
SDSoC Environment
Platform Development Guide

UG1146 (v2019.1) June 5, 2019

See all versions
of this document

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1146

Revision History
The following table shows the revision history for this document.

Section Revision Summary

06/05/2019 Version 2019.1

Throughout the document Updated for 2019.1 support.

01/24/2019 Version 2018.3

Throughout the document General updates.

Chapter 2: Creating SDSoC Platforms Updated process and reordered content.

12/05/2018 Version 2018.3

Throughout the document Reordered chapters/appendices for example flows.

Throughout the document Updated for 2018.3 support.

Creating an SDSoC Platform Project Provided example SDSoC platform for Standalone and Linux
targets using files from the SDx zcu102 base platform.

Chapter 3: Creating the Platform Hardware Component Provided example hardware component (DSA) for a custom
platform that runs on a zcu102 board.

Chapter 4: Creating the Platform Software Component Provided Standalone and Linux software components for
the custom platform.

References Added reference to PetaLinux Tools Documentation: Reference
Guide (UG1144)

07/02/2018 Version 2018.2

Using an SDx Workspace Updated link to release notes.

06/06/2018 Version 2018.2

Chapter 5: Sample Applications Replaced template.xml with description.json.

Minor editorial updates throughout.

04/04/2018 Version 2018.1

Prebuilt Hardware Updated text to reflect the process of populating the
Prebuilt Data for a platform project with files from an
application project.

Revision History

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 2Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=2

Table of Contents
Revision History...2

Chapter 1: Introduction.. 5

Chapter 2: Creating SDSoC Platforms... 7
Using an SDx Workspace..11
Creating an SDSoC Platform Project...12
Querying the Platform..33

Chapter 3: Creating the Platform Hardware Component......................36
Hardware Requirements.. 37
Begin with a Vivado Project... 38
Logic Design Using the IP Integrator... 41
Declaring Platform (PFM) Interfaces and Properties... 49
Implementing the Hardware Platform Design..62
Generating a Device Support Archive...65

Chapter 4: Creating the Platform Software Component........................67
Begin with an SDx Platform Project.. 68
Prebuilt Hardware... 80
Library Header Files.. 81
Linux Boot Files..82
Standalone Boot Files... 86
FreeRTOS Configuration/Version Change..87

Chapter 5: Sample Applications..88

Appendix A: Platform Checklist..95

Appendix B: SDx IDE Glossary..97

Appendix C: Migrating SDSoC Platforms to a New Release................103
Migrating Platforms to 2019.1 and Later... 104

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=3

Mapping SDSoC Tcl Commands to Vivado Properties..104

Appendix D: Changing the SDSoC Platform Device................................. 105
Edit the Platform DSA... 105
Create the New Platform..112

Appendix E: SDSoC Platform Examples...116
MicroBlaze Hardware Requirements..117
Example: Direct I/O in an SDSoC Platform...118
Example: Sharing a Platform IP AXI Port... 127

Appendix F: Additional Resources and Legal Notices............................131
Xilinx Resources...131
Documentation Navigator and Design Hubs.. 131
References..131
Training Resources..132
Please Read: Important Legal Notices... 133

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=4

Chapter 1

Introduction
The software-defined system-on-chip SDSoC™ environment provides the tools necessary to
implement heterogeneous embedded systems for Zynq® UltraScale+™ MPSoC and Zynq®-7000
SoC devices. This document describes how to create an SDSoC platform using the Eclipse-based
SDx™ integrated development environment (IDE) with a hardware design generated by the
Vivado® Design Suite.

Figure 1: Platform Components

DSA: - IP integrator block design
 - Declared Interfaces
 for HW Accelerator
 - Meta-data
Prebuilt (optional)
 - bitstream.bit, platform.hdf
 - apsys_0.xml, partitions.xml
 - portinfo.c, portinfo.h
Xilinx Device
 - Zynq UltraScale+ MPSoC
 - or Zynq-7000 SoC

Hardware Component

OS: - Standalone
 SW: fsbl.elf, pmufw.elf*, lscript.ld
 standalone.bif, meta-data, samples (optional)
 - Linux
 SW: fsbl.elf, pmufw.elf*, bl31.elf*, u-boot.elf
 linux.bif, meta-data, samples (optional)
 - FreeRTOS
 SW: fsbl.elf, pmufw.elf*, lscript.ld
 freertos.bif, meta-data, samples (optional)

SDSoC Application

SDSoC
Platform

PL

Arm
Cores

Accelerator +
Platform IP

PS

M
I
O

DDR
CTRL

Software Component

*For Zynq UltraScale+ MPSoC only
X22056-013119

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=5

The concept of a platform is integral to the SDSoC environment, as it defines the hardware and
software components as well as the meta-data on which SDSoC applications are built. The above
figure illustrates the platform and its components. An SDSoC platform defines a base hardware/
software architecture and an application context including the processing system, external
memory interfaces, custom input/output, a software runtime with an operating system (possibly
"bare-metal"), boot-loaders, drivers for platform peripherals and a root file system. Every project
created with the SDx IDE targets a specific platform and is customized with application-specific
hardware accelerators and data motion networks.

A platform developer designs the platform's hardware component by first implementing a
hardware design using the Vivado Design Suite and its IP integrator design canvas. The IP
integrator block design is created with platform interfaces that are enabled for use by the sds+
+/sdscc (referred to as sds++) system compiler as attachment points for generated hardware
accelerators and data movers. This hardware design component along with its meta-data are
encapsulated into a Device Support Archive (DSA). The DSA contains the Vivado IP integrator
design as well as the required processor and memory system configuration, all board interfaces
and I/O connections. Platform properties are also defined in the DSA for platform identification
and interface configuration.

The platform developer must also provide any boot loaders and target operating systems used to
bring-up the platform. A platform optionally includes software libraries for linking with
applications. If a platform supports a Linux target operating system, the Petalinux tools can be
used to configure and build the Linux kernel, produce a U-Boot bootloader and a root file system.
The Xilinx SDK provides code templates for developing software components for a platform and
can be customized. The SDx IDE can also be used to generate software components but for
customization it is recommended that developers use the SDK or PetaLinux tools directly.

Creating a platform is accomplished by generating or gathering together the hardware and
software components for use in an SDx Platform project. The SDx tools can use an existing
platform as a basis for a new platform or use the hardware defined by a user-provided input DSA.
In a similar manner, the SDx environment can use a set of existing software objects created by
the developer prior to invoking the SDx tools, or generate the software objects as part of the
SDSoC platform creation process.

The example platform that is described and built in this document uses the hardware and
software components that are provided as part of the ZCU102 platform included with the SDx
tools. After going through the steps of using the SDx Platform project flow to assemble a
platform, this document describes how to build the hardware and software components that
make up a custom platform.

Chapter 1: Introduction

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=6

Chapter 2

Creating SDSoC Platforms
The SDx™ IDE is used to assemble the hardware and software components into an SDSoC™
platform. The design flow for generating a platform is shown below and is utilized in the platform
creation example that follows.

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=7

Figure 2: Platform Generation Design Flow

Create a Platform
Project

Generate Platform

Default System
Configuration &

Domain

Platform
Configuration

Settings

System
Configuration

Settings

Domain
Configuration

Settings

Edit Configurations?

Select Hardware
Specification

(DSA or Existing Platform)

Add System
Configuration Add Domain

Y

N

X22269-013119

In creating an SDx platform project, developers select settings for the platform, the system
configurations, and the domains. Platforms can contain multiple system configurations and
domains as iterated and defined through the SDx IDE. Platform settings for prebuilt data allow
inclusion of a hardware bitstream or its automatic generation to save on hardware build time
when creating software solutions that do not require or create hardware accelerators. System

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=8

configuration settings are available to either generate the needed platform software components
or reference prebuilt software components. The type of software component Exectuable and
Linkable Format (ELF) files, Boot Image Format (BIF) files, and Flattened Image Tree (FIT) image
files are listed below. Domain settings provide choices for processor selection, operating system,
and the runtime environment.

• Zynq® UltraScale+™ MPSoC

○ FSBL (ELF)

○ PMU (ELF)

○ BL31 (ELF)

○ U-BOOT (ELF) - for Linux target

○ LINUX image.ub (FIT) - for Linux target

○ BOOT file components (BIF)

• Zynq®-7000 SoC

○ FSBL (ELF)

○ U-BOOT (ELF) - for Linux target

○ LINUX image.ub (FIT) - for Linux target

○ BOOT file components (BIF)

Once generated, the file system layout of an SDSoC platform is structured as shown in the
following figure.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=9

Figure 3: Directory Structure for a Typical SDSoC Platform

<platform>

hw Top Platform File
<platform>.xpfmsw

SW Platform File
<platform>.spfm

SystemConfig1

qemu

boot

Domain1

prebuilt

include

image

samples
(optional)

application
1

Makefile

main.cpp

application
2

description.json

HW Platform File
<platform>.DSA

Makefile

main.cpp

<sub>.cpp

<sub>.h

description.json

Domain2

prebuilt

repository

lscript.ld

SystemConfig2

SystemConfig3...

(e.g.Linux)

(e.g.Standalone,
FreeRTOS)

X20179-013119

In general, only the platform provider can ensure that a platform is “correct” for use within the
SDSoC environment. However, the folder <SDx_Install_Dir>/samples/platforms/
Conformance contains basic tests you should run, with instructions describing how to run
them. These tests should build cleanly, and should be tested on the hardware platform.

Note: <SDx_Install_Dir> signifies the location where the SDx tools are installed, including the released
version: <SDx_Install_Dir> = <installation_path>/SDx/<version>.

A platform should provide tests for every custom interface so that users have examples of how
to access these interfaces from application C/C++ code.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=10

A platform may optionally include sample applications. By creating a samples sub-folder
containing source files and a description.json file for each application, users can use the
SDx IDE New Project wizard to select and build any of the provided sample applications. For
additional information on application template creation, see Chapter 5: Sample Applications.

To create a platform using the SDx IDE, you can launch the application and select the Platform
Project type.

IMPORTANT! Before creating the platform project, you must have the DSA hardware definition as described in
Chapter 3: Creating the Platform Hardware Component, and the software files as described in Chapter 4:
Creating the Platform Software Component, available for use in defining the SDSoC platform.

Using an SDx Workspace
IMPORTANT! Linux host is strongly recommended for SDSoC™ platform development, and required for creating
a platform supporting a target Linux OS.

1. Launch the SDx™ IDE directly from the desktop icon or from the command line by one of the
following methods:

• Using either of the following commands from the command prompt:

sdx

or

sdx -workspace <workspace_name>

• Double-clicking the SDx icon to start the program.

• Launching from the Start menu in the Windows operating system.

2. The SDx IDE opens and prompts you to select a workspace, as shown in the following figure.

Figure 4: Specify the SDx Workspace

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=11

IMPORTANT! When opening a new shell to enter an SDx command, ensure that you first source the
settings64 and setup scripts to set up the tool environment. On Windows, run the settings64.bat file
from the command shell. See the SDSoC Environments Release Notes, Installation, and Licensing Guide
(UG1294) for more information.

The SDx workspace is the folder that stores your projects, source files, and results while working
in the tool. You can define separate workspaces for each project or have workspaces for different
types of projects. The following instructions show you how to define a workspace for an SDSoC
project.

1. Click the Browse button to navigate to, and specify, the workspace, or type the appropriate
path in the Workspace field.

2. Select the Use this as the default and do not ask again check box to set the specified
workspace as your default choice and eliminate this dialog box in subsequent uses of SDx.

3. Click Launch.

TIP: You can change the current workspace from within the SDx IDE by selecting File → Switch Workspace.

You have now created an SDx workspace and can populate the workspace with projects.
Platform and application projects are created to describe the SDx tool flow for creating an
SDSoC platform.

The SDx IDE can populate the workspace with three types of user selected project types:

• Application Project

• Platform Project

• Library Project

The following sections describe how to use the Platform and Application project types while
constructing the example SDSoC platforms.

Creating an SDSoC Platform Project
In this chapter, two platform projects are created using files from the SDx install tree. The first
platform shows what files are needed and used in creating a platform for standalone use. The
second platform illustrates the same flow but for the case of a platform that runs Linux on the
target hardware. In general, a Linux and standalone system configuration can coexist in a single
platform and they are not required to be in separate platform projects. Files sourced from the
ZCU102 platform provided with the SDx tools are used to generate a new platform using the
Platform Project flow. Subsequent chapters show how to create the hardware component of a
platform with the Vivado® Design Suite and how to create the software components using the
SDx IDE for standalone and Linux applications.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 12Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1294-sdsoc-rnil.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=12

• Platform Assembly with Prebuilt Files

Chapter 2: Creating SDSoC Platforms

• Building the Hardware

Chapter 3: Creating the Platform Hardware Component

• Building the Software

Chapter 4: Creating the Platform Software Component

TIP: There are sample platform files provided in the SDx tools software installation area at
<SDx_Install_Dir>/platforms.

Defining a Standalone Domain with Prebuilt Hardware and Software

After launching the SDx IDE, you can define a new SDSoC platform by creating a Platform
Project using either the Welcome screen or the SDx menubar by selecting File → New → SDx
Platform Project. The New Platform Project dialog opens and prompts you for a project name.
Name the project platform_1 for this ZCU102 based example.

Figure 5: New Platform Project

Click Next to advance to the next dialog and select the source of the hardware specification for
the platform. You can choose to use a DSA or an existing platform as the source for the hardware
component of the platform. Select DSA for this example.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=13

Figure 6: Specify New Platform Source - DSA or Existing Platform

Click Next to specify the DSA as the Hardware Specification. Use the Browse button to locate
the DSA for your project, or simply type the path to the DSA file in the field. The SDx tool
includes platforms and DSA files that you can use as the foundation for creating your own
SDSoC platforms, or you can create the DSA for a new platform using the Vivado Design Suite.
Refer to Chapter 3: Creating the Platform Hardware Component for more information on
creating the DSA. For this example, use the ZCU102 DSA located at <SDx_Install_Dir>/
platforms/zcu102/hw/zcu102.dsa.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=14

Figure 7: Platform Hardware Specification

Leave the Operating system and Processor settings as standalone and psu_cortexa53_0.

Click Finish to create the Platform project.

The platform configuration settings opens in the Editor Area of the SDx IDE. For this example,
use the prebuilt hardware components and software components for the ZCU102 platform
provided with the SDx tools at <SDx_Install_Dir>/platforms/zcu102. Select Use
existing pre-built data on the platform configuration settings view and browse to or set the
Prebuilt Data path to <SDx_Install_Dir>/platforms/zcu102/sw/prebuilt.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=15

Figure 8: Platform Configuration Settings

Providing a platform with prebuilt data containing software files with port interface specifications
and a bitstream allows developers to quickly compile and run software applications that do not
invoke hardware accelerated functions.

Click on sysconfig1 for the System Configuration settings view. Select Use pre-built software
components and browse to or set the Boot Directory path to <SDx_Install_Dir>/
platforms/zcu102/sw/a53_standalone/boot. Browse to or set the BIF File to
<SDx_Install_Dir>/platforms/zcu102/sw/a53_standalone/boot/
standalone.bif.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=16

Figure 9: System Configuration Settings

Click on standalone on psu_cortexa53_0 for the Domain settings view. Do not make any changes
to the domain settings for this example, but note that this view is used to change settings for the
board support package, the application linker script, and included libraries.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=17

Figure 10: Domain Configuration Settings

At this point, set up references to all the files necessary to create a standalone platform for the
ZCU102. Click on Quick Links - #3 Generate Platform to complete the platform generation
process. After the platform is generated, build SDx applications targeting the platform.

Defining a Linux Domain with Prebuilt Hardware and Software

As an example of creating an SDSoC platform for Linux applications, use the source files from the
ZCU102 platform again and create a second platform, platform_2 in the same workspace as
platform_1. Begin by creating a new platform project using the menu bar File → New → SDx
Platform Project and use the same ZCU102 DSA as before at <SDx_Install_Dir>/
platforms/zcu102/hw/zcu102.dsa. Select linux for the Operating system and
psu_cortexa53 for the Processor.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=18

Figure 11: Platform Hardware Specification

Select Use existing pre-built data on the platform configuration settings view and browse or set
the Prebuilt Data path to <SDx_Install_Dir>/platforms/zcu102/sw/prebuilt.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=19

Figure 12: Platform Configuration Settings

Select linux on psu_cortexa53 to view the Linux domain settings and click on the Click here link
within the dialog's The linux domain is not configured. Click here to update prompt.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=20

Figure 13: Linux Domain Settings

In the domain configuration dialog, select Use pre-built software components and browse to or
set the Boot Directory path to <SDx_Install_Dir>/platforms/zcu102/sw/
a53_linux/boot. Browse to or set the BIF File to <SDx_Install_Dir>/platforms/
zcu102/sw/a53_linux/boot/linux.bif.

Figure 14: Linux Boot and BIF Files

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=21

The linux_domain configuration settings view now shows additional fields that can be populated
to reference the following items:

• Linux Image Directory

• Sysroot

The exisiting Linux image.ub file from the ZCU102 platform is referenced through the specified
image directory. Optionally, a sysroot is associated with a platform by providing a reference
within this Domain settings dialog.

Platforms with a sysroot enables the SDx IDE to create Linux application projects with make files
containing default sysroot options for specifying include paths, library paths, and other options.

In the linux_domain view, browse to the Linux image at <SDx_Install_Dir>/platforms/
zcu102/sw/a53_linux/a53_linux/image.

