. Select Let Vivado manage wrapper and auto-update and click OK.

12. In the Block Diagram, Sources window, under Design Sources, expand
tutorial_bd_wrapper.

X-Ref Target - Figure 2-8

Figure 2-8: ZYNQ7 Processing System with Connection
Zynq-7000 AP SoC: Embedded Design Tutorial 21
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=21

Chapter 2: Using the Zynq SoC Processing System
13. Right-click the top-level block diagram, titled tutorial_bd_i - tutorial_bd
(tutorial_bd.bd) and select Generate Output Products.

The Generate Output Products dialog box opens, as shown in the following figure.

If you are running the Vivado Design Suite on a Linux host machine, you might see
additional options under Run Settings. In this case, continue with the default settings.

14. Click Generate.

This step builds all required output products for the selected source. For example,
constraints do not need to be manually created for the IP processor system. The Vivado
tools automatically generate the XDC file for the processor sub-system when Generate
Output Products is selected.

15. When the Generate Output Products process completes, click OK.

16. In the Block Diagram Sources window, click the IP Sources tab. Here you can see the
output products that you just generated, as shown in the following figure.

X-Ref Target - Figure 2-9

Figure 2-9: Generate Output Products Dialog Box
Zynq-7000 AP SoC: Embedded Design Tutorial 22
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=22

Chapter 2: Using the Zynq SoC Processing System
Synthesizing the Design, Running Implementation, and
Generating the Bitstream
1. You can now synthesize the design. In the Flow Navigator pane, under Synthesis, click

Run Synthesis.

2. If Vivado prompts you to save your project before launching synthesis, click Save.

While synthesis is running, a status bar displays in the upper right-hand window. This
status bar spools for various reasons throughout the design process. The status bar
signifies that a process is working in the background.

When synthesis completes, the Synthesis Completed dialog box opens.

X-Ref Target - Figure 2-10

Figure 2-10: Outputs Generated Under IP Sources

X-Ref Target - Figure 2-11

Figure 2-11: Run Synthesis Button

X-Ref Target - Figure 2-12

Figure 2-12: Status Bar
Zynq-7000 AP SoC: Embedded Design Tutorial 23
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=23

Chapter 2: Using the Zynq SoC Processing System
3. Select Run Implementation and click OK.

Again, notice that the status bar describes the process running in the background. When
implementation completes, the Implementation Completed dialog box opens.

4. Select Generate Bitstream and click OK.

When Bitstream Generation completes, the Bitstream Generation Completed dialog box
opens.

5. Click Cancel to close the window.

6. After the Bitstream generation completes, export the hardware and launch the Software
Development Kit (SDK) as described in the next section.

Exporting Hardware to SDK
In this example, you will launch SDK from Vivado.

1. From the Vivado toolbar, select File > Export > Export Hardware.

The Export Hardware dialog box opens. Make sure that the Include bitstream check
box is checked (only when design has PL design and bitstream generated), and that the
Export to field is set to the default option of <Local to Project>.

2. Click OK.

TIP: The hardware is exported in a ZIP file (<project wrapper>.hdf). When SDK launches, the
file unzips automatically, and you can find all the files in the SDK project hardware platform folder.

3. Select File > Launch SDK.

The Launch SDK dialog box opens.

TIP: You can also start SDK in standalone mode and use the exported hardware. To do this, start SDK,
and while creating a new project, point to the new target hardware that was exported.

4. Accept the default selections for Exported location and Workspace.

X-Ref Target - Figure 2-13

Figure 2-13: Export Hardware to SDK
Zynq-7000 AP SoC: Embedded Design Tutorial 24
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=24

Chapter 2: Using the Zynq SoC Processing System

5. Click OK.

SDK opens. Notice that when SDK launches, the hardware description file is loaded
automatically.

The system.hdf tab shows the address map for the entire Processing System, as
shown in the following figure.

6. Close SDK.

X-Ref Target - Figure 2-14

Figure 2-14: Launch SDK Dialog Box

X-Ref Target - Figure 2-15

Figure 2-15: Address Map in SDK system.hdf Tab
Zynq-7000 AP SoC: Embedded Design Tutorial 25
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=25

Chapter 2: Using the Zynq SoC Processing System
What Just Happened?
Vivado exported the hardware specifications to the selected workspace where software
development will take place. If <Local to Project> was selected, then Vivado created a new
workspace in the Vivado project folder. The name of the workspace is
<project_name>.sdk. In this example, the workspace created is
C:/designs/edt_tutorial/edt_tutorial.sdk.

The Vivado design tool exported the Hardware Definition File for your design
(system.hdf in this example) to SDK. The system.hdf includes the following files:

• tutorial_bd.tcl

• ps7_init.c

• ps7_init.h

• ps7_init.html

• ps7_init.tcl

• ps7_init_gpl.c

• ps7_init_gpl.h

The system.hdf file opens by default when SDK launches. The address map of your
system read from this file is shown by default in the SDK window.

The ps7_init.c, ps7_init.h, ps7_init_gpl.c, and ps7_init_gpl.h files contain
the initialization code for the Zynq SoC Processing System and initialization settings for
DDR, clocks, phase-locked loops (PLLs), and MIOs. SDK uses these settings when initializing
the processing system so that applications can be run on top of the processing system.
Some settings in the processing system are fixed for the ZC702 evaluation board.

What's Next?
Now you can start developing the software for your project using SDK. The next sections
help you create a software application for your hardware platform.
Zynq-7000 AP SoC: Embedded Design Tutorial 26
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=26

Chapter 2: Using the Zynq SoC Processing System
Example Project: Running the “Hello World”
Application
In this example, you will learn how to manage the board settings, make cable connections,
connect to the board through your PC, and run a simple hello world software application in
JTAG mode using System Debugger in Xilinx SDK.

Note: If you already set up the board, skip to step 5.

1. Connect the power cable to the board.

2. Connect a USB Micro cable between the Windows Host machine and the Target board
with the following SW10 switch settings:

Bit-1 is 0

Bit-2 is 1

Note: 0 = switch is open. 1 = switch is closed.

3. Connect a USB cable to connector J17 on the target board with the Windows Host
machine. This is used for USB to serial transfer.

4. Power on the ZC702 board using the switch indicated in the figure below.

IMPORTANT: Ensure that jumper s J27 and J28 are placed on the side farther from the SD card slot and
change the SW16 switch setting as shown in Figure 2-16.
Zynq-7000 AP SoC: Embedded Design Tutorial 27
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=27

Chapter 2: Using the Zynq SoC Processing System

5. Open SDK and set the workspace path to your project file, which in this example is
C:/designs/edt_tutorial/edt_tutorial.sdk.

Alternately, you can open SDK with a default workspace and later switch it to the correct
workspace by selecting File > Switch Workspace and then selecting the workspace.

6. Open a serial communication utility for the COM port assigned on your system. SDK
provides a serial terminal utility, which will be used throughout the tutorial; select
Window > Show View > Terminal to open it.

7. Click the Connect button to set the serial configuration and connect it.

8. Click the Settings button to open the Terminal Settings dialog box.

X-Ref Target - Figure 2-16

Figure 2-16: ZC702 Board Power Switch

X-Ref Target - Figure 2-17

Figure 2-17: Terminal Window Header Bar
Zynq-7000 AP SoC: Embedded Design Tutorial 28
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=28

Chapter 2: Using the Zynq SoC Processing System
The following figure shows the standard configuration for the Zynq SoC Processing
System.

9. Select File > New > Application Project.

The New Project wizard opens.

10. Use the information in the following table to make your selections in the wizard screens.

SDK creates the hello_world application project and hello world_bsp board
support package (BSP) project under the Project Explorer. It automatically compiles both
and creates the ELF file.

X-Ref Target - Figure 2-18

Figure 2-18: Terminal Settings Dialog Box

Wizard Screen System Properties Setting or Command to Use

Application Project Project Name hello_world

Use Default Location Select this option

Hardware Platform tutorial_bd_wrapper_hw_platform_0

Processor PS7_cortexa9_0

OS Platform standalone

Language C

Board Support Package Select Create New and provide the name
of hello_world_bsp.

Templates Available Templates Hello World
Zynq-7000 AP SoC: Embedded Design Tutorial 29
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=29

Chapter 2: Using the Zynq SoC Processing System
IMPORTANT: If you would like to regenerate the BSP, right-click the BSP project under the Project
Explorer and select Re-generate BSP Sources.
If you would like to change the target BSP after project creation:
1. Create a New Board Support Package for your target.
2. In the Project Explorer, right click your application project and select Change Referenced BSP, and
point the new BSP you want to set.

11. Right-click hello_world and select Run as > Run Configurations.

12. Right-click Xilinx C/C++ application (System Debugger) and click New.

SDK creates the new run configuration, named hello_world Debug.

The configurations associated with the application are pre-populated in the Main tab of
the launch configurations.

13. Click the Target Setup tab and review the settings.

Notice that there is a configuration path to the initialization Tcl file. The path of
ps7_init.tcl is mentioned here. This file was exported when you exported your
design to SDK; it contains the initialization information for the processing system.

14. Click Run.

"Hello World" appears on the serial communication utility in Terminal 1, as shown in
the following figure.

Note: There was no bitstream download required for the above software application to be executed
on the Zynq SoC evaluation board. The ARM Cortex A9 dual core is already present on the board.
Basic initialization of this system to run a simple application is done by the Device initialization TCL
script.

What Just Happened?
The application software sent the "Hello World" string to the UART1 peripheral of the PS
section.

From UART1, the "Hello World" string goes byte-by-byte to the serial terminal
application running on the host machine, which displays it as a string.

X-Ref Target - Figure 2-19

Figure 2-19: Output on Serial Terminal
Zynq-7000 AP SoC: Embedded Design Tutorial 30
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=30

Chapter 2: Using the Zynq SoC Processing System
Additional Information

Board Support Package
The board support package (BSP) is the support code for a given hardware platform or
board that helps in basic initialization at power up and helps software applications to be run
on top of it. It can be specific to some operating systems with bootloader and device
drivers.

Standalone OS
Standalone is a simple, low-level software layer. It provides access to basic processor
features such as caches, interrupts, and exceptions, as well as the basic processor features
of a hosted environment. These basic features include standard input/output, profiling,
abort, and exit. It is a single threaded semi-hosted environment.

T IMPORTANT: The application you ran in this chapter was created on top of the Standalone OS. The BSP
that your software application targets is selected during the New Application Project creation process.
If you would like to change the target BSP after project creation, you can manage the target BSP by
right-clicking the software application and selecting Change Referenced BSP.
Zynq-7000 AP SoC: Embedded Design Tutorial 31
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=31

Chapter 3

Using the GP Port in Zynq Devices
One of the unique features of using the Xilinx® Zynq®-7000 AP SoC as an embedded
design platform is in using the Zynq SoC Processing System (PS) for its ARM Cortex-A9 dual
core processing system as well as the Programmable Logic (PL) available on it.

In this chapter, you will create a design with:

• AXI GPIO and AXI Timer in fabric (PL) with interrupt from fabric to PS section

• Zynq SoC PS GPIO pin connected to the fabric (PL) side pin via the EMIO interface

The flow of this chapter is similar to that in Chapter 2 and uses the Zynq device as a base
hardware design. It is assumed that you understand the concepts discussed in Chapter 2
regarding adding the Zynq device into a Vivado® IP integrator block diagram design. If you
skipped that chapter, you might want to look at it because we will continually refer to the
material in Chapter 2 throughout this chapter.

Adding IP in PL to the Zynq SoC Processing System
There is no restriction on the complexity of an intellectual property (IP) that can be added
in fabric to be tightly coupled with the Zynq SoC PS. This section covers a simple example
with the AXI GPIO, AXI Timer with interrupt, and the PS section GPIO pin connected to PL
side pin via the EMIO interface.

In this section, you will create a design to check the functionality of the AXI GPIO, AXI Timer
with interrupt instantiated in fabric, and PS section GPIO with EMIO interface. The block
diagram for the system is as shown in the Figure 3-1.
Zynq-7000 AP SoC: Embedded Design Tutorial 32
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=32

Chapter 3: Using the GP Port in Zynq Devices
You can use the system created in Chapter 2 and continue after Creating an Embedded
Processor Project, page 16.

In the examples in this chapter, we will expand on the design in Chapter 2. You will make the
following design changes:

• The fabric-side AXI GPIO is assigned a 1-bit channel width and is connected to the SW5
push-button switch on the ZC702 board.

• The PS GPIO ports are modified to include a 1-bit interface that routes a fabric pin (via
the EMIO interface) to the SW7 push-button switch on the board.

• In the PS section, another 1-bit GPIO is connected to the DS23 LED on the board, which
is on the MIO port.

• The AXI timer interrupt is connected from fabric to the PS section interrupt controller.
The timer starts when you press any of the selected push buttons on the board. After
the timer expires, the timer interrupt is triggered.

• Along with making the above hardware changes, you will write the application software
code. The code will function as follows:

X-Ref Target - Figure 3-1

Figure 3-1: Block Diagram
Zynq-7000 AP SoC: Embedded Design Tutorial 33
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=33

Chapter 3: Using the GP Port in Zynq Devices
° A message appears in the serial terminal and asks you to select the push button
switch to use on the board (either SW7 or SW5).

° When the appropriate button is pressed, the timer automatically starts, switches
OFF LED DS23, and waits for the timer interrupt to happen.

° After the Timer Interrupt, LED DS23 switches ON and execution starts again and
waits for you to again select the push button switch in the serial terminal.

Example Project: Validate Instantiated Fabric IP Functionality
In this example, you will add the AXI GPIO, AXI Timer, the interrupt instantiated in fabric,
and the EMIO interface. You will then validate the fabric additions.

1. Open the Vivado® Design Suite.

2. Under the Recent Projects column, click the edt_tutorial design that you created in
Chapter 2.

3. Under IP Integrator, click Open Block Design.

4. In the Diagram window, right-click in the blank space and select Add IP.

5. In the search box, type AXI GPIO and double-click the AXI GPIO IP to add it to the
Block Design.

The AXI GPIO IP block appears in the Diagram view.

6. In the Diagram window, right-click in the blank space and select Add IP.

7. In the search box, type AXI Timer and double-click the AXI Timer IP to add it to the
Block Design. The AXI Timer IP block appears in the Diagram view.

8. You must also edit the EMIO configuration of the ZYNQ7 SoC Processing system and
enable interrupts. Right-click the ZYNQ7 Processing System IP block and select
Customize Block.

Note: You can also double-click the IP block to customize.

The Customize Block dialog box opens, as shown in the Figure 3-2.
Zynq-7000 AP SoC: Embedded Design Tutorial 34
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=34

Chapter 3: Using the GP Port in Zynq Devices

9. Click MIO Configuration.

10. Expand I/O Peripherals > GPIO and select the EMIO GPIO (Width) check box.

11. Change the EMIO GPIO (Width) to 1.

12. With the ZYNQ7 Processing System configuration options still open, navigate to
Interrupts > Fabric Interrupts > PL-PS Interrupt Ports.

13. Check the Fabric Interrupts box and also check IRQ_F2P[15:0] to enable PL-PS
interrupts in the IP Core.

14. Click OK to accept the changes to the ZYNQ7 Processing System IP. The Diagram looks
like Figure 3-3.

X-Ref Target - Figure 3-2

Figure 3-2: Customize Block Dialog Box
Zynq-7000 AP SoC: Embedded Design Tutorial 35
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=35

Chapter 3: Using the GP Port in Zynq Devices
15. Click the Run Connection Automation link at the top of the page to automate the
connection process for the newly added IP blocks.

