SDSoC Environment User
Guide

UG1027 (v2019.1) May 22, 2019

& XILINX

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1027

& XILINX

Revision History

The following table shows the revision history for this document.

Section

| Revision Summary

05/22/2019 Version 2019.1

Software Acceleration with SDSoC

Updated description.

Getting Started

Updated description.

Chapter 3: Creating an SDSoC Application

Added description.

Importing C/C++ Sources

Added tip note and File and Folder figure.

Importing C-Callable IP Libraries

Updated numbered list.

Building an SDSoC Library

Added a cross-reference.

Chapter 4: C-Callable IP Libraries

Added sentence to end of first paragraph.

Chapter 5: Debugging Techniques

Updated menu cascade.

Targeting System Emulation

Minor update to description.

Building an SDSoC Library

Added new section.

Shared Library

Removed figures.

Installing Examples

Updated figures and link to Local Copies.

C++ Design Libraries

Updated links.

Appendix B: Managing Platforms and Repositories

Added developer sentence.

01/24/2019 Version 2018.3

Execution Model of an SDSoC Application

Updated data mover line and async important note.

Chapter 2: SDSoC Environment

Removed table note.

Importing a Project

Added new section.

Selecting Clock Frequencies

Added ZCU102 platform code example in Command Line
Options.

C++ Design Libraries

Updated to <Vivado_Install_Dir> filepath.

Guidelines for Invoking SDSCC/SDS++

Removed section.

12/05/2018 Version 2018.3

Chapter 2: SDSoC Environment

Updated description and figure.

Software Acceleration with SDSoC

Updated description.

Elements of SDSoC

Updated platform description.

Using an SDx Workspace

Updated launch description and figure.

Creating an Application Project

Updated whole section.

Importing Sources

Updated Imported File figure and C-Callable IP Libraries
section.

Selecting Functions for Hardware Acceleration

Added Add Hardware Functions and Hardware Function
Panel figures.

Selecting Clock Frequencies

Updated figures and code examples.

Targeting Hardware

Updated figures and code examples.

Targeting System Emulation

Updated figures.

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide

l Send Feedback l

www.Xilinx.com

2

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=2

iv Xl I_l NX Revision History
A ®

Section Revision Summary
Creating C-Callable IP Libraries Updated description.
Using C-Callable IP Libraries Updated description.

Appendix C: Configuring SDSoC Settings through the GUI Updated appendix.
07/02/2018 Version 2018.2

Design Flow Overview Updated Design Flow Overview diagram.
Throughout the document: Minor text updates.

Updated Figures.
Chapter 1: SDSoC Introduction and Overview Updated content throughout chapter.
Chapter 2: The SDSoC Environment Updated content throughout chapter.

Updated the PS/PL Block Diagram.
Updated Flow Diagram.

Chapter 3: The SDSoC Environment Updates in all sections.
Design Flow Overview diagram was updated to include
Emulation.
Chapter 4: C-Callable IP Libraries Updates throughout chapter.
06/06/2018 Version 2018.2
Throughout the document: Updated Figures.
SDSoC Introduction and Overview Added Chapter.
The SDSoC Environment Updated Chapter.

* Added introductory information.
* Modified the PS/PL C-Callable block diagram.
* Added Pipelined Data Transfer and Compute figure.

* Added information and links to topics in the Chapter.

Design Flow Overview

Understanding the SDx GUI

Using an SDx Workspace

Creating an SDSoC Application Changed Chapter title. Made extensive changes to all
sections.

Using a Workspace: Consolidated information about
environment variables and command shells.

Creating an Application Project

Working with Code: Updated all topics in this section.

Building the SDSoC Project
* Creating a Hardware Project: Separated topic.

* Running Emulation: Separated figures for QEMU
interface and Waveform window.

* Guidelines for Invoking SDSCC/SDS++: Moved topic from
Command Line Options Chapter; that chapter was

deleted.
Targeting System Emulation Updated topic.
Chapter 4: C-Callable IP Libraries Updated C-Callable Libraries Chapter.
Debugging Techniques Added Chapter.

UG1027 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Environment User Guide send Feedback 3

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=3

& XILINX

Revision History

Section

Revision Summary

Chapter 6: Profiling and Optimization

Updated Chapter.

Appendix A: Getting Started with Examples

Modified examples.

Managing Platforms and Repositories

Updated Appendix.

Compiling and Running Applications

Added Appendix.

04/04/2018 Version 2018.1

The SDSoC Environment

Updated information to more correctly reflect the SDSoC
Environment.

Hardware/Software System Runtime Environment

Updated code examples.

Design Flow Overview

Updated content to more correctly reflect the behavior of
SDSoC.

Creating and Using C-Callable IP Libraries.

Minor edits to C-Callable IP contents.

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide

l Send Feedback l

www.Xilinx.com

4

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=4

& XILINX

Table of Contents

REVISION HISTOKY ...ttt sess s sssssssssesssssssssssssssssssssasens 2
Chapter 1: SDSoC Introduction and Overview................eeeneneenennes 7
Software Acceleration With SDSOC.......c..coviiiiriininenetee ettt sae st saeens 8
Execution Model of an SDSOC APPlICAtION...cc.cviririeieieiercerereeeee et 9
SDSOC BUIIA PrOCESS....ccouiiiierierieeitetetesieste sttt sttt st st sae sttt sbesbesbessesae et et e neensenees 11
SDSoC Development MethodOolOGIes........cccuevieriiriineiiieniinieeienteseee st s 13
Best Practices for Acceleration wWith SDSOC..........cocoviiviniienienenieneeeeee e 15
Chapter 2: SDSOC ENVIFONMENL.........ieeerererereseesesessessessessessessessenss 17
GELEING STArTRA. ..ottt sttt sa e b st sae e b et esaeesbe e b e saeesseenne 20
ElemMENtS Of SDSOCottt ettt ettt e bt s s st e be s e sseesneeneens 20
DESIGN FIOW OVEIVIEW......iiuiiiiiiiiiiieenieesiteste st e sttt esste s siaessreesssessseesasesssaesssassssessseesssessasnnns 22
Understanding the SDX GUL......c.cocuiviiiieriieniinienienteneeie st se et sie e ste s s esaesssesssesaesssessnens 24
Chapter 3: Creating an SDSoC Application............ncnenrcrncnennnes 27
USING @N SDX WOTKSPACE.....ciiieiiiiieieniterieeiestesie et steseeesaeste s e e testesssesbestesssessessesssessesnsanns 27
Creating an APPliCatioN PrOJECT......cciviiriirierieneereeieet ettt ettt st sae b sne s 29
WOTrKIiNG WIth COO@....uiiiiieeiee ettt sttt et et e be e e st e b e aeeaees 34
BUildiNg the SDSOC PrOjJECL....ccueiieeieeieeieeee sttt sr e st sne s s sseennes 43
BUildiNg @n SDSOC LIDrary.....ccieeierieiiinienieeiestesie ettt se e ste e siessse s s esseessessesssessasssesasansens 52
Chapter 4: C-Callable IP Libraries........... e 54
Creating C-Callable IP LiDraries. ...ttt se et sssesaesstesaesresssessnas 55
USiNg C-Callable IP LIDrari@s.....cuicieieriiriieienienieciestese ettt ste st st st sae s aesaeennaes 65
Chapter 5: Debugging Techniques............o s 68
Chapter 6: Profiling and Optimization..............nnenencrenenennes 69
Appendix A: Getting Started with Examples.............nvnvnvncnnennee. 74
INSTAIlING EXAMPIES....neieeeeeee ettt sttt s b e st b et st be e ne e 74
CH+ DESIGN LIDIAri@S.. ettt sttt st b e s sn e n e e 76

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 5

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=5

& XILINX

Appendix B: Managing Platforms and Repositories..............cccoeueuuneee. 78
Appendix C: Configuring SDSoC Settings through the GUI................... 80
SDSOC ProjeCt SEEEINGS. .ciicutiieiiteeciee ettt ettt sree st e s sre e s sbee s sabeessseessseesssaesssnessseenss 80
SDSoC Build Configuration SEtHINGS.......ccceeieriirerienteieetestese sttt e e sae st sae s saees 81
SDS++/SDSCC COMPIIEr OPLIONS.....ccvieiereiereirierisieretereeste et se e ssesesaeeeese e sse e ssesesessesessesenes 83
SDS++ LiNKer SENGS......coviiiiiiiiiiciic s 86
Appendix D: Compiling and Running Applications............cccccocoeevvcrennee. 89
Compiling and Running Applications on a MicroBlaze Processor.......ccccceceeeeneneeneennenne 89
Compiling and Running Applications on an Arm ProCessSOr.......ueeervieenierneenieenneensvennes 90
Appendix E: Additional Resources and Legal Notices........................... 92
XIlINX RESOUICES.....ciuiiiiiiiiiiiniiitctctetet ettt sb bbbt sbene 92
Documentation Navigator and Design HUDS........cc.ociriinirieniiniciectcnteeere e 92
RETEIENCES. ..ottt 92
TraINING RESOUICES...ccuuiiiiiieiieeiieee ettt sttt sttt st s bt s s be e s b e s bt e sabessneessesneess 93
Please Read: Important Legal NOTICES.......cooiiierierieeeeeeeee et 94

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 6

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=6

& XILINX

Chapter 1

SDSoC Introduction and Overview

The SDSoC™ environment provides a framework for developing and delivering hardware
accelerated embedded processor applications using standard programming languages. It includes
a familiar embedded processor development flow with an Eclipse-based integrated development
environment (IDE), compilers for the embedded processor application and for hardware functions
implemented on the programmable logic resources of the Xilinx® device. The sdscc/sds++
(referred to as sds++) system compiler analyzes a program to determine the dataflow between
software and hardware functions, generating an application-specific SoC supporting bare metal,
Linux, and FreeRTOS as the target operating system. The sds++ system compiler generates
hardware IP and software control code that automatically implements data transfers and
synchronizes hardware accelerators and application software, therefore pipelining
communication and computation.

Using SoC devices from Xilinx, such as the Zynq®-7000 SoC and the Zynq UltraScale+™ MPSoC,
you can implement elements of your application into hardware accelerators, running many times
faster than optimized code running on a processor. Xilinx FPGAs and SoC devices offer many
advantages over traditional CPU/GPU acceleration, including a custom architecture capable of
implementing any function that can run on a processor, resulting in better performance at lower
power dissipation. To realize the advantages of software acceleration on a Xilinx device, you
should look to accelerate large compute intensive portions of your application in hardware.
Implementing these functions in custom hardware allows you to achieve an ideal balance
between performance and power. The SDSoC environment provides tools and reports to profile
the performance of your embedded processor application and determines where the
opportunities for acceleration are. The tools also provide automated runtime instrumentation of
cache, memory, and bus utilization to track real-time performance on the hardware.

Developers of hardware accelerated applications can make use of a familiar software-centric
programming workflow to take advantage of FPGA acceleration with little or no prior FPGA or
hardware design experience. As a software programmer, calling a hardware function is the same
as calling a software function, letting the compiler implement the hardware/software partitioning.
However, developers can also create predefined hardware accelerators for use in an embedded
processor application, using a hardware-centric approach working through the Vivado® HLS
compiler, or creating and packaging optimized RTL accelerators for distribution as a library of C-
Callable IP.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 7

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=7

iv Xl I_l NX Chapter 1: SDSoC Introduction and Overview
A ®

The SDSoC environment provides predefined platforms for standard ZCU102, ZCU104, ZCU106,
ZC702, and ZC706, which are Zyng-based development boards. Third-party platforms are also
available including: the Zedboard, Microzed, Zybo, Avnet Embedded Vision Kit, Video and
Imaging Kit, SDR kit, and more. You can also create a custom platform to meet your specific
market requirements. An SDSoC platform consists of a hardware portion defining the embedded
processor, the hardware function, and any peripherals supported by the platform; and a software
portion defining the operating system boot images, drivers, and the application code. You can
start your project using one of the standard SDSoC platforms to evaluate a design concept, to be
later implemented on a custom platform for production.

Software Acceleration with SDSoC

When compared with processor architectures, the structures that comprise the programmable
logic (PL) in a Xilinx device enable a high degree of parallelism in application execution. The
custom processing architecture generated by the sds++/sdscc (referred to as sds++) system
compiler for a hardware function in an accelerator presents a different execution paradigm from
CPU execution, and provides an opportunity for significant performance gains. While you can re-
target an existing embedded processor application for acceleration in PL, writing your application
to use the source code libraries of existing hardware functions, such as the Xilinx xfOpenCV
library, or modifying your code to better use the PL device architecture, yields significant
performance gains and power reduction.

CPUs have fixed resources and offer limited opportunities for parallelization of tasks or
operations. A processor, regardless of its type, executes a program as a sequence of instructions
generated by processor compiler tools, which transform an algorithm expressed in C/C++ into
assembly language constructs that are native to the target processor. Even a simple operation,
such as the multiplication of two values, results in multiple assembly instructions that must be
executed across multiple clock cycles.

An FPGA is an inherently parallel processing device capable of implementing any function that
can run on a processor. Xilinx devices have an abundance of resources that can be programmed
and configured to implement any custom architecture and achieve virtually any level of
parallelism. Unlike a processor, where all computations share the same ALU, the FPGA
programming logic acts as a blank canvas to define and implement your acceleration functions.
The FPGA compiler creates a unique circuit optimized for each application or algorithm; for
example, only implementing multiply and accumulate hardware for a neural net—not a whole
ALU.

The sds++ system compiler invoked with the -c option compiles a file into a hardware IP by
invoking the Vivado High-Level Synthesis (HLS) tool on the desired function definition. Before
calling the HLS tool, the sds++ compiler translates #pragma SDS into pragmas understood by
the HLS tool. The HLS tool performs hardware-oriented transformations and optimizations,
including scheduling, pipelining, and dataflow operations to increase concurrency.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 8

https://github.com/Xilinx/xfopencv
https://github.com/Xilinx/xfopencv
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=8

iv Xl I_l NX Chapter 1: SDSoC Introduction and Overview
A ®

The sds++ linker analyzes program dataflow involving calls into and between hardware
functions, mapping into a system hardware data motion network, and software control code
(called stubs) to orchestrate accelerators and data transfers through data movers. As described in
the following section, the sds ++ linker performs data transfer scheduling to identify operations
that can be shared, and to insert wait barrier API calls into stubs to ensure program semantics are
preserved.

Execution Model of an SDSoC Application

The execution model for an SDSoC environment application can be understood in terms of the
normal execution of a C++ program running on the target CPU after the platform has booted. It is
useful to understand how a C++ binary executable interfaces to hardware.

The set of declared hardware functions within a program is compiled into hardware accelerators
that are accessed with the standard C runtime through calls into these functions. Each hardware
function call in effect invokes the accelerator as a task and each of the arguments to the function
is transferred between the CPU and the accelerator, accessible by the program after accelerator
task completion. Data transfers between memory and accelerators are accomplished through
data movers, such as a DMA engine, automatically inserted into the system by the sds++ system
compiler taking into account user data mover pragmas such as zero_copy.

UG1027 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Environment User Guide send Feedback 9

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=9

iv Xl I_l NX Chapter 1: SDSoC Introduction and Overview
A ®

Figure 1: Architecture of an SDSoC System

SDSoC Platform

DDR Banks

HIEENN

B b4

Embedded Processor (PS Region) /\ '\ Programmable Logic
Operating System Drivers Data Movers (PL Region)
Application Code \, 1/4 Hardware Function Accelerators

1
NN

Peripherals
(Vision, Graphics, Measurement...)

X21358-082418

To ensure program correctness, the system compiler intercepts each call to a hardware function,
and replaces it with a call to a generated stub function that has an identical signature but with a
derived name. The stub function orchestrates all data movement and accelerator operation,
synchronizing software and accelerator hardware at the exit of the hardware function call. Within
the stub, all accelerator and data mover control is realized through a set of send and receive APlIs
provided by the sds_11b library.

When program dataflow between hardware function calls involves array arguments that are not
accessed after the function calls have been invoked within the program (other than destructors
or free () calls), and when the hardware accelerators can be connected using streams, the
system compiler transfers data from one hardware accelerator to the next through direct
hardware stream connections, rather than implementing a round trip to and from memory. This
optimization can result in significant performance gains and reduction in hardware resources.

At a high-level, the SDSoC program execution model includes the following steps:

1. Initialization of the sds_1ib library occurs during the program constructor before entering
main().

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 10

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=10

iv Xl I_l NX Chapter 1: SDSoC Introduction and Overview
A ®

2. Within a program, every call to a hardware function is intercepted by a function call into a
stub function with the same function signature (other than name) as the original function.
Within the stub function, the following steps occur:

a. A synchronous accelerator task control command is sent to the hardware.

b. For each argument to the hardware function, an asynchronous data transfer request is
sent to the appropriate data mover, with an associated wait () handle. A non-void return
value is treated as an implicit output scalar argument.

c. Abarrierwait () isissued for each transfer request. If a data transfer between
accelerators is implemented as a direct hardware stream, the barrier wait () for this
transfer occurs in the stub function for the last in the chain of accelerator functions for
this argument.

3. Clean up of the sds_11ib library occurs during the program destructor, upon exiting main().

o TIP: Steps 2a-2c ensure that program correctness is preserved at the entrance and exit of accelerator pipelines
while enabling concurrent execution within the pipelines.

Sometimes, the programmer has insight of the potential concurrent execution of accelerator
tasks that cannot be automatically inferred by the system compiler. In this case, the sds++
system compiler supports a #pragma SDS async (ID) that can be inserted immediately
preceding a call to a hardware function. This pragma instructs the compiler to generate a stub
function without any barrier wait () calls for data transfers. As a result, after issuing all data
transfer requests, control returns to the program, enabling concurrent execution of the program
while the accelerator is running. In this case, it is your responsibility to insert a #pragma SDS
wait (ID) within the program at appropriate synchronization points, which are resolved into
sds_wait (ID) API calls to correctly synchronize hardware accelerators, their implicit data
movers, and the CPU.

‘11} IMPORTANT! Every async (ID) pragma requires a matching wa it (ID) pragma.

SDSoC Build Process

The SDSoC build process uses a standard compilation and linking process. Similar to g+ +, the
sds++ system compiler invokes sub-processes to accomplish compilation and linking.

As shown in the following figure, compilation is extended not only to object code that runs on
the CPU, but it also includes compilation and linking of hardware functions into IP blocks using
the Vivado High-Level Synthesis (HLS) tool, and creating standard object files (. o) using the
target CPU toolchain. System linking consists of program analysis of caller/callee relationships for
all hardware functions, and the generation of an application-specific hardware/software network

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 11

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=11

& XILINX

to implement every hardware function call. The sds++ system compiler invokes all necessary
tools, including Vivado HLS (function compiler), the Vivado Design Suite to implement the
generated hardware system, and the Arm compiler and sds++ linker to create the application
binaries that run on the CPU invoking the accelerator (stubs) for each hardware function by
outputting a complete bootable system for an SD card.

Chapter 1: SDSoC Introduction and Overview

Figure 2: SDSoC Build Process

Embedded System Source Code

C/C++ Embedded Process Hardware RTL, C/C++
Application Functions !
Arm Build Programmable Logic
Steps 1 1 Build Steps
GNU Arm SDS++ HLS Function
Toolchain Compilation Compile
Application . FPGA Binary
Executable Update SW SDS++ Vivado (Bitstream)
(.elf) Image Linking Design Suite
Y
Bootable System Image

X21126-041119

The compilation process includes the following tasks:

1.