Figure 15: Configured Linux Domain Settings

The sysconfig1 system configuration settings are automatically populated by the Linux domain
settings entered for the Boot files directory and the BIF file are in place.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=22

Figure 16: Linux System Configuration Settings

At this point, set up references to all the files necessary to create a Linux platform for the
ZCU102. Click on Quick Links - #3 Generate Platform to complete the platform generation
process. After the platform is generated, build the SDx applications targeting the platform.

The SDx Project Explorer and Assistant views after platform generation completes is shown
below.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=23

Figure 17: Generated Platforms

Defining an SDSoC Application Project for Platform Testing

The SDx IDE provides compilation tools and example code templates for creating applications
that run on SDSoC platforms. Create example applications for the standalone (platform_1) and
Linux (platform_2) platforms using the Array zero_copy code template provided with the SDx
tools.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=24

The Compilation log contains the commands issued to build the application and is useful for
observing the sequence of actions taken during the build process. The Data Motion Network
report lists the accelerated functions and how their arguments were mapped and connected to
platform interfaces. The type of data mover used for each argument is also listed.

Reuse the SDx workspace (sdx_workspace) containing the standalone and Linux platforms
created in the section above.

Create a new SDx Application project using the menu bar and selecting File → New → SDx
Application Project. The New SDx Application Project dialog opens and prompts you for a
project name. Name the project app_standalone for this ZCU102-based example.

Figure 18: New SDx Application Project

Click Next to advance to the Platform selection dialog. Select platform_1 [custom] as this
platform was configured for the standalone domain when it was created.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=25

Figure 19: Application Platform Selection

Click Next to advance to the System Configuration dialog. Leave the settings at their default
values for System configuration: sysconfig1, Runtime: C/C++, and Domain: standalone
on psu_cortexa53_0. Recall that when platform_1 was created it was configured with a
single system configuration containing a single standalone domain. If additional system
configurations or domains are present in a platform an application can be customized to use
them through this System Configuration dialog.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=26

Figure 20: Application System Configuration

Click Next to advance to the Templates dialog and select the Array zero_copy example as the
code base for the application.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=27

Figure 21: Application Template

Click Finish to add the template code to the SDx application. The Editor Area now shows the
application project settings including the functions that have been selected for hardware
acceleration. The Project Explorer and Assistant views are updated with the new
app_standalone application.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=28

Figure 22: Application Project Settings

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=29

Figure 23: Project Explorer View

Build the app_standalone application by expanding the app_standalone [SDSoC] listing in the
Assistant view, right-click on Debug [Hardware] and select Build.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=30

Figure 24: Application Build Assistant View

After the application builds the Data Motion Network Report and Compilation Log are available
through the Assistant view. The Compilation log contains the commands issued to build the
application and is useful for observing the sequence of actions taken during the build process.
The Data Motion Network report lists the accelerated functions and how their arguments were
mapped and connected to platform interfaces. The type of data mover used for each argument is
also listed.

A set of files for booting and running the application on target hardware is generated and
accessible by right-clicking on SD Card Image and selecting Open > Open in Project Explorer,
Open > Open in File Browser, or Open > Open in Terminal. The files should be copied to a
FAT32 formatted SD card and used to boot the target hardware, ZCU102 for this example, to
test the generated platform by running application code.

The procedure for using the Array zero_copy template example for testing the Linux platform
(platform_2) generated earlier is similar to the standalone flow. The workspace is reused again
to add another SDx Application project, named app_linux, and use the Linux system
configuration offered in platform_2. The Project Explorer and Assistant views after a
successful build of the application are shown below. The contents of the sd_card directory are
used to boot and run the Linux application on target hardware.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=31

Figure 25: Linux Application Project Explorer View

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=32

Figure 26: Linux Application Build Assistant View

Querying the Platform
The SDx environment provides tools to read and check the platform files you create. From within
the SDx terminal window you can verify that the SDx IDE can correctly read the platform files
created by the SDSoC platform project by executing the following command, from within the
workspace/project_name/export where the generated platform is written:

> sds++ –sds-pf-list

This command lists the available SDx platforms by reading the platform folders in the current
working directory, and reading the platforms in the SDx installation hierarchy. If you specify this
command from a folder containing a custom platform it will read the platform found there.

Any platform listed by the previous command can be displayed in greater detail using the
following command:

> sds++ –sds-pf-info <platform_name>

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=33

TIP: For platforms that are not in the installation area, the platform_name is the path to the folder containing
the platform.

This command displays the details of the specified platform.

You can also specify the platform to use for a project using the following command:

> sds++ –sds-pf <platform_name>

The follow platform properties are reported after running the sds++ -sds-pf-info zcu102
command:

Platform Information
====================
Name: zcu102

Device

 Architecture: zynquplus
 Device: xczu9eg
 Package: ffvb1156
 Speed grade: -2

System Clocks

 Clock ID Frequency
 ----------|------------
 1199.880127
 0 74.992500
 1 99.990000
 2 149.985000
 3 199.980000
 4 299.970000
 5 399.960000
 6 599.940000

Platform: zcu102 (<SDx_Install_Dir>/platforms/zcu102)

Description:
A basic platform targeting the ZCU102 evaluation board, which includes
4GB of DDR4 for the Processing System, 512MB of DDR4 for the Programmable
Logic, 2x64MB Quad-SPI Flash and an SDIO card interface. More information
at https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

Available system configurations:
 a53_linux (a53_linux)
 a53_standalone (a53_standalone)
 r5_standalone (r5_standalone)

System Ports

Use the system port name in a sysport pragma, for example
#pragma SDS data sysport(parameter_name:system_port_name)

System Port Name (Vivado BD instance name, Vivado BD port name)
ps_e_S_AXI_HPC0_FPD (ps_e, S_AXI_HPC0_FPD)

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=34

ps_e_S_AXI_HPC1_FPD (ps_e, S_AXI_HPC1_FPD)
ps_e_S_AXI_HP0_FPD (ps_e, S_AXI_HP0_FPD)
ps_e_S_AXI_HP1_FPD (ps_e, S_AXI_HP1_FPD)
ps_e_S_AXI_HP2_FPD (ps_e, S_AXI_HP2_FPD)
ps_e_S_AXI_HP3_FPD (ps_e, S_AXI_HP3_FPD)

Refer to the SDx Command and Utility Reference Guide (UG1279) for more information.

Chapter 2: Creating SDSoC Platforms

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 35Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=35

Chapter 3

Creating the Platform Hardware
Component

The Hardware Component of a Platform captures the logical and physical interfaces to the
hardware functions accelerated through the SDx™ environment. The processor, memory, and all
external board interfaces are configured using a combination of Vivado® IP, user custom IP, and
RTL. This provides a logic "wrapper" for the hardware functions to be executed properly on the
platform. Many configuration and customization options exist depending on the types of
hardware functions being accelerated.

The hardware platform creation process consists of building a Vivado® Design Suite design,
configuring platform and interface properties for clocks, interrupts, and bus interfaces, and then
writing the device support archive (DSA) file for use in an SDSoC platform. The logic design can
be captured using IP integrator and can include RTL sources. A top-level wrapper is used to
instantiate the IP integrator design as well as any top-level RTL modules. RTL modules can also
be added directly to the IP integrator block design.

The write_dsa command archives the Vivado platform project data and associated files into a
DSA file to define the hardware component of the platform. This chapter assumes you are
familiar with the general features and processes of the Vivado Design Suite, and that you are able
to create a Vivado project for the hardware in your platform. It describes the general
requirements for the hardware platform, and the Vivado project.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=36

Figure 27: Platform Hardware Component Design Flow

Declare Interfaces for
 Accelerators & Data Movers

Launch Vivado

Create an IP integrator block
design

Include IP blocks for
processor,

clocks, resets, and interrupts

Build Block Design

Write Device Support Archive
(DSA)

Validate DSA

X22057-112918

Hardware Requirements
This section describes requirements on the hardware design component of an SDSoC™ platform.
In general, nearly any design targeting the Zynq® UltraScale+™ MPSoC or UltraScale+™ device
using the IP integrator within the Vivado Design Suite can be the basis for an SDSoC platform.

The process of capturing the SDSoC hardware platform is conceptually straightforward:

1. Build and verify the hardware system using the Vivado Design Suite and IP integrator feature.

2. Configure platform and interface properties.

3. Write the DSA file.

There are several rules that the platform hardware design must observe.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=37

TIP: If the Xilinx design project contains more than one block diagram, one block diagram must have the same
name as the hardware platform, and that block diagram is used by the SDx platform project.

• Every IP used in the platform design that is not part of the standard Vivado IP catalog must be
local to the Vivado Design Suite project. References to external IP repository paths are not
supported by the write_dsa command.

• Every hardware platform design must contain a Processing System IP block from the Xilinx IP
catalog.

• Every hardware port interface to the SDSoC platform must be an AXI, AXI4-Stream, clock,
reset, or interrupt type interface only. Custom bus types or hardware interfaces must remain
internal to the hardware platform.

• Every platform must declare at least one general purpose AXI master port from the Processing
System IP or an interconnect IP connected to such an AXI master port, that will be used by
the SDSoC compilers for software control of datamover and accelerator IP.

• Every platform must declare at least one AXI slave port that will be used by the SDSoC
compilers to access DDR from datamover and accelerator IP.

• To share an AXI port between the SDSoC environment and platform logic, for example
S_AXI_ACP, you must export an unused AXI master or slave of an AXI Interconnect IP block
connected to the corresponding AXI port, and the platform must use the ports with least
significant indices.

• Every platform AXI interface will be connected to a single data motion clock by the SDSoC
environment.

TIP: Accelerator functions generated by the SDSoC compilers might run on a different clock that is provided by
the platform.

• Every exported platform clock must have an accompanying Processor System Reset IP block
from the Vivado IP catalog.

• Platform interrupt inputs must be exported by a Concat (xlconcat) IP connected to the
Processing System 7 IP IRQ_F2P port. IP blocks within a platform can use some of the sixteen
available fabric interrupts, but must use the least significant bits of the IRQ_F2P port without
gaps.

Begin with a Vivado Project
An SDSoC platform project begins with a Vivado Design Suite project file (<platform>.xpr) as
the starting point to build the platform device support archive (DSA) file.

The project must include an IP integrator block diagram and can also contain any number of
source files. Although nearly any project targeting a Zynq®-7000, Zynq UltraScale+ MPSoC, or
MicroBlaze™ processsor can be the basis for an SDSoC project, there are a few restrictions as
described in Hardware Requirements.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=38

IMPORTANT! If you are moving the project file from one location to another, you must place the complete
Vivado Design Suite project in the same directory as the project xpr file. You cannot simply copy the files in a
Vivado tools project from one location to another. The Vivado Design Suite manages internal project states and
file relationships in a way that is not preserved through a simple file copy. To properly copy the Vivado Design
Suite project use the File → Archive Project command from the Xilinx IDE to create a zip archive. Copy and unzip
this archive file into the new location. If you encounter IP Locked errors when the SDx IDE invokes the Vivado
tools, it is a result of failing to properly copy the Vivado project, or failing to upgrade the project, IP. and output
products for the latest version of the tool.

Design Flow for Generating the DSA
To create the Vivado Design Suite project for use in an SDSoC platform:

1. Launch the Vivado Design Suite IDE.

2. Use the Quick Start > Create Project link on the Vivado Design Suite home screen or select
File → Project → New on the Vivado Design Suite menu bar to launch the New Project
wizard. Use the default project name, project_1.

TIP: You can also edit an existing project as a starting point for creating a new SDSoC hardware platform.

3. Choose the RTL Project type and advance to the Default Part dialog to select the Xilinx
device or a supported board to use for the SDSoC platform. For this example, use the
ZCU102 board. For more information on creating projects and selecting parts or boards, refer
to the Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994).

4. After the project opens in the Vivado Design Suite IDE, click on the Create Block Design
command underneath IP Integrator in the Flow Navigator window. Use the default settings.
The block design will be named design_1.

5. On the IP integrator canvas, instantiate the embedded processor IP using the Add IP (+) icon.
Search for Zynq and select the Zynq UltraScale+ MPSoC IP for this example. Run Block
Automation and use the Apply Board Preset option. Additional IP from the IP catalog or
custom IP can be added as needed to complete the design. See the completed IP integrator
design in the figure below. IP blocks and connections have been added to meet the hardware
requirements stated earlier.

For more information on creating a block design using IP integrator, refer to the Vivado Design
Suite User Guide: Designing IP Subsystems using IP Integrator (UG994).

For more information on creating an embedded processor block design, refer to Vivado Design
Suite User Guide: Embedded Processor Hardware Design (UG898).

6. a. Clocking Wizard

i. Customize Output Clocks to generate 3 PL clocks

i. clk_out1 at 100 MHz, clk_out2 at 200 MHz, and clk_out3 at 300 MHz

ii. Reset Type = Active Low

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 39Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug898-vivado-embedded-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=39

b. Processor System Reset

i. Add 3 instances to provide a reset for each of the 3 PL clocks

ii. Associate clk_out1 with proc_sys_reset_0, clk_out2 with proc_sys_reset_1, clk_out3
with proc_sys_reset_2

iii. Connect all dcm_locked inputs to the clk_wiz_0 locked output

iv. Connect all ext_reset_in inputs to pl_resetn0 output of the processor block

c. Concat

i. Customize to set Number of Ports = 1

d. Edit zynq_ultra_ps_i_0 PCW settings

i. PS-PL Configuration > PS-PL Interfaces > Master Interface

i. Uncheck AXI_HPM0_FPD

ii. Uncheck AXI_HPM1_FPD

7. Declare platform interfaces for use by the sds++ system compiler by setting the PFM
properties on the interface ports by using either the Platform Interfaces tab or TCL
commands.

8. Validate the block design to ensure everything is correct, and save the design.

9. Optionally enable IP caching to reduce synthesis and compilation times.

10. Generate Output Products of the IP in the block design.

11. Use the Create HDL Wrapper command to create the top-level RTL design.

12. Export Hardware to SDK for additional software development. Note, the SDx IDE can also be
used to generate software for standalone and Linux targets. Refer to Chapter 4: Creating the
Platform Software Component for more information on defining the software components.

13. If you are using programmable logic device I/O pins, assign I/O port constraints.

14. Optionally, simulate and implement the design to validate functionality and performance

15. Archive the project for use as a backup.

16. Write and validate the DSA using write_dsa and validate_dsa at the Vivado Design
Suite Tcl console.

TIP: The Vivado IDE creates a journal file (.jou) that contains TCL commands that have been executed during the
preceding steps. This file can be used to to create a script to automate hardware platform creation.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=40

Logic Design Using the IP Integrator
The Vivado Design Suite IP integrator offers interactive graphical design entry and configuration
capabilities that are designed to streamline the design capture process. Various automatic
designer assistance and configuration features are built into the environment. A large assortment
of AXI4 compliant IP is available for most system design needs.

The logic design can be captured using IP integrator or with RTL sources. A top-level wrapper is
used to instantiate the IP integrator design as well as any top-level RTL modules. RTL modules
can also be added directly to the IP integrator block design (BD).

Capture your hardware platform logic design containing either a Zynq® SoC, Zynq UltraScale+
MPSoC, or MicroBlaze processor.

Using the instructions from the Design Flow for Generating the DSA section, a custom platform
based on the ZCU102 board part is illustrated below. Use the description in the figure titles and
settings shown in each figure as a guide in creating a hardware design with 3 PL clocks, the
required platform IP and platform properties.

Figure 28: Select Project Default Part

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=41

Figure 29: Add Processor to IP Integrator Block Design

Figure 30: Run Board Automation

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=42

Figure 31: Apply Presets

After applying the ZCU102 board presets, the processor block is further customized by using the
Processor Configuration Wizard (PCW). Double-clicking on the zynq_ultra_ps_e_0 invokes the
customization wizard. Ensure a path for PL to PS interrupts exists. The PCW figure below shows
the IRQ0[0-7] input to the processor is enabled. The AXI HPM0 FPD and AXI HPM1 FPD
master PS-PL interfaces have been unchecked so they are available for acclerator attachment.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=43

Figure 32: Apply Processor Configuration Wizard (PCW) Edits

After applying the PCW settings, Add and customize the Clocking Wizard and Processor Sysetem
Reset IP blocks.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=44

Figure 33: Add Output Clocks with Clocking Wizard

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=45

Figure 34: Clocks and Processor Reset Blocks

Figure 35: Run Connection Automation

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=46

Figure 36: Concat Block for Interrupt Customization

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=47

Figure 37: Completed IP Integrator Hardware Design for Custom Platform

After the block design is complete, you can apply platform properties to different interfaces to be
used by the hardware function(s) within the SDx environment.

For more information on creating block designs using IP integrator and applying platform
properties to available interfaces in the block design, refer to Vivado Design Suite User Guide:
Designing IP Subsystems using IP Integrator (UG994).

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 48Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=48

Declaring Platform (PFM) Interfaces and
Properties

After you complete the IP integrator hardware block design in the Vivado Design Suite, you must
declare and add platform (PFM) properties on IP blocks for clocking (Clocking Wizard), interrupts
(Concat), resets (Processor System Reset), and the processor (Zynq UltraScale+ MPSoC) AXI
interfaces. These declared interfaces will then be available for hardware function(s) within the
SDx environment. The simplest and easiest way to declare these interfaces and their properties is
through the Platform Interfaces tab of the block design. Enable the Platform Interfaces tab, by
selecting Window → Platform Interfaces from the Vivado menu bar and clicking on the Enable
platform interfaces link. These properties are set once and stored in the project. A description of
the underlying Tcl commands executed to set the PFM properties are also shown for reference.