16. In the Run Connection Automation wizard, select the check box next to All Automation,
as shown in Figure 3-4.

17. Click OK.

X-Ref Target - Figure 3-3

Figure 3-3: ZYNQ7 Processing System IP

X-Ref Target - Figure 3-4

Figure 3-4: Run Connection Automation Wizard
Zynq-7000 AP SoC: Embedded Design Tutorial 36
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=36

Chapter 3: Using the GP Port in Zynq Devices
Upon completion, the updated diagram looks like Figure 3-5.

18. Right-click the AXI GPIO IP block and select Customize Block.

Note: You can also double-click the IP block to make customizations.

19. Under the Board tab, make sure that both GPIO and GPIO2 are set to Custom.

20. Select the IP Configuration tab. In the GPIO section, change the GPIO Width to 1
because you only need one GPIO port. Also ensure that All Inputs and All Outputs are
both unchecked.

21. Click OK to accept the changes.

22. Notice that the Interrupt port is not automatically connected to the AXI Timer IP Core.
In the Block Diagram view, locate the IRQ_F2P[0:0] port on the ZYNQ7 Processing
System.

23. Scroll your mouse over the connector port until the pencil icon appears, then click the
IRQ_F2P[0:0] port and drag to the interrupt output port on the AXI Timer IP core to
make a connection between the two ports.

X-Ref Target - Figure 3-5

Figure 3-5: Updated Block Diagram with Connections
Zynq-7000 AP SoC: Embedded Design Tutorial 37
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=37

Chapter 3: Using the GP Port in Zynq Devices
24. Notice that the ZYNQ7 Processing System GPIO_0 port is not connected. Right-click the
GPIO_0 output port on the ZYNQ7 Processing System and select Make External.

The pins are external but do not have the needed constraints for our board. In order to
constrain your hardware pins to specific device locations, follow the steps below. These
steps can be used for any manual pin placements.

25. Click Open Elaborated Design under RTL Analysis in the Flow Navigator view.

26. When the Elaborate Design message box opens, as shown in the following figure, click
OK.

TIP: The design might take a few minutes to elaborate. If you want to do something else in
Vivado while the design elaborates, you can click the Background button to have Vivado
continue running the process in the background.

27. Select I/O Planning from the drop-down menu, as shown in the following figure, to
display the I/O Ports tab.

X-Ref Target - Figure 3-6

Figure 3-6: Open Elaborated Design

X-Ref Target - Figure 3-7

Figure 3-7: Elaborate Design Message Box
Zynq-7000 AP SoC: Embedded Design Tutorial 38
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=38

Chapter 3: Using the GP Port in Zynq Devices
28. Under the I/O Ports tab view at the bottom of the Vivado window (as seen in the
following figure), expand the GPIO_0_1522 and GPIO_23220 ports to check the site
(pin) map.

29. Find gpio_0_tri_io[0] and set the following properties, shown in Figure 3-10:

° Site = F19

° I/O Std = LVCMOS25

30. Find gpio_sw_tri_io[0] and set the following properties, shown in Figure 3-10:

° Site = G19

° I/O Std = LVCMOS25

X-Ref Target - Figure 3-8

Figure 3-8: I/O Planning Selection

X-Ref Target - Figure 3-9

Figure 3-9: I/O Ports Site Map
Zynq-7000 AP SoC: Embedded Design Tutorial 39
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=39

Chapter 3: Using the GP Port in Zynq Devices

Note: For additional information about creating other design constraints, refer to the Vivado
Design Suite User Guide: Using Constraints (UG903) [Ref 4].

31. In the Flow Navigator, under Program and Debug, select Generate Bitstream.

The Save Project dialog box opens. Make sure the Elaborated Design - constrs_1 check
box is selected and click Save.

If the Synthesis is Out-of-date dialog box opens, click Yes to re-run synthesis.

32. The Save Constraints popup window appears (shown in the following figure). Provide a
file name and click OK.

A constraints file is created and saved under Sources > Hierarchy > Constraints, as
shown in the following figure.

X-Ref Target - Figure 3-10

Figure 3-10: I/O Port Properties

X-Ref Target - Figure 3-11

Figure 3-11: Save Constraints Popup Window
Zynq-7000 AP SoC: Embedded Design Tutorial 40
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=40

Chapter 3: Using the GP Port in Zynq Devices
33. After Bitstream generation completes, export the hardware and launch the Xilinx
Software Development Kit (SDK) as described in Exporting Hardware to SDK, page 24.

Working with SDK
SDK detects the new HDF that was exported from Vivado, and shows a warning message.
The warning message is also to check if SDK can update the project in sync with the new
HDF.

1. Click Yes

2. SDK launches with the Hello World project you created with the Standalone PS in
Chapter 2.

3. Select Project > Clean to clean and build the project again.

4. Open the helloworld.c file and modify the application software code as described in
Standalone Application Software for the Design, page 42.

5. Save the file and re-build the project.

6. Open the serial communication utility with baud rate set to 115200.

Note: This is the baud rate that the UART is programmed to on Zynq devices.

X-Ref Target - Figure 3-12

Figure 3-12: Sources Window Showing New Constraints File
Zynq-7000 AP SoC: Embedded Design Tutorial 41
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=41

Chapter 3: Using the GP Port in Zynq Devices
7. Connect to the board.

Because you have a bitstream for the PL Fabric, you must download the bitstream.

8. Select Xilinx Tools > Program FPGA. The Program FPGA dialog box, shown in
Figure 3-13, opens. It displays the bitstream exported from Vivado.

9. Click Program to download the bitstream and program the PL Fabric.

10. Run the project similar to the steps in Example Project: Running the “Hello World”
Application, page 27.

11. In the system, the AXI GPIO pin is connected to push button SW5 on the board, and the
PS section GPIO pin is connected to push button SW7 on the board via an EMIO
interface.

12. Follow the instructions printed on the serial terminal to run the application.

Standalone Application Software for the Design
The system you designed in this chapter requires application software for the execution on
the board. This section describes the details about the application software.

X-Ref Target - Figure 3-13

Figure 3-13: Program FPGA Dialog Box with Bitstream File
Zynq-7000 AP SoC: Embedded Design Tutorial 42
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=42

Chapter 3: Using the GP Port in Zynq Devices
The main() function in the application software is the entry point for the execution. This
function includes initialization and the required settings for all peripherals connected in the
system. It also has a selection procedure for the execution of the different use cases, such
as AXI GPIO and PS GPIO using EMIO interface. You can select different use cases by
following the instruction on the serial terminal.

Application Software Steps
Application Software is composed of the following steps:

1. Initialize the AXI GPIO module.

2. Set a direction control for the AXI GPIO pin as an input pin, which is connected with the
SW5 push button on the board. The location is fixed via LOC constraint in the user
constraint file (XDC) during system creation.

3. Initialize the AXI TIMER module with device ID 0.

4. Associate a timer callback function with AXI timer ISR.

This function is called every time the timer interrupt happens. This callback switches on
the LED DS23 on the board and sets the interrupt flag.

The main() function uses the interrupt flag to halt execution, waits for timer interrupt
to happen, and then restarts the execution.

5. Set the reset value of the timer, which is loaded to the timer during reset and timer
starts.

6. Set timer options such as Interrupt mode and Auto Reload mode.

7. Initialize the PS section GPIO.

8. Set the PS section GPIO, channel 0, pin number 10 to the output pin, which is mapped
to the MIO pin and physically connected to the LED DS23 on the board.

9. Set PS Section GPIO channel number 2, pin number 0, to an input pin, which is mapped
to PL side pin via the EMIO interface and physically connected to the SW7 push button
switch.

10. Initialize Snoop control unit Global Interrupt controller. Also, register Timer interrupt
routine to interrupt ID '91', register the exceptional handler, and enable the interrupt.

11. Execute a sequence in the loop to select between AXI GPIO or PS GPIO use case via serial
terminal.

The software accepts your selection from the serial terminal and executes the procedure
accordingly. After the selection of the use case via the serial terminal, you must press a
push button on the board as per the instruction on terminal. This action switches off the
LED DS23, starts the timer, and tells the function to wait infinitely for the Timer interrupt
Zynq-7000 AP SoC: Embedded Design Tutorial 43
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=43

Chapter 3: Using the GP Port in Zynq Devices
to happen. After the Timer interrupt happens, LED DS23 switches ON and restarts
execution.

For more details about API related to device drivers, see the Zynq-7000 All
Programmable SoC Software Developers Guide (UG821) [Ref 3].

Application Software Code
The Application software for the system is included in helloworld.c, which is available in
the ZIP file that accompanies this guide. For more details, see Design Files for This Tutorial,
page 124.

Run the New Software Application in SDK
Next, you will run the new software application in SDK.

1. Select Xilinx Tools > Program FPGA.

The Program FPGA dialog box, as shown in Figure 3-14, opens. It displays the bitstream
exported from Vivado.

2. Follow the steps in Example Project: Running the “Hello World” Application, page 27, to
run the new application.

X-Ref Target - Figure 3-14

Figure 3-14: Program FPGA Dialog Box with Bitstream File
Zynq-7000 AP SoC: Embedded Design Tutorial 44
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=44

Chapter 4

Debugging with SDK
This chapter describes debug possibilities with the design flow you have already been
working with. The first option is debugging with software using the Xilinx® Software
Development Kit (SDK).

SDK debugger provides the following debug capabilities:

• Supports debugging of programs on MicroBlaze™ and ARM Cortex-A9 processor
architectures (heterogeneous multi-processor hardware system debugging)

• Supports debugging of programs on hardware boards

• Supports debugging on remote hardware systems

• Provides a feature-rich IDE to debug programs

• Provides a Tool Command Language (Tcl) interface for running test scripts and
automation

The SDK debugger enables you to see what is happening to a program while it executes.
You can set breakpoints or watchpoints to stop the processor, step through program
execution, view the program variables and stack, and view the contents of the memory in
the system.

Xilinx SDK supports debugging through Xilinx System Debugger and GNU Debugger (GDB).

Note: The GDB flow is deprecated and will not be available for future devices.

Xilinx System Debugger
The Xilinx System Debugger uses the Xilinx hw_server as the underlying debug engine. SDK
translates each user interface action into a sequence of Target Communication Framework
(TCF) commands. It then processes the output from System Debugger to display the current
state of the program being debugged. It communicates to the processor on the hardware
using Xilinx hw_server.

The debug workflow is described in the following figure.
Zynq-7000 AP SoC: Embedded Design Tutorial 45
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=45

Chapter 4: Debugging with SDK

The workflow is made up of the following components:

• Executable ELF File: To debug your application, you must use an Executable and
Linkable Format (ELF) file compiled for debugging. The debug ELF file contains
additional debug information for the debugger to make direct associations between
the source code and the binaries generated from that original source. To manage the
build configurations, right-click the software application and select Build
Configurations > Manage.

• Debug Configuration: To launch the debug session, you must create a debug
configuration in SDK. This configuration captures options required to start a debug
session, including the executable name, processor target to debug, and other
information. To create a debug configuration, right-click your software application and
select Debug As > Debug Configurations.

• SDK Debug Perspective: Using the Debug perspective, you can manage the
debugging or running of a program in the Workbench. You can control the execution of
your program by setting breakpoints, suspending launched programs, stepping
through your code, and examining the contents of variables. To view the Debug
Perspective, select Window > Open Perspective > Debug.

You can repeat the cycle of modifying the code, building the executable, and debugging
the program in SDK.

Note: If you edit the source after compiling, the line numbering will be out of step because the
debug information is tied directly to the source. Similarly, debugging optimized binaries can also
cause unexpected jumps in the execution trace.

X-Ref Target - Figure 4-1

Figure 4-1: System Debugger Flow

Debug Executable
Zynq-7000 AP SoC: Embedded Design Tutorial 46
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=46

Chapter 4: Debugging with SDK
Debugging Software Using SDK
In this example, you will walk through debugging a hello world application.

If you modified the hello world application in the prior chapter, you will need to create a
new hello world application prior to debugging. Follow the steps in Example Project:
Running the “Hello World” Application, page 27 to create a new hello world application.

After you create the Hello World Application, work through below example to debug the
software using SDK.

1. In the C/C++ Perspective, right-click the Hello_world Project and select Debug As >
Launch on Hardware (System Debugger).

If the Confirm Perspective Switch popup window appears, click Yes.

The Debug Perspective opens.

X-Ref Target - Figure 4-2

Figure 4-2: Debug Configurations
Zynq-7000 AP SoC: Embedded Design Tutorial 47
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=47

Chapter 4: Debugging with SDK
Note: If the Debug Perspective window does not automatically open, select Window > Open >
Perspective > Other, then select Debug in the Open Perspective wizard.

Note: The addresses shown on this page might slightly differ from the addresses shown on your
system.

The processor is currently sitting at the beginning of main() with program execution
suspended at line 0x0010054c. You can confirm this information in the Disassembly
view, which shows the assembly-level program execution also suspended at
0x0010054c.

Note: If the Disassembly view is not visible, select Window > Show View > Disassembly.

2. The helloworld.c window also shows execution suspended at the first executable
line of C code. Select the Registers view to confirm that the program counter, pc register,
contains 0x0010054c.

Note: If the Registers window is not visible, select Window > Show View > Registers.

3. Double-click in the margin of the helloworld.c window next to the line of code that
reads init_platform (). This sets a breakpoint at init_platform (). To confirm
the breakpoint, review the Breakpoints window.

Note: If the Breakpoints window is not visible, select Window > Show View > Breakpoints.

X-Ref Target - Figure 4-3

Figure 4-3: Debugging Application Debug Perspective
Zynq-7000 AP SoC: Embedded Design Tutorial 48
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=48

Chapter 4: Debugging with SDK
4. Select Run > Step Into to step into the init_platform () routine.

Program execution suspends at location 0x001005c4. The call stack is now two levels
deep.

5. Select Run > Resume to continue running the program to the breakpoint.

Program execution stops at the line of code that includes the printf command. The
Disassembly and Debug windows both show program execution stopped at
0x00100554.

Note: The execution address in your debugging window might differ if you modified the hello
world source code in any way.

6. Select Run > Resume to run the program to conclusion.

When the program completes, the Debug window shows that the program is suspended
in a routine called exit. This happens when you are running under control of the
debugger.

7. Re-run your code several times. Experiment with single-stepping, examining memory,
breakpoints, modifying code, and adding print statements. Try adding and moving
views.

TIP: You can use SDK tool debugging shortcuts for step-into (F5), step-return (F7), step-over (F6), and
resume (F8).

8. Close SDK.
Zynq-7000 AP SoC: Embedded Design Tutorial 49
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=49

Chapter 5

Using the HP Slave Port with AXI CDMA IP
In this chapter, you will instantiate AXI CDMA IP in fabric and integrate it with the
processing system high performance (HP) 64-bit slave port. In this system, AXI CDMA acts
as master device to copy an array of the data from the source buffer location to the
destination buffer location in DDR system memory. The AXI CDMA uses the processing
system HP slave port to get read/write access of DDR system memory.

You will write Standalone application software and Linux OS based application software
using mmap() for the data transfer using AXI CDMA block. You will also execute both
standalone and Linux-based application software separately on the ZC702 board.

Integrating AXI CDMA with the Zynq SoC PS HP
Slave Port
Xilinx® Zynq®-7000 AP SoC devices internally provide four high performance (HP) AXI
slave interface ports that connect the programmable logic (PL) to asynchronous FIFO
interface (AFI) blocks in the processing system (PS). The HP Ports enable a high throughput
data path between AXI masters in programmable logic and the processing system's
memory system (DDR and on-chip memory). HP slave ports are configurable to 64 bit or 32
bit interfaces.