Analyzing the code and running a compilation for the main application on the Arm core, as
well as a separate compilation for each of the hardware accelerators.

Compiling the application code through standard GNU Arm compilation tools with an object
(. o) file produced as final output.

Running the hardware accelerated functions through the HLS tool to start the process of
custom hardware creation with an object (. o) file as output.

After compilation, the linking process includes the following tasks:

1.

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide

Analyzing the data movement through the design and modifying the hardware platform to
accept the accelerators.

Implementing the hardware accelerators into the programmable logic (PL) region using the
Vivado Design Suite to run synthesis and implementation, and generate the bitstream for the
device.

Updating the software images with hardware access APIs to call the hardware functions from
the embedded processor application.

Producing an integrated SD card image that can boot the board with the application in an
Executable and Linkable Format (ELF) file.

www.Xilinx.com

l Send Feedback l 12

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=12

iv Xl I_l NX Chapter 1: SDSoC Introduction and Overview
A ®

SDSoC Development Methodologies

The SDSoC environment supports two primary use cases:

o Software-centric design: The development of an accelerated application written by software
programmers using standard programming languages, accelerating compute intensive
functions into programmable logic, or identifying application bottlenecks for acceleration by
profiling the application.

e Hardware-centric design: The development of predefined accelerated functions for use in
embedded processor applications like a library of intrinsic functions. This design methodology
can be driven from a top-down approach of writing the hardware function in a standard
programming language like C or C++, and then synthesized into RTL for implementation into
programmable logic; or by using standard RTL design techniques to create and optimize the
accelerated function.

The two use-cases are often combined, letting software and hardware developer teams define
hardware accelerators and developing embedded processor applications to use them. This
combined methodology involves different components of the application, developed by different
people, and potentially from different companies. You can use predefined hardware functions
from libraries available for use in your accelerated application, such as the Xilinx xfOpenCV
library, or develop all the accelerators within your own team.

Software-Centric Design

The software-centric approach to accelerated application development, or accelerator
development, begins with the use of the C or C++ programming language. The code is written as
a standard software program, with some attention to the specific architecture of the code. The
software-centric development flow typically uses the following steps:

Table 1: Software-Centric Design Flow

Task Steps

Profile the embedded processor application. * Baseline the performance, identify bottlenecks, and functions to
accelerate.

* Assess acceleration potential, plan budgets, and requirements.

Code the desired accelerators. * Convert the desired functions to define the hardware function code
without optimization.
Verify functionality, iterate as needed. * Run system emulation to generate application and accelerator

profiling data including:
Estimated FPGA resource usage.
Overall application performance.

Visual timeline showing application calls and accelerator start/
stop times.

* Address design recommendations provided by tool guidance.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 13

https://github.com/Xilinx/xfopencv
https://github.com/Xilinx/xfopencv
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=13

& XILINX

Table 1: Software-Centric Design Flow (cont'd)

Chapter 1: SDSoC Introduction and Overview

Task

Steps

Optimize for performance, iterate as needed. * Analyze the

Overlap

* Optimize th
Task-lev

Match d

* Optimize data movement throughout system:

Application to DDR, DDR to accelerator, and hardware function
interface to local buffers (bursting)

Maximize DDR bandwidth usage with efficient transfer sizes

Prefetching

Instruction-level parallelism (pipelining and loop unrolling)

profile summary and application timeline.

ping of transfers

e accelerator code for performance:
el parallelism (dataflow)

atapath size to interface bandwidth (arbitrary bit-width)

Hardware-Centric Design

A hardware-centric flow first focuses on developing

and optimizing the accelerators and typically

leverages advanced FPGA design techniques to create a library of C-Callable IP. This begins with
the definition of the hardware function in C or C++ for use in Vivado HLS, or the use of an RTL
language, or an existing IP design or block design in the Vivado Design Suite. The hardware
function is defined in RTL code, synthesized, and implemented into the programmable logic of
the target device. A software function signature is needed to use the C-Callable IP in the
accelerator application, or a compiled library of functions is created for use across multiple
applications. The hardware-centric development flow typically uses the following steps:

Table 2: Hardware-Centric Design Methodology

Task

Steps

Study the SDSoC platform specification, and the Zyng-7000 | e
SoC device specification and programming model.

Hardware platform, software platform, data movers, AXI
interface, DDR.

Identify cycle budgets and performance requirements.

Define the accelerator architecture and interfaces.

Develop the accelerator. * Use Vivado HLS for C or C++ hardware functions.
* Use traditional RTL design techniques in the Vivado
Design Suite.
Verify functionality and performance, iterate as needed. * Run hardware/software co-simulation in Vivado HLS.

Run logic simulation in the Vivado simulator.

Optimize the quality of results to reduce resource utilization | e
and increase frequency, iterate as needed.

For HLS, ensure the design rules check (DRC) is clean.

Run the Vivado implementation flow, using the
techniques specified in the UltraFast Design Methodology
Guide for the Vivado Design Suite (UG949).

Use best practices for out-of-context synthesis and
estimation.

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide

[Send Feedback] Www.xilinx.co1n;r

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=14

iv Xl I_l NX Chapter 1: SDSoC Introduction and Overview
A ®

Table 2: Hardware-Centric Design Methodology (cont'd)

Task Steps

Import the C-Callable IP into the SDSoC environment. * For the HLS flow, import the C or C++ code into your
SDSoC project.

* For RTL flow, use the C-Callable IP wizard.
* See C-Callable Libraries for more information.

Deve[op sample application code to test the hardware * Test sample applications with a dummy function having
function. the same interfaces as the C-Callable IP. See C-Callable
Libraries for more information.

Verify the hardware function works properly with * Use system emulation for debug.

application, iterate as needed.
* Use the Hardware debug methodology for complex

internal debug problems.

Optimize host code for performance, iterate as needed: * Use the Profile Summary report, the Activity Timeline,
and event timers in the host application to measure
performance.

* Ensure the DRC s clean.

* Work to achieve an Activity Timeline that matches the
desired performance.

* Techniques: Overlapping transactions, out-of-order
(000) synthesis queues, and sub-devices.

Finalize the Software Acceleration Layer deliverable (API,
share lib, plug-in...).

Best Practices for Acceleration with SDSoC

The following shows best practices when developing your application code and hardware
function in the SDSoC environment:

e General guidelines:

- Reduce resource utilization and improve parallelism by streaming data instead of copying
data into the PL region. For example, in an image processing application, stream rows of
pixels that make up a frame instead of copying the image frame in one long data transfer.

- Reuse the data local to the PL region rather than transferring it back and forth to limit
DMA.

. Look to accelerate functions that have:
- A high compute time to data transfer time ratio.
- Predictable communication streams.
- Self-contained control structure not needing control logic outside the accelerator.

- Look for opportunities to increase task-level parallelization by launching multiple
accelerators concurrently, or multiple instances of an accelerator.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 15

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=15

iv Xl I_l NX Chapter 1: SDSoC Introduction and Overview
A ®

e For a software-centric approach:

Use good memory management techniques, such as having known array sizes, and using
sds_alloc()/sds_free() to allocate/de-allocate physically contiguous memory,
thereby reducing the device footprint and increasing baseline performance.

Use system emulation to validate your code frequently to ensure it is functionally correct.

Write/migrate hardware functions to separate C/C++ files as to not re-compile the entire
design for incremental changes.

e For a hardware-centric approach using C-Callable IP:

Keep track of the AXI4 Interface offsets for an IP, or accelerator, and what function
definition parameters require what data type. The interfaces need to be byte aligned.

Maintain the original Vivado IP project so that modifications to it can be quickly
implemented.

Keep the static library (. a) file and corresponding header file together.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 16

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=16

& XILINX

Chapter 2

SDSoC Environment

The software-defined system-on-chip (SDSoC™) environment provides the tools necessary to
implement heterogeneous embedded systems for Zyng® UltraScale+™ MPSoC or Zyng-7000
devices. The design tasks and exploration of hardware/software partitioning is accomplished by
working in an Eclipse-based integrated development environment referred to as the SDx™ IDE.
The SDx IDE is designed to be familiar to users of software development IDEs. Actions carried
out with the SDx IDE include creating an Application project, creating a Platform project, and
creating a Library project. The figure below shows an overview of these design flows. Application
and Library projects are discussed in this user guide, whereas Platform projects are covered in
more detail in the SDSoC Environment Platform Development Guide (UG1146).

Figure 3: SDx Design Flows

Create Create/Import .

Select Build HW+SW
SDSO(? > Platform — Software or Use |—m» Application Products

Application Code Template
Create Associate or Generate
SDSoC —— Select DSA —| Generate Software —
Platform

Platform Components
Create Select Create Application Build HW+SW
Ei?jaor?/ Platform Using Library Application Products

X21844-110618

The concept of a platform is integral to the SDSoC environment as it defines the hardware,
software, and meta-data components on which SDSoC applications are built. Multiple base
platforms are available within the SDx IDE and can be used to create SDSoC applications without
first having to create a custom platform. The SDx IDE utilizes the sds++ system compiler to
convert C/C++ code into high-performance hardware accelerators that attach to platform
interfaces as determined by the platform designer and by application code pragmas. Declarations
within the platform meta-data identify interface ports, clocks, interrupts, and reset blocks for use
by the system compiler when it attaches hardware accelerators to the base platform.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 17

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=17

& XILINX

PS

[Interface] [Interface]

Interface

'
—

PS MIO

Arm
PS Cores

Interface

Interface

illi

Chapter 2: SDSoC Environment

Figure 4: Platform Block Diagram

ACCELERATOR +
PLATFORM

PL LOGIC

Clocks

Interface

External Memory
Controller

'
—

Interrupts

Interface

'
—

Resets

X21847-110618

The system compiler analyzes a program to determine the dataflow between software and
hardware functions and generates an application-specific system-on-chip. The sds++ system
compiler generates hardware IP and software control code that implements data transfers and
synchronizes the hardware accelerators with application software. Performance is achieved by
pipelining communication and computation, thereby producing hardware functions that can run
with maximum parallelism as illustrated in the following figure.

Figure 5: Pipelined Data Transfer and Compute

A
FUNC_A FUNC_B FUNC_C
-
Time
A
FUNC_A
FUNC_B
FUNC_C
-
Time

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide

X21846-110618

l Send Feedback l

www.Xilinx.com
18

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=18

iv Xl Ll NX Chapter 2: SDSoC Environment
A 0

The sds++ system compiler invokes the Vivado® High-Level Synthesis (HLS) tool to transform
software functions into a bitstream that defines and configures the programmable logic (PL)
portion of the SoC. In addition, stub functions are generated so application software compiled
and linked using the standard GNU toolchain transparently uses the implemented hardware
functions. All necessary drivers and libraries are automatically included in this system compilation
process.

The final output of system compilation is the generated sd_card directory, which at minimum is
populated with a Zyng bootable BOOT . BIN file, the executable and linkable format (ELF) file
application code, and a README . t xt boot instructions file. The BOOT . BIN file contains any
necessary bootloaders, bitstreams, and application code to boot the generated system on a
target board. For systems that run Linux on the target board, the sd_card directory also
contains the Linux image file used during the boot process.

The SDSoC system compilers generate complete applications and let users iterate over design
and architectural features by re-factoring at the program level, reducing the time necessary to
achieve working applications on target platforms. To achieve high-performance, each hardware
function runs independently; the system compilers generate hardware and software components
that ensure synchronization between the hardware functions and the application software while
enabling pipelined computation and communication. Application code can involve many
hardware functions, multiple instances of a specific hardware function, and calls to a hardware
function from different parts of the program.

For the SDSoC environment, this reflects the resources and performance available within the
Zynqg-7000 SoC or the Zynqg UltraScale+ MPSoC device family. When creating applications that
require specific real-time behavior, it is important to be aware of the execution environment.

The Zyng-7000 family includes a processor system (PS) with dedicated Arm® processing cores,
on-chip memories, embedded peripherals, interconnect blocks, a DDR memory controller, and PL
fabric used by the SDSoC-generated accelerators.

Ideal processor, memory, and AXI interface performance are shown in the following table using
switching characteristics from the Zyng-7000 SoC and Zynqg UltraScale+ MPSoC data sheets.

Table 3: Processor, Memory, and AXI Interface Performance

Clock or Interface Zynq UltraScale+ MPSoC Zynq-7000 SoC
Max APU clock frequency)l?/lrliln Cortex™-A53 64-bit Quad-Core: 1500 Arm Cortex-A9 32-bit Dual-Core: 1000 MHz
z
Max RPU clock frequency ArmCortex-R5 32-bit Dual-Core: 600 MHz N/A
DDR type and bit width DDR4: x32, x64 DDR3: x16, x32
DDR Max performance 2400 Mb/s 1333 Mb/s
DDR Max Ideal Throughput 153.6 Gb/s 42.6 Gb/s
AXI Interface width 128-bit, 64-bit, 32-bit 64-bit, 32-bit
AXI Interface Max Frequency 333 MHz 250 MHz

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 19

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=19

iv Xl Ll NX Chapter 2: SDSoC Environment
A 0

Table 3: Processor, Memory, and AXI Interface Performance (cont'd)

Clock or Interface Zynq UltraScale+ MPSoC Zynq-7000 SoC
AXI Interface Max Ideal 42.6 Gb/s 16 Gb/s
Throughput
Number of AXI Interface Ports | 12 6
Total AXI Throughput 511.2 Gb/s 96.0 Gb/s

Getting Started

Download and install the SDSoC tool suite according to the directions provided in the SDSoC
Environments Release Notes, Installation, and Licensing Guide (UG1294).

After installing the SDSoC tools, you can find detailed instructions and hands-on tutorials to
introduce the primary work flows for project creation, specifying functions to run in
programmable logic, system compilation, debugging, and performance estimation in the SDSoC
Environment Getting Started Tutorial (UG1028). Working through the tutorial and its labs is the
best way to get an overview of the SDSoC environment, and should be considered a prerequisite
to application development.

Note: The SDSoC tool suite includes the entire tool stack to create a bitstream, object code, and
executables. If you have installed the Xilinx® Vivado Design Suite and the Software Development Kit (SDK)
tools independently, you should not attempt to combine these installations with the SDSoC tools. Ensure
that your tools are derived from an SDSoC installation (which includes the Vivado Design Suite and SDK
tools).

O RECOMMENDED: Although SDSoC supports Linux application development on Windows hosts, a Linux host is
strongly recommended for SDSoC platform development, and required for creating a platform supporting a target
Linux OS.

Elements of SDSoC

The SDSoC environment includes the sds++ system compiler to generate complete hardware/
software systems, an Eclipse-based user interface to create and manage projects and workflows,
and a system performance estimation capability to explore different "what if" scenarios for the
hardware/software interface. Elements of the SDx tools include:

e Eclipse-based IDE

e The sds++ system compiler
e High-Level Synthesis (HLS)
¢ Vivado Design Suite

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 20

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1294-sdsoc-rnil.pdf
https://github.com/Xilinx/SDSoC-Tutorials/tree/master/getting-started-tutorial
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=20

iv Xl Ll NX Chapter 2: SDSoC Environment
A 0

e |Pintegrator and IP libraries

¢ Vivado-generated SDx Platforms

e SDx-generated hardware accelerators and associated control software
e SDx-generated data movers and associated control software

e The Target Communication Framework (TCF)

e GNU software development tools

The SDSoC environment includes the GNU toolchains and standard libraries (for example,
glibe), a performance analysis perspective within the Eclipse C/C++ Development Tooling
(CDT)-based GUI, and command-line tools.

The SDSoC system compiler employs underlying tools from the Vivado Design Suite HLS Editions
including Vivado HLS, IP integrator, and IP libraries for data movement and interconnect, and the
RTL synthesis, implementation, and bitstream generation tools.

The principle of design reuse underlies workflows you employ with the SDSoC environment,
using established, platform-based, design methodologies. The SDSoC system compiler generates
an application-specific system-on-chip by customizing a target platform.

The SDSoC environment includes a number of built-in platforms for application development,
and others can be provided by Xilinx partners, or custom-developed by FPGA design teams. The
SDSoC Environment Platform Development Guide (UG1146) describes how to create a design using
the Vivado Design Suite, specify platform properties to define and configure platform interfaces,
and define the corresponding software runtime environment to build a platform for use in the
SDSoC environment.

An SDSoC platform defines a base hardware and software architecture and application context,
which includes the following:

e Processing system
e External memory interfaces
e Custom input/output

e Software runtime including: Operating system (for example, Linux, FreeRTOS, or Standalone),
boot loaders, drivers for platform peripherals, and the root file system

Every project you create within the SDSoC environment targets a specific platform. Using the
SDx IDE to build on the base platform foundation with application-specific hardware accelerators
and data motion networks and connecting accelerators to the platform, you can create
customized, application-specific SoC designs for different base platforms, and use base platforms
for many different applications.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 21

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=21

iv Xl Ll NX Chapter 2: SDSoC Environment
A 0

You are provided the option to use either a predefined platform from the SDx installation or a
custom platform. Custom platforms are generated from a device support archive (DSA) hardware
specification exported from the Vivado tools, or derived from a predefined platform.

See the SDSoC Environments Release Notes, Installation, and Licensing Guide (UG1294) for the most
up-to-date list of supported devices and required software.

Design Flow Overview

The SDSoC environment is a tool suite for building efficient SoC applications, starting from a
platform that provides the base hardware and target software architecture. A boot image and the
executable application code are generated by the SDSoC tools.

The following figure shows a representative top-level design flow that shows key components of
the tool suite. For the purposes of exposition, the design flow proceeds linearly from one step to
the next, but in practice you are free to choose other work flows with different entry and exit
points.

Starting with a software-only version of the application that has been compiled for CPUs, the
primary goal is to identify portions of the program to move into programmable logic and to
implement the application in hardware and software built upon a base platform.

Note: Emulation only works on the base platforms. For more on debug or emulation, see SDSoC
Environment Debugging Guide (UG1282).

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 22

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1294-sdsoc-rnil.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1282-sdsoc-debugging-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=22

iv Xl Ll NX Chapter 2: SDSoC Environment
A 0

Figure 6: User Design Flow

C/C++ Application
Running on Arm

Profile Application

o
|

Y

Optimize Data Transfer and Mark Functions for Hardware
Parallelism w/ SDSoC Acceleration
Guidelines |
Optimize Accelerator Code

A

Y Y

Emulation Estimate Performance

| |
Y

Build Application to Generate
Software and Hardware

SD Card Image

Run on the Board

A

Analyze Performance

A

X14740-041119

The steps are:

1. Select a development platform, compile the application, and ensure it runs properly on the
platform.

2. Identify compute-intensive hot spots to migrate into programmable logic to improve system
performance, and isolate them into functions that can be compiled into hardware. See
Selecting Functions for Hardware Acceleration.

3. Invoke the SDSoC system compiler to generate a complete SoC and SD card image for your
application. See Working with Code.