Figure 38: Enabling the Platform Interfaces Tab

This opens up the Platform Interfaces tab.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=49

Figure 39: Enabling the Interfaces in the Platform Interfaces Tab

Clicking on the Enable platform interfaces link automatically populates the PFM_NAME property
and lists all the interfaces that can be enabled for use by hardware accelerators within the SDx
environment.

Selecting the Platform in the Platform Interfaces window shows the settings for the platform
Name, Vendor, Board, and Version in the Platform Properties window. These platform properties
are user editable by selecting the text box associated with each property.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=50

Figure 40: Setting the Platform PFM_NAME: Name, Vendor, Board, and Version

The Platform Interfaces tab should now show all the interfaces available in the block design that
can be tagged with platform specific properties. To enable an interface, right-click an interface
and select Enable. For the example ZCU102 hardware design, enable the zynq_ultra_ps_e_0,
clk_wiz_0, and xlconcat_0 ports as shown below.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=51

Figure 41: Enabling an Interface in the Platform

Figure 42: Clocking Wizard Interfaces Enabled

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=52

Figure 43: Concat Block Interrupt Interfaces Enabled

The default PL clock setting for the platform is required and can be set by selecting the desired
clock in the Platform Interfaces view and selecting the Options tab in the selected clocks
Platform Interface Properties dialog. Click on the check-box associated with the is_default
property to toggle the setting.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=53

Figure 44: Setting the Default Clock

Perform the remaining steps to build the hardware and generate the DSA. The remainder of this
chapter adds further details on platform properties and implementing the hardware design.

1. Validate the IP integrator block design by right-clicking on the IP integrator canvas and
selecting Validate Design.

2. In the Sources tab, right-click on design_1.bd and select Generate Output Products. Use
the default Out of context per IP synthesis option and run settings then click Generate.

3. In the Sources tab, right-click on design_1.bd and select Create HDL Wrapper.

4. In the Flow Navigator underneath Program and Debug click on Generate Bitstream.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=54

5. Use the File → Export → Export Hardware command to write the hardware description file
for the project. Select Include bitstream when prompted in the Export Hardware dialog box.

6. In the Tcl Console command box write and validate the DSA:

• write_dsa design_1.dsa

• validate_dsa design_1.dsa

For more information on creating block designs using IP integrator and applying platform
properties to available interfaces in the block design, refer to Vivado Design Suite User Guide:
Designing IP Subsystems using IP Integrator (UG994).

Setting the Platform Name
The Platform Identification property (PFM_NAME) must be set in the hardware design to define
the Vendor, Library, Name, and Version (VLNV) of the platform.

set_property PFM_NAME string [get_files design.bd]

Where:

• string is defined in the standard VLNV format, for example:

xilinx.com:my_lib:platformA:1.0

• design.bd specifies the file name of the block design.

TIP: PFM_NAME can also be specified in simple form with just the Name from the VLNV form. The Vendor,
Library, and Version fields will be populated with default values: vendor, lib, and 1.0.

Example:

set_property PFM_NAME zcu102 [get_files zcu102.bd]

This results in the PFM_NAME: vendor:library:zcu102:1.0.

The Vivado block design and the DSA will store this property.

IMPORTANT! The write_bd_tcl command does not write the PFM properties to the resulting bd_Tcl script.
These properties must be exported manually to be preserved. Xilinx recommends using the Archive Project
command to backup the project.

Configuring Platform Interface Properties
The Platform Interfaces are defined using the four PFM properties described below. They can be
defined manually in the Tcl Console, or by a Tcl script for the design.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 55Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=55

The four Platform Interfaces Tcl APIs are:

set_property PFM.AXI_PORT { <port_name> {parameters} \
<port2> {parameters} ...} [get_bd_cells <cell_name>]
set_property PFM.AXIS_PORT { <port_name> {parameters} \
<port2> {parameters} ...} [get_bd_cells <cell_name>]
set_property PFM.CLOCK { <port_name> {parameters} \
<port2> {parameters} ...} [get_bd_cells <cell_name>]
set_property PFM.IRQ { <port_name> {} <port2> {} ...} \
[get_bd_cells <cell_name>]

The requirements for the PFM Properties are:

• The value of the PFM interface properties must be specified as a Tcl dictionary, a list of
name/"value" pairs.

IMPORTANT! The "value" must be quoted, and both the name and value are case sensitive.

• A bd_cell can have multiple PFM interface definitions. However, for each type of PFM
interface, all ports are required to be set in a single set_property Tcl command.

• For each PFM interface property, the name specified for the port object must match the name
of an external port or interface on a bd_cell. Each external port or interface object may only
have one PFM interface definition.

• Each different type of PFM interface may have different parameters.

• Setting the PFM property with a NULL ("") string will delete previously defined PFM
interfaces.

Declaring Clocks

You can export any clock source with the platform, but for each clock you must also export
synchronized reset signals using a Processor System Reset IP block in the platform. The
PFM.CLOCK property can be set on a BD cell, external port, or external interface.

The Tcl command for setting the PFM.CLOCK property is:

set_property PFM.CLOCK { <port_name> {parameters} \
<port2> {parameters} ...} [get_bd_cells <cell_name>]

Argument Description

• Port_name: Clock port name.

• Parameters:

○ id <value>: Clock ID is a user-defined value that must be a unique non-negative integer.

○ is_default <value>: Specify "true" if this is the default clock, "false" otherwise. The
default is "false."

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=56

○ proc_sys_reset <value>: This name/value pair specifies the corresponding
proc_sys_reset block instance for synchronized reset signals connected to the clock
port.

IMPORTANT! Every platform must declare one default clock with the is_default parameter set to "true" for
the SDSoC environment to use when no explicit clock has been specified.

Examples:

set_property PFM.CLOCK {
PL_CLK0 {id "0" is_default "true" proc_sys_reset \
"proc_sys_reset_0"}
PL_CLK1 {id "1" is_default "false" proc_sys_reset \
"proc_sys_reset_1"}
PL_CLK2 {id "2" is_default "false" proc_sys_reset \
"proc_sys_reset_2"}
PL_CLK3 {id "3" is_default "false" proc_sys_reset \
"proc_sys_reset_3"}
} [get_bd_cells /zynq_ultra_ps_e_0]

To set a CLOCK on an external PORT:

set_property PFM.CLOCK
{ACLK_0 {id "4" is_default "false" proc_sys_reset \
"proc_sys_reset_4"}} [get_bd_ports /ACLK_0]

Declaring AXI Ports

The Tcl command for setting the PFM.AXI_PORT property is:

set_property PFM.AXI_PORT { <port_name> {parameters} \
<port2> {parameters} ...} [get_bd_cells <cell_name>]

Argument Description

• Port_name: AXI port name.

• Parameters:

○ memport type: Corresponding memory interface port type. Valid type values include:

- M_AXI_GP: A general-purpose AXI master port

- S_AXI_HP: A high-performance AXI slave port

- S_AXI_ACP: An accelerator coherent slave port

- S_AXI_HPC: A high-performance accelerator coherent slave port

- MIG: An AXI slave connected to a MIG memory controller. The default is MIG.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=57

○ sptag ID: (Optional) A user-defined ID that should start with an alphabetic character. The
ID is case-sensitive. The system port tag (sptag) is a symbolic identifier that represents a
class of platform port connections, e.g., S_AXI_HP, S_AXI_ACP, M_AXI_GP. Multiple block
design platform ports can share the same sptag.

○ memory: (Optional) Specify the associated MIG IP instance and address_segment. The
memory tag is a unique identifier that combines the Cell name and Base Name columns
in the IP integrator Address Editor. This tag will be associated with connections to the
Memory Subsystem HIP, where multiple block design platform ports can share the same
memory tag.

IMPORTANT! ACE and ACP ports are not supported on Zynq UltraScale+ MPSoC platforms. However, ACP is
supported on Zynq-7000 SoC platforms.

Cache-coherent Support for HPC Ports on Zynq UltraScale+ Devices

Platforms that use HPC ports assuming 2018.2 behavior (non-coherent with cache flushing) must
label the ports with the type S_AXI_HP, instead of S_AXI_HPC. Both behave as though they are
HP ports. However, ports labeled S_AXI_HPC are handled to enable coherence. The platform
author should also adjust the BIF file, as shown below, for HPC ports with coherence enabled.

This is the recommended method for Linux boot as it guarantees that the register is written prior
to the APU coming out of reset.

The Boot ROM can be used to write the register by using an init value in the boot image.
Bootgen allows the init value to be added to the boot image. The following bif file snippet for
bootgen illustrates the addition of the file containing an init value.

//arch = zynqmp; split = false; format = BIN
the_ROM_image:
{
 ...
 [init]<path>\regs.init
}

The following line of code illustrates the init value that should be in the regs.init file to cause
outer shareable transactions to be broadcast to the CCI.

.set. 0xFF41A040 = 0x3;

For more information, see the Zynq UltraScale+ MPSoC Cache Coherency wiki page.

Example for an AXI Interconnect

set_property PFM.AXI_PORT { \
 M_AXI_GP0 {memport "M_AXI_GP"} \
 M_AXI_GP1 {memport "M_AXI_GP"} \
 S_AXI_ACP {memport "S_AXI_ACP" sptag "ACP" memory \
"processing_system7_0 ACP_DDR_LOWOCM"} \
 S_AXI_HP0 {memport "S_AXI_HP" sptag "HP0" memory \
"processing_system7_0 HP0_DDR_LOWOCM"} \

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 58Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842098/Zynq+UltraScale+MPSoC+Cache+Coherency
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=58

 S_AXI_HP1 {memport "S_AXI_HP" sptag "HP1" memory \
"processing_system7_0 HP1_DDR_LOWOCM"} \
 S_AXI_HP2 {memport "S_AXI_HP" sptag "HP2" memory \
"processing_system7_0 HP2_DDR_LOWOCM"} \
 S_AXI_HP3 {memport "S_AXI_HP" sptag "HP3" memory \
"processing_system7_0 HP3_DDR_LOWOCM"} \
 } [get_bd_cells /processing_system7_0]

Exporting AXI interconnect master and slave ports involves several requirements.

1. All ports on the interconnect used within the platform must precede in index order any
declared platform interfaces.

2. There can be no gaps in the port indexing.

3. The maximum number of master IDs for the S_AXI_ACP port is eight, so on a connected AXI
interconnect, available ports to declare must be one of {S00_AXI, S01_AXI, ..., S07_AXI}. Do
not declare any ports that are used within the platform itself. Declaring as many as possible
will allow sds++ to avoid cascaded axi_interconnects in generated user systems.

4. The maximum number of master IDs for an S_AXI_HP or MIG port is sixteen, so on an
connected AXI interconnect, available ports to declare must be one of {S00_AXI, S01_AXI, ...,
S15_AXI}. Do not declare any ports that are used within the platform itself. Declaring as
many as possible will allow sds++ to avoid cascaded axi_interconnects in generated user
systems.

5. The maximum number of master ports declared on an interconnect connected to an
M_AXI_GP port is sixty-four, so on an connected AXI interconnect, available ports to declare
must be one of {M00_AXI, M01_AXI, ..., M63_AXI}. Do not declare any ports that are use
within the platform itself. Declaring as many as possible will allow sds++ to avoid cascaded
axi_interconnects in generated user systems.

Additional Examples

To define an AXI_port on interconnect:

set parVal []
for {set i 2} {$i < 64} {incr i} {
 lappend parVal M[format %02d $i]_AXI \
{memport "M_AXI_GP"}
}
set_property PFM.AXI_PORT $parVal [get_bd_cells /axi_interconnect_0]

To define an AXI_port on SmartConnect IP:

set parVal []
for {set i 1} {$i < 16} {incr i} {
 lappend parVal S[format %02d $i]_AXI \
{memport "MIG" sptag "Bank0"}
}
set_property PFM.AXI_PORT $parVal [get_bd_cells /smartconnect_0]

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=59

To define an AXI_PORT that connects with MIG IP:

set parVal []
for {set i 1} {$i < 16} {incr i} {
 lappend parVal S[format %02d $i]_AXI \
{memport "MIG" sptag "bank0" memory "ddrmem_0 C0_DDR4_ADDRESS_BLOCK"}
}
set_property PFM.AXI_PORT $parVal [get_bd_cells \
/memory_subsystem/interconnect_data/interconnect_aximm_ddrmem0]

Declaring AXI4-Stream Ports

The Tcl command for setting the PFM.AXIS_PORT property is:

set_property PFM.AXIS_PORT { <port_name> {parameters} \
<port_name_2> {parameters} .. } [get_bd_cells <cell_name>]

Argument Description

• Port_name: AXI4-Stream port name.

• Parameters:

○ type value: Streaming interface port type. Valid values for type include:

- M_AXIS: A general-purpose AXI master port

- S_AXIS: A high-performance AXI slave port

Examples

set_property PFM.AXIS_PORT {AXIS_P0 {type "S_AXIS"}} \
[get_bd_cells /zynq_ultra_ps_e_0]

Declaring Interrupt Ports

Interrupts must be connected to IP integrator Concat (xlconcat) blocks that are connected to the
processing system. For Zynq-7000 family it is the F2P_irq port. For Zynq UltraScale+ MPSoC
devices the interrupts are split into two 8-bit ports: pl_ps_irq0[7:1] and
pl_ps_irq1[7:1].

IMPORTANT! If any IP within the platform includes interrupts, these must occupy the least significant bits of the
Concat block without gaps.

The Tcl command for setting the PFM.IRQ property is:

set_property PFM.IRQ { <port_name> {} <port2> {} ...} \
[get_bd_cells <cell_name>]

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=60

Argument Description

• Port_name: IRQ port name

• {}: Empty list that serves as a placeholder.

Example

set irqProp []
for {set i 0} {$i < 8} {incr i}
{ lappend irqProp In$i {} }
set_property PFM.IRQ $irqProp [get_bd_cells /xlconcat_0]
set_property PFM.IRQ $irqProp [get_bd_cells /xlconcat_1

TIP: The FOR loop results in a PFM.IRQ property as defined by $irqProp that looks like:

In0 {} In1 {} In2 {} In3 {} In4 {} In5 {} In6 {} In7 {}

Example PFM Property Tcl Script
This example script assigns the PFM properties to the block design on the Xilinx supplied
ZCU102 platform.

set_property PFM_NAME "xilinx.com:zcu102:zcu102:1.0" \
[get_files ./zcu102/zcu102.srcs/sources_1/bd/zcu102/zcu102.bd]
set_property PFM.CLOCK { \
clk_out1 {id "0" is_default "false" proc_sys_reset \
"proc_sys_reset_0" } \
clk_out2 {id "1" is_default "true" proc_sys_reset \
"proc_sys_reset_0" } \
clk_out3 {id "2" is_default "false" proc_sys_reset \
"proc_sys_reset_0" } \
clk_out4 {id "3" is_default "false" proc_sys_reset \
"proc_sys_reset_0" } \
clk_out5 {id "4" is_default "false" proc_sys_reset \
"proc_sys_reset_0" } \
clk_out6 {id "5" is_default "false" proc_sys_reset \
"proc_sys_reset_0" } \
clk_out7 {id "6" is_default "false" proc_sys_reset \
"proc_sys_reset_0" } \
} [get_bd_cells /clk_wiz_0]
set_property PFM.AXI_PORT { \
M_AXI_HPM0_FPD {memport "M_AXI_GP"} \
M_AXI_HPM1_FPD {memport "M_AXI_GP"} \
M_AXI_HPM0_LPD {memport "M_AXI_GP"} \
S_AXI_HPC0_FPD {memport "S_AXI_HPC" sptag "HPC0"} \
S_AXI_HPC1_FPD {memport "S_AXI_HPC" sptag "HPC1"} \
S_AXI_HP0_FPD {memport "S_AXI_HP" sptag "HP0"} \
S_AXI_HP1_FPD {memport "S_AXI_HP" sptag "HP1"} \
S_AXI_HP2_FPD {memport "S_AXI_HP" sptag "HP2"} \
S_AXI_HP3_FPD {memport "S_AXI_HP" sptag "HP3"} \
} [get_bd_cells /ps_e]
set intVar []

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=61

for {set i 0} {$i < 8} {incr i} {
lappend intVar In$i {}
}
set_property PFM.IRQ $intVar [get_bd_cells /xlconcat_0]
set_property PFM.IRQ $intVar [get_bd_cells /xlconcat_1]

Implementing the Hardware Platform Design
The hardware platform design should be implemented and validated to ensure it works as
expected in the Xilinx SDSoC flow. The first step in that validation process should be to ensure
the hardware platform design itself is performing as expected. This can be done using test kernel
logic to populate the dynamic region.

Using the IP Cache
Significant synthesis run-time savings can be achieved by taking advantage of the IP caching
capabilities in Vivado synthesis. IP caching stores the synthesis results for each IP configuration
and uses the cached results in place of re-synthesizing the IP during output generation, and for
additional IP instances that have matching configurations.

