
Embedded System
Tools Reference
Manual

UG1043 (v2018.3) December 05, 2018
UG1043 (v2019.1) May 22, 2019

Embedded System Tools Reference Manual 2
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision
12/05/2018 Version 2018.3

General updates Minor editorial changes.
06/14/2016 Version 2016.2

General updates Added information about the supported processors and
compilers.
Added references to Zynq® UltraScale+™ MPSoC related
documentation.

Send Feedback
UG1043 (v2019.1) May 22, 2019

05/22/2019: Released with Vivado® Design Suite 2019.1 without changes from 2018.3.

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=2

Table of Contents
Revision History . 2

Chapter 1: Embedded System and Tools Architecture Overview
Design Process Overview. 6
Vivado Design Suite Overview . 8
Software Development Kit . 9

Chapter 2: GNU Compiler Tools
Overview . 12
Compiler Framework . 12
Common Compiler Usage and Options . 14
MicroBlaze Compiler Usage and Options . 29
Arm Cortex-A9 Compiler Usage and Options. 46
Other Notes . 48

Chapter 3: Xilinx System Debugger
SDK System Debugger . 50
Xilinx System Debugger Command-Line Interface (XSDB) . 51

Chapter 4: Flash Memory Programming
Overview . 52
Program Flash Utility . 53
Other Notes . 55

Appendix A: GNU Utilities
General Purpose Utility for MicroBlaze Processors. 60
Utilities Specific to MicroBlaze Processors. 60
Other Programs and Files . 63

Appendix B: Additional Resources and Legal Notices
Xilinx Resources . 64
Solution Centers. 64
Documentation Navigator and Design Hubs . 64
Embedded System Tools Reference Manual 3
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=3

References . 65
Training Resources. 65
Please Read: Important Legal Notices . 66
Embedded System Tools Reference Manual 4
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=4

Chapter 1

Embedded System and Tools Architecture
Overview

This guide describes the architecture of the embedded system tools and flows provided in
the Xilinx® Vivado® Design Suite for developing systems based on the MicroBlaze™
embedded processor and the Cortex A9, A53 and R5 Arm processors.

The Vivado Design Suite system tools enable you to design a complete embedded
processor system for implementation in a Xilinx FPGA device.

The Vivado Design Suite is a Xilinx development system product that is required to
implement designs into Xilinx programmable logic devices. Vivado includes:

• The Vivado IP integrator tool, with which you can develop your embedded processor
hardware.

• The Software Development Kit (SDK), based on the Eclipse open-source framework,
which you can use to develop your embedded software application. SDK is also
available as a standalone program.

• Embedded processing Intellectual Property (IP) cores including processors and
peripherals.

For links to Vivado documentation and other useful information, see Appendix B,
Additional Resources and Legal Notices.
Embedded System Tools Reference Manual 5
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=5

Chapter 1: Embedded System and Tools Architecture Overview
Design Process Overview
The tools provided with Vivado are designed to assist in all phases of the embedded design
process, as illustrated in Figure 1-1.

Hardware Development
Xilinx FPGA technology allows you to customize the hardware logic in your processor
subsystem. Such customization is not possible using standard off-the-shelf microprocessor
or controller chips.

The term “Hardware platform” describes the flexible, embedded processing subsystem you
are creating with Xilinx technology for your application needs.

The hardware platform consists of one or more processors and peripherals connected to the
processor buses.

When the hardware platform description is complete, the hardware platform can be
exported for use by SDK.

X-Ref Target - Figure 1-1

Figure 1-1: Embedded Design Process Flow

Vivado SDK

Add
Embedded Source

Design Entry

1. Create design in Base System Builder
 (automatically launches the first time)
2. Modify design in System Assembly View

Create /Identify a Workspace
(Automatic)

Create a New Project/Board
Support PackageExport to SDK

(.xml file only)

Implementation to Bitstream
1. Synthesis
2. Translate
3. MAP
4. PAR
5. Timing
6. Bitstream Generation
7. Data2MEM

Export to SDK
(.xml, .bit, .mmi files)

Netlist Generation
with Platgen

HDL or
Schematic

Application Development

Download to FPGA

.bit
.mmi

Debug

Board

Other Sources

- RTL
- Core Generator
- System Generator

.elf
Embedded System Tools Reference Manual 6
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=6

Chapter 1: Embedded System and Tools Architecture Overview
Software Development
A board support package (BSP) is a collection of software drivers and, optionally, the
operating system on which to build your application. The created software image contains
only the portions of the Xilinx library you use in your embedded design. You can create
multiple applications to run on the BSP.

The hardware platform must be imported into SDK prior to creation of software applications
and BSP.

Verification
Vivado provides both hardware and software verification tools. The following subsections
describe the verification tools available for hardware and software.

Hardware Verification Using Simulation

To verify the correct functionality of your hardware platform, you can create a simulation
model and run it on an Hardware Design Language (HDL) simulator. When simulating your
system, the processor(s) execute your software programs. You can choose to create a
behavioral, structural, or timing-accurate simulation model.

Software Verification Using Debugging

The following options are available for software verification:

• You can load your design on a supported development board and use a debugging tool
to control the target processor.

• You can gauge the performance of your system by profiling the execution of your code.

Device Configuration

When your hardware and software platforms are complete, you then create a configuration
bitstream for the target FPGA device.

• For prototyping, download the bitstream along with any software you require to run on
your embedded platform while connected to your host computer.

• For production, store your configuration bitstream and software in a non-volatile
memory connected to the FPGA.
Embedded System Tools Reference Manual 7
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=7

Chapter 1: Embedded System and Tools Architecture Overview
Vivado Design Suite Overview
An embedded hardware platform typically consists of one or more processors, peripherals
and memory blocks, interconnected via processor buses. It also has port connections to the
outside world. Each of the processor cores (also referred to as pcores or processor IPs) has a
number of parameters that you can adjust to customize its behavior. These parameters also
define the address map of your peripherals and memories. IP integrator lets you select from
various optional features; consequently, the FPGA needs only implement the subset of
functionality required by your application.

Figure 1-2 provides an overview of the Vivado architecture structure of how the tools
operate together to create an embedded system.

X-Ref Target - Figure 1-2

Figure 1-2: Vivado Design Suite Tools Architecture

JTAG Cable
Embedded System Tools Reference Manual 8
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=8

Chapter 1: Embedded System and Tools Architecture Overview
Software Development Kit
The Software Development Kit (SDK) provides a development environment for software
application projects. SDK is based on the Eclipse open-source standard. SDK has the
following features:

• Can be installed independent of Vivado with a small disk footprint.
• Supports development of software applications on single- or multi-processor systems.
• Imports the Vivado-generated hardware platform definition.
• Supports development of software applications in a team environment.
• Ability to create and configure board support packages (BSPs) for third-party OS.
• Provides off-the-shelf sample software projects to test the hardware and software

functionality.
• Has an easy GUI interface to generate linker scripts for software applications, program

FPGA devices, and program parallel flash memory.
• Has feature-rich C/C++ code editor and compilation environment.
• Provides project management.
• Configures application builds and automates the make file generation.
• Supplies error navigation.
• Provides a well-integrated environment for seamless debugging and profiling of

embedded targets.

For more information about SDK, see the Software Development Kit (SDK) Help [Ref 1].
Table 1-1: Software Development and Verification Tools
GNU Compiler Tools Builds a software application based on the platforms created.
Xilinx System Debugger
(XSDB)

A command-line interface for hw_server and other TCF servers.

SDK System Debugger GUI for debugging software on either a simulation model or target
device.

Program Flash Utility Allows you to erase and program on-board serial & parallel flash devices
with software and data.
Embedded System Tools Reference Manual 9
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=9

Chapter 1: Embedded System and Tools Architecture Overview
GNU Compiler Tools
GNU compiler tools (GCC) are called for compiling and linking application executables for
each processor in the system. Processor-specific compilers are:

• The mb-gcc compiler for the MicroBlaze processor.
• The arm-none-eabi-gcc, arm-linux-gnu-eabihf-gcc,

aarch64-linux-gnu-gcc, aarch64-none-eabi-gcc, armr5-none-eabi-gcc
compilers for the Arm processor.

As shown in the embedded tools architectural overview (Figure 1-2, page 8):

• The compiler reads a set of C-code source and header files or assembler source files for
the targeted processor.

• The linker combines the compiled applications with selected libraries and produces the
executable file in ELF format. The linker also reads a linker script, which is either the
default linker script generated by the tools or one that you have provided.

Refer to Chapter 2, “GNU Compiler Tools,”, and Appendix A, GNU Utilities for more
information about GNU compiler tools and utilities.

Xilinx System Debugger (XSDB)
Xilinx System Debugger (XSDB) is a command-line interface for hw_server and other TCF
servers. XSDB interacts with the TCF servers, thereby providing a full advantage of the
features supported by the TCF servers.

XSDB supports programming FPGAs, downloading and running programs on targets and
other advanced features. Refer to Chapter 3, Xilinx System Debugger for more information.

SDK System Debugger
The Xilinx-customized System Debugger is derived from open-source tools and is
integrated with Xilinx SDK. The SDK debugger enables you to see what is happening to a
program while it executes. You can set breakpoints or watchpoints to stop the processor,
step through program execution, view the program variables and stack, and view the
contents of the memory in the system.

The SDK debugger supports debugging through Xilinx System Debugger (XSDB). Refer to
Chapter 3, Xilinx System Debugger for more information.

Note: The GDB flow is deprecated and will not be available for future devices. The System Debugger
is intended for use only with the Arm over Digilent cable.
Embedded System Tools Reference Manual 10
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=10

Chapter 1: Embedded System and Tools Architecture Overview
Program Flash Utility
The Program Flash utility is designed to be generic and targets a wide variety of flash
hardware and layouts. See Chapter 4, “Flash Memory Programming.”
Embedded System Tools Reference Manual 11
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=11

Chapter 2

GNU Compiler Tools

Overview
The Vivado® Design Suite includes the GNU compiler collection (GCC) for the MicroBlaze™
processor and the Cortex A9 processor.

• The Vivado GNU tools support both the C and C++ languages.
• The MicroBlaze GNU tools include mb-gcc and mb-g++ compilers, mb-as assembler and

mb-ld linker.
• The Cortex A9 Arm processor tools include arm-xilinx-eabi-gcc and

arm-xilinx-eabi-g++ compilers, arm-xilinx-eabi-as assembler, and
arm-xilinx-eabi-ld linker.

• The toolchains also include the C, Math, GCC, and C++ standard libraries.

The compiler also uses the common binary utilities (referred to as binutils), such as an
assembler, a linker, and object dump. The MicroBlaze and Arm compiler tools use the GNU
binutils based on GNU version 2.16 of the sources. The concepts, options, usage, and
exceptions to language and library support are described Appendix A, “GNU Utilities.”

Compiler Framework
This section discusses the common features of the MicroBlaze andCortex A9Arm processor
compilers. Figure 2-1 displays the GNU tool flow.
Embedded System Tools Reference Manual 12
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=12

Chapter 2: GNU Compiler Tools
X-Ref Target - Figure 2-1

The GNU compiler is named mb-gcc for MicroBlaze and arm-xilinx-eabi-gcc for Arm
Cores. The GNU compiler is a wrapper that calls the following executables:

• Pre-processor (cpp0)
This is the first pass invoked by the compiler. The pre-processor replaces all macros
with definitions as defined in the source and header files.

• Machine and language specific compiler
This compiler works on the pre-processed code, which is the output of the first stage.
The language-specific compiler is one of the following:

° C Compiler (cc1)
The compiler responsible for most of the optimizations done on the input C code
and for generating assembly code.

° C++ Compiler (cc1plus)
The compiler responsible for most of the optimizations done on the input C++
code and for generating assembly code.

• Assembler (mb-as for MicroBlaze, arm-xilinx-eabi-as for Arm.
The assembly code has mnemonics in assembly language. The assembler converts
these to machine language. The assembler also resolves some of the labels generated
by the compiler. It creates an object file, which is passed on to the linker.