In this section, you'll create a design using AXI CDMA intellectual property (IP) as master in
fabric and integrate it with the PS HP 64 bit slave port. The block diagram for the system is
as shown in the following figure.
Zynq-7000 AP SoC: Embedded Design Tutorial 50
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=50

Chapter 5: Using the HP Slave Port with AXI CDMA IP
This system covers the following connections:

• AXI CDMA Slave Port is connected to the PS General Purpose master port 1
(M_AXI_GP1). It is used by the PS CPU to configure the AXI CDMA register set for the
data transfer and also to check the status.

• AXI CDMA Master Port is connected to the PS High performance Slave Port 0
(S_AXI_HP0). It is used by the AXI CDMA to read from the DDR system memory. It acts
as the source buffer location for the CDMA during data transfer.

• AXI CDMA Master Port is connected to the PS High performance Slave Port 2
(S_AXI_HP2). It is used by the AXI CDMA to write the data to the DDR system memory.
It acts as a destination buffer location for the CDMA during the Data transfer.

• AXI CDMA interrupt is connected from fabric to the PS section interrupt controller.
After Data Transfer or Error during Data transaction, the AXI CDMA interrupt is
triggered.

In this system, you will configure the HP slave port 0 to access a DDR memory location
range from 0x20000000 to 0x2fffffff. This DDR system memory location acts as the
source buffer location to CDMA for reading the data.

You will also configure HP slave Port 2 to access a DDR memory Location range from
0x30000000 to 0x3fffffff. This DDR system memory location acts as a destination
location to CDMA for writing the data.

X-Ref Target - Figure 5-1

Figure 5-1: Block Diagram
Zynq-7000 AP SoC: Embedded Design Tutorial 51
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=51

Chapter 5: Using the HP Slave Port with AXI CDMA IP
You will also configure the AXI CDMA IP data width of the Data Transfer channel to 1024 bits
with Maximum Burst length set to 32. With this setting, CDMA Maximum transfer size is set
to 1024x32 bits in one transaction.

You will write the application software code for the above system. When you execute the
code, it first initializes the source buffer memory with the specified data pattern and also
clears the destination buffer memory by writing all zeroes to the memory location. Then, it
starts configuring the CDMA register for the DMA transfer. It writes the source buffer
location, destination buffer location, and number of bytes to be transferred to the CDMA
registers and waits for the CDMA interrupt. When the interrupt occurs, it checks the status
of the DMA transfers.

If the data transfer status is successful, it compares the source buffer data with the
destination buffer data and displays the comparison result on the serial terminal.

If the data transfer status is an error, it displays the error status on the serial terminal and
stops execution.

Example Project: Integrating AXI CDMA with the PS HP Slave
Port
1. Start with one of the following:

° Use the system you created in Example Project: Validate Instantiated Fabric IP
Functionality, page 34.

° Create a new project as described in Creating an Embedded Processor Project,
page 16.

2. Open the Vivado® design from Chapter 3 called edt_tutorial and from the IP integrator
view click Open Block Design.

3. In the Diagram window, right-click in the blank space and select Add IP.

4. In the search box, type CDMA and double-click the AXI Central Direct Memory Access
IP to add it to the Block Design. The AXI Central Direct Memory Access IP block appears
in the Diagram view.

5. In the Diagram window, right-click in the blank space and select Add IP.

6. In the search box type concat and double-click the Concat IP to add it to the Block
Design. The Concat IP block appears in the Diagram view. This block is used to
concatenate the two interrupt signals if you are using the prior design with the AXI
Timer.

7. Right-click the interrupt > IRQ_F2P[0:0] net and select delete.

8. Click the IRQ_F2P[0:0] port and drag to the dout[1:0] output port on the Concat IP
core to make a connection between the two ports.
Zynq-7000 AP SoC: Embedded Design Tutorial 52
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=52

Chapter 5: Using the HP Slave Port with AXI CDMA IP
9. Click the interrupt port on the AXI Timer IP core and drag to the In0[0:0] input port on
the Concat IP core to make a connection between the two ports.

10. Click the cdma_introut port on the AXI CDMA IP core and drag to the In1[0:0] input
port on the Concat IP core to make a connection between the two ports.

11. Right-click the ZYNQ7 Processing System core and select Customize Block.

12. Select PS-PL Configuration and expand the HP Slave AXI Interface.

13. Select the check box for S AXI HP0 interface and for S AXI HP2 interface.

14. Click OK to accept the changes.

15. Right-click the AXI CDMA IP core and select Customize Block.

16. Set the block settings in the Re-customize IP wizard screen as follows:

17. Click OK to accept the changes.

18. Click the Run Connection Automation link in the Diagram view to automate the
remaining connections.

19. In the Run Connection Automation wizard view make sure the All Automation box is
checked, then, click OK to accept the default connections. The finished diagram should
look like the following figure.

Note: You might receive a Critical Message regarding forcibly mapping a net into a conflicting
address. You will address the error by manually updating the memory mapped address in the
next steps. Click OK if you see the error message.

System Property Setting or Command to Use

Enable Scatter Gather Unchecked

Disable 4K Boundary Checks Unchecked

Allow Unaligned Transfers Unchecked

Write/Read Data Width 1024

Write/Read Burst Size 32

Enable Asynchronous Mode (Auto) Unchecked

Address Width 32
Zynq-7000 AP SoC: Embedded Design Tutorial 53
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=53

Chapter 5: Using the HP Slave Port with AXI CDMA IP
20. Select the Address Editor tab.

X-Ref Target - Figure 5-2

Figure 5-2: Updated Block Diagram

X-Ref Target - Figure 5-3

Figure 5-3: Address Editor Tab
Zynq-7000 AP SoC: Embedded Design Tutorial 54
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=54

Chapter 5: Using the HP Slave Port with AXI CDMA IP
21. In the Address Editor view, expand axi_cdma_0 > Data.

22. In the Range column for S_AXI_HP0, select 256M.

23. Under Offset Address for S_AXI_HP0, set a value of 0x2000_0000.

24. In the Address Editor view, expand axi_cdma_0 > Data.

25. In the Range column for S_AXI_HP2, select 256M.

26. Under Offset Address for S_AXI_HP2, set a value of 0x3000_0000.

27. Select Generate Bitstream in the Program and Debug view.

The Save Project dialog box opens.

28. Ensure that the Block Design - tutorial_bd check box is selected, then click Save.

29. A message might appear that states Synthesis is out of date. If it does, click Yes.

30. After the Bitstream generation completes, export the hardware and launch the Xilinx
Software Development Kit (SDK) as described in Exporting Hardware to SDK, page 24.

X-Ref Target - Figure 5-4

Figure 5-4: Assigning Addresses in the Address Editor

X-Ref Target - Figure 5-5

Figure 5-5: Address Changes to processing_system7_0
Zynq-7000 AP SoC: Embedded Design Tutorial 55
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=55

Chapter 5: Using the HP Slave Port with AXI CDMA IP
Standalone Application Software for the Design
The CDMA-based system that you designed in this chapter requires application software to
execute on the board. This section describes the details about the CDMA-based Standalone
application software.

The main() function in the application software is the entry point for the execution. It
initializes the source memory buffer with the specified test pattern and clears the
destination memory buffer by writing all zeroes.

The application software then configures the CDMA registers sets by providing information
such as source buffer and destination buffer starting locations. To initiate DMA transfer, it
writes the number of bytes to be transferred in the CDMA register and waits for the CDMA
interrupt to happen. After the interrupt, it checks the status of the DMA transfer and
compares the source buffer with the destination buffer. Finally, it prints the comparison
result in the serial terminal and stops running.

Application Software Flow
The application software does the following:

1. Initializes the source buffer with the specified test pattern. The source buffer location
ranges from 0x20000000 to 0x2fffffff.

Clears the destination buffer by writing all zeroes into the destination address range.
The destination buffer location ranges from 0x30000000 to 0x3fffffff.

2. Initializes AXI CDMA IP and does the following:

a. Associates a CDMA callback function with AXI CDMA ISR and Enable the Interrupt.

This Callback function executes during the CDMA interrupt. It sets the interrupt
Done and/or Error flags depending on the DMA transfer status.

Application software waits for the Callback function to populate these flags and
executes the software according to the status flag.

b. Configures the CDMA in Simple mode.

c. Checks the Status register of the CDMA IP to verify the CDMA idle status.

d. Sets the source buffer starting location, 0x20000000, to the CDMA register.

e. Sets the destination buffer starting location, 0x30000000, to the CDMA register.

f. Sets the number of bytes to transfer to the CDMA register. The application software
starts the DMA transfer.
Zynq-7000 AP SoC: Embedded Design Tutorial 56
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=56

Chapter 5: Using the HP Slave Port with AXI CDMA IP
3. After the CDMA interrupt is triggered, checks the DMA transfer status.

If the transfer status is successful, the application software compares the source buffer
location with the destination buffer location and displays the comparison result on the
serial terminal, and then exits from the execution.

If the transfer status displays an error, the software prints the error status in the serial
terminal and stops running.

Running the Standalone CDMA Application Using SDK
1. Open SDK.

2. Check that the Target Communication Frame (TCF) (hw_server.exe) agent is running
on your Windows machine. If it is not running, select Xilinx Tools > XSCT Console.

3. In the XSCT Console window, type Connect. A message appears, stating that the
hw_server application started, or if it has started and is running, you see tcfchan#,
as shown in the following figure.

4. In SDK, Select File > New > Application Project.

The New Project wizard opens.

X-Ref Target - Figure 5-6

Figure 5-6: Hardware Server Message in XSCT Process Window
Zynq-7000 AP SoC: Embedded Design Tutorial 57
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=57

Chapter 5: Using the HP Slave Port with AXI CDMA IP
5. Use the information in the table below to make your selections in the wizard screens.

6. Click Finish.

The New Project wizard closes and SDK creates the cdma_app application project and
the cdma_app_bsp board support package (BSP) project under the project explorer.
SDK also automatically compiles the project and generates the BSP.

7. In the Project Explorer tab, expand the cdma_app project, right-click the src directory,
and select Import to open the Import dialog box.

8. Expand General in the Import dialog box and select File System.

9. Click Next.

10. Select Browse.

11. Navigate to the design files folder, which you saved earlier (see Design Files for This
Tutorial, page 124) and click OK.

12. Add the cdma_app.c file and click Finish.

SDK automatically builds the application and displays the status in the console window.

Note: The Application software file name for the system is cdma_app.c. It is available in the
ZIP file that accompanies this guide. See Design Files for This Tutorial, page 124.

13. Open the serial communication utility with baud rate set to 115200.

Note: This is the baud rate that the UART is programmed to on Zynq devices.

14. Make sure that the hardware board is set up and turned on.

Note: Refer to Example Project: Running the “Hello World” Application, page 27 for information
about setting up the board.

15. Select Xilinx Tools > Program FPGA to open the Program FPGA dialog box. The dialog
box shows the bitstream path.

16. Click Program to download the bitstream and program the PL Fabric.

Wizard Screen System Property Setting or Command to Use

Application Project Project Name cdma_app

Use Default Locations Select this option

Hardware Platform <system_hw_platform>

Processor PS7_cortexa9_0

OS Platform Standalone

Language C

Board Support Package Select Create New and provide the name of
cdma_app_bsp.

Templates Available Templates Empty Application
Zynq-7000 AP SoC: Embedded Design Tutorial 58
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=58

Chapter 5: Using the HP Slave Port with AXI CDMA IP
17. Run the project similar to the steps in Example Project: Running the “Hello World”
Application, page 27.

18. Check the Status of the CDMA transfer in the Serial terminal. If the transfer is successful,
the message "DMA Transfer is Successful" displays. Otherwise, the serial terminal
displays an error message.

Linux OS Based Application Software for the CDMA
System
In this section, you will create a Linux-based application software for CDMA using the
mmap() system call provided by Linux and run it on the hardware to check the functionality
of the CDMA IP.

The mmap() system call is used to map specified kernel memory area to the User layer, so
that you can read or write on it depending on the attribute provided during the memory
mapping.

Note: Details about the mmap() system call is beyond the scope of this guide.

CAUTION! Use of the mmap() call might crash the kernel if it accesses, by mistake, some restricted area
or shared resources of the kernel.

The main() function in the application software is the entry point for the execution. It
initializes the source array with the specified test pattern and clears the destination array.
Then it copies the source array contents to the DDR memory starting at location
0x20000000 and makes the DMA register setting to initiate DMA transfer to the
destination. After the DMA transfer, the application reads the status of the transfer and
displays the result on the serial terminal.

Application Software Creation Steps
Application software creation is composed of the following steps:

1. Initialize the whole source array, which is in the User layer with value 0xa5a5a5a5.

2. Clear the whole destination buffer, which is in the User layer, by writing all zeroes.

3. Map the kernel memory location starting from 0x20000000 to the User layer with
writing permission using mmap() system calls.

By doing so, you can write to the specified kernel memory.

4. Copy the source array contents to the mapped kernel memory.

5. Un-map the kernel memory from the User layer.
Zynq-7000 AP SoC: Embedded Design Tutorial 59
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=59

Chapter 5: Using the HP Slave Port with AXI CDMA IP
6. Map the AXI CDMA register memory location to the User layer with reading and writing
permission using the mmap() system call. Make the following CDMA register settings
from the User layer:

a. Reset DMA to stop any previous communication.

b. Enable interrupt to get the status of the DMA transfer.

c. Set the CDMA in simple mode.

d. Verify that the CDMA is idle.

e. Set the source buffer starting location, 0x20000000, to the CDMA register.

f. Set the destination buffer starting location, 0x30000000, to the CDMA register.

g. Set the number of bytes to be transferred in the CDMA register. Writing to this
register starts the DMA transfer.

7. Continuously read the DMA transfer status until the transfer finishes.

8. After CDMA transfer finishes, un-map the CDMA register memory for editing from the
User layer using the mmap() system call.

9. Map the kernel memory location starting from 0x30000000 to the User layer with
reading and writing attributes.

10. Copy the kernel memory contents starting from 0x30000000 to the User layer
destination array.

11. Un-map the kernel memory from the User layer.

12. Compare the source array with the destination array.

13. Display the comparison result in the serial terminal. If the comparison is successful, the
message "DATA Transfer is Successful" displays. Otherwise, the serial terminal displays
an error message.

Running Linux CDMA Application Using SDK
Detailed steps on running Linux on the target board are outlined in Chapter 6. If you are not
comfortable running Linux, run through the Chapter 6 examples prior to running this
example. Running a Linux OS based application is composed of the following steps:

1. Booting Linux on the Target Board, page 61

2. Building an Application and Running it on the Target Board Using SDK, page 65
Zynq-7000 AP SoC: Embedded Design Tutorial 60
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=60

Chapter 5: Using the HP Slave Port with AXI CDMA IP
Booting Linux on the Target Board
You will now boot Linux on the Zynq-7000 AP SoC ZC702 target board using JTAG mode.

Note: Additional boot options will be explained in Chapter 6.

1. Check the following Board Connection and Setting for Linux booting using JTAG mode:

a. Ensure that the settings of Jumpers J27 and J28 are set as described in Example
Project: Running the “Hello World” Application, page 27.

b. Ensure that the SW16 switch is set as shown in the following figure.

c. Connect an Ethernet cable from the Zynq SoC board to your network.

d. Connect the Windows Host machine to your network.

e. Connect the power cable to the board.