In order for the IP to be cached successfully for use in the DSA, the Vivado Settings need to be
configured so the Cache location is local to the Vivado project prior to generating the IP
integrator block design. This is the default setting, as shown in the following figure.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=62

Figure 45: Vivado Settings - IP Cache

Setting the IP caching repository involves pointing to the IP cache repository. Use the following
Tcl command to set the cache prior to creating the DSA.

set_property dsa.ip_cache_dir [get_property ip_output_repo \
[current_project]] [current_project]

Creating Design Constraints
This section discusses the various types of physical constraints that are needed to support the
hardware platform.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=63

Timing Constraints

Timing constraints are specified using the same methods for any Vivado design project. At a
minimum, constraints need to be defined for all clocks. Refer to the Vivado Design Suite User
Guide: Using Constraints (UG903) for more information.

I/O and Clock Constraints

One of the key considerations in the design of a DSA is to identify the I/O interfaces necessary
for the board requirements. The Processing System related I/Os are fixed, but any external
interfaces from the programmable logic (PL) need to have I/O constraints assigned to drive the
implementation tools. The physical I/O locations will influence performance and must be
considered as part of the platform planning process.

Refer to the Vivado Design Suite User Guide: I/O and Clock Planning (UG899) for more information
on I/O and clock planning.

Simulating the Design
The Vivado Design Suite has extensive logic simulation capabilities to enable block or system
level validation of the design. Available third party FPGA simulation tools are also supported.
Refer to the Vivado Design Suite User Guide: Logic Simulation (UG900) for more information.

Implementation and Timing Validation
The design should be synthesized and implemented to ensure desired performance is achieved. It
is often required to iterate on floorplanning and implementation strategies to ensure optimal
performance.

It is often important to implement, analyze, and iterate on the hardware platform design to
ensure that it continues to meet timing during kernel implementation. Using a test kernel,
implement the design and then check that the design meets timing by opening the Implemented
Design.

The floorplan can be examined and modified if need be to optimize implementation results. Refer
to the Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906) for more
information.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 64Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug899-vivado-io-clock-planning.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=64

Generating a Device Support Archive
After completing your hardware platform design, setting the PFM properties, and generating a
valid bitstream using the Vivado Design Suite, you are ready to create a Device Support Archive
(DSA) file for use with the SDSoC Development Environment. The DSA is a single-file that
captures the complete hardware platform design, to be used in creating an SDSoC platform
project.

IMPORTANT! After creating the DSA file you should retain the source Vivado Design Suite project files so you
can recreate or update the DSA file as needed. You can archive the project using the archive_project
Vivado Tcl command.

Once the required properties have been set, you generate a DSA file using the write_dsa
command from the Tcl console in the Vivado tool:

write_dsa <filename>.dsa -include_bit

This creates an archive of the hardware platform that contains all the relevant files and data
needed by the SDSoC Development Environment. The write_dsa command will also create a
bitstream file if one has not yet been created.

The syntax and short help for the write_dsa is shown below::

write_dsa [-force] [-include_bit] [-include_emulation] [-legacy] [-minimal]
 [-quiet] [-verbose] [<file>]

Returns:
The name of the dsa file

Usage:
 Name Description

 [-force] Overwrite existing device support
 archive file
 [-include_bit] Include bit file(s) in the dsa.
 [-include_emulation] Generate and include hardware
 emulation support in the dsa.
 [-legacy] Write a legacy DSA (based on OCL
 Block IP)
 [-minimal] Add only minimal files in the dsa.
 [-quiet] Ignore command errors
 [-verbose] Suspend message limits during
 command execution
 [<file>] Device Support Archive filename
 with alphanumeric characters and
 .dsa extension.

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=65

Validating the DSA
You can use the validate_dsa command to validate a custom DSA file to ensure it contains
the proper content and metadata needed to support the hardware platform in the Xilinx SDSoC™
environment. Use the following command to validate a DSA file:

 validate_dsa <dsa file> -verbose

Chapter 3: Creating the Platform Hardware Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=66

Chapter 4

Creating the Platform Software
Component

Introduction

The software components of an SDSoC™ platform can be generated directly from the SDx™ IDE.
Using the DSA as the input hardware specification an SDx Platform project can be configured to
generate the software files necessary for standalone, FreeRTOS, or Linux targets. For Linux
targets, the SDx IDE invokes the PetaLinux tools to build the Linux image and the necessary
software object files for constructing an SDSoC platform. The DSA file used by the SDx IDE is
created in the Vivado® Design Suite using the write_dsa command.

Developers can also continue to create software with the Xilinx® SDK for standalone and
FreeRTOS applications and utilize the PetaLinux tools to create Linux images and applications to
construct an SDSoC platform through the SDx Platform project flow. An HDF file is used by the
software creation tools as an input that describes the hardware design. To generate an HDF file,
in Vivado, use the File → Export → Export Hardware command.

IMPORTANT! Because of the different configuration requirements for the different tools, such as the Vivado
Design Suite and PetaLinux, running the tools in separate terminal shells is the recommended practice.

The software platform data creation process consists of building software components, such as
libraries and header files, boot files, and others, for each supported operating system (OS)
running on the device, and generating a software platform metadata file (.spfm) that captures
how the components are used and where they are located. The platform folder
<path_to_platform>/sw contains the software components, while the software platform
metadata file is found in <path_to_platform>/sw/<platform>.spfm.

Every software platform should also include one or more sample designs that provide example
usage.

This chapter describes required and optional components of a software platform, and assumes
the platform creator is able to create these components. For example, if your platform supports
Linux, you will need:

• Boot files - first stage bootloader or FSBL; U-boot; Linux FIT image image.ub or separate
devicetree.dtb, kernel and ramdisk files; boot image file or BIF used to create BOOT.BIN
boot files.

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=67

• Optional prebuilt data used by SDSoC when building applications without hardware
accelerators, such as a pre-generated hardware bitstream and SDSoC data files to reduce
compile time.

• Optional header and library files if the platform provides software libraries.

• Optional emulation data files, if the platform supports emulation flows using the Vivado
Simulator for programmable logic and QEMU for the processing subsystem.

If your platform supports the Xilinx Standalone OS (a bare-metal board support package or BSP),
the software components are similar to those for Linux, but the boot files include the FSBL and
BIF files.

TIP: Zynq® UltraScale+™ MPSoC boot files also require ELF files for the Platform Management Unit firmware
(PMUFW) and Arm® Trusted firmware (ATF).

Once you build the software components for a target OS, use the SDSoC platform project to add
these components to the platform as described in Creating an SDSoC Platform Project.

Begin with an SDx Platform Project
In this chapter, two platform projects are created to illustrate the generation of standalone and
Linux software objects and files using the SDx IDE. The first platform shows what files are
needed and used in creating a platform for standalone use. The second platform illustrates the
same flow but for the case of a platform that runs Linux on the target hardware. In general, a
Linux and standalone system configuration can coexist in a single platform and they are not
required to be in separate platform projects.

After launching the SDx IDE, define a new workspace (sdx_workspace_gen) for this example.
This workspace contains the two platform projects for which the SDx tools will generate the
software components. Use the Welcome screen or the SDx menu bar by selecting File → New → 
SDx Platform Project to create the first platform for a standalone target. The New Platform
Project dialog opens and prompts you for a project name. Name the project platform_1_gen
for this ZCU102-based example.

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=68

Figure 46: New Platform Project

Click Next to advance to the next dialog and select the source of the hardware specification for
the platform. You can choose to use a DSA or an existing platform as the source for the hardware
component of the platform. Select DSA for this example.

Figure 47: New Platform Source - DSA

Click Next to specify the DSA filename as the Hardware Specification. Use the DSA generated in
the example from the Chapter 3: Creating the Platform Hardware Component chapter. For this
example a copy of the generated DSA is located at /tmp/vivado/design_1.dsa.

Click on Generate Platform on the Quick Links selections. The platform generation process takes
about 10 minutes to produce all the software output products for the Standalone target.

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=69

Standalone

A standalone target provides software applications complete access to the hardware design
within the platform. This is also referred to as “bare-metal” since there are no layers of protection
between software applications and the underlying hardware.

Figure 48: Platform Hardware Specification

Figure 49: Platform Configuration Settings - Standalone

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=70

Figure 50: System Configuration Settings - Standalone

Figure 51: Domain Configuration Settings - Standalone

Linux

A Linux target offers multi-tasking, virtual memory, and a variety of drivers to support many
different hardware interfaces. Multiple software applications can run simultaneously or appear to
do so through the Linux scheduler.

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=71

The SDx IDE can also generate the software files needed for a Linux target. Using the same
sdx_workspace_gen workspace a new SDx Platform project named platform_2_gen is
illustrated below. The SDx IDE generates the required Linux software objects and files by
invoking the PetaLinux tools. Prior to creating the Linux platform project it is necessary to set a
path to the PetaLinux tools through the SDx IDE.

Setting the PetaLinux path is accomplished through the SDx menu bar using Window → 
Preferences → Xilinx SDx → Platform Project. Click on Apply and Close to save settings.

Figure 52: PetaLinux Path

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=72

Figure 53: Platform Configuration Settings - Linux

Figure 54: Linux Domain Settings

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=73

Figure 55: Generate Software - Linux

As part of the Linux software generation process, a root file system that includes the
libsds_lib.so shared library is placed in the /usr/lib directory. This can be viewed by
using the SDx Project Explorer and navigating to <platform_name>/export/
<platform_name>/sw/<system_name>/<domain_name>/sysroot. For our Linux
platform_2_gen example this translates to platform_2_gen/export/
platform_2_gen/sw/sysconfig1/linux_domain/sysroot. Platform developers should
be aware that this previously statically linked library is now a dynamically linked library that must
be included in the Linux file system image that runs on a board.

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=74

Figure 56: Linux Domain

Figure 57: System Configuration

Click on Generate Platform on the Quick Links selections. The PetaLinux tools are invoked and
the generated software output products build time is approximately an hour for this example.

You have now successfully generated two SDSoC platforms based on a custom ZCU102 DSA and
the SDx tools created the necessary software components for the platforms. One set for a
standalone target (platform_1_gen) and another set for a Linux target (platform_2_gen).

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=75

Build an SDx Application - Standalone

As a part of the SDx environment a set of application code templates are available to test
platforms or explore hardware acceleration features. Using the same workspace where you
generated the custom platforms for Standalone and Linux targets, two SDx Application projects
are added. The Array Partitioning template is used for both targets and creates an SD card
image for testing the platforms on a ZCU102 board.

Figure 58: Application Project

Figure 59: Platform Selection

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=76

Figure 60: System Configuration

Figure 61: Array Partitioning Template Application

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=77

Figure 62: Application Settings

Figure 63: Standalone Build - Assistant View

An Array Partitioning application project for Linux can also be created for
platform_2_gen as was done for the Standalone application using platform_1_gen. Results
of booting and running the contents of the SD Card Image generated by the SDx IDE for both a
Standalone target and a Linux target are shown below.

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=78

Figure 64: Linux Build - Assistant View

Figure 65: Application Run Output - Standalone

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=79

Build an SDx Application - Linux

Figure 66: Application Run Output - Linux

Prebuilt Hardware
A platform can optionally include prebuilt configurations to be used when the platform user does
not specify any hardware functions in an SDSoC application. This can save significant run-time as
the user should not need to wait for the compilation and implementation of the platform to
create a bitstream. The prebuilt bitstream and other required files will be used to configure the
hardware when needed.

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=80

TIP: An SDSoC application project with no hardware functions will compile without the prebuilt hardware, but it
will take longer. Providing the prebuilt hardware is simply a way to reduce run-time in this situation.

When defining the SDSoC platform project, as described in Appendix B: SDx IDE Glossary, you
can specify the Prebuilt Data, which is a folder containing prebuilt hardware information to be
included in the platform. The prebuilt hardware will be copied into a subdirectory of the platform
software directory as part of generating the SDSoC platform project. Data in the subdirectory is
pointed to by metadata in the software platform file (.spfm). As shown in Directory Structure for
a Typical SDSoC Platform, the path to prebuilt hardware data in an SDSoC platform is:

<path_to_platform>/sw/prebuilt

The prebuilt folder for the ZCU102 platform contains bitstream.bit, zcu102.hdf,
partitions.xml, apsys_0.xml, portinfo.c and portinfo.h files.

In the SDx IDE platform project, selecting Generate prebuilt data in the Platform configuration
settings causes the prebuilt data to be generated automatically when selecting the Quick Link
Generate Platform. The generation process requires additional time to run, since Vivado
synthesis and implementation are run in order to produce a bitstream, which is one of the
prebuilt data files. If you created prebuilt data manually, select Use exisiting prebuilt data in the
Platform configuration settings view and specify a path to the directory containing the manually
created data files.

Library Header Files
If the platform requires application code to #include platform-specific header files, these
should be defined in the platform software description file in a subdirectory relative to the
platform directory for the corresponding OS. When defining the SDSoC platform project, you can
specify the path to one or more folders containing header files.

For a given <relative_include_path> in a platform software description file, the location is:

platform/sw/os/os/relative_include_path

RECOMMENDED: If header files are not put in the standard area, users need to point to them using the –I
switch in the SDSoC environment compile command.

Static Libraries

If the platform requires users to link against static libraries provided in the platform, these should
reside in a subdirectory of the platform directory for the corresponding OS in the platform
software description file. When defining the SDSoC platform project, you can specify static
libraries to be included as platform software data.

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=81

For a given <relative_lib_path> in a platform software description file, the location is:

<platform_root>/sw/<relative_lib_path>

RECOMMENDED: If static libraries are not put in the standard area, every application needs to point to them
using the –L option to the sdscc link command.

Linux Boot Files
PetaLinux can generate the Linux boot files for an SDSoC platform using the process
documented in PetaLinux Tools Documentation: Workflow Tutorial (UG1156). The overall workflow
for SDSoC platforms is the same, and the basic steps are outlined below. If you are familiar with
the PetaLinux tools, you should be able to complete these steps for Zynq UltraScale+ MPSoC or
Zynq-7000 SoC designs.

Platform developers should be aware that the previously statically linked library is now a
dynamically linked library (libsds_lib.so) that must be included in the Linux file system
image that runs on a board. As part of the Linux software generation process, a root file system
that includes the libsds_lib.so shared library is placed in the /usr/lib directory. When
running the PetaLinux tools manually this library must be included as part of the root file system.
The libraries can be found in <SDX_Install_Dir>/target/<architecture>-linux/
lib. Refer to PetaLinux Tools Documentation: Reference Guide (UG1144) for more information on
how to include libraries with PetaLinux.

IMPORTANT!

Custom platforms that support Linux must include the SDSoC control API shared libraries. If the shared libraries
are not included with the platform, applications targeting the custom platform must explicitly use static linking.
Legacy support for static linking is provided by the sds++ -static-sds option, but you lose the capabilities made
possible by shared library support, including startup of multiple hardware subsystems without conflicts.

Before starting, you should complete the following:

1. Set up your shell environment with PetaLinux tools in your PATH environment variable.

IMPORTANT! Because of the different configuration requirements for the different tools, such as the Vivado
Design Suite and PetaLinux, running the tools in separate terminal shells is the recommended practice.

2. Create and cd into a working directory.

3. Create a new PetaLinux project targeting a BSP that corresponds to the type of board you
are targeting:

petalinux-create –t project -n <project_name> \
-s <path_to_base_BSP>

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 82Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.4;d=ug1156-petalinux-tools-workflow-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=82

4. Obtain a copy of the hardware handoff file (.hdf) from the Vivado project for your hardware
platform.

IMPORTANT! This guide assumes the existence of a valid hardware description file (HDF) for the platform,
which is generated from the Vivado Design Suite project. Refer to Chapter 3: Creating the Platform Hardware
Component for more information.

The steps below include basic setup, loading the hardware handoff file, kernel configuration, root
file system configuration, and building the Linux image, fsbl, pmufw, and atf. The steps include
the actions to perform, or the PetaLinux command to run, with arguments. Once the build
completes, your working directory contains a FIT image file (image.ub) that includes the
devicetree, kernel and ramdisk. The basic setup is the procedure used to configure the Linux
images packaged in all base platforms shipped with SDSoC platforms.

When using the petalinux-config command, a text-based user interface appears with a
hierarchical menu system. The steps present a hierarchy of commands and the settings to use.
Selections with the same indentation are at the same level of hierarchy. For example, the
petalinx-config –c kernel step asks you to select Device Drivers from the top-level
menu, select Generic Driver Options, go down one level to apply settings, go back up to Staging
drivers, and apply settings to its sub-menu items.