• Linker (mb-ld for MicroBlaze, arm-xilinx-eabi-ld for Arm.
Links all the object files generated by the assembler. If libraries are provided on the
command line, the linker resolves some of the undefined references in the code by
linking in some of the functions from the assembler.

Figure 2-1: GNU Tool Flow

cpp0

cc1 cc1plus

as

ld

(mb-as or arm-xilinx-eabi-as)

(mb-ld or arm-xilinx-eabi-ld)
Libraries

Output ELF File

Input C/C++ Files

X13367
Embedded System Tools Reference Manual 13
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=13

Chapter 2: GNU Compiler Tools
Executable options are described in:

• Commonly Used Compiler Options: Quick Reference, page 18
• Linker Options, page 23
• MicroBlaze Compiler Options: Quick Reference, page 30
• MicroBlaze Linker Options, page 37
• Arm Cortex-A9 Compiler Usage and Options, page 46
Note: From this point forward the references to GCC in this chapter refer tothe MicroBlaze compiler,
mb-gcc,and references to G++ refer tothe MicroBlaze C++ compiler, mb-g++.

Common Compiler Usage and Options
Usage
To use the GNU compiler, type:

<Compiler_Name> options files...

where <Compiler_Name> is mb-gcc or arm-xilinx-eabi-gcc. To compile C++ programs,
you can use the mb-g++ or arm-xilinx-eabi-g++ command.

Input Files
The compilers take one or more of the following files as input:

• C source files
• C++ source files
• Assembly files
• Object files
• Linker scripts
Note: These files are optional. If they are not specified, the default linker script embedded in the
linker (mb-ld or arm-xilinx-eabi-ld) is used.

The default extensions for each of these types are listed in Table 2-1. In addition to the files
mentioned above, the compiler implicitly refers to the libraries files libc.a, libgcc.a,
libm.a, and libxil.a. The default location for these files is the Vivado installation
directory. When using the G++ compiler, the libsupc++.a and libstdc++.a files are also
referenced. These are the C++ language support and C++ platform libraries, respectively.
Embedded System Tools Reference Manual 14
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=14

Chapter 2: GNU Compiler Tools
Output Files
The compiler generates the following files as output:

• An ELF file. The default output file name is a.exe on Windows.
• Assembly file, if -save-temps or -S option is used.
• Object file, if -save-temps or -c option is used.
• Preprocessor output, .i or .ii file, if -save-temps option is used.

File Types and Extensions
The GNU compiler determines the type of your file from the file extension. Table 2-1 lists
the valid extensions and the corresponding file types. The GCC wrapper calls the
appropriate lower level tools by recognizing these file types.
Table 2-1: File Extensions

Extension File type (Dialect)
.c C file
.C C++ file
.cxx C++ file
.cpp C++ file
.c++ C++ file
.cc C++ file
.S Assembly file, but might have preprocessor directives
.s Assembly file with no preprocessor directives
Embedded System Tools Reference Manual 15
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=15

Chapter 2: GNU Compiler Tools
Libraries
Table 2-2 lists the libraries necessary for the mb_gcc and arm-xilinx-eabi-gcc compilers.

Libraries are linked in automatically by both compilers. If the standard libraries are
overridden, the search path for these libraries must be given to the compiler. The libxil.a
is modified to add driver and library routines.

Language Dialect
The GCC compiler recognizes both C and C++ dialects and generates code accordingly. By
GCC convention, it is possible to use either the GCC or the G++ compilers equivalently on
a source file. The compiler that you use and the extension of your source file determines the
dialect used on the input and output files.

When using the GCC compiler, the dialect of a program is always determined by the file
extension, as listed in Table 2-1, page 15. If a file extension shows that it is a C++ source
file, the language is set to C++. This means that if you have compile C code contained in a
CC file, even if you use the GCC compiler, it automatically mangles function names.

The primary difference between GCC and G++ is that G++ automatically sets the default
language dialect to C++ (irrespective of the file extension), and if linking, automatically
pulls in the C++ support libraries. This means that even if you compile C code in a .c file
with the G++ compiler, it will mangle names.

Name mangling is a concept unique to C++ and other languages that support overloading
of symbols. A function is said to be overloaded if the same function can perform different
actions based on the arguments passed in, and can return different return values. To
support this, C++ compilers encode the type of the function to be invoked in the function
name, avoiding multiple definitions of a function with the same name.

Table 2-2: Libraries Used by the Compilers
Library Particular

libxil.a Contain drivers, software services (such as XilMFS) and initialization files developed
for the Vivado tools.

libc.a Standard C libraries, including functions like strcmp and strlen.
libgcc.a GCC low-level library containing emulation routines for floating point and 64-bit

arithmetic.
libm.a Math Library, containing functions like cos and sine.
libsupc++.a C++ support library with routines for exception handling, RTTI, and others.
libstdc++.a C++ standard platform library. Contains standard language classes, such as those for

stream I/O, file I/O, string manipulation, and others.
Embedded System Tools Reference Manual 16
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=16

Chapter 2: GNU Compiler Tools
Be careful about name mangling if you decide to follow a mixed compilation mode, with
some source files containing C code and some others containing C++ code (or using GCC
for compiling certain files and G++ for compiling others). To prevent name mangling of a C
symbol, you can use the following construct in the symbol declaration.

#ifdef __cplusplus
extern “C” {
£endif

int foo();
int morefoo();

#ifdef __cplusplus
}
£endif

Make these declarations available in a header file and use them in all source files. This
causes the compiler to use the C dialect when compiling definitions or references to these
symbols.

Note: All Vivado drivers and libraries follow these conventions in all the header files they provide.
You must include the necessary headers, as documented in each driver and library, when you
compile with G++. This ensures that the compiler recognizes library symbols as belonging to “C”
type.

When compiling with either variant of the compiler, to force a file to a particular dialect, use
the -x lang switch. Refer to the GCC manual on the GNU website for more information on
this switch. A link to the document is provided in the Appendix B, “Additional Resources and
Legal Notices.”

• When using the GCC compiler, libstdc++.a and libsupc++.a are not automatically
linked in.

• When compiling C++ programs, use the G++ variant of the compiler to make sure all
the required support libraries are linked in automatically.

• Adding -lstdc++ and -lsupc++ to the GCC command are also possible options.

For more information about how to invoke the compiler for different languages, refer to the
GNU online documentation.
Embedded System Tools Reference Manual 17
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=17

Chapter 2: GNU Compiler Tools
Commonly Used Compiler Options: Quick Reference
The summary below lists compiler options that are common to the compilers for MicroBlaze
and Arm processors.

Note: The compiler options are case sensitive.

To jump to a detailed description for a given option, click its name in the table below.

General Options
-E

Preprocess only; do not compile, assemble and link. The preprocessed output displays on
the standard out device.

-S

Compile only; do not assemble and link. Generates a .s file.

-c

Compile and Assemble only; do not link. Generates a .o file.

-g

This option adds DWARF2-based debugging information to the output file. The debugging
information is required by the GNU debugger, mb-gdb or arm-xilinx-eabi-gdb. The
debugger provides debugging at the source and the assembly level. This option adds
debugging information only when the input is a C/C++ source file.

General Options Library Search Options
-E

-S

-c

-g

-gstabs

-On

-v

-save-temps

-o filename

-Wp,option

-Wa,option

-Wl,option

-help

-B directory

-L directory

-I directory

-l library

-l libraryname

-L Lib Directory

Header File Search Option
-I Directory Name

Linker Options
-defsym _STACK_SIZE=value

-defsym _HEAP_SIZE=value
Embedded System Tools Reference Manual 18
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=18

Chapter 2: GNU Compiler Tools
-gstabs

Use this option for adding STABS-based debugging information on assembly (.S) files and
assembly file symbols at the source level. This is an assembler option that is provided
directly to the GNU assembler, mb-as or arm-xilinx-eabi-as. If an assembly file is
compiled using the compiler mb-gcc or arm-xilinx-eabi-gcc, prefix the option with -Wa.

-On

The GNU compiler provides optimizations at different levels. The optimization levels in the
following table apply only to the C and C++ source files.

Note: Optimization levels 1 and above cause code re-arrangement. While debugging your code, use
of no optimization level is recommended. When an optimized program is debugged through gdb,
the displayed results might seem inconsistent.

-v

This option executes the compiler and all the tools underneath the compiler in verbose
mode. This option gives complete description of the options passed to all the tools. This
description is helpful in discovering the default options for each tool.

-save-temps

The GNU compiler provides a mechanism to save the intermediate files generated during
the compilation process. The compiler stores the following files:

• Preprocessor output -input_file_name.i for C code and input_file_name.ii
for C++ code

• Compiler (cc1) output in assembly format - input_file_name.s
• Assembler output in ELF format - input_file_name.s

The compiler saves the default output of the entire compilation as a.out.

Table 2-3: Optimizations for Values of n
n Optimization

0 No optimization.
1 Medium optimization.
2 Full optimization
3 Full optimization. Attempt automatic inlining of small subprograms.
S Optimize for size.
Embedded System Tools Reference Manual 19
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=19

Chapter 2: GNU Compiler Tools
-o filename

The compiler stores the default output of the compilation process in an ELF file named
a.out. You can change the default name using -o output_file_name. The output file is
created in ELF format.

-Wp,option

-Wa,option

-Wl,option

The compiler, mb-gcc or arm-xilinx-eabi-gcc, is a wrapper around other executables such
as the preprocessor, compiler (cc1), assembler, and the linker. You can run these
components of the compiler individually or through the top level compiler.

There are certain options that are required by tools, but might not be necessary for the
top-level compiler. To run these commands, use the options listed in the following table.

-help

Use this option with any GNU compiler to get more information about the available
options. You can also consult the GCC manual.

-B directory

Add directory to the C run time library search paths.

-L directory

Add directory to library search path.

-I directory

Add directory to header search path.

Table 2-4: Tool-Specific Options Passed to the Top-Level GCC Compiler
Option Tool Example

-Wp,option Preprocessor mb-gcc -Wp,-D -Wp, MYDEFINE ...
Signal the pre-processor to define the symbol MYDEFINE
with the -D MYDEFINE option.

-Wa,option Assembler mb-as -Wa, ...

Signal the assembler to target the MicroBlaze processor.
-Wl,option Linker mb-gcc -Wl,-M ...

Signal the linker to produce a map file with the -M option.
Embedded System Tools Reference Manual 20
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=20

Chapter 2: GNU Compiler Tools
-l library

Search library for undefined symbols.

Note: The compiler prefixes “lib” to the library name indicated in this command line switch.

Library Search Options
-l libraryname

By default, the compiler searches only the standard libraries, such as libc, libm, and
libxil. You can also create your own libraries. You can specify the name of the library and
where the compiler can find the definition of these functions. The compiler prefixes lib to
the library name that you provide.

The compiler is sensitive to the order in which you provide options, particularly the -l
command line switch. Provide this switch only after all of the sources in the command line.

For example, if you create your own library called libproject.a. you can include functions
from this library using the following command:

Compiler Source_Files -L${LIBDIR} -l project

CAUTION! If you supply the library flag -l library_name before the source files, the compiler does not find
the functions called from any of the sources. This is because the compiler search is only done in one direction
and it does not keep a list of available libraries.

-L Lib Directory

This option indicates the directories in which to search for the libraries. The compiler has a
default library search path, where it looks for the standard library. Using the -L option, you
can include some additional directories in the compiler search path.

Header File Search Option
-I Directory Name

This option searches for header files in the /<dir_name> directory before searching the
header files in the standard path.

Default Search Paths
The compilers, mb-gcc and arm-xilinx-eabi-gcc, searches certain paths for libraries and
header files. The search paths on the various platforms are described below.
Embedded System Tools Reference Manual 21
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=21

Chapter 2: GNU Compiler Tools
Library Search Procedures

The compilers search libraries in the following order:

1. Directories are passed to the compiler with the -L <dir_name> option.
2. Directories are passed to the compiler with the -B <dir_name> option.
3. The compilers search the following libraries:

a. ${XILINX_}/gnu/processor/platform/processor-lib/lib

b. ${XILINX_}/lib/processor

Note: Processor indicates microblaze for MicroBlaze, or arm-xilinx-eabi for Arm.

