Vivado Design Suite Tutorial

Model-Based DSP Design Using
System Generator

UG948 (v2016.4) November 30, 2016

This tutorial was validated with 2016.3. Minor procedural differences might be required when using later
releases.

& XILINX

ALL PROGRAMMABLE.

& XILINX

ALL PROGRAMMABLE.

Revision History
11/30/2016: Released with Vivado® Design Suite 2016.4 without changes from 2016.3.

Date Version Changes

10/28/2016 | 2016.3 Recaptured screen displays throughout manual to reflect changes to
GUI or changes in results displayed.

In Lab 2: Working with Data Types, added procedural step to specify the
number of input ports on the Scope block, allowing the block to be
properly connected to other blocks in the Simulink model.

06/20/2016 | 2016.2 No technical updates. Re-release only.

05/23/2016 | 2016.1 Recaptured screen displays throughout manual to reflect changes to
GUI or changes in results displayed.

In design used in Lab 1_1 and 1_2, replaced FIR Compiler 7.2 block with
Digital FIR Filter block.

http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=2

& XILINX

ALL PROGRAMMABLE.

Table of Contents

AV K (o] o I o 115 (0] VOO PPPTPRUPPP 2
SYStEM GENEIaAtOr fOr DSP OVEIVIEW.......vvieiiiiiiieeeiiieeeeciieee e sttt eessetteeesateeessabeeeessstaeeesssseeeeenssaaassassseeesansseeesasseeesn 5
[[aiagoTe [¥To1dTo] o DN TP TP OP PO PORTOTRRPRIt 5
Yo) RN L=l =T [V 1T =T 0 0=) £ USSR 7
Configuring MATLAB to the Vivado® DESIZN SUITEccc.uiiiieiiiiee ettt et e e atee e e e e e e eabae e e enees 7
Locating and Preparing the Tutorial DeSIZN FIlESc.uiiiieiiiie ettt e e e e ae e e e eaaaeee s 8
Lab 1: INtroduction tO SYStEM GENEIATONccccciiiieceiiee e eetiee ettt e et e e e ette e e e e te e e e s ebee e e eenbaeeeesabaeeeesnreeeeesnseneeennsens 9
[Ta 1A ge o [Tot i Te] o DNSU O OO SRS O PO PRSPPI 9
Step 1: Creating @ DESIZN iN AN FPGA ...ttt ettt ettt e e e e s s s sttt e e e e e s s s s ssbbtaaeeeesssssssreaaeeeas 10
Step 2: Creating an Optimized Design in @n FPGAccuiiii ittt et e et e e e sbae e s s eaee e esaraeeens 26
Step 3: Creating a Design UsiNg DiSCrete RESOUICEScciivvuuuiiiiiiiieieiiiiiteeeeeeeesiitreeeeessssiirereeeeesssssanseeeeeeas 30
U I I Y s 40
Lab 2: WOrKIiNG With Data TYPES ..ueeiiiiiiieiiciiiieecitee st ee sttt e e st e e e sttt e e s s ta e e e s sstaeeessnaaeeesassseeeessssaeessssseeesnnssenennn 41
[0 4e o [8 ot i o] o BT TSROSO PPRPROPRP 41
Step 1: Designing with FIOating-POint Data TYPES.....cciiciiiiiiiiiieecciiee e eritee e erire e e s sire e e esrae e e esraeeesseaeesessreeeean 42
Step 2: Designing wWith FiXed-Point Data TYPES ...cccuuiieeeiiieeeectieeeecitte e e ectte e e estee e e e sraeeeesabaeeesesaeeesesaeeeeansreeenan 46
R L0214 0 =7/ 53
Lab 3: Working With MUILI-RATE SYSTEMSeiiiiiiieeceee ettt rtre e e et e e e s eatae e e e asaeeeenbaeeeesnnneaaaan 54
[aia o Te [¥ Tt 1o} o HU PP PP RSO POOPR 54
Step 1: Creating Clock Domain HIi€rarChi@sccuuiieieciiie ettt e e e ta e e e e ae e e e naae e e e asaeeeean 54
Step 2: Creating Asynchronous ChannelS..........ooocuiiii ittt e e e etr e e e sarae e e e arae e e e asreeaean 58
Step 3: SPeCifying ClOCK DOM@INSciiiiciiieiiiiie et ee ettt e et e e et a e e e s atae e e ssntaeeeesssaeeeesnsaneeennssaeenan 63
U I AIY ettt ananann 68
Lab 4: Working with Workspace Variables........c.uuei ittt e e e e et e e e saaaee e esnaeeeeas 69
T ye e [N ot o] o DRSPS OPPRPROPRRT 69
Step 1: USing Workspace VariablEsuviiiiiiii ettt ettt e et e e e aae e e e et e e e e sasaeeessnsaeeeesnnrneeean 70
U I AY ettt anaen 75

Model-Based DSP Design Using System Generator N Send Feedback 3
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=3

Lab 5: Modeling Control With IM=Codeuiiiiiiiiiiiiiie e e st e e s re e e s sabae e e s sasaeeesnnnneaeens 76

[aidgoTe [¥To1 4 Te] o DU T TP T STV P PO POROPRTOP 76
Step 1: Designing Padding LOGICuuuiiiieiiie ettt ette e e ettt e e e et e e e e ettt eeeesabaeeeeansaeeesansaneeeanssneenan 76
SUITIMIATY ¢ttt nanaan 80
Lab 6: Modeling BIOCKS WIth HDLoiiiiiiiiiiciiee ettt ettt ete e e et e e e ettt e e e eeaaa e e e esasseeeensaeeeesansaeesnnnsneenan 81
Ta 1A ge e [ot i Te] o DR TSP T PP UPOPPRPROPRRIT 81
Step 1: IMPOrt RTLas @ BIAaCK BOX.....uiei ittt e ettt eerta e e e e sata e e e e eatae e e e neaeeeeensaneaean 81
U I I Y s nnen 87
Lab 7: Modeling BlOCKS With C COUE......ciiiiiiiiiiiiie ettt et e e st e e s saba e e e esabeeeessaseeeesnnsseaeens 88
INEFOTUCTION ...ttt ettt et e st e s b et e s ab e e s bt e e ab e e s bee e abeesabeesabeeesabeesabbeesabeesabanesares 88
Step 1: Creating a System Generator Package from Vivado HLSccvveveiiiiiicciiiieeeee et 89
Step 2: Including a Vivado HLS Package in a System Generator DESIZN........cccuceciviveeeeeeeeieciireeeeee e eceivveeeee 92
U I I Y et nnan 96
Lab 8: Using AXI Interfaces and [P INtEGrator.uui i iiii ettt et e e et e e e saba e e e s arae e e snanaeeeeas 97
[a 1A ge o [N ot i Te] o DNURT O TSP UPTOPPRPROPRRIT 97
StEP 1: REVIEW Tthe AXI INTEITACES. .. .iii ittt e et e e e e ete e e e et a e e e e ataeeeesasaeeeeassaeeeeansaeeesanssneenan 98
Step 2: Create a Vivado Project using System GeNerator [Pccueeeeiiieeeiiiiee et 99
Step 3: Create a Design in IP INtE@EIrator (IP1)oceeie ettt et et e e e et e e e et e e e e ate e e e eareeas 101
Step 4: IMPIEMENT ThE DESIZN ..eceieiiieeeeeee e e e e e et e e e et e e e e e abeeeeeatee e e e nbeeeeennseeeeennsenas 108
R LU T340 =7/ 109
Lab 9: Using a System Generator Design with @ Zyng-7000 AP SOCccoiciieiiiiiiee et eeeee e see e evee e 110
L1y e o [8 ot o] o HU TP PT PR PR PSRN 110
Step 1: Review the AXI4-Lite INtErface DIriVEIS......cuuiiiiciiie ettt ettt esree e e e e s e e s bae e e s abae e e e nreeas 111
Step 2: Developing Software and Running it on the ZYNQ-7000 SyStemcceeeevviieeiiiiieeeiiiiee e eeee e 114
U M ATy Lt annen 120
=T o I Lo Y ol PP 121
Please Read: IMportant Legal NOTICESccuuiii ittt ettt e et e e e e bre e e e ebte e e s sntaeeeeanes 121

Model-Based DSP Design Using System Generator N Send Feedback 4
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=4

& XILINX

ALL PROGRAMMABLE.

System Generator for DSP Overview

Introduction

System Generator for DSP is a design tool in the Vivado® Design Suite that enables you to use the
MathWorks® model-based Simulink® design environment for FPGA design. Previous experience with
Xilinx® FPGA devices or RTL design methodologies is not required when using System Generator.
Designs are captured in the Simulink™ modeling environment using a Xilinx-specific block set.
Downstream FPGA steps including RTL synthesis and implementation (where the gate level design is
placed and routed in the FPGA) are automatically performed to produce an FPGA programming
bitstream.

Over 80 building blocks are included in the Xilinx-specific DSP block set for Simulink. These blocks
include common building blocks such as adders, multipliers and registers. Also included are complex
DSP building blocks such as forward-error-correction blocks, FFTs, filters, and memories. These complex
blocks leverage Xilinx LogiCORE™ IP to produce optimized results for the selected target device.

-~

... VIDEO: The Vivado Design Suite Quick Take Video Tutorial: System Generator Multiple
m Clock Domains describes how to use Multiple Clock Domains within System Generator, making it
possible to implement complex DSP systems.

VIDEO: The Vivado Design Suite QuickTake Video Tutorial: Generating Vivado HLS block

El for use in System Generator for DSP describes how to generate a Vivado HLS IP block for use in
System Generator, and ends with a summary of how the Vivado HLS block can be used in your
System Generator design.

... VIDEO: The Vivado Design Suite Quick Take Video: Using Vivado HLS C/C++/System C
m block in System Generator describes how to incorporate your Vivado HLS design as an IP block
into System Generator for DSP.

Model-Based DSP Design Using System Generator N Send Feedback 5
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/system-generator-multiple-clock-domains.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/system-generator-multiple-clock-domains.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-hls-block-system-generator-dsp.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-hls-block-system-generator-dsp.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-hls-c-system-c-system-generator.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-hls-c-system-c-system-generator.html
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=5

£ XILINX

System Generator for DSP Overview

>

=1

VIDEO: The Vivado Design Suite Quick Take Video: Specifying AXI4-Lite Interfaces for your
Vivado System Generator Design describes how System Generator provides AXI4-Lite
abstraction making it possible to incorporate a DSP design into an embedded system. Full support
includes integration into the IP Catalog, interface connectivity automation, and software APIs.

-

=

VIDEO: The Vivado Design Suite QuickTake Video Tutorial: Using Hardware Co-Simulation
with Vivado System Generator for DSP describes how to use Point-to-Point Ethernet Hardware
Co-Simulation with Vivado System Generator for DSP. Hardware co-simulation makes it possible to
incorporate a design running in an FPGA directly into a Simulink simulation.

In this tutorial, you will do the following:

Model-Based DSP Design Using System Generator

. l Send Feedback I
UG948 (v2016.4) November 30, 2016 www.xilinx.com

Lab 1: Understand how to create and validate a model using System Generator, synthesize the
model into FPGA hardware, and then create a more optimal hardware version of the design.

Lab 2: Learn how fixed-point data types can be used to trade off accuracy against hardware area
and performance.

Lab 3: Learn how to create an efficient design using multiple clock domains.
Lab 4: Make use of workspace variables to easily parameterize your models.
Lab 5: Model a control system using M-code.

Lab 6: Learn how to incorporate existing RTL designs, written in Verilog or VHDL, into your
design.

Lab 7: Import C/C++ source files into a System Generator model by leveraging the tool
integration with Vivado High-Level Synthesis (HLS).

Lab 8: Use AXI interfaces and Vivado IP integrator to easily include your model into a larger
design.

Lab 9: Integrate your design into a larger system and operate the design under CPU control.

http://www.xilinx.com/
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/axi4-lite-interfaces-for-vivado.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/axi4-lite-interfaces-for-vivado.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/hardware-co-simulation-vivado-system-generator-for-dsp.html
http://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/hardware-co-simulation-vivado-system-generator-for-dsp.html
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=6

£ XILINX

System Generator for DSP Overview

Software Requirements

The lab exercises in this tutorial require the installation of MATLAB R2015b, R2015a, R2014b, or R2014.a.

See the Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) for a
complete list and description of the system and software requirements.

Configuring MATLAB to the Vivado® Design Suite

Before you begin, you should verify that MATLAB is configured to the Vivado Design Suite. Do the
following:
1. Configure MATLAB.

e On Windows systems:

a. Select Start > All Programs > Xilinx Design Tools > Vivado 2016.3 > System Generator
> System Generator 2016.3 MATLAB Configurator.

IMPORTANT: On Windows systems you may need to launch the MATLAB configurator
ﬁ as Administrator. When MATLAB Configurator is selected in the menu, use the mouse
right-click to select Run as Administrator.

#% Select a MATLAB installation for System Generator Vivado 2016.3 E@

Choose MATLAB for System Generator Vivado 2016.3

MATLAB Version Status Location
4\ R2015b # Configured CA\Program Files\MATLAB\R2015b

Find MATLAB Remaove Apply Ok | ‘ Help

Figure 1: Select MATLAB Installation

b. Click the check box of the version of MATLAB you want to configure and then click OK.

e On Linux systems:

Launching System Generator under Linux is handled via a shell script called sysgen located in the
<Vivado install dir>/bin directory. Before launching this script, you must make sure the

Model-Based DSP Design Using System Generator N Send Feedback 7
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;t=vivado+release+notes
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=7

£ XILINX

System Generator for DSP Overview

MATLAB executable can be found in your Linux system’s $PATH environment variable. When you
execute the sysgen script, it will launch the first MATLAB executable found in $PATH and attach
System Generator to that session of MATLAB. Also, the sysgen shell script supports all the options
that MATLAB supports and all options can be passed as command line arguments to the sysgen
script.

When the System Generator opens, you can confirm the version of MATLAB to which System
Generator is attached by entering the version command in the MATLAB Command Window.

>> version
ans =

8.6.0.267246 (R2015b)

Locating and Preparing the Tutorial Design Files

There are separate project files and sources for each of the labs in this tutorial. You can find the design
files for this tutorial under Error! Hyperlink reference not valid. on the www.xilinx.com website.

1. Download the Reference Design Files (ug948-design-files.zip) from the Xilinx website.

2. Extract the zip file contents into any write-accessible location on your hard drive or network
location.

RECOMMENDED: You will modify the tutorial design data while working through this
O tutorial. You should use a new copy of the SysGen Tutorial directory extracted from
ug948-design-files. zip each time you start this tutorial.

pathnames and figures in this document refer to this pathname. If you choose to store

O TIP: This document assumes the tutorial files are stored at C: \SysGen Tutorial. All
the tutorial in another location, adjust the pathnames accordingly.

Model-Based DSP Design Using System Generator N Send Feedback
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
https://secure.xilinx.com/webreg/clickthrough.do?cid=472808&license=RefDesLicense&filename=ug948-design-files.zip
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=8

& XILINX

ALL PROGRAMMABLE.

Lab 1: Introduction to System Generator

Introduction

In this lab exercise, you will learn how use System Generator to specify a design in Simulink and
synthesize the design into an FPGA. This tutorial uses a standard FIR filter and demonstrates how
System Generator provides you the design options that allow you to control the fidelity of the final
FPGA hardware.

Objectives
After completing this lab, you will be able to:

e Capture your design using the System Generator Blocksets.
e Capture your designs in either complex or discrete Blocksets.

e Synthesize your designs in an FPGA using the Vivado Design Environment.

Procedure

This lab has three primary parts:

e In Step 1, you will review an existing Simulink design using the Xilinx FIR Compiler block, and
review the final gate level results in Vivado.

e In Step 2, over-sampling is used to create a more efficient design.

e In Step 3, the same filter is designed using standard discrete blockset parts.