Building the PetaLinux Image

To build the PetaLinux image, use the following steps:

1. Configure PetaLinux with the HDF derived earlier for the associated platform (the production
of which is described in the introduction):

petalinux-config -p <petalinux_project> \
--get-hw-description=<HDF path>

Optionally, change boot args to include "quiet" at the end of whatever is the default:

• Kernel Bootargs→generate boot args automatically (OFF)

• for Zynq MPSoC: Kernel Bootargs→ user set kernel bootargs (earlycon clk_ignore_unused
quiet)

• for Zynq-7000: Kernel Bootargs→ user set kernel bootargs (console=ttyPS0,115200
earlyprintk quiet)

2. Configure PetaLinux kernel:

petalinux-config -p <petalinux_project> \
-c kernel

Set CMA size to be larger, for SDS-alloc buffers:

• for Zynq UltraScale+ MPSoC: Device Drivers→ Generic Driver Options → Size in Mega
Bytes(1024)

• for Zynq-7000 SoC: Device Drivers→ Generic Driver Options → Size in Mega Bytes(256)

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=83

Enable staging drivers:

• Device Drivers → Staging drivers (ON)

Enable APF management driver:

• Device Drivers → Staging drivers → Xilinx APF Accelerator driver (ON)

Enable APF DMA driver:

• Device Drivers → Staging drivers → Xilinx APF Accelerator driver → Xilinx APF DMA
engines support (ON)

Note:

For Zynq UltraScale+ MPSoC, you must turn off CPU idle and frequency scaling. To do so, mark the
following options:

• CPU Power Management → CPU idle → CPU idle PM support (OFF)

• CPU Power Management → CPU Frequency scaling → CPU Frequency scaling (OFF)

3. Configure petalinux rootfs:

petalinux-config -p <petalinux_project> \
-c rootfs

Add stdc++ libs:

• Filesystem Packages → misc → gcc-runtime → libstdc++ (ON)

4. Add device tree fragment for APF driver. At the bottom of <>/project-spec/meta-
user/recipes-bsp/device-tree/files/system-user.dtsi, add the following
entry:

/{
 xlnk {
 compatible = "xlnx,xlnk-1.0";
 };
};

5. Build the PetaLinux image:

• petalinux-build

Preparing the Image for the SDSoC Platform Utility

In the directory <petalinux_project>/images/linux/ there are a number of important
files that are partitioned into two categories:

1. Files that end up compiled into BOOT.BIN, referred to collectively as ‘boot files’, that should
be copied into a boot folder. Boot files include the following: u-boot.elf, zynq-
fsbl.elf or zynqmp-fsbl.elf, along with bl31.elf and pmufw.elf for Zynq
UltraScale+ devices.

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=84

2. Files that must reside on the SD card but are not compiled into BOOT.BIN, referred to as
‘image files’, that should be copied into an image folder. The only image file from a PetaLinux
build is image.ub, but you can add other files to the image folder that you want to make
available to users of the platform.

From within the <petalinux_project>/images/linux/ folder run the following
commands:

$ mkdir ./boot
$ mkdir ./image
$ cp u-boot.elf ./boot/u-boot.elf
$ cp *fsbl.elf ./boot/fsbl.elf
$ cp bl31.elf ./boot/bl31.elf
$ cp linux/pmufw.elf ./boot/pmufw.elf
$ cp image.ub ./image/image.ub

TIP: The bl31.elf and pmufw.elf files are only required for for Zynq UltraScale+ devices.

Finally, create a boot image format, or BIF file, that is used to compile the contents of the boot
folder into a BOOT.BIN file. For more information on creating the BIF file for a target processor,
refer to Zynq-7000 SoC Software Developers Guide (UG821) or Zynq UltraScale+ MPSoC Software
Developer Guide (UG1137).

An SDSoC boot image format file looks similar to a standard BIF file, with tokens specified in
angle brackets (< >) rather than direct paths to boot files. The BIF file tokens are replaced at
SDSoC compile time with actual files and generated content. This is because the bitstream file for
the programmable logic (PL) region will be procedurally generated, and some of the elements do
not have known file names at the time the BIF file is created.

The following is an example boot.bif file for the Zynq-7000 SoC:

/* linux */
 the_ROM_image:
 {
 [bootloader]<fsbl.elf>
 <bitstream>
 <u-boot.elf>
 }

The following is an example BIF for a Zynq UltraScale+ MPSoC device:

the_ROM_image:
{
 [fsbl_config] a53_x64
 [bootloader]<fsbl.elf>
 [pmufw_image]<pmufw.elf>
 [destination_device=pl] <bitstream>
 [destination_cpu=a53-0, exception_level=el-3, trustzone] <bl31.elf>
 [destination_cpu=a53-0, exception_level=el-2] <u-boot.elf>
}

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 85Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=85

Taken together, the boot directory, the image directory, and the BIF file, constitute the software
elements that the SDSoC platform project needs as input for the Linux OS. See Appendix B: SDx
IDE Glossary for more information.

Standalone Boot Files
If no OS is required, you can create a standalone boot image (boot.bin) that runs the specified
executable, along with any necessary boot loaders.

TIP: If you have already configured the boot files for Linux OS then you can use those same files when creating
the standalone boot image format file.

First Stage Boot Loader (FSBL)
The first stage boot loader (FSBL) is responsible for loading the bitstream and configuring the
Zynq and Zynq UltraScale + architecture Processing System (PS) at boot time.

When the platform hardware design is open in the Vivado Design Suite, click the File → Export → 
Export Hardware menu option.

Using the SDx IDE, or the Xilinx Software Development Kit (SDK), create a new Application
project File → New → Application Project with the name fsbl.

Using the exported Hardware Platform, select the Zynq FSBL application from the list. This
creates an FSBL executable. For more detailed information, see the SDK Help.

Once you generate the FSBL, you can copy it into a standard location for the SDx environment
flow, or you can consume it as part of the process of building a platform project.

Example:

samples/platforms/zcu102_axis_io/sw/a53_standalone/boot/fsbl.elf

Board Image Format (BIF) File
For the SDx environment to use an executable (ELF) in the boot image, a BIF file must point to it.
The following is an example standalone boot.bif file for the Zynq-7000 SoC:

/* standalone */
the_ROM_image:
 {
 [bootloader]<fsbl.elf>
 <bitstream>
 <elf>
 }

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 86Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=SDK_Doc/index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=86

The SDx environment replaces the <bitstream> and <elf> tokens in the BIF file with actual
bitstream and ELF file references generated during the SDSoC compilation process.

TIP: The BIF file for the Zynq UltraScale+ MPSoC device is different from the BIF file for a Zynq-7000 SoC, and
requires the addition of pmufw.elf. This file can be generated through SDK or the SDx IDE as a sample targeting
the "psu_pmu_0" processor.

FreeRTOS Configuration/Version Change
SDx support for FreeRTOS is based on the implementation found in the Xilinx Software
Development Kit (SDK) tool. By default FreeRTOS v10 is supported and in SDK this corresponds
to the most recent freertos10_xilinx BSP library.

IMPORTANT! In the generated SDx platform file (.spfm), the processor group contains metadata that specifies
the OS name (sdx:os/sdx:osname). If osname is specified as "freertos", that is mapped to the latest version
of freertos10_xilinx. If the OS name is specified explicitly as "freertos10_xilinx", the specified version will
be used.

To change FreeRTOS configuration settings, you can use SDx, just as you would use Xilinx SDK,
with the platform DSA to create and customize a supported FreeRTOS BSP.

1. Add the include files from the SDK BSP to your platform as library include files (you will
define a library include path) when using the SDx IDE to create the platform project.

2. Add the .mss file from the SDK BSP to your platform as a BSP configuration file. A linker
script can be generated when SDK creates a sample application using the BSP.

3. When you add the linker script to your SDx platform, you must increase the stack and heap
sizes because the SDK default values are too small for a typical SDx application.

4. You may also need to increase the task heap size passed to xTaskCreate from
configMINIMAL_STACK_SIZE when creating FreeRTOS applications.

TIP: This is application dependent, but try 1000 and adjust up or down as appropriate.

If you want to use a different FreeRTOS version or customize it in a manner that is different from
the Xilinx BSP implementations, your can define a System Configuration for the standalone BSP,
and add your FreeRTOS implementation as a library. You need to provide a FreeRTOS library,
include files and a linker script.

Chapter 4: Creating the Platform Software Component

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=87

Chapter 5

Sample Applications
Optionally, a platform can include sample applications to demonstrate the usage of the platform.
Sample applications can be provided in the samples directory of a platform. Each sample
application is located in a sub-directory of the samples directory, as illustrated in Directory
Structure for a Typical SDSoC Platform, and is described by a description.json file.

The following is an example description.json for the array_copy sample application in
the Arty platform found in the <SDX_Install_Dir>/samples/platforms/arty/
samples/arty_arraycopy folder.

{
 "example": "Arraycopy",
 "overview": "Implementation of an array copy core that simply reads
from one array and
 writes to another. By default the function arraycopy() is marked
for hardware and you
 can build the project."
 "board": ["arty"],
 "os": ["Standalone"],
 "runtime": ["C/C++"],
 "accelerators": [
 {
 "name": "arraycopy",
 "location": "arraycopy.cpp"
 }
],
 "contributors" : [
 {
 "group" : "Xilinx, Inc.",
 "url" : "http://www.xilinx.com"
 }
],
 "revision" : [
 {
 "date" : "2018",
 "version" : "1.0",
 "description" : "Initial revision"
 }
]
}

The description.json file is in JSON format and consists of comma-separated key-value
pairs, and JSON values can be strings, arrays, or nested JSON objects. The example above
includes the following information:

• Name and description: The example (name) is required, but the overview (description) is
recommended.

Chapter 5: Sample Applications

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=88

• Platform: The board is optional, but the OS and runtime are required.

• Accelerators: Required to specify the hardware function name and the location of the source
code file.

• Contributors: Optionally identifies the name and description of the source code provider.

• Revision: Optionally specifies version information.

The following table shows a complete list of the available attributes.

Table 1: Description.JSON Attributes

Attribute Description

"example" Name displayed in the GUI.

"overview" Description displayed in the GUI.

"type" Used to identify library projects vs application projects.

"board" List of supported platforms; if specified, project platform
must match an entry in the list.

"os" List of supported operating systems.

"runtime" List of supported runtime environments.

"accelerators" List of hardware function names and source files.

"exclude" List of files and directories that should not be copied into
the example project.

"compiler" Settings to specify compiler options and include directories.

"linker" Settings to specify linker options, library paths, and libraries.

"system" System-level settings.

"cmd_args" Command line arguments used when launching the GUI.

"revision" A list of revisions.

"contributors" A list of contributors/authors for the example.

Example

The "example" attribute defines the name of the sample application to show in the SDx™ GUI.
It should be descriptive, but not overly long.

"example" : "Array Copy"

Overview

The "overview" attribute is a longer text description of the sample application. The value can
be either a single string, or an array of strings.

• Single string:

"overview" : "Shows a __median filter__ function accelerated in hardware."

Chapter 5: Sample Applications

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=89

• Array of strings:

"overview" : [
 "This is the first line of the description.",
 "The description supports limited Markdown syntax,",
 "including __bold__, _italics_, and ~~strikethrough~~.",
 "- list item 1",
 "- list item 2",
]

TIP: The description supports limited Markdown syntax, including bold, italic, and numbered or bulleted lists.

Type

The optional type attribute identifies whether this example creates an application project or a
library project. If the type value is set to library, this example creates a shared library project.
Otherwise, it creates an application project.

"type" : "library"

Board

The board attribute lists all development board platforms this example is compatible with. If
omitted, this example is available for any platform. The sample application will be available if the
current platform matches any of the values in the list. If the example is included with a custom
platform, the example is available for the custom platform only, and board need not be
specified.

"board" : [
 "zc702",
 "zc706"
]

Operating System (OS)

The os attribute defines an operating system match for the selected SDSoC™ platform. The OS
value is a list of supported operating systems including Linux, Standalone, and FreeRTOS. The
sample application will be available if the current operating system matches any of the values in
the list.

The following example defines an application that can be selected when any of Linux,
Standalone, or FreeRTOS are selected as the operating system:

"os" : [
 "Linux",
 "Standalone",
 "FreeRTOS"
]

Chapter 5: Sample Applications

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=90

Runtime

The runtime attribute defines the runtime environments supported by this example is C/C++.
The sample application will be available if the run time of the project matches any of the values
in the list. For example, an example might work for the OpenCL runtime, and not work for the
C/C++ runtime.

The following example defines an application that can be selected when the run time is C/C++:

"runtime" : [
 "C/C++"
]

Accelerators

The optional Accelerators attribute is a list of hardware functions that will be set up when
creating a new project. The Accelerators attribute includes several required and optional sub-
tags:

• name: A required value that specifies the name of the function.

• location A required value that specifies the path to the source file containing the function.
The path is relative to the sample application folder in the platform.

• clkid: An optional values that specifies the accelerator clock to use instead of the default.

• hlsfiles: A optional value that specifies a list of additional files to compile along with the
source file, when the accelerator calls code found in other files. The SDSoC environment
invokes Vivado® HLS to compile the source file containing the function. If the source file
depends on functions contained in additional source files, use hlsfile to specify those
source files.

The following example specifies two functions to move to hardware func1 and func2 when
creating the new project:

"accelerators" : [
 {
 "name" : "func1",
 "location" : "func1.cpp"
 },
 {
 "name" : "func2",
 "location" : "func2.cpp",
 "clkid” : "2",
 "hlsfiles" : [
 "func2_helper_a.cpp",
 "func2_helper_b.cpp"
]
 }
]

Chapter 5: Sample Applications

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=91

Compiler

The compiler attribute is optional, and is used to specify the following compiler options:

• includepaths: Defines a set of paths relative to the sample application folder that are
passed to the sds++ compiler using the -I flags.

• options: Defines application project settings for the compiler when creating a new project.
The value defines compiler options required to build the application and appears in the SDx
environment C/C++ Build Settings dialog box as compiler Inferred Options under the software
platform.

• symbols: Defines a list of pre-processor symbols. This is an alternative to options when
you want the symbols to show in the symbols list in the Eclipse project build settings.

The following example results in the SDSoC environment adding the flags -I"../src/
myinclude" -I"../src/dir/include", and the compiler option -D MYAPPMACRO, to the
compiler command:

"compiler" : {
 "includepaths” : [
 "myinclude",
 "dir/include"
]
 "options" : "-D MYAPPMACRO"
}

Linker

The linker attribute is optional, and is used to add directories to the link path, and add libraries
to be linked. When using multiple linker settings, they should be added to the same linker
node.

• librarypaths: Specifies a list of paths relative to the application build directory (which is
the location of the compiled application). The specified paths are passed to the linker using -L
flags.

• libraries: Secifies additional libraries that are to be passed to the linker -l flags.

• options: Defines application project settings for the linker when creating a new project. The
value defines linker options required to build the application and shows in the SDx
environment C/C++ Build Settings dialog box as linker Miscellaneous options.

For SDSoC projects, use the sdcard attribute c to specify the sds++ -sdcard <path>
option. The SD card path is relative to the build directory:

Chapter 5: Sample Applications

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=92

The following settings add the flags -lmylib1 -lmylib2, and -L"mylibrary", and add the
linker option -poll-mode 1 to the linker command line, and specifies the -sdcard path:

"linker": {
 "options" : "-poll-mode 1",
 "libraries" : [
 "mylib1"
 "mylib2"
],
 "librarypaths" : [
 "mylibrary"
]
 "sdcard" : "../sdcard"
}

Exclude

The exclude attribute defines a set of directories and files to be excluded from being copied
when SDx creates the new project. This lets you have files or directories in the sample
application folder that are not used to build the application.

The following example will result in SDSoC not making a copy of directories MyDir and
MyOtherDir when creating the new project. It will also not make a copy of files MyFile.txt
and MyOtherFile.txt:

"exclude" : [
 "MyDir",
 "MyOtherDir",
 "MyFile.txt",
 "MyOtherFile.txt"
]

System

The optional system attribute defines application project settings for the system when creating
a new project. The dmclkid attribute defines the data motion clock ID. If the system attribute
is not specified, the data motion clock uses the default clock ID.

The following example will result in SDx setting the data motion clock ID to 2 instead of the
default clock ID when creating the new project:

"system" : {
 "dmclkid" : “2”
}

cmd_args

The optional cmd_args attribute defines a custom command line when launching the SDSoC
application. There are two special variables that can be used in the cmd_args:

• PROJECT is replaced with the path to the project directory.

Chapter 5: Sample Applications

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=93

• BUILD is replaced with the path to the build directory.

These variables can be used to specify project-rooted data files, or build-output files.

Revision

The optional revision attribute provides the revision of the sample application, and with some
limited revision history. The attribute includes several optional sub-tags:

• date: A user-meaningful string representing a date for the sample application.

• version: A string representing the version of the application as a period-delimited string of
numbers, typically major.minor[.update]. For example: 1.0, or 2.5.1. If a sample
application lists multiple versions, the highest number is considered the most recent version.

• description: Astring providing a brief description of the revision.

The following provides a brief revision history of the sample application:

"revision" : [
 {
 "date" : "2017",
 "version" : "1.2",
 "description" : "Updated the example for the 17.1 release"
 },
 {
 "date" : "2018",
 "version" : "1.0",
 "description" : "original release"
 }
]

Contributors

The contributors attribute is a list of contributors to the example, including the following
sub-tags:

• group: A string specifying the name of the sample application developer.

• url: Specifies a URL for the contributor.

The following is an example:

"contributors" : [
 {
 "group" : "Xilinx, Inc.",
 "url" : "http://www.xilinx.com/"
 }
]

Chapter 5: Sample Applications

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=94

Appendix A

Platform Checklist
The overview of the platform creation process in this appendix touches on hardware and
software platform requirements and components, platform validation, sample application
support, directory structures and the platform metadata files that enable SDSoC™ to use your
custom platform.

The SDSoC platform creation process requires familiarity with the Vivado® Design Suite and its
use in creating Zynq®-7000 SoC or Zynq® UltraScale+™ MPSoC designs; familiarity with SDSoC
from the perspective of a user of platforms; and familiarity with Xilinx® software development
tools such as the Xilinx Software Development Kit (SDK), and embedded software environments
(Linux or bare-metal).

If you are new to the SDSoC platform creation process, read the introductions in the chapters of
this guide while lightly reading through the material for key concepts, and examine one or more
of the examples discussed in Appendix E: SDSoC Platform Examples.

If you have previously created SDSoC platforms, you should still read though the chapters in this
guide and the migration information in Appendix C: Migrating SDSoC Platforms to a New
Release.

The checklist below summarizes tasks involved in SDSoC platform creation.