2. Connect a USB Micro cable between the Windows host machine and the target board
with the following SW10 switch settings, as shown in Figure 5-8.

° Bit-1 is 0

° Bit-2 is 1

Note: 0 = switch is open. 1 = switch is closed. The correct JTAG mode has to be selected,
according to the user interface. The JTAG mode is controlled by switch SW10 on the ZC702 and
SW4 on the ZC706.

X-Ref Target - Figure 5-7

Figure 5-7: Ensure the SW16 Switch Setting
Zynq-7000 AP SoC: Embedded Design Tutorial 61
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=61

Chapter 5: Using the HP Slave Port with AXI CDMA IP

3. Connect a USB cable to connector J17 on the target board with the Windows Host
machine. This is used for USB to serial transfer.

4. Change Ethernet Jumper J30 and J43 as shown in the following figure.

X-Ref Target - Figure 5-8

Figure 5-8: SW10 on a ZC702 Set to use Digilent USB JTAG

X-Ref Target - Figure 5-9

Figure 5-9: Change JumpersJ30 and J43
Zynq-7000 AP SoC: Embedded Design Tutorial 62
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=62

Chapter 5: Using the HP Slave Port with AXI CDMA IP
5. Power on the target board.

6. Launch SDK and open same workspace you used in Chapter 2 and Chapter 3.

7. If the serial terminal is not open, connect the serial communication utility with the baud
rate set to 115200.

Note: This is the baud rate that the UART is programmed to on Zynq devices.

8. Select Xilinx Tools > Program FPGA, then click Program to download the bitstream.

9. Open the Xilinx System Debugger (XSCT) tool by selecting Xilinx Tools > XSCT
console.

10. At the XSCT prompt, do the following:

a. Type connect to connect with the PS section.

b. Type targets to get the list of target processors.

c. Type targets 2 to select the processor CPU1.

xsct% targets
 1 APU
 2 ARM Cortex-A9 MPCore #0 (Running)
 3 ARM Cortex-A9 MPCore #1 (Running)
 4 xc7z020
xsct% targets 2
xsct% targets
 1 APU
 2* ARM Cortex-A9 MPCore #0 (Running)
 3 ARM Cortex-A9 MPCore #1 (Running)
 4 xc7z020

d. Type source C:/designs/edt_tutorial/edt_tutorial.sdk/
tutorial_bd_wrapper_hw_platform_0/ps7_init.tcl and then type
ps7_init to initialize the PS section (such as Clock PLL, MIO, and DDR
initialization).

e. Type ps7_post_config to enable level shifters between PS to PL and to clear fabric
port resets.

f. Type dow <tutorial_download_path>/u-boot.elf to download PetaLinux
U-Boot.elf.

g. Type con to start execution of U-Boot.

On the serial terminal, the autoboot countdown message appears:
Hit any key to stop autoboot: 3

h. Press Enter.

Automatic booting from U-Boot stops and a command prompt appears on the serial
terminal.
Zynq-7000 AP SoC: Embedded Design Tutorial 63
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=63

Chapter 5: Using the HP Slave Port with AXI CDMA IP
i. At the XSCT Prompt, type stop.

The U-Boot execution stops.

j. Type dow -data image.ub 0x30000000 to download the Linux Kernel image at
location 0x3000000.

k. Type con to start executing U-Boot.

11. At the command prompt of the serial terminal, type bootm 0x30000000.

The Linux OS boots.

12. If required, provide the Zynq login as root and the password as root on the serial
terminal to complete booting the processor.

After booting completes, # prompt appears on the serial terminal.

13. At the root@Xilinx-ZC702-2017_3:~# prompt, make sure that the board Ethernet
connection is configured:

a. Check the IP address of the board by typing the following command at the Zynq>
prompt: ifconfig eth0.

This command displays all the details of the currently active interface. In the
message that displays, the inet addr value denotes the IP address that is assigned
to the Zynq SoC board.

b. If inet addr and netmask values do not exist, you can assign them using the
following commands:

root@Xilinx-ZC702-2017_3:~# ifconfig eth0 inet 192.168.1.10
root@Xilinx-ZC702-2017_3:~# ifconfig eth0 netmask 255.255.255.0

14. Next, confirm that the IP address settings on the Windows machine are set up to match
the board settings. Adjust the local area connection properties by opening your network
connections.

a. Right-click the local area connection that is linked to the XC702 board and select
Properties.

b. With the Local Area Connection properties window open, select Internet Protocol
Version 4 (TCP/IPv4) from the item list and select Properties.

c. Select Use the following IP address and set the following values:

IP address: 192.168.1.11
Subnet mask: 255.255.255.0

d. Click OK to accept the values and then close.
Zynq-7000 AP SoC: Embedded Design Tutorial 64
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=64

Chapter 5: Using the HP Slave Port with AXI CDMA IP
15. In the Windows machine command prompt, check the connection with the board by
typing ping followed by the board IP address. The ping response displays in a loop.

This response means that the connection between the Windows host machine and the
target board is established.

16. Press Ctrl+C to stop displaying the ping response on windows host machine command
prompt.

Linux booting completes on the target board and the connection between the host machine
and the target board is complete.

Building an Application and Running it on the Target Board
Using SDK
1. Now that Linux is running on the board, we will create a linux application to utilize the

CDMA. Select File > New > Application Project.

2. Use the information in the table below to make your selections in the wizard screens.

3. Click Finish.

The New Project wizard closes and SDK creates the linux_cdma_app project under the
project explorer.

4. In the Project Explorer tab, expand linux_cdma_app project, right-click the src
directory, and select Import to open the Import dialog box.

5. Expand General in the Import dialog box and select File System.

6. Click Next.

7. Add the linux_cdma_app.c file and click Finish.

SDK automatically builds the application and generates the linux_cdma_app.elf
file. Check the console window for the status.

Note: The example application software file for the system is linux_cdma_app.c. This file is
available in the ZIP file that accompanies this guide. See Design Files for This Tutorial, page 124.

Wizard Screen System Property Setting or Command to Use

Application Project Project Name linux_cdma_app

Hardware Platform <system_hw_platform>

Processor PS7_cortexa9_0

OS Platform Linux

Language C

Templates Available Templates Linux Empty Application
Zynq-7000 AP SoC: Embedded Design Tutorial 65
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=65

Chapter 5: Using the HP Slave Port with AXI CDMA IP
8. Right-click linux_cdma_app and select Run As > Run Configurations to open the
Run Configurations wizard, shown in the following figure.

9. Right-click Xilinx C/C++ application (System Debugger) and select New.

10. In the Connection tab, click New to open the New Connection wizard.

11. In the New Target Connection screen, apply the settings below (also shown in
Figure 5-11):

a. Specify a name in the Target Name field. For the purposes of this exercise, use
CDMALinux.

b. In the Host field, enter the target board IP address.

To determine the target board IP address, type ifconfig eth0 at the Zynq>
prompt in the serial terminal. The terminal displays the target IP address that is
assigned to the board.

c. In the Port field, type 1534.

X-Ref Target - Figure 5-10

Figure 5-10: Run Configurations Setup
Zynq-7000 AP SoC: Embedded Design Tutorial 66
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=66

Chapter 5: Using the HP Slave Port with AXI CDMA IP
T

12. Click OK to create the connection.

13. As shown in the following figure, from the Application tab, enter application data
settings for the following:

a. Project Name: linux_cdma_app

b. Local File Path: Debug/linux_cdma_app.elf

c. Remote File Path: /tmp/cdma.elf

X-Ref Target - Figure 5-11

Figure 5-11: Target Connection Details Dialog Box Settings

X-Ref Target - Figure 5-12

Figure 5-12: Debug Configuration Settings in the Application Tab
Zynq-7000 AP SoC: Embedded Design Tutorial 67
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=67

Chapter 5: Using the HP Slave Port with AXI CDMA IP
14. Click Run.
The application executes, and the message DATA Transfer is Successful appears in the
console window, as shown in the following figure.

X-Ref Target - Figure 5-13

Figure 5-13: Data Transfer Message
Zynq-7000 AP SoC: Embedded Design Tutorial 68
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=68

Chapter 6

Linux Booting and Debug in SDK
This chapter describes the steps to configure and build the Linux OS for Zynq®-7000 AP
SoC board with PetaLinux Tools. It also provides information about downloading images
precompiled by Linux on the target memory using a JTAG interface.

The later part of this chapter covers programming the following non-volatile memory with
the precompiled images, which are used for automatic Linux booting after switching on the
board:

• On-board QSPI Flash

• SD card

This chapter also describes using the remote debugging feature in the Xilinx® Software
Development Kit (SDK) to debug Linux applications running on the target board. The SDK
tool software runs on the Windows host machine. For application debugging, SDK
establishes an Ethernet connection to the target board that is already running the Linux OS.

For more information, see the Embedded Design Tools web page [Ref 16].

Requirements
In this chapter, the target platform refers to a Zynq SoC board. The host platform refers to
a Windows machine that is running the Vivado® tools and PetaLinux installed on a Linux
machine (either physical or virtual).

Note: The Das U-Boot universal bootloader is required for the tutorials in this chapter. It is included
in the precompiled images that you will download next.

From the Xilinx documentation website, download the ZIP file that accompanies this guide.
See Design Files for This Tutorial, page 124. It includes the following files:

• BOOT.bin: Binary image containing the FSBL and U-Boot images produced by
bootgen.

• cdma_app.c: Standalone Application software for the system you will create in this
chapter.

• helloworld.c: Standalone Application software for the system you created in
Chapter 3.
Zynq-7000 AP SoC: Embedded Design Tutorial 69
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=69

Chapter 6: Linux Booting and Debug in SDK
• linux_cdma_app: Linux OS based Application software for the system you will create
in this chapter.

• README.txt: Copyright and release information pertaining to the ZIP file.

• u-boot.elf: U-Boot file used to create the BOOT.BIN image.

• Image.ub: PetaLinux build Image (which have kernel image, ramdisk and dtb)

• fsbl.elf: FSBL image used to create BOOT.BIN image.

Booting Linux on a Zynq SoC Board
This section covers the flow for booting Linux on the target board using the precompiled
images that you downloaded in Requirements, page 69.

Note: The compilations of the different images like Kernel image, U-Boot, Device tree, and root file
system is beyond the scope of this guide.

Boot Methods
The following boot methods are available:

• Master Boot Method

• Slave Boot Method

Master Boot Method

In the master boot method, different kinds of non-volatile memories such as QSPI, NAND,
NOR flash, and SD cards are used to store boot images. In this method, the CPU loads and
executes the external boot images from non-volatile memory into the Processor System
(PS). The master boot method is further divided into Secure and Non Secure modes. Refer
to the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585) [Ref 1] for
more detail.

The boot process is initiated by one of the ARM Cortex-A9 CPUs in the processing system
(PS) and it executes on-chip ROM code. The on-chip ROM code is responsible for loading
the first stage boot loader (FSBL). The FSBL does the following:

• Configures the FPGA with the hardware bitstream (if it exists)

• Configures the MIO interface

• Initializes the DDR controller

• Initializes the clock PLL

• Loads and executes the Linux U-Boot image from non-volatile memory to DDR
Zynq-7000 AP SoC: Embedded Design Tutorial 70
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=70

Chapter 6: Linux Booting and Debug in SDK
The U-Boot loads and starts the execution of the Kernel image, the root file system, and the
device tree from non-volatile RAM to DDR. It finishes booting Linux on the target platform.

Slave Boot Method

JTAG can only be used in slave boot mode. An external host computer acts as the master to
load the boot image into the OCM using a JTAG connection.

Note: The PS CPU remains in idle mode while the boot image loads. The slave boot method is always
a non-secure mode of booting.

In JTAG boot mode, the CPU enters halt mode immediately after it disables access to all
security related items and enables the JTAG port. You must download the boot images into
the DDR memory before restarting the CPU for execution.

Booting Linux from JTAG
The flow chart in the following figure describes the process used to boot Linux on the target
platform.

X-Ref Target - Figure 6-1

Figure 6-1: Linux Boot Process on the Target Platform
Zynq-7000 AP SoC: Embedded Design Tutorial 71
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=71

Chapter 6: Linux Booting and Debug in SDK
Preparing the PetaLinux Build for Debugging
To debug Linux applications (using tcf-agent), you must manually enable tcf-agent in
PetaLinux RootFS.

Ensure that dropbear-openssh-sftp server is disabled in PetaLinux RootFS.

Note: System Debugger from Xilinx SDK supports Linux Application Debug using tcf-agent (TCF -
Target Communication Framework). TCF agent is provided as a part of PetaLinux roofts packages, but
needs to be enabled when required.

Detailed information on enabling these components in the PetaLinux Tools Documentation:
Reference Guide (UG1144) [Ref 11], section “Debugging Zynq Applications with TCF Agent.”
Zynq-7000 AP SoC: Embedded Design Tutorial 72
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=72

Chapter 6: Linux Booting and Debug in SDK
Booting Linux Using JTAG Mode
1. Check the following board connections and settings for Linux booting using JTAG mode:

a. Ensure that the settings of Jumpers J27 and J28 are set as described in Example
Project: Running the “Hello World” Application, page 27.

b. Ensure that the SW16 switch is set as shown in the following figure.

c. Connect an Ethernet cable from the Zynq®-7000 All Programmable SoC board to
your network or back-to-back with your host machine.

d. Connect the Windows Host machine to your network.

e. Connect the power cable to the board.

2. Connect a USB Micro cable between the Windows host machine and the target board
with the following SW10 switch settings, as shown in the following figure.

° Bit-1 is 0

° Bit-2 is 1

Note: 0 = switch is open. 1 = switch is closed. The correct JTAG mode has to be selected,
according to the user interface. The JTAG mode is controlled by switch SW10 on the zc702 and
SW4 on the zc706.

X-Ref Target - Figure 6-2

Figure 6-2: Ensure the SW16 Switch Setting
Zynq-7000 AP SoC: Embedded Design Tutorial 73
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=73

Chapter 6: Linux Booting and Debug in SDK
3. Connect a USB cable to connector J17 on the target board with the Windows Host
machine. This is used for USB to serial transfer.

4. Change Ethernet Jumper J30 and J43 as shown in the following figure.

5. Power on the target board.

6. Launch SDK and open same workspace you used in Chapter 2 and Chapter 3.

7. If the serial terminal is not open, connect the serial communication utility with the baud
rate set to 115200.

Note: This is the baud rate that the UART is programmed to on Zynq devices.

X-Ref Target - Figure 6-3

Figure 6-3: SW4 on a ZC706 Set to use Digilent USB JTAG

X-Ref Target - Figure 6-4

Figure 6-4: Change Jumpers J30 and J43
Zynq-7000 AP SoC: Embedded Design Tutorial 74
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=74

Chapter 6: Linux Booting and Debug in SDK
8. Download the bitstream by selecting Xilinx Tools > Program FPGA, then clicking
Program.

9. Open the Xilinx System Debugger (XSCT) tool by selecting Xilinx Tools > XSCT
console.

10. At the XSCT prompt, do the following:

a. Type connect to connect with the PS section.

b. Type targets to get the list of target processors.

c. Type ta 2 to select the processor CPU1.

xsct% targets
 1 APU
 2 ARM Cortex-A9 MPCore #0 (Running)
 3 ARM Cortex-A9 MPCore #1 (Running)
 4 xc7z020
xsct% ta 2
xsct% targets
 1 APU
 2* ARM Cortex-A9 MPCore #0 (Running)
 3 ARM Cortex-A9 MPCore #1 (Running)
 4 xc7z020

d. Type source C:/designs/edt_tutorial/edt_tutorial.sdk/
tutorial_bd_wrapper_hw_platform_0/ps7_init.tcl and type ps7_init
to initialize the PS section (such as Clock PLL, MIO, and DDR initialization).

e. Type ps7_post_config to enable level shifters between PS to programmable logic
(PL) and to clear fabric port resets.

f. Type dow <tutorial_download_path>/u-boot.elf to download PetaLinux
U-Boot.elf.

g. Type con to start execution of U-Boot.