You can instrument your code to analyze performance, and if necessary, optimize your system
and hardware functions using a set of directives and tools within the environment. SDSoC
Environment Profiling and Optimization Guide (UG1235) for profiling and optimization best
practices.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 23

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=23

iv Xl Ll NX Chapter 2: SDSoC Environment
A 0

The sds++ system compilers orchestrate the system generation process either through the IDE
or in the terminal shell using command lines and makefiles. You select functions to run in
hardware, specify accelerator and system clocks, and set properties on data transfers. You can
insert pragmas into application source code to control the system mapping and generation flows,
providing directives to the system compiler for implementing the accelerators and data motion
networks.

Because a complete system compile can be time-consuming compared with an conventional
compile for a CPU, the SDSoC environment provides a faster performance estimation capability.
The estimate allows you to approximate the expected speed-up over a software-only
implementation for a given choice of hardware functions. Also, this can be functionally verified
and analyzed through system emulation. The system emulation feature uses a quick emulation
(QEMU) model executing the software and RTL model of the hardware functions to enable fast
and accurate analysis of the system.

The overall design process involves iterating the steps until the generated system achieves your
performance and cost objectives.

To run through the introductory tutorial and become familiar with creating a project, selecting
hardware functions, and compiling and running a generated application on the target platform,
see SDSoC Environment Getting Started Tutorial (UG1028).

Understanding the SDx GUI

When you open a project in the SDx IDE, the workspace is arranged in a series of different views
and editors, also known as a perspective in the IDE. The tool opens with the SDx (default)
perspective shown in the following figure.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 24

https://github.com/Xilinx/SDSoC-Tutorials/tree/master/getting-started-tutorial
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=24

& XILINX

Chapter 2: SDSoC

Figure 7: SDx - Default Perspective

sl workspace - SDx - Xiling SDx

File Edit MNavigate Search
w - 0 |
Project Explorer &3 = B
w v
PROJECT
EXPLORER
~= Agsitant © = 0
¥ o |DCon 2
ASSISTANT
S0 Auild Consale
I

Praject Bun gilink Window Help

EDITOR AREA
| Gu pro 0| sox [sou
L] +
CONSOLE

= B [Outline & = n
An outline is not
available,
OUTLINE
= 4 Target Connections £ = 8
- TARGET CONNECTIONS ..
b Hardware Serder
_| b @ Linux TCF Agent
b O QEMU TohGabClient

Environment

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide

l Send Feedback l

www.Xilinx.com
25

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=25

iv Xl Ll NX Chapter 2: SDSoC Environment
A 0

Some key views/editors in the default perspective are:

¢ Project Explorer: Displays a file-oriented tree view of the project folders and their associated
source files, plus the build files, and reports generated by the tool.

e Assistant: Provides a central location to view/edit settings, build and run your SDSoC
application, launch profiling and debug sessions, and open reports.

¢ Editor Area: Displays project settings, build configurations, and provides access to many
commands for working with the project.

e Console Area: Presents multiple views including the command console, design guidance,
project properties, logs and terminal views.

e Outline: Displays an outline of the current source file opened in the Editor Area.

¢ Target Connections: Provides status for different targets connected to the SDx tool, such as
the Vivado hardware server, Target Communication Framework (TCF), and quick emulator
(QEMU) networking.

To close a view, click the Close button (x) on the tab of the view. To open a view, select Window
— Show View and select a view. You can arrange views to suit your needs by dragging and
dropping them into new locations in the IDE.

To save the arrangement of views as a perspective, select Window — Perspective = Save
Perspective As. This defines different perspectives for initial project editing, report analysis, and
debug for example. Any changes made without saving as a perspective are stored with the
workspace. To restore the default arrangement of views, select Window = Perspective = Reset
Perspective.

To open different perspectives, select Window = Perspective = Open Perspective.

To restore the SDx (default) perspective, click the SDx button “" onthe right side of the main
toolbar.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 26

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=26

& XILINX

Chapter 3

Creating an SDSoC Application

An SDSoC™ application can be created through the SDx™ IDE or by using a command line
interface. In this chapter, the SDx IDE shows how to create a workspace, generate an application
project for a selected platform, and use the available application templates. Working with code,
adjusting hardware accelerator settings and targeting either emulation or a board is also covered.
Excerpts of how to perform the IDE operations using command line equivalents is interspersed
with the GUI illustrations.

Using an SDx Workspace

ﬁ? IMPORTANT! Linux host is strongly recommended for SDSoC™ platform development, and required for creating
a platform supporting a target Linux OS.

1. Launch the SDx™ IDE directly from the desktop icon or from the command line by one of the
following methods:

o Using either of the following commands from the command prompt:
sdx
or
sdx -workspace <workspace_name>

e Double-clicking the SDx icon to start the program.

e Launching from the Start menu in the Windows operating system.

2. The SDx IDE opens and prompts you to select a workspace, as shown in the following figure.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 27

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=27

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

#

Figure 8: Specify the SDx Workspace

—1 T

1 Eclipse Launcher kal

Select a directory as workspace
Xilinx SDx uses the workspace directory to store its preferences and development artifacts.

Workspace: .n't_mp.n'sdx“workspace e Browse...

[Use this as the default and do not ask again

» Recent Workspaces

Cancel Launch

IMPORTANT! When opening a new shell to enter an SDx command, ensure that you first source the
settingsé4and setup scripts to set up the tool environment. On Windows, run the settingsé4. bat file
from the command shell. See the SDSoC Environments Release Notes, Installation, and Licensing Guide
(UG1294) for more information.

The SDx workspace is the folder that stores your projects, source files, and results while working
in the tool. You can define separate workspaces for each project or have workspaces for different
types of projects. The following instructions show you how to define a workspace for an SDSoC
project.

1. Click the Browse button to navigate to, and specify, the workspace, or type the appropriate
path in the Workspace field.

2. Select the Use this as the default and do not ask again check box to set the specified
workspace as your default choice and eliminate this dialog box in subsequent uses of SDx.

3. Click Launch.

TIP: You can change the current workspace from within the SDx IDE by selecting File = Switch Workspace.

You have now created an SDx workspace and can populate the workspace with projects.
Platform and application projects are created to describe the SDx tool flow for creating an
SDSoC platform.

The SDx IDE can populate the workspace with three types of user selected project types:

e Application Project
e Platform Project

e Library Project

The following sections describe how to use the Platform and Application project types while
constructing the example SDSoC platforms.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 28

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1294-sdsoc-rnil.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=28

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

Creating an Application Project

O TIP: Example designs are provided with the SDSoC tool installation, and also on the Xilinx GitHub repository. See
Appendix A: Getting Started with Examples for more information.

1. After launching the SDx IDE you can create a new Project. Select File—= New — SDx
Application Project, or if this is the first time the SDx IDE has been launched, you can select
Create Application Project on the Welcome screen.

2. The Create a New SDx Application Project wizard opens.

3. Inthe Create a New SDx Application Project page, you can specify the project name as
shown. Specify the name of the project in the Project name field.

Figure 9: Create a New SDx Application Project

@ New SDx Application Project Q

Create a New SDx Application Project

Enter a name for your SDx Application project. r

Project name: |project_one

Use default location

@ | Next> | cancel

4. The Use default location is selected by default to locate your project in a folder in the SDx
workspace. You can uncheck this check box to specify that the project is created in a
Location of your choice.

5. If you specify the location, you can use Choose file system to select the default file system,
JSch, or enable the Eclipse Remote File System Explorer (RSE).

i} IMPORTANT! The project location cannot be a parent folder of an SDx workspace.

6. Click Next.

The Platform dialog box, similar to the one shown in the following figure, displays the available
installed platforms. For installing additional platforms, see the "Installing Platform-Specific

Packages" section in SDAccel Environment Release Notes, Installation, and Licensing Guide
(UG1238).

i} IMPORTANT! Be sure to select the right platform for your project, as subsequent processes are driven by this
choice.

UG1027 (v2019.1) May 22, 2019

www.Xilinx.com
SDSoC Environment User Guide send Feedback 29

https://github.com/Xilinx
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1238-sdx-rnil.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=29

iv Xl LI NX Chapter 3: Creating an SDSoC Application
A ®

Figure 10: Specify SDSoC Platform

[g' New SOx Application Project e
Platform -
Choose a platform for your project &
Q4+ Lo
Name Board Vendor Path
B zc702 Zc702 xilime.com | $XILINX_SDX/platforms/zc702/zc702.xpfm

Bl zc706 ZCT706 xilimk.com | $XILINX_SDX/platforms/zc706/zc 706.xpFfm

rul0? 2103 (i AXILINX SO 10T U102

(fplatfol U102 . Xprm

Bl zculod Zoulog xilinx.com | $XILINX_SDX/platforms/zcul04/zculod. xpfm

Zcu Zcu xilink.com platformsjzcu Zcul06.xpfm
B 106 106 | $XILINX_SDX/platf / 106/ 106.xpf
Bl zed zed xilinx.com | $XILINX_SDX/platforms/zed/zed.xpfm
| L | »
@ < Back Next > Cancel

A platform is composed of a shell, which describes the base hardware design, the meta-data used
in attaching accelerators to declared interfaces, and the software environment, which can include
operating system images (for example, Linux), as well as boot-up and runtime files.

The SDSoC development environment offers base-platforms for specific boards based on the
following:

e Zyng®-7000
. 2c702
. 2c706
e Zyng UltraScale+™ MPSoC

. zcul02
. zculO4
. zcul06
. zed

You can add custom defined or third-party platforms into a repository. See Appendix B:
Managing Platforms and Repositories for more information.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide l—./—| 30

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=30

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

1. Select the target platform for your project from the listed platforms. A series of actions are
also available in this Platform dialog through the five icons immediately above the platform
list. From left-to-right, clicking an icon invokes a platform text string search, adding a custom
platform, managing a platform repository, adding new devices or platforms, and listing
additional information about a selected platform.

2. Select one of the predefined, installed platforms and click Next.

3. The System configuration page opens, as shown in the following figure. Select System
configuration and Runtime from a list of those defined for the selected platform. The System
Configuration defines the software environment that runs on the hardware platform. It
specifies the operating system and the available runtime settings for the processors in the
hardware platform.

Figure 11: Specify System Configuration

D Hew SDx Application Project @[;'
Syst Confi ti -
ystem Configuration
Provide the system configuration and software details for your project r

System cr:l-nﬁguratlon: AS53 Linux 2.
Runtime: C/C++ <
Domain; as53_linux]
CPU: cortex-as3

Operating System: lipes

Linux Root File System:

? < Back Next > Cancel

4. When setting the system configuration, you can also check the Domain and specify a Linux
Root File System if a Linux-based configuration is selected. The Linux Root File System is a
sysroot directory structure that provides the necessities for a system to run and locate
headers.

5. After selecting the System Configuration and clicking Next, the Templates page displays, as
shown in the following figure. Specify an application template for your new project. The
samples directory within the SDx tools installation contains multiple source code example
templates.

6. Initially, you have the option in the Template dialog box of an Empty Application or one of
the provided application templates. You can download additional SDx examples or update the
installed examples by clicking the SDx Examples button, which retrieves content from the
Xilinx GitHub as discussed in Appendix A: Getting Started with Examples.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 31

https://github.com/Xilinx/SDSoC_Examples/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=31

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

Figure 12: Application Templates

New SDx Project B x
Templates 4
Select a ternplate to create your project. AT
Avallable Templates:

Find: { Empty Application

Creates a new Empty application

= opp
= Getling Started Examples
= CPU_To FPGA Examples
01_mmult_sw
Matrix Muitiplication on Hardware
Matrix Multiplication with Array Partitioning

Matrix Multiplication with local memory and zero_¢
Matrix Multiplication with pipelining
Array Partitioning
Burst Read/Write
Custom Data Type
Direct Connection
DMA SGlscatter-Gather)
DMA Simple
Hello vector Addition
Loop Fusion
Loop Iteration Dependency
Loop Perfect
Loop Reorder for better Performance
Parallel Accelerators
Random Data Access Pattern
Read/Write Row of 2D Array
Read/MWrite Window of 2D Array
Shift Register
Sysport
Two Parallel Read/Write on Local Memory
= his_lib
Synthesizeable FIR Filver
Array zero_copy ("Short' build time)

SDx Examples... | SDx Libraries...

i < Back cancel Finish

7. You can use the template projects as examples to learn about the SDx tool and acceleration
kernels or as a foundation for your new project. Note that you must select a template. You
can select Empty Application to create a blank project into which you can import files and
build your project from scratch.

8. Click Finish to close the New SDx Project wizard and open the project.

Importing a Project
A previously exported project can be used as the source for a new project.

1. Select File= Import menu and click Xilinx—= SDx Project, or go directly through the Import
Project selection on the Welcome screen.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide l—./—l 32

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=32

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

Figure 13: Select an SDx Project

Import o x

Select \c

Select an import wizard:
|)

P (= General

b &= Git

P = Remote Systems

P = Run/Debug

P = Team

< = Xilinx

<= SDx Build Results

’, .]

b = Other o

@ | Next> | cancel

2. Chose the import type as an SDx project exported zip file which opens up a dialog for
browsing to the exported zip file. Click Next.

Figure 14: Import Type

Import Projects B %
Import Type

Select an archive created by the Export SDx Project wizard, or
an Eclipse based project folder or zip file.

@ |SDx project exported zip file

() Eclipse workspace or zip file

.'.‘i | < Back | Next > | cancel

3. Select and click Open provides a list of Application projects that can be brought into the
workspace.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide l—./—l 33

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=33

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

RECOMMENDED: Xilinx recommends using SDx exported zip files to move projects between workspaces. Also,
this is the last SDx release, so use the import sources as opposed to the remote sources.

Working with Code

The SDx environment provides a GUI-based IDE as well as command line control to invoke the
sds++ system compiler with user-specified command options from a shell prompt.

Application code generally consists of C/C++ source files, C/C++ header files, and libraries
created for shared or static use. The SDx tools help you identify and convert C/C++ source code
functions into hardware accelerators. By analyzing function arguments, argument types, and any
applied directives or pragmas, the SDx tools generate data movers and pipelined dataflows to
feed data into and out of an accelerator. Typical data sources and data sinks are memories and
I/O streams.

The SDSoC-generated accelerators reside in the PL and need to fit in the PL resources. See
Execution Model of an SDSoC Application. The interfaces between the PS and PL are user-
configurable. For instance, SDx tools automatically generate data movers for crossing the PS-PL
boundary with interface direction as set by your C/C++ source code.

Source files to create an SDx application with example SDx pragmas are provided within the IDE
by selecting Xilinx = SDx Examples. Additional examples are available for download from the
SDSoC Examples GitHub.

Importing Sources

Importing C/C++ Sources

1. To add files in the Project Explorer, right-click the src folder and select the Import Sources
command.

i} IMPORTANT! When you import source files into a workspace, it copies the files into the workspace (by default,
you can deselect it). Any changes to the files are lost if you delete the workspace.

2. This displays the Import dialog box that enables you to specify the source of the files from
which you are importing. The different sources include importing from archives, from existing
projects, from the file system, and from a Git repository. Select the source of files to import
and click Next.

3. The displayed dialog box depends on the source of files you selected in the prior step. In the
following figure, the File system dialog box shows the result of choosing to import sources
from the file system.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 34

https://github.com/Xilinx/SDSoC_Examples.git
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=34

& XILINX

Chapter 3: Creating an SDSoC Application

Figure 15: Import File System Sources

Import Sources

File system

Import resources from the local file system.

From directory: !JinstaIIS!lin64ISDx.-’2018.3Isamplesfmmultaddi <

| [|2 description.json
] [¢ madd.cpp

] g main.cpp

[J L Makefile

¥ [g mmult.cpp

[hie)

<

Filter Types... Select All Deselect All |

Into folder: |project_0ne!5rc

Options
1 Overwrite existing resources without warning
Create top-level folder

Advanced >>

@ Cancel

Browse...

Browse...

| Finish |

4. The File system dialog box allows you to navigate to a folder in the system and select files to
import into your project. You can specify files from multiple folders and specify the folder to
import files into.

O TIP: Having each hardware accelerator function exist in a separate file enables parallel compilation of the
accelerator, thereby speeding up the compilation time in SDx.

5. In the Options, select the Overwrite existing resource without warning check box to
overwrite any existing files, and select the Create top-level folder check box to have the files
imported into a directory structure that matches the source file structure.

Note: If this check box is not enabled, which is the default, then the files are imported into the folder
listed in the Into folder option.

6. On the Windows operating system, you can add files to your project by dragging and
dropping them from the Windows Explorer. Select files or folders in the Explorer and drop
them into the src folder, or another appropriate folder in the SDx IDE Project Explorer.
When you perform this, the tool prompts you to specify how to add the files to your project,
as shown in the following figure.

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide

[Send Feedback] WWW.Xi|inX.CO?I;1;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=35

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

Figure 16: File and Folder Operation
<= File Operation X
Select how files should be imported into the project:
() Link to files
Create link locations relative to: [PROIECT LOC

Configure Drag and Drop Settings...

7. You can copy files and folders into your project, add links to the files, or link to the files in
virtual folders to preserve the original file structure. There is also a link to the Configure Drag
and Drop Settings option, which allows you to specify how the tool should handle these
types of drag and drop operations by default. You can also access these settings through the
Windows = Preferences menu command.

8. After adding source files to your project, you are ready to begin configuring, compiling, and
running the application.

O RECOMMENDED: When you make code changes, including changes to hardware functions, it is valuable to
rerun a software-only compile to verify that your changes did not adversely change your program. A software-
only compile is much faster than a full-system compile.

Importing C-Callable IP Libraries

In addition to C/C++ source files, you can incorporate pre-existing hardware functions in your
design with use of a C-Callable IP library, that is published as an Arm® . a static library file. Code
examples that use C-Callable IP are available in the SDSoC installation tree under the
samples/rt1 directory. You create and add your own C-Callable IP libraries through the SDx
IDE.

Note: The static library (. a files) might need to be rebuilt for the appropriate Arm processor (Cortex™-A9
or Cortex-A53) before adding it to the project. Add the associated header file (. h) for the C-Callable IP
function to the project, as follows:

1. Inthe Project Explorer, right-click the application name or its project . sdx file and select
Properties.

Select C/C++ Build = Settings = SDS++ Linker — Libraries.

Add <libname_without_leading_lib_text_characters> tothe -1 libraries list.
Add the directory that contains the <1ibname . a> object file to the-1 Library search path.
Click Apply.

vk DN

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 36

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=36

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

6. Click OK.
7. Ensure that a C-Callable IP header (. h/ . hpp) file is present in project source tree.

8. Build the project.

See Chapter 4: C-Callable IP Libraries for more information on creating and using C-Callable IP
libraries.

Selecting Functions for Hardware Acceleration

The first task is to identify portions of application code that are suitable for implementation in
hardware, and that significantly improve the overall application performance when run in
hardware.

Before marking any functions for acceleration you should profile the software. Self-contained
compute intensive functions with limited external control logic are good starting points,
especially when its possible to stream data between hardware, the CPU, and memory to overlap
the computation with the communication. You can build and run your application on one of the
platforms provided in the SDSoC environment install to identify compute intensive functions on
the Arm processor.

Every base platform included in the SDSoC environment includes a pre-built SD card image from
which you can boot and run your application code if you do not have any functions selected for
acceleration on the hardware platform. Running the application this way enables you to profile
the original application code to identify candidates for acceleration.