Model-Based DSP Design Using System Generator N Send Feedback 9
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=9

£ XILINX

Lab 1: Introduction to System Generator

Step 1: Creating a Design in an FPGA

In this step you learn the basic operation of System Generator and how to synthesize a Simulink design
into an FPGA.

1. Invoke System Generator.

e On Windows systems select Start > All Programs > Xilinx Design Tools > Vivado 2016.3 >
System Generator > System Generator 2016.3.

e On Linux Systems, type sysgen at the command prompt.
2. Navigate to the Labl folder: cd C:\SysGen Tutoriall\Labl.

You can view the directory contents in the MATLAB Current Folder browser, or type 1s at the
command line prompt.

3. Open the Lab1_1 design as follows:
e At the MATLAB command prompt, type open Labl 1.slx
OR
e Double-click Labl 1.slx inthe Current Folder browser.

The Lab1_1 design opens, showing two sine wave sources being added together and passed separately
through two low-pass filters. This design highlights that a low-pass filter may be implemented using the
Simulink FDATool or Lowpass Filter blocks.

Model-Based DSP Design Using System Generator N Send Feedback 10
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=10

& XILINX

Lab 1: Introduction to System Generator

Sine Wave
2*pi*0eb rad/s Spectrum
Analyzer Orig
FOATool
>+
> » > jrv |
Add Zero-Order
Hold Digital Spectrum
Filter Design Analyzer
[\J FDA Tool
Sine Wave
2'pi*1e6 rad/s
Scope
> Lowpass » |

Lowpass Filter Spectrum

Analyzer
LPF

Figure 2: Introduction Step 1 Design

4. From your Simulink project worksheet, select Simulation > Run or click the Run simulation button.

File Edit View Display Diagram Simulation Analysis Code Tools
-8 < e -E-e ¢ - -
Model Browser = | Introduction_Stepl L;],.Ru_nm

Figure 3: Run Simulation Button

When simulation completes you can see the spectrum for the initial summed waveforms, showing a

1 MHz and 9 MHz component, and the results of both filters showing the attenuation of the 9 MHz
signals.

Model-Based DSP Design Using System Generator N Send Feedback 11
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=11

& XILINX

Lab 1: Introduction to System Generator
<] Spectrum Analyzer Orig [roel[-Gl-/mE3a] | < Spectrum Analyzer FDA Tool o | & |2]| @ spectrum Analyzer LPF o [=]=
File Tools View Simulation Help o File Tools View Simulation Help — File Tools View Simulation Help =
MREEEFFEELTERN Boa~ i HIM @NENT Bo|a~< i LN E@NENT
[ON ' Ji=cr] Qe E [ON N JB=CX]

T=0.0005

Figure 4: Initial Results

You will now create a version of this same filter using System Generator blocks for implementation in an
FPGA.

5. Click the Library Browser button in the Simulink toolbar to open the Simulink Library Browser.

File Edit View Display Diagram Simulation

R IRE o MEMECK"

P
Model Browser = |__.______..__..1.L prary bro"_'ser[*

Figure 5: Simulink Library Browser

When using System Generator, the Simulink library includes specific blocks for implementing
designs in an FPGA. You can find a complete description of the blocks provided by System
Generator in the Vivado Design Suite Reference Guide: Model-Based DSP Design Using System

Generator (UG958).
6. Expand the Xilinx Blockset menu, select DSP, then select Digital FIR Filter.
7. Right-click the Digital FIR Filter block and select Add block to model Labl_1.

Model-Based DSP Design Using System Generator N Send Feedback 12
UG948 (v2016.4) November 30, 2016 www.xilinx.com L\/—]

http://www.xilinx.com/
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug958-vivado-sysgen-ref.pdf
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=12

& XILINX

Lab 1: Introduction to System Generator

& simulink Library Browser E@

=] Enter search term - ’D\Q\ - :.: 9 (g,l" -+= L:)

Xilinx Blockset/DSP

» Simulink -}] e

> Communications System Toolbox 1 b

> Communications System Toolbox HDL Support] r __.[

> Computer Vision System Toolbox CIC Compiler 4.0 Complex Multiplier 6.0 CORDIC 6.0 DDS Compiler 6.0
Control System Toolbox = |

> DSP System Toolbox

: DSP System Toolbox HDL Support A run p

> HDL Coder === 1

. HDL Verifier Digital FIR Filter Divider Generator 5.1 DSP48 Macro 3.0 DSP48E

Image Acquisition Toolbox J) Add block to model Labl_1 Ctrl+1

> Phased Array System Toolbox ot . .
. Simulink 3D ‘f:\m";nation — Help for the Digital FIR Filter block E!

> Simulink Coder DSP48EL Go to parent Esc FDATool
> Simulink Extras . 1
Stateflow E 48
4 Xilinx Blockset
AXHM .
Basic Elements FFT -
Commiunication 1T
Control Logic P=C > Pi
Data Types w7} V
DSP Opmode Product Sine Wave
Floating-Point
Index
Math
Memaory
Tools
> Kilinx Reference Blockset
Recently Used Blocks

2. 2.

y 4 -

Block parameters i

Sort in library model order LFSR

b

Figure 6: Add Digital FIR Filter Block

You can define the filter coefficients for the Digital FIR Filter block by accessing the block attributes
— double-click the Digital FIR Filter block to view these — or, as in this case, they may be defined
using the FDATool.

8. In the same DSP blockset as the previous step, select FDATool and add it to the Lab1_1 design.
An FPGA design requires three important aspects to be defined:

e The input ports

e The output ports

e The FPGA technology

The next three steps show how each of these attributes is added to your Simulink design.

IMPORTANT: If you fail to correctly add these components to your design, it cannot be
implemented in an FPGA. Subsequent labs will review in detail how these blocks are
configured, however, they must be present in all System Generator designs.

9. In the Basic Elements menu, select Gateway In and add it to the design.

Model-Based DSP Design Using System Generator N Send Feedback 13
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=13

& XILINX

Lab 1: Introduction to System Generator
i Simulink Library Browser =
& Simulink Library B [[@] =]
< FDATool vily v n-

Xilinx Blockset/Basic Elements

> Computer Vision System Toolbox =+ a « -
Control System Toolbox
> DSP System Toolbox System Generator Absolute
> DSP System Toolbox HDL Support B
> HDL Coder RN)| Assert D
» HDL Verlfler_ o Addressable Shift Register Assert
Image Acquisition Toolbox
Report Generator [a 3
> Simulink 3D Animation L
» Simulink Coder BitBasher Black Box
> Simulink Extras)EEFmbe > B }
Simulink Verification and Validation B
Stateflow Clock Enable Probe Concat
4 Xih =
Xlll;}}((IEiockset ih 3 Zéas.t b 1
Basic Elements Constant Convert
Communication
Control Logic = i ¥
Data Types Counter Delay
DSP
Floating-Point 2 : shay
High Level Synthesis -
Index Down Sample Expression
Math
Momory | Y1 > D out)
Tools ol Gateway In Gateway Out
<|m T — 3 m ’_ml, -

Figure 7: Adding a Gateway In

10. Similarly, from the same menu add a Gateway Out block to the design.

11. Similarly, from the same menu add the System Generator token used to define the FPGA
technology.

12. Finally, make a copy of one of the existing Spectrum Analyzer blocks and rename the instance to
Spectrum Analyzer SysGen by clicking the instance name label and editing the text.

13. Connect the blocks as shown in the following figure. Use the left-mouse key to make connections
between ports and nets.

Model-Based DSP Design Using System Generator N Send Feedback 14
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=14

€ X”‘INX Lab 1: Introduction to System Generator

AMMABLE

FDATool System
Generator
double double dauble
T = e i,
Gateway In Gateway Out
Digptal FIR Filter Spectrum
Analyzer Sysgen
. —
. L4 |
Sine Wave
2"pi"ged rad's Spectrum
Analyzer Ong
FOAT o0
L double double double
—p > >
Add Zero-Order
Hodd Drgina Spectrum
dauble Filler Design Analyzer
FD4 Too
Sine Wave

2°pit1e6 radis
=

Scope

Yy

oUDE |

Lowpass Filter Spectrum

Y
Y

Lowpass

Analyzer
LP

Figure 8: Initial System Generator Design

The next part of the design process is to configure the System Generator blocks.

Configure the System Generator Blocks

The first task is to define the coefficients of the new filter. For this task you will use the Xilinx block
version of FDATool. If you open the existing FDATool block, you can review the existing Frequency and

Magnitude specifications.
1. Double-click the Digital Filter Design instance to open the Properties Editor.

This allows you to review the properties of the existing filter.

Model-Based DSP Design Using System Generator N Send Feedback 15
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=15

& XILINX

Lab 1: Introduction to System Generator

4 Block Parameters: Digital Filter Design E@
File Edit Analysis Targets View Window Help
DeWdSR a<«id NN +0 BLORE N
rCurrent Filter Information ———— —Magnitude Response (dB)
0 T — T T T 7]
—~ 20| - 1
Structure: Direct-Form FIR % ™
Order: 10 @ -40 - .
Stable: Yes 'g S
Source: Designed E‘ -60 L _ 4
o \
[0 \\
= 80f \ .
1
\ : .
TAYAAY4
-100 ¢ | | | | -0 N}
| Store Filter __. | 0 2 4 6 8
Frequency (MHz
| Filter Manager ... | q 4 ()
—Response Typp ————— —Filter Order—— —Frequency Specifications —Magnitude Specifications
@ Lowpass - Specify order: |10 Units: |MHz hd Units: |dB hd
Highpass -
@) Minimum order Fs: |20
Bandpass Apass: 0.01
— Bandstop — Options Fpass: 156
— Dm e e Astop: [100
- Differentiator - ensity Factor: Fstop: 85
|—Design Method
] IR |Butterwarth -
[l
@ @ FIR Equiripple b
E Input processing: Columns as channels (frame based) hd gn Filte
Ready

Figure 9: Filter Specifications

2. Close the Properties Editor for the Digital Filter Design instance.
3. Double-click the FDATool instance to open the Properties Editor.

4. Adjust the filter specifications to the following values (shown in the figure above):

¢ Frequency Specifications

o Units = MHz

o Fs=20
o Fpass =15
o Fstop = 8.5

Model-Based DSP Design Using System Generator
UG948 (v2016.4) November 30, 2016 www.xilinx.com

l Send Feedback I

16

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=16

£ XILINX

Lab 1: Introduction to System Generator

e Magnitude Specifications

o Units = dB
o Apass =001
o Astop =100

5. Click the Design Filter button.

6. Close the Properties Editor.

Now, associate the filter parameters of the FDATool instance with the Digital FIR Filter instance.
7. Double-click the Digital FIR Filter instance to open the Properties Editor.

8. In the Filter Parameters section, replace the existing coefficients (Coefficient Vector) with
x1fda numerator ('FDATool') to use the coefficients defined by the FDATool instance.

5¢ Digital FIR Filter (Xilinx FIR Block) o S|
Filter Parameters
Coefficient Viector

Use FDA Tool as Coefficient source

xfda_numerator('FDATool") FDA Tool

Coefficient Precision

| Optimal values

Coefficient Width : |19 Coefficient Fractional Bits : |19

Interpolation Rate 1

Decimation Rate 1

Ok | | Cancel | | Help | | Apply

Figure 10: Digital FIR Filter Specifications

9. C(lick OK to exit the Digital FIR Filter Properties Editor.

In an FPGA, the design operates at a specific clock rate and using a specific number of bits to represent
the data values.

The transition between the continuous time used in the standard Simulink environment and the discrete
time of the FPGA hardware environment is determined by defining the sample rate of the Gateway In

Model-Based DSP Design Using System Generator N Send Feedback 17
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=17

£ XILINX

Lab 1: Introduction to System Generator

blocks. This determines how often the continuous input waveform is sampled. This sample rate is
automatically propagated to other blocks in the design by System Generator. In a similar manner, the
number of bits used to represent the data is defined in the Gateway In block and also propagated
through the system.

Although not used in this tutorial, some Xilinx blocks enable rate changes and bit-width changes, up or
down, as part of this automatic propagation. More details on these blocks are found in the Vivado
Design Suite Reference Guide: Model-Based DSP Design Using System Generator (UG958).

Both of these attributes (rate and bit width) determine the degree of accuracy with which the
continuous time signal is represented. Both of these attributes also have an impact on the size,
performance, and hence cost of the final hardware.

System Generator allows you to use the Simulink environment to define, simulate, and review the
impact of these attributes.

10. Double-click the Gateway In block to open the Properties Editor.

Because the highest frequency sine wave in the design is 9 MHz, sampling theory dictates the sampling
frequency of the input port must be at least 18 MHz. For this design, you will use 20 MHz.

11. At the bottom of the Properties Editor, set the Sample Period to 1/20e6.

12. For now, leave the bit width as the default fixed-point 2's complement 16-bits with 14-bits
representing the data below the binary point. This allows us to express a range of -2.0 to 1.999,
which exceeds the range required for the summation of the sine waves (both of amplitude 1).

Model-Based DSP Design Using System Generator N Send Feedback 18
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2016.4;d=ug958-vivado-sysgen-ref.pdf
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=18

& XILINX

ALL PROGRAMMABLE.

Lab 1: Introduction to System Generator

% Gateway In (Xilinx Gateway In)

=N BER =%

Gateway in block. Converts inputs of type Simulink integer, single, double
and fixed-point to Xilinx fixed-point or floating-point data type.

Hardware notes: In hardware these blocks become top level input ports.

Basic Implementation

Output Type

Arithmetict}rpe[Signed (2's comp) 'l

Fixed-point Precision

Number of bits 16

Floating-point Precision

Single Double Custom

Exponent width | 8

Quantization:

(7) Truncate (@) Round (unbiased: +/- Inf)
Overflow:

{) Wrap 0 Saturate | | Flag as error

Sample period 1/20e6

() Boolean (@) Fixed-point () Floating-point

Binary point 14

Fraction width | 24

ok || cancel || el

] l Apply

Figure 11: Gateway In Properties

13. Click OK to close the Gateway In Properties Editor.

This now allows us to use accurate sample rate and bit-widths to accurately verify the hardware.

14. Double-click the System Generator token to open the Properties Editor.

Because the input port is sampled at 20 MHz to adequately represent the data, you must define the
clock rate of the FPGA and the Simulink sample period to be at least 20 MHz.

Model-Based DSP Design Using System Generator

UG948 (v2016.4) November 30, 2016

www.xilinx.com

l Send Feedback I

19

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=19

& XILINX

AMMABLE

15. Select the Clocking tab.

a. Specify an FPGA clock Period of 50 ns (1/20 MHz).
b. Specify a Simulink system period of 1/20e6 seconds.

Lab 1: Introduction to System Generator

4 System Generator: Lab1_1

TK)

Compilation ~ Clocking General

[] Enable multiple clocks

FPGA clock period (ns) :
50

[| Provide clock enable clear pin
Simulink system period (sec) :
1/20e6

Clock pin location :

Perform analysis : Analyzer type :
MNaone - Timing v.
Performance Tips l l Generate l l OK l l Apply l l Cancel l l Help l

Figure 12: Lab1_1 Clocking

16. Click OK to exit the System Generator token.

17. Click the Run simulation button '/ to simulate the design and view the results, as shown in Figure

13: FIR Compiler Results.

Because the new design is cycle and bit accurate, simulation may take longer to complete than before.

Model-Based DSP Design Using System Generator
UG948 (v2016.4) November 30, 2016

www.xilinx.com

| Send Feedback I 20

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=20

£ XILINX

Lab 1: Introduction to System Generator

[4] Spectrum Analyzer FDA Tool (=] [=] 3 4] Spectrum Analyzer Sysgen EI@
File Tools View Simulation Help < File Tools View Simulation Help =
3@ | &« & EE | @ L B & &« & W EE| @M LE N

®r® =@ Or® =@

Ready RBW=19.53 | T=0.020 Ready RBW=19.563 T=0.020

Figure 13: FIR Compiler Results

The results are shown above, on the right hand side (in the Spectrum Analyzer SysGen window), and
differ slightly from the original design (shown on the left in the Spectrum Analyzer FDA Tool window).
This is due to the quantization and sampling effect inherent when a continuous time system is
described in discrete time hardware.