On the serial terminal, the autoboot countdown message appears:

Hit any key to stop autoboot: 3

h. Press Enter.

Automatic booting from U-Boot stops and a command prompt appears on the serial
terminal.

i. At the XSCT Prompt, type stop.

The U-Boot execution stops.

j. Type dow -data image.ub 0x30000000 to download the Linux Kernel image at
location <tutorial_download_path>/image.ub.

k. Type con to start executing U-Boot.
Zynq-7000 AP SoC: Embedded Design Tutorial 75
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=75

Chapter 6: Linux Booting and Debug in SDK
11. At the command prompt of the serial terminal, type bootm 0x30000000.

The Linux OS boots.

12. If required, provide the Zynq login as root and the password as root on the serial
terminal to complete booting the processor.

After booting completes, # prompt appears on the serial terminal.

13. At the root@plnx_arm:~# prompt, make sure that the board Ethernet connection is
configured:

a. Check the IP address of the board by typing the following command at the Zynq>
prompt: ifconfig eth0.

This command displays all the details of the currently active interface. In the
message that displays, the inet addr value denotes the IP address that is assigned
to the Zynq SoC board.

b. If inet addr and netmask values do not exist, you can assign them using the
following commands:

root@plnx_arm:~# ifconfig eth0 inet 192.168.1.10

root@plnx_arm:~# ifconfig eth0 netmask 255.255.255.0

IMPORTANT: If the target and host are connected back-to-back, you must set up the IP address. If the
target and host are connected over a LAN , DHCP will get the IP address for the target; use the
ifconfig etho to display the IP address.

Next, confirm that the IP address settings on the Windows machine match the board
settings. Adjust the local area connection properties by opening your network
connections.

i Right click the local area connection that is linked to the XC702 board and select
Properties.

ii With the Local Area Connection properties window open, select Internet
Protocol Version 4 (TCP/IPv4) from the item list and select Properties.

iii Select Use the following IP address and set the values as follows (also shown
in the following figure):

IP address: 192.168.1.11 (target and host must be in the same subnet if
connected back- to-back)

Subnet mask : 255.255.255.0
Zynq-7000 AP SoC: Embedded Design Tutorial 76
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=76

Chapter 6: Linux Booting and Debug in SDK
c. Click OK to accept the values and close the window.

14. In the Windows machine command prompt, check the connection with the board by
typing ping followed by the board IP address. The ping response displays in a loop.

This response means that the connection between the Windows host machine and the
target board is established.

15. Press Ctrl+C to stop displaying the ping response on windows host machine command
prompt.

Linux booting completes on the target board and the connection between the host
machine and the target board is complete. The next Example Design describes using
SDK to debug the Linux application.

X-Ref Target - Figure 6-5

Figure 6-5: IP Address Settings
Zynq-7000 AP SoC: Embedded Design Tutorial 77
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=77

Chapter 6: Linux Booting and Debug in SDK
Example Design: Debugging the Linux Application Using SDK
In this section, you will create an SDK default Linux hello world application and practice
the steps for debugging the Linux application from the Windows host machine.

1. Open SDK.

2. Select File > New > Application Project.

The New Project wizard opens.

3. Use the information in the following table to make your selections in the wizard screens.

4. Click Finish.

The New Project wizard closes and SDK creates the HelloLinux project under the
project explorer. SDK also automatically compiles the project and generates the file
HelloLinux.elf.

5. Right-click HelloLinux and select Debug as > Debug Configurations to open the
Debug Configuration wizard.

6. Double-click System Debugger and select Linux Application Debug as the Debug
Type, as shown in the following figure.

Table 6-1: New Project Wizard Selections for Debugging in SDK

Wizard Screen System Property Setting or Command to Use

Application Project Project Name HelloLinux

Use Default Location Select this option

Hardware Platform <system_hw_platform>

Processor PS7_cortexa9_0

OS Platform Linux

Language C

Templates Available Templates Linux Hello World

X-Ref Target - Figure 6-6

Figure 6-6: Debug Type Selection
Zynq-7000 AP SoC: Embedded Design Tutorial 78
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=78

Chapter 6: Linux Booting and Debug in SDK
7. In the Target Setup tab, Connection field, click New.

8. In the Target Connection Details dialog box (shown in the following figure):

a. Specify the Target Name of your choice.

b. In the Host field, use the target IP address.

c. In the Port field, specify 1534.

9. Set the Application configuration details, as described below (and shown in the
following figure).

a. Select the Application tab.

b. Use the Browse button to locate the Project Name. The Project Selection window
appears.

c. Select the HelloLinux project and click OK.

d. Set the Remote File path, for example /tmp/hellolinux.elf and click Apply.

X-Ref Target - Figure 6-7

Figure 6-7: Debug Configuration Target Connection Settings
Zynq-7000 AP SoC: Embedded Design Tutorial 79
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=79

Chapter 6: Linux Booting and Debug in SDK
10. Click Debug.

Note: If the Confirm Perspective Switch popup menu appears, as shown in the following figure,
click Yes.

The Debug Perspective opens (see Figure 6-10). From this screen you can:

- Observe that execution stopped at the main() function.

- See disassembly points to the address.

- Setup break points by right clicking the function on the left side of the editor
pane (showing the helloworld.c).

X-Ref Target - Figure 6-8

Figure 6-8: Debug Configuration Target Options

X-Ref Target - Figure 6-9

Figure 6-9: Confirm Perspective Switch Popup Menu
Zynq-7000 AP SoC: Embedded Design Tutorial 80
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=80

Chapter 6: Linux Booting and Debug in SDK
- Once a breakpoint is set, it appears in the break point list. You can observe and
modify register contents. Notice that the PC register address in the Registers
tab and the address shown in the Disassembly tab are the same (see the
following figure).

- Use step-into (F5), step-return (F7), step-over (F6), Resume (F8) and continue
debugging outlined in green in the following figure.

TIP: The Linux application output displays in the SDK console, not the Terminal window used for
running Linux.

11. After you finish debugging the Linux application, close SDK.

X-Ref Target - Figure 6-10

Figure 6-10: Debug Perspective Launched with HelloLinux Application
Zynq-7000 AP SoC: Embedded Design Tutorial 81
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=81

Chapter 6: Linux Booting and Debug in SDK
Example Project: Booting Linux from QSPI Flash
This Example Project covers the following steps:

1. Create the First Stage Boot Loader Executable File.

2. Make a Linux-bootable image for QSPI flash.

PetaLinux must be configured for QSPI flash boot mode and rebuilt. By default, the Boot
option is SD boot.

TIP: The ZIP file that accompanies this document contains the prebuilt images. If you prefer, you can
use these and skip to either Booting Linux from QSPI Flash, page 89 or Booting Linux from the SD Card,
page 90, as appropriate to your design.

3. Run the following steps on a Linux machine to change the boot mode to QSPI flash.

a. Change to the root directory of your PetaLinux project:
$ cd <plnx-proj-root>

b. Launch the top level system configuration menu:
$ petalinux-config

c. Select Subsystem AUTO Hardware Settings.

d. Select Advanced Bootable Images Storage Settings.

- Select boot image settings.

- Select Image Storage Media.

- Select boot device as primary flash.

e. Under the Advanced Bootable Images Storage Settings sub-menu:

- Select kernel image settings.

- Select Image Storage Media.

- Select the storage device as primary flash.

f. Save the configuration settings and exit the configuration wizard.

g. Rebuild using the Petalinux-build command.

Note: For more information, refer to the PetaLinux Tools Documentation: Reference
Guide (UG1144) [Ref 11].

4. Program QSPI flash with the Boot Image Using JTAG and U-Boot Command.

5. Boot Linux from QSPI flash.
Zynq-7000 AP SoC: Embedded Design Tutorial 82
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=82

Chapter 6: Linux Booting and Debug in SDK
Create the First Stage Boot Loader Executable File

1. Open SDK.

2. Check that the Target Communication Frame (TCF) (hw_server.exe) agent is running
on your Windows machine. If it is not, in SDK, select Xilinx Tools > XSCT Console.

3. In the XSCT Console window, type Connect. A message appears, stating that the
hw_server application started, or, if it is already running, you will see tcfchan#, as
shown in the following figure.

X-Ref Target - Figure 6-11

Figure 6-11: XSCT Console: hw_server Application Started Message
Zynq-7000 AP SoC: Embedded Design Tutorial 83
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=83

Chapter 6: Linux Booting and Debug in SDK
4. In SDK, select File > New > Application Project. The New Project wizard opens.

5. Use the information the following table to make your selections in the wizard screens.

6. Click Finish.

The New Project wizard closes. SDK creates the fsbl application project and the
fsbl_bsp board support package (BSP) project under the project explorer. SDK also
automatically compiles the project and generates the fsbl.elf file.

Table 6-2: New Project Wizard Selections for Booting Linux Project

Wizard Screen System Property Setting or Command to Use

Application Project Project Name fsbl

Use Default Location Select this option

Hardware Platform <system_hw_platform>

Processor PS7_cortexa9_0

OS Platform Standalone

Language C

Board Support Package Select Create New and provide the name
fsbl_bsp.

Templates Available Templates Zynq FSBL
Zynq-7000 AP SoC: Embedded Design Tutorial 84
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=84

Chapter 6: Linux Booting and Debug in SDK
Make a Linux Bootable Image for QSPI Flash

1. In SDK, select Xilinx Tools > Create Zynq Boot Image to open the Create Zynq Boot
Image wizard.

2. From the Architecture drop-down list, select Zynq.

3. Click Browse next to the Output BIF file path field, and navigate to your output.bif
file.

4. Click Browse next to the Output path field, and navigate to your BOOT.bin file.

Note: The QSPI Boot file, BOOT.bin, is available in the ZIP file that accompanies this guide.
See Design Files for This Tutorial, page 124.

X-Ref Target - Figure 6-12

Figure 6-12: Creating a Zynq Device Boot Image
Zynq-7000 AP SoC: Embedded Design Tutorial 85
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=85

Chapter 6: Linux Booting and Debug in SDK
5. Click Add to add the following boot image partitions:

° fsbl.elf (bootloader).

Note: You can find fsbl.elf in <project
dir>/project/project.sdk/SDK/SDK_Export/fsbl/Debug.
Alternately, you can use fsbl.elf from the file you downloaded in Requirements, page 69.

° Add Bitstream and the U-Boot image, u-boot.elf.

° Add the PetaLinux output image, image.ub, and provide the offset 0x520000
(image.ub: PetaLinux image consists of kernel image, device tree blob and minimal
rootfs).

6. Click Create Image to create the BOOT.bin file in the specified output path folder.

Program QSPI Flash with the Boot Image Using JTAG

You can program QSPI Flash with the boot image using JTAG.

1. Power on the ZC702 Board.

2. If a serial terminal is not already open, connect the serial terminal with the baud rate set
to 115200.

Note: This is the baud rate that the UART is programmed to on Zynq devices.

3. Select Xilinx Tools > XSCT Console to open the XSCT tool.

4. From the XSCT prompt, do the following:

a. Type connect to connect with the PS section.

b. Type targets to get the list of target processors.

c. Type ta 2 to select the processor CPU1.

d. Type source <Project Dir>/project_1/project_1.sdk/SDK/SDK_Export/
<system_hw_platform>/ps7_init.tcl and then type ps7_init to initialize the PS
section.

e. Type ps7_post_config to enable level shifters between PS to PL and clear fabric port
resets.

f. Type dow u-boot.elf to download the Linux U-Boot to the QSPI Flash.

g. Type dow -data BOOT.bin 0x08000000 to download the Linux bootable image to
the target memory at location 0x08000000.

Note: You just downloaded the binary executable to DDR memory. You can download the
binary executable to any address in DDR memory.

h. Type con to start execution of U-Boot.

U-Boot begins booting. On the serial terminal, the autoboot countdown message
appears:
Zynq-7000 AP SoC: Embedded Design Tutorial 86
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=86

Chapter 6: Linux Booting and Debug in SDK
Hit any key to stop autoboot: 3

5. Press Enter.

Automatic booting from U-Boot stops and the U-Boot command prompt appears on the
serial terminal.

6. Do the following steps to program U-Boot with the bootable image:

a. At the prompt, type sf probe 0 0 0 to select the QSPI Flash.

b. Type sf erase 0 0x01000000 to erase the Flash data.

This command completely erases 16 MB of on-board QSPI Flash memory.

c. Type sf write 0x08000000 0 0xffffff to write the boot image on the QSPI Flash.

Note that you already copied the bootable image at DDR location 0x08000000. This
command copied the data, of the size equivalent to the bootable image size, from DDR
to QSPI location 0x0.

For this example, because you have 16 MB of Flash memory, you copied 16 MB of data.
You can change the argument to adjust the bootable image size.

7. Power off the board and follow the booting steps described in the following section.

Program QSPI Flash with the SDK Flash Programming Tool

Following the steps below, you can program QSPI Flash with the SDK flash programming
tool:

1. Power on the ZC702 Board.

2. If a serial terminal is not open, connect the serial terminal with the baud rate set to
115200.

Note: This is the baud rate to which the UART is programmed on Zynq devices.

3. Select Xilinx Tools > Program Flash.

4. Select the BOOT.bin file to flash and select Program (see the following figure).
Zynq-7000 AP SoC: Embedded Design Tutorial 87
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=87

Chapter 6: Linux Booting and Debug in SDK
On successful programming, a message appears in the console window saying Flash
Operation Successful.

5. Power off the board and follow the booting steps in Booting Linux from QSPI Flash,
page 89 or Booting Linux from the SD Card, page 90, as appropriate to your design.

X-Ref Target - Figure 6-13

Figure 6-13: Programming the BOOT.bin file Using the Flash Tool
Zynq-7000 AP SoC: Embedded Design Tutorial 88
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=88

Chapter 6: Linux Booting and Debug in SDK
Booting Linux from QSPI Flash

1. After you program the QSPI Flash, set the SW16 switch on your board as shown in the
following figure.

2. Connect the Serial terminal using an 115200 baud rate setting.

Note: This is the baud rate that the UART is programmed to on Zynq devices.

3. Switch on the board power.

A Linux booting message appears on the serial terminal. After booting finishes, the
root@plnx_arm:~# prompt appears.

4. Check the Board IP address connectivity as described in Booting Linux Using JTAG
Mode, page 73.

For Linux Application creation and debugging, refer to Example Design: Debugging the
Linux Application Using SDK, page 78.

X-Ref Target - Figure 6-14

Figure 6-14: Jumper Settings for Booting Linux from QSPI Flash
Zynq-7000 AP SoC: Embedded Design Tutorial 89
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=89

Chapter 6: Linux Booting and Debug in SDK
Booting Linux from the SD Card

1. Change the SW16 switch setting as shown in the following figure.

2. Make the board settings as described in Booting Linux Using JTAG Mode, page 73.

3. Create a first stage bootloader (FSBL) for your design as described in Create the First
Stage Boot Loader Executable File, page 83.

Note: If you do not need to change the default FSBL image, you can use the fsbl.elf file that
you downloaded as part of the ZIP file for this guide. See Design Files for This Tutorial, page 124.