Header File Search Procedures

The compilers search header files in the following order:

1. Directories are passed to the compiler with the -I <dir_name> option.
2. The compilers search the following header files:

a. ${XILINX_}/gnu/processor/platform/lib/gcc/processor/
{gcc version}/include

b. ${XILINX_}/gnu/processor/platform/processor-lib/include

Initialization File Search Procedures

The compilers search initialization files in the following order:

1. Directories are passed to the compiler with the -B <dir_name> option.
2. The compilers search ${XILINX_}/gnu/processor/platform/processor-lib/lib.
3. The compilers search the following libraries:

a. $XILINX_/gnu/<processor>/platform/<processor-lib>/lib

b. $XILINX_/lib/processor

Where:

° <processor> is microblaze for MicroBlaze processors, and arm-xilinx-eabi for
Arm processors

° <processor-lib> is microblaze-xilinx-elf for MicroBlaze processors, and
arm-xilinx-eabi for Arm processors.

Note: platform indicates lin for Linux, lin64 for Linux 64-bit and nt for Windows Cygwin.
Embedded System Tools Reference Manual 22
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=22

Chapter 2: GNU Compiler Tools
Linker Options
-defsym _STACK_SIZE=value

The total memory allocated for the stack can be modified using this linker option. The
variable _STACK_SIZE is the total space allocated for the stack. The _STACK_SIZE variable is
given the default value of 100 words, or 400 bytes. If your program is expected to need
more than 400 bytes for stack and heap combined, it is recommended that you increase the
value of _STACK_SIZE using this option. The value is in bytes.

In certain cases, a program might need a bigger stack. If the stack size required by the
program is greater than the stack size available, the program tries to write in other,
incorrect, sections of the program, leading to incorrect execution of the code.

Note: A minimum stack size of 16 bytes (0x0010) is required for programs linked with the
Xilinx-provided C runtime (CRT) files.

-defsym _HEAP_SIZE=value

The total memory allocated for the heap can be controlled by the value given to the variable
_HEAP_SIZE. The default value of _HEAP_SIZE is zero.

Dynamic memory allocation routines use the heap. If your program uses the heap in this
fashion, then you must provide a reasonable value for _HEAP_SIZE.

For advanced users: you can generate linker scripts directly from IP integrator.

Memory Layout
The MicroBlaze and Arm processors use 32-bit logical addresses and can address any
memory in the system in the range 0x0 to 0xFFFFFFFF. This address range can be
categorized into reserved memory and I/O memory.

Reserved Memory

Reserved memory has been defined by the hardware and software programming
environment for privileged use. This is typically true for memory containing interrupt vector
locations and operating system level routines. Table 2-5 lists the reserved memory
locations for MicroBlaze and Arm processors as defined by the processor hardware. For
more information on these memory locations, refer to the corresponding processor
reference manuals.

For information about the Arm memory map, refer to the Zynq-7000 All Programmable SoC
Technical Reference Manual (UG585) [Ref 2].

Note: In addition to these memories that are reserved for hardware use, your software environment
can reserve other memories. Refer to the manual of the particular software platform that you are
using to find out if any memory locations are deemed reserved.
Embedded System Tools Reference Manual 23
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=23

Chapter 2: GNU Compiler Tools
I/O Memory

I/O memory refers to addresses used by your program to communicate with
memory-mapped peripherals on the processor buses. These addresses are defined as a part
of your hardware platform specification.

User and Program Memory

User and Program memory refers to all the memory that is required for your compiled
executable to run. By convention, this includes memories for storing instructions, read-only
data, read-write data, program stack, and program heap. These sections can be stored in
any addressable memory in your system. By default the compiler generates code and data
starting from the address listed in Table 2-5 and occupying contiguous memory locations.
This is the most common memory layout for programs. You can modify the starting location
of your program by defining (in the linker) the symbol _TEXT_START_ADDR for MicroBlaze
and START_ADDR for Arm.

In special cases, you might want to partition the various sections of your ELF file across
different memories. This is done using the linker command language (refer to the Linker
Scripts, page 28 for details). The following are some situations in which you might want to
change the memory map of your executable:

° When partitioning large code segments across multiple smaller memories

° Remapping frequently executed sections to fast memories

° Mapping read-only segments to non-volatile flash memories

No restrictions apply to how you can partition your executable. The partitioning can be
done at the output section level, or even at the individual function and data level. The
resulting ELF can be non-contiguous, that is, there can be “holes” in the memory map.
Ensure that you do not use documented reserved locations.

Alternatively, if you are an advanced user and want to modify the default binary data
provided by the tools for the reserved memory locations, you can do so. In this case, you
must replace the default startup files and the memory mappings provided by the linker.

Table 2-5: Hardware Reserved Memory Locations

Processor Family Reserved Memories Reserved Purpose Default Text Start
Address

MicroBlaze 0x0 - 0x4F Reset, Interrupt,
Exception, and other
reserved vector
locations.

0x50

Cortex A9 Arm
Embedded System Tools Reference Manual 24
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=24

Chapter 2: GNU Compiler Tools
Object-File Sections
An executable file is created by concatenating input sections from the object files (.o files)
being linked together. The compiler, by default, creates code across standard and
well-defined sections. Each section is named based on its associated meaning and purpose.
The various standard sections of the object file are displayed in the following figure.

In addition to these sections, you can also create your own custom sections and assign
them to memories of your choice.
X-Ref Target - Figure 2-2

The reserved sections that you would not typically modify include:.init, .fini, .ctors,
.dtors, .got,.got2, and .eh_frame.

.text

This section of the object file contains executable program instructions. This section has the
x (executable), r (read-only) and i (initialized) flags. This means that this section can be
assigned to an initialized read-only memory (ROM) that is addressable from the processor
instruction bus.

Figure 2-2: Sectional Layout of an Object or Executable File

Text Section

Sectional Layout of an object or an Executable File

Read-Only Data Section

Small Read-Only Data Section

Small Read-Only Uninitialized Data Section

Read-Write Data Section

Small Read-Write Data Section

Small Uninitialized Data Section

Uninitialized Data Section

.text

.rodata

.sdata2

.sbss2

.data

.sdata

.sbss

.bss

Program Heap Memory Section

Program Stack Memory Section

.heap

.stack

X11005
Embedded System Tools Reference Manual 25
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=25

Chapter 2: GNU Compiler Tools
.rodata

This section contains read-only data. This section has the r (read-only) and the i (initialized)
flags. Like the .text section, this section can also be assigned to an initialized, read-only
memory that is addressable from the processor data bus.

.sdata2

This section is similar to the .rodata section. It contains small read-only data of size less
than 8 bytes. All data in this section is accessed with reference to the read-only small data
anchor. This ensures that all the contents of this section are accessed using a single
instruction. You can change the size of the data going into this section with the -G option
to the compiler. This section has the r (read-only) and the i (initialized) flags.

.data

This section contains read-write data and has the w (read-write) and the i (initialized) flags.
It must be mapped to initialized random access memory (RAM). It cannot be mapped to a
ROM.

.sdata

This section contains small read-write data of a size less than 8 bytes. You can change the
size of the data going into this section with the -G option. All data in this section is accessed
with reference to the read-write small data anchor. This ensures that all contents of the
section can be accessed using a single instruction. This section has the w (read-write) and
the i (initialized) flags and must be mapped to initialized RAM.

.sbss2

This section contains small, read-only un-initialized data of a size less than 8 bytes. You can
change the size of the data going into this section with the -G option. This section has the
r (read) flag and can be mapped to ROM.

.sbss

This section contains small un-initialized data of a size less than 8 bytes. You can change the
size of the data going into this section with the -G option. This section has the w (read-write)
flag and must be mapped to RAM.

.bss

This section contains un-initialized data. This section has the w (read-write) flag and must be
mapped to RAM.
Embedded System Tools Reference Manual 26
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=26

Chapter 2: GNU Compiler Tools
.heap

This section contains uninitialized data that is used as the global program heap. Dynamic
memory allocation routines allocate memory from this section. This section must be
mapped to RAM.

.stack

This section contains uninitialized data that is used as the program stack. This section must
be mapped to RAM. This section is typically laid out right after the .heap section. In some
versions of the linker, the .stack and .heap sections might appear merged together into a
section named .bss_stack.

.init

This section contains language initialization code and has the same flags as .text. It must
be mapped to initialized ROM.

.fini

This section contains language cleanup code and has the same flags as .text. It must be
mapped to initialized ROM.

.ctors

This section contains a list of functions that must be invoked at program startup and the
same flags as .data and must be mapped to initialized RAM.

.dtors

This section contains a list of functions that must be invoked at program end, the same flags
as .data, and it must be mapped to initialized RAM.

.got2/.got

This section contains pointers to program data, the same flags as .data, and it must be
mapped to initialized RAM.

.eh_frame

This section contains frame unwind information for exception handling. It contains the
same flags as .rodata, and can be mapped to initialized ROM.

.tbss

This section holds uninitialized thread-local data that contribute to the program memory
image. This section has the same flags as .bss, and it must be mapped to RAM.
Embedded System Tools Reference Manual 27
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=27

Chapter 2: GNU Compiler Tools
.tdata

This section holds initialized thread-local data that contribute to the program memory
image. This section must be mapped to initialized RAM.

.gcc_except_table

This section holds language specific data. This section must be mapped to initialized RAM.

.jcr

This section contains information necessary for registering compiled Java classes. The
contents are compiler-specific and used by compiler initialization functions. This section
must be mapped to initialized RAM.

.fixup

This section contains information necessary for doing fixup, such as the fixup page table,
and the fixup record table. This section must be mapped to initialized RAM.

Linker Scripts
The linker utility uses commands specified in linker scripts to divide your program on
different blocks of memories. It describes the mapping between all of the sections in all of
the input object files to output sections in the executable file. The output sections are
mapped to memories in the system. You do not need a linker script if you do not want to
change the default contiguous assignment of program contents to memory. There is a
default linker script provided with the linker that places section contents contiguously.

You can selectively modify only the starting address of your program by defining the linker
symbol _TEXT_START_ADDR on MicroBlaze processors, or START_ADDR on Arm processors, as
displayed in this example:

mb-gcc <input files and flags> -Wl,-defsym -Wl,_TEXT_START_ADDR=0x100
mb-ld <.o files> -defsym _TEXT_START_ADDR=0x100

The choices of the default script that will be used by the linker from the
$XILINX_/gnu/<procname>/<platform>/<processor_name>/lib/
ldscripts area are described as follows:

• elf32<procname>.x is used by default when none of the following cases apply.
• elf32<procname>.xn is used when the linker is invoked with the -n option.
• elf32<procname>.xbn is used when the linker is invoked with the -N option.
• elf32<procname>.xr is used when the linker is invoked with the -r option.
• elf32<procname>.xu is used when the linker is invoked with the -Ur option.
Embedded System Tools Reference Manual 28
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=28

Chapter 2: GNU Compiler Tools
where <procname> =microblaze, <processor_name> = microblaze, and <platform> = lin
or nt.

To use a linker script, provide it on the GCC command line. Use the command line option
-T <script> for the compiler, as described below:

compiler -T <linker_script> <Other Options and Input Files>

If the linker is executed on its own, include the linker script as follows:

linker -T <linker_script> <Other Options and Input Files>

This tells GCC to use your linker script in the place of the default built-in linker script. Linker
scripts can be generated for your program from within IP integrator and SDK.

In IP integrator or SDK, select Tools > Generate Linker Script.

This opens up the linker script generator utility. Mapping sections to memory is done here.
Stack and Heap size can be set, as well as the memory mapping for Stack and Heap. When
the linker script is generated, it is given as input to GCC automatically when the
corresponding application is compiled within IP integrator or SDK.

Linker scripts can be used to assign specific variables or functions to specific memories.
This is done through “section attributes” in the C code. Linker scripts can also be used to
assign specific object files to sections in memory. These and other features of GNU linker
scripts are explained in the GNU linker documentation, which is a part of the online
binutils manual. A link to the GNU manuals is supplied in the Appendix B, “Additional
Resources and Legal Notices.” For a specific list of input sections that are assigned by
MicroBlaze processor linker scripts, see “MicroBlaze Linker Script Sections” on page 38.