See Chapter 6: Profiling and Optimization for more information on profiling your application.
Also, the SDSoC Environment Profiling and Optimization Guide (UG1235) provides more extensive
detail.

After determining the function or functions to move into hardware, with a project, you can select
the function from the Add Hardware Functions portion of the window.

O TIP: If the Editor Area window is not open, you can double-click the <project>. sdx file in the Project
Explorer to open it, or you can select Add Hardware Function from the context menu that is available when you
right-click the project.

Click the Hardware Functions button “ of the Project Editor window to display the list of
candidate functions within your program. This displays the Add Hardware Functions dialog box,
that lets you select one or more functions from a list of functions in the call graph of the main
function by default.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 37

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=37

& XILINX

Chapter 3: Creating an SDSoC Application

Figure 17: Add Hardware Functions Dialog Box

Add Hardware Functions

Select an item to open (? = any character, * = any string):

L]

L]

@

[

-]

o)

@ '.55 3

» More Options
Matching items:

init_arrays(float *, float *, float *, float *, float *)

madd_golden(float *, float *, float *) N
main(int, char * *)

mmuit_gd!den{ﬂoat *,-flloat * ﬂéat *j
mmult_test{float *, float *, float *, float *, float *)
result_check(float *, float *)

Cache refresh (100%)

Cancel OK

From within the Add Hardware Functions dialog box, select one or more functions for hardware
acceleration and click OK.

The list of functions starts at the Root function as defined in the Options panel of the Project
window and is set to main by default. You can change the Root function by clicking the Browse

(E]) command and selecting an alternate root.

The functions display in the Hardware Functions panel of the SDx Application Project Settings
window as shown in the following figure.

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide

l Send Feedback l

www.Xilinx.com
38

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=38

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

Figure 18: Hardware Function Panel

< project_one I L |
% SDx Application Project Settings Active build configuration: | Debug 3| B
General Options

Project name: project_one Target: | Hardware 2

Projact flow: 20SaC Estimate performance

Platform: ZEU102 | -

: Enable event tracing
Runtime: CiC++

| Insert AX| performance monitor
System configuration: AS3 Linux
Data motion network clock frequency (MHz): | 99.99 <

Domain: a33_linux
CPU: corex-as3
05: linux ¥ Generate SD card image
Root function: |main
Hardware Functions 2 s 9
Name Clock Frequency (MHZ) Path
madd ' 9999 src/madd.cpp
mmult 99.99 src/mmult.cpp

O TIP: If you do not see a function that you expect in the Add Hardware Function dialog box, navigate to its source
file in the Project Explorer window, expand the outline of the source, right-click the function and select Toggle
HW/SW.

When moving a function optimized for CPU execution into programmable logic, you can usually
revise the code to improve the overall performance. See the "Programming Hardware Functions"
section in the SDSoC Environment Programmers Guide (UG1278).

For accelerators using the xfOpenCV library, right-click and select Toggle Hardware from the
associated header files in the project included in Project Explorer. See the Xilinx OpenCV User
Guide (UG1233) for more information.

Selecting Clock Frequencies

After selecting hardware functions, it could be necessary to select the clock frequency for
running the function or the data motion network clock.

Every platform supports one or more clock sources, which is defined by the platform developer
as described in SDSoC Environment Platform Development Guide (UG1146). Setting the clock
frequency of the hardware function determines the clock setting for the hardware function's
logic as well as its associated data mover. Setting the clock frequency of the Data Motion
network determines the clock used for the axi_11ite control buses. By default, the Data
Motion network shares its clock with the hardware accelerator generated during system
generation. You can select the Data Motion network clock and the hardware function clock from
the SDx IDE or the command line.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 39

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1233-xilinx-opencv-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=39

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

You can view the available platform clocks by selecting the Platform link in the General option of
the SDx Application Project Settings window. This displays details of the platform, including the
available clock frequencies.

Figure 19: SDx IDE - General

= project_one I

« SDx Application Project Settings

General
Project name: project_one
Project flow 5050C
Platform; =
Runtime: ClC++

System configuration: AS3 Linux

Domain: a53 linux
CPLU: corex-as3
05 linux

7:} IMPORTANT! Be aware that it might not be possible to implement the hardware system with some faster clock
selections. If this occurs, reduce the clock frequency.

The function clock displays in the SDx Application Project Settings window, in the Hardware
Functions panel.

Select a function from the list, like madd in the figure below, and click in the Clock Frequency
column to access the pull-down menu to specify the clock frequency for the function.

Figure 20: Select Function Clock Frequency

Hardware Functions

Name Clock Frequency (MHz) Path

9.59 2 -

74.99 src/mmult.cpp

149.99
199.98
299.97
399.96
599.94

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide l—./—l 40

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=40

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

To specify the Data Motion clock frequency, select the Data motion network clock frequency
pull-down menu in the Options panel of the SDx Application Project Settings window. The Data
Motion network clock frequency menu is populated by the available clocks on the platform.

Figure 21: Data Motion Network Clock Frequency

=« project_one & il m
« SDx Application Project Settings Active build configuration: | Debug £ | &
General Options

Project name: project one Target: | Hardware 2
Project flow: shool Estimate perfarmance
Peidecon: =0z | - Enable event tracing
Runtime: CfC++

Insert AXI performance monitor
System configuration: A53 Linux
Data motion network clock frequency (MHz): | 99.99 %

Domain: a53_linux 74.99
CPU: cortex-a53
05: linux ¥ Generate SD card image 149.99
199.98
Root function: imain 299.97
Hardware Functions 399.96 p. o %
599.94
MName Clock Frequency (MHz) Path
R RS SR

sre/madd.cpp

mmult 99.99 sre/mmult.cpp

Command Line Options

You can set clock frequencies for either the Hardware Accelerator or the Data Motion network at
the command line, as shown in the following examples.

Set the clock frequency for a function from the command line, by specifying the Clock ID
(c1lkid).

$ sds++ -c mmult.cpp -o mmult.o -sds-pf zcul02 -sds-hw mmult mmult.cpp -
clkid 1 -sds-end

To set the clock frequency for a hardware function in a C-callable IP library, use the -ac option.
$ sds++ -IlmyIpLib -ac myAc:3 -o main.elf main.o

Select a Data Motion clock frequency from the command line with the - dmc1kid option. For
example:

$ sds++ -sds-pf zcul02 -dmclkid 1

You can use the following command to see the available clocks for a platform, and determine the
clock ID:

$ sds++ -sds-pf-info <platform_name>

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide l—./—l 41

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=41

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

As an example for the ZCU102 platform, running the sds++ -sds-pf-info zcul02
command displays the following output. The clock ID and its frequency is shown for each

declared system clock. A list of available system configurations and system port interfaces is also

provided.

Platform Information

Architecture: zynquplus
Device: xczu9eg
Package: ffvbl1l56
Speed grade: -2

System Clocks

1199.880127
0 74.992500
1 99.990000
2 149.985000
3 199.980000
4 299.970000
5 399.960000
6 599.940000

Platform: zculO02 (<SDx_Install_Dir>/platforms/zcul02)

Description:
A basic platform targeting the ZCU1l02 evaluation board, which includes

4GB of DDR4 for the Processing System, 512MB of DDR4 for the Programmable
Logic, 2x64MB Quad-SPI Flash and an SDIO card interface. More information

at https://www.xilinx.com/products/boards-and-kits/ek-ul-zculO2-g.html

Available system configurations:
ab53_linux (ab53_linux)
ab3_standalone (ab53_standalone)
r5_standalone (r5_standalone)

System Ports

Use the system port name in a sysport pragma, for example
#pragma SDS data sysport(parameter_name:system_port_name)

System Port Name (Vivado BD instance name, Vivado BD port name)
ps_e_S_AXI_HPCO_FPD (ps_e, S_AXI_HPCO_FPD)

ps_e_S_AXI_HPC1_FPD (ps_e, S_AXI_HPCI1_FPD)

ps—-e_S_AXI_HPO_FPD (ps_e, S_AXI_HPO_FPD)

ps_e_S_AXI_HP1_FPD (ps_e, S_AXI_HP1_FPD)

ps_e_S_AXI_HP2_FPD (ps_e, S_AXI_HP2_FPD)

ps—-e_S_AXI_HP3_FPD (ps_e, S_AXI_HP3_FPD)

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 42

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=42

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

Building the SDSoC Project

After you have added source code, identified the functions to accelerate, and selected the

accelerator and data mover clock frequencies, you can build for a Hardware target or an
Emulation target.

For Hardware targets, see Targeting Hardware.
For Emulation targets, see Targeting System Emulation.

The following section describes the SDx project to target a Hardware Project build.

Targeting Hardware
1. Select the Build button (‘%) or right-click the project name and select Build Project in the
Project Explorer window.

2. Initiate a build through the Assistant window by right-clicking either the Debug [Hardware]
or Release [Hardware] selections.

3. Right-click Debug [Hardware] and, from the context menu, select Build.
Figure 22: Assistant Window
#= Assistant 2 O B8 KQ O F Y= B

v Efproject_one [SDSoC]

Jebuag

£ Settings...
mmult [C/C++] 2 Duplicate...
madd [C/C++]
P —— # Add Hardware Function...
mmult [C/C++] S |
madd [C/C++] Clean

Q Run >
1+ Debug >
El show Console

(i) Show Guidance

This generates a bitstream and bootable SD card image, based on the check-marked project
options. The build process also produces a Compilation Log file and a Data Motion Network
Report that you can access through the Assistant window.

UG1027 (v2019.1) May 22, 2019

www.Xilinx.com
SDSoC Environment User Guide send Feedback 43

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=43

iv Xl LI NX Chapter 3: Creating an SDSoC Application
A ®

4. The results of the build process produce files to populate an SD card for booting and running
on a target board. Using the Assistant window, the set of generated files can be viewed by
right-clicking and selecting SD Card Image = Open — Open in File Browser.

Figure 23: Build Results

5 Project Explorer 23 SiBjes T 2 0O
< 5 project_one

b 4 Binaries
b & Archives
P 5 Includes
< (= Debug
P & _sds

b #s project_one.elf - [none/le]
BOOT.BIN
image.ub
> README.txt o

= Assistant 2 = & bl el

= [f project_one
- & Debug [Hardware]
P & mmult [C/(]
P & madd [C/C++]
= Data Motion Network Report [05 Nov 2018 14:18)
=] Compilation Log [05 Nov 2018 14:45]

+ & Release [Hardware]

mmult [C/C++]
¥ madd [C/C++]

5. SDx creates detailed reports of the compilation process and saves those files in the Debug/
_sds/reports directory. Access these files through the Project Explorer or the Assistant
window. The following figure shows a Project Explorer expansion of the reports directory
and a view into the sds . 1og compilation log file.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide l_‘/_| 44

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=44

& XILINX

Chapter 3: Creating an SDSoC Application

Figure 24: Compilation Log

= sdx_workspace - project_one/Debug/_sds/ieports/sdslog - Xilinx 5Dx
File Edit Navigate Search Project Run Xilinx Window Help
s B8R -@Bi%k-0- 0 G v
[, Project Explorer 2 5[&je ¥ = B | Kproject one |13 sds.log 3 =g
¥ 5 project_one] . Report name: Compilation Log Build configuration: Debug
b & Binaries Project name: project_one
Created 05 Nov 2018 14:45
b B Archives —
> g Includes JKel copyright 2012-2018 (i, “Iine. AL Rights Rese rved . 7
¥ = Debug 3# Tool version : sds++ 2018.3 SW Build 2381727 on Sun Nov 4 19:09:081 HST 2018
< (= _sds 4#Start time : Mon Nov 05 14:18:17 MST 2018
b = swstubs 5# Command line sds++ --remote_ip_cache /tmp/sdx_workspace/ip_cache -o project_one.elf ./src/madd.o ./src/main.o ./src/mmult.o -dmclk:
= 5# Log file /tmp/sdx_workspace/project_one/Debug/_sds/reports/sds.log
b = trace 7# Journal file : /tmp/sdx_workspace/project_one/Debug/_sds/reports/sds.jou
b pgiprepo & # Report file /tmp/sdx_workspace/project_one/Debug/_sds/reports/sds. rpt
b pfpo qg T T T
< péreports 11Libraries:
B data_motion.html 12Library Paths {}
. i 13 Analyzing object files
B sds_madd.jou 14 aarche4-linux-gnu-objcopy -0 binary --set-section-flags .xdinfo=alloc --only-section=.xdinfo /tmp/sdx_workspace/project_one/Debug/src/me
2 sds_madd.log 15aarche4-linux-gnu-objcopy -0 binary --set-section-flags .xdrtlx=alloc --only-section=.xdrtlx /tmp/sdx_workspace/project_one/Debug/src/me
B sds_madd.rpt 16 aarch6d-linux-gnu-objcopy -0 binary --set-section-flags .xddata=alloc --only-section=.xddata /tmp/sdx workspace/project one/Debug/src/me
N — 17 aarch64-1linux-gnu-objcopy -0 binary --set-section-flags .xdpp=alloc --only-section=.xdpp /tmp/sdx_workspace/project_one/Debug/src/madd.c
B sds_main.jou 18 aarch64-1inux-gnu-objcopy -0 binary --set-section-flags .xdfcnmap=alloc --only-section=.xdfcrmap /tmp/sdx_workspace/project_one/Debug/si
B sds_main.log 19 aarche4-linux-gnu-objcopy -0 binary --set-section-flags .xdhlscore=alloc --only-section=.xdhlscore /tmp/sdx_workspace/project_one/Debug,
mmult_jou 20 /group/icdes/bin/unzip -u -o /tmp/sdx_workspace/project_one/Debug/_sds/iprepo/repo/xilinx_com_hls_madd_1_0/xilinx_com_hls_madd_1_0.zip
- 21Archive: /tmp/sdx_workspace/project_one/Debug/_sds/iprepo/repo/xilinx_com hls madd_1 0/xilinx_com hls_madd 1 0.zip
2 sds_mmult.log 22 1inflating: /tmp/sdx_workspace/project_one/Debug/_sds/iprepo/repo/xilinx_com_hls_madd_1_6/component .xml
® sds_mmult.rpt 23 inflating: /tmp/sdx_workspace/project_one/Debug/_sds/iprepo/repo/xilinx_con_hls_madd_1_0/hdl/ip/a6_madd_ap_fadd_2_full dsp_32.vhd ||
o = Sl P 50 LS ‘ L e o
: [+ [zl Problems & Console 12 () Guidance [Properties [-]SDx Log E SDx Terminal = O {iTargetConnections 8 & =0
-~ Assistant 12 B & v~ =g s olg B % | = B - § -~ ||P & Hardware Server
I — SDx Build Console [project_one, Debug] o P = Linux TCF Agent
~ B project_one [SDSoC] L1NK appllcation ELF Tile [~] b = QEMU TcfGdbClient
< & Debug [Hardware] SD card folder created /tmp/sdx_workspace/project_one/Debug/sd_card
. AL user specified timing constraints are met
b g mmult [C/C++] sds++ log file saved as /tmp/sdx_workspace/project_one/Debug/_sds/reports/sds.log
P & madd [C/C++]
=] Data Motion Network Report [05 Nov 2018 14:18] Finished building target: project one.elf
— i
@ sD Card Image [5] 14:43:56 Build Finished (took 29m:11s.280ms) o
@ mDil|a I Dl
An excerpt of a log file showing the equivalent system compiler commands run by the IDE for
creating the accelerators added as part of the matrix multiply and matrix add example, shown in
the following code snippet. The - sds-pf option identifies the platform, and each accelerated
function is identified by placing the function name and its defining source file between their own
set of -sds-hwand -sds-end hardware function options. The accelerator clock ID is also
chosen within the hardware function options by setting the -c1kid option.
Compilation of function madd ():
sds++ -Wall -00 -g -I../src -c -fmessage-length=0 -MTsrc/madd.o\
-MMD -MP -MFsrc/madd.d -MTsrc/madd.o -o src/madd.o ../src/madd.cpp\
-sds-hw mmult mmult.cpp -clkid 1 -sds-end\
-sds-hw madd madd.cpp -clkid 1 -sds-end\
-sds-sys-config ab53_linux -sds-proc ab53_linux -sds-pf zculO2
Compilation of function main ():
sds++ -Wall -0O0 -g -I ../src -c -fmessage-length=0 -MTsrc/main.o\
-MMD -MP -MFsrc/main.d -MTsrc/main.o -o src/main.o ../src/main.cpp\
-sds-hw mmult mmult.cpp -clkid 1 -sds-end\
-sds-hw madd madd.cpp -clkid 1 -sds-end\
-sds-sys-config ab3_linux -sds-proc ab53_linux -sds-pf zculO2
www.xilinx.com

UG1027 (v2019.1) May 22, 2019

SDSoC Environment User Guide 45

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=45

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

Compilation of function mmult ():

sds++ -Wall -00 -g -I../src -c -fmessage-length=0 -MTsrc/mmult.o\

-MMD -MP -MFsrc/mmult.d -MTsrc/mmult.o -o src/mmult.o ../src/mmult.cpp\
-sds-hw mmult mmult.cpp -clkid 1 -sds-end\

-sds-hw madd madd.cpp -clkid 1 -sds-end\

-sds-sys-config ab3_linux -sds-proc ab53_linux -sds-pf zculO2

The compiled object files are then linked by the SDx tools to produce the single executable file
for the matrix multiply and matrix add example containing the application code as well as the
code to invoke the accelerated functions. This executable is targeted for Linux as specified with
the -sds-sys-configand -sds-proc options.

Linking object files to produce an executable file (ELF) and boot files for SD card:

sds++ --remote_ip_cache /tmp/sdx_workspace/ip_cache -o project_one.elf\
./src/madd.o ./src/main.o ./src/mmult.o\
-dmclkid 1 -sds-sys-config ab3_linux\
-sds-proc ab3_linux -sds-pf zculO2

XP Option: Advanced Feature for Controlling a Vivado Build

While the sds++ system compiler automatically invokes the Vivado® design tools to implement
the hardware system, users who are familiar with Vivado tool options have the ability to further
customize the flow by passing arguments on the command line. The - xp option of the sds++
system compiler can be used to pass a parameter-value Or property-value pair into the
Vivado tools for guiding accelerator implementation.

The following is an example of specifying a Vivado synthesis option:

sds++ <command_options> -xp
"vivado_prop:run.synth_1.STEPS.SYNTH_DESIGN.TCL.POST=<full path to
postsynth.tcl>"

This example - xp option specifies a post-synthesis execution of a Vivado tool Tcl file. Multiple -
xp options can be specified on a single system compiler invocation.

However, for synthesis and implementation strategies, the sds++ command directly takes the -
impl-strategyand -synth-strategy options, and does not use the - xp option.