1. Using the Vivado Design Suite, create a Zynq-7000 or Zynq UltraScale+ MPSoC based
design.

• Refer to the Chapter 3: Creating the Platform Hardware Component for requirements and
guidelines to follow when creating the Vivado hardware project. Test the hardware design
using the Vivado Design Suite tools.

2. For supported target operating systems, provide software components for boot and user
applications.

• SDSoC creates an SD card image for booting the OS, if applicable, using boot files included
in the platform.

○ A first stage boot loader (FSBL) is required, as well as a Boot Image File (BIF) that
describes how to create a BOOT.BIN file for booting.

○ For Linux boot, provide U-boot and a Linux image (device tree, kernel image, and root
file system as discrete files or FIT (Flattened Image Tree) boot image .ub file).

○ For bare-metal applications, create a linker script.

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=95

○ Zynq UltraScale+ MPSoC platforms also require ARM trusted firmware (ATF) and
power management unit firmware (PMUFW).

○ Optionally create a README file and other files which need to reside on the SD card
image.

• If the platform provides libraries to link with the user’s application, headers and libraries
can be included as part of the platform for convenience.

• See Chapter 5: Sample Applications for more information.

3. Optionally create one or more sample applications.

• In the platform folder, you can create a samples folder with a single level of subfolders,
with each subfolder containing the source code for an application. The samples folder also
contains a description.json file used by the SDx™ IDE New Project wizard when
creating an application.

• See Chapter 5: Sample Applications.

4. Use the SDx IDE to create a Platform project to package the hardware and software
components into an SDSoC platform.

• As described in Creating an SDSoC Platform Project, the project combines the hardware
platform DSA with the embedded processor information, operating system, and compiler
settings to define the platform for use with SDSoC compilers.

5. Validate your platform supports the SDSoC environment.

• The Chapter 2: Creating SDSoC Platforms chapter describes platform Conformance tests
for data movers used by the SDSoC system compiler. Each test should build cleanly by
running make from the command line in a shell available by launching an SDx Terminal or
by running a settings64 script (.bat, .sh or .csh) found in the SDx installation. The tests
should also run on your platform board.

6. Validate project creation with your platform in the SDx IDE.

• Start the SDx IDE and create an SDSoC application project or system project using the
New Project wizard. After specifying a project name, you are presented with a list of
platforms. Click on your custom platform to select it. If your platform includes a samples
folder, you can select one of your applications, or the empty application to which you can
add source files. After your project is created, build it and run or debug the ELF file.

Appendix A: Platform Checklist

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=96

Appendix B

SDx IDE Glossary
SDx™ IDE

The SDx IDE descriptions in this appendix refer to platform projects (as opposed to application
projects) and consists of multiple views that can be configured into different perspectives, or
view configurations. The default perspective has the following features:

• Explorer view: On the left side of the display, this view lets you navigate through the project
hierarchy, source files, and resources.

• Editor view: In the center of the display, the Editor displays the project and lets you modify
features of the project and edit code, scripts, and configuration files. Files can be opened by
double-clicking on them in the Explorer view.

• Console view: At the bottom, this view displays the output for the different processes and
utilities that make up the SDx tool.

The views are configurable from the Window → Show View command. Views can also be shown
or hidden, and arranged as needed, and saved into perspectives that can be loaded into the tool.
For more information on working with the SDx IDE, refer to the SDSoC Environment User Guide
(UG1027).

In the Editor view, the elements of the processor are contained in three levels of the platform:
Platform, System Configurations, and Processor Domains. The bottom of the Editor view also
displays a small workflow that defines the process for creating a platform. The following sections
describe how you can define the elements of your platform, using the established workflow.

Platform

In the previous example, the platform project has been populated by the information you
provided when you created the project:

• Name: Displays the name.

• DSA: Indicates the DSA file associated with the platform.

IMPORTANT! The name and DSA file are specified when the platform is created and cannot be changed.

• Description: This field is initially copied from the platform name. However, you can click the

Edit command () to modify the description to provide more details of the platform.

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 97Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=97

• Samples: This optional field specifies the path to a folder containing sample applications for
use with the platform. See Chapter 5: Sample Applications for more information.

TIP: The Samples folder can be specified through the Browse command, or you can add samples in the resources

folder of the platform project and use the Search command () to load it. The resources folder, as shown in
the Explorer view is local to the project in the workspace, and can simplify the process of sharing the platform
project with others.

Defining the System Configuration

The System Configuration defines the software environment that is booted and runs on the
hardware platform. It will specify Operating Systems and the run-time settings for the processors
in the hardware platform, and will also have software-configurable hardware parameters.

With the platform project opened in the SDx IDE, you can add System Configurations to the
platform by clicking the Define System Configuration command in the workflow at the bottom of
the Editor. This will open the New System Configuration dialog box as shown below.

TIP: You can also use the Add command () in the Editor and select System Configuration.

The fields of the System Configuration dialog box include:

• Name: Specifies an identifier for the System Configuration. The name should be alphanumeric,
between 3 and 40 characters long, and include no special characters except underscore, '_',
and dash, '-'. Because the System Configuration name is an identifier it cannot be modified
after it is created.

TIP: When using the Makefile flow, or command-line, you can specify this identifier using -sds-sys-config<name>
option of sds++ to specify the software platform used, which includes the target operating system and other
settings.

• Display Name: The name that will be displayed by the SDx IDE and in reports. This name can
include spaces and special characters, and can be modified.

• Description: A brief description for the configuration.

•IMPORTANT! It is assumed that any files referenced in the BIF file will be in the directory specified by the Boot
Directory field.

Click OK to close the New System Configuration dialog box and add the configuration to the
platform. You will see the configuration listed in the Editor view.

Appendix B: SDx IDE Glossary

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=98

If you select the System Configuration in the tree view of the platform, on the left side of the
Editor, you will see the information for the System Configuration as you have defined it. In
addition, the Readme field is displayed to let you define a readme file associated with the
configuration. The readme file should be available along with the SD Card. This file informs users
of the platform how to boot an application for this configuration, and how the board should be
physically set, for example Jumper Settings. It is a plain text file that contains instructions to the
user.

Defining the Processor Domain

The Processor Domain will define the OS operating on one or more processors on the device,
and the run-time. The domain defines different settings for the OS, whether Linux, FreeRTOS, or
Standalone.

As shown in the figure below, SDSoC™ allows for applications targeting the standalone or
FreeRTOS operating system to be built to target a specific Processor core (Cortex™-A9, Cortex-
A53, or Cortex-R5), and for Linux applications to be built to run on all cores that are visible to the
OS. When defining a domain for the Linux operating system, you do not need to target a specific
core, but instead can assume that the Linux scheduler will schedule across processors as
appropriate, and isn’t restricted to any particular processor core.

You can add domains to a System Configuration by clicking the Add Processor Group/Domain
command in the workflow at the bottom of the Editor. This opens the New Domain dialog box as
shown below.

TIP: You can also click the Add button () in the Editor and select Domain.

The fields of the System Configuration dialog box include:

• Name: Specifies the name of the domain.

TIP: The name should be alphanumeric, between 3 and 40 characters long, and include no special characters
except underscore, '_', and dash, '-'.

• Display Name: The name that will be displayed by the SDx IDE and in reports. This name can
include spaces and special characters.

• OS: Specify the OS you are configuring as either Linux, FreeRTOS, or Standalone from the
drop-down menu. For each OS there are various files that must be included in order to
compile, link, or generate the boot files for a given application. The fields of the New Domain
dialog box vary depending on the OS selected.

• Processor: Defines the available types of processors for the platform. The types of processors
available is determined by the IP in the hardware platform as defined by the DSA. Any
processor IP present in the hardware design will show up in this list.

Appendix B: SDx IDE Glossary

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=99

• Supported Runtime: Specify the kernel runtime for the platform from the drop-down menu.
This determines the compiler used to process the kernel logic at runtime. C/C++ is supported
for all OSes.

• Prebuilt Linux Image: In case of Linux OS, you need to build the Linux image for the Hardware
design, using PetaLinux for example, and provide the image directory. More details about how
to build the correct image, refer to Chapter 4: Creating the Platform Software Component.

• Linker Script: This is required for FreeRTOS and Standalone Only. This is the linker script
which will be used while linking the baremetal or FreeRTOS ELF in the SDx application build.
This file allows the programmer to control how the sections are merged in the ELF, and at
what locations they are placed in memory. It also allows the user to specify how much of DDR
memory is allocated for the stack and heap.

TIP: When you add the linker script to your SDx platform, you must increase the stack and heap sizes because
the SDK default values are too small for a typical SDx application.

• Description: A brief description for the domain.

Click OK to close the New Domain dialog box and add the Processor Domain to the platform.
You will see the domain listed in the Editor view. After the domain has been defined, the SDx IDE
shows additional details for the domain that can be edited when it is selected in the platform
project, as shown below.

The new fields of the domain include the following:

• Repositories: Available only for Standalone or FreeRTOS. Used to keep the embedded
software drivers and libraries that are required to create the BSP for the user hardware design.
This is a directory and it will be copied into the <platform>/sw/<sysconfig>/
<domain>/bspRepo location. And an entry will be added in the spfm file with the tag
sdx:bspRepo.

• Prebuilt data: This specifies a directory containing a prebuilt bistream and pre-generated
software artifacts, meant to be representative of a software-only project with no functions
accelerated in hardware. See Prebuilt Hardware for more information on generating prebuilt
data for custom platforms.

In addition, when the domain is selected in the Editor, you will see sub-headings of the domain as
follows:

• Prebuilt Image: For Linux domains only, this indicates the Prebuilt Linux Image content that
was specified when the domain was created.

• Application Settings: For Standalone or FreeRTOS domains, this indicates the Linker Script
that was specified when the domain was created.

Appendix B: SDx IDE Glossary

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=100

• Board Support Package: For Standalone or FreeRTOS domains, this specifies a Microprocessor
Software Specification (MSS) file that defines the board support package (BSP) libraries and
drivers for the base platform without any accelerators, and is the baseline for creating an MSS
for the final design that includes the platform, data motion network and hardware accelerator
functions. With the MSS, you will be able to define the libraries and the library options. This
option will be added to the spfm file with the tag sdx:bspConfig. The MSS file provided
will be copied in the <platform>/sw/<sysconfig>/<domain> location.

IMPORTANT! You should provide an MSS file only if you do NOT want to use default settings for the BSP. If you
specify a MSS file, you must also specify Include Paths pointing to a directory containing include files generated
when using the MSS file.

• Libraries: Displays two fields:

○ Libraries: Lets the platform user select the individual libraries to make available for an
application.

○ Include Paths: Lets the platform user point to directories containing include files to make
them available for an application.

TIP: Libraries will be copied into <platform>/sw/<sysconfig>/<domain>/lib, and Include Paths will
be copied into <platform>/sw/<sysconfig>/<domain>/inc.

Generate Platform and Add to Repository

After configuring the settings for your SDSoC platform project, you can click the Generate
Platform command in the workflow at the bottom of the Editor. This will start the process of
copying and creating files, and generating metadata for your platform. The new platform files will
be written into the workspace for the platform project. You can regenerate the platform files as
needed.

IMPORTANT! If you make any changes to any of the fields in the platform project, System Configuration, or
domains, you must regenerate the platform to update the platform in the repository. You do not need to re-export
the platform to the repository, but you will need to regenerate the output.

When the SDx platform is generated, it is written to the platform project folder in the
workspace/<project_name>/export folder.

Finally, with the platform generated, click the Add to Custom Repositories command in the
workflow at the bottom of the Editor. This adds the exported platform to the SDx custom
repository for use in SDx Application and System projects. The custom repository is a list of
directories, where the SDx tool scans for additional platforms. When you click Add to Custom
Repositories, the platform output directory (./export) is added to the repository.

To share this platform with other users you can copy the exported platform folder to a common
location, and ask other users to add that location to their custom repository using the Xilinx → 
Add Custom Repository menu command. The platform will be added to the list of available
platforms as shown below.

Appendix B: SDx IDE Glossary

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=101

TIP: The SDx GUI journals the TCL commands that underlie the actions identified in this section so that you can
script platform generation. For an example of using the command-line flow to build an SDSoC platform, refer to
Making the SDSoC Platform from the Command Line.

Appendix B: SDx IDE Glossary

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=102

Appendix C

Migrating SDSoC Platforms to a
New Release

Introduction

To support a newer release of the SDx™ development environment you must upgrade the
Vivado® Design Suite project included in the hardware platform to the latest release, updating
the IP used in the design, and regenerating output products for the project. As part of building an
application project, SDx launches Vivado and attempts to auto-upgrade everything in the design.
Updating the IP integrator design may be a simple matter of plugging in the latest IP revision for
the current release. However, it can also be complicated in the case of major version changes
from one release to another by the addition or removal of interface signals on the IP, or updated
parameters. In this case, upgrading the Vivado Design Suite project can require more effort, and
auto-upgrade will not be successful.

You may also need to update the software platform to be compatible with or take advantage of
any new features of the hardware platform. Finally, you must regenerate your custom platform
using the SDx platform project. This may simply be a matter of upgrading the Vivado® IP
integrator block design to the latest release and rebuilding the software components with the
latest SDSoC™ tools.

IMPORTANT!

The Vivado tool requires you to Upgrade IP for every new version of the Vivado Design Suite. If you encounter IP
Locked errors when the SDSoC platform project tries to generate the platform, or when the SDx IDE invokes the
Vivado tools, it can be the result of failing to properly copy the Vivado project as described in Begin with a
Vivado Project, or failing to upgrade the IP used in the Vivado project for a new release.

To migrate an SDSoC hardware platform from a prior release, open the Vivado project in the new version of the
Vivado tools, and upgrade the IP integrator block design and all IP, and regenerate the output products. Refer to
this link in the Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) for more
information on updating block design projects.

You can build a new platform by modifying an existing platform, but be aware that the block diagram with in the
DSA contains properties must be unset or they will interfere with your new platform. In particular, you must unset
any property that you do not wish to be set. As an example, if you wish to use a different set of clock sources in
your derived platform, make sure you unset any clock in the original platform or there will be clashes in your
derived platform (recall: every platform clock ID must be unique).

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 103Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2017.4;d=ug994-vivado-ip-subsystems.pdf;a=xUpdatingDesignsForANewRelease
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=103

Migrating Platforms to 2019.1 and Later
The platform structure and process for creating platforms has changed starting 2017.4, notably
in the three following areas:

• SDSoC Tcl commands have been replaced with Vivado properties requiring you to update the
project and rerun the write_dsa command, as described in Mapping SDSoC Tcl Commands
to Vivado Properties.

• IP Caching is enabled for hardware platforms, which reduces the time to compile the hardware
accelerated functions. You must set the dsa.ip_cache_dir property, re-synthesize the
Vivado project to populate the cache, and regenerate the DSA file.

• The SDx IDE now supports directly creating an SDSoC platform project. Regenerating an
SDSoC platform will now be done as described in Chapter 2: Creating SDSoC Platforms.

Mapping SDSoC Tcl Commands to Vivado
Properties

The Tcl commands used in prior releases to set the platform and interface properties in the
SDSoC platform have been replaced with a set of properties that can be defined directly in the
Vivado Design Suite project. This requires reconfiguring the platform and interface properties for
each platform to migrate it to the 2017.4 release before you can move to a more current version.

The following table shows the mapping of sdsoc:: Tcl commands to the PFM properties required
in 2017.4 and beyond.

Table 2: Mandatory Properties: Pre-2017.4 and Post 2017.4

Purpose Pre 2017.4 Post 2017.4

Declare the hardware platform sdsoc::create_pfm PFM_NAME

Define the DSA Vendor Not required PFM_NAME

Define the hardware platform name sdsoc::pfm_name PFM_NAME

Define a brief description of the
platform

sdsoc::pfm_description Defined in the SDSoC platform project.

Declare the platform clock ports sdsoc::pfm_clock PFM.CLOCK

Declare the platform AXI bus interfaces sdsoc::pfm_axi_port PFM.AXI_PORT

Declare the platform AXI4-Stream bus
interfaces

sdsoc::pfm_axis_port PFM.AXIS_PORT

Declare the available platform
interrupts

sdsoc::pfm_irq PFM.IRQ

Generate the hardware platform DSA. sdsoc::generate_hw_pfm Replaced by the write_dsa Tcl
command.

Appendix C: Migrating SDSoC Platforms to a New Release

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=104

Appendix D

Changing the SDSoC Platform
Device

Introduction

This document describes how to migrate a base SDSoC™ platform, provided in the software
release, to a part-based platform using one of the different devices available from Xilinx®.

When building a new custom platform for the SDSoC development environment, you will usually
start with an existing base platform, such as the ZCU102 platform. Then, after you have
performed some initial design work, you will want to migrate your design to a custom platform
that more closely meets your needs. Your custom platform might require a different device than
is used by the base platform, and use custom IP.

The methodology starts from a base platform, has you modify the platform device support
archive (DSA) in the Vivado Design Suite, and write the modified DSA file, update the software
components for the platform, and create a new SDSoC platform in the SDx™ IDE. The various
steps are detailed in the following sections.

Edit the Platform DSA
Copy the Base Platform

The first step is to locate the platform specific files for one of the SDSoC base platforms. The
files are provided as a part of the SDSoC software installation, and can generally be found at the
following location: <SDx_Install_Dir>/platforms. For instance, the files for the ZCU102
platform can be found at <SDx_Install_Dir>/platforms/zcu102.