The final step is to implement this design in hardware. This process will synthesize everything contained
between the Gateway In and Gateway Out blocks into a hardware description. This description of the
design is output in the Verilog or VHDL Hardware Description Language (HDL). This process is
controlled by the System Generator token.

18. Double-click the System Generator token to open the Properties Editor.
19. Select the Compilation tab to specify details on the device and design flow.

20. From the Compilation menu, select the IP Catalog compilation target to ensure the output is in IP
Catalog format. The Part menu selects the FPGA device. For now, use the default device. Also, use
the default hardware description language, VHDL.

Model-Based DSP Design Using System Generator N Send Feedback 21
UG948 (v2016.4) November 30, 2016 www.xilinx.com L\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=21

& XILINX

ALL PROGRAMMABLE.

Lab 1: Introduction to System Generator

(4] System Generator: Labl_1

% & @

Compilation Clocking General

Board :

Mone

Part :

Kintex7 xc7k325t-3fbg676

Compilation :

|IP Catalog

Hardware description language :
VHDL v:
[]Use STD_LOGIC type for Boolean or 1 bit wide gateways
Target directory :

Inetlist

VHDL library :

xil_defaultlib

E=REcR ™"

Browse...

Synthesis strategy :

Implementation strategy :

Vivado Synthesis Defaults - Vivado Implementation Defaults -
["] Create interface document [] Create testbench Model upgrade. ..
Performance Tips l l Generate l l OK l l Apply l l Cancel I l Help l

Figure 14: System Generator Token for Lab 1 Step 1

21. Click Generate to compile the design into hardware.

The compilation process transforms the design captured in Simulink blocks into an industry
standard RTL (Register Transfer Level) design description. The RTL design can be synthesized into a
hardware design. The Compilation status dialog box appears when the hardware design description

has been generated.

Compilation status

¢

Generation Completed

E=N BER =5

oK

H Show Details

Figure 15: Generation Complete

22. Click OK to dismiss the Compilation status dialog box.
23. Click OK to dismiss the System Generator token.

The final step in the design process is to create the hardware and review the results.

Model-Based DSP Design Using System Generator
UG948 (v2016.4) November 30, 2016 www.xilinx.com

| Send Feedback I 22

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=22

£ XILINX

Lab 1: Introduction to System Generator

Create the Hardware and Review the Results

The output from design compilation process is written to the net1ist directory. This directory
contains three subdirectories:

e sysgen: This contains the RTL design description written in the industry standard VHDL format.
This is provided for users experienced in hardware design who wish to view the detailed results.

e ip: This directory contains the design IP, captured in Xilinx IP Catalog format, which is used to
transfer the design into the Xilinx Vivado Design Suite. Lab 8: Using AXI Interfaces and IP
Integrator, presented later in this document, explains in detail how to transfer your design IP
into the Vivado Design Suite for implementation in an FPGA.

e ip_catalog: This directory contains an example Vivado project with the design IP already
included. This project is provided only as a means of quick analysis.

You will now review the results in hardware by using the example Vivado project in the ip_catalog
directory.

IMPORTANT: The Vivado project provided in the ip catalog directory does not

ﬁ contain top-level I/O buffers. The results of synthesis provide a very good estimate of
the final design results;, however, the results from this project cannot be used to create
the final FPGA.

24. Invoke the Vivado Design Suite: Start > All Programs > Xilinx Design Tools > Vivado 2016.3 >
Vivado 2016.3.

25. Click Open Project and then navigate to the folder
C:\SysGen Tutoriall\Labl\netlist\ip catalog.

26. Select file 1abl 1.xpr and the Vivado IDE invokes the generated project file.

27. Click the Run Synthesis button to synthesize the design into hardware.

Model-Based DSP Design Using System Generator N Send Feedback 23
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=23

& XILINX

ALL PROGRAMMABLE.

Lab 1: Introduction to System Generator

File Edit Flow Tools Window Layout View

4 Project Manager
ﬁ Project Settings

H
% Add Sources

%) Language Templates
1F 1P catalog 28

4 [P Integrator
Create Block Design
5% 0Open Block Design
Cﬁ‘; Generate Block Design

¢h labl 1 - [C:/SysGen_Tutorial/Labl/solution/netlist/ip_catalog/labl_1xpr]

Help

SR BB X P P & %K Y @ | S Defaul Layout
Flow Mavigator «“ Project Manager - lab1_1
a E % Sources

A== wat R

|=H= Design Sources (2]

+:labl_1_bd_wrapper - STRW
labl_1_stub - structural (lab1_1_

| Constraints (1)
| Simulation Sources (2)

R - 4 |
4 Simulation

&% Simulation Settings

#% Elaboration Settings
- [@¥ Open Elaborated Design

4 Synthesis
% Synthesis Settings
#» Run Synthesis
> [@¥ Open Synthesized Design

I

Hierarchy | IP Sources | Libraries | Comj

() Run Simulation £ Sources | ¥ Templates
4 RTL Analysis Proper‘t;i _
&= = [F &

Select an object to see pr

Run Synthesis
4 Implementation

Run synthesis on your project source files.

% Implemeftation Setongs
[» Run Implementation
> @¥ Open Implemented Design

Design
4 Program and Debug g

ﬁ Bitstream Settings
aﬂ Generate Bitstream

> nb Open Hardware Manager

&

=]

Runs

a Name Co
=
oo | =5 gynth_1 cor

o impl_1 cor

<

Run synthesis on your project source files

= Tel Console

' Messages | B Log

Figure 16: Vivado Project for Design Lab1_1

Model-Based DSP Design Using System Generator
UG948 (v2016.4) November 30, 2016

www.xilinx.com

| Send Feedback I

24

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=24

& XILINX

Lab 1: Introduction to System Generator

To get an exact confirmation of the final resources and timing, you could select Run Implementation
when the synthesis finishes. However, the results after synthesis provide a very good approximation of
the final results without the additional run time of implementing a fully placed and routed design and is
recommended early in the design cycle.

28. When synthesis completes, select Open Synthesized Design in the Synthesis Completed dialog box
and click OK.

-

Synthesis Completed @

[0] Synthesis successfully completed.

Mext

Run Implementation

@) Dpen Synthesized Desigri

View Reports

Don't show this dialog again

0K l | Cancel

Figure 17: Synthesis Completed Dialog Box

29. In the Flow Navigator, select Synthesized Design > Report Utilization.

4 Synthesis

#% Synthesis Settings

& Run Synthesis

4 Synthesized Design

Constraints Wizard
Edit Timing Constraints
Set Up Debug
Report Timing Summary
Report Clock Networks
Report Clock Interaction

e

BEfe &k

ot

Report Methodology
Report DRC
Report Noise

i [@

Report Utilization

]

Figure 18: Report Utilization in Flow Navigator

30. In the Report Utilization dialog box, click OK.

Model-Based DSP Design Using System Generator N Send Feedback 25
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=25

£ XILINX Lab 1: Introduction to System Generator

ALL PROGRAMMABLE.

¢ Report Utilization @

Report resource utilization. ‘
Results name: utilization_1
Export to file:

v'| Open in a new tab

|z| oK] | Cancel

Figure 19: Report Utilization Dialog Box
31. In the Utilization tab of the results windows area, click Summary to view a summary of the
resources used after the design is synthesized.

Utilization - utilization_1

Q= B ==X 4 Summary

- HierarchE N
lice Logic = Resource Utilization Available Utilization %
" Bslice LUTS (<1%) LuT 294 203800 0.14
: “LLUT as Me_rn-o}"y f100 LUTRAM 161 64000 0.25
~LUT as Shift Regis P 403 407600 0.10
~LUT as Distributed L 6 840 0.71
10 53 400 13.25

-LUT as Logic (<1%)
i FB Muxes (0%) <
‘ 0] b |

utilization_1
& Tcl Console | > Messages | B Log | 5 Reports | 3» Design Runs-_ (5l Utilization

Figure 20: Labl_1 Synthesis Results

32. Exit the Vivado Design Suite.

33. Exit the Labl 1.slx Simulink worksheet.

Step 2: Creating an Optimized Design in an FPGA

In this step you will see how an FPGA can be used to create a more optimized version of the same

design used in Step 1, by oversampling.

1. Atthe command prompt, type open Labl 2.slx.
2. From your Simulink project worksheet, select Simulation > Run or click the Run simulation button

\2/ to confirm this is the same design used in Step 1: Creating a Design in an FPGA.

Model-Based DSP Design Using System Generator N Send Feedback 26
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=26

£ XILINX

Pl Lab 1: Introduction to System Generator

3. Double-click the System Generator token to open the Properties Editor.

As noted in Step 1, the design requires a minimum sample frequency of 18 MHz and it is currently set
to 20 MHz (a 50 ns FPGA clock period).

4| System Generator: Lab1_2 E\ (=] @
{ 10 L
0 :
‘000 i d L !
Compilation ~ Clockin General
|:| Enable multiple clocks
FPGA clock period (ns) : Clock pin location :

50

[Provide clock enable clear pin
Simulink system period (sec) :
1/20e6

Perform analysis : Analyzer type :

Naone - | Timing v.

F'erformanceTipsl lGeneratel l OK] l Apply l l Cancel l l Help l

Figure 21: Initial Lab1_2 Clocking

The frequency at which an FPGA device can be clocked easily exceeds 20 MHz. Running the FPGA at a
much higher clock frequency will allow System Generator to use the same hardware resources to
compute multiple intermediate results.

4. Double-click the FDATool instance to open the Properties Editor.

Model-Based DSP Design Using System Generator N Send Feedback 27
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=27

& XILINX

Lab 1: Introduction to System Generator

5. Click the Filter Coefficients button [bﬁﬂ] to view the filter coefficients.

4. Block Parameters: FDATool E@

File Edit Analysis Targets View Window Help
DEESR Q< il D H MUM + 0 B W

rCurrent Filter Information ————— — Filter Coefficients Filter Coefficients

Numerator:
0.0019067134188306437
-0.011075239432874705
-0.041151591448130125
0.03513056753261963
0.288782784611286592
0.45093247976035494
0.288782784611286592
4]
1]
1]
4]

Structure: Direct-Form FIR
Order: 10
Stable: Yes

Source: Deg@ned .03513056753261963
.041151591448130125
.011075239432874705

.0019067134188906437

[Store Filter .]

[Filter Manager ...]

—Response Type ————— —Filter Order — Frequency Specifications ———— —Magnitude Specifications
@ Lowpass wl (") Specify order: |10 Units: |MHz] Units: |dB T
) |Highpass hd)
.) @) Minimum order Fs: 20
|__) Bandpass Apass: 001
() Bandsto — Opti Fpass: |15
e P : e . Astop: 100
— /| Differentiator = Density Factor: |16 Fstop: 8.5
@ [—Design Method
(IR |Butterworth -
[-
@j @ FIR |Equiripple -
[E Input processing: Columns as channels (frame based) v: Design Filter

Computing Response ... Done

Figure 22: Labl_2 Filter Coefficients

This shows the filter uses 11 symmetrical coefficients. This will require a minimum of 6 multiplications.
This is indeed what is shown in Figure 20: Lab1_1 Synthesis Results, where the final hardware is using 6
DSP48 components, the FPGA resource used to perform a multiplication.

The current design samples the input at a rate of 20 MHz. If the input is sampled at 6 times the current
frequency, it is possible to perform all calculations using a single multiplier.

6. Close the FDATool Properties Editor.

Model-Based DSP Design Using System Generator N Send Feedback 28
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=28

A
ALL PROGRAMMABLE.

7. In the System Generator token update the sampling frequency to 120 MHz (6 * 20 MHz) in this

way:

a.

Lab 1: Introduction to System Generator

Specify an FPGA clock Period of 8.33 ns (1/120 MHz).

b. Specify a Simulink system period of 1/120e6 seconds.

4| System Generator: Lab1_2

e

Compilation

Clocking

General

| Enable multiple clocks

FPGA clock period (ns) :
.33

[| Provide clock enable clear pin
Simulink system period (sec) :
1/120e6

Clock pin location :

Perform analysis : Analyzer type :
Mone ¥ | Timing * || Launch...
Performance Tips ‘ l Generate ‘ l OK ‘ l Apply ‘ l Cancel ‘ l Help I

Figure 23: Labl_2 Clocking

8. Press Generate to compile the design into a hardware description.

In this case, the message appearing in the Diagnostic Viewer can be dismissed as you are purposely

clocking the design above the sample rate to allow resource sharing and reduce resources. Close

the Diagnostic Viewer window.

9. When generation completes, click OK to dismiss the Compilation status dialog box.

10. Click OK to dismiss the System Generator token.

11. Use one of these two alternatives to open the example Vivado project:

OR

Use Start > All Programs > Xilinx Design Tools > Vivado 2016.3 > Vivado 2016.3, then click
Open Project, navigate to the folder C:\SysGen Tutorial\Labl\netlist\ip catalog
and select the file 1abl 2.xpr.

Navigate to C: \SysGen Tutoriall\Labl\netlist\ip catalog and double-click the file

labl 2.xpr.

Model-Based DSP Design Using System Generator

UG948 (v2016.4) November 30, 2016

www.xilinx.com

l Send Feedback I

29

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=29

£ XILINX

Lab 1: Introduction to System Generator

12.
13.

In the Flow Navigator, click the Run Synthesis button to synthesize the design into hardware.

When synthesis completes, select Open Synthesized Design in the Synthesis Completed dialog box
and click OK.

14.
15.
16.

In the Flow Navigator, select Synthesized Design > Report Utilization.
In the Report Utilization dialog box, click OK.

In the Utilization tab of the results windows area, click Summary to view a summary of the
resources used to synthesize the design.

Utilization - utilization_1

AT e R 4 Summary
~Hierarch « [
%---S_Iice Logic Resource Utilization Available Utilization %%
" E-slice LUTS (<1%) LUT 103 203800 0.05
5} LUT as Memory (<1% LUTRAM 54 64000 0.08
LUT as Shift Regisi FF 207 407600 0.05
LUT as Distributed L 1 840 0.12
| LLUT 25 Logic (<1%) 10 53 400 13.25
[b-FB Muxes (0% -
< 1] r |
utilization_1
2 Tcl Console | = Messages | (4 Log | 2 Reports | 3» Design Runs-_[5 Utilization

Figure 24: Lab1_2 Synthesis Results

The hardware design now uses only a single DSP48 resource (a single multiplier) and compared to the
results in Figure 20: Lab1_1 Synthesis Results, the resources used are approximately half.

17. Exit the Vivado Design Suite.

18. Exit the Labl 2.s1x Simulink worksheet.

Step 3: Creating a Design Using Discrete Resources

In this step you will see how System Generator can be used to build a design using discrete
components to realize a very efficient hardware design.

1. At the command prompt, type open Labl_3.slx.

This opens the Simulink design shown in the following figure. This design is similar to the one in the
previous two steps. However, this time the filter is designed with discrete components and is only
partially complete. As part of this step, you will complete this design and learn how to add and
configure discrete parts.

Model-Based DSP Design Using System Generator
UG948 (v2016.4) November 30, 2016

30

l Send Feedback I

www.xilinx.com

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=30

& XlLINX Lab 1: Introduction to System Generator

ALL PROGRAMMAI BLE.

FDAToo

— T e

Gateway In RN % (P

i WaeH
2'pi* el md's

=]
L]
o

=
.
.

<
g
d

Sina Wi

2'pi* e md's

i

Leorwpaiss Filier [Ere——

Figure 25: Initial Lab1_3 Design

This discrete filter operates in this way:

e Samples arrive through port In and after a delay are stored in a shift register (instance ASR).
e A ROM is required for the filter coefficients.
e A counter is required to select both the data and coefficient samples for calculation.
e A multiply accumulate unit is required to perform the calculations.
e The final down-sample unit selects an output every nth cycle.
Start by adding the discrete components to the design.
2. Click the Library Browser button 85 in the Simulink toolbar to open the Simulink Library Browser.