For example:
sds++ <command_options> -synth-strategy <strategy_name>
sds++ <command_options> -impl-strategy <strategy_name>

sds++ <command_options> -synth-strategy <strategy_name> -impl-strategy
<strategy_name>

When using the IDE, the - xp options can be added to a build configuration as described in SDS+
+ Linker Settings, under the Miscellaneous options.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 46

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=46

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

See the following resources for more information:

e Vivado Design Suite Tcl Command Reference Guide (UG835)

e Vivado Design Suite User Guide: Synthesis (UG901)

e Vivado Design Suite User Guide: Implementation (UG904)

e SDSoC Environment Profiling and Optimization Guide (UG1235)
e SDx Command and Utility Reference Guide (UG1279)

Targeting System Emulation

After the hardware functions are identified, the logic can be compiled, and the entire system (PS
and PL) verified using emulation on Xilinx base platforms (such as zc702, zc706, zcu102, zcu104,
and zcu106). System emulation allows you to verify and debug the system with the same level of
accuracy as a full bitstream compilation, without requiring a bitstream. This can significantly
reduce design iteration time, and allow faster iteration through debug cycles more.

To enable system emulation, from the Editor Area, click the Target field, and select Emulation.

Figure 25: Emulation Target

Active build configuration: | Debug

Options

Target: | Emulation

Data motion network clock frequency (MHz): | 99.99 <

Emulation model: | Debug v

Root function: |main

System emulation offers Debug and Optimized modes, which can be specified by clicking in the

Emulation Model field.

e Debug: Builds the system through RTL generation, and the Vivado IP integrator block design
containing the hardware function, elaborates the hardware design, and runs behavioral
simulation on the design, with a waveform viewer to help you analyze the results. If there is a

functional issue with the code, use this option.

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide send Feedback

www.Xilinx.com
47

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug904-vivado-implementation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=47

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

e Optimized: Runs the behavioral simulation in batch mode, returning the results without the
waveform data. While Optimized can be faster, it returns less information than Debug mode.

To capture waveform data from the PL hardware emulation for viewing and debugging, select the
Debug pull-down menu option. For faster emulation without capturing this hardware debug
information, select Optimized.

After specifying the emulation options, click the Build (%) command to compile the active build
configuration. The Build command invokes the system compilers to build your application project.
There are two build configurations available:

e Debug: This compiles the project use in software debug. The compiler produces extra
information for use by a debugger to facilitate debug and allows you to step through the code.

e Release: The compiler tries to reduce code size and execution time of the application. This
strips out the debug code so that you really cannot debug with this version.

O TIP: Debug and Release modes describe how the software code is compiled; it does not affect the compilation
and implementation of the hardware functions.

You can launch the build from the Assistant window also, by selecting Debug[Emulation] = Build.

After system emulation has completed, the Assistant lists the Data Motion Network Report and
the Compilation Log as shown in the following figure:

Figure 26: Assistant Window Display

-~ Assistant 3 5 B 8§ O %= ¥ = 0

v [project_one [SDSoC]
v &
P & madd [«
b mmult [
Data Motion Network Report [05 Nov 2018 15:13]

=] Compilation Log [05 Nov 2018 15:20]

/]

R Release [Hardware]

I])

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 48

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=48

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

The build process for hardware emulation can take some time, depending on your application
code, the size of your hardware functions, and the various options you have selected. To compile
the hardware functions, the tool stack includes SDx, Vivado HLS, and the Vivado Simulator.

After the system is compiled for emulation, you can invoke the system emulator using the Xilinx
— Start/Stop Emulator menu command or using sdsoc_emulator from the command line.

When the Start/Stop Emulator dialog box opens, if the specified emulation mode is Debug, you
can choose to run emulation with or without waveforms. If the emulation mode is Optimized,
the Show waveforms check-box is disabled and cannot be changed.

Figure 27: Start/Stop Emulator

E Emulation x

Start/Stop Emulator
Emulator configuration

Show Waveform (Programmable Logic only)

Mote: Run simulation on Xsim GUI to start the Qemu

Emulator Running Status: Not Running

Start Close

Disabling the Show Waveform option allows you to run emulation with the output directed
solely at the Emulation Console view, which shows all system messages including the results of
any print statements in the source code. Some of these statements might include the values
transferred to and from the hardware functions, or a statement that the application has
completed successfully, which would verify that the source code running on the PL and the
compiled hardware functions running in the PS are functionally correct.

Enabling the Show Waveform option provides the same functionality in the console window,
plus the behavioral simulation of the PL-resident IP with a waveform window in the Xsim tool.
The waveform window allows you to see the value of any signal in the hardware functions over
time.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 49

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=49

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

When using Show Waveform, you must manually add signals to the waveform window before
starting the emulation. Use the Scopes pane to navigate the design hierarchy, then select the
signals to monitor in the Object pane, and right-click to add the signals to the waveform pane.
Select the Run—= Run All option to start updates to the waveform window. For more information
on working with the Vivado simulator waveform window, see the Vivado Design Suite User Guide:
Logic Simulation (UG900).

Note: Running with RTL waveforms results in a slower runtime, but enables detailed analysis into the
operation of the hardware functions.

The system emulation can also be started by selecting the active project in the Project Explorer
view and right-clicking to select Run As = Launch on Emulator menu command, or the Debug As
= Launch on Emulator menu command. Launching the emulator from the Debug As menu
prompts you to change to the debug perspective to arrange the windows and views to facilitate
debugging the project. See Understanding the SDx GUI for more information on changing
perspectives.

The program output is displayed in the console tab and if the Show Waveform option is selected,
you also see any appropriate response in the hardware functions in the RTL-PL waveform. During
any pause in the execution of the code, the RTL-PL waveform window continues to execute and
update, just like an FPGA running on the board.

The emulation can be stopped at any time using the menu option Xilinx = Start/Stop Emulator
and selecting Stop.

A system emulation session with the quick emulation (QEMU) console is shown in the following
figure.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 50

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=50

iv Xl LI NX Chapter 3: Creating an SDSoC Application
A ®

Figure 28: QEMU Console

sdx_ workspace - project_one/Debug/ sds/swstubs/main.cpp - Xilinx SDx
File Edit Source Refactor Navigate Search Project Run Xilink Window Help
5 B -% - & _;,.‘_'.Eéj}-ﬁ-

=T
5 |4 Target Connections | @l Emulation Console i | 4= Debug x - &
QEMU Process

Fingerprint: mdS fd:38:eT:cf:75:b0:80:Th: 29 ae:f2:01:1b:31:92: b4

[
u

dropbear .
Starting syslogd/klogd: done

Starting tcf-agent: OK

00O BE ;!

Last login: Mon Nov 5 22:52:83 UTC 2618 on tiyl

E?E{r@[gﬁlg 990H[][bnroot@zculf2 -2 [324.406154] xilinx-dp-snd-card fd4ad@en.zynqge
324.474095) xilinx-dp-snd-card fd4a@@0d.zyngep-display:zynqep_dp_snd_card: ASeC: C

[324.499329) xilinx-dp-snd-card fd4a0@es.zyngap-display:zyngmp_dp_snd_card: ASoC: cl

[324.547413] xilinx-dp-snd-card fd4a@@ds, zyngnp-display:zyngep_dp_snd_card: ASoC: C

[324.550361) xilinx-dp-snd-card fd4adees.zyngmp-display:zyngep_dp_snd_card: ASeC: C

[324.579554) xilinx-dp-snd-card fd4ad@de.zyngmp-display:zyngep_dp_snd_card: ASoC: C

8

lsls

root@zcule?:~& 15 -lals -la

total @

drwgs-=--= 2 root root 40 Aug 2 @5:17 .
ArwWEr=Xr-x 3 root root 60 Oct 36 @0:04 ..
root@rculd:~& pwdpwd

fhomefroot

root@zrculd:~# mountmount

rootfs on / type rootfs (rw, 512e=1495588k, nr_inodes=373897)

proc on fproc type proc (rw,relatime)

sysfs on /sys type sysfs (rw,relatime)

debugfs on Ssys/kernel/debug type debugfs (rw,relatime)

configfs on /sys/kernelsconfig type configfs (rw,relatime)

devtmpfs on fdev Cype devtmpfs (rw,relatime, 517e=1495588k, nr_inodes=373897,mode=T55)
tepfs on Srun type tepfs (rw,nosuid, nodev, mode=T55)

tepfs on Svarfvolatile type tmpfs (rw,relatime)

fdev/amcbhlkEpl on Srun/media/mmcblk@pl type wfat (rw,relatime,gid=8, fmask=0807,dmask=
devpts on /dev/pts type dewpts (rw, relatime, gid=5, mode=820, ptmxmode=084)
fdev/mmchlkBpl on Smnt type vfat (rw,relatime,gids=6, fmask=0087, dnask=0807, allow_utine’

root@zcule?:~# ls Smntls sant

generic. reagme image.ub project_one.elf

root@rcule?: &

@ D
qemuk|

As shown in the following figure, the PL waveform displays if you selected the waveform option
and the Run All option:

UG1027 (v2019.1) May 22, 2019 www.xilinx.com
SDSoC Environment User Guide send Feedback 51

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=51

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

Figure 29: Waveform Window

Unititled 1*
G W & G 35 = M M + o

The Assistant window enables you to right-click Debug— Run = Launch on Emulator (SDx
Application Debugger).

You can find more information about emulation in the SDSoC Environment Debugging Guide
(UG1282).

O TIP: To generate an example project demonstrating emulation, create a new SDx project using the Emulation
Example template. The README . t x t file in the project has a step-by-step guide for performing emulation on
both the SDx GUI and the command line.

Building an SDSoC Library

Libraries can be used to encapsulate one or more accelerated functions into a shared or statically
linked file. The SDx IDE menu selection File—= New — SDx Library Project provides a means to
create a library project. The shared library flow produces a library file which can be linked to an
SDSoC application through the SDx IDE or the command line. The SDSoC library flow is intended
for exporting a library for use with gcc/g++. Using this library, you can call the functions which
are accelerated in hardware. The C-Callable IP library flow is used for linking a Vivado packaged
IP block to an SDSoC application and is also described in Chapter 4: C-Callable IP Libraries.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 52

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1282-sdsoc-debugging-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=52

iv Xl I_l NX Chapter 3: Creating an SDSoC Application
A ®

Figure 30: Specify Library Type

m Mew SDu Library Project Lﬂf;
Accelerated Library Type -
Specify the type of library you wish to create F

(® Shared Library
A shared library that can be linked into executable projects

O C-Callable Library
A static library of functions targeting Vivado-packaged IP

? < Back | Mext > | Cancel

Shared Library

The shared library includes a Matrix Shared Library template with a multiply and add example
provided with the SDx IDE. This library demonstrates how three different functions with unique
entry points in the shared library can be called from a software application.

When running the results of an application build invoked through the SDx IDE, the BOOT . BIN
file in the sd_card directory of the library project should be used to boot the board as it
contains the accelerated hardware functions.

For command line use, an example is available in the <SDx_Install_Dir>/samples/
libmatrix directory. The 1ibmat rix example contains makefiles that demonstrate how to
build static and shared libraries as well as how to use the libraries with an application.

For more information on building a shared library, see the "Building a Shared Library" section in
SDSoC Environment Programmers Guide (UG1278).

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 53

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=53

& XILINX

Chapter 4

C-Callable IP Libraries

This section describes how to create a C-Callable IP library for IP blocks written in a hardware
description language like VHDL or Verilog. User applications can statically link with such libraries
using the SDSoC™ system compiler, and the IP blocks are instantiated into the generated
hardware system. Using the SDx™ IDE and its command line equivalents are shown.

Figure 31: Create and Use a C-Callable Library

Create a Library Library Use the
\\\
#define N 32) #include arraycopy.hpp ™
woid armycopy (u32 A[N], u32 B[N], int M); . oid main (]{
Heada file
0Py hep arraycopy(A, B, N);
Vivado Packaged IP SDx |DE or Command Line
(component_xmi) L SDS++ Linker Options:
arrycopy
-L <path_to Ebamaycopy.a>
IP Paameters I,, sdx_pack* -
libarraycopy.a
A
Function Mapping
arraycopy
Argument Map:
A=A lle} [ls]
B=Bout
M=s_axi_lite:in:16 The packaged IP must use
supported AXl and control
interfaces
"Invoked by SDx IDE or through command line

SDSoC applications can use C-Callable IP libraries to access packaged IP blocks written in a
hardware description language (HDL) such as VHDL or Verilog or with a high-level synthesis
(HLS) tool like Vivado® HLS. At times, hardware specific optimizations or micro-architectures are
easier to implement through an HDL and can be delivered encapsulated within a C-Callable
library.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide l—./—l 54

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=54

iv Xl Ll NX Chapter 4: C-Callable IP Libraries
A ®

Using a C-Callable IP library provides both the design reuse flexibility of a software library and
the performance gain of optimized hardware IP blocks. With a bottom-up approach individual IP
blocks can be designed, implemented, and tested prior to being placed into a C-callable library
for broader use. The library of hardware-accelerated functions allows a means to insulate
hardware and software development teams from low-level implementation details while still
ensuring that both teams are cognizant of the functional interfaces.

Creating C-Callable IP Libraries

The SDx™ installation contains examples of C-Callable IP in the <SDx_Install_Dir>/
samples/rt1 directory. These examples show single-function as well as multi-function
accelerator libraries where function arguments are passed as registers, memory references, or
AXI streams, which are highlighted (axilite_arraycopy, aximm_arraycopy,
axis_arraycopy). The multi-function examples (mfa_fir,mfa_scalarl28_none,
nfa_scalar_axi) highlight single accelerators with multiple software entry points.

The SDx IDE's Library Project flow is used to create a C-Callable IP library with foundational
support from the sdx_pack utility. A description of the sdx_pack command line arguments
can be found in the SDx Command and Utility Reference Guide (UG1279). For inspecting interfaces
within Vivado-packaged IP, sdx_pack provides the capability to query IP settings including their
hardware interfaces. The SDx IDE uses this feature to populate menu selections with interfaces
and pull-down choices relevant to the IP being transformed into a C-Callable IP library.

A procedure for creating a C-Callable IP library using the axis_arraycopy example for a
zcu102 platform is described below. The axis_arraycopy example contains the Vivado-
packaged IP and the files used to create the 1ibarraycopy.a library. The arraycopy.hpp
header file contains the software function declarations associated with the hardware
functionality provided in the packaged IP. The component . xm1 contains the meta-data used by
the SDx IDE and the underlying sdx_pack tool to build the library.

The following steps are necessary to create the C-Callable IP library with the SDx IDE:

1. Create a C-Callable IP Library project.

e Each library is created for a specific device_family, cpu_type,and OS_type tuple.
2. Import source files from the <SDx_Install_Dir>/samples/rt1l directory.

e Import both the header file and the packaged IP.

3. ldentify the header file (. hpp) and the IP meta-data file (component . xm1) to use as inputs
to build the C-Callable IP library.

4. Show how to customize the IP.

Indicate how the arguments of each function in the C-Callable IP library maps to the
hardware IP.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 55

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=55

& XILINX

Chapter 4: C-Callable IP Libraries

The following tables guide you on how to complete the SDx dialogs.

e The top row of each table contains the SDx IDE menu selection to begin each task.

¢ The Dialog column lists the names of the subsequent dialog boxes that open.

e Selection and Action columns indicate how to fill out the dialog boxes to complete the task.

SDx Library Project

Begin by launching the SDx IDE and specifying a workspace (for example, sdx_workspace) to

create a Library project (File = New — SDx Library Project).

The project name becomes the name of the library created by concatenating the prefix 1ib and
the . a suffix (1ib<project_name> . a).

Table 4: SDx Library Project

Dialog

Selection or Field Name

Action

Project Type

Application

Click Next

Create a New SDx Project

Project name:

arraycopy

Use default location Check-mark
Click Next
Accelerated Library Type Type: C-Callable Library
Platform Name zcu102
Click Next
System Configuration System configuration: A53_Linux
Runtime: C/C++
Domain: a53_linux
(pre-set) CPU: cortex-a53
(pre-set) 0s: linux
Linux Root File System: Leave unchecked
Click Next
Templates Empty Application Click Finish

Import Sources Dialog Options

The following table shows the menu selection for importing sources.

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide

l Send Feedback l

www.Xilinx.com
56

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=56

iv Xl Ll NX Chapter 4: C-Callable IP Libraries
A ®

Table 5: Import Sources Dialog Options

Dialog Selection or Field Name Action
File system From directory: Browse to axis_arraycopy directoryin

samples/rtl
Click OK

Files: src/arraycopy.hpp Check-marked

Directory: ip Check-marked

Into folder: arraycopy/src
Click Finish

Add IP Customizations

In the IP Customizations window, click Add IP Customizations (file icon with stylized "h"). The
following figure and table show how to add IP customization.

IP Customizations E

[Header file 1 Function P Acceleratar Control Function Mapping

Table 6: Add IP Customizations

Dialog Selection or Field Name Action
Add IP Customizations Header File: Click Select

Files: Select arraycopy.hpp

Qualifier: Select src/src/arraycopy.hpp
Click OK

IP Path: Click Select

Files: Select component . xml

Qualifier: Select src/ip/component . xml
Click OK

Accelerator control: Protocol: ap_ctrl_hs

Port: s_axi_lite

Offset: 0
Primary Clock: ap_c1k 10.0
Derived Clock: (no change)
IP Parameters (no change)

Click OK

Add Function Mapping

This axis_arraycopy example uses the contents of the provided samples/rtl/
axis_arraycopy/src/Makefile to complete the dialog box option.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 57

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=57

& XILINX

Chapter 4: C-Callable IP Libraries

The component . xml and, if provided, the register_map. txt files associated with the IP
block can also be queried for information on the how the function arguments map to the

hardware.

In the IP Customizations window, click Add Function Mapping ("+" icon) shown in the figure and

table.

IP Customizations

Table 7: Add Function Mapping

3 D.f X

Dialog

Selection or Field Name

Action

Add Function Mapping

Function name:

Click "+" icon on the right-side

Select arraycopy

Click OK

Arguments and Function Return
mapped to AXILite Interface

Click Add Function Argument Map ("+"
icon) above the table for this interface type

Argument (Click within field to expose
pull-down menu)

M

AXILite Interface (Click within field | s_axi_lite
to expose pull-down menu)
Direction (Click within field to expose | IN

pull-down menu)

Register Info (Click within field to
expose pull-down menu)

M, at offset 16

Array Arguments mapped to AXIS
Interface

Click Add Function Argument Map ("+"
icon) above the table for this interface type

Argument (Click within field to expose
pull-down menu)

A

AXIS Interface (Click withinfieldto |A
expose pull-down menu)
Direction (Click within field to expose IN

pull-down menu)

Array Arguments mapped to
AxXIsinterface

Click Add Function Argument Map ("+"
icon) above the table for this interface type

Argument (Click within field to expose
pull-down menu)

AXIS Interface (Click withinfieldto |B
expose pull-down menu)

Direction (Click within field to expose ouT
pull-down menu)

Complete the Add Function Mapping Click OK

dialog box

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide

[Send Feedback] WWW.Xi|inX.C05n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=58

iv Xl Ll NX Chapter 4: C-Callable IP Libraries
A ®

Building the C-Callable IP Project

To build the project, the C-Callable IP library is generated and placed in the build output directory
of the application (for example, the Re1lease directory) with the name 1ib<application>. a
(libarraycopy.a for this example).