MicroBlaze Compiler Usage and Options
The MicroBlaze GNU compiler is derived from the standard GNU sources as the Xilinx port
of the compiler. The features and options that are unique to the MicroBlaze compiler are
described in the sections that follow. When compiling with the MicroBlaze compiler, the
pre-processor provides the definition __MICROBLAZE__ automatically. You can use this
definition in any conditional code.

MicroBlaze Compiler
The mb-gcc compiler for the Xilinx™ MicroBlaze soft processor introduces new options as
well as modifications to certain options supported by the GNU compiler tools. The new and
modified options are summarized in this chapter.
Embedded System Tools Reference Manual 29
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=29

Chapter 2: GNU Compiler Tools
MicroBlaze Compiler Options: Quick Reference
Click an option name below to view its description.

Processor Feature Selection Options
-mcpu=vX.YY.Z

This option directs the compiler to generate code suited to MicroBlaze hardware version
v.X.YY.Z. To get the most optimized and correct code for a given processor, use this switch
with the hardware version of the processor.

The -mcpu switch behaves differently for different versions, as described below:

• Pr-v3.00.a: Uses 3-stage processor pipeline mode. Does not inhibit exception
causing instructions being moved into delay slots.

• v3.00.a and v4.00.a: Uses 3-stage processor pipeline model. Inhibits exception
causing instructions from being moved into delay slots.

• v5.00.a and later: Uses 5-stage processor pipeline model. Does not inhibit exception
causing instructions from being moved into delay slots.

Processor Feature Selection Options
-mcpu=vX.YY.Z
-mlittle-endian / -mbig-endian
-mno-xl-soft-mul
-mxl-multiply-high
-mno-xl-multiply-high
-mxl-soft-mul
-mxl-barrel-shift
-mno-xl-barrel-shift
-mxl-pattern-compare
-mno-xl-pattern-compare
-mhard-float
-msoft-float
-mxl-float-convert
-mxl-float-sqrt

General Program Options
-msmall-divides
-mxl-gp-opt
-mno-clearbss
-mxl-stack-check
Application Execution Modes
-xl-mode-executable
-xl-mode-bootstrap
-xl-mode-novectors
MicroBlaze Linker Options
-defsym _TEXT_START_ADDR=value
-relax
-N
Embedded System Tools Reference Manual 30
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=30

Chapter 2: GNU Compiler Tools
-mlittle-endian / -mbig-endian

Use these options to select the endianness of the target machine for which code is being
compiled. The endianness of the binary object file produced is also set appropriately based
on this switch. The GCC driver passes switches to the sub tools (as, cc1, cc1plus, ld) to
set the corresponding endianness in the sub tool.

The default is -mbig-endian.

Note: You cannot link together object files of mixed endianness.

-mno-xl-soft-mul

This option permits use of hardware multiply instructions for 32-bit multiplications.

The MicroBlaze processor has an option to turn the use of hardware multiplier resources on
or off. This option should be used when the hardware multiplier option is enabled on the
MicroBlaze processor. Using the hardware multiplier can improve the performance of your
application. The compiler automatically defines the C pre-processor definition HAVE_HW_MUL
when this switch is used. This allows you to write C or assembly code tailored to the
hardware, based on whether this feature is specified as available or not. See the MicroBlaze
Processor Reference Guide, (UG081) [Ref 3], for more details about the usage of the
multiplier option in MicroBlaze.

-mxl-multiply-high

The MicroBlaze processor has an option to enable instructions that can compute the higher
32-bits of a 32x32-bit multiplication. This option tells the compiler to use these multiply
high instructions. The compiler automatically defines the C pre-processor definition
HAVE_HW_MUL_HIGH when this switch is used. This allows you to write C or assembly code
tailored to the hardware, based on whether this feature is available or not. See the
MicroBlaze Processor Reference Guide, (UG081) [Ref 3],for more details about the usage of
the multiply high instructions in MicroBlaze.

-mno-xl-multiply-high

Do not use multiply high instructions. This option is the default.

-mxl-soft-mul

This option tells the compiler that there is no hardware multiplier unit on MicroBlaze, so
every 32-bit multiply operation is replaced by a call to the software emulation
routine__mulsi3. This option is the default.

-mno-xl-soft-div

You can instantiate a hardware divide unit in MicroBlaze. When the divide unit is present,
this option tells the compiler that hardware divide instructions can be used in the program
being compiled.
Embedded System Tools Reference Manual 31
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=31

Chapter 2: GNU Compiler Tools
This option can improve the performance of your program if it has a significant amount of
division operations. The compiler automatically defines the C pre-processor definition
HAVE_HW_DIV when this switch is used. This allows you to write C or assembly code tailored
to the hardware, based on whether this feature is specified as available or not. See the
MicroBlaze Processor Reference Guide, (UG081) [Ref 3], for more details about the usage of
the hardware divide option in MicroBlaze.

-mxl-soft-div

This option tells the compiler that there is no hardware divide unit on the target MicroBlaze
hardware.

This option is the default. The compiler replaces all 32-bit divisions with a call to the
corresponding software emulation routines (__divsi3, __udivsi3).

-mxl-barrel-shift

The MicroBlaze processor can be configured to be built with a barrel shifter. In order to use
the barrel shift feature of the processor, use the option -mxl-barrel-shift.

The default option assumes that no barrel shifter is present, and the compiler uses add and
multiply operations to shift the operands. Enabling barrel shifts can speed up your
application significantly, especially while using a floating point library. The compiler
automatically defines the C pre-processor definition HAVE_HW_BSHIFT when this switch is
used. This allows you to write C or assembly code tailored to the hardware, based on
whether or not this feature is specified as available. See the MicroBlaze Processor Reference
Guide, (UG081) [Ref 3], for more details about the use of the barrel shifter option in
MicroBlaze.

-mno-xl-barrel-shift

This option tells the compiler not to use hardware barrel shift instructions. This option is the
default.

-mxl-pattern-compare

This option activates the use of pattern compare instructions in the compiler.

Using pattern compare instructions can speed up boolean operations in your program.
Pattern compare operations also permit operating on word-length data as opposed to
byte-length data on string manipulation routines such as strcpy, strlen, and strcmp. On a
program heavily dependent on string manipulation routines, the speed increase obtained
will be significant. The compiler automatically defines the C pre-processor definition
HAVE_HW_PCMP when this switch is used. This allows you to write C or assembly code tailored
to the hardware, based on whether this feature is specified as available or not. Refer to the
MicroBlaze Processor Reference Guide, (UG081) [Ref 3], for more details about the use of the
pattern compare option in MicroBlaze.
Embedded System Tools Reference Manual 32
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=32

Chapter 2: GNU Compiler Tools
-mno-xl-pattern-compare

This option tells the compiler not to use pattern compare instructions. This is the default.

-mhard-float

This option turns on the usage of single precision floating point instructions (fadd, frsub,
fmul, and fdiv) in the compiler.

It also uses fcmp.p instructions, where p is a predicate condition such as le, ge, lt, gt, eq,
ne. These instructions are natively decoded and executed by MicroBlaze, when the FPU is
enabled in hardware. The compiler automatically defines the C pre-processor definition
HAVE_HW_FPU when this switch is used. This allows you to write C or assembly code tailored
to the hardware, based on whether this feature is specified as available or not. Refer to the
MicroBlaze Processor Reference Guide, (UG081) [Ref 3], for more details about the use of the
hardware floating point unit option in MicroBlaze.

-msoft-float

This option tells the compiler to use software emulation for floating point arithmetic. This
option is the default.

-mxl-float-convert

This option turns on the usage of single precision floating point conversion instructions
(fint and flt) in the compiler. These instructions are natively decoded and executed by
MicroBlaze, when the FPU is enabled in hardware and these optional instructions are
enabled.

Refer to the MicroBlaze Processor Reference Guide, (UG081) [Ref 3], for more details about
the use of the hardware floating point unit option in MicroBlaze.

-mxl-float-sqrt

This option turns on the usage of single precision floating point square root instructions
(fsqrt) in the compiler. These instructions are natively decoded and executed by
MicroBlaze, when the FPU is enabled in hardware and these optional instructions are
enabled.

Refer to the MicroBlaze Processor Reference Guide, (UG081) [Ref 3], for more details about
the use of the hardware floating point unit option in the MicroBlaze processor.
Embedded System Tools Reference Manual 33
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=33

Chapter 2: GNU Compiler Tools
General Program Options
-msmall-divides

This option generates code optimized for small divides when no hardware divider exists. For
signed integer divisions where the numerator and denominator are between 0 and 15
inclusive, this switch provides very fast table-lookup-based divisions. This switch has no
effect when the hardware divider is enabled.

-mxl-gp-opt

If your program contains addresses that have non-zero bits in the most significant half (top
16 bits), then load or store operations to that address require two instructions.

The MicroBlaze processor ABI offers two global small data areas that can each contain up to
64 Kbytes of data. Any memory location within these areas can be accessed using the small
data area anchors and a 16-bit immediate value, needing only one instruction for a load or
store to the small data area. This optimization can be turned on with the -mxl-gp-opt
command line parameter. Variables of size less than a certain threshold value are stored in
these areas and can be addressed with fewer instructions. The addresses are calculated
during the linking stage.

CAUTION! If this option is being used, it must be provided to both the compile and the link commands of the build
process for your program. Using the switch inconsistently can lead to compile, link, or run-time errors.

-mno-clearbss

This option is useful for compiling programs used in simulation.

According to the C language standard, uninitialized global variables are allocated in the
.bss section and are guaranteed to have the value 0 when the program starts execution.
Typically, this is achieved by the C startup files running a loop to fill the .bss section with
zero when the program starts execution. Optimizing compilers also allocates global
variables that are assigned zero in C code to the .bss section.

In a simulation environment, the above two language features can be unwanted overhead.
Some simulators automatically zero the entire memory. Even in a normal environment, you
can write C code that does not rely on global variables being zero initially. This switch is
useful for these scenarios. It causes the C startup files to not initialize the .bss section with
zeroes. It also internally forces the compiler to not allocate zero-initialized global variables
in the .bss and instead move them to the .data section. This option might improve startup
times for your application. Use this option with care and ensure either that you do not use
code that relies on global variables being initialized to zero, or that your simulation
platform performs the zeroing of memory.
Embedded System Tools Reference Manual 34
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=34

Chapter 2: GNU Compiler Tools
-mxl-stack-check

With this option, you can check whether the stack overflows when the program runs.

The compiler inserts code in the prologue of the every function, comparing the stack
pointer value with the available memory. If the stack pointer exceeds the available free
memory, the program jumps to a the subroutine _stack_overflow_exit. This subroutine
sets the value of the variable _stack_overflow_error to 1.

You can override the standard stack overflow handler by providing the function
_stack_overflow_exit in the source code, which acts as the stack overflow handler.

Application Execution Modes
-xl-mode-executable

This is the default mode used for compiling programs with mb-gcc. This option need not be
provided on the command line for mb-gcc. This uses the startup file crt0.o.

-xl-mode-bootstrap

This option is used for applications that are loaded using a bootloader. Typically, the
bootloader resides in non-volatile memory mapped to the processor reset vector. If a
normal executable is loaded by this bootloader, the application reset vector overwrites the
reset vector of the bootloader. In such a scenario, on a processor reset, the bootloader does
not execute first (it is typically required to do so) to reload this application and do other
initialization as necessary.

To prevent this, you must compile the bootloaded application with this compiler flag. On a
processor reset, control then reaches the bootloader instead of the application.

Using this switch on an application that is deployed in a scenario different from the one
described above will not work. This mode uses crt2.o as a startup file.

-xl-mode-novectors

This option is used for applications that do not require any of the MicroBlaze vectors. This
is typically used in standalone applications that do not use any of the processor’s reset,
interrupt, or exception features. Using this switch leads to smaller code size due to the
elimination of the instructions for the vectors. This mode uses crt3.o as a startup file.