3. Expand the Xilinx Blockset menu.

a. As shown in the following figure, select the Control Logic section, then select the Counter and
right-click with the mouse to add this component to the design.

Model-Based DSP Design Using System Generator N Send Feedback 31
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=31

& XILINX

Lab 1: Introduction to System Generator

ﬂ Simulink Library Browser E@
= Enter searchterm » A » | Bl v 9| = (3
Xilinx Blockset/ Control Logic

> Simulink - e -

» Communications System Toolbox ’I' 3 ip

> Communications System Toolbox HDL £ = '

> Computer Vision System Toolbox AXIFIFO Black Box Constant
Control System Toolbox = a

> DSP System Toalbox B = Nl

 DSP System Toolbox HDL Support Counter Dual Port RAM Expression

> HDL Coder

HDL Verifier Add block to model Labl 3 Ctrl+I
Image Acquisition Toolbox
Report Generator
Simulink 3D Animation Go to parent Esc
Simulink Coder
Simulink Extras Block parameters

Simulink Verification and Validation MCoOe VT REISTEr
Stateflow :
4 Xilinx Blockset e aitr > b
AXT4 E

Basic Elements Relational ROM Shift
Communication B
Control Logic ata ; y [a:b]>
Data Types o
DSP Single Port RAM Slice Vivado HLS
Floating-Point

Index

Math

Memaory 7

4 I P

Help for the Counter block

m

Figure 26: Lab3_1 Counter Instance

b. Select the Memory section (shown at the bottom left in the figure above) and add a ROM to
the design.

c. Finally, select the DSP section and add a DSP48 Macro 3.0 to the design.

4. Connect the three new instances to the rest of the design as shown below.

Model-Based DSP Design Using System Generator N Send Feedback 32
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=32

& XILINX

Lab 1: Introduction to System Generator
— b Ef

gl—»
Gateway In P | 2cidr
0
ASR A

++

addr 1 > b p »(d
z'a i” — out —» _
Counter ROM —b c L
Spectrum

h 4
Y

Capture
Convert DSP48 Macro 3.0 Register

Analyzer SysGen

A4
[

a= . » 2
[o> 2

Figure 27: Discrete Filter Design

You will now configure the instances to correctly filter the data.

5. Double-click the FDATool instance and select Filter Coefficients [hﬂ] from the toolbar to review the
filter specifications.

Model-Based DSP Design Using System Generator N Send Feedback 33
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=33

& XILINX

ALL PROGRAMMABLE.

Lab 1: Introduction to System Generator

.

[4] Block Parameters: FDATool (= = | =
File Edit Analysis Targets View Window Help
NEEak| a<id D HIdE 20 EHONE| N
rCurrent Filter Information —Filter Coefficients
0.0018067134188906437
-0.011075239432874705
] -0.041151591448130125
Structure: Direct-Form FIR 0.03513056753261963
Order: 10 0.28878278461128692
. 0.45093247976035494
Stable: Yes 0.28878278461128692
Source: Designed 0.03513056753261963
-0.041151591448130125
-0.011075239432874705
0.0012067134188306437
[Store Filter ...
[Filter Manager ...
—FResponse Type —Filter Order — Frequency Specifications — Magnitude Specifications
0 Lowpass Specify order: |10 Units: |MHz Units: |dB
) Highpass)
_ 1@ Minimum order Fs: |20
| Bandpass Apass: 0.01
(") Bandsto — Opti Fpass: |15
e ° R . Astop: 100
- | Differentiator Density Factor: |16 T 85
@ —Design Method
(IR | Butterworth
[k
@ Q@ FIR |Equiripple
E Input processing: Columns as channels (frame based) v: Design Filter
Ready

Figure 28: Lab1_3 Filter Specifications

This shows the same specifications as the previous steps in Lab 1 and confirms there are 11 coefficients.

You can also confirm, by double-clicking on the input Gateway In that the input sample rate is once
again 20 MHz (Sample period = 1/20e6). With this information, you can now configure the discrete

components.

6. Close the FDATool Properties Editor.

7. Double-click the Counter instance to open the Properties Editor.

a. For the Counter type, select Count limited and enter this value for Count to value:

length (x1fda numerator ('FDATool'))-1

This will ensure the counter counts from 0 to 10 (11 coefficient and data addresses).

Model-Based DSP Design Using System Generator
UG948 (v2016.4) November 30, 2016

www.xilinx.com

l Send Feedback I

34

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=34

& XILINX

ALL PROGRAMMABLE.

b. For Output type, leave default value at Unsigned and in Number of Bits enter the value 4.

Lab 1: Introduction to System Generator

Only 4 binary address bits are required to count to 11.

c. For the Explicit period, enter the value 1/ (11*20e6) to ensure the sample period is 11 times
the input data rate. The filter must perform 11 calculations for each input sample.

-

*% Counter (Xilinx Counter)

= &&=

Hardware notes: Free running counters are the least expensive in
hardware. A count limited counter is implemented by combining a
counter with a comparator.

Basic Implementation

Counter type:

Count direction:

@ Up () Down
Initial value 0
Step 1

Output Precision
Output type:

Number of bits 4

Binary point 0

Optional Ports

Provide load port

(") Free running (@) Count limited

Up/Dowin

(" signed (2's comp) (@) Unsigned

[] Provide synchronous reset port
[] Provide enable port

Explicit Sample Period

Sample period source

Count to value length(xifda_numerator('FDATool"))-1

(@) Explicit Inferred from inputs
Explicit period 1/{11*20e6)
OK] ’ Cancel I [Help] ’ Apply

-

Figure 29: Counter Properties Editor

d. Click OK to exit the Properties Editor.

Model-Based DSP Design Using System Generator

UG948 (v2016.4) November 30, 2016

www.xilinx.com

| Send Feedback I

35

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=35

& XILINX

Lab 1: Introduction to System Generator

8. Double-click the ROM instance to open the Properties Editor.

a. For the Depth, enter the value length (x1fda numerator ('FDATool")). This will ensure
the ROM has 11 elements.

b. For the Initial value vector, enter: x1fda numerator ('FDATool"). The coefficient values
will be provided by the FDATool instance.

-

3¢ ROM (Xilinx Single Port Read-Only.. | o | & | &2 |

Basic | Output | Implementation |

Depth length(xlfda_numerator('FDATool"))

Initial value vector xfda_numerator('FDATool")

Memaory Type:
() Distributed memory (@) Block RAM

Optional Ports

[Provide reset port for output register
Initial value for output register|0

[] Provide enable port

Latency 1

ok || cancel || melp || apply

Figure 30: ROM Properties Editor

c. Click OK to exit the Properties Editor.
9. Double-click the DSP48 Macro 3.0 instance to open the Properties Editor.

a. In the Instructions tab, replace the existing Instructions with A*B+P and then add A*B. When
the sel input is false the DSP48 will multiply and accumulate. When the sel input is true the
DSP48 will simply multiply.

Model-Based DSP Design Using System Generator N Send Feedback 36
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=36

& XILINX

ALL PROGRAMMABLE.

Lab 1: Introduction to System Generator

2 DSP48 Macro 3 0 (Xilinx DSP48 Macro 3.0)

E=8 BoR =5~

Instructions | Pipeline Options | Implementation |

ACIN, A, BCIN,B

valid operators: +, -, *, ()

Valid operands: CONCAT, F, C, PCIN, P=>17, PCIN>>17, CARRYIN, CARRYCASCIN,

Valid functions: RNDSIMPLE, RNDSYM

Instructions are case insensitive and tolerate spaces.

Target XtremeDSP Slice: DSP48E1

Instructions

ATB+P
A*B

[] Shows Filtered Instructions

Available Instructions

()
(A+D)*B
(A+D)*B+C
(A+D)*B+C+CARRYIN
(A+D)*B+CARRYIN
(A+D)*B+P
(A+D)*B+P+CARRYIN
(A+D)*B+P=>17
(A+D)*B+P>>17+CARRYIN
(A+D)*B+PCIN
(A+D)*B+PCIN+CARRYIN -

Help I [Apply

Figure 31: DSP48 Instructions Tab

b. In the Pipeline Options tab, use the Pipeline Options drop-down menu to select By_Tier.

c. Select Tier 3 and Tier 5. This will ensure registers are used at the inputs to A and B and between

the multiply and accumulate operations.

Model-Based DSP Design Using System Generator
UG948 (v2016.4) November 30, 2016

www.xilinx.com

| Send Feedback I

37

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=37

& XILINX

Lab 1: Introduction to System Generator

¥ DSP48 Macro 30 (Xilinx DSP48 Macro 3.0) (o= =]

Instructions Pipeline Options | Implementation |
Pipeline Dptions

Custom Pipeline options

CONCAT

C

CARRYIN

CONTROL

< | 1] | P

[JTier1 []Tier2 Tier3 [|Tier4 Tier 5 Tier 6

D
A A A A
B B B B M
CONCAT CONCAT CONCAT
C C C C C P

CARRYIN CARRYIN CARRYIN CARRYIN CARRYIN
CONTROL CONTROL CONTROL CONTROL CONTROL

0K I [Cancel] l Help I [Apply

Figure 32: DSP48 Pipeline Options Tab

d. Click OK to exit the Properties Editor.
10. Use the Save to save the design.

11. Click the Run simulation button to simulate the design and view the results, as shown in the figure
below.

Model-Based DSP Design Using System Generator N Send Feedback 38
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/_l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=38

£ XILINX

Lab 1: Introduction to System Generator

[#] Spectrum Analyzer FDA Tool = || EB g2 4| Spectrum Analyzer SysGen EI@
File Tools View Simulation Help " File Tools View Simulation Help =
e a< &|LEE &M N X @ | & &|FA[CF| A Ml [0 & [

@@ =@ (O Rp=cyr]

Ready RBW=19.53 |Sample Rate=20 T=0.0005 Ready RBW=19.53 Sample Rate=20 T=0.0005

Figure 33: Discrete FIR Compiler Results

The final step is to compile the design into a hardware description and synthesize it.
12. Double-click the System Generator token to open the Properties Editor.

13. From the Compilation menu, make sure the Compilation target is IP Catalog.
14. Press Generate to compile the design into a hardware description.

15. Click OK to dismiss the Compilation status dialog box.

16. Click OK to dismiss the System Generator token.

17. Use one of these two alternatives to open the example Vivado project:

e Use Start > All Programs > Xilinx Design Tools > Vivado 2016.3 > Vivado 2016.3, click
Open Project, navigate to the folder C:\SysGen Tutoriall\Labl\netlist\ip catalog
and select the file 1abl 3.xpr.

OR

e Navigate to C:\SysGen Tutorial\Labl\netlist\ip catalog and double-click the file
labl 3.xpr.

18. In the Flow Navigator, click the Run Synthesis button to synthesize the design into hardware.

19. When synthesis completes, select Open Synthesized Design in the Synthesis Completed dialog box
and click OK.

20. In the Flow Navigator, select Synthesized Design > Report Utilization.

21. In the Report Utilization dialog box, click OK.

Model-Based DSP Design Using System Generator N Send Feedback 39
UG948 (v2016.4) November 30, 2016 www.xilinx.com L\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=39

£ XILINX

Lab 1: Introduction to System Generator

22. In the Utilization tab of the results windows area, click Summary to view a summary of the
resources used to synthesize the design.

Utilization - utilization_1

Q= =3 4 Summary
o HierarchE N
lice Logic = Resource Utilization Available Utilization %
5 Slice LUTS (1% LuT 26 203800 0.01
“LLUT as Me}nﬁ'ry (<106 LUTRAM 17 54000 0.03
- LUT as Shift Regis] FF 169 407600 0.04
“LUT as Distributed BRAM 1 445 0.22
...... LUT as Logic (<1%) DSP 1 840 0.12
) : 10 65 400 16.25

- +FB Muxes [0%) -
< 1] P

utilization_1

5 Tcl Console | © Messages | B Log | 21 Reports | 3» Design Runs-_ |5 Ukilization

Figure 34: Lab1l_3 Synthesis Results

The design now uses fewer FPGA hardware resources than either of the versions designed with the
Digital FIR Filter macro (Figure 20: Lab1_1 Synthesis Results and Figure 24: Lab1_2 Synthesis Results).

23. Exit the Vivado Design Suite.

24. Exit the Labl 3.slx worksheet.

Summary

In this lab, you learned how to use the System Generator blockset to create a design in the Simulink
environment and synthesize the design in hardware which can be implemented on a Xilinx FPGA. You
learned the benefits of quickly creating your design using a Xilinx Digital FIR Filter block and how the
design could be improved with the use of over-sampling.

Finally, you learned how you can take total control of the hardware implementation by using discrete
primitives.

Note: In this tutorial you learned how to add System Generator blocks to the design and then
configure them. A useful productivity technique is to add and configure the System Generator
token first. If the target device is set at the start, some complex IP blocks will be automatically
configured for the device when they are added to the design.

The following solutions directory contains the final System Generator (*.slx) files for this lab. The
solutions directory does not contain the IP output from System Generator or the files and directories
generated when Vivado is executed.

C:/SysGen Tutorial/Labl/solution

Model-Based DSP Design Using System Generator N Send Feedback 40
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=40

& XILINX

ALL PROGRAMMABLE.

Lab 2: Working with Data Types

Introduction

In this lab exercise, you will learn how hardware-efficient fixed-point types can be used to create a
design which meets the required specification but is more efficient in resources, and understand how to
use Xilinx Blocksets to analyze these systems.

Objectives
After completing this lab, you will be able to:

e Understand the hardware implementation cost of a standard Simulink design.
¢ Implement the design using efficient Fixed-Point data types.

e Understand how to manipulate data types to ensure an optimal implementation of the design.

Procedure

This exercise has two primary parts.
e In Step 1 you will review and synthesize a design using floating-point data types.

e In Step 2 you will work with the same design, captured as a fixed-point implementation, and
refine the data types to create a hardware-efficient design which meets the same requirements.

Model-Based DSP Design Using System Generator N Send Feedback 41
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=41

X X”‘INX Lab 2: Working with Data Types

Step 1: Designing with Floating-Point Data Types

In this step you will review a design implemented with floating-point data types.

1. Invoke System Generator.

e On Windows systems select Start > All Programs > Xilinx Design Tools > Vivado 2016.3 >
System Generator > System Generator 2016.3.

e On Linux systems, type sysgen at the command prompt.
2. Navigate to the Lab2 folder: cd C:\SysGen Tutorial\Lab2.

You can view the directory contents in the MATLAB Current Directory window, or type 1s at the
command line prompt.

3. At the command prompt, type open Lab2 1.slx

This opens the Simulink design shown in the following figure. This design is similar to the design used
in Lab 1, however this time the design is using float data types and the filter is implemented in sub-
system FIR.

First you will review the attributes of the design, then simulate the design to review the performance,
and finally synthesize the design.

& 3

FDATool System
Generator
double double double
Gateway In1 Gateway Outl
Spectrum
FIR Analyzer SysGen
double |
Sine Wave
2'pi*0e6 rad's Spectrum
Analyzer Orig
FOAToo!
) doutfle double double
R TR I A
Add Zero-Order
Hold Digital Spectrum
doutle Filter Design Analyzer
FOA Tool
Sine Wave
2*pi*1ef rad's

Figure 35: Initial Lab2_1 Design

As you can see in the figure above, both the input and output of instance FIR are of type double.

Model-Based DSP Design Using System Generator N Send Feedback
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

42

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=42

€ X”‘INX Lab 2: Working with Data Types

4. In the MATLAB Command Window enter MyCoeffs = x1fda numerator ('FDATool').
5. Double-click the instance FIR to open the sub-system.
6. Double-click the instance Constantl to open the Properties Editor.

This shows the Constant value is defined by MyCoeffs(1).