In addition to the SDx IDE method of creating a C-Callable IP library, a command line method
that directly invokes the sdx_pack tool is available. The equivalent sdx_pack command to
match the actions taken with the SDx IDE for the axis_arraycopy example is:

sdx_pack -header arraycopy.hpp -1lib libarraycopy.a \

-func arraycopy -map A=A:in -map B=B:out -map M=s_axi_lite:in:16 -func-end \
-ip ../ip/component.xml -control ap_ctrl_hs=s_axi_lite:0 \

-primary-clk ap_clk=10.0 -target-family =zynquplus \

-target-cpu cortex-ab3 -target-os linux \

-verbose

Note: The C-Callable function and its argument map is listed between - func and - func - end options of
the sdx_pack call.

Multi-Function Accelerator Libraries

The axis_arraycopy example is a library with a single accelerator function. Other examples, in
particular the ones that begin with the mfa_ prefix are multi-function accelerator (MFA) libraries
where more than one function is mapped onto one IP block. Below is the sdx_pack command
forthemfa_scalar_128_none example that generates the 1ibmfa. a.

The C-Callable IP library contains eight functions and is shown in the following code example.
This accelerator library uses control protocol none, indicating that the user explicitly controls the
IP. This MFA example also demonstrates 128-bit scalar function arguments that map to AXI4-Lite
interfaces as well as 128-bit array arguments that map to master AXI4-Stream interfaces.

sdx_pack -header mfa.hpp -I inc -1ib libmfa.a \

-func mfa_reset -map inst=s_axi_AXILiteS:in:0x40 -func-end \

-func mfa_init -map inA=inA:in -map inst=s_axi_AXILiteS:in:0x40 -func-end \
-func mfa_copy -map outB=outB:out -map inst=s_axi_AXILiteS:in:0x40 -func-
end \

-func mfa_sum -map result=axi_AXILiteS:out:0x2c -map
inst=s_axi_AXILiteS:in:0x40 -func-end \

-func mfa_status -map return=axi_AXILiteS:out:0x10 -map
inst=s_axi_AXILiteS:in:0x40 -func-end \

-func mfa_status2 -map status=s_axi_AXILiteS:out:0x10 -map
inst=s_axi_AXILiteS:in:0x40 -func-end \

-func mfa_result -map result=s_axi_AXILiteS:out:0x2c -func-end \

-func mfa_stop -map inst=s_axi_AXILiteS:in:0x40 -func-end \

-ip ../ip/component.xml -control none \

-add-ip-repo ../dummy_ip \

-add-ip-repo ../dummy_ip_repo \

-primary-clk ap_clk=10.0 \

-target-family zynquplus -target-cpu cortex-ab53 -target-os linux -verbose

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 59

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=59

iv Xl Ll NX Chapter 4: C-Callable IP Libraries
A ®

Another example of an MFA type of C-Callable library is the mfa_scalar_axi accelerator. This
accelerator library uses an ap_ctrl_hs control protocol and shows the use of scalar function
arguments that map to AXI4-Lite interfaces as well as array arguments that map to master AXI4
interfaces.

sdx_pack -header mfa.hpp -I inc -1ib libmfa.a \
-func mfa_reset -map status=s_axi_AXILiteS:out:0x20 -map
inst=s_axi_AXILiteS:in:0x34 -func-end \
-func mfa_init -map inA=s_axi_AXILiteS:in:0x10,m_axi_inA:in -map
status=s_axi_AXILiteS:out:0x20 \
-map inst=s_axi_AXILiteS:in:0x34 -func-end \
-func mfa_copy -map outB=s_axi_ AXILiteS:in:0x18 ,m_axi_outB:out -map
status=s_axi_AXILiteS:out:0x20 \
-map inst=s_axi_AXILiteS:in:0x34 -func-end \
-func mfa_sum -map result=s_axi_AXILiteS:out:0x28 -map
status=s_axi_AXILiteS:out:0x20 \
-map inst=s_axi_AXILiteS:in:0x34 -func-end \
-func mfa_status -map status=s_axi_AXILiteS:out:0x20 -func-end \
-func mfa_stop -map status=s_axi_AXILiteS:out:0x20 -map
inst=s_axi_AXILiteS:in:0x34 -func-end \
-ip ../ip/component.xml -control AXI=s_axi_AXILiteS:0x0 \
-primary-clk ap_clk=10.0 \
-target-family zynquplus -target-cpu cortex-a53 -target-os linux -
verbose

A register map showing the bit-level definition of the AXI4-Lite control protocol signals used in
themfa_scalar_axi exampleis provided inthemfa_scalar_axi/ip/

register_map. txt file and excerpted below. In general, IP register mapping information is
provided by the IP developer.

// File generated by Vivado(TM) HLS - High-Level Synthesis from C, C++ and
SystemC

// Version: 2018.3

// Copyright (C) 1986-2018 Xilinx, Inc. All Rights Reserved.

// AXILiteS
// 0x00 : Control signals

// bit 0 - ap_start (Read/Write/COH)

// bit 1 - ap_done (Read/COR)

// bit 2 - ap_idle (Read)

// bit 3 - ap_ready (Read)

// bit 7 - auto_restart (Read/Write)

// others - reserved

// 0x04 : Global Interrupt Enable Register

// bit 0 - Global Interrupt Enable (Read/Write)
// others - reserved

// 0x08 : IP Interrupt Enable Register (Read/Write)
// bit 0 - Channel 0 (ap_-done)

// bit 1 - Channel 1 (ap_ready)

// others - reserved

// 0x0c : IP Interrupt Status Register (Read/TOW)
// bit 0 - Channel 0 (ap_done)

// bit 1 - Channel 1 (ap_ready)

// others - reserved

// 0x10 : Data signal of inA_offset

// bit 31~0 - inA_offset[31:0] (Read/Write)

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 60

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=60

iv Xl Ll NX Chapter 4: C-Callable IP Libraries
A ®

// 0x14 : reserved
// 0x18 : Data signal of outB_offset

// bit 31~0 - outB_offset[31:0] (Read/Write)
// Oxlc : reserved

// 0x20 : Data signal of status

// bit 31~0 - status([31:0] (Read)

// 0x24 : Control signal of status

// bit 0 - status_ap_vld (Read/COR)
// others - reserved

// 0x28 : Data signal of result

// bit 31~0 - result[31:0] (Read)

// O0x2c : Data signal of result

// bit 31~0 - result[63:32] (Read)

// 0x30 : Control signal of result

// bit 0 - result_ap_vld (Read/COR)
// others - reserved

// 0x34 : Data signal of inst

// bit 31~0 - inst[31:0] (Read/Write)

// 0x38 : reserved
// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH =
Clear on Handshake)

Themfa_fir C-Callable IP library example highlights instantiating IP parameters, using AXI14-
Stream interfaces, a 24-bit data type, and a control protocol selection of none.

ibfir.a: fir.hpp
sdx_pack -header fir.hpp -1ib libfir.a \
-func fir -map X=S_AXIS_DATA:in -map Y=M_AXIS_DATA:out -func-end \
-func fir_reload -map H=S_AXIS_RELOAD:in -func-end \
-func fir_config -map H=S_AXIS_CONFIG:in -func-end \
-ip ../ip/fir_compiler_v7_2/component.xml -control none \
-param DATA_Has_TLAST="Packet_Framing" \
-param M_DATA_Has_TREADY="true" \
-param Coefficient_Width="8" \
-param Data_Width="8" \
-param Quantization="Integer_Coefficients" \
-param Output_Rounding_Mode="Full_Precision" \
-param Coefficient_Reload="true" \
-param Coefficient_Structure=Non_Symmetric \
-primary-clk aclk_intf=10.0 \
-target-family zynquplus -target-cpu cortex-a53 -target-os linux -
verbose

Considerations for C-Callable IP Libraries

1. Function arguments of TYPE *a or TYPE &a are interpreted as an OUTPUT scalar.
2. Arrays must be declared as TYPE a[N] or TYPE al].

3. Function return type can only be a scalar in the format of TYPE: TYPE* or TYPE& are not
allowed.

4. C-Callable IP library header files cannot have SDS pragmas that use MACRO as parameters:
#pragma sds data copy (A[0:SIZE]) is not allowed when SIZE is a macro (for
example, #define SIZE 16).

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 61

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=61

iv Xl Ll NX Chapter 4: C-Callable IP Libraries
A ®

5. Overlapped function calls of multi-function accelerators (MFAs) are not allowed, as there is
only one IP instance in the hardware; therefore, async pragmas around MFA functions are
very risky and not recommended unless there is no chance of overlapping during runtime.

6. Argument sizes must match between the software declared argument and the hardware port
pair:<project_name>/Release/reports/sdx_pack.html report file can be used to
double-check if the library implemented the expected argument sizes, offsets, and bus
interfaces.

7. This supports up to one AXI4-Lite interface per top-level IP.

8. For C-Callable functions, all pragmas must be applied when building the library using
sdx_pack. Any pragmas added into the header file after the library is already built are
ignored by the tool.

sdx_pack Command

The following are examples of the sdx_pack command:
sdx_pack -header <header.h/pp>-ip <component.xml>
[-param <name>="value"] [configuration options]

The following table provides further details on the sdx_pack tool.

Table 8: sdx_pack Command Options

Option Description

-header header.h/.hpp (required)

Header file (.1, .hpp) with function prototypes. sdx_pack
generates C++ style library for a . hpp file and a C-style library for
a .nfile.

Only one top-level header file is allowed per library.
The top-level header can include other header files, using the -1
option.

-ip component.xml (required)

Path to Vivado packaged IP. Only one top-level IP per library. The
top-level IP can invoke other IP blocks, using the -add-ip-repo
option.

-control protocol [=port [:offset]] (required) IP control protocol options:

ap_ctrl_hs

Automatic control protocol based on an AXI4-Lite control
register, typically at offset 0x0 (for example: -control
ap_ctrl_hs:s_axi_AXILiteS:O)

none

User application explicitly controls the IP (for example -

control none)

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 62

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=62

& XILINX

Chapter 4: C-Callable IP Libraries

Table 8: sdx_pack Command Options (cont'd)

Option

Description

-func function_name -map swName=
hwNAME:direction|[:o0ffset[aximm_name:directi
on]] -func-end

(required)

Specify a list of C-Callable IP functions. Each function is listed
between a - func and - func - end option pair. Function
arguments are mapped to each IP port with the -map option.

The -map option is then used as follows:
®* Scalars map onto an AXI4-Lite interface
- Map input scalar (for example, int a)with -map
a=s_axi_AXILiteS:in:offset

- Map output scalar (for example: int *a, or int &a)with
-map a=s_axi_AXILiteS:out:offset

. Map function return scalar (return type can only be a
scalar) with -map
return=s_axi_AXILiteS:out:offset

* Arrays map onto AXI4, AXI4-Stream, or AXI4-Lite interfaces.
The arrays must be one-dimensional (for example, int
alNl,or int all).

- Map to AXI4, with -map
a=s_axiAXILiteS:in:offset,a_hwName:direction
Not allowed when control=none.

The first part is mapping to the address and the second
part is mapping to the data port.

- Map to AXI4-Stream with -map
a=a_hwName:direction.

- Map to AXI4-Lite with -map
a=s_axi_AXILiteS:in:offset.Array must be one-
dimensional and of constant size.

-param name="value"

IP parameter name-value pairs to instantiate IP parameters. Use
one -param Ooption per pair.

-1lib libname

Use specified 1ibname for naming the generated library. By
default 1ib header.a is used.

-I path

If the file named with the -header option includes other files,

this option specifies the path to the additionally included files.

Multiple -1 options can be used. For easier library distribution,
place all include files into a single directory.

-add-ip-repo path

Add all IP found in the listed repository into the library. Although
multiple -add-ip-repo options can be used to specify multiple
paths.

Xilinx recommends to place all required IP into a single directory
and use a single -add-ip-repo option.

-primary-clk clk_interface=min_clk_period

Specify the primary clock interface and its minimum clock period
in nanoseconds.

-derived-clk
clk_interface=multiplier:divisor

Specify a phase-aligned derived clock interface and its multiplier
and divisor in units of integers. Only two phase-aligned clocks
are supported.

-target-family device_family

The target device family supported by the IP (for example, zyng
(default), zynquplus).

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide

www.Xilinx.com
63

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=63

iv Xl Ll NX Chapter 4: C-Callable IP Libraries
A ®

Table 8: sdx_pack Command Options (cont'd)

Option Description

-target-cpu cpu_type Specify target CPU:
* cortex-a9 (default)

® cortex-ab3

® cortex-rb

® microblaze

-target-os name Specify target OS:
* 1linux (default)

* standalone (bare-metal)

-query-target type Query one of: supported device families, cpu types, or OS type
fortheIP [family, cpu, os]

-query-interface type Query interfaces and parameters of the IP. Multiple query types
suppoﬂed[all, aximm, axilite, axis, clock,

control, param, misd

Note: This requires that the IP has packaged all necessary
information needed by the query.

-0 output.json User-specified JSON file to save query results.
-verbose Print verbose output to STDOUT.

-version Print the sdx_pack version information to STDOUT.
-h, -help, --help Display sdx_pack option usage and descriptions.

Here is an example of the code:

sdx_pack -header arraycopy.hpp -1lib libarraycopy.a \

-func arraycopy -map A=A:in -map B=B:out \

-map M=s_axi_lite:in:16 -func-end \

-ip ../ip/component.xml -control AXI=s_axi_lite:0 \

-target-family zynquplus -target-cpu cortex-ab53 -target-os standalone \
-verbose

Where:

e arraycopy.hpp specifies the header file defining the function prototype for the
arraycopy function.

e component.xml of the IP generates the packaged Vivado IP for SDx.
e _control specifies the IP control protocol.

e _map specifies the mapping of an argument from the software function to a port on the
Vivado IP. Notice the option is used three times in the example above to map function
arguments A, B, and M to IP ports.

e The -target-os option specifies the target operating system.

The sdx_pack utility generates a C-Callable IP library to match the name in the -1ib option,
libarraycopy.a in this case.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 64

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=64

& XILINX

Chapter 4: C-Callable IP Libraries

Using C-Callable IP Libraries

After generating the C-Callable library, create a new SDx Application project to use the library.

Continuing with the example of the axis_arraycopy C-Callable IP library built in the previous
section, use the generated library (1ibarraycopy . a) from the library build's Release directory.
The result of building the Application project is an executable file (ELF) that is linked with the C-

Callable IP Library.

1. Create an SDx application project to output an executable file. Click File = New — SDx

Application Project.

Note: The tuple consisting of device_family, cpu_type, and os_type must match that of the C-

Callable IP library.

Table 9: SDx Application Project

Dialog Box Selection or Field Name Action
Project Type Application Click Next
Create a New SDx Project Project name: app_arraycopy
Use default location Check-marked
Click Next
Platform Name zcul02
Click Next
System Configuration System configuration: A53_Linux
Runtime: C/C++
Domain: a53_linux
(pre-set) CPU: cortex-a53
(pre-set) 0s: linux
Linux Root File System: Unchecked
Click Next
Templates Empty Application Click Finish

2. Import the function declarations header file (. hpp) common to both the library and the
application. In the Project Explorer window, right-click app_arraycopy and select Import

Sources.

Table 10: Select Import Sources

Dialog

Selection or Field Name

Action

File system

From directory:

Browse to axis_arraycopy/src directory
in <SDx_Install_Dir>/samples/rtl.

Click OK

Files: arraycopy.hpp

Check-marked

Into folder:

app-arraycopy/src

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide

www.Xilinx.com

l Send Feedback l 65

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=65

iv Xl Ll NX Chapter 4: C-Callable IP Libraries
A ®

Table 10: Select Import Sources (cont'd)

Dialog Selection or Field Name Action

Click Finish

3. Open the Importing Sources dialog box again to get the example main application code from
the <SDx_Install_Dir>/samples/rt1 directory. In the Project Explorer window, right-
click app_arraycopy and select Import Sources.

Table 11: Select Import Sources

Dialog Selection or Field Name Action
File system From directory: Browse to the axis_arraycopy/app

directory in <SDx_Install_Dir>/
samples/rtl
Click OK

Files: main.cpp Check-marked

Into folder: app_-arraycopy/src
Click Finish

Now that the source files for the app_arraycopy application have been imported, update
the C/C++ Build Settings to have the sds++ linker use the arraycopy.a C-Callable IP
library when building the application.

4. Update the C/C++ Build Settings in the Project Explorer window, right-click app_arraycopy
and select C/C++ Build Settings as shown in the table.

Table 12: C/[C++ Build Settings

Dialog Selection or Field Name Action

Settings - Tool Settings SDS++ Linker Select Libraries

Click Add symbol (with "+" icon) in the
Libraries (-1) window

UbraHesz arraycopy

Click OK

Click Add symbol (with "+" icon) in the Library
search path (-1) window

Click Workspace

Folder: Navigate to and select arraycopy/Release
Click OK
(pre-set) Directory: ${workspace_loc:/arraycopy/Release}
Click OK

Click Apply and Close

To create the application, you can use the Assistant window to build the app_arraycopy
application.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 66

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=66

iv Xl Ll NX Chapter 4: C-Callable IP Libraries
A ®

1. Inthe Assistant window under app_arraycopy[SDSoC], right-click Debug[Hardware] and
select Build. The Console window shows the build progression including the sds++ system
compiler invocation.

2. After the application successfully builds the target executable file (app_arraycopy.elf),
the Assistant window populates with a Data Motion Network Report, the Compilation Log,
and an SD Card Image menu. Through the SD Card Image menu, the contents of the
generated (sd_card) files directory is available to view using the Project Explorer, a file
browser, or a command shell window.

3. When the build completes, you can write the contents of the generated sd_card directory
to the root of a FAT32-formatted SD card and boot and run the app_arraycopy.elf
application on a ZCU102 board. The sd_card directory includes a README . txt for boot
setup instructions, a bootable BOOT . BIN file, and the image . ub file used to boot Linux.

The SDx IDE builds the application with the sds ++ system compiler using the C-callable library
and the application code. The main application is compiled to produce an object file and then it is
linked with the C-callable library (arraycopy).

The following examples show the issued commands.
Compilation of main.cpp:

sds++ -Wall -00 -g -I../src -c -fmessage-length=0 -MTsrc/main.o -MMD -MP -
MFsrc/main.d \

-MTsrc/main.o -o src/main.o ../src/main.cpp \

-sds-sys-config ab3_linux -sds-proc a53_linux -sds-pf zculO2

Linking main .o with arraycopy library to produce executable application
app-arraycopy.elf:

sds++ -L<path_to_arraycopy/Release> --remote_ip_cache ../ip_cache \
-0 app-arraycopy.elf ./src/main.o -larraycopy -dmclkid 1 \
-sds-sys-config ab3_linux -sds-proc a53_linux -sds-pf zculO2

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 67

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=67

& XILINX

Chapter 5

Debugging Techniques

When debugging SDSoC™ applications, you can use the same methods and techniques as
applications used for debugging standard C/C++. Most SDSoC applications consist of specific
functions tagged for hardware acceleration and surrounded by standard C/C++ code.

When debugging an SDSoC application with a board attached to the debug Host machine, you
can use the Assistant view and right-click the Debug[Hardware] = Debug — Launch on
Hardware option to begin a debug session. You can also set the options through the Assistant by
selecting Debug[Hardware] = Debug — Debug Configurations.

Note: As the debug environment is initialized, Xilinx recommends that users switch to the Debug
perspective when prompted by the SDx™ IDE.