TIP: It is a good idea to copy the platform folder to make sure you are editing the copy, and not the original
platform from your software installation. Though perhaps your file permissions would prevent you from modifying
the installation files directly.

Open the Platform DSA

The DSA file for the platform can be can be found in the ./hw folder of the platform. For
example, the DSA file for the ZCU102 platform is found at zcu102/hw/zcu102.dsa.

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=105

In your copy of the platform, open the DSA in the Vivado Design Suite using the following
process.

1. Launch the Vivado Design Suite:

source <SDx_Install_Dir>/settings64.csh
vivado &

2. From within the Vivado IDE, open the DSA by using the following command from the Tcl
Console:

open_dsa <path_to_dsa>/zcu102.dsa

A new project is created in your current working directory, and the block design is opened in the
Vivado IP Integrator. The block design inside the DSA file has the name from the original
platform you are editing. At this point, you should rename the block design to match the name of
the new platform you are creating.

Use the File → Save Block Design As command from the main menu to rename the block design.

TIP: When you use the Save Block Design As command, the new block design is added to the current project.

Remove Original Block Design

To remove the original block design, and its wrapper from the project, open the Sources window,
and expand the wrapper to show original block design inside. Select both the wrapper and the
block design. Right-click and select the Remove File from Project command.

Appendix D: Changing the SDSoC Platform Device

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=106

Figure 67: Remove File from Project

This removes the HDL wrapper and the original block design from the project. In the Remove
Sources dialog box that opens, you can select the Also delete the project local file/directory
from disk checkbox to completely delete the files. This should leave the new block design in the
project, and you are ready to move to the next step of changing the target part for the project.

TIP: Removing the HDL wrapper opens the Invalid Top Module dialog box as there is no top-level design module
for the project. Select the Ignore and continue with invalid top module option, and click OK.

Change the Project Part

At this point you can edit the project settings to change the target part for the project. Select the
Settings command under the Project Manager menu in the Flow Navigator window. The Settings
dialog box will open displaying the current Project device as shown below.

Appendix D: Changing the SDSoC Platform Device

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=107

Figure 68: General Page of the Settings Dialog Box

Select the Browse button for the Project device field to open the Select Device dialog box. From
this dialog box you can select a board or part for the project. Select the Parts tab at the top of
the Select Device dialog box to list the available parts as shown below. The displayed parts can
be filtered by Category, Family, Package, etc. You can also use the Search field to filter the
displayed parts by a specific search string.

Select a new Project part for your design, for example the xczu9eg-ffvb1156-2-i device.

Appendix D: Changing the SDSoC Platform Device

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=108

Figure 69: Select Device

As soon as you change the project settings from a board flow to a part-based flow, all of the IP in
the design will go stale, be locked, and require an upgrade. This is indicated by the yellow banner
at the top of the block design. At the very least, the change of the target part in the project has
made the current customization of the IP in the design out-of-date. For this reason the IP is
locked, and must be updated to re-target the new part in the design.

TIP: There may be other reasons, such as major or minor revisions, that the IP may be locked and need to be
updated.

Appendix D: Changing the SDSoC Platform Device

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=109

Figure 70: Locked IP Banner

Click the Report IP Status link in the banner. This opens the IP Status report. Select all of the IP
in the report and click the Upgrade Selected command.

After the IP in the design are upgraded, the Generate Output Products dialog box is displayed.
Select Generate. This starts the generation of the necessary HDL files for the IP contained within
the block design. Wait for the generation of the output products to finish. The Design Runs
window displays the status of the Out-of-Context module runs.

Edit Platform Properties

The block design needs platform properties to be defined, as explained in Declaring Platform
(PFM) Interfaces and Properties. Review that topic for a complete discussion of what needs to be
done.

Begin editing the platform properties by selecting Window → Platform Interfaces from the
Vivado menu bar and clicking on the Enable platform interfaces link. This displays any existing
platform properties that you may need to update.

TIP: The platform properties defined in the original block design may be inherited in the new block design you
created using the Save Block Design As command. You will need to set the platform properties again to insure
they properly define your platform.

In the Platform Interface window, select the top-level Platform, as shown in the following figure.
Selecting the top-level Platform in the Platform Interfaces window, opens the Platform
Properties window, also shown in the following figure.

Appendix D: Changing the SDSoC Platform Device

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=110

Figure 71: Select the Top-Level Platform

X22270-013119

Notice the Platform Properties window displays the Name, Vendor, Board, and Version
properties, which you can edit as needed to define your custom platform. Edit the Vendor field to
specify your company name, or appropriate name as the Vendor of this platform.

IMPORTANT! You must edit at least one field in the Platform Properties window to have the properties written
to the current project, which is required for the DSA.

After editing the Platform Properties, you should see commands similar to the following
commands written to the Tcl Console window:

set_property pfm.name my_platform [get_files ...]
set_property dsa.name "my_platform" [current_project]
set_property dsa.vendor "xilinx.com" [current_project]
set_property dsa.board_id "lib" [current_project]

Appendix D: Changing the SDSoC Platform Device

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=111

In the Platform Interfaces window, check the Clocking properties, the Interface properties, and
the Interrupt properties as defined in Configuring Platform Interface Properties.

With the platform properties defined, you can validate the block design by running validation.
This can be done by typing the following command in the Tcl console:

validate_bd_design -include_pfm -force

Write the Platform DSA

In this step, you will create an HDL wrapper for the block design, generate a bitstream for the
design (after synthesis and implementation), export the hardware description file, and write the
DSA file for use by SDSoC.

In the Sources window, create a new HDL wrapper by right-clicking on the block design and
selecting Create HDL Wrapper. In the Create HDL Wrapper dialog box, select the Let Vivado
manage wrapper and auto-update option, and click OK.

After the wrapper is created, right-click the wrapper in the Sources window, and select the Set as
Top command to specify this as the top-level of your platform design.

In the Flow Navigator, select Generate Bitstream. The Vivado tool notifies you that there are no
implementation results, and asks if you want to run synthesis and implementation. Click Yes to
proceed. Click OK to launch the runs.

With the bitstream generated for the platform, use the File → Export → Export Hardware
command to write the hardware description file for the project. Select Include bitstream when
prompted in the Export Hardware dialog box.

You are now ready to generate the new platform DSA, to replace the original DSA file you
opened at the start of this process. In the Tcl Console, use the following commands to write and
validate the DSA:

write_dsa -force -include_bit <path_to_platform>/my_platform.dsa
validate_dsa my_platform.dsa

With the platform DSA file exported, you are now ready to import the DSA into a new platform
project, and define the software platform elements as described in the next section.

Create the New Platform
TIP: The process for creating a new platform project, and defining the software platform elements from the DSA
file, is explained in detail in Chapter 4: Creating the Platform Software Component, and demonstrated in the
SDSoC Platform Development Tutorial found on GitHub.

Appendix D: Changing the SDSoC Platform Device

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 112Send Feedback

https://github.com/Xilinx/SDSoC-Tutorials/tree/master/platform-creation-tutorial
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=112

With the platform DSA file created, as described in the last section, you are now ready to define
an SDSoC platform project, and the software platform elements needed to complete the updated
platform. Start by opening the SDx IDE and creating a new platform project. Specify the platform
name, taking care to use the same name you specified in the platform DSA file, the block design,
and the PFM_NAME property.

Specify the Create from hardware specification (DSA) option in the New Platform Project dialog
box, and click Next.

On the Platform Project Specification page, select the Browse button for the DSA file field, and
navigate to select the DSA file for the new platform. The SDx IDE will populate the Operating
system and Processor fields automatically, though you are free to change them as needed.

The platform project is created, and the Platform Configuration Settings opens in the Editor area
of the SDx IDE. The SDx tool automatically creates a system configuration, called sysconfig1,
and processor domain with a name based on the operating system and processor you selected.
You can add additional System Configurations and Domains to add operating systems for specific
processor cores.

Appendix D: Changing the SDSoC Platform Device

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=113

Figure 72: Add Domain - Linux

You can populate the software files needed for the platform, either by selecting the Generate
software components option, or locating existing files by selecting the Use pre-built software
component option.

IMPORTANT! Generally, you should Generate software components to avoid difficulty trying to reuse existing
software components, as existing software boot files, and software drivers may no longer work for the modified
platform. As an example, a new driver for the custom IP in the block design may be needed when building the
software files. In this case, you can let the SDx IDE generate the software components directly. Refer to the
instructions in Linux Boot Files for information on setting up your PetaLinux installation to let the SDx IDE
generate your Linux software components. Again, refer to the SDSoC Platform Development Tutorial for an
example of this process.

Appendix D: Changing the SDSoC Platform Device

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 114Send Feedback

https://github.com/Xilinx/SDSoC-Tutorials/tree/master/platform-creation-tutorial
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=114

If there are no major hardware changes, you can use pre-built software components. You can
locate these in an existing original platform, for example. For a standalone configuration, you will
need to specify the Boot Directory, and the Bif File. For the Linux configuration, you will need to
specify the Boot Directory, and the Bif File, as well as the Image folder in the domain, that
contains the image.ub file.

Figure 73: Generate Platform

With the system configurations, and processor domains defined, you can click Generate Platform
to create the SDSoC platform. Once the platform is created, you can add it to your board
repository, and use it in SDSoC application projects.

Appendix D: Changing the SDSoC Platform Device

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=115

Appendix E

SDSoC Platform Examples
Introduction

This appendix provides simple examples of SDSoC™ platforms created from a working hardware
system built using the Vivado® Design Suite, with a software run-time environment, including
operating system kernel, boot loaders, file system, and libraries that run on top of the hardware
system. Each example demonstrates a commonly used platform feature, and is built upon the
ZC702 board available from Xilinx.

• zc702_axis_io - Accessing a data stream that could represent direct I/O from FPGA pins in
an SDSoC platform

• zc702_acp - Sharing a processing system AXI bus interface between the platform and the
sdscc system compiler

Each example is structured with the following information:

• Description of the platform and what it demonstrates.

• Instructions to generate the SDSoC hardware platform meta-data file.

• Instructions to create platform software libraries, if required.

• Description of the SDSoC software platform meta-data file.

• Basic platform testing.

In addition to these platform examples, it would be worthwhile to inspect the standard SDSoC
platforms that are included in the SDx™ IDE in the <sdx_root>/platforms directory.

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=116

MicroBlaze Hardware Requirements
In addition to targeting Zynq and Zynq® UltraScale+™ MPSoC devices, you can build an SDSoC
platform that targets any Xilinx® device by using the MicroBlaze processor as the target CPU
(add reference to MicroBlaze™ documentation). A MicroBlaze platform in SDSoC must be a self-
contained system containing an LMB memory, MicroBlaze Debug Module (MDM), UART, and AXI
Timer built using the Vivado Design Suite and SDK. A sample MicroBlaze example is in
<sdx_root>/sample/platforms/arty folder. The figure below shows a minimal system.
Notice that the JTAG UART is enabled in the MDM and appears as an AXI-Lite slave. The system
runs on a clock (sys) delivered from the board.

Figure 74: Minimal MicroBlaze System

The SDSoC runtime requires the platform hardware to include two IPs: a timer for the
sds_clock_counter() API, and a UART to print runtime error messages. Since a MicroBlaze
processor has a single AXI Master port (M_AXI_DP) to control AXI slaves, a MicroBlaze platform
must include an AXI interconnect connected to this port as described in Example: Sharing a
Platform IP AXI Port.

MicroBlaze systems that use DDR typically connect the processor to the DDR via MIG using the
cache facilities built into the MicroBlaze. An example system is shown below.

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=117

Figure 75: MicroBlaze System with MIG

In the system above, the MicroBlaze is configured with an 8 KB cache. The instruction and data
cache ports (M_AXI_DC and M_AXI_IC) are connected to the MIG. The UART is connected to an
on-board USB-to-UART converter chip and does not use the JTAG UART from the previous
design. The system runs on the user-interface (UI) clock produced by MIG. Other than these
differences, the MicroBlaze systems are identical.

Ports on the MIG’s AXI Interconnect IP can be registered using PFM properties as described in
Declaring AXI Ports for the type M_AXI_HP which is exactly the same as Zynq HP Ports. SDSoC
runtime will invalidate or flush buffers in exactly the same way as it does for Zynq devices.

Example: Direct I/O in an SDSoC Platform
An SDSoC platform can include input and output subsystems; for example, analog-to-digital and
digital-to-analog converters, or video I/O, by converting raw physical data streams into AXI4-
Stream interfaces that are exported as part of the platform interface specification. For
information on the zc702_axis_io sample platform, see “Using External I/O” in the SDSoC
Environment User Guide (UG1027). This example includes sample applications that demonstrate
how an input data stream can be written directly into memory buffers without data loss, and how
an application can "packetize" the data stream at the AXI transport level to communicate with
other functions (including, but not limited to DMAs) that require packet framing.

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 118Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=118

RECOMMENDED: The source code for this platform can be found in <sdx_root>/samples/platforms/
zc702_axis_io/src.

Run the following command from the command shell using zc702_axis_io_dsa.tcl, a
Vivado Tcl script to build the hardware platform in a batch mode:

vivado –mode batch –source zc702_axis_io_dsa.tcl

Run the following command to build the platform in GUI mode to inspect the hardware system in
the Vivado IP integrator:

vivado –mode gui –source zc702_axis_io_dsa.tcl

The command opens the Vivado IDE and builds the platform. The resulting hardware system will
look similar to the following block diagram.

Figure 76: zc702_axis_io Block Diagram

To make this design portable, this platform includes a free-running binary counter that generates
a continuous stream of data samples at 50 MHz, which acts as a proxy for data streaming directly
from FPGA pins. To convert this input data stream into an AXI4-Stream for SDSoC applications,
the platform connects the counter output to the s_axis_tdata slave port of an AXI4-Stream
data FIFO, with a constant block providing the required s_axis_tvalid signal, always one. The

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=119

data FIFO IP is configured to store up to 1024 samples with an output clock of 100 MHz to
provide system elasticity so that the consumer of the stream can process the stream "bubble-
free" (i.e., without dropping data samples). In a real platform, the means for converting to an
AXI4-Stream, relative clocking and amount of hardware buffering will vary according to system
requirements.

Similar to input streaming off of an analog-to-digital converter, this data stream is not packetized,
which means the AXI4-Stream has no TLAST signal. Consequently, any SDSoC application that
consumes the data stream must be capable of handling unpacketized streams. Within the SDSoC
environment, every data mover IP core (e.g., the Vivado AXI4 Direct Memory Access IP (AXI
DMA)) requires packetized AXI4-Streams that include the TLAST signal. To consume the
streaming input from this platform, an application must employ direct hardware connections to
the AXI4-Stream port.

TIP: A platform can also export an AXI4-Stream port that includes the TLAST signal, in which case SDSoC
applications do not require direct connections to the port.

Declaring the SDSoC Hardware Platform Interface
As described in Chapter 3: Creating the Platform Hardware Component, the hardware platform
port interface is defined by setting PFM properties on cells and ports within a Vivado IP
integrator block diagram.

In the zc702_axis_io_dsa.tcl script, this occurs in lines 45-67. Use the following steps to
set the properties on cells and ports within a Vivado IP integrator block diagram.

1. Declare the platform name as an IP-XACT VLNV (vendor:library:name:version) string using
the following commands:

set_property PFM_NAME \
"xilinx.com:zc702_axis_io:zc702_axis_io:1.0" \
[get_files ./zc702_axis_io_vivado/zc702_axis_io.srcs/\
sources_1/bd/zc702_axis_io/zc702_axis_io.bd]

2. Declare a platform clock with id 1 using the following commands:

set_property PFM.CLOCK { \
clk_out2 {id "1" is_default "true" proc_sys_reset "psr_1" } \
 } [get_bd_cells /clk_wiz_0]

Note that every clock must have an associated proc_sys_reset that provides
synchronized reset signals for blocks using this clock.

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=120

3. At least, one general purpose AXI master and one AXI slave port must be declared. Use the
following command to declare the platform AXI interfaces, each with an associative list
containing several attributes.

set_property PFM.AXI_PORT { \
M_AXI_GP0 {memport "M_AXI_GP"} \
M_AXI_GP1 {memport "M_AXI_GP"} \
S_AXI_ACP {memport "S_AXI_ACP" sptag "ACP"
memory "ps7 ACP_DDR_LOWOCM"} \
S_AXI_HP0 {memport "S_AXI_HP" sptag "HP0"
memory ps7 HP0_DDR_LOWOCM"} \
S_AXI_HP1 {memport "S_AXI_HP" sptag "HP1"
memory ps7 HP1_DDR_LOWOCM"} \
S_AXI_HP2 {memport "S_AXI_HP" sptag "HP2"
memory ps7 HP2_DDR_LOWOCM"} \
S_AXI_HP3 {memport "S_AXI_HP" sptag "HP3"
memory ps7 HP3_DDR_LOWOCM"} \
} [get_bd_cells /ps7]

Each AXI port requires a memport memory type declaration, which must be one of the
following:

a. M_AXI_GP – a general purpose master

b. S_AXI_ACP – a cache coherent slave

c. S_AXI_HP – a high performance, non-cache coherent slave

d. S_AXI_HPC – a high performance slave (Zynq UltraScale+ MPSoC only)

e. MIG – a slave on an external DDR (MIG) memory controller IP

An AXI slave port requires an sptag that provides a symbolic tag to represent the port,
and two additional memory attributes.

f. Memory instance: The cell name of the block in the IP integrator address editor

g. Address segment: The ‘Base Name’ associated with the port as seen in the Vivado IP
integrator address editor

4. Use the following command to declare the stream_fifo master AXI4-Stream port.

set_property PFM.AXIS_PORT { \
 M_AXIS {type "M_AXIS"} \
 } [get_bd_cells /stream_fifo]

5. Use the following command to declare the interrupt inputs by constructing a list of port
names on a Concat block that is connected to the interrupt port on the
processing_system7 block:

set intVar []
for {set i 0} {$i < 16} {incr i} {
 lappend intVar In$i {}
}
set_property PFM.IRQ $intVar [get_bd_cells /xlconcat_0]

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=121

6. After declaring the port interface, use the following command to generate the output
products required to create the DSA from the block diagram:

generate_target all \
[get_files ./zc702_axis_io_vivado/zc702_axis_io.srcs/\
sources_1/bd/zc702_axis_io/zc702_axis_io.bd]

7. Use the following command to generate the DSA:

write_dsa -force ./zc702_axis_io.dsa

Making the SDSoC Platform from the Command Line
As described in Software Platform Data Creation, the following platform components provide the
application run time context:

• Bootloaders

• Operating system

• File system

The <sdx_root>/samples/platforms/zc702_axis_io/src/
zc702_axis_io_pfm.tcl file is a a tcl script that builds the SDSoC platform by incorporating
the DSA hardware and software components that were built using PetaLinux and SDx (SDK style
first-stage boot loader project).