-

#¢ Constantl (Xilinx Constant Block) (o = || =2 |

Basic DSP48

Constant value MyCoeffs(1)

Output Type
(") Boolean () Fixed-point (@) Floating-point
Arithmetic type | Floating-point

Fixed-point Precision

Mumber of bits|16 Binary point | 14
Floating-point Precision
(@) single (") Double (7) Custom
Exponent width |8 Fraction width | 24
Sample Period

Sampled constant

Sample period 1/20e6

[oK] ’ Cancel I [Help] l Apply

Figure 36: Constantl Properties Editor

7. Close the Constantl Properties editor.

8. Return to the top-level design using the toolbar button Up To Parent {F‘ or click on the tab labeled
Lab2_ 1.

The design is summing two sine waves, both of which are 9 MHz. The input gateway to the System
Generator must therefore sample at a rate of at least 18 MHz.

9. Double-click the Gateway Inl instance to open the Properties Editor and confirm the input is
sampling the data at a rate of 20 MHz (a Sample period of 1/20e6).

10. Close the Gateway In Properties editor.

11. Press the Run simulation button to simulate the design.

Model-Based DSP Design Using System Generator N Send Feedback 43
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=43

& XILINX Lab 2: Working with Data Types

ALL PROGRAMMABLE.

The results shown below show the System Generator blockset produces results which are very close to
the ideal case, shown in the center. The results are not identical because the System Generator design
must sample the continuous input waveform into discrete time values.

<] Spectrum Analyzer FDA Tool o | @ | %2 | | 4 spectrum Analyzer SysGen =R (EEh

#] Spectrum Analyzer Orig o[@

bl File Tools View Simulation Help
Bo aw<ed HEE @ MWERX
Q@ =®

File Tools View Simulation Help bl File Tools View Simulation Help

B O | &= &|kEE | @5 & & B o | &< &|kEE | @5 & &
® > @@ P IEYS

Ready 53 Sample Rate=20 T=0.0005

)
Ready RB! 953 Sample Rate=20 T=0.0005

Figure 37: Lab2_1 Simulation Results

The final step is to synthesize this design into hardware

12. Double-click the System Generator token to open the Properties Editor.

13. From the Compilation menu, make sure the Compilation target is IP Catalog.
14. Press Generate to compile the design into a hardware description.

15. Click OK to dismiss the Compilation status dialog box.

16. Click OK to dismiss the System Generator token.

17. Use one of these two alternatives to open the example Vivado project:

e Use Start > All Programs > Xilinx Design Tools > Vivado 2016.3 > Vivado 2016.3, click
Open Project, navigate to the folder C:\SysGen Tutorial\Lab2\netlist\ip catalog
and select file 1ab2 1.xpr.

OR
e Navigate to C:\SysGen Tutorial\Lab2\netlist\ip catalog and double-click the file
lab2 1.xpr.
18. In the Vivado Flow Navigator, click the Run Synthesis button to synthesize the design into
hardware.
19. When synthesis completes, select Open Synthesized Design in the Synthesis Completed dialog box
and click OK.

20. In the Flow Navigator, select Synthesized Design > Report Utilization.

21. In the Report Utilization dialog box, click OK.

Model-Based DSP Design Using System Generator N Send Feedback 44
UG948 (v2016.4) November 30, 2016 www.xilinx.com L\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=44

X X”‘INX Lab 2: Working with Data Types

22. In the Utilization tab of the results windows area, click Summary to view a summary of the
resources used to synthesize the design.

Utilization - utilization_1

Q= Bl 4 Summary

- HierarchE -

E:;“ce Logic = Resource Utilization Available Utilization %

© Cslice LUTS (2% LuT 4863 203800 2.39
-LUT as Memory (1%) LUTRAM 320 64000 0.50
© __LUT as Shift Register FF 1332 407600 0.33
- LUT as Distributed RAM DSF = e 3.93
LUT as Logic (2%) 10 65 400 16.25

i F8 Muxes (<1%) =
‘ 1] P |

utilization_1

& Tcl Console | > Messages | B Log | 5 Reports | 3» Design Runs-_ (5l Utilization

Figure 38: Lab2_1 Synthesis Results

You implemented this same filter in Lab 1 using fixed-point data types. When compared to the
synthesis results from that implementation — the initial results from Lab 1 are shown below in Figure 39:
Labl_1 Synthesis Results and you can see this current version of the design is using a large amount of
registers (FF), LUTs, and DSP48 (DSP) resources (Xilinx dedicated multiplier/add units).

Utilization - utilization_1

Q II-_X_I: l‘$‘:‘ 4= 54 4 Summary
o Hierarchi N
i-:-;Iice Logic = Resource Utilization Available Utilization 2%
. E1Slice LUTs (<1%) LT 294 203800 0.14
“LUT as Memory (1% LUTRAM 161 64000 0.25
LUT as Shift Regisi FF 403 407600 0.10
LUT as Distributed DSP 6 840 0.71
------ LUT as Logic (<1%) L, EE 400 13.25
~F8 Muxes (0%) -

‘ il ' |
utilization_1

= Tel Console | © Messages | B4 Log | |2 Reports | 3 Design Runs-_ |7 Utilization

Figure 39: Labl_1 Synthesis Results

Maintaining the full accuracy of floating-point types is an ideal implementation but implementing full
floating-point accuracy requires a significant amount of hardware.

For this particular design, the entire range of the floating-point types is not required. The design is
using considerably more resources than what is required. In the next step, you will learn how to
compare designs with different data types inside the Simulink environment.

Model-Based DSP Design Using System Generator N Send Feedback 45
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=45

€ X”‘INX Lab 2: Working with Data Types

23. Exit the Vivado Design Suite.

24. Exit the Lab2 1.s1x Simulink worksheet.

Step 2: Designing with Fixed-Point Data Types

In this step you will re-implement the design from Step 1: Designing with Floating-Point Data Types
using fixed-point data types, and compare this new design with the original design. This exercise will

demonstrate the advantages and disadvantages of using fixed-point types and how System Generator

allows you to easily compare the designs, allowing you to make trade-offs between accuracy and
resources within the Simulink environment before committing to an FPGA implementation.

1. Atthe command prompt, type open Lab2 2.slx to open the design shown below.

) > 3

FOATool System
Ganerator
Fix_16 14 Fix 43 2 douibe
pua o e ol
Gateway In2 Galeway Oul2
Spectrurm
FIR-Fixed-Point Analyzer SysGen Fixed
XFlosal_8_2 XFln_8 dauiiie
gua T L [unf S ol
Gateway Inl Galeway Oull
Spectrurm
FIR Analyzer SysGen
doubla -~
Sine Wave
2*pi*0ek rad's Spectrum
Analyzar Onig
FOATaa|
(S 1 i 1
* ol > —[-LLIrkxl.Jln > W bl >
L s I
Addl Zem-Crder
Haold Chgital Spectrum
choubile Filter Diasign Analyzer
FO& Tool
Sine Wave
2°pit ek rad's

Figure 40: Lab2_2 Design

Model-Based DSP Design Using System Generator N Send Feedback
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

46

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=46

& XILINX

Lab 2: Working with Data Types

In this design, the floating-point implementation is captured alongside an identical fixed point design.

2.
3.

In the MATLAB Command Window enter MyCoeffs = xlfda numerator ('FDATool').

Double-click the instance Gateway In2 to confirm the data is being sampled as 16-bit fixed-point
value.

Click Cancel to exit the Properties Editor.

Click the Run simulation button to simulate the design and confirm instance Spectrum Analyzer
SysGen Fixed shows the filtered output.

As you will see if you examine the output of instance FIR-Fixed-Point (shown in Figure 40: Lab2_2
Design) System Generator has automatically propagated the input data type through the filter and
determined the output must be 43-bit (with 28 binary bits) to maintain the resolution of the signal.

This is based on the bit-growth through the filter and the fact that the filter coefficients (constants in
instance FIR-Fixed-Point) are 16-bit.

6.

In the MATLAB Command Window, enter sum (abs (MyCoeffs)) to determine the absolute
maximum gain using the current coefficients.

Command Window

>> MyCoeffs = xl1fda numerator ('FDRTool')
MyCoeffs =
Columns 1 through 7

0.001% -0.0111 -0.0412 0.0351 0.2888 0.4509 0.

R
(&t
[£5]
[£5]

Column=s 8 through 11

0.0351 -0.0412 -0.0111 0.001%

»>» sumf{abs (MyCoeffs))

1

ans =
1.2070

fx

-

>>| N
4 I »

Figure 41: Lab2_2 Coefficient Sum

Taking into account the positive and negative values of the coefficients the maximum gain possible is
1.2070 and the output signal should only ever be slightly smaller in magnitude than the input signal,
which is a 16-bit signal. There is no need to have 15 bits (43-28) of data above the binary point.

You will now use the Reinterpret and Convert blocks to manipulate the fixed-point data to be no
greater than the width required for an accurate result and produce the most hardware efficient design.

Model-Based DSP Design Using System Generator

. l Send Feedback I
UG948 (v2016.4) November 30, 2016 www.xilinx.com

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=47

X X”‘INX Lab 2: Working with Data Types

7. Right-click with the mouse anywhere in the canvas and select Xilinx BlockAdd.
8. In the Add Block entry box, type Reinterpret.
9. Double-click the Reinterpret component to add it to the design.
10. Repeat the previous three steps for these components:
a. Convert
b. Scope
11. In the design, select the Gateway Out2 instance.
a. Right-click and use Copy and Paste to create a new instance of the Gateway Out block.

b. Paste twice again to create two more instances of the Gateway Out (for a total of three new
instances).

12. Double-click the Scope component.
a. Inthe Scope properties dialog box, select File > Number of Inputs > 3.

b. Select View > Configuration Properties and confirm that the Number of input ports is 3.

4 Scope o || = &
File Tools View Simulation Help ‘N
Q- 0P ® Q-0 F4-

10

4\ Configuration Properties: Scope
Main | Time | Display | Logging
Open at simulation start
Display the full path
Number of input ports: 3 | Layout |

Sample time: -1

Input processing: |Elements as channels (sample based) '|

Maximize axes: |Off v|

Axes scaling: |Manua| '| Configure ...

| ok][cancel || Apply

Ready

Figure 42: Configuration Properties Dialog Box

c. Click OK to close the Configuration Properties dialog box.

d. Select File > Close to close the Scope properties dialog box.

Model-Based DSP Design Using System Generator N Send Feedback 48
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=48

X X”‘INX Lab 2: Working with Data Types

13. Connect the blocks as shown in the figure below.

14. Rename the signal names into the scope as shown in the figure below: Convert, Reinterpret and
Growth.

To rename a signal, click the existing name label and edit the text, or if there is no text double-click
the wire and type the name.

. double
- Ot e
Gateway Outd
. double
» Out
Sy SIE Heirmamp
FDAToal Generator Gateway Cutd
double
Ot e
Gateway Outs
Scope
Fix_16_14 Fix_43_28 Fin_43_Z8] Fix_16_14 double
—b Int Oul B rzinisrpret » cast > Out ||
Gateway In2 Reinterpret Convert Gateway Out2
Spectrum
FIR-Fixed-Point Analyzer SysGen Fixed
¥Float_g_2, XFloat_Bp= double
Y o P o™l
Gateway In1 Gateway Out1
Spectrum
FIF Analyzer SysGen
. double ||
-
Sine Wave
2*pl*9et rad's Spectrum
Analyzer Orig
FOAToal
|+ doutile doublel double
el I e B o
Add Zeno-Order
Haold Digetal Spectrum
double Filter Design Analyzer
Sine Wave
2*pl*1eb rad's

Figure 43: Updated Lab2_2 Design

15. Click the Run simulation button to simulate the design.

16. Double-click the Scope to examine the signals.

O TIP: You may need to zoom in and adjust the scale in View > Configuration
Properties to view the signals in detail.

Model-Based DSP Design Using System Generator N Send Feedback 49
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=49

X X”‘INX Lab 2: Working with Data Types

‘d_fScope E@

File Tools View Simulation Help]

@-eOP® -0 F@-

Reinterp

Ready T=0.0005

Figure 44: Updated Lab2_2 Design Scope

The Reinterpret and Convert blocks have not been configured at this point and so all three signals are
identical.

The Xilinx Reinterpret block forces its output to a new type without any regard for retaining the
numerical value represented by the input. The block allows for unsigned data to be reinterpreted as
signed data, or, conversely, for signed data to be reinterpreted as unsigned. It also allows for the
reinterpretation of the data's scaling, through the repositioning of the binary point within the data.

In this exercise you will scale the data by a factor of 2 to model the presence of additional design
processing which may occur in a larger system. The Reinterpret block may also be used to scale down.

17. Double-click the Reinterpret block to open the Properties Editor.
18. Select Force Binary Point.
19. Enter the value 27 in the input field Output Binary Point and click OK.

The Xilinx Convert block converts each input sample to a number of a desired arithmetic type. For
example, a number can be converted to a signed (two's complement) or unsigned value. It also allows
the signal quantization to be truncated or rounded and the signal overflow to be wrapped, saturated, or
to be flagged as an error.

In this exercise, you will use the Convert block to reduce the size of the 43-bit word back to a 16-bit
value. In this exercise the Reinterpret block has been used to model a more complex design and scaled

Model-Based DSP Design Using System Generator N Send Feedback 50
UG948 (v2016.4) November 30, 2016 www.xilinx.com L\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=50

X X”‘INX Lab 2: Working with Data Types

the data by a factor of 2. You must therefore ensure the output has enough bits above the binary point
to represent this increase.

20. Double-click the Convert block to open the Properties Editor.

21. In the Fixed-Point Precision section, enter 13 for the Binary Point and click OK.
22. Save the design.

23. Click the Run simulation button to simulate the design.

24. Double-click the Scope to examine the signals.

O TIP: You may need to zoom in and adjust the scale in View > Configuration
Properties to view the signals in detail

In the figure below you can see the output from the filter (Growth) has values between plus and minus
1. The output from the Reinterpret block moves the data values to between plus and minus 2. In this
detailed view of the waveform, the final output (Convert) shows no difference in fidelity, when
compared to the reinterpret results, but uses only 16 bits.

‘d_fScope E@

File Tools View Simulation Help]

@-eOP® -0 F@-

Reinterp

Ready T=0.0005

Figure 45: Scaled Lab2_2 Design Scope

The final step is to synthesize this design into hardware.
25. Double-click the System Generator token to open the Properties Editor.

26. From the Compilation menu, make sure the Compilation target is IP Catalog.

Model-Based DSP Design Using System Generator N Send Feedback 51
UG948 (v2016.4) November 30, 2016 www.xilinx.com L\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=51

X X”‘INX Lab 2: Working with Data Types

27. Click Generate to compile the design into a hardware description.

28. Click OK to dismiss the Compilation status dialog box.

29. Click OK to dismiss the System Generator token.

30. Use one of these two alternatives to open the example Vivado project:

a. Use Start > All Programs > Xilinx Design Tools > Vivado 2016.3 > Vivado 2016.3, click
Open Project, navigate to the folder C:\SysGen Tutorial\Lab2\netlist\ip catalog
and select file 1ab2 2.xpr.

OR

b. Navigate to C:\SysGen Tutoriall\Lab2\netlist\ip catalog and double-click the file
lab2 2.xpr.

31. In the Vivado Flow Navigator, click the Run Synthesis button to synthesize the design into
hardware.

32. When synthesis completes, select Open Synthesized Design in the Synthesis Completed dialog box
and click OK.

33. In the Flow Navigator, select Synthesized Design > Report Utilization.
34. In the Report Utilization dialog box, click OK.