4. In SDK, select Xilinx Tools > Create Boot Image to open the Create Zynq Boot Image
wizard.

5. Add fsbl.elf, bit file (if any), and u-boot.elf.

6. Provide the output folder path in the Output folder field.

X-Ref Target - Figure 6-15

Figure 6-15: Jumper Settings for Booting Linux from SD Card
Zynq-7000 AP SoC: Embedded Design Tutorial 90
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=90

Chapter 6: Linux Booting and Debug in SDK
7. Click Create Image. SDK generates the BOOT.bin file in the specified folder.

8. Copy BOOT.bin and image.ub to the SD card.

IMPORTANT: Do not change the file names. U-Boot searches for these file names in the SD card while
booting the system.

9. Turn on the power to the board and check the messages on the Serial terminal. The
root@plnx_arm:~# prompt appears after Linux booting is complete on the target
board.

10. Set the board IP address and check the connectivity as described in Booting Linux Using
JTAG Mode, page 73.

For Linux application creation and debugging, see Example Design: Debugging the
Linux Application Using SDK, page 78.

X-Ref Target - Figure 6-16

Figure 6-16: Creating the Zynq Device Boot Image
Zynq-7000 AP SoC: Embedded Design Tutorial 91
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=91

Chapter 7

Creating Custom IP and Device Driver for
Linux

In this chapter, you will create an Intellectual Property (IP) using the Create and Package
New IP wizard. You will also design a system to include the new IP created for the Xilinx®
Zynq®-7000 AP SoC device.

For the IP, you will develop a Linux-based device driver as a module that can be dynamically
loaded onto the running kernel.

You will also develop Linux-based application software for the system to execute on the
Zynq SoC ZC702 board.

Requirements
In this chapter, the target platform points to a ZC702 board. The host platform points a
Windows machine that is running the Vivado® Design Suite tools.

The requirements for Linux-based device driver development and kernel compilation are as
follows:

• Linux-based workstation. The workstation is used to build the kernel and the device
driver for the IP.

• An Eclipse-based Integrated Development Environment (IDE) that incorporates the
GNU Toolchain for cross development for target architectures. For Tool related
information and installation, refer to the Xilinx Zynq Tools Wiki Page [Ref 17].

• Kernel source code and build environment. Refer to the Xilinx Zynq Linux Wiki Page
[Ref 18], which provides details about the Linux kernel specific to Zynq SoC FPGAs. You
can download the Kernel Source files and also get the information for building a Linux
kernel for the Zynq SoC FPGA.

Note: You can download kernel source files and u-boot source files from the Xilinx GitHub
website [Ref 22].

• Device driver software file (blink.c) and the corresponding header file (blink.h).
These files are available in the ZIP file that accompanies this guide. See Design Files for
This Tutorial, page 124.
Zynq-7000 AP SoC: Embedded Design Tutorial 92
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=92

Chapter 7: Creating Custom IP and Device Driver for Linux
• Application software (linux_blinkled_apps.c) and corresponding header file
(blink.h). These files are available in the ZIP file that accompanies this guide. See
Design Files for This Tutorial, page 124.

• If you want to skip the Kernel and device driver compilation, use the already complied
images that are required for this section. These images are available in the ZIP file that
accompanies this guide. See Design Files for This Tutorial, page 124.

CAUTION! You must build Peripheral IP loadable kernel module (LKM) as part of the same kernel build
process that generates the base kernel image. If you want to skip kernel or LKM Build process, use the
precompiled images for both kernel and LKM module for this section provided in the ZIP file that
accompanies this guide. See Design Files for This Tutorial, page 124.

Creating Peripheral IP
In this section, you will create an AXI4-Lite compliant slave peripheral IP framework using
the Create and Package New IP wizard. You will also add functionality and port assignments
to the peripheral IP framework.

The Peripheral IP you will create is an AXI4-Lite compliant Slave IP. It includes a 28-bit
counter. The 4 MSB bits of the counter drive the 4 output ports of the peripheral IP. The
Block Diagram is shown in the following figure.

X-Ref Target - Figure 7-1

Figure 7-1: Block Diagram for Peripheral IP
Zynq-7000 AP SoC: Embedded Design Tutorial 93
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=93

Chapter 7: Creating Custom IP and Device Driver for Linux
The block diagram includes the following configuration register:

Example Project: Creating Peripheral IP
In this section, you will create an AXI4-lite compliant slave peripheral IP.

1. Create a new project as described in Example Project: Creating a New Embedded Project
with Zynq SoC, page 15.

2. With the Vivado design open, select Tools > Create and Package IP. Click Next to
continue.

3. Select Create a new AXI4 peripheral and then click Next.

4. Fill in the peripheral details as follows:

5. Click Next.

6. In the Add Interfaces window, accept the default settings and click Next.

7. In the Create Peripheral window, select Edit IP and then click Finish. Upon completion of
the new IP generation process, the Package IP tab opens (see the following figure).

Register Name Control Register

Relative Address 0x0000_0000

Width 1 bit

Access Type Read/Write

Description Start/Stop the Counter

Field Name Bits Type Reset Value Description

Control Bit 0 R/W 0x0 1 : Start Counter
2 : Stop Counter

Wizard Screen System Property Setting or Comment to Use

Peripheral Details Name Blink

Version 1.0

Display Name Blink_v1.0

Description My new AXI IP

IP Location C:/designs/ip_repro

Overwrite existing unchecked
Zynq-7000 AP SoC: Embedded Design Tutorial 94
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=94

Chapter 7: Creating Custom IP and Device Driver for Linux
8. Under Sources > Hierarchy >Design Sources, right-click blink_v1_0 and select Open
File. We will need to add Verilog code that creates output ports to map to the external
LEDs on the ZC702 board. With blink_v1_0.v open, navigate to the line //Users to add
ports here and add the following code below this line:

//Users to add ports here
output wire [3:0] leds,
//User ports ends

9. Find the instance instantiation to the AXI bus interface and add the following code to
map the port connections:

.S_AXI_RREADY(s00_axi_rready),

.leds(leds)
);

10. Save and close blink_v1_0.v.

11. Under Sources > Hierarchy >Design Sources >blink_v1_0, right-click
blink_v1_0_S00_AXI_inst - blink_v1_0_S00_AXI and select Open File.

Next, you will to add Verilog code that creates output ports to map to the external LEDs
on the ZC702 board and also create the logic code to blink the LEDs when Register 0 is
written to.

12. With blink_v1_0_S00_AXI.v open, navigate to the line //Users to add ports here
and add the following code below this line.

//Users to add ports here
output wire [3:0] leds,
//User ports ends

X-Ref Target - Figure 7-2

Figure 7-2: Package IP Tab
Zynq-7000 AP SoC: Embedded Design Tutorial 95
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=95

Chapter 7: Creating Custom IP and Device Driver for Linux
13. Find the AXI4Lite signals section and add a custom register, which you will use as a
counter. The added code is highlighted in red:

// AXI4LITE signals
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
reg axi_awready;
reg axi_wready;
reg [1 : 0] axi_bresp;
reg axi_bvalid;
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
reg axi_arready;
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
reg [1 : 0] axi_rresp;
reg axi_rvalid;

// add 28-bit register to use as counter
reg [27:0] count;

14. Find the I/O connections assignments in each section. This is where we will assign the
last 4 bits of the counter to the LEDs. The added code is highlighted in red:

// I/O Connections assignments
assign S_AXI_AWREADY= axi_awready;
assign S_AXI_WREADY= axi_wready;
assign S_AXI_BRESP= axi_bresp;
assign S_AXI_BVALID= axi_bvalid;
assign S_AXI_ARREADY= axi_arready;
assign S_AXI_RDATA= axi_rdata;
assign S_AXI_RRESP= axi_rresp;
assign S_AXI_RVALID= axi_rvalid;

// assign MSB of count to LEDs
assign leds = count[27:24];

15. Toward the bottom of the file, find the section that states add user logic here. Add the
following code, which will increment count while the slv_reg0 is set to 0x1. If the
register is not set, the counter does not increment. The added code is highlighted in red:

// Add user logic here
// on positive edge of input clock
always @(posedge S_AXI_ACLK)
begin
//if reset is set, set count = 0x0
if (S_AXI_ARESETN == 1'b0)
begin
count <= 28'b0;

end
else
begin
//when slv_reg_0 is set to 0x1, increment count
if (slv_reg0 == 2'h01)
begin
count <= count+1;

end
else
begin
count <= count;

end
end

end
// User logic ends
Zynq-7000 AP SoC: Embedded Design Tutorial 96
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=96

Chapter 7: Creating Custom IP and Device Driver for Linux
16. Save and close blink_v1_0_S00_AXI.v.

17. Open the Package IP - blink tab. Under Packaging Steps, select Ports and Interfaces.

18. Click the Merge Changes from Ports and Interfaces Wizard link.

19. Make sure that the window is updated and includes the LEDs output ports.

20. Under Packaging Steps, select Review and Package. At the bottom of the Review and
Package window, click Re-Package IP.

The dialog box that opens states that packaging is complete and asks if you would like
to close the project.

21. Click OK.

Note: The custom core creation process that we have worked through is very simple with the
example Verilog included in the IP creation process. For more information, refer to the GitHub
Zynq Cookbook: How to Run BFM Simulation web page [Ref 23].

X-Ref Target - Figure 7-3

Figure 7-3: Merge Changes from Ports and Interfaces Wizard Link

X-Ref Target - Figure 7-4

Figure 7-4: Package IP Tab: Ports and Interfaces Page
Zynq-7000 AP SoC: Embedded Design Tutorial 97
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=97

Chapter 7: Creating Custom IP and Device Driver for Linux
Integrating Peripheral IP with PS GP Master Port
Now, you will create a system for the ZC702 board by instantiating the peripheral IP as a
slave in the Zynq SoC processing logic (PL) section. You will then connect it with the PS
processor through the processing system (PS) general purpose (GP) master port. The block
diagram for the system is shown in the following figure.

This system covers the following connections:

• Peripheral IP connected to PS General Purpose master port 0 (M_AXI_GP0). This
connection is used by the PS CPU to configure Peripheral IP register configurations.

• Four output ports of Peripheral IP connected to DS15, DS16, DS17, and DS18 on-board
LEDs.

In this system, when you run application code, a message appears on the serial terminal and
asks you to choose the option to make the LEDs start or stop blinking.

• When you select the start option on the serial terminal, all four LEDs start blinking.

• When you select the stop option, all four LEDs stop blinking and retain the previous
state.

In this section, you will connect an AXI4-lite compliant custom slave peripheral IP that you
created in Example Project: Creating Peripheral IP, page 94.

1. Open the Vivado project you previously created in Example Project: Creating a New
Embedded Project with Zynq SoC, page 15.

2. Add the custom IP to the existing design. Right-click the Diagram view and select Add
IP.

X-Ref Target - Figure 7-5

Figure 7-5: Block Diagram
Zynq-7000 AP SoC: Embedded Design Tutorial 98
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=98

Chapter 7: Creating Custom IP and Device Driver for Linux
3. Type blink into the search view. Blink_v1.0 appears. Double-click the IP to add it to
the design.

4. Click Run Connection Automation to make automatic port connections.

5. With the All Automation box checked by default, click OK to make the connections.

Your new IP is automatically connected but the leds output port is unconnected.

6. Right-click the leds port and select Make External.

7. In the Flow Navigator view, navigate to RTL Analysis and select Elaborated Design.

The message at the top of the screen states "Elaborated Design is out-of-date. Design
sources were modified."

8. Click Reload. The design must resynthesize in order to include the updated custom IP
core that is added to the design.

9. After the elaborated design opens, click the I/O Ports tab and expand All Ports > leds.

X-Ref Target - Figure 7-6

Figure 7-6: Make the leds Port External
Zynq-7000 AP SoC: Embedded Design Tutorial 99
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=99

Chapter 7: Creating Custom IP and Device Driver for Linux
10. Edit the led port settings as follows:

The following figure shows the completed led Port settings in the I/O Ports window.

11. Select Generate Bitstream.

12. The Save Project dialog box opens. Ensure that the check box is selected and then click
Save.

13. If a message appears stating that Synthesis is Out-of-date, click Yes.

14. After the Bitstream generation completes, export the hardware and launch the Xilinx
Software Development Kit (SDK) as described in Exporting Hardware to SDK, page 24.

X-Ref Target - Figure 7-7

Figure 7-7: I/O Ports

Port Name SiteI/O Std
Leds[3] LVCMOS25 P17

Leds[2] LVCMOS25 P18

Leds[1] LVCMOS25 W10

Leds[0] LVCMOS25 V7

X-Ref Target - Figure 7-8

Figure 7-8: led Port Settings
Zynq-7000 AP SoC: Embedded Design Tutorial 100
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=100

Chapter 7: Creating Custom IP and Device Driver for Linux
Linux-Based Device Driver Development
Modules in Linux are pieces of code that can be loaded and unloaded into the kernel on
demand. A piece of code that you add in this way is called a loadable kernel module (LKM).
These modules extend the functionality of the kernel without the need to reboot the
system. Without modules, you would need to build monolithic kernels and add new
functionality directly into the kernel image. Besides having larger kernels, this has the
disadvantage of requiring you to rebuild and reboot the kernel every time you want new
functionality.

LKMs typically are one of the following things:

• Device drivers. A device driver is designed for a specific piece of hardware. The kernel
uses it to communicate with that piece of hardware without having to know any details
of how the hardware works.

• Filesystem drivers. A filesystem driver interprets the contents of a file system as files
and directories.

• System calls. User space programs use system calls to get services from the kernel.

On Linux, each piece of hardware is represented by a file named as a device file, which
provides the means to communicate with the hardware. Most hardware devices are used for
output as well as input, so device files provide input/output control (ioctl) to send and
receive data to and from hardware. Each device can have its own ioctl commands, which
can be of the following types:

• read ioctl. These send information from a process to the kernel.

• write ioctl. These return information to a process.

• Both read and write ioctl.

• Neither read nor write ioctl.

For more details about LKM, refer to The Linux Kernel Module Programming Guide [Ref 24].

In this section you are going to develop a Peripheral IP Device driver as a LKM, which is
dynamically loadable onto the running Kernel. You must build Peripheral IP LKM as part of
the same kernel build process that generates the base kernel image.

Note: If you do not want to compile the device driver, you can skip the example of this section and
jump to Loading Module into Running Kernel and Application Execution, page 103. In that section,
you can use the kernel image, which contains blink.ko (image.ub in the shared ZIP files). See
Design Files for This Tutorial, page 124.
Zynq-7000 AP SoC: Embedded Design Tutorial 101
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=101

Chapter 7: Creating Custom IP and Device Driver for Linux
For kernel compilation and device driver development, you must use the Linux workstation.
Before you start developing the device driver, the following steps are required:

1. Set the toolchain path in your Linux Workstation.

2. Download kernel source code and compile it. For downloading and compilation, refer to
the steps mentioned in Xilinx Zynq Linux Wiki Page [Ref 18].

Example Project: Device Driver Development
You will use a Linux workstation for this example project. The device driver software is
provided in the LKM folder of the ZIP file that accompanies this guide. See Design Files for
This Tutorial, page 124.

1. Under the PetaLinux project directory, use the command below to create your module:

petalinux-create -t modules --name mymodule --enable

PetaLinux creates the module under
<plnx-project>/project-spec/meta-user/recipes-modules/.

2. For our exercise, create the "blink" module:

petalinux-create -t modules --name blink --enable

The default driver creation includes a make file, C-file, and Readme files. In our exercise,
PetaLinux creates blink.c, Makefile, and README files. It also contains bit bake recipe
blink.bb.