Run the following command from an SDSoC command shell to build the platform in batch mode
using zc702_axis_io_pfm.tcl SDx tcl script which is executed by the xsct utility provided
as part of SDx.:

xsct –sdx ./zc702_axis_io_dsa.tcl

1. Use the following command to create a platform object in the xsct command line
interpreter:

platform -name zc702_axis_io \
-desc "Zynq ZC702 Board with direct I/O" \
-hw ./zc702_axis_io.dsa -out ./output \
-prebuilt -samples samples

2. Use the following command to create a new system configuration for Linux applications:

system -name linux -display-name "Linux" \
-boot ./boot -readme ./generic.readme

3. Use the following command to define a processor group or domain for this system
configuration:

domain -name linux -proc ps7_cortexa9_0 \
-os linux -image ./linux/image

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=122

4. Use the following command to register boot files for the Linux system configuration:

boot -bif ./linux/linux.bif

5. Use the following command to register QEMU arguments and a directory containing boot
files to support SDSoC emulation:

domain -qemu-args ./qemu/lnx/qemu_args.txt
domain -qemu-data ./boot

6. Use the following command to create and populate a standalone ('bare metal') system
configuration:

system -name standalone -display-name "Standalone" -boot ./boot -
readme ./generic.readme
domain -name standalone -proc ps7_cortexa9_0 -os standalone
app -lscript ./standalone/lscript.ld
boot -bif ./standalone/standalone.bif
domain -qemu-args ./qemu/std/qemu_args.txt
domain -qemu-data ./boot

7. Use the following command to create the SDSoC platform:

platform –generate

This script creates an SDK Platform project called zc702_axis_io in the following
directory:

output/zc702_axis_io/export/

Platform Sample Designs
An SDSoC platform can include sample applications that demonstrate its use, as described in
Chapter 5: Sample Applications. The SDx IDE looks for a file called samples/<example>/
description.json (template.xml) for information on the sample application within a
platform. The template.xml file for the zc702_axis_io platform lists several test
applications, each of which is of specific interest.

<template location="aximm" name="Unpacketized AXI4-Stream to DDR"
 description="Shows how to copy unpacketized AXI4-Stream data
directly to DDR.">
 <supports>
 <and>
 <or>
 <os name="Linux"/>
 <os name="Standalone"/>
 </or>
 </and>
 </supports>
 <accelerator name="s2mm_data_copy" location="main.cpp"/>
 </template>
 <template location="stream" name="Packetize an AXI4-Stream"
 description="Shows how to packetize an unpacketized AXI4-
Stream.">
 <supports>
 <and>

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=123

 <or>
 <os name="Linux"/>
 <os name="Standalone"/>
 </or>
 </and>
 </supports>
 <accelerator name="packetize" location="packetize.cpp"/>
 <accelerator name="minmax" location="minmax.cpp"/>
 </template>
 <template location="pull_packet" name="Lossless data capture from AXI4-
Stream to DDR"
 description="Illustrates a technique to enable lossless data
capture from a free-running input source.">
 <supports>
 <and>
 <or>
 <os name="Linux"/>
 <os name="Standalone"/>
 </or>
 </and>
 </supports>
 <accelerator name="PullPacket" location="main.cpp"/>
 </template>

To use a platform in the SDx IDE, you must add it to the platform repository for the Eclipse
workspace as described in the following steps.

1. Launch Xilinx SDx and provide a path to your workspace such as <path_to_tutorial>/
myplatforms/.

2. Create a new project by selecting File → New → Xilinx SDx Project.

3. Specify the type of project as an Application Project, and click Next.

4. Specify a project name in the Create New SDx Project page such as my_zc702_axis_io,
and click Next.

5. In the Choose Hardware Platform page click Add Custom Platform.

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=124

Figure 77: Add Custom Platform

6. Navigate to the folder containing the platform <sdx_root>/samples/platforms/
zc702_axis_io.

7. The platform will show up in the Choose Hardware Platform Page. Select zc702_axis_io
(custom) and click Next.

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=125

Figure 78: Choose Hardware Platform

8. On the System Configuration page, keep the default Linux for System Configuration and click
Next.

9. On the Templates page, select Unpacketized AXI4-Stream to DDR to test the
platform with one of the sample applications, and click Finish.

The s2mm_data_copy function is pre-selected for hardware acceleration. The program data
flow within s2mm_data_copy_wrapper creates a direct signal path from the platform
input to a hardware function called s2mm_data_copy that then pushes the data to memory
as a zero_copy datamover. That is, the s2mm_data_copy function acts as a custom DMA.
The main program allocates four buffers, invokes s2mm_data_copy_wrapper, and then
checks the written buffers to ensure that data values are sequential, i.e., the data is written
bubble-free. For simplicity, this program does not reset the counter, so the initial value
depends upon how much time elapses between board power-up and invoking the program.

10. Open up main.cpp. Key points to observe are:

• Buffers are allocated using sds_alloc to guarantee physically contiguous allocation
required for the zero_copy datamover.

unsigned *bufs[NUM_BUFFERS];
unsigned* rbuf0;
for(int i=0; i<NUM_BUFFERS; i++) {
 bufs[i] = (unsigned*) sds_alloc(BUF_SIZE *
 sizeof(unsigned));
}
// Flush the platform FIFO of start-up garbage
s2mm_data_copy(rbuf0, bufs[0]);

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=126

s2mm_data_copy(rbuf0, bufs[0]);
s2mm_data_copy(rbuf0, bufs[0]);
for(int i=0; i<NUM_BUFFERS; i++) {
 s2mm_data_copy(rbuf0, bufs[i]);
}

• Specify the connectivity between hardware function and the platform using the
sys_port pragma.

// s2mm "DMA" accelerator
#pragma SDS data sys_port (fifo:stream_fifo_M_AXIS)
#pragma SDS data zero_copy(buf)
int s2mm_data_copy(unsigned *fifo, unsigned buf[BUF_SIZE])
{
#pragma HLS interface axis port=fifo
 for(int i=0; i<BUF_SIZE; i++) {
#pragma HLS pipeline
 buf[i] = *fifo;
 }
 return 0;
}

11. Build the application by clicking on the Build icon in the toolbar. When the build completes,
the Debug folder contains an sd_card folder with the boot image and application ELF.

12. After the build finishes, copy the contents of the sd_card directory onto an SD card, boot,
and run my_zc702_axis_io.elf.

sh-4.3# cd /mnt
sh-4.3# ./my_zc702_axis_io.elf
TEST PASSED!
sh-4.3#

Example: Sharing a Platform IP AXI Port
To share an AXI master (slave) interface between a platform IP and the accelerator and data
motion IPs generated by the SDSoC compilers, employ the SDSoC Tcl API to declare the first
unused AXI master (slave) port (in index order) on the AXI interconnect IP block connected to the
shared interface. Your platform must use each of the lower indexed masters (slaves) on this AXI
interconnect.

SDSoC Platform Hardware Interface
Use the following steps to build the SDSoC hardware platform interface within a Vivado IDE:

Note: The source code for this platform is available in <sdx_root>/samples/platforms/
zc702_acp/src file.

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=127

1. Run the following command from the command shell using zc702_acp_dsa.tcl, a Vivado
tcl script to build the hardware platform in a batch mode:

vivado –mode batch –source zc702_acp_dsa.tcl

You can also build the platform in GUI mode to inspect the hardware system in Vivado IP
integrator. Run the following command to build the platform in GUI mode:

vivado –mode gui –source zc702_acp_dsa.tcl

This command will open the Vivado IDE and build the platform. The resulting hardware
system will look similar to the following block diagram.

Figure 79: zc702_acp Block Design

2. Use the following commands to declare the platform name as an IP-XACT VLNV
(vendor:library:name:version) string:

set_property PFM_NAME \
"xilinx.com:zc702_acp:zc702_acp:1.0" \
[get_files ./zc702_acp_vivado/zc702_acp.srcs/\
sources_1/bd/zc702_acp/zc702_acp.bd]

3. Use the following command to declare a platform clock with id 1:

set_property PFM.CLOCK { \
 clk_out1 {id "2" is_default "true" proc_sys_reset "psr_0" } \
 clk_out2 {id "1" is_default "false" proc_sys_reset "psr_1" } \
 clk_out3 {id "0" is_default "false" proc_sys_reset "psr_2" } \
 clk_out4 {id "3" is_default "false" proc_sys_reset "psr_3" } \
} [get_bd_cells /clk_wiz_0]

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=128

Note that every clock must have an associated proc_sys_reset that provides
synchronized reset signals for blocks using this clock.

4. At least one general purpose AXI master and one AXI slave port must be declared. Use the
following command to declare the platform AXI interfaces from the processing system IP,
each with an associative list containing several attributes:

set_property PFM.AXI_PORT { \
M_AXI_GP1 {memport "M_AXI_GP"} \
S_AXI_HP0 {memport "S_AXI_HP" sptag "HP0"
memory ps7 HP0_DDR_LOWOCM"} \
S_AXI_HP1 {memport "S_AXI_HP" sptag "HP1"
memory ps7 HP1_DDR_LOWOCM"} \
S_AXI_HP2 {memport "S_AXI_HP" sptag "HP2"
memory ps7 HP2_DDR_LOWOCM"} \
S_AXI_HP3 {memport "S_AXI_HP" sptag "HP3"
memory ps7 HP3_DDR_LOWOCM"} \
} [get_bd_cells /ps7]

Each AXI port requires a memport memory type declaration, which must be one of the
following:

• M_AXI_GP – a general purpose master

• S_AXI_ACP – a cache coherent slave

• S_AXI_HP – a high performance, non-cache coherent slave

• S_AXI_HPC – a high performance slave (Zynq UltraScale+ MPSoC only)

• MIG – a slave on an external DDR (MIG) memory controller IP

An AXI slave port requires an sptag that provides a symbolic tag to represent the port, and
two additional memory attributes.

• Memory instance – the cell name of the block in the IP integrator address editor

• Address segment – the ‘Base Name’ associated with the port as seen in the Vivado IP
integrator address editor

5. The platform uses both the S_AXI_ACP and M_AXI_GP0 ports on the processing system.
Use the following Tcl code to declare additional ports on the axi_interconnect IPs within the
platform:

set gpMasters []
for {set i 1} {$i < 64} {incr i} {
 lappend gpMasters M[format %02d $i]_AXI {memport "M_AXI_GP"}
}
set_property PFM.AXI_PORT $gpMasters \
[get_bd_cells /axi_ic_ps7_M_AXI_GP0]

set acpSlaves []
for {set i 1} {$i < 8} {incr i} {
 lappend acpSlaves S[format %02d $i]_AXI {memport "S_AXI_ACP" \
sptag "ACP" memory "ps_ACP_DDR_LOWOCM"}
}
set_property PFM.AXI_PORT $acpSlaves \
[get_bd_cells /axi_ic_ps7_S_AXI_ACP]

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=129

Note that the memport attribute is inherited from the processing system port connected to
the axi_interconnect.

6. Use the following command declares the interrupt inputs by constructing a list of port names
on a Concat block that is connected to the interrupt port on the processing_system7 block:

set intVar []
for {set i 0} {$i < 16} {incr i} {
 lappend intVar In$i {}
}
set_property PFM.IRQ $intVar [get_bd_cells /xlconcat_0]

7. After declaring the port interface, use the following command to generate the output
products required to create the DSA from the block diagram:

generate_target all \
[get_files ./zc702_acp_vivado/zc702_acp.srcs/\
sources_1/bd/zc702_acp/zc702_acp.bd]

8. Finally, use the following command to generate the DSA:

write_dsa -force ./zc702_acp.dsa

Appendix E: SDSoC Platform Examples

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=130

Appendix F

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. DocNav is installed with
the SDSoC™ and SDAccel™ development environments. To open it:

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 131Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=131

1. SDSoC Environments Release Notes, Installation, and Licensing Guide (UG1294)

2. SDSoC Environment User Guide (UG1027)

3. SDSoC Environment Getting Started Tutorial (UG1028)

4. SDSoC Environment Tutorial: Platform Creation (UG1236)

5. SDSoC Environment Platform Development Guide (UG1146)

6. SDSoC Environment Profiling and Optimization Guide (UG1235)

7. SDx Command and Utility Reference Guide (UG1279)

8. SDSoC Environment Programmers Guide (UG1278)

9. SDSoC Environment Debugging Guide (UG1282)

10. SDx Pragma Reference Guide (UG1253)

11. UltraFast Embedded Design Methodology Guide (UG1046)

12. Zynq-7000 SoC Software Developers Guide (UG821)

13. Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137)

14. ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC User Guide (UG850)

15. ZCU102 Evaluation Board User Guide (UG1182)

16. PetaLinux Tools Documentation: Reference Guide (UG1144)

17. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

18. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

19. SDSoC Development Environment web page

20. Vivado® Design Suite Documentation

Training Resources
1. SDSoC Development Environment and Methodology

2. Advanced SDSoC Development Environment and Methodology

Appendix F: Additional Resources and Legal Notices

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 132Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1294-sdsoc-rnil.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://github.com/Xilinx/SDSoC-Tutorials/tree/master/getting-started-tutorial
https://github.com/Xilinx/SDSoC-Tutorials/tree/master/platform-creation-tutorial
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1282-sdsoc-debugging-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=zcu102;d=ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/training/courses/sdsoc-development-environment-method.html
https://www.xilinx.com/training/courses/advanced-sdsoc-development-environment-methodology.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=132

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Appendix F: Additional Resources and Legal Notices

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 133Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=133

Copyright

© Copyright 2015-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. OpenCL and the OpenCL logo are trademarks of Apple Inc.
used by permission by Khronos. HDMI, HDMI logo, and High-Definition Multimedia Interface are
trademarks of HDMI Licensing LLC. AMBA, AMBA Designer, Arm, ARM1176JZ-S, CoreSight,
Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other
countries. All other trademarks are the property of their respective owners.

Appendix F: Additional Resources and Legal Notices

UG1146 (v2019.1) June 5, 2019 www.xilinx.com
SDSoC Platform Development Guide 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1146&Title=SDSoC%20Environment%20Platform%20Development%20Guide%20&releaseVersion=2019.1&docPage=134

	SDSoC Environment Platform Development Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Ch. 2: Creating SDSoC Platforms
	Using an SDx Workspace
	Creating an SDSoC Platform Project
	Querying the Platform

	Ch. 3: Creating the Platform Hardware Component
	Hardware Requirements
	Begin with a Vivado Project
	Design Flow for Generating the DSA

	Logic Design Using the IP Integrator
	Declaring Platform (PFM) Interfaces and Properties
	Setting the Platform Name
	Configuring Platform Interface Properties
	Declaring Clocks
	Declaring AXI Ports
	Declaring AXI4-Stream Ports
	Declaring Interrupt Ports

	Example PFM Property Tcl Script

	Implementing the Hardware Platform Design
	Using the IP Cache
	Creating Design Constraints
	Simulating the Design
	Implementation and Timing Validation

	Generating a Device Support Archive
	Validating the DSA

	Ch. 4: Creating the Platform Software Component
	Begin with an SDx Platform Project
	Prebuilt Hardware
	Library Header Files
	Linux Boot Files
	Standalone Boot Files
	First Stage Boot Loader (FSBL)
	Board Image Format (BIF) File

	FreeRTOS Configuration/Version Change

	Ch. 5: Sample Applications
	Appx. A: Platform Checklist
	Appx. B: SDx IDE Glossary
	Appx. C: Migrating SDSoC Platforms to a New Release
	Migrating Platforms to 2019.1 and Later
	Mapping SDSoC Tcl Commands to Vivado Properties

	Appx. D: Changing the SDSoC Platform Device
	Edit the Platform DSA
	Create the New Platform

	Appx. E: SDSoC Platform Examples
	MicroBlaze Hardware Requirements
	Example: Direct I/O in an SDSoC Platform
	Declaring the SDSoC Hardware Platform Interface
	Making the SDSoC Platform from the Command Line
	Platform Sample Designs

	Example: Sharing a Platform IP AXI Port
	SDSoC Platform Hardware Interface

	Appx. F: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