35. In the Utilization tab of the results windows area, click Summary to view a summary of the
resources used.

Utilization - utilization_1

Q= ==X 4 Summary

~~Hierarch -

= Slice Logic Resource Utilization Available Utilization %

LuT 5452 203800 2.68

Slice LUTs (3%)

LUT as Memory (1%) LUTRAM 480 64000 0.75
~LUT as Shift Register FF 1926 407600 0.47
~LUT as Distributed RAM = 44 840 5.24

LUT as Logic (2%) 10 199 400 49.75

i -F8 Muxes [<1%) -
‘ 1] b |

utilization_1

B Tcl Console | © Messages | Gl Log | 2 Reports | 3» Design Runs-,_ 5 Utilization

Figure 46: Lab2_2 Synthesis Results

Notice, as compared to the results in Step 1 (Figure 38: Lab2_1 Synthesis Results) these results show
approximately

e 45% more Flip-Flops
e 20% more LUTs
e 30% more DSP48s

Model-Based DSP Design Using System Generator N Send Feedback 52
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=52

X X”‘INX Lab 2: Working with Data Types

However, this design contains both the original floating-point filter and the new fixed-point version: the
fixed-point version therefore uses approximately 75-50% fewer resources with the acceptable signal
fidelity and design performance.

36. Exit the Vivado Design Suite.

37. Exit the Lab2_ 2.s1x worksheet.

Summary

In this lab, you learned how floating-point types provide a high degree of accuracy but cost many more
resources to implement in an FPGA. You also learned how the System Generator blockset can be used
to both implement a design using more efficient fixed-point data types and compensate for any loss of
accuracy caused by using fixed-point types.

The Reinterpret and Convert blocks are powerful tools which allow you to optimize your design without
needing to perform detailed bit-level optimizations. You can simply use these blocks to convert
between different data types and quickly analyze the results.

The following solutions directory contains the final System Generator (*.slx) files for this lab. The
solutions directory does not contain the IP output from System Generator or the files and directories
generated when Vivado is executed.

C:/SysGen Tutorial/Lab2/solution

Model-Based DSP Design Using System Generator N Send Feedback 53
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=53

& XILINX

ALL PROGRAMMABLE.

Lab 3: Working with Multi-Rate Systems

Introduction

In this lab exercise, you will learn how to efficiently implement designs with multiple data rates using
multiple clock domains.

Objectives
After completing this lab, you will be able to:

e Understand the benefits of using multiple clock domains to implement multi-rate designs.

e Understand how to isolate hierarchies using FIFOs to create safe channels for transferring
asynchronous data.

e How to implement hierarchies with different clocks.

Procedure

This exercise has three primary parts.
e InStep 1, you will learn how to create hierarchies between the clock domains.
e In Step 2, you will learn how to add FIFOs between the hierarchies.

e In Step 3, you will learn how to add separate clock domains for each hierarchy.

Step 1: Creating Clock Domain Hierarchies

In this step you will review a design in which different parts of the design operate at different data rates
and partition the design into subsystems to be implemented in different clock domains.
1. Invoke System Generator.

e On Windows systems select Start > All Programs > Xilinx Design Tools > Vivado 2016.3 >
System Generator > System Generator 2016.3.

e On Linux Systems, type sysgen at the command prompt.
2. Navigate to the Lab3 folder: cd C:\SysGen Tutoriall\Lab3.

3. At the command prompt, type open Lab3 1.slx

Model-Based DSP Design Using System Generator N Send Feedback 54
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=54

X X”‘INX Lab 3: Working with Multi-Rate Systems

This opens the Simulink design shown in the following figure. This design is composed of three basic
parts:

e The channel filter digitally converts the incoming signal (491.52 MSPS) to near baseband (61.44
MSPS) using a classic multi-rate filter: the use of two half-band filters followed by a decimation
of 2 stage filter, which requires significantly fewer coefficients than a single large filter.

e The output section gain-controls the output for subsequent blocks which will use the data.

e The gain is controlled from the POWER_SCALE input.

[
il

FDATodl Cranrsi

Figure 47: Initial Lab3_1 Design

4. Click the Run simulation button to simulate the design.

In the following figure Sample Time Display is enabled with colors (right-click in the canvas > Sample
Time Display > Colors) and shows the design is clearly running at multiple data rates.

Figure 48: Lab3_1 Display After Simulation

The System Generator environment automatically propagates the different data rates through the
design. When a multi-rate design such as this is implemented in hardware, the most optimal
implementation is to use a clock at the same frequency as the data; however, the clock is abstracted

Model-Based DSP Design Using System Generator N Send Feedback 55
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=55

£ XILINX

Lab 3: Working with Multi-Rate Systems

away in this environment. The following methodology demonstrates how to create this ideal
implementation in the most efficient manner.

To efficiently implement a multi-rate (or multi-clock) design using System Generator you should
capture each part running at the same data rate (or clock frequency) in its own hierarchy with its own
System Generator token. The separate hierarchies should then be linked with FIFOs.

The current design has two obvious, and one less obvious, clock domains:

The gain control input POWER_SCALE could be configurable from a CPU and therefore can run
at the same clock frequency as the CPU.

The actual gain-control logic on the output stage should run at the same frequency as the
output data from the FIR. This will allow it to more efficiently connect to subsequent blocks in
the system.

The less obvious region is the filter-chain. Remember from Lab 1 that complex IP provided with
System Generator, such as the FIR Compiler, automatically takes advantage of over-clocking to
provide the most efficient hardware. For example, rather than use 40 multipliers running at 100
MHz, the FIR Compiler will use only 8 multipliers if clocked at 500 MHz (= 40*100/500). The
entire filter chain can therefore be grouped into a single clock domain. The first FIR Compiler
instance will execute at the maximum clock rate and subsequent instances will automatically
take advantage of over-sampling.

You will start by grouping these regions into different hierarchies.

5. Select all the blocks in the filter chain — all those to be in the same clock domain, including the
FDATool instances - as shown below.

6. Select Create Subsystem, also as shown in the figure below, to create a new subsystem.

Hm|

oo Gt

Figure 49: Create DDC Subsystem

Model-Based DSP Design Using System Generator N Send Feedback 56
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=56

& XILINX

ALL PROGRAMMABLE.

Lab 3: Working with Multi-Rate Systems

7. Select the instance name subsystem and change this to DDC to obtain the design shown.

ool

el

Bool 03

ot

Sutz
e e e
oo b arQg

* z

Dy

ol
Seale FIF Culput

98 2509 Fie_38 2508 T | Fis 16 1408
| reirterpret T cast —
inComected
Feintemret Ceormeet

BinPt FIR Ouaput

Figure 50: Lab3_1 with DDC Subsystem

Aound FIR Oubput

o

8. Select the components in the output path and create a subsystem named Gain Control.

Sing Wave

Sine Wavel

*

UFe_16.8
Iy I

double

¥

doutde

Doc

double
1

ooute
Ot

o —

Gain Contiol

Figure 51: Lab3_1 with Gain Control Subsystem

L

9. Finally, select the Gateway In instance POWER_SCALE and Constant to create a new subsystem
called CTRL. The final grouped design is shown below.

Model-Based DSP Design Using System Generator
UG948 (v2016.4) November 30, 2016

www.xilinx.com

| Send Feedback I

57

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=57

X X”‘INX Lab 3: Working with Multi-Rate Systems

_ [doubie

chuble

In3
double
Cutd Gain Conlio |

— —
Qutt >

Figure 52: Lab3_1 with Domain Subsystems

When this design is complete, the logic within each subsystem will execute at different clock
frequencies. The clock domains might not be synchronous with each other. There is presently nothing
to prevent incorrect data being sampled between one subsystem and another subsystem.

In the next step you will create asynchronous channels between the different domains to ensure data
will asynchronously and safely cross between the different clock domains when the design is
implemented in hardware.

Step 2: Creating Asynchronous Channels

In this step you will implement asynchronous channels between subsystems using FIFOs. The data in
FIFOs operates on a First-In-First-Out (FIFO) basis, and control signals ensure data is only read when
valid data is present and data is only written when there is space available. If the FIFO is empty or full
the control signals will stall the system. In this design the inputs will always be capable of writing and
there is no requirement to consider the case for the FIFO being full.

There are two data paths in the design where FIFOs are required:

e Data from CTRL to Gain Control.
e Data from DDC to Gain Control.

Model-Based DSP Design Using System Generator N Send Feedback 58
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=58

A
ALL PROGRAMMABLE.

Type FIFO in the Add Block dialog box.

> W N

a. Connect CTRL/Outl to FIFO/din.

Select FIFO from the menu to add a FIFO to the design.

b. Connect FIFO/dout to Gain Control/In1.

Right-click anywhere in the canvas and select Xilinx BlockAdd.

Lab 3: Working with Multi-Rate Systems

5. Make a copy of the FIFO instance (using Ctrl-C and Ctrl-V to copy and paste).

6. Connect the data path through instance FIFO1. Delete any existing connections to complete this

task.
a. Connect DDC/Out2 to FIFO1/din.

b. Connect FIFO1/dout to Gain Control/In3.

You have now connected the data between the different domains and have the design shown below.

?

cautie

dauble:

FIFO

1 In1

In2

double
Crutd

InZ

Sine Wave1
Sing: Wiave oo

h
a
5

FIFO

Cutd

Cud

Gain Conirol

Figure 53: Lab3_1 with FIFO Data Channels

Connect the data path through instance FIFO. Delete any existing connections to complete this task.

You will now connect up the control logic signals to ensure the data is safely passed between domains.

e From the CTRL block a write enable is required. This is not currently present and needs to be

created.

e From the DDC block a write enable is required. The data_tvalid from the final FIR stage may be

used for this.

Model-Based DSP Design Using System Generator

UG948 (v2016.4) November 30, 2016

www.xilinx.com

l Send Feedback I

59

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=59

X X”‘INX Lab 3: Working with Multi-Rate Systems

e The Gain Control must generate a read enable for both FIFOs. You will use the empty signal
from the FIFOs and invert it; if there is data available, this block will read it.

7. Double-click the CTRL block to open the subsystem.
8. Right-click in the canvas and use Xilinx BlockAdd to add these blocks:
a. Delay (Xilinx)
b. Relational
9. Select instance Out1l and make a copy (use Ctrl-C and Ctrl-V to cut and paste).
10. Double-click the Relational block to open the Properties Editor.
11. Use the Comparison drop-down menu to select a!=b and click OK.

12. Connect the blocks as shown in the following figure.

1 LUFix_18_8 [

*| In L 21 1)
Cut
Deealaay
[.q

“ e
Tar—*{(_2)
L 1] [T3

RAedatianal

Figure 54: Modified CTRL Subsystem

This will create an output strobe on Out2 which will be active for one cycle when the input changes. This
will be used as the write-enable from CTRL to the Gain Control (the FIFO block at the top level).

13. Click the Up to Parent toolbar button 4F to return to the top level.
14. Double-click the instance Gain Control to open the subsystem.
15. Right-click in the canvas and use Xilinx BlockAdd to add these blocks:
a. Inverter
b. Inverter (for a total of two inverters)
c. Delay (Xilinx)
16. Select the instance Outl and make a copy Out3 (use Ctrl-C and Ctrl-V to cut and paste).
a. Rename Out3 to DDC Read
17. Select instance Outl and make a copy Out3 (use Ctrl-C and Ctrl-V to cut and paste).

a. Rename Out3 to CTRL Read

Model-Based DSP Design Using System Generator N Send Feedback 60
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=60

X X”‘INX Lab 3: Working with Multi-Rate Systems

18. Select instance In1 and make a copy In4 (use Ctrl-C and Ctrl-V to cut and paste).
a. RenameIn4 to CTRL Empty

19. Connect the blocks as shown in the following figure.

il A et Bool 03 .
2z} & » f * Our (1)
In2 b
Inwertar Delay
' *a r - r -
In1 2 Fie 38 75003 - Fu 38 2508 = | Fis 16 1403 i
i an - reirterpret 7 ot — Our -
In3 Feintanprat Carver!
bt BinPt FIR Output FAound FIF Outpus
Scale FIR Culput
bl
. e D]
DOC_ Aead
Delayi
doubs “4 doutks
4 > ; w4
nal
CTRL_Empty CTRI_Resad

Irarter

Figure 55: Modified Gain Control Subsystem

e The FIFO empty signal from the top-level Gain Control FIFO (FIFO) block is simply an inverter
block used to create a read-enable for the top-level DDC FIFO (FIFO1). If the FIFO is not empty,
the data will be read.

e Similarly, the FIFO empty signal from the top-level DDC FIFO (FIFO1) is inverted to create a FIFO
read-enable.

e This same signal will be used as the new data_tvalid (which was In2). However, since the FIFO
has a latency of 1, this signal must be delayed to ensure this control signal is correctly aligned
with the data (which is now delayed by 1 through the FIFO).

20. Use the Up to Parent toolbar button “u* to return to the top level.

This shows the control signals are now present at the top level.

Model-Based DSP Design Using System Generator N Send Feedback 61
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=61

& XILINX

Lab 3: Working with Multi-Rate Systems
s dauble: o
Lbdn 2L
Cutz [eerpty[>
CTAL Hwe
dul[> Liite

In1 Cut1
c
dauble doubla
it In2 Dut

Laiae o
in3 DDG_Paad [»
dautle ..., R |

Cut2

v

din | CTRL_Empty CTRI_Read [+

Sine Wavel ergly [Gain Gontral
' onG W
ogguly
Are fl>

FIFO1

Figure 56: Modified Lab3_1 Design

You will now complete the final connections.

21. Connect the control path through instance FIFO. Delete any existing connections to complete this
task.

a. Connect CTRL/Out2 to FIFO/we.
b. Connect FIFO/empty to Gain Control/CTRL Empty.
c. Connect Gain Control/CTRL Readto FIFO/re.

22. Connect the control path through instance FIFO1. Delete any existing connections to complete this
task.

a. Connect DDC/Out1l to FIFOl/we.
b. Connect FIFOl/empty to Gain Control/In2.

¢. Connect Gain Control/DDC_Readto FIFOl/re.

Model-Based DSP Design Using System Generator N Send Feedback 62
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=62

X X”‘INX Lab 3: Working with Multi-Rate Systems

doubia

Outd ——p

bie

=]
]
¥
E
F
=
~
k.
a
g
v

fully Quz e —
In3 0. *
ou |2 dofibie |
| CTRL_Empty CTRL Read |— ———
M Gain Conirol a
doubia
bl
ouf T i 2t
doubla
ey
DOG >
“ful(y
e fuly
FIFD1

Figure 57: Final Lab3_1 Design

23. Click the Run simulation button to simulate the design and confirm the correct operation — you will
see the same results as Step 1 action 4.

In the next step, you will learn how to specify different clock domains are associated with each
hierarchy.

Step 3: Specifying Clock Domains

In this step you will specify a different clock domain for each subsystem.

1. Double-click the System Generator token to open the Properties Editor.
2. Select the Clocking tab.
3. Click Enable multiple clocks.

Note that the FPGA clock period and the Simulink system period are now greyed out. This option
informs System Generator that clock rate will be specified separately for each hierarchy. It is therefore
important the top level contains only subsystems and FIFOs; no other logic should be present at the top
level in a multi-rate design.

Model-Based DSP Design Using System Generator N Send Feedback 63
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=63

X X”‘INX Lab 3: Working with Multi-Rate Systems

=) B S

|4 System Generator: Lab3_1

¥ e a

Compilation ~ Clocking General

Enable multiple clocks

FPGA clock period (ns) : Clock pin location :

1e9/491.52e6

Provide clock enable clear pin
Simulink system period (sec) :
1/491.52e6

Perform analysis : Analyzer type :

Naone | |Timing -

Performance Tips ‘ l Generate ‘ l 0

-

| [ovm] [omn] (oo |

Figure 58: Enable Multiple Clock Domains

4. Click OK to close the Properties Editor.

You will now specify a new clock rate for the CTRL block. The CTRL block will be driven from a CPU
which executes at 100 MHz.

5. Select the System Generator token.
6. Use Ctrl-C or right-click to copy the token.

You will specify a new clock rate for the CTRL block. This block will be clocked at 100 MHz and accessed
using an AXI4-Lite interface.