CAUTION! Do not use more than one mode of execution on the command line. You will receive link errors due to
multiple definition of symbols if you do so.
Embedded System Tools Reference Manual 35
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=35

Chapter 2: GNU Compiler Tools
Position Independent Code

The GNU compiler for MicroBlaze supports the -fPIC and -fpic switches. These switches
enable Position Independent Code (PIC) generation in the compiler. This feature is used by
the Linux operating system only for MicroBlaze to implement shared libraries and
relocatable executables. The scheme uses a Global Offset Table (GOT) to relocate all data
accesses in the generated code and a Procedure Linkage Table (PLT) for making function
calls into shared libraries. This is the standard convention in GNU-based platforms for
generating relocatable code and for dynamically linking against shared libraries.

MicroBlaze Application Binary Interface
The GNU compiler for MicroBlaze uses the Application Binary Interface (ABI) defined in the
MicroBlaze Processor Reference Guide (UG081) [Ref 3]. Refer to the ABI documentation for
register and stack usage conventions as well as a description of the standard memory
model used by the compiler.

MicroBlaze Assembler
The mb-as assembler for the Xilinx MicroBlaze soft processor supports the same set of
options supported by the standard GNU compiler tools. It also supports the same set of
assembler directives supported by the standard GNU assembler.

The mb-as assembler supports all the opcodes in the MicroBlaze machine instruction set,
with the exception of the imm instruction. The mb-as assembler generates imm instructions
when large immediate values are used. The assembly language programmer is never
required to write code with imm instructions. For more information on the MicroBlaze
instruction set, refer to the MicroBlaze Processor Reference Guide (UG081) [Ref 3].

The mb-as assembler requires all MicroBlaze instructions with an immediate operand to be
specified as a constant or a label. If the instruction requires a PC-relative operand, then the
mb-as assembler computes it and includes an imm instruction if necessary.

For example, the Branch Immediate if Equal (beqi) instruction requires a PC-relative
operand.

The assembly programmer should use this instruction as follows:

beqi r3, mytargetlabel

where mytargetlabel is the label of the target instruction. The mb-as assembler computes
the immediate value of the instruction as mytargetlabel - PC.

If this immediate value is greater than 16 bits, the mb-as assembler automatically inserts an
imm instruction. If the value of mytargetlabel is not known at the time of compilation, the
mb-as assembler always inserts an imm instruction. Use the relax option of the linker
remove any unnecessary imm instructions.
Embedded System Tools Reference Manual 36
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=36

Chapter 2: GNU Compiler Tools
Similarly, if an instruction needs a large constant as an operand, the assembly language
programmer should use the operand as is, without using an imm instruction. For example,
the following code adds the constant 200,000 to the contents of register r3, and stores the
results in register r4:

addi r4, r3, 200000

The mb-as assembler recognizes that this operand needs an imm instruction, and inserts one
automatically.

In addition to the standard MicroBlaze instruction set, the mb-as assembler also supports
some pseudo-op codes to ease the task of assembly programming. Table 2-6 lists the
supported pseudo-opcodes.

MicroBlaze Linker Options
The mb-ld linker for the MicroBlaze soft processor provides additional options to those
supported by the GNU compiler tools. The options are summarized in this section.

-defsym _TEXT_START_ADDR=value

By default, the text section of the output code starts with the base address 0x28. This can be
overridden by using the -defsym _TEXT_START_ADDR option. If this is supplied to mb-gcc
compiler, the text section of the output code starts from the given value.

You do not have to use -defsym _TEXT_START_ADDR if you want to use the default start
address set by the compiler.

This is a linker option and should be used when you invoke the linker separately. If the linker
is being invoked as a part of the mb-gcc flow, you must use the following option:

-Wl,-defsym -Wl,_TEXT_START_ADDR=value

-relax

This is a linker option that removes all unwanted imm instructions generated by the
assembler. The assembler generates an imm instruction for every instruction where the value
of the immediate cannot be calculated during the assembler phase.

Table 2-6: Pseudo-Opcodes Supported by the GNU Assembler
Pseudo Opcodes Explanation

nop No operation. Replaced by instruction: or R0, R0, R0
la Rd, Ra, Imm Replaced by instruction: addik Rd, Ra, imm; = Rd = Ra + Imm;
not Rd, Ra Replace by instruction: xori Rd, Ra, -1
neg Rd, Ra Replace by instruction: rsub Rd, Ra, R0
sub Rd, Ra, Rb Replace by instruction: rsub Rd, Rb, Ra
Embedded System Tools Reference Manual 37
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=37

Chapter 2: GNU Compiler Tools
Most of these instructions do not need an imm instruction. These are removed by the linker
when the -relax command line option is provided.

This option is required only when linker is invoked on its own. When linker is invoked
through the mb-gcc compiler, this option is automatically provided to the linker.

-N

This option sets the text and data section as readable and writable. It also does not
page-align the data segment. This option is required only for MicroBlaze programs. The
top-level GCC compiler automatically includes this option, while invoking the linker, but if
you intend to invoke the linker without using GCC, use this option.

For more details on this option, refer to the GNU manuals online.

The MicroBlaze linker uses linker scripts to assign sections to memory. These are listed in
the following section.

MicroBlaze Linker Script Sections
Table 2-7 lists the input sections that are assigned by MicroBlaze linker scripts.
Table 2-7: Section Names and Descriptions

Section Description
.vectors.reset Reset vector code.
.vectors.sw_exception Software exception vector code.
.vectors.interrupt Hardware Interrupt vector code.
.vectors.hw_exception Hardware exception vector code.
.text Program instructions from code in functions and global assembly

statements.
.rodata Read-only variables.
.sdata2 Small read-only static and global variables with initial values.
.data Static and global variables with initial values. Initialized to zero by the

boot code.
.sdata Small static and global variables with initial values.
.sbss2 Small read-only static and global variables without initial values.

Initialized to zero by boot code.
.sbss Small static and global variable without initial values. Initialized to zero

by the boot code.
.bss Static and global variables without initial values. Initialized to zero by

the boot code.
.heap Section of memory defined for the heap.
.stack Section of memory defined for the stack.
Embedded System Tools Reference Manual 38
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=38

Chapter 2: GNU Compiler Tools
Tips for Writing or Customizing Linker Scripts
Keep the following points in mind when writing or customizing your own linker script:

• Ensure that the different vector sections are assigned to the appropriate memories as
defined by the MicroBlaze hardware.

• Allocate space in the .bss section for stack and heap. Set the _stack variable to the
location after _STACK_SIZE locations of this area, and the _heap_start variable to the
next location after the _STACK_SIZE location. Because the stack and heap need not be
initialized for hardware as well as simulation, define the _bss_end variable after the
.bss and COMMON definitions.
Note: The .bss section boundary does not include either stack or heap.

• Ensure that the variables _SDATA_START__ , _SDATA_END__, SDATA2_START,
_SDATA2_END__, _SBSS2_START__ , _SBSS2_END__, _bss_start, _bss_end, _sbss_start,
and _sbss_end are defined to the beginning and end of the sections sdata, sdata2,
sbss2, bss, and sbss respectively.

• ANSI C requires that all uninitialized memory be initialized to startup (not required for
stack and heap). The standard CRT that is provided assumes a single .bss section that is
initialized to zero. If there are multiple .bss sections, this CRT will not work. You should
write your own CRT that initializes all the .bss sections.

Startup Files
The compiler includes pre-compiled startup and end files in the final link command when
forming an executable. Startup files set up the language and the platform environment
before your application code executes. Start up files typically do the following:

• Set up any reset, interrupt, and exception vectors as required.
• Set up stack pointer, small-data anchors, and other registers. Refer to Table 2-8,

page 40 for details.
• Clear the BSS memory regions to zero.
• Invoke language initialization functions, such as C++ constructors.
• Initialize the hardware sub-system. For example, if the program is to be profiled,

initialize the profiling timers.
• Set up arguments for the main procedure and invoke it.

Similarly, end files are used to include code that must execute after your program ends. The
following actions are typically performed by end files:

• Invoke language cleanup functions, such as C++ destructors.
• De-initialize the hardware sub-system. For example, if the program is being profiled,

clean up the profiling sub-system.
Embedded System Tools Reference Manual 39
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=39

Chapter 2: GNU Compiler Tools
Table 2-8 lists the register names, values, and descriptions in the C-Runtime files.

The following subsections describe the initialization files used for various application
modes. This information is for advanced users who want to change or understand the
startup code of their application.

For MicroBlaze, there are two distinct stages of C runtime initialization. The first stage is
primarily responsible for setting up vectors, after which it invokes the second stage
initialization. It also provides exit stubs based on the different application modes.

First Stage Initialization Files

crt0.o

This initialization file is used for programs which are to be executed in standalone mode,
without the use of any bootloader or debugging stub. This CRT populates the reset,
interrupt, exception, and hardware exception vectors and invokes the second stage startup
routine _crtinit. On returning from _crtinit, it ends the program by infinitely looping in
the _exit label.

crt1.o

This initialization file is used when the application is debugged in a software-intrusive
manner. It populates all the vectors except the breakpoint and reset vectors and transfers
control to the second-stage _crtinit startup routine.

crt2.o

This initialization file is used when the executable is loaded using a bootloader. It populates
all the vectors except the reset vector and transfers control to the second-stage _crtinit
startup routine. On returning from _crtinit, it ends the program by infinitely looping at
the _exit label. Because the reset vector is not populated, on a processor reset, control is
transferred to the bootloader, which can reload and restart the program.

crt3.o

This initialization file is employed when the executable does not use any vectors and wishes
to reduce code size. It populates only the reset vector and transfers control to the second

Table 2-8: Register Initialization in C-Runtime Files
Register Value Description

r1 _stack-16 The stack pointer register is initialized to point to the bottom
of the stack area with an initial negative offset of 16 bytes.
The 16 bytes can be used for passing in arguments.

r2 _SDA2_BASE _SDA2_BASE_ is the read-only small data anchor address.
r13 _SDA_BASE_ _SDA_BASE is the read-write small data anchor address.
Other registers Undefined Other registers do not have defined values.
Embedded System Tools Reference Manual 40
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=40

Chapter 2: GNU Compiler Tools
stage _crtinit startup routine. On returning from _crtinit, it ends the program by
infinitely looping at the _exit label. Because the other vectors are not populated, the GNU
linking mechanism does not pull in any of the interrupt and exception handling related
routines, thus saving code space.

Second Stage Initialization Files

According to the C standard specification, all global and static variables must be initialized
to 0. This is a common functionality required by all the CRTs above. Another routine,
_crtinit, is invoked. The _crtinit routine initializes memory in the .bss section of the
program. The _crtinit routine is also the wrapper that invokes the main procedure. Before
invoking the main procedure, it may invoke other initialization functions. The _crtinit
routine is supplied by the startup files described below.

crtinit.o

This default, second stage, C startup file performs the following steps:

1. Clears the .bss section to zero.
2. Invokes _program_init.
3. Invokes “constructor” functions (_init).
4. Sets up the arguments for main and invokes main.
5. Invokes “destructor” functions (_fini).
6. Invokes _program_clean and returns.

pgcrtinit.o

This second stage startup file is used during profiling, and performs the following steps:

1. Clears the .bss section to zero.
2. Invokes _program_init.
3. Invokes _profile_init to initialize the profiling library.
4. Invokes “constructor” functions (_init).
5. Sets up the arguments for main and invokes main.
6. Invokes “destructor” functions (_fini).
7. Invokes _profile_clean to cleanup the profiling library.
8. Invokes _program_clean, and then returns.
Embedded System Tools Reference Manual 41
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=41

Chapter 2: GNU Compiler Tools
sim-crtinit.o

This second-stage startup file is used when the -mno-clearbss switch is used in the
compiler, and performs the following steps:

1. Invokes _program_init.
2. Invokes “constructor” functions (_init).
3. Sets up the arguments for main and invokes main.
4. Invokes “destructor” functions (_fini).
5. Invokes _program_clean, and then returns.

sim-pgcrtinit.o

This second stage startup file is used during profiling in conjunction with the
-mno-clearbss switch, and performs the following steps in order:

1. Invokes _program_init.
2. Invokes _profile_init to initialize the profiling library.
3. Invokes “constructor” functions (_init).
4. Sets up the arguments for and invokes main.
5. Invokes “destructor” functions (_fini).
6. Invokes _profile_clean to cleanup the profiling library.
7. Invokes _program_clean, and then returns.