3. Change the C-file (driver file) and the make file as per your driver.

4. Take the LKM folder (reference files) and copy blink.c and blink.h into this
directory.

5. Open blink.bb recipe and add blink.h entry in SRC_URI.

6. Run the command:

'petalinux build'

After successful compilation the .ko file is created in the following location:

<petalinux-build_directory>/build/tmp/sysroots/plnx_arm/lib/modules/4.9.0-xilinx/ex
tra/blink.ko

7. You can install the driver using the modprobe command, which will be explained in
further detail in the next section.
Zynq-7000 AP SoC: Embedded Design Tutorial 102
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=102

Chapter 7: Creating Custom IP and Device Driver for Linux
Loading Module into Running Kernel and
Application Execution
In this section you will boot Linux onto the Zynq SoC Board and load the peripheral IP as a
LKM onto it. You will develop the application for the system and execute it onto the
hardware

Loading Module into Kernel Memory
The basic programs for inserting LKMs are modprobe. The modprobe command makes an
init_module system call to load the LKM into kernel memory. The init_module system
call invokes the LKM initialization routine immediately after it loads the LKM. As part of its
initialization routine, insmod passes to the address of the subroutine to init_module.

In the peripheral IP device driver, you already set up init_module to call a kernel function
that registers the subroutines. It calls the kernel's register_chrdev subroutine, passing
the major and minor number of the devices it intends to drive and the address of its own
"open" routine among the arguments. The subroutine register_chrdev specifies in base
kernel tables that when the kernel wants to open that particular device, it should call the
open routine in your LKM.

Application Software
The main() function in the application software is the entry point for the execution. It
opens the device file for the peripheral IP and then waits for the user selection on the serial
terminal.

If you select the start option on the serial terminal, all four LEDs start blinking. If you select
the stop option, all four LEDs stop blinking and retain the previous state.

Example Project: Loading a Module into Kernel and Executing
the Application

Booting Linux on the Target Board

Boot Linux on the Zynq SoC ZC702 target board, as described in Booting Linux on a Zynq
SoC Board, page 70.
Zynq-7000 AP SoC: Embedded Design Tutorial 103
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=103

Chapter 7: Creating Custom IP and Device Driver for Linux
Loading Modules and Executing Applications

In this section, you'll use the SDK tool installed on a Windows machine.

1. Open SDK.

For SDK, you must run the Target Communication Frame (TCF) agent on the host
machine.

2. Select XSCT and then connect to connect to the Xilinx System Debugger (XSCT).

3. In SDK, select File > New > Application Project to open the New Project wizard.

4. Use the information in the table below to make your selections in the wizard screens.

5. Click Finish.

The New Project wizard closes and SDK creates the linux_blinkled_app project
under the project explorer.

6. In the Project Explorer tab, expand the linux_blinkled_app project, right-click the src
directory, and select Import.

The Import dialog box opens.

7. Expand General in the Import dialog box and select File System.

8. Click Next.

9. Add the linux_blinkled_app.c and blink.h files.

Note: The Application software file name for the system is linux_blinkled_app.c and the
header file name is blink.h. These files are available in the LKM folder of the ZIP file that
accompanies this guide. See Design Files for This Tutorial, page 124. Add the
linux_blinkled_app.c and blink.h files.

10. Click Finish.

SDK automatically builds the application and generates the
linux_blinkled_app.elf file. Check the console window for the status of this
action.

Wizard Screen System Property Setting or Command to Use

Application Project Project Name linux_blinkled_app

Use Default Location Select this option

Hardware Platform <system_hw_platform>

Processor PS7_cortexa9_0

OS Platform Linux

Language C

Templates Available Templates Linux Empty Application
Zynq-7000 AP SoC: Embedded Design Tutorial 104
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=104

Chapter 7: Creating Custom IP and Device Driver for Linux
11. Connect the board.

12. Because you have a bitstream for the PL Fabric, you must download the bitstream. Select
Xilinx Tools > Program FPGA.

The Program FPGA dialog box opens. It displays the bitstream exported from Vivado.

13. Click Program to download the bitstream and program the PL Fabric.

14. Follow the steps described in Chapter 6 to load the Linux image and start it.

After the Kernel boots successfully, in a serial terminal, navigate to
/lib/modules/<kernel-version>/extra and run the command:

modprobe blink.ko

You will see the following message:

<1>Hello module world.
<1>Module parameters were (0xdeadbeef) and "default"
blink_init: Registers mapped to mmio = 0x80954000
Registration is a success the major device number is 245.

If you want to talk to the device driver, create a device file by following command:
mknod /dev/blink_Dev c 244

The device file name is important, because the ioctl program assumes that is the file you
will use

15. Create a device node:
Run the mknod command and select the the string from the printed message.

For example, the command mknod /dev/blink_Dev c 244 0 creates the
/dev/blink_Dev node.

16. Select Window > Open Perspective > Other.

The list of Perspective windows appears.

17. Select Remote System Explorer and click OK.

SDK opens the Remote Systems Perspective explorer.

18. In the Remote Systems Perspective, do the following:

a. Right-click and select New > Connection to open the New Connection wizard.

b. Click the SSH only tab and click Next.

c. In the Host Name tab, type the target board IP.

Note: To determine the target IP, type ifconfig eth0 at the Zynq> prompt in the serial
terminal. The target IP assigned to the board displays.
Zynq-7000 AP SoC: Embedded Design Tutorial 105
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=105

Chapter 7: Creating Custom IP and Device Driver for Linux
d. Set the connection name as blink and type a description.

e. Click Finish to create the connection.

f. Expand blink > sftp Files > Root. The Enter Password wizard opens.

g. Provide the user ID and Password (root/root); select the Save ID and Save
Password options.

h. Click OK.

The window displays the root directory content, because you previously established
the connection between the Windows host machine and the target board.

i. Right-click the "/" in the path name and create a new directory; name it Apps.

j. Using the Remote Systems Perspective explorer, copy the
linux_blinkled_app.elf file from the
<project-dir>/project_1/project_1.sdk/SDK/SDK_Export/
linux_blinkleds_apps/Debug folder and paste it into the /Apps directory
under blink connection.

19. In the Serial terminal, type cd Apps at the Zynq> prompt to open the /Apps directory.

20. Go to the Apps directory at the root@plnx_arm:~# Linux prompt, and type chmod
777 Linux_blinkled_app.elf to change the linux_blinkled_app.elf file mode to
executable mode.

21. At the root@plnx_arm:~# prompt, type ./Linux_blinkled_app.elf to execute the
application.

22. Follow the instruction printed on the serial terminal to run the application. The
Application asks you to enter 1 or 0 as input.

° Type 1, and observe the LEDs DS15, DS16, DS17, and DS18. They start glowing.

° Type 0, and observe that LEDS stop at their state. No more blinking changes.

You can repeat your inputs and observe the LEDs

23. After you finish debugging the Linux application, close SDK.
Zynq-7000 AP SoC: Embedded Design Tutorial 106
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=106

Chapter 8

Software Profiling Using SDK
In this chapter, you will enable profiling features for the Standalone board support package
(BSP) and the Application related to AXI CDMA, which you created in Chapter 6.

Profiling an Application in SDK with System
Debugger
Profiling is a method by which the software execution time of each routine is determined.
You can use this information to determine critical pieces of code and optimal code
placement in a design. Routines that are frequently called are best suited for placement in
fast memories, such as cache memory. You can also use profiling information to determine
whether a piece of code can be placed in hardware, thereby improving overall performance.

You can use the system debugger in the Xilinx® Software Development Kit (SDK) to profile
your application.

1. Select the application you want to profile.

2. Select Run > Debug As > Launch on Hardware (System Debugger).

If the Confirm Perspective Switch popup window appears, click Yes.

The Debug Perspective opens.

3. When the application stops at main, open the Target Communication Frame (TCF)
profiler view by selecting Window > Show View > Other > Debug > TCF Profiler.
Zynq-7000 AP SoC: Embedded Design Tutorial 107
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=107

Chapter 8: Software Profiling Using SDK
4. Click the Start button to begin profiling. Alternately, you can select the Aggregate
Per Function option in the Profiler Configuration dialog box. Adjust the View Update
Interval according to your required profile sample time. The minimum time is 100 msec.

5. Click the Resume button to continue running the application.

To view the profile data in the TCF Profiler tab (shown in the following figure), you must add
an exit breakpoint for the application to stop.

X-Ref Target - Figure 8-1

Figure 8-1: TCF Profiler View

X-Ref Target - Figure 8-2

Figure 8-2: Profiler Configuration Dialog Box
Zynq-7000 AP SoC: Embedded Design Tutorial 108
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=108

Chapter 8: Software Profiling Using SDK
TIP: Xilinx SDK supports gprof profiling. For more information, refer to the Software Development Kit
Help [Ref 2].

Additional Design Support Options
To assist in your design goals, you might want to learn about the System Performance
Analysis (SPA) toolbox and/or the Software-Defined System on Chip (SDSoC™)
development environment.

The System Performance Analysis (SPA) Toolbox
To address the need for performance analysis and benchmarking, the Software
Development Kit (SDK) has a System Performance Analysis (SPA) toolbox to provide early
exploration of hardware and software systems. You can use this common toolbox for
performance validation to ensure consistent and expected performance throughout the
design process.

For more information on exploring and exercising the SPA toolbox using SDK, refer to the
following documentation:

• SDK User Guide: System Performance Analysis (UG1145) [Ref 12]

• System Performance Analysis of an All Programmable SoC (XAPP1219) [Ref 14]

• The Software Development Kit Help system, accessible from within your software
application and also from a reference link in this guide: [Ref 2]

X-Ref Target - Figure 8-3

Figure 8-3: TCF Profiler Tab
Zynq-7000 AP SoC: Embedded Design Tutorial 109
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=109

Chapter 8: Software Profiling Using SDK
Software-Defined System on Chip (SDSoC)
The Software-Defined System on Chip (SDSoC™) development environment is an
Eclipse-based IDE for implementing heterogeneous embedded systems using Zynq®-7000
All Programmable SoCs. The system compiler within the SDSoC environment generates an
application-specific system on chip from application code written in C/C++. It does so by
extending a target platform (in an FPGA). The SDSoC environment includes a number of
platforms for application development, and others are provided by Xilinx partners.

Xilinx provides a wide range of documentation on the SDSoC environment including tool
installation; exploring the development environment; creating, exercising, debugging, and
performance analysis; as well as design optimization.

For comprehensive information on the SDSoC development environment, refer to:

• SDSoC Environment Tutorial: Introduction (UG1028) [Ref 9]

• SDSoC Environment User Guide (UG1027) [Ref 8]

• SDSoC Environment Platform Development Guide (UG1146) [Ref 13]

• UltraFast Embedded Design Methodology Guide (UG1046) [Ref 10]

See also:

• The Software Zone on the Xilinx web [Ref 19]

• SDSoC Help system [Ref 15]
Zynq-7000 AP SoC: Embedded Design Tutorial 110
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=110

Chapter 9

Linux OS Aware Debugging Using SDK
OS-aware debugging helps you to visualize OS-specific information such as tasks lists,
processes/threads that are currently running, process/thread-specific stack trace, registers,
and variables view.

To support this, the debugger need to be "aware" of the operating system used on the
target and know about the intrinsic nature of the OS.

With OS-aware debugging, you can debug the OS running on the processor cores and the
processes/threads running on the OS simultaneously.

SDK 2017.3 supports the OS Aware Debug feature for Linux OS running on Zynq®-7000AP
SoC devices.

Setting up Linux OS Aware Debugging
This section describes setting up OS aware debug for a Zynq board running Linux OS.

Configure the Linux Kernel
To be able to read the process list or to allow process or module debugging, the Linux
awareness accesses the internal kernel structures using the kernel symbols. Therefore the
kernel symbols must be available; otherwise Linux aware debugging is not possible. The
vmlinux file must be compiled with debugging information enabled as shown in
Figure 9-1.

Note: The vmlinux file is a statically linked executable file that contains the Linux kernel along with
corresponding debug information.

In PetaLinux, enable the below configuration options before compiling the Linux Kernel
using the PetaLinux Tools build configuration command.

 CONFIG_DEBUG_KERNEL=y
 CONFIG_DEBUG_INFO=y
Zynq-7000 AP SoC: Embedded Design Tutorial 111
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=111

Chapter 9: Linux OS Aware Debugging Using SDK
Follow the below steps to configure the Linux kernel to build with the debug information.

1. In the Linux machine terminal window, go to the directory of your PetaLinux project.

$ cd <plnx-proj-root>

2. Launch the top-level system configuration menu.

$ petalinux-config -c kernel

3. Select Kernel hacking.

° Select Compile-time checks and compiler options.

° Select Compile the kernel with debug info.

4. Save configuration and build PetaLinux.

This will set the Linux Kernel configuration file options to the following settings:

CONFIG_DEBUG_KERNEL=y
CONFIG_DEBUG_INFO=y

You can verify that these options are enabled by looking in the configuration file.

5. Build the PetaLinux using the PetaLinux build command petalinux-build.

6. After PetaLinux builds successfully, copy the vmlinux file to your host machine.

This file is needed for the debugger to refer all Linux kernel symbols. Vmlinux generates
under <petalinux project file>/images/linux/vmlinux.

7. Copy Vmlinux to the host machine to use with SDK for debugging the Linux Kernel.

X-Ref Target - Figure 9-1

Figure 9-1: Enabling Debug Info Configuration Options in Linux Kernel
Zynq-7000 AP SoC: Embedded Design Tutorial 112
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=112

Chapter 9: Linux OS Aware Debugging Using SDK
8. Copy the Linux kernel source code to the host machine for debugging. The Linux kernel
is present in <petalinux-project>/build/tmp/work-shared/plnx_arm/
kernel-source.

Note: This document is composed and exercised using the Windows host machine, so it needs
to copy the Linux source code to a location that is accessible for the SDK tool running locally on
Windows host machine.

Creating the Hello World Linux Application to Exercise the OS
Aware Debugging Feature
1. Open SDK.

2. Select File > New > Application Project.

The New Project wizard opens.

3. Use the information below to make your selections in the wizard screens.

4. Click Finish.

5. In the Project Explorer tab, expand the linux_hello app project, right-click the src
directory, and select Import to open the Import dialog box.

6. Expand General in the Import dialog box and select File System.

7. Click Next.

8. Select Browse.

9. Navigate to your design files folder and select the OSA folder and click OK.

Note: For more information about downloading the design files for this tutorial, see Design Files
for This Tutorial, page 124.

10. Add the linux_hello.c file and click Finish.

SDK automatically builds the application and displays the status in the console window.

11. Copy linux_hello.elf to an SD card.

Wizard Screen System Property Setting or Command to Use

Application Project Project Name linux_hello

Use Default Location Select this option

Hardware Platform <system_hw_platform>

Processor PS7_cortexa9_0

OS Platform Linux

Language C

Templates Available Templates Empty Application
Zynq-7000 AP SoC: Embedded Design Tutorial 113
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=113

Chapter 9: Linux OS Aware Debugging Using SDK
Debugging Linux Processes and Threads Using OS
Aware Debug
1. Boot Linux as described in Booting Linux from the SD Card, page 90.

2. Create a Debug configuration.

3. Right-click linux_hello and select Debug as > Debug Configurations.

The Debug Configuration wizard opens, as shown in the following figure.

4. From the Debug Type drop-down list, select Attach to running target.

5. From the Connection drop-down list, select Local.

6. Click Debug.

7. If the Confirm Perspective Switch dialog box appears, click Yes.

linux_hello_Debug opens in the Debug Perspective, as shown in the following figure.