7. Double-click the CTRL block to navigate into the subsystem.

8. Use Ctrl-V or right-click to paste a System Generator token into CTRL.

9. Double-click the System Generator token to open the Properties Editor.

10. Select the Clocking tab.

11. Deselect Enable multiple clocks (this was inherited when the token was copied).
12. Change the FPGA clock period to 1€9/100e6.

13. Change the Simulink system period to 1/100e6.

Model-Based DSP Design Using System Generator N Send Feedback 64
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=64

X X”‘INX Lab 3: Working with Multi-Rate Systems

4. System Generator: Lab3_1/CTRL E [=] @
po— e e
Wi e

Compilation ~ Clocking General

|| Enable multiple clocks

FPGA clock period (ns) : Clock pin location :

1e9/100e6

[Pravide clock enable clear pin
Simulink system period (sec) :
1/100e6

Perform analysis : Analyzer type :

None * |Timing = | Launch...

Performance Tips ‘ lGenerate‘ l Ok ‘ l Apply ‘ l Cancel I l Help ‘

Figure 59: CTRL Clock Domain

14. Click OK to close the Properties Editor.
15. Double-click the Gateway In instance POWER_SCALE to open the Properties Editor.
16. Change the Sample period to 1/100e6 to match the new frequency of this block.

In the Implementation tab, note that the Interface is set to AXI4-Lite. This will ensure this port is
implemented as a register in an AXI4-Lite interface.

17. Click OK to close the Properties Editor.
18. Once again, select and copy the System Generator token.
19. Use the Up to Parent toolbar button to return to the top level.

You will now specify a new clock rate for the Gain Control block. The Gain Control block will be
clocked at the same rate as the output from the DDC, 61.44 MHz.

20. Double-click the Gain Control block to navigate into the subsystem.
21. Use Ctrl-V or right-click to paste a System Generator token into Gain Control.
22. Double-click the System Generator token to open the Properties Editor.

23. Select the Clocking tab.

Model-Based DSP Design Using System Generator N Send Feedback 65
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=65

X X”‘INX Lab 3: Working with Multi-Rate Systems

24. Change the FPGA clock period to 1€9/61.44¢e6.
25. Change the Simulink system period to 1/61.44e6.

4 System Generator: Lab3_1/Gain Control E [=] @
po— o
000y =
Compilation Clocking General
[| Enable multiple clocks
FPGA clock period (ns) : Clock pin location :

1e9/61.44e6

[| Provide clock enable clear pin
Simulink system period (sec) :
1/61.44e6

Perform analysis : Analyzer type :

Maone - Timing v'

F'erformanceTips] [Generatel [OK l l Apply] l Cancel] l Help l

Figure 60: Gain Control Clock Domain

26. Click OK to close the Properties Editor.

Note the output signals are prefixed with M_AXI_DATA_. This will ensure that each port will be
implemented as an AXI4 interface, since the suffix for both signals is a valid AXI4 signal name (tvalid
and tdata).

27. Use the Up to Parent toolbar button to return to the top level.

The DDC block will use the same clock frequency as the original design, 491 MHz, as this is the rate of
the incoming data.

28. In the top-level design, select and copy the System Generator token.
29. Double-click the DDC block to navigate into the subsystem.
30. Use Ctrl-V or right-click to paste a System Generator token into DDC.

31. Double-click the System Generator token to open the Properties Editor.

Model-Based DSP Design Using System Generator N Send Feedback 66
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=66

& XILINX

Lab 3: Working with Multi-Rate Systems

32. Select the Clocking tab.

33. Deselect Enable multiple clocks. The FPGA clock period and Simulink system period are now set to

represent 491 MHz.

4 System Generator: Lab3_1/DDC E [=] @
po— —— .
1
Compilation Clocking General
["] Enable muttiple clocks
FPGA clock period (ns) : Clock pin location :

1e9/491.52e6

[] Provide clock enable clear pin
Simulink system period (sec) :
1/491.52e6

Perform analysis : Analyzer type :

Mane - Timing v-

Performance Tips lGenerate l OK l [Apply l [Cancel l l Help]

Figure 61: DDC Clock Domain

34. Click OK to close the Properties Editor.
35. Use the Up to Parent toolbar button to return to the top level.
36. Save the design.

37. Click the Run simulation button to simulate the design and confirm the same results as earlier.

The design will now be implemented with three clock domains.

38. Double-click the top-level System Generator token to open the Properties Editor.
39. Press Generate to compile the design into a hardware description.

40. Click Yes to dismiss the simulation warning.

41. When generation completes, click OK to dismiss the Compilation status dialog box.

42. Click OK to dismiss the System Generator token.

Model-Based DSP Design Using System Generator N Send Feedback
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

67

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=67

X X”‘INX Lab 3: Working with Multi-Rate Systems

43. Open the file C:\SysGen Tutorial\Lab3\IPP QT MCD 0001\DDC HB hier\ip\hdl\
lab3 1.vhd to confirm the design is using three clocks, as shown below.

entity lab3 1 is
port (
ctrl clk : in std logic;
ddc _clk : in std logic;
gain control clk : in std logic;

Summary

In this lab, you learned how to create separate hierarchies for portions of the design which are to be
implemented with different clock rates. You also learned how to isolate those hierarchies using FIFOs to
ensure safe asynchronous transfer of the data and how to specify the clock rates for each hierarchy.

The following solutions directory contains the final System Generator (*.slx) files for this lab. The
solutions directory does not contain the IP output from System Generator or the files and directories
generated when Vivado is executed.

C:/SysGen Tutorial/Lab3/solution

The results from Stepl are provided in file Lab3_1_sol.sIx

The results from Step2 are provided in file Lab3_2_sol.sIx

The final results from Step3 are provided in file Lab3_3_sol.sIx

Model-Based DSP Design Using System Generator N Send Feedback 68
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=68

& XILINX

ALL PROGRAMMABLE.

Lab 4: Working with Workspace Variables

Introduction

In this lab, you will learn how to use workspace variables to easily parameterize your System Generator
designs.

Objectives

After completing this lab, you will be able to use workspace variables to create paramaterizable and
customizable designs.

Procedure

In this lab you will review how a design is parameterized using workspace variables.

Model-Based DSP Design Using System Generator N Send Feedback 69
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=69

£ XILINX

Lab 4: Working with Workspace Variables

Step 1: Using Workspace Variables

In this step you review a design and re-create the design using workspace variables.

1. Invoke System G

enerator.

e On Windows systems select Start > All Programs > Xilinx Design Tools > Vivado 2016.3 >
System Generator > System Generator 2016.3.

e On Linux Systems, type sysgen at the command prompt.

2. Navigate to the Lab4 folder: cd C:\SysGen Tutorial\Lab4.

3. At the command prompt, type open Lab4 1.slx

This opens the Simulink design shown in the following figure. In the Simulink Editor menu, select
Display > Signals & Ports > Port Data Types and you can see the input to the FIR filter is a 16-bit
fixed-point data type.

&

SysiEem

e,

Pulse Generator

Fix_16_14

Gateway In

Hool dioubls

Gateway Out

.
P

Hool dioubls
clata_idata_r=al clata_tvalid —F

Gateway Outl

.
P

Fix_24_14 dioubls
o S - S

Gateway Cut2
FIR Compiler 7.2
Figure 62: Initial Lab4_1 Design
4. Click the Run simulation button to simulate the design.
5. Double-click the Scope to examine the signals.
O TIP: You may need to zoom in and adjust the scale in View > Configuration

Properties to view the signals in detail.
Model-Based DSP Design Using System Generator Send Feedback 70
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=70

& X”‘INX Lab 4: Working with Workspace Variables

In the figure below you can review the output which shows a standard impulse response from the filter.
In this case the peak value is approximately 50.

4] Scope E'@
50 s D%A B a8 -

0

Time offset: 0

Figure 63: Lab4_1 Initial Scope Results

You will now replace some of the attributes of this design with workspace variables. First, you need to
define some workspace variables.

6. In the MATLAB Command Window:
a. EnterMyCoeffs = firl (30, 0.5)

b. Enter num bits 24

c. Enterbin pt = 8

Model-Based DSP Design Using System Generator N Send Feedback 71
UG948 (v2016.4) November 30, 2016 www.xilinx.com I—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=71

& X”‘INX Lab 4: Working with Workspace Variables

Command Window
»>>»> MyCoeffs = firl (30, 0.5) -

MyCoeffs =
Column=s 1 through &
-0.0017 0.0000 0.0029 -0.0000 -0.00&7 0.0000
Column=s 7 through 12
0.0141 -0.0000 -0.0268 0.0000 0.0491 -0.0000
Column=s 13 through 138
-0.09&69 0.0000 0.3158 0.5008 0.3158 0.0000
Column=s 1% through 24
-0.09&69 -0.0000 0.0491 0.0000 -0.0268 -0.0000 i
Column=s 25 through 30
0.0141 0.0000 -0.0067 -0.0000 0.0029 0.0000
Column 31

-0.0017

|
[¥]
s

>> num bits =

m

num bits =

24

m

> bin pt =
bin pt =

8
(=

1]

f—s,>>|

Figure 64: Defining Workspace Variables

7. Indesign Lab4_1, double-click the Gateway In block to open the Properties Editor.

8. In the Fixed-Point Precision section, replace 16 with num bits and replace 14 with bin pt, as
shown below.

Model-Based DSP Design Using System Generator N Send Feedback
UG948 (v2016.4) November 30, 2016 www.xilinx.com I—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=72

& XILINX

ALL PROGRAMMABLE.

Lab 4: Working with Workspace Variables

Gateway In (Xilinx Gateway In)

(= &=

type.

ports.

Gateway in block. Converts inputs of type Simulink integer, single,
double and fixed-point to Xilinx fixed-point or floating-point data

Hardware notes: In hardware these blocks become top level input

Basic Implementation

Number of bits num_bits

Exponent width | B

Output Type

(") Boolean (@) Fixed-point () Floating-point

Hrithmetictype’Signed (2's comp) V]

Fixed-point Precision

Binary point bin_pt

Floating-point Precision

Single Double Custom

Fraction width | 24

Quantization:

() Truncate (@) Round (unbiased: +/- Inf)
Overflow:

Wrap 0 Saturate Flag as error

Sample period 1

oK

] l Cancel I [Help] l Apply

Figure 65: Lab4 Gateway In Properties

9. Click OK to save and exit the Properties Editor.

10. Double-click the instance FIR Compiler 7.2.1.

11. In the Filter Specification tab, replace the coefficients (Coefficient Vector) with MyCoeffs as

shown below.

Model-Based DSP Design Using System Generator

UG948 (v2016.4) November 30, 2016

www.xilinx.com

| Send Feedback I

73

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=73

& XILINX

Lab 4: Working with Workspace Variables
5% FIR Compiler 7 2 1 (Xilinx FIR Compiler 7.2) = ol ™
Filter Specification | Channel Specification | Implementation Detailed Implementation | Interface | Advanced |

Filter Coefficients
Coefficient Vector :

MyCoeffs

Number of Coefficient Sets @ 1
[] use Reloadable Coefficients

Filter Specification

Filter Type :
Rate Change Type : Integer
Interpolation Rate Value : |1

Decimation Rate Value ; |1

Zero Pack Factor : 1

ok || cancel || mep || appy

Figure 66: FIR Compiler Properties Editor

12. In the Implementation tab of the Properties Editor, use the Quantization drop-down menu to
select Maximize_Dynamic_Range.

13. Click OK to save and exit the Properties Editor.
14. Save the design.
15. Press the Run simulation button to simulate the design.

When simulation completes, note the input to the FIR is now a 24-bit fixed-point data type. This is now
defined by the workspace variables num bits and bin pt and can now be easily updated directly
from the MATLAB console or from a script executed in the console.

16. Double-click the Scope to examine the signals.

Model-Based DSP Design Using System Generator N Send Feedback 74
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=74

X X”‘INX Lab 4: Working with Workspace Variables

O TIP: You may need to zoom in and adjust the scale in View > Configuration
Properties to view the signals in detail.

The impulse response is now defined by the values on MyCoef fs and only has a peak value of
approximately 0.5.

17. In the Lab4_1 design use File > Close > Close Model to exit the Lab4_1 design.
18. In the MATLAB console type bdclose all.

19. In the MATLAB console type clear to remove the variables from the workspace.
20. At the command prompt, type open Lab4 1.slx

21. Click the Run simulation button to simulate the design.

This results in a numbers of errors since the workspace variables are no longer defined.

22. Exit the Lab4 1.slx Simulink worksheet.

Summary

In this lab, you learned how to use workspace variables to enhance your overall efficiency when using
System Generator.

Solutions to this lab can be found in the following location:

C:/SysGen Tutorial/Lab4/solution

Model-Based DSP Design Using System Generator N Send Feedback
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

75

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=75

X X”‘INX Lab 5: Modeling Control with M-Code

Lab 5: Modeling Control with M-Code

Introduction

In this lab you will be creating a simple Finite State Machine (FSM) using the MCode block to detect a
sequence of binary values 1011. The FSM needs to be able to detect multiple transmissions as well, such
as 10111011.

Objectives

After completing this lab, you will be able to create a Finite State Machine using the MCode block in
System Generator.

Procedure

In this lab you will create the control logic for a Finite State Machine using M-code. You will then
simulate the final design to confirm the correct operation.

Step 1: Designing Padding Logic

1. Launch System Generator and change the working directory to:
C:\SysGen Tutoriall\Lab5

2. Open thefile Lab5 1.sl1x.

You will see the following incomplete diagram.

&

(OO 0O f——m s e[Outl——»

Repesting Input Found1
Sequence Output of Block Ram
Ster State Machine

Figure 67: System Generator Block

Model-Based DSP Design Using System Generator N Send Feedback 76
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=76

& XILINX

Lab 5: Modeling Control with M-Code
3. Add an MCode block from the Xilinx Blockset/Index library.
a. Do not wire up the block yet.

b. You will first edit the MATLAB function to create the correct ports and function name.

4. Double-click the MCode block and click Edit M-File, as shown in the following figure.

g
3¢ MCode (Xilinx MCode Block) [E=SE

Pass input values to a MATLAB function for evaluation in Xilinx fixed-
point type. The input ports of the block are input arguments of the

function. The output ports of the block are output arguments of the
function.

Basc | Interface | Advanced | Implementation |
Block Interface
MATLAB function

ximax
Browse... Edit M%

Explicit Sample Period

[7] Specify explicit sample period

1

Figure 68: Edit M-File Option

5. Edit the default MATLAB function to include the function name state machine and the input din
and output matched.

6. You can now delete the sample M-code.

7

~" Editor - C:\ug948-data-files\lab4\state_machine.m EM

FILE | EDIT NAVIGATE Breakpoints Run Runand Runand @Ammnce

] | } sawonms‘ RUN H
O

“[state_machinem x|

1 function matched = state_machine(din)
2

| state machine tn 2 Col 3 [OWR _:

Figure 69: Initial State Machine Code

Model-Based DSP Design Using System Generator N Send Feedback 77
UG948 (v2016.4) November 30, 2016 www.xilinx.com I—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=77

& X”‘INX Lab 5: Modeling Control with M-Code

7. After you make the edits, use Save As to save the MATLAB file as state machine.mto the Lab5
folder.

a. Inthe MCode Properties Editor, use the Browse button to ensure that the MCode block is
referencing the local M-code file (state machine.m).

8. In the MCode Properties Editor, click OK.
You will see the MCode block assume the new ports and function name.

9. Now connect the MCode block to the diagram as shown below:

&

Generstor

[OCTCL AT T oL+ —fon e i s>l

Repesting Input matched
Segmc MCode Output of Block Ram
Stair State Machine

Figure 70: Connected MCode Block

You are now ready to start coding the state machine. The bubble diagram for this state machine is
shown in the following figure. This FSM has five states and is capable of detecting two sequences in
succession.

Model-Based DSP Design Using System Generator N Send Feedback 78
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=78

£ XILINX Lab 5: Modeling Control with M-Code

ALL PROGRAMMABLE.