Other files

The compiler also uses certain standard start and end files for C++ language support.
These are crti.o, crtbegin.o, crtend.o, and crtn.o. These files are standard compiler
files that provide the content for the .init, .fini, .ctors, and .dtors sections.

Modifying Startup Files
The initialization files are distributed in both pre-compiled and source form with Vivado.
The pre-compiled object files are found in the compiler library directory. Sources for the
initialization files for the MicroBlaze GNU compiler can be found in the
<XILINX_>/SDK/<version>/data/embeddedsw/lib/microblaze/src/ directory,
where <XILINX_> is the Vivado installation path and <version> is the release version of
the SDK.

To fulfill a custom startup file requirement, you can take the files from the source area and
include them as a part of your application sources. Alternatively, you can assemble the files
into .o files and place them in a common area. To refer to the newly created object files
Embedded System Tools Reference Manual 42
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=42

Chapter 2: GNU Compiler Tools
instead of the standard files, use the -B directory -name command-line option while
invoking mb-gcc.

To prevent the default startup files from being used, use the -nostartfiles on the final
compile line.

Note: The miscellaneous compiler standard CRT files, such as crti.o, and crtbegin.o, are not
provided with source code. They are available in the installation to be used as is. You might need to
bring them in on your final link command.

Reducing the Startup Code Size for C Programs

If your application has stringent requirements on code size for C programs, you might want
to eliminate all sources of overhead. This section describes how to reduce the overhead of
invoking the C++ constructor or destructor code in a C program that does not require that
code. You might be able to save approximately 220 bytes of code space by making the
following modifications:

1. Follow the instructions for creating a custom copy of the startup files from the
installation area, as described in the preceding sections. Specifically, copy over the
particular versions of crtn.s and xcrtinit.s that suit your application. For example, if
your application is being bootstrapped and profiled, copy crt2.s and pg-crtinit.s
from the installation area.

2. Modify pg-crtinit.s to remove the following lines:

brlid r15, __init
/* Invoke language initialization functions */
nop

and

brlid r15, __fini
/* Invoke language cleanup functions */
nop

This avoids referencing the extra code usually pulled in for constructor and destructor
handling, reducing code size.

3. Compile these files into .o files and place them in a directory of your choice, or include
them as a part of your application sources.

4. Add the -nostartfiles switch to the compiler. Add the -B directory switch if you
have chosen to assemble the files in a particular folder.

5. Compile your application.

If your application is executing in a different mode, then you must pick the appropriate CRT
files based on the description in Startup Files, page 39.
Embedded System Tools Reference Manual 43
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=43

Chapter 2: GNU Compiler Tools
Compiler Libraries
The mb-gcc compiler requires the GNU C standard library and the GNU math library.
Precompiled versions of these libraries are shipped with Vivado. The CPU driver for
MicroBlaze copies over the correct version, based on the hardware configuration of
MicroBlaze. To manually select the library version that you would like to use, look in the
following folder:

$XILINX_/gnu/microblaze/<platform>/microblaze-xilinx-elf/lib

The filenames are encoded based on the compiler flags and configurations used to compile
the library. For example, libc_m_bs.a is the C library compiled with hardware multiplier and
barrel shifter enabled in the compiler.

Table 2-9 shows the current encodings used and the configuration of the library specified
by the encodings.

Of special interest are the math library files (libm*.a). The C standard requires the common
math library functions (sin()and cos(), for example) to use double-precision floating point
arithmetic. However, double-precision floating point arithmetic may not be able to make
full use of the optional, single-precision floating point capabilities in available for
MicroBlaze.

The Newlib math libraries have alternate versions that implement these math functions
using single-precision arithmetic. These single-precision libraries might be able to make
direct use of the MicroBlaze processor hardware Floating Point Unit (FPU) and could
therefore perform better.

If you are sure that your application does not require standard precision, and you want to
implement enhanced performance, you can manually change the version of the linked-in
library.

By default, the CPU driver copies the double-precision version (libm_*_fpd.a) of the library
into your IP integrator project.

To get the single precision version, you can create a custom CPU driver that copies the
corresponding libm_*_fps.a library instead. Copy the corresponding libm_*_fps.a file
into your processor library folder (such as microblaze_0/lib) as libm.a.

When you have copied the library that you want to use, rebuild your application software
project.

Table 2-9: Encoded Library Filenames on Compiler Flags
Encoding Description

_bs Configured for barrel shifter.
_m Configured for hardware multiplier.
_p Configured for pattern comparator.
Embedded System Tools Reference Manual 44
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=44

Chapter 2: GNU Compiler Tools
Thread Safety
The MicroBlaze processor C and math libraries distributed with Vivado are not built to be
used in a multi-threaded environment. Common C library functions such as printf(),
scanf(), malloc(), and free() are not thread-safe and will cause unrecoverable errors in
the system at run-time. Use appropriate mutual exclusion mechanisms when using the
Vivado libraries in a multi-threaded environment.

Command Line Arguments
The MicroBlaze processor programs cannot take command-line arguments. The command
line arguments argc and argv are initialized to 0 by the C runtime routines.

Interrupt Handlers
Interrupt handlers must be compiled in a different manner than normal sub-routine calls. In
addition to saving non-volatiles, interrupt handlers must save the volatile registers that are
being used. Interrupt handlers should also store the value of the machine status register
(RMSR) when an interrupt occurs.

interrupt_handler attribute

To distinguish an interrupt handler from a sub-routine, mb-gcc looks for an attribute
(interrupt_handler) in the declaration of the code. This attribute is defined as follows:

void function_name () __attribute__ ((interrupt_handler));

Note: The attribute for the interrupt handler is to be given only in the prototype and not in the
definition.
Interrupt handlers might also call other functions, which might use volatile registers. To
maintain the correct values in the volatile registers, the interrupt handler saves all the
volatiles, if the handler is a non-leaf function.

Note: Functions that have calls to other sub-routines are called non-leaf functions.

Interrupt handlers are defined in the Microprocessor Software Specification (MSS) files.
These definitions automatically add the attributes to the interrupt handler functions.

The interrupt handler uses the instruction rtid for returning to the interrupted function.

save_volatiles attribute

The MicroBlaze compiler provides the attribute save_volatiles, which is similar to the
interrupt_handler attribute, but returns using rtsd instead of rtid.

This attribute saves all the volatiles for non-leaf functions and only the used volatiles in the
case of leaf functions.

void function_name () __attribute__((save_volatiles));
Embedded System Tools Reference Manual 45
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=45

Chapter 2: GNU Compiler Tools
fast_interrupt

The MicroBlaze compiler provides the attribute fast_interrupt, which is similar to the
interrupt_handler attribute. On fast interrupt, MicroBlaze jumps to the interrupt routine
address instead jumping to the fixed address 0x10.

Unlike a normal interrupt, when the attribute fast_interrupt is used on a C function,
MicroBlaze saves only minimal registers.

void function_name () __attribute__ ((fast_interrupt));

Arm Cortex-A9 Compiler Usage and Options
Arm targets can be complied using Sourcery CodeBench Lite for Xilinx EABI.

Sourcery CodeBench contains the complete GNU Toolchain including all of the following
components:

• CodeSourcery Common Startup Code Sequence
• CodeSourcery Debug Sprite for Arm
• GNU Binary Utilities (Binutils)
• GNU C Compiler (GCC)
• GNU C++ Compiler (G++)
• GNU C++ Runtime Library (Libstdc++)
• GNU Debugger (GDB)
• Newlib C Library

Table 2-10: Use of Attributes
Attributes Functions

interrupt_handler This attribute saves the machine status register and all the volatiles, in
addition to the non-volatile registers. rtid returns from the interrupt
handler. If the interrupt handler function is a leaf function, only those volatiles
which are used by the function are saved.

save_volatiles This attribute is similar to interrupt_handler, but it uses rtsd to return
to the interrupted function, instead of rtid.

fast_interrupt This attribute is similar to interrupt_handler, but it jumps directly to the
interrupt routine address instead of jumping to the fixed address 0x10.
Embedded System Tools Reference Manual 46
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=46

Chapter 2: GNU Compiler Tools
Usage

Compiling

arm-xilinx-eabi-gcc -c file1.c -I<include_path> -o file1.o
arm-xilinx-eabi-gcc -c file2.c -I<include_path> -o file2.o

Linking

arm-xilinx-eabi-gcc -Wl,-T -Wl,lscript.ld -L<libxil.a path> -o "App.elf"file1.o
file2.o -Wl,--start-group,-lxil,-lgcc,-lc,--end-group

For descriptions of flags used in the commands above, refer to the compiler help, using any
of the following commands:

• arm-xilinx-eabi-gcc --help
• arm-xilinx-eabi-gcc -v --help
• arm-xilinx-eabi-gcc --target-help

Compiler Options

Other GNU compiler options that can be applied using Arm-related flags can be found on
GNU Website: http://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html. These flags can be
used in the steps above, as required.

All the Arm GCC compiler options are listed at the link above. However, actual support
depends on the target in use (Arm Cortex A9 in this case) and on the compiler toolchain.

For example:

The Sourcery CodeBench Lite for Xilinx EABI does not support -mhard-float
(-mfloat-abi=hard). Only soft and softfp floating point options are supported.

For more information on the toolchain, refer to the documentation available in the SDK
installation path:

<Xilinx_Vivado_Installation_Path>\SDK\<2016.1>\gnu\arm\nt\share\doc
Embedded System Tools Reference Manual 47
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
http://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=47

Chapter 2: GNU Compiler Tools
Other Notes
C++ Code Size

The GCC toolchain combined with the latest open source C++ standard library
(libstdc++-v3) might be found to generate large code and data fragments as compared to
an equivalent C program. A significant portion of this overhead comes from code and data
for exception handling and runtime type information. Some C++ applications do not
require these features.

To remove the overhead and optimize for size, use the -fno-exceptions and/or the
-fno-rtti switches. This is recommended only for advanced users who know the
requirements of their application and understand these language features. Refer to the GCC
manual for more specific information on available compiler options and their impact.

C++ programs might have more intensive dynamic memory requirements (stack and heap
size) due to more complex language features and library routines.

Many of the C++ library routines can request memory to be allocated from the heap.
Review your heap and stack size requirements for C++ programs to ensure that they are
satisfied.

C++ Standard Library

The C++ standard defines the C++ standard library. A few of these platform features are
unavailable on the default Xilinx Vivado software platform. For example, file I/O is
supported in only a few well-defined STDIN/STDOUT streams. Similarly, locale functions,
thread-safety, and other such features may not be supported.

Note: The C++ standard library is not built for a multi-threaded environment. Common C++
features such as new and delete are not thread-safe. Please use caution when using the C++
standard library in an operating system environment.

For more information on the GNU C++ standard library, refer to the documentation
available on the GNU website.
Embedded System Tools Reference Manual 48
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=48

Chapter 2: GNU Compiler Tools
Position Independent Code (Relocatable Code)

The MicroBlaze processor compilers support the -fPIC switch to generate position
independent code.

While both these features are supported in the Xilinx compiler, they are not supported by
the rest of the libraries and tools, because Vivado only provides a standalone platform. No
loader or debugger can interpret relocatable code and perform the correct relocations at
runtime. These independent code features are not supported by the Xilinx libraries, startup
files, or other tools. Third-party OS vendors could use these features as a standard in their
distribution and tools.

Other Switches and Features

Other switches and features might not be supported by the Xilinx Vivado compilers and/or
platform, such as -fprofile-arcs. Some features might also be experimental in nature (as
defined by open source GCC) and could produce incorrect code if used inappropriately.
Refer to the GCC manual for more information on specific features.
Embedded System Tools Reference Manual 49
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=49

Chapter 3

Xilinx System Debugger
Xilinx® System Debugger enables you to see what is happening to a program while it
executes. You can set breakpoints or watchpoints to stop the processor, step through
program execution, view the program variables and stack, and view the contents of the
memory in the system.