The debug perspective view provides the ability to debug the standard C/C++ portions of the
application, by single-stepping code, setting and removing breakpoints, displaying variables,
dumping registers, viewing memory, and controlling the code flow with run until and jump to type
debugging directives. Inputs and outputs can be observed pre- and post- function call to
determine correct behavior.

You can determine if a hardware accelerated application meets its real-time requirements by
placing debug statements to start and stop a counter just before and just after a hardware
accelerated function. The SDx environment provides the sds_clock_counter () function
which is typically used to calculate the elapsed time for a hardware accelerated function.

You can also perform debugging without a target board connected to the debug host by building
the SDx project for emulation. During emulation, you can control and observe the software and
data just as before through the debug perspective view, but you can also view the hardware
accelerated functions through a Vivado® simulator waveform viewer. You can observe
accelerator signaling for conditions such as Accelerator start, Accelerator done, and monitor data
buses for inputs and outputs. Building a project for emulation also avoids a possibly long Vivado
implementation step to generate an FPGA bitstream.

See the SDSoC Environment Debugging Guide (UG1282) for information on using the interactive
debuggers in the SDx IDE.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 68

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1282-sdsoc-debugging-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=68

& XILINX

Chapter 6

Profiling and Optimization

There are two distinct areas for you to consider when performing algorithm optimization in the
SDSoC™ environment:

e Application code optimization

e Hardware function optimization

Most application developers are familiar with optimizing software targeted to a CPU. This usually
requires programmers to analyze algorithmic complexities, overall system performance, and data
locality. There are many methodology guides and software tools to guide the developer
identifying performance bottlenecks. These same techniques can be applied to the functions
targeting hardware acceleration in the SDSoC environment.

As a first step, programmers should optimize their overall program performance independently of
the final target. The main difference between SDSoC and general purpose software is: in SDSoC
projects, part of the core compute algorithms are pushed onto the FPGA. This implies that the
developer must also be aware of algorithm concurrency, data transfers, memory usage and
consumption, and the fact that programmable logic is targeted.

Generally, you need to identify the section of the algorithm to be accelerated and how best to
keep the hardware accelerator busy while transferring data to and from the accelerator. The
primary objective is to reduce the overall computation time taken by the combined hardware
accelerator and data motion network versus the CPU software only approach.

Software running on the CPU must efficiently manage the hardware function(s), optimize its data
transfers, and perform any necessary pre- or post- processing steps.

The SDSoC environment is designed to support your efforts to optimize these areas, by
generating reports that help you analyze the application and the hardware functions in some
detail. The reports are generated automatically when you build the project, and listed in the
Assistant view of the SDx™ IDE, as shown in the following figure. Double-click a listed report to
open it.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 69

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=69

iv XI LI NX Chapter 6: Profiling and Optimization
A ®

Figure 32: Assistant View

= Assistant 3 = @& & Q0 %= < = o

= [f project_one [SDSoC]
~ ¢ madd [C/C++]

=] Compilation Log [02 Jun 2018 22:55]

'=] HLS Report [02 Jun 2018 22:55]
‘mmult [C/C++]

=] Compilation Log [02 Jun 2018 22:56]

'=] HLS Report [02 Jun 2018 22:56]
=] Data Motion Network Report [02 Jun 2018 22:56]
=] Compilation Log [02 Jun 2018 23:18]

@ sD Card Image
Release [Hardware]

%

L >
The following figures show the two main reports:
e High-Level Synthesis (HLS)
e Data Motion Network

To access these reports from the GUI, ensure the Assistant view is visible. This view is typically
below the Project Explorer view. You can use the Window = Show View = Assistant menu
command to display the Assistant view if it is not displayed.

UG1027 (v2019.1) May 22, 2019 Send Feodback www.xilinx.com
SDSoC Environment User Guide l—\/—l 70

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=70

iv Xl I_l NX Chapter 6: Profiling and Optimization
A ®

Figure 33: HLS Report Window

sdx_workspace - SDx - mmult - Xilinx SDx

File Edit Navigate Search Project Run Xilinx Window Help
N - (5] 3# - ﬁ] = | :E': |--'

= ‘s project_one = madd 2| mmult &5 = =

=

By = Report name: HLS Report Build configuration: Debug o:
Project name: project_one

= Created: D2 Jun 2018 22:56

h

- Module
Current Module : mmult

Synthesis Report for ‘'mmult’ i |

o =

General Infarmation

Date: Satjun 2 22:56:08 2018

Version: 2018.2 (Build 2245821 on Wed May 30 12:59:16 MDT 2018)
Project: mirnulkt

Salution: salution

0B O W

th

- 2

Product family: zynq
Target device: xc7z020clg484-1

Performance Estimates

- Timing (ns)

= Summary m
Clock| Target Estimated Uncertainty
ap_clkl 10.00 7.256 2.70
-1 Latency (clock cycles)
= Summary

Latency | Interval
min| max| min max Type
2217221712217 2217 none

= Detail
Instance

il Loop

utilization Estimates

- Summary

Mame BRAM_18K DSP48BE FF LuT
DSP

(<]

~|

The HLS Report provides details about the HLS process program that translates the C/C++
model into a hardware description language responsible for implementing the functionality on
the FPGA. The details of this report enables you to see the impact of the design on the hardware
implementation. You can then optimize the hardware function(s) based on the information.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide l—./—| 71

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=71

iv Xl I_l NX Chapter 6: Profiling and Optimization
A ®

Figure 34: Data Motion Network Report

sdx_workspace - SDx - project_one/Debug/ sds/reports/data motion.html - Xilinx SDx

File Edit Navigate Search Project Run Xilinx Window Help
05 - -/ - GBIt 0 - & - (Quick access] il w8 | (B
= | % project one =) madd =| mmult 2| SDX Html Report Editor 22 = &g &
B | Report name: Data Motion Network Report Build configuration: Debug %
Project name: project_one
& Created: 02 Jun 2018 22:56 =]
- i
Partition O =
E]
Data Motion Network -
Accelerator | Argument | IP Port | Direction |Declared Size(bytes) | Pragmas Connection
madd_1 A A IN 1024*4 mmult_1:C
B B IN 1024*4 ps7_S_AXI_ACP:AXIDMA_SIMPLE s
C C out 1024*4 ps7_S_AXI_ACP:AXIDMA_SIMPLE o
mmult_1 A A IN 10244 ps7_S_AXI_ACP:AXIDMA_SIMPLE
B B IN 10244 ps7_S_AXI_ACP:AXIDMA_SIMPLE
C C out 1024*4 madd_1:A
Accelerator Callsites
Acceterator| catsite [P | Tranefer [Pagedor | Datameversetun | Transfe Time(cPU
madd_1 main.cpp:128:11 A 4096 paged
B 4096 contiguous 1112 7976
Cc 4096 contiguous 1112 7976
mmult_1 main.cpp:127:11 A 4096 contiguous 1112 7976
B 4096 contiguous 1112 7976
C 4096 paged

The Data Motion Network Report describes the hardware/software connectivity for each
hardware function. The Data Motion Network table shows (from the right-most column to the
left-most) what sort of data mover is used for transport of each hardware function argument, and
to which system port that data mover is attached. The Pragmas shows any SDS-based pragmas
used for the hardware function.

The Accelerator Callsites table shows the following:

o Accelerator instance name and Accelerator argument.

¢ Name of the port on the IP that pertains to the Accelerator argument (typically the same as
the previous, except when bundling).

e Direction of the data motion transfer.

¢ Size, in bytes, of data to be transferred, to the degree in which the compiler can deduce that
size. If the runtime determines the transfer size, this is zero.

e List of pragmas related to this argument.

e System Port and data mover <system port>:<datamover>,if applicable indicates which
platform port and which data mover is used for transport of this argument.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 72

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=72

iv Xl I_l NX Chapter 6: Profiling and Optimization
A ®

e Accelerator(s) that are used, the inferred compiler as being used, and the CPU cycles used for
setup and transfer of the memory.

Generally, the Data Motion report page indicates first:

e What characteristics are specified in pragmas.

¢ In the absence of a pragma, what the compiler was able to infer.

The distinction is that the compiler might not be able to deduce certain program properties. In
particular, the most important distinction here is cacheability. If the Data Motion report indicates
cacheable and the data is in fact uncacheable (or vice versa), correct cache behavior would occur
at runtime. It is not necessary to structure your program such that the compiler can identify data
as being uncacheable to remove flushes.

Additional details for each report, as well as a profiling and optimization methodology, and
coding guidelines can be found in the SDSoC Environment Profiling and Optimization Guide
(UG1235).

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 73

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=73

& XILINX

Appendix A

Getting Started with Examples

All Xilinx® SDx™ environments are provided with example designs. These examples can:

e Be a useful learning tool for both the SDx IDE and compilation flows such as makefile flows.

Help you quickly get started in creating a new application project.

Demonstrate useful coding styles.

Highlight important optimization techniques.

Every platform provided within the SDx environment contains sample designs to get you started,
and are accessible through the project creation flow as described in Creating an Application
Project. Furthermore, each of these designs, which are found in <SDx_Install_Dir>/
samples provides a makefile so you can build, emulate, and run the code working entirely on
the command line if you prefer.

Many example designs and tutorials can be downloaded from the Xilinx GitHub repository. The
example design repository contains the latest examples to get you started with application
optimization targeting Xilinx PCle® FPGA acceleration boards. All examples are ready to be
compiled and executed on SDAccel™ supported boards and accelerated cloud service partners.

In addition, the tutorial repository provides step-by-step instructions on a range of topics
including building an application, emulation, along with advanced topics such as mixing C++ and
RTL kernels, and optimizing host code.

Installing Examples

Select a template for new projects when working through the New SDx Project wizard. You can
also load template projects from within an existing project, by selecting Xilinx = SDx Examples.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 74

https://github.com/Xilinx/
https://github.com/Xilinx/SDAccel_Examples
https://github.com/Xilinx/SDAccel-Tutorials
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=74

iv Xl Ll NX Appendix A: Getting Started with Examples
A 0

Figure 35: SDSoC Examples - Empty

E' 5Dx Examples @

SDx Examples

You can browse the available examples. Press 'Download' to download examples from a repository, or 'Refresh’
to get the latest examples updates.

Find: | &3 = Details:

. Name: SDSoC Examples Repository
¥ SDAccel Examples Repository . _Download Directory: /fhomey J Xilinx/SDx/2019.1/sdsoc_examples

SDSoC Examples Repository Download | | URL: https . //github .com/Xilinx/SOSoC_Examples.git

Refresh = | Last updated on Apr 22, 2019, 7:21:24 PM [o]'4

The left side of the dialog box shows SDSoC™ Examples, and has a download command for each
category. The right side of the dialog box shows the directory to where the examples
downloaded and the URL from where the examples are downloaded. Customizing the location of
the download directory is accomplished using the directions in the Using Local Copies section.

Click Download next to SDSoC Examples to download the examples and populate the dialog box.
The examples are downloaded as shown in the following figure.

Figure 36: SDSoC Examples - Populated

@ SDx Examples @@

SDx Examples

You can browse the available examples. Press 'Download' to download examples from a repository, or
'‘Refresh' to get the latest examples updates.

Find: | re] = Details:

. — | Mame: SDSoC Examples Repository
§ sDAccel Examples Repository Download |— | Directory: /home/ / Xilinx/SDx/2019.1/

- MW SDSoC Examples Repository Installed sdsoc_examples
URL: https://github.com/Xilinx/SDSoC_Examples.qit

= | Getting Started Examples
= [0 CPU_To_FPGA Examples

& 01_mmult_sw Installed
« 02_mmult_hw Installed —
& 03_mmult_pipeline Installed
& 04_mmult_zero_copy Installed
&/ 05_mmult_array_partition; Installed
«/ Array Partitioning Installed
+/ Burst Read/Write Installed
+/ Custom Data Type Installed
+/ Direct Connection Installed
+/ DMA SG(scatter-Gather) Installed
+/ DMA Simple Installed B

Refresh |+ | Lastupdated on Apr 22, 2019, 7:30:16 PM

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide l—./—l 75

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=75

iv Xl Ll NX Appendix A: Getting Started with Examples
A 0

The command menu at the bottom left of the SDx Examples dialog box provides two commands
to manage the repository of examples:

o Refresh: Refreshes the list of downloaded examples to download any updates from the
GitHub repository.

e Reset: Deletes the downloaded examples from the . Xi1inx folder.

Note: Corporate firewalls can restrict outbound connections. Specific proxy settings might be necessary.

Using Local Copies

While you must download the examples to add Templates when you create new projects, the
SDx IDE always downloads the examples into your local . Xilinx/SDx/<version> folder:

e On Windows: C:\Users\<user_name>\.Xilinx\SDx\<version>

e OnLinux: ~/.Xilinx/SDx/<version>

The download directory cannot be changed from the SDx Examples dialog box. You might want
to download the example files to a different location from the . Xi1inx folder. To perform this,
use the git command from a command shell to specify a new destination folder for the
downloaded examples:

git clone https://github.com/Xilinx/SDSoC_Examples
<workspace>/examples

When you clone the examples using the git command as shown above, you can use the
example files as a resource for application and kernel code to use in your own projects. However,
many of the files use include statements to include other example files that are managed in the
makefiles of the various examples. These include files are automatically populated into the src
folder of a project when the Template is added through the New SDx Project wizard. To make the
files local, locate the files and manually make them local to your project.

You can find the needed files by searching for the file from the location of the cloned repository.
For example, you can run the following command from the examples folder to find the
xc12 . hpp file needed for the vadd example:

find -name xcl2Z.hpp

C++ Design Libraries

A number of design libraries are provided with the SDSoC environment installation. The C
libraries allow common hardware design constructs and functions to be modeled in C and
synthesized to RTL. The following C libraries are provided:

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 76

https://github.com/Xilinx/SDSoC_Examples/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=76

iv Xl Ll NX Appendix A: Getting Started with Examples
A 0

e GitHub xfOpenCV

e Arbitrary Precision Data Types

e HLS Stream

e HLS Math

e HLS Video

e HLSIP

e HLS Linear Algebra

e HLS DSP

You can use each of the C/C++ libraries in your design by including the library header file. These

header files are located in the inc1ude directory in the SDSoC environment installation area

(«Vivado_Install_Dir>/include).

Sﬁ? IMPORTANT! The header files for the Vivado® HLS C/C++ libraries do not have to be in the include path if the C
++ code is used in the SDSoC environment.

Wrapping HLS Functions

Many of the functions in the Vivado HLS source code libraries included in the SDSoC
environment do not comply with the SDSoC environment coding guidelines. To use these
libraries in the SDSoC environment, you typically have to wrap the functions to insulate the
system compilers from non-portable data types or unsupported language constructs.

The Synthesizeable FIR Filter example demonstrates a standard idiom to use such a library
function that computes a finite-impulse response digital filter. This example uses a filter class
constructor and operator to create and perform sample-based filtering. To use this class within
the SDSoC environment, the example wraps within a function wrapper as follows:

void cpp-FIR(data_t x, data_t *ret)
{

static CF<coef_t, data_t, acc_t> firl;
*ret = firl(x);

}

This wrapper function becomes the top-level hardware function that can be invoked from
application code.

See also: Coding Guidelines in the SDSoC Environment Programmers Guide (UG1278).

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 77

http://github.com/xilinx/xfopencv
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf;a=xCodingGuidelines
https://www.xilinx.com/cgi-bin/docs/ndoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=77

& XILINX

Appendix B

Managing Platforms and
Repositories

The SDx™ environment comes with built-in platforms. If you need to use a custom platform for
your project, you must make that platform available for application implementation.

You can manage the platforms and repositories from an opened project by clicking the Browse

(‘;I) button next to the Platform link in the General panel of the Project Settings window. For
developers using build scripts, the command line can be changed to reference the desired
platform.

Figure 37: SDSoC Platform Browse

General

Project name: project one
Project flow: sDSsoC
Platform: zc702
Runtime: C/C++

System configuration: Linux

Domain: linux
CPU: cortex-a9
0s: linux

This opens the Hardware Platforms dialog box, where you can manage the available platforms
and platform repositories.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 78

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=78

& XILINX

Figure 38: Platform Selection

New SDx Project
Platform
The platform defines the hardware that will execute your application.

Type: @ Platforrn O Hardware specification (DSA/HDF)

|70 2702

2¢706 | zc706

zynq xC72045

Zculog ézculofi :zynquplus _xczu?ev
- T ' | :

Add Custom Platform... Manage Platform Repositories...

Description

Basic platform targeting the ZC702 board, which includes 1GB of DDR3,
16MB Quad-SPI Flash and an SDIO card interface. More information at https://
www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html

Repository: $XILINX_SDX/platforms/zc702

2) < Back Next > Cancel

Platforms Filter

Find: | "J

Name Board Family Part Version Vendor
xilinx_kculS00_dynamic_5_0 | kcul500 | kintexu ACckulls 5.0 xilinx
xilink_wcul525_dynamic_5_1 | veul525 | virtexuplus | xcwu9p 5.1 | xilinx

Zculoz Zculo2 zynguplus XCZu9eq 1.0 | xilinx.com

Flow
| shaccel
| sDAccel

1.0 xilinx.com | SDS0C

sSDSoC

1.0| xilinx.com | SDSoC

Add Devices/Platforms...

e Add Custom Platform: Add your own platform to the list of available platforms. Navigate to

Appendix B: Managing Platforms and Repositories

the top-level directory of the custom platform, select it, and click OK to add the new platform.
The custom platform is immediately available for selection from the list of available platforms.
Select Xilinx = Add Custom Platform to directly add custom platforms to the tool.

e Manage Repositories: Add or remove standard and custom platforms. If a custom platform is
added, the path to the new platform is automatically added to the repositories. Removing any
platform from the list of repositories removes the platform from the list of available platforms.

e Add Devices/Platforms: Manage which Xilinx® devices and platforms are installed. If a device

or platform was not selected during the installation process, you can add it at a later time

using this command. This command launches the SDx Installer to let you select extra content
to install. Select Help = Add Devices/Platforms to directly add custom platforms to the tool.

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide

l Send Feedback l

www.Xilinx.com

79

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=79

& XILINX

Appendix C

Configuring SDSoC Settings
through the GUI

The SDx™ GUI provides different views for you to manage SDSoC™ projects and builds, debug
the design, view the design, and analyze the design.

The Assistant view in the SDx GUI displays the project and all of the build configurations that are
part of the project. All of the settings for the project, and for building and debugging the project
are accessible from the Assistant view, as described in the following sections.

O TIP: Because the SDx IDE is based on Eclipse, many of the dialog boxes and settings are standard options
available through the Eclipse environment. You can view the Eclipse help at: http://help.eclipse.org.

SDSoC Project Settings

To edit the SDSoC project settings, select the project in the Assistant view and click the Settings

icon (') to bring up the Project Settings window.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 80

http://help.eclipse.org
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=80

iv Xl Ll NX Appendix C: Configuring SDSoC Settings through the GUI
A 0

Figure 39: SDSoC Project Settings Dialog Box

Project Settings x
=1 - i cmy_praject = LW o
- my-_project Project name: my._project
F: S Dabug Project flow: SDSoC
» “ Release
Platform: zcul0?
Runtime: C/IC++

System configuration: AS53 Linux

Domain: a53_linux
CPU: cortex-a53
0S: linux
Cancel Apply and Close

Project Settings provides quick access to the project settings through the Project name: link. The
Project flow: link guides you to the www.xilinx.com web site for the SDSoC flow. You can also
change the platform and the system configuration for the current project using the browse
button.