X-Ref Target - Figure 9-2

Figure 9-2: Launching System Debugger
Zynq-7000 AP SoC: Embedded Design Tutorial 114
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=114

Chapter 9: Linux OS Aware Debugging Using SDK
8. Set up the Linux kernel symbol file and enable the Linux OS awareness in the debug
configuration.

There are multiple options provided by SDK to enable Linux OS awareness feature
enablement and debugging the applications. The following options are listed in the
Symbol File dialog box.

° Enable Linux OS Awareness

This option enables the OS Awareness

° Auto refresh On exec

When this option is selected, all running processes are refreshed and displayed in
the Debug view.

When this option is disabled, the new processes are not displayed in the Debug view.

° Auto refresh on suspend

X-Ref Target - Figure 9-3

Figure 9-3: Debug Perspective
Zynq-7000 AP SoC: Embedded Design Tutorial 115
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=115

Chapter 9: Linux OS Aware Debugging Using SDK
When this option is selected, all processes will be re-synced whenever the processor
suspends.

When this option is disabled, only the current process will be re-synced.

9. In the Debug view, right-click linux_hello Debug(Local) and select Edit Linux_hello
Debug.

10. Click the Symbol Files tab.

11. Select /APU/ARM_Cortex_A9MPCore #0 from the Debug Context drop-down menu
and click Add.

The Symbol File dialog box opens.

12. Click the Browse button .

13. Provide the path of the vmlinux file that you saved locally on the Windows host
machine in the previous section, and check the box for Enable OS awareness- The file
is an OS kernel, as shown in the following figure.

14. You can also enable the Auto refresh on exec and Auto refresh on suspend options to
get the refreshed process data while debugging the current application.

X-Ref Target - Figure 9-4

Figure 9-4: Enable OS Awareness
Zynq-7000 AP SoC: Embedded Design Tutorial 116
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=116

Chapter 9: Linux OS Aware Debugging Using SDK
15. Click OK.

The Symbol File window closes.

16. Click Continue.

The Debug perspective opens, as shown in the following figure.

You can see the Linux Kernel and list of processes running on the target.

Note: Because the Linux Kernel is built on a different system (Linux Machine) than the host
machine (Windows Machine) on which we are exercising the Linux OS aware application debug,
symbol files path mapping information should be added.

Path mapping will enable you to get source-level debugging and see stack trace,
variables, setting up source level breakpoints, and so on.

The debugger uses the Path Map setting to search and load symbols files for all
executable files and shared libraries in the system.

X-Ref Target - Figure 9-5

Figure 9-5: Debug Perspective
Zynq-7000 AP SoC: Embedded Design Tutorial 117
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=117

Chapter 9: Linux OS Aware Debugging Using SDK
17. Set up the Path Map.

a. Click the Path Map tab.

b. Click Add.

c. The source path for the kernel is the compilation directory path from the Linux
machine as shown in the previous figure. For example, <linux_OS>/
petalinux-project/build/tmp/work-shared/plnx_arm/kernel-source

The destination path is the host location where you copied kernel in the earlier step.
For example, <local directory>/kernel-source

X-Ref Target - Figure 9-6

Figure 9-6: Path Mapping Rule Configuration
Zynq-7000 AP SoC: Embedded Design Tutorial 118
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=118

Chapter 9: Linux OS Aware Debugging Using SDK
18. Debug a Linux Process or thread.

As shown in Figure 9-5, the list of processes running on the target is displayed. You can
right-click any process and click Suspend. Using this method, you can exercise
debugging features such as watch stack trace, registers, adding break points, and so on.

In the following figure, the suspended process is named 1 init.

X-Ref Target - Figure 9-7

Figure 9-7: Path Mapping in Debug Configurations
Zynq-7000 AP SoC: Embedded Design Tutorial 119
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=119

Chapter 9: Linux OS Aware Debugging Using SDK
Note: The addresses shown on this page might slightly differ from the addresses shown on your
system.

Debugging the linux_hello Application using OS Aware Debug
1. Mount an SD card using mount /dev/mmcblk0p1/mnt.

2. Run the /mnt/linux_hello.elf application from the terminal as shown in the
following figure.

3. To debug the linux_hello application you created in the previous section using OS aware
debug, set the path map in debug configurations as described in Debugging Linux
Processes and Threads Using OS Aware Debug, page 114.

The Source path the is compilation path location where applications are compiled. For
example, <sdk_workspace/linux_hello/Debug/linux_hello.elf>.

The destination path is the target path where the application is running. For example,
running on target board using /linux_hello.elf.

X-Ref Target - Figure 9-8

Figure 9-8: Process/Thread Level Debugging

X-Ref Target - Figure 9-9

Figure 9-9: Serial Terminal: Running the Linux_hello Application
Zynq-7000 AP SoC: Embedded Design Tutorial 120
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=120

Chapter 9: Linux OS Aware Debugging Using SDK
4. In the Debug view, right-click on linux_hello Debug (Local) and select Relaunch.

5. In the SDK debugger, do the following:

a. Observe the running application as one of the processes/threads in kernel.

b. Right-click on the linux_hello.elf thread and suspend application.

c. Add a breakpoint.

These actions are shown in the following figure.

X-Ref Target - Figure 9-10

Figure 9-10: Path Mapping Information in Debug Configurations
Zynq-7000 AP SoC: Embedded Design Tutorial 121
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=121

Chapter 9: Linux OS Aware Debugging Using SDK
When the control hits the breakpoint, the Debug View updates with the information of
the linux_hello.elf process.

The Debug View also shows the file, function, and the line information of the breakpoint
hit. A thread label includes the name of a CPU core, if the thread is currently running on
a core.

You can perform source level debugging, such as stepping in, stepping out, watching
variables, stack trace, and registers.

You can perform process/thread level debugging, including insert breakpoints, step in,
step out, watch variables, stack trace, and so on.

Some additional information about this process:

• One limitation with this process is that the target side path for a binary file does not
include a mount point path. For example, when the linux_hello process is located
on an SD card, which is mounted at /mnt, the debugger shows the file as
/linux_hello.elf instead of /mnt/linux_hello.elf.

• There is an additional way to Enable Linux OS Awareness in SDK using an XSCT
command line command. For information about this command, refer to osa command
help in XSCT.

X-Ref Target - Figure 9-11

Figure 9-11: Debugging a Process from main ()
Zynq-7000 AP SoC: Embedded Design Tutorial 122
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=122

Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.

• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.
Zynq-7000 AP SoC: Embedded Design Tutorial 123
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=123

Appendix A: Additional Resources and Legal Notices
Xilinx Documentation Navigator
The Xilinx® Documentation Navigator is a free tool that you can use to access
documentation while using Xilinx products. The Documentation Navigator is available as
part of the Vivado® Installer. When it is installed on your system, you can access it by going
to Start > Programs > Xilinx Design Tools > DocNav and clicking the DocNav icon.

For detailed information about using the Xilinx Documentation Navigator, refer to this link
in Vivado Design Suite User Guide: Getting Started (UG910) [Ref 5].

Related Design Hubs
Available in Documentation Navigator, design hubs provide quick access to documentation,
training, and information for specific design tasks. The following design hubs are applicable
to embedded development and the methods described in this guide:

• PetaLinux Tools Design Hub

• Software Development Kit Design Hub

Design Files for This Tutorial
The ZIP file associated with this document contains the design files for the tutorial. You can
download this file from this link.

Design files contain the HDF files for each section, and the source code and pre-built
images for all the sections.

Xilinx Resources
The following Xilinx Vivado Design Suite and Zynq®-7000 APSoC guides are referenced in
this document.

1. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)

2. Software Development Kit Help (UG782)

3. Zynq-7000 All Programmable SoC Software Developers Guide (UG821)

4. Vivado Design Suite User Guide: Using Constraints (UG903)

5. Vivado Design Suite User Guide: Getting Started (UG910)

6. Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940)
Zynq-7000 AP SoC: Embedded Design Tutorial 124
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

http://secure.xilinx.com/webreg/clickthrough.do?cid=1ffa3437-b232-4129-8435-d11d1a2a1ad9
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=SDK_Doc/index.html
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs;d=dh0016-petalinux-tools-hub.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs;d=dh0015-sdk-hub.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug910-vivado-getting-started.pdf;a=LearningAboutTheVivadoDesignSuite
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=124

Appendix A: Additional Resources and Legal Notices
7. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

8. SDSoC Environment User Guide (UG1027)

9. SDSoC Environment Tutorial: Introduction (UG1028)

10. UltraFast Embedded Design Methodology Guide (UG1046)

11. PetaLinux Tools Documentation: Reference Guide (UG1144)

12. Xilinx Software Development Kit (SDK) User Guide: System Performance Analysis
(UG1145)

13. SDSoC Environment Platform Development Guide (UG1146)

14. System Performance Analysis of an All Programmable SoC (XAPP1219)

15. Software Defined System on Chip (SDSoC) Help

Support Resources
16. tEmbedded Design Tools Web page

17. Xilinx Zynq® Tools Wiki Page

18. Xilinx Zynq Linux Wiki page

19. The Software Zone

Additional Resources
20. The Effect and Technique of System Coherence in ARM Multicore Technology by John

Goodacre, Senior Program Manager, ARM Processor Division
(http://www.mpsoc-forum.org/previous/2008/slides/8-6%20Goodacre.pdf)

21. ARM Cortex-A9 MPCore Technical Reference Manual, section 2.4, Accelerator Coherency
Port
(http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CACGGBCF.html)

22. Xilinx GitHub website: https://github.com/xilinx

23. GitHub ZYNQ Cookbook: How to Run BFM Simulation:
https://github.com/imrickysu/ZYNQ-Cookbook/wiki/How-to-run-BFM-simulation

24. The Linux Kernel Module Programming Guide:
http://tldp.org/LDP/lkmpg/2.6/html/index.html

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related videos:
Zynq-7000 AP SoC: Embedded Design Tutorial 125
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com
http://wiki.xilinx.com/zynq-linux
http://www.wiki.xilinx.com/zynq-tools
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#docsdownload
http://tldp.org/LDP/lkmpg/2.6/html/index.html
https://github.com/xilinx
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1145-sdk-system-performance.pdf
http://www.mpsoc-forum.org/previous/2008/slides/8-6 Goodacre.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug973-vivado-release-notes-install-license.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_4/ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1146-sdsoc-platforms-and-libraries.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1219-system-performance-modeling.pdf
https://www.xilinx.com/html_docs/xilinx2016_1/sdsoc_doc/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407e/CACGGBCF.html
https://github.com/imrickysu/ZYNQ-Cookbook/wiki/How-to-run-BFM-simulation
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=125

Appendix A: Additional Resources and Legal Notices
1. Vivado Design Suite QuickTake Video: How to Create a Zynq Boot Image Using Xilinx
SDK

2. Vivado Design Suite QuickTake Video Tutorials

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY
DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2015-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.
Zynq-7000 AP SoC: Embedded Design Tutorial 126
UG1165 (v2017.3) November 23, 2017 www.xilinx.com

Send Feedback
UG1165 (v2018.3) December 5, 2018UG1165 (v2019.1) May 22, 2019

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/create-zynq-boot-image-using-xilinx-sdk.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/create-zynq-boot-image-using-xilinx-sdk.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG1165&Title=Zynq-7000%20All%20Programmable%20SoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.1&docPage=126

	Zynq-7000 All Programmable SoC: Embedded Design Tutorial
	Revision History
	Table of Contents
	Ch. 1: Introduction
	About This Guide
	Example Project
	Additional Documentation

	How Zynq Devices Simplify Embedded Processor Design
	The Vivado Design Suite, System Edition
	Other Vivado Components
	Xilinx Software Development Kit
	PetaLinux Tools

	How the Vivado Tools Expedite the Design Process
	What You Need to Set Up Before Starting
	Hardware Requirements for this Guide
	Installation Requirements
	Vivado Design Suite and SDK
	PetaLinux Tools
	Prerequisites
	Extract the PetaLinux Package

	Software Licensing
	Tutorial Design Files

	Ch. 2: Using the Zynq SoC Processing System
	Embedded System Configuration
	Example Project: Creating a New Embedded Project with Zynq SoC
	Starting Your Design
	Creating an Embedded Processor Project
	Managing the Zynq7 Processing System in Vivado
	Validating the Design and Connecting Ports
	Synthesizing the Design, Running Implementation, and Generating the Bitstream
	Exporting Hardware to SDK
	What Just Happened?
	What's Next?

	Example Project: Running the “Hello World” Application
	What Just Happened?

	Additional Information
	Board Support Package
	Standalone OS

	Ch. 3: Using the GP Port in Zynq Devices
	Adding IP in PL to the Zynq SoC Processing System
	Example Project: Validate Instantiated Fabric IP Functionality
	Working with SDK

	Standalone Application Software for the Design
	Application Software Steps
	Application Software Code
	Run the New Software Application in SDK

	Ch. 4: Debugging with SDK
	Xilinx System Debugger
	Debugging Software Using SDK

	Ch. 5: Using the HP Slave Port with AXI CDMA IP
	Integrating AXI CDMA with the Zynq SoC PS HP Slave Port
	Example Project: Integrating AXI CDMA with the PS HP Slave Port

	Standalone Application Software for the Design
	Application Software Flow
	Running the Standalone CDMA Application Using SDK

	Linux OS Based Application Software for the CDMA System
	Application Software Creation Steps

	Running Linux CDMA Application Using SDK
	Booting Linux on the Target Board
	Building an Application and Running it on the Target Board Using SDK

	Ch. 6: Linux Booting and Debug in SDK
	Requirements
	Booting Linux on a Zynq SoC Board
	Boot Methods
	Master Boot Method
	Slave Boot Method

	Booting Linux from JTAG
	Preparing the PetaLinux Build for Debugging
	Booting Linux Using JTAG Mode
	Example Design: Debugging the Linux Application Using SDK
	Example Project: Booting Linux from QSPI Flash
	Create the First Stage Boot Loader Executable File
	Make a Linux Bootable Image for QSPI Flash
	Program QSPI Flash with the Boot Image Using JTAG
	Program QSPI Flash with the SDK Flash Programming Tool
	Booting Linux from QSPI Flash
	Booting Linux from the SD Card

	Ch. 7: Creating Custom IP and Device Driver for Linux
	Requirements
	Creating Peripheral IP
	Example Project: Creating Peripheral IP

	Integrating Peripheral IP with PS GP Master Port
	Linux-Based Device Driver Development
	Example Project: Device Driver Development

	Loading Module into Running Kernel and Application Execution
	Loading Module into Kernel Memory
	Application Software
	Example Project: Loading a Module into Kernel and Executing the Application
	Booting Linux on the Target Board
	Loading Modules and Executing Applications

	Ch. 8: Software Profiling Using SDK
	Profiling an Application in SDK with System Debugger
	Additional Design Support Options
	The System Performance Analysis (SPA) Toolbox
	Software-Defined System on Chip (SDSoC)

	Ch. 9: Linux OS Aware Debugging Using SDK
	Setting up Linux OS Aware Debugging
	Configure the Linux Kernel
	Creating the Hello World Linux Application to Exercise the OS Aware Debugging Feature

	Debugging Linux Processes and Threads Using OS Aware Debug
	Debugging the linux_hello Application using OS Aware Debug

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	Xilinx Documentation Navigator
	Related Design Hubs

	Design Files for This Tutorial
	Xilinx Resources
	Support Resources
	Additional Resources

	Training Resources
	Please Read: Important Legal Notices