Xilinx System Debugger supports debugging through SDK and Command-line interface
(CLI).

SDK System Debugger
SDK System Debugger, uses the Xilinx hw_server as the underlying debug engine. SDK
translates each user interface action into a sequence of TCF commands. It then processes
the output from system Debugger to display the current state of the program being
debugged. It communicates to the processor on the hardware using Xilinx hw_server. The
debug workflow is described in the following diagram:

X-Ref Target - Figure 3-1

Figure 3-1: Debug Workflow
Embedded System Tools Reference Manual 50
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=50

Chapter 3: Xilinx System Debugger
The workflow is made up of the following components:

• Executable ELF File: To debug your application, you must use an Executable and
Linkable Format (ELF) file compiled for debugging. The debug ELF file contains
additional debug information for the debugger to make direct associations between
the source code and the binaries generated from that original source.

• Debug Configuration: In order to launch the debug session, you must create a debug
configuration in SDK. This configuration captures options required to start a debug
session, including the executable name, processor target to debug, and other
information.

• SDK Debug Perspective: Using the Debug perspective, you can manage the
debugging or running of a program in the Workbench. You can control the execution of
your program by setting breakpoints, suspending launched programs, stepping
through your code, and examining the contents of variables.

You can repeat the cycle of modifying the code, building the executable, and debugging the
program in SDK.

Note: If you edit the source after compiling, the line numbering will be out of step because the
debug information is tied directly to the source. Similarly, debugging optimized binaries can also
cause unexpected jumps in the execution trace.

For more details on SDK System Debugger, see the Software Development Kit (SDK) Help
[Ref 1].

Xilinx System Debugger Command-Line Interface
(XSDB)
Xilinx System Debugger Command-line Interface (XSDB) provides a user-friendly,
interactive, and scriptable command line interface to Xilinx hw_server and other
incarnations of TCF servers used by Xilinx. You can take full advantage of the features
supported by the TCF servers as XSDB interacts with the TCF servers.

XSDB is designed to do the following:

• Allow interaction with the whole system
• Support a software engineer's view of both hardened and programmable logic
• Provide performance measurement
• Integrate with hw_server and other incarnations of TCF servers.

For a detailed list of the XSDB commands and their explanation, see the Software
Development Kit (SDK) Help [Ref 1].
Embedded System Tools Reference Manual 51
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=51

Chapter 4

Flash Memory Programming

Overview
Program Flash Utility is used to erase and program flash memories on the board. Some
other options include blank check and verify, which are useful to verify the erase and
program features. Blank Check, if enabled, reads the content from the flash and checks
whether the flash part is blank or not. Similarly, the verify feature, if enabled, reads back and
compares the data read with the data programmed, to check if the data was written
properly.

Zynq Devices
Program Flash utility supports programming of QSPI, NAND & NOR types of flashes. QSPI
can used in different configurations such as QSPI Single, QSPI Dual Parallel and QSPI Dual
Stacked. FSBL file has to be provided in case of NAND & NOR types.

You can program boot images created from Bootgen. Bootgen stitches the components like
First Stage Boot Loader (FSBL), bitstream (to configure the PL part of Zynq®), the
applications, RTOS and other data files.

When the processor comes out of reset in case of Zynq, the control is with BootROM, which
copies the FSBL from the flash to the on chip memory and hands over the control to it. The
FSBL starts executing, which then copies the bitstream from flash and configures the PL.
Once the PL is configured, the FSBL copies the next partition, say, an application from the
flash to DDR, and hands over the control to the application. The application starts
executing. In order to load the Linux, U-boot can be used as one more partition

Other Devices
The flashes are broadly categorized into Parallel Flash (BPI) and Serial Flash (SPI). Both the
SPI and BPI flashes are available from various makes such as Micron, Spansion etc. You can
program the following in flash:

• Executable or bootable images of applications
• Hardware bitstreams for your FPGA
• File system images, data files such as sample data and algorithmic tables
Embedded System Tools Reference Manual 52
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=52

Chapter 4: Flash Memory Programming
The executable or bootable images of applications is the most common use case. When the
processor in your design comes out of reset, it starts executing code stored in block RAM at
the processor reset location. Typically, block RAM size is only a few kilobytes or so and is
too small to accommodate your entire software application image. You can store your
software application image (typically, a few megabytes-worth of data) in flash memory. A
small bootloader is then designed to fit in block RAM. The processor executes the
bootloader on reset, which then copies the software application image from flash into
external memory. The bootloader then transfers control to the software application to
continue execution.

The software application you build from your project is in Executable Linked Format (ELF).
When bootloading a software application from flash, ELF images should be converted to
one of the common bootloadable image formats, such as Motorola S-record (SREC). This
keeps the bootloader smaller and more simple.

Program Flash Utility
Program Flash is a command-line utility which allows you to erase and program on-board
serial & parallel flash devices with software and data.

Usage
program_flash <flash options> <cable device options>

Flash Options

Option Description
-f <image file> Image to be written onto the flash memory (bin/mcs only)
-offset <address> Offset within the flash memory at which the image should be written.
-no_erase Do not erase the flash memory before programming
-erase_only Erases the flash as per the size of the image file
-blank_check Check if the flash memory is erased
-verify Check if the flash memory is programmed correctly
-fsbl <fsbl file> For NAND & NOR flash types only (Zynq only)
-erase_sector <size> For flashes whose erase sector is other than 64KB (size in bytes)
Embedded System Tools Reference Manual 53
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=53

Chapter 4: Flash Memory Programming
Cable & Device Options

-flash_type <type> Supported flash memory types:
• For Zynq devices

° qspi_single
° qspi_dual_parallel
° qspi_dual_stacked
° nand_8
° nand_16
° nor

• For other devices
Use the -partlist command line option to list all the flash types.

-partlist <bpi|spi>
<micron|spansion>

Lists all the flash parts for other (non-Zynq) devices
• program_flash -partlist - lists all flashes
• program_flash -partlist bpi micron - lists all Micron BPI

flashes
• program_flash -partlist spi spansion - lists Spansion SPI

flashes

Option Description
-cable type <type of
cable> esn <cable esn>

url <URL>

• type <type of cable> - Specify the cable type (xilinx_tcf)
• esn <cable esn> - Specify the Electronic Serial Number (ESN)

of the USB cable connected to the host machine. Use this option to
uniquely identify a USB cable when multiple cables are connected
to the host machine.

• url <URL> - URL description of hw_server/TCF agent.
-debugdevice deviceNr
<device position in jtag
chain>

-deviceNr - Position in the JTAG chain of the device. The device
position number starts from 1.

Option Description
Embedded System Tools Reference Manual 54
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=54

Chapter 4: Flash Memory Programming
Other Notes
Supported Flash Parts for Non-Zynq Devices
The following table lists all the flash parts that are supported for non-Zynq devices. The part
name information is passed using the -flash_type command line option. The list
contains the flashes of type BPIx8, BPIx16 and SPI from Micron & Spansion. The -partlist
command-line option can be used to filter out the flashes based on types (BPI/SPI) or
manufacturer (Spansion/Micron).
Table 4-1: Supported Flash parts for non-Zynq devices

S.No. Manufacturer Part Name (-flash type)
 1: Spansion s29gl128p-bpi-x16
 2: Spansion s29gl256p-bpi-x16
 3: Spansion s29gl512p-bpi-x16
 4: Spansion s29gl01gp-bpi-x16
 5: Spansion s29gl128s-bpi-x16
 6: Spansion s29gl256s-bpi-x16
 7: Spansion s29gl512s-bpi-x16
 8: Spansion s29gl01gs-bpi-x16
 9: Spansion s29gl128p-bpi-x8
 10: Spansion s29gl256p-bpi-x8
 11: Spansion s29gl512p-bpi-x8
 12: Spansion s29gl01gp-bpi-x8
 13: Micron 28f640p30t-bpi-x16
 14: Micron 28f640p30b-bpi-x16
 15: Micron 28f128p30t-bpi-x16
 16: Micron 28f128p30b-bpi-x16
 17: Micron 28f256p30t-bpi-x16
 18: Micron 28f256p30b-bpi-x16
 19: Micron 28f512p30t-bpi-x16
 20: Micron 28f512p30e-bpi-x16
 21: Micron 28f512p30b-bpi-x16
 22: Micron 28f00ap30t-bpi-x16
 23: Micron 28f00ap30e-bpi-x16
 24: Micron 28f00ap30b-bpi-x16
 25: Micron 28f00bp30e-bpi-x16
Embedded System Tools Reference Manual 55
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=55

Chapter 4: Flash Memory Programming
 26: Micron 28f640p33t-bpi-x16
 27: Micron 28f640p33b-bpi-x16
 28: Micron 28f128p33t-bpi-x16
 29: Micron 28f128p33b-bpi-x16
 30: Micron 28f256p33t-bpi-x16
 31: Micron 28f256p33b-bpi-x16
 32: Micron 28f512p33t-bpi-x16
 33: Micron 28f512p33e-bpi-x16
 34: Micron 28f512p33b-bpi-x16
 35: Micron 28f00ap33t-bpi-x16
 36: Micron 28f00ap33e-bpi-x16
 37: Micron 28f00ap33b-bpi-x16
 38: Micron 28f128g18f-bpi-x16
 39: Micron mt28gu256aax1e-bpi-x16
 40: Micron mt28gu512aax1e-bpi-x16
 41: Micron mt28gu01gaax1e-bpi-x16
 42: Micron 28f064m29ewh-bpi-x16
 43: Micron 28f064m29ewl-bpi-x16
 44: Micron 28f064m29ewt-bpi-x16
 45: Micron 28f064m29ewb-bpi-x16
 46: Micron 28f128m29ew-bpi-x16
 47: Micron 28f256m29ew-bpi-x16
 48: Micron 28f512m29ew-bpi-x16
 49: Micron 28f00am29ew-bpi-x16
 50: Micron 28f00bm29ew-bpi-x16
 51: Micron 28f064m29ewh-bpi-x8
 52: Micron 28f064m29ewl-bpi-x8
 53: Micron 28f064m29ewt-bpi-x8
 54: Micron 28f064m29ewb-bpi-x8
 55: Micron 28f128m29ew-bpi-x8
 56: Micron 28f256m29ew-bpi-x8
 57: Micron 28f512m29ew-bpi-x8
 58: Micron 28f00am29ew-bpi-x8
 59: Micron 28f00bm29ew-bpi-x8
 60: Spansion s70gl02gp-bpi-x16

Table 4-1: Supported Flash parts for non-Zynq devices
S.No. Manufacturer Part Name (-flash type)
Embedded System Tools Reference Manual 56
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=56

Chapter 4: Flash Memory Programming
 61: Spansion s70gl02gs-bpi-x16
 62: Spansion s25fl032p-spi-x1_x2_x4
 63: Spansion s25fl064p-spi-x1_x2_x4
 64: Spansion s25fl132k-spi-x1_x2_x4
 65: Spansion s25fl164k-spi-x1_x2_x4
 66: Spansion s25fl128sxxxxxx0-spi-x1_x2_x4
 67: Spansion s25fl128sxxxxxx1-spi-x1_x2_x4
 68: Spansion s25fl256sxxxxxx0-spi-x1_x2_x4
 69: Spansion s25fl256sxxxxxx1-spi-x1_x2_x4
 70: Spansion s25fl512s-spi-x1_x2_x4
 71: Micron mt25qu512-spi-x1_x2_x4
 72: Micron mt25qu512-spi-x1_x2_x4_x8
 73: Micron mt25ql512-spi-x1_x2_x4
 74: Micron mt25ql512-spi-x1_x2_x4_x8
 75: Micron mt25ql01g-spi-x1_x2_x4
 76: Micron mt25ql01g-spi-x1_x2_x4_x8
 77: Micron mt25ql02g-spi-x1_x2_x4
 78: Micron mt25ql02g-spi-x1_x2_x4_x8
 79: Micron mt25qu01g-spi-x1_x2_x4
 80: Micron mt25qu01g-spi-x1_x2_x4_x8
 81: Micron mt25qu02g-spi-x1_x2_x4
 82: Micron mt25qu02g-spi-x1_x2_x4_x8
 83: Micron n25q128-3.3v-spi-x1_x2_x4
 84: Micron n25q128-1.8v-spi-x1_x2_x4
 85: Micron n25q256-3.3v-spi-x1_x2_x4
 86: Micron n25q256-1.8v-spi-x1_x2_x4_x8
 87: Micron n25q256-1.8v-spi-x1_x2_x4
 88: Micron n25q32-3.3v-spi-x1_x2_x4
 89: Micron n25q32-1.8v-spi-x1_x2_x4
 90: Micron n25q64-3.3v-spi-x1_x2_x4
 91: Micron n25q64-1.8v-spi-x1_x2_x4

Table 4-1: Supported Flash parts for non-Zynq devices
S.No. Manufacturer Part Name (-flash type)
Embedded System Tools Reference Manual 57
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=57

Chapter 4: Flash Memory Programming
Conversion of ELF Files to SREC for Bootloader Applications
You can use the mb-objcopy utility to create SREC format files from ELF files. The SREC
format applications can be stored in flash at some particular offsets. The SREC boot loader
can read these applications, load them and execute. For example, navigate to the folder
containing the myexecutable.elf file and execute the following:

mb-objcopy -O srec myexecutable.elf myexecutable.srec

This creates an SREC file that you can then use as appropriate. The mb-objcopy utility is a
GNU binary that ships with the SDK.