SDSoC Build Configuration Settings

Build Configuration Settings
To edit the settings for any of the build configurations under the project, select a specific build

configuration in the Assistant view and click the Settings icon (o) to bring up the window with
the build configurations.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 81

http://www.xilinx.com
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=81

iv Xl Ll NX Appendix C: Configuring SDSoC Settings through the GUI
A 0

Figure 40: Build Configuration Settings

Build Configuration Settings x
= 7 “ Release &N ow v w

.4 .
w & my_project

} < Debug Target: Hardware

< Release Estimate performance

Enable event tracing

Insert AXI performance monitor

Data motion network clock frequency (MHz): 99.99 -

v Generate SD card image

Root function: main

Edit Toolchain Settings

Cancel Apply and Close

The Build Configuration Settings dialog provides a convenient way to make adjustments to your
build configuration. You can change the build target as described in Building the SDSoC Project.

You can enable analysis options like performance estimation, and event tracing as described in
Chapter 6: Profiling and Optimization, and specify the root function to exclude certain code from
performance estimation. These options are only available when the build target is hardware. See
SDSoC Environment Getting Started Tutorial (UG1028) for more information on using these
options.

O TIP: Hold the mouse over a setting to display an informative tooltip about what that setting does.

The Data motion network clock frequency drop-down shows available values for the clock
frequency in between the platform and hardware accelerated functions. For more information,
see Selecting Clock Frequencies.

Use the Generate SD card image option to create the files required to allow booting your board
from an SD Card. This option is only available when the build target is hardware.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 82

https://github.com/Xilinx/SDSoC-Tutorials/tree/master/getting-started-tutorial
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=82

iv Xl Ll NX Appendix C: Configuring SDSoC Settings through the GUI
A 0

Finally, the Edit Toolchain Settings link at the bottom of the dialog box opens the SDS++/SDSCC
Compiler Options dialog box to let you set sds++ system compiler and sds+ + linker options,
including specifying directories, additional libraries, and command line options for the active
configuration.

SDS++/SDSCC Compiler Options

The SDS++/SDSCC Compiler sections of the Tool Settings dialog box lets you set various options
for the sds++ and sdscc commands that are passed when the compiler is called. To access the
Tool Settings dialog box, select the Edit Toolchain Settings link from the Build Configurations
dialog box.

Figure 41: Compiler Command Options

Properties for my.project (Filtered) x

Settings

S{COMMAND) S{FLAGS) S{OUTPUT FLAG) ${OUTRUT PREFIGS{OUTRUT) ${INPUTS)

The Settings dialog box lets you specify which build configuration you are specifying the settings
for. Select the Configuration field at the top of the dialog box to specify any of the current build
configurations, or select All configurations to change settings for all.

O TIP: The SDS++ and SDSCC compilers are based on GCC, and therefore support many standard GCC options
including some documented here. For more information refer to the GCC Option Index.

Compiler Symbols Settings

Click Symbols under the SDS++ Compiler to define compile time macros that are passed with the
-D option when calling the sds++ command.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 83

https://gcc.gnu.org/onlinedocs/gcc/Option-Index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=83

iv Xl Ll NX Appendix C: Configuring SDSoC Settings through the GUI
A 0

Under the Defined symbols (-D) field, you can add multiple symbols by clicking the add (e)
icon to add each symbol.

Figure 42: Enter Value for Symbols
Enter Value x

Defined symbols (-D)

I

Cancel OK

Under the Undefined symbols (-U) field, you can cancel any previous definition of a defined
symbol.

Compiler Warnings Settings

Command options related to compiler warnings (-w) are provided through the Warnings section.

Figure 43: Compiler Warnings Settings

= % SD5CC Compiler = All warnings (-Wall)
2 symbols Warnings as errors (-Werror)

= Optimization Pedantic (-pedantic)

Check syntax only (-fsyntax-only)

& Debugging Pedantic warnings as errors (-pedantic-errors)
& Profiling Inhibit all warnings (-w)

Compiler Optimization Settings

Compiler optimization flags (- 0) and other optimization settings can be specified in this section.

Figure 44: Compiler Optimization Settings

WTool Settings | [l Devices | #Bulld Steps “'Build Artifact | 5 Binary Parsers @ Error Parsers

» & SDSCC Compiler Optimization Level Optimize more (-032) o

w & SDS++ Compiler
& symbols Other optimization flags
(2 Warnings

& Debugging

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide l—./—l 84

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=84

iv Xl Ll NX Appendix C: Configuring SDSoC Settings through the GUI
A 0

Compiler Debugging Settings

Specify debug Level (- g<1level>) and other debugging flags are specified through this section in
the GUI.

Figure 45: Compiler Debugging Settings

= % SDSCC Compiler Debug Level Default (-g) -
= Symbols other debugging Mlags
(& Warnings

& Optimization
o S i

Compiler Profiling Settings

Enable profiling (- pg) to generate extra code to write profile information for analysis of the
application.

Compiler Directories Settings

Include Paths for the SDS++ Compiler are added under the Directories option. You can add

directories to the Include Paths by clicking the add (y 5) icon to add each symbol.

Compiler Miscellaneous Settings

Any other flags that need to be passed to the SDS++ Compiler are added to the Miscellaneous
section.

Note: These options can include any SDS++ Compiler options as described in SDx Command and Utility
Reference Guide (UG1279), as well as any GCC standard options not specifically addressed in other sections

of this dialog box.
Figure 46: Compiler Miscellaneous Settings
= 8 SDSCC Compiler Octher Nags ¢ -Imessage-length=0 -MT-§5"
% Symibols Verboses [-verbose)
5 Warmings Support ANSE programs [-ans)
= Optimiration
= Dabugging
5 Profiling

Inferred Options

Software platform inferred flags and software platform include paths are added under the
Inferred Options section.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 85

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=85

iv Xl Ll NX Appendix C: Configuring SDSoC Settings through the GUI
A 0

Figure 47: Inferred Options

% SDSCC Compiler Software Platform Inferred Flags
1 5D5++ Compiler
B Symbeals Software Platform Include Path +] B W 1

¢ Wamnings
(35 Optimization
& Debugging
(& Profiling
(5 Directories
35 Miscellaneous
¥ (& Inferred Options

2 Procaccnr Ointinne

SDS++ Linker Settings

The SDS++ Linker sections of the Tool Settings dialog box lets you set various options for the
sds++ command that are passed when the linking stage of the build process is run. To access the
Tool Settings dialog box, select the Edit Toolchain Settings link from the Build Configurations
dialog box.

The SDS++ Linker page shows the sds++ command and any additional options to be passed
when calling sds ++ for the linking stage.

Figure 48: SDS++ Linker Options

Proparties for vy project (Filbere) ¥
Sattings o
= e+ Buld
Corfigaration: | Duteay [Activs | = | Matug Configuratons
B Voo Setrs | W Dewicen | P Bold Steps | B Bold Artlct [t Binary Barsern. | O Ereor Parvers
» B SOSCC Compler e
b 5 SO+ Coagpedar
All opbions - emote . CEThE Mo DTk a WO K R e
5 Gaeneval
& L
5 Mo latr i
Expar] teltingt
B Limdoar Sompa o o
T =T ct e —— Y
= B inferred Ciptom i pana SICCIMMANDY SFLAGS | S{OUTPUT _FLAG) S{OLTPUT_PREFIXSOUTPUT) SRPUTS)
9 Softwars Plathorm
0 Procesior Options
A
7 Cancel Appty and Clots

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide l—./—l 86

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=86

iv Xl Ll NX Appendix C: Configuring SDSoC Settings through the GUI
A 0

The Settings dialog box lets you specify which build configuration you are specifying the settings
for. Select the Configuration field at the top of the dialog box to specify any of the current build
configurations, or select All configurations to change settings for all.

O TIP: The SDS++ command is based on GCC, and therefore supports many standard GCC linking options including
some documented here. For more information refer to the GCC Option Index.

SDS++ Linker General Settings

Some general setting for the SDS++ linker are specified in this section.

Figure 49: SDS++ Linker General Settings

b ®y SDSCC Compiler Do not use standard start files (-nostartfiles)
b ¥ SDS++ Compiler [l Do not use default libraries (-nodefaultlibs)
= & SDS++ Linker No startup or default libs (-nostdlib)

_ O Omit all Symbol Information (-s)

& Libraries

SDS++ Linker Libraries Settings

Specifies Libraries (- 1) and the library search path (- 1) for the SDS++ linker command. You can
add libraries or library search paths by clicking the add (]) icon.
Figure 50: SDS++ Linker Libraries Settings

Sattings

b SDSCC Coergelar Libaaries [-1) o 0 @
¥ % SOSe+ Compilar
= {8 SDS++ Linker

= Gengral
| @lbones

&2 Miscellansous

(5 Linker Script

w (2 nferred Oplbons
(= Software Platform

(% Processor Options

Libsary search path {-L) 4] N

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide l—./—l 87

https://gcc.gnu.org/onlinedocs/gcc/Option-Index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=87

iv Xl Ll NX Appendix C: Configuring SDSoC Settings through the GUI
A 0

SDS++ Linker Miscellaneous Settings

Any other flags that needs to be passed to the SDS++ Linker can be provided through the

Miscellaneous section.

Figure 51: SDS++ Linker Miscellaneous Settings

b % SDSCC Compiler Linker Flags
b B SD5++ Compiler Other options (-XLinker [option])
~ & SDS++ Linker

(% General

% Libraries

(# Linker Script

SDS++ Linker Script Settings

&

The path and file name of the SDS++ Linker Script is provided in the Linker Script field.

Figure 52: SDS++ Linker Script Settings

b ¥ SDSCC Compiler |Linker Script
b B SDS++ Compiler
~ 5 SDS++ Linker
& General
(& Libraries
= Miscellaneous
b 2 Inferred Options

SDS++ Linker Inferred Options

Software platform inferred flags are added under the Inferred Options section.
Figure 53: SDS++ Linker Inferred Options

b i SDSCC Compiler Software Platform Inferred Flags

by 5D5++ Compiler
= % SDS++ Linker

& General

(2 Libraries

2 Miscellaneous

22 Linker Script

= ([Inferred Options

(Processor Options

UG1027 (v2019.1) May 22, 2019
SDSoC Environment User Guide send Feedback

Browse...

L3

www.Xilinx.com
88

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=88

& XILINX

Appendix D

Compiling and Running
Applications

This appendix contains the following topics:

e Compiling and Running Applications on a MicroBlaze Processor

e Compiling and Running Applications on an Arm Processor

O RECOMMENDED: When you make code changes, including changes to hardware functions, it is valuable to
rerun a software-only compile to verify that your changes did not adversely change your program. A software-
only compile is much faster than a full-system compile.

Compiling and Running Applications on a
MicroBlaze Processor

A MicroBlaze™ platform in the SDSoC™ environment is a standard MicroBlaze processor system
built using the Vivado® tools and SDK that must be a self-contained system with a local memory
bus (LMB) memory, MicroBlaze Debug Module (MDM), UART, and AXI timer.

The SDSoC environment includes the standard SDK toolchain for MicroBlaze processors,
includingmicroblaze-xilinx-elf for developing standalone ("bare-metal") and FreeRTOS
applications.

By default, the SDSoC system compilers do not generate an SD card image for projects targeting
a MicroBlaze platform. You can package the bitstream and corresponding ELF executable as
needed for your application.

To run an application, the bitstream must be programmed onto the device before the ELF can be
downloaded to the MicroBlaze core. The SDSoC environment includes Vivado tools and SDK
facilities to create MCS files, insert an ELF file into the bitstream, and boot the system from an
SD card.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 89

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=89

iv Xl Ll NX Appendix D: Compiling and Running Applications
A 0

Compiling and Running Applications on an
Arm Processor

@

RECOMMENDED: When you make code changes, including changes to hardware functions, it is valuable to
rerun a software-only compile to verify that your changes did not adversely change your program. A software-
only compile is much faster than a full-system compile, and software-only debugging is a much quicker way to
detect logical program errors than hardware and software debugging.

The SDSoC environment includes two distinct toolchains for the Arm® Cortex™-A9 CPU within
Zynq®-7000 SoC.

e arm-linux-gnueabihf: For developing Linux applications
e arm-none-eabi: For developing standalone (bare-metal) and FreeRTOS applications

For Arm Cortex-A53 CPUs within the Zynq devices, the SDSoC environment includes two
toolchains:

e aarché64-linux-gnu: For developing Linux applications
e aarché64-none-elf: For developing standalone (bare-metal) applications

For the Arm Cortex-R5 CPU provided in the Zyng UltraScale+™ MPSoC, the toolchain included in
the SDSoC environment is the armr5-none-eabi. This develops standalone (bare-metal)
applications.

The underlying GNU toolchain is defined when you select the operating system during project
creation. The SDSoC system compilers (sdscc/sds ++ referred to as sds+ +) automatically
invoke the corresponding toolchain when compiling code for the CPUs, including all source files
not involved with hardware functions.

The SDSoC system compilers generate an SD card image by default in a project sub-directory
named sd_card. For Linux applications, this directory includes the following files:

e README. TXT: Contains brief instructions on how to run the application

e BOOT.BIN: Contains first stage boot loader (FSBL), boot program (U-Boot), and the FPGA
bitstream

e image.ub: Contains the Linux boot image. Platforms can be created that include the
following:

e ulmage
® devicetree.dtb

e uramdisk.image. gz files

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 90

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=90

iv Xl Ll NX Appendix D: Compiling and Running Applications
A 0

e <app>.elf: Application binary executable
To run the application:

1. Copy the contents of sd_card directory onto an SD card and insert into the target board.
2. Open a serial terminal connection to the target and power up the board.

Linux boots, automatically logs you in as root, and enters a bash shell. The SD card is
mounted at /mnt, and from that directory you can run <app>.elf.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 91

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=91

& XILINX

Appendix E

Additional Resources and Legal
Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs

Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. DocNav is installed with
the SDSoC™ and SDAccel™ development environments. To open it:

e On Windows, select Start = All Programs — Xilinx Design Tools = DocNav.

e At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

¢ In DocNay, click the Design Hubs View tab.
e On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References

These documents provide supplemental material useful with this guide:

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 92

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=92

iv Xl Ll NX Appendix E: Additional Resources and Legal Notices
A ®

W o N o bk N

=
o

SDSoC Environments Release Notes, Installation, and Licensing Guide (UG1294)
SDSoC Environment User Guide (UG1027)

SDSoC Environment Getting Started Tutorial (UG1028)

SDSoC Environment Tutorial: Platform Creation (UG1236)

SDSoC Environment Platform Development Guide (UG1146)

SDSoC Environment Profiling and Optimization Guide (UG1235)

SDx Command and Utility Reference Guide (UG1279)

SDSoC Environment Programmers Guide (UG1278)

SDSoC Environment Debugging Guide (UG1282)

. SDx Pragma Reference Guide (UG1253)
11.

UltraFast Embedded Design Methodology Guide (UG1046)

12. Zynq-7000 SoC Software Developers Guide (UG821)

13. Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137)

14. ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoC User Guide (UG850)
15. ZCU102 Evaluation Board User Guide (UG1182)

16.
17.
18.
19.
20.

PetaLinux Tools Documentation: Reference Guide (UG1144)

Vivado Design Suite User Guide: High-Level Synthesis (UG902)

Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)
SDSoC Development Environment web page

Vivado® Design Suite Documentation

Training Resources

1.

SDSoC Development Environment and Methodology

2. Advanced SDSoC Development Environment and Methodology

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 93

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1294-sdsoc-rnil.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1027-sdsoc-user-guide.pdf
https://github.com/Xilinx/SDSoC-Tutorials/tree/master/getting-started-tutorial
https://github.com/Xilinx/SDSoC-Tutorials/tree/master/platform-creation-tutorial
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1146-sdsoc-platform-development.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1235-sdsoc-optimization-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1279-sdx-command-utility-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1278-sdsoc-programmers-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1282-sdsoc-debugging-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/bkdoc?k=zcu102;d=ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/training/courses/sdsoc-development-environment-method.html
https://www.xilinx.com/training/courses/advanced-sdsoc-development-environment-methodology.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=93

iv Xl Ll NX Appendix E: Additional Resources and Legal Notices
A ®

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPQOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https:/
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https:/www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L/—] 94

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=94

iv Xl Ll NX Appendix E: Additional Resources and Legal Notices
A ®

Copyright

© Copyright 2015-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, ISE, Kintex, Spartan,
Versal, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. OpenCL and the OpenCL logo are trademarks of
Apple Inc. used by permission by Khronos. HDMI, HDMlI logo, and High-Definition Multimedia
Interface are trademarks of HDMI Licensing LLC. AMBA, AMBA Designer, Arm, ARM1176JZ-S,
CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and
other countries. All other trademarks are the property of their respective owners.

UG1027 (v2019.1) May 22, 2019 send Feedback www.xilinx.com
SDSoC Environment User Guide L\/—] 95

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1027&Title=SDSoC%20Environment%20User%20Guide&releaseVersion=2019.1&docPage=95

	SDSoC Environment User Guide
	Revision History
	Table of Contents
	Ch. 1: SDSoC Introduction and Overview
	Software Acceleration with SDSoC
	Execution Model of an SDSoC Application
	SDSoC Build Process
	SDSoC Development Methodologies
	Software-Centric Design
	Hardware-Centric Design

	Best Practices for Acceleration with SDSoC

	Ch. 2: SDSoC Environment
	Getting Started
	Elements of SDSoC
	Design Flow Overview
	Understanding the SDx GUI

	Ch. 3: Creating an SDSoC Application
	Using an SDx Workspace
	Creating an Application Project
	Importing a Project

	Working with Code
	Importing Sources
	Importing C/C++ Sources
	Importing C-Callable IP Libraries

	Selecting Functions for Hardware Acceleration
	Selecting Clock Frequencies

	Building the SDSoC Project
	Targeting Hardware
	Targeting System Emulation

	Building an SDSoC Library
	Shared Library

	Ch. 4: C-Callable IP Libraries
	Creating C-Callable IP Libraries
	SDx Library Project
	Import Sources Dialog Options
	Add IP Customizations
	Add Function Mapping
	Building the C-Callable IP Project
	Multi-Function Accelerator Libraries
	Considerations for C-Callable IP Libraries
	sdx_pack Command

	Using C-Callable IP Libraries

	Ch. 5: Debugging Techniques
	Ch. 6: Profiling and Optimization
	Appx. A: Getting Started with Examples
	Installing Examples
	Using Local Copies

	C++ Design Libraries
	Wrapping HLS Functions

	Appx. B: Managing Platforms and Repositories
	Appx. C: Configuring SDSoC Settings through the GUI
	SDSoC Project Settings
	SDSoC Build Configuration Settings
	SDS++/SDSCC Compiler Options
	SDS++ Linker Settings

	Appx. D: Compiling and Running Applications
	Compiling and Running Applications on a MicroBlaze Processor
	Compiling and Running Applications on an Arm Processor

	Appx. E: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