Conversion of SREC/ELF/BIT files to BIN/MCS files for
programming
You can use Xilinx Bootgen utility to create the BIN/MCS files from various other files.

bootgen -arch fpga -image <input.bif> -o <output.bin/mcs> -interface <options>

Bootgen Options

Examples

1. Converting ELF file to BIN file.
bootgen -arch fpga -image elf_bin_all.bif -o boot.bin -interface spi

Where the contents of the elf_bin_all.bif file are as follows:

image:

 {

 hello.elf

 }

Option Description
-image <input.bif> Input boot image format file contains info regarding the input file.
-o <output.bin/mcs> The output file path and format

• -o output.bin - BIN file created with name output
• -o output.mcs - MCS file created with name output

-interface <options> Interface to program and boot from the flash
• spi
• bpix8
• bpix16
• smapx8
• smapx16
• smapx32
Embedded System Tools Reference Manual 58
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=58

Chapter 4: Flash Memory Programming
2. Converting SREC file to BIN file.
bootgen -arch fpga -image srec_bin_all.bif -o boot.bin -interface spi

Where the contents of the srec_bin_all.bif file are as follows:

image:

 {

 hello.elf.srec

 }

3. Converting BIT file to BIN file
bootgen -arch fpga -image bit_bin_all.bif -o boot.bin -interface spi

Where the contents of the bit_bin_all.bif are as follows:

image:

 {

 system.bit

 }

Creating images for Zynq devices
Xilinx Bootgen is used to create images for Zynq devices. Various components are stitched
together to create a boot image. Optionally, the components can be encrypted,
authenticated, checksum. There are various options to create boot images.

For more information, refer to Zynq-7000 All Programmable SoC Software Developers Guide
(UG821) [Ref 8].
Embedded System Tools Reference Manual 59
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=59

Appendix A

GNU Utilities
This appendix describes the GNU utilities available for use with the Vivado® Design Suite.

General Purpose Utility for MicroBlaze Processors
cpp
Pre-processor for C and C++ utilities. The preprocessor is invoked automatically by GNU
Compiler Collection (GCC) and implements directives such as file-include and define.

gcov
This is a program used in conjunction with GCC to profile and analyze test coverage of
programs. It can also be used with the gprof profiling program.

Note: The gcov utility is not supported by IP integrator or SDK, but is provided as is for use if you
want to roll your own coverage flows.

Utilities Specific to MicroBlaze Processors
Utilities specific to MicroBlaze™ Processors have the prefix “mb-,” as shown in the following
program names.

mb-addr2line
This program uses debugging information in the executable to translate a program address
into a corresponding line number and file name.

mb-ar
This program creates, modifies, and extracts files from archives. An archive is a file that
contains one or more other files, typically object files for libraries.
Embedded System Tools Reference Manual 60
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=60

Appendix A: GNU Utilities
mb-as
This is the assembler program.

mb-c++
This is the same cross compiler as mb-gcc, invoked with the programming language set to
C++. This is the same as mb-g++.

mb-c++filt
This program performs name demangling for C++ and Java function names in assembly
listings.

mb-g++
This is the same cross compiler as mb-gcc, invoked with the programming language set to
C++. This is the same as mb-c++.

mb-gasp
This is the macro preprocessor for the assembler program.

mb-gcc
This is the cross compiler for C and C++ programs. It automatically identifies the
programming language used based on the file extension.

mb-gdb
This is the debugger for programs.

mb-gprof
This is a profiling program that allows you to analyze how much time is spent in each part
of your program. It is useful for optimizing run time.

mb-ld
This is the linker program. It combines library and object files, performing any relocation
necessary, and generates an executable file.
Embedded System Tools Reference Manual 61
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=61

Appendix A: GNU Utilities
mb-nm
This program lists the symbols in an object file.

mb-objcopy
This program translates the contents of an object file from one format to another.

mb-objdump
This program displays information about an object file. This is very useful in debugging
programs, and is typically used to verify that the correct utilities and data are in the correct
memory location.

mb-ranlib
This program creates an index for an archive file, and adds this index to the archive file
itself. This allows the linker to speed up the process of linking to the library represented by
the archive.

mb-readelf
This program displays information about an Executable Linked Format (ELF) file.

mb-size
This program lists the size of each section in the object file. This is useful to determine the
static memory requirements for utilities and data.

mb-strings
This is a useful program for determining the contents of binary files. It lists the strings of
printable characters in an object file.

mb-strip
This program removes all symbols from object files. It can be used to reduce the size of the
file, and to prevent others from viewing the symbolic information in the file.
Embedded System Tools Reference Manual 62
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=62

Appendix A: GNU Utilities
Other Programs and Files
The following Tcl and Tk shells are invoked by various front-end programs:

• cygitclsh30

• cygitkwish30

• cygtclsh80

• cygwish80

• tix4180
Embedded System Tools Reference Manual 63
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=63

Appendix B

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter: docnav

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Embedded System Tools Reference Manual 64
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=64

Appendix B: Additional Resources and Legal Notices
References
The following Vivado® Design Suite guides are referenced in this document.

1. Software Development Kit (SDK) Help (UG782)
2. Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)
3. MicroBlaze Processor User Guide (UG081)
4. Zynq-7000 SoC: Embedded Design Tutorial (UG1165)

Other Xilinx Documentation
5. Vivado Design Suite User Guide: Embedded Processor Hardware Design (UG898) (UG898)
6. Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940) (UG940)
7. Generating Basic Software Platforms Reference Guide (UG1138)
8. Zynq-7000 All Programmable SoC Software Developers Guide (UG821) (UG821)
9. Zynq UltraScale+ MPSoC Packaging and Pinouts Product Specification User Guide

(UG1075)
10. Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085)
11. Zynq UltraScale+ MPSoC Software Developer Guide (UG1137)
12. Zynq UltraScale+ MPSoC Quick Emulator User Guide (UG1169)
13. Zynq UltraScale+ MPSoC OpenAMP Getting Started Guide (UG1186)

Additional Resources
14. GNU website: http://www.gnu.org
15. Red Hat Insight website: http://sources.redhat.com/insight.

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

1. Zynq-7000 SoC: Development Tools Overview
2. Zynq-7000 SoC: System Performance Tools Overview
3. Zynq-7000 SoC: Hello World in 5 Minutes
Embedded System Tools Reference Manual 65
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1138-generating-basic-software-platforms.pdf

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug898-vivado-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug821-zynq-7000-swdev.pdf
http://sources.redhat.com/insight
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=SDK_Doc/index.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/mb_ref_guide.pdf
http://www.gnu.org
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/zynq-development-tools-overview.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/sdk-system-performance-tools-overview.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/hello-world-in-5-minutes.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1075-zynq-ultrascale-pkg-pinout.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1165-zynq-embedded-design-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1169-zynqmp-qemu.pdf
https://www.xilinx.com/support/documentation/user_guides/zynq-ultrascale-openAMP-gsg,pdf
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=65

Appendix B: Additional Resources and Legal Notices
4. Zynq-7000 SoC: Bare Metal Application Development

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2016-2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.
Embedded System Tools Reference Manual 66
UG1043 (v2018.3) December 05, 2018 www.xilinx.com

Send Feedback
UG1043 (v2019.1) May 22, 2019

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/zynq-bare-metal-application-development-sdk.html
https://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG1043&Title=Embedded%20System%20Tools%20Reference%20Manual&releaseVersion=2019.1&docPage=66

	Embedded System Tools Reference Manual
	Revision History
	Table of Contents
	Ch. 1: Embedded System and Tools Architecture Overview
	Design Process Overview
	Hardware Development
	Software Development
	Verification
	Hardware Verification Using Simulation
	Software Verification Using Debugging
	Device Configuration

	Vivado Design Suite Overview
	Software Development Kit
	GNU Compiler Tools
	Xilinx System Debugger (XSDB)
	SDK System Debugger
	Program Flash Utility

	Ch. 2: GNU Compiler Tools
	Overview
	Compiler Framework
	Common Compiler Usage and Options
	Usage
	Input Files
	Output Files
	File Types and Extensions
	Libraries
	Language Dialect
	Commonly Used Compiler Options: Quick Reference
	General Options
	Library Search Options
	Header File Search Option
	Default Search Paths
	Library Search Procedures
	Header File Search Procedures
	Initialization File Search Procedures

	Linker Options
	Memory Layout
	Reserved Memory
	I/O Memory
	User and Program Memory

	Object-File Sections
	.text

	Linker Scripts

	MicroBlaze Compiler Usage and Options
	MicroBlaze Compiler
	MicroBlaze Compiler Options: Quick Reference
	Processor Feature Selection Options
	General Program Options
	Application Execution Modes
	Position Independent Code

	MicroBlaze Application Binary Interface
	MicroBlaze Assembler
	MicroBlaze Linker Options
	MicroBlaze Linker Script Sections
	Tips for Writing or Customizing Linker Scripts
	Startup Files
	First Stage Initialization Files
	Second Stage Initialization Files
	Other files

	Modifying Startup Files
	Reducing the Startup Code Size for C Programs

	Compiler Libraries
	Thread Safety
	Command Line Arguments
	Interrupt Handlers

	Arm Cortex-A9 Compiler Usage and Options
	Usage
	Compiling
	Linking
	Compiler Options

	Other Notes
	C++ Code Size
	C++ Standard Library
	Position Independent Code (Relocatable Code)
	Other Switches and Features

	Ch. 3: Xilinx System Debugger
	SDK System Debugger
	Xilinx System Debugger Command-Line Interface (XSDB)

	Ch. 4: Flash Memory Programming
	Overview
	Zynq Devices
	Other Devices

	Program Flash Utility
	Usage
	Flash Options
	Cable & Device Options

	Other Notes
	Supported Flash Parts for Non-Zynq Devices
	Conversion of ELF Files to SREC for Bootloader Applications
	Conversion of SREC/ELF/BIT files to BIN/MCS files for programming
	Bootgen Options
	Examples

	Creating images for Zynq devices

	Appx. A: GNU Utilities
	General Purpose Utility for MicroBlaze Processors
	cpp
	gcov

	Utilities Specific to MicroBlaze Processors
	mb-addr2line
	mb-ar
	mb-as
	mb-c++
	mb-c++filt
	mb-g++
	mb-gasp
	mb-gcc
	mb-gdb
	mb-gprof
	mb-ld
	mb-nm
	mb-objcopy
	mb-objdump
	mb-ranlib
	mb-readelf
	mb-size
	mb-strings
	mb-strip

	Other Programs and Files

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Other Xilinx Documentation
	Additional Resources

	Training Resources
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