Din=1

Matched=0

Din=1
Din=0
Din=1

Matched=1
Matched=0
Din=0
Din=1

Din=0

Din=0

Matched =0

Din=1

Matched =0

Figure 71: State Machine

10. Edit the M-code file, state machine.m, and define the state variable using the Xilinx x1 state
data type as shown below. This requires that you declare a variable as a persistent variable. The
x1 state function requires two arguments: the initial condition and a fixed-point declaration.

Because you need to count up to 4, you need 3 bits.
persistent state, state = xl1 state(0, {x1lUnsigned, 3, 0});

Model-Based DSP Design Using System Generator N Send Feedback 79
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=79

& X”‘INX Lab 5: Modeling Control with M-Code

11. Use a switch-case statement to define the FSM states shown. A small sample is provided below to
get you started.

Note: You need an otherwise statement as your last case.

switch state

case 0
if din == 1
state = 1;
else
state = 0;
end

matched = 0;
12. Save the M-code file and run the simulation. The waveform should look like the following figure.

You should notice two detections of the sequence.

' N
Figures - Output of Block Ram State Machine (el i

2o @&« i 0%%| "B0BF(0 | x

“ [Output of Block Ram State Mac... x _

Figure 72: Lab5 Waveforms

Summary

In this exercise you learned how to create control logic using M-Code. The final design may be used to
create an HDL netlist, in the same manner as designs created using the Xilinx Blocksets.

Solutions to this lab can be found in the following location:
C:/SysGen Tutorial/Lab5/solution

Model-Based DSP Design Using System Generator N Send Feedback 80
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=80

& XILINX

ALL PROGRAMMABLE.

Lab 6: Modeling Blocks with HDL

Introduction

In this lab exercise you will import an RTL design into System Generator as a black box.

e A black box allows the design to be imported into System Generator even though the
description is in Hardware Description Language (HDL) format.

Objectives

After completing this lab, you will be able to:

e Import an RTL HDL description into System Generator for DSP.

e Configure the black box to ensure the design can be successfully simulated.

Step 1: Import RTL as a Black Box

1. Invoke System Generator and from the MATLAB console, change the directory to:
C:\SysGen Tutoriall\Labé6

The following files are located in this directory:
e Lab6 1.slx -A Simulink model containing a black box example.

e transpose fir.vhd - Top-level VHDL for a transpose form FIR filter. This file is the VHDL
that is associated with the black box.

e mac.vhd— Multiply and adder component used to build the transpose FIR filter.
2. Type open Lab6 1.slx.
3. Open the subsystem named Down Converter.
4. Open the subsystem named Transpose FIR Filter Black Box.

At this point, the subsystem contains two input ports and one output port. You will add a black box
to this subsystem:

Model-Based DSP Design Using System Generator N Send Feedback 81
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=81

£ XILINX Lab 6: Modeling Blocks with HDL

ALL PROGRAMMABLE.

7 S
bi black_box_examplel/Down Converter/Transpose FIR Filter Black Box { =HC] g
File Edit View Display Diagram Simulation Analysis Code Tools Help
] 7] = () (
-8 a e w@-=2 40P (ORGE™ >~
Transpose FIR Filter Black Box |
@® |["&black_box_examplel » Pa|Down Converter b |Pa| Transpose FIR Filter Black Box hd
@
&
= O
In
Out
@
rst
»
Ready 130% FixedStepDiscrete
\

Figure 73: Lab6_1 Design: Transpose FIR Filter Black Box

5. Right-click the design canvas, select Xilinx BlockAdd, and add a Black Box block to this subsystem.
A browser window opens, listing the VHDL source files that can be associated with the black box.

6. From this window, select the top-level VHDL file transpose fir.vhd. This is illustrated in the
following figure:

Select the file that contains the entity description for the black box @
@ v| | » Computer » OSDisk (C:) » SysGen_Tutorial » Labé v‘ +y || Search Lab6 P |
Organize ~ New folder = 0 e

~ Favorites Name Date modified Type
® macvhd 11/8/2013 10:14 PM VHD File
- Libraries @) transpose_firvhd 8/6/2014 411PM VHD File
& Computer
@ Network
4| 1l | b
File name: transpose_firvhd A [AII Supported HDL Files (*x ']
l Open ‘v] l Cancel l

Figure 74: Transpose Filter HDL

Model-Based DSP Design Using System Generator N Send Feedback 82
UG948 (v2016.4) November 30, 2016 www.xilinx.com I—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=82

& XILINX

ALL PROGRAMMABLE.

Lab 6: Modeling Blocks with HDL

The associated configuration M-code transpose fir config.m opensin an Editor for

modifications.

7. Close the Editor.

8. Wire the ports of the black box to the corresponding subsystem ports and save the design.

din

rst

rst

Black Box

Figure 75: Transpose Filter as a Black Box

9. Double click the Black Box block to open this dialog box:

3¢ Black Box5 (Xilinx Black Box) = [B[]

Incorporates black box HDL and simulation model into a System
Generator design.

‘fou must supply a Black Box with certain information about the HOL
component you would like to bring into System Generator. This
information is provided through a Matlab function.

When "Simulation mode” is set to "Inactive”, you will typically want to
provide a separate simulation model by using a Simulation Multiplexer.
When "Simulation mode” is set to "External co-simulator”, you must
indude & ModelSim block in the design.

Basic Implementation

Block configuration m-function

transpose_fir_config|
Simulation mode:
@ Inactive () Vivado Simulator () External co-simulator

HDL co-simulator to use (spedfy helper blodk by name)

[7] verbose

o) (oo) [) oo)

Figure 76: Black Box Properties Editor

Model-Based DSP Design Using System Generator
UG948 (v2016.4) November 30, 2016 www.xilinx.com

| Send Feedback I

83

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=83

€ X”‘INX Lab 6: Modeling Blocks with HDL

The following are the fields in the dialog box:

¢ Block configuration m-function: This specifies the name of the configuration M-function for
the black box. In this example, the field contains the name of the function that was generated by
the Configuration Wizard. By default, the black box uses the function the wizard produces. You
can however substitute one you create yourself.

e Simulation mode: There are three simulation modes:

o Inactive: When the mode is Inactive, the black box participates in the simulation by ignoring
its inputs and producing zeros. This setting is typically used when a separate simulation
model is available for the black box, and the model is wired in parallel with the black box
using a simulation multiplexer.

o Vivado Simulator: When the mode is Vivado Simulator, simulation results for the black box
are produced using co-simulation on the HDL associated with the black box.

o External co-simulator: When the mode is External co-simulator, it is necessary to add a
ModelSim HDL co-simulation block to the design, and to specify the name of the ModelSim
block in the HDL co-simulator to use field. In this mode, the black box is simulated using
HDL co-simulation.

10. Set the Simulation mode to Inactive and click OK to close the dialog box.

11. Move to the design’s top level and run the simulation by clicking the Run simulation button ‘& ;
then double-click the Scope block.

12. Notice the black box output shown in the Output Signal scope is zero. This is expected because the
black box is configured to be Inactive during simulation.

Model-Based DSP Design Using System Generator N Send Feedback 84
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=84

£ XILINX

ALL PROGRAMMABLE.

Lab 6: Modeling Blocks with HDL

4| Scope

AL IEF R IE:

Input Signal

Output Signal

0 50 100 150 200

Time offset: 0

250 300 350 400

E=8 FoR =

450 500

Figure 77: Lab6_1 Scope with Inactive Simulation

13. From the Simulink Editor menu, select Display > Signals & Ports > Port Data Types to display the

port types for the black box.

14. Compile the model (Ctrl-D) to ensure the port data types are up to date.

Notice that the black box port output type is UFix_26_0. This means it is unsigned, 26-bits wide, and
has a binary point 0 positions to the left of the least significant bit.

15. Open the configuration M-function transpose_fir_config.m and change the output type from

UFix_26_0 to Fix_26_12. The modified line (line 26) should read:

dout port.setType('Fix 26 12');

Continue the following steps to edit the configuration M-function to associate an additional HDL

file with the black box.

16. Locate line 65: this block.addFile ('transpose fir.vhd');

17. Immediately above this line, add the following: this block.addFile ('mac.vhd');

Model-Based DSP Design Using System Generator
UG948 (v2016.4) November 30, 2016

www.xilinx.com

| Send Feedback I

85

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=85

£ XILINX

Lab 6: Modeling Blocks with HDL

18. Save the changes to the configuration M-function and close the file.

19. Click the design canvas and recompile the model (Ctrl-D).

Your Transpose FIR Filter Black Box subsystem should display as follows:

?—I—bdin)
Fix_26 12
dout » 1)
Boal rst Cut
Black Box

Figure 78: Updated Transpose Filter

20. From the Black Box block parameter dialog box, change the Simulation mode field from Inactive to

Vivado Simulator and then click OK.

21. Move to the top-level of the design and run the simulation.

22. Examine the scope output after the simulation has completed.

Notice the waveform is no longer zero. When the Simulation Mode was Inactive, the Output Signal

scope displayed constant zero. Now, the Output Signal shows a sine wave as the results from the

Vivado Simulation.

23. Right click the Output Signal display and select Configuration Properties. In the Main tab, set Axis
Scaling to the Auto setting. You should see a display similar to that shown below.

Model-Based DSP Design Using System Generator

UG948 (v2016.4) November 30, 2016 www.xilinx.com

l Send Feedback I

86

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=86

£ XILINX

ALL PROGRAMMABLE.

Lab 6: Modeling Blocks with HDL

4| Scope

20| aw@ 0% P a kB

Input Signal

Output Signal

-1000

Time offset: 0

0 50 100 150 200 250 300 350 400 450

E=8 FoR =

-]

Figure 79: Lab6_1 Scope with Vivado Simulation

Summary

In this exercise you learned how to model blocks in System Generator using HDL by incorporating an
existing VHDL RTL design. You learned the importance of matching the data types of the System
Generator model with those of the RTL design and how the RTL design is simulated within System

Generator.

Solutions to this lab can be found in the following location:

C:/SysGen Tutorial/Lab6/solution

Model-Based DSP Design Using System Generator

UG948 (v2016.4) November 30, 2016 www.xilinx.com

| Send Feedback I

87

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=87

& XILINX

ALL PROGRAMMABLE.

Lab 7: Modeling Blocks with C Code

Introduction

The System Edition of the Vivado® Design Environment includes the Vivado HLS feature, which has the
ability to transform C/C++ design sources into RTL. System Generator has a Vivado HLS block in the
Xilinx Blockset/Control Logic and Xilinx Blockset/Index libraries that enables you to bring in C/C++
source files into a System Generator model.

Objectives

After completing this lab, you will be able to incorporate a design, synthesized from C, C++ or SystemC
using Vivado HLS, as a block into your MATLAB design.

Procedure

In this exercise you will first synthesize a C file using Vivado HLS. You will operate within a Vivado DSP
design project, using a design file from MATLAB along with an associated HDL wrapper and constraint
file. In Step 2, you incorporate the output from Vivado HLS into MATLAB and use the rich simulation
features of MATLAB to verify that the C algorithm correctly filters an image.

Model-Based DSP Design Using System Generator N Send Feedback 88
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=88

& XILINX

ALL PROGRAMMABLE.

Lab 7: Modeling Blocks with C Code

Step 1: Creating a System Generator Package from Vivado HLS

1. Invoke Vivado HLS: Start > All Programs > Xilinx Design Tools > Vivado 2016.3 > Vivado HLS >

Vivado HLS 2016.3.

2. Select Open Project in the welcome screen and navigate to the Vivado HLS project directory
C:\SysGen Tutoriall\Lab7\hls project as shown in the following figure.

VIVADO!

HLS

Quick Start

4\ Fel

Create New Project Open Project
Documentation
T — Fall =
Tutorials User Guide

3. Click OK to open the project.

XILINX

ALL PROGRAMMABLE.

Browse For Folder

g 4 | SysGen_Tutorial
>), Labl
>), Lab2
> | Lab3
>). Lab4
> | Labb
>), Labb
4 | lab7y
f 4| | hls_project
4l cnlitinnl

(|

Folder: hls_project

Make New Folder

0K] ’ Cancel

Figure 80: Vivado HLS Project

Model-Based DSP Design Using System Generator

UG948 (v2016.4) November 30, 2016

www.xilinx.com

| Send Feedback I 89

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=89

& XILINX

ALL PROGRAMMABLE.

Lab 7: Modeling Blocks with C Code

4. Expand the source folder in the Explorer pane (left-hand side) and double-click the file
MedianFilter.cpp to view the contents of the C++ file as shown in the following figure.

5 Explorer i3
=% hls_project
! Includes
= Source
[¢ MedianfFilter.cpp
8= Test Bench
= solution1
constraints
W directives.tcl
W script.cl
= csim
& build
= report

v = O||[4 MedianFilter.cpp 3 =5

1#include "MedianFilter.h" B
2 #define WINDOW_SIZE 3

3 typedef unsigned char PixelType;

4

5 #define PTX_SWAP(a,b) { PixelType temp=(a);{(a)=(b);(b)=temp; }

6 #define PIX_SORT(a,b) { if ((a)>(b)) PIX_SWAP((a),(b)); }

7

8PixelType OptMedian9(PixelType * p)

9{

16 PTX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]1)
11 PIX_SORT(p[@], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7])
12 PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8])
13 PIX SORT(p[@], p[3]) ; PIX SORT(p[5], p[8]) ; PIX SORT(p[4]1, p[7])

m

14 PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1], p[4]) ; PIX_SORT(p[2], p[5])
15 PTX_SORT(p[4], p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4])
6 PIX_SORT(p[4], p[2]} ;

17 return(p[4]) ;
8

20 PixelType Mean(PixelType* buffer)

214 -
4

Figure 81: C++ Source File

This file implements a 2-Dimensional median filter on 3x3 window size.

5. Synthesize the source file by right-clicking on solution1 and selecting C Synthesis > Active
Solution as shown in the following figure.

[Explorer &3
4 125 his_project
» Y Includes
4 = Source

[¢ MedianFilter.cpp

» = Test Bench

= solution” ..
- & Solution Settings...

4 # const|

" = O|[[8 MedianFilter.cpp =5

1#include "MedianFilter.h" -
2 #define WINDOW_SIZE 3
3 typedef unsigned char PixelType;

il

4
S5 #define PIX_SWAP(a,b) { PixelType temp=(a);(a)=(b);(b)=temp; }
6#define PIX_SORT(a,b) { if ((a)>(b)) PIX_SWAP((a),(b)); }

OptMedian9(PixelType * p)

W& dir Rename

& sarf B Copy ORT(p[1], p[2]) ; PIX_SORT(p[4], p[5])

& csim | & Paste ORT(p[e], p[1]) ; PIX_SORT(p[3], p[4])
% Delete ORT(p[1], p[2]) ; PIX_SORT(p[4], p[5])
+ = bul NPT/nlal o021\ - DTYX SORT(p[5], p[8])
> refl C Synthesis » | B+ Active Solution :SDRT(p[l], p[41)
C/RTL Cosimulation B All Solutions _SORT(p[4]1, p[2])

Export RTL B Select Solutions...

n(p[4 ;
Open Report 4

19
20PixelType Mean(PixelType* buffer)
21{

P

Figure 82: HLS Synthesis

When the synthesis completes, Vivado HLS displays this message:

Finished C synthesis.

Now you will package the source for use in System Generatorfor.

Model-Based DSP Design Using System Generator
UG948 (v2016.4) November 30, 2016 www.xilinx.com

5 PIX_SORT(p[7], p[8]) ;
5 PIX_SORT(p[6], p[7]) ;
5 PIX_SORT(p[7], p[8]) ;
5 PIX_SORT(p[4], p[7]) ;
5 PIX_SORT(p[2], p[5]) ;
5 PIX_SORT(p[6]1, p[4]) ;

l Send Feedback I

90

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=90

€ X”‘INX Lab 7: Modeling Blocks with C Code

6. Right-click solutionl and select Export RTL.

7. Set Format Selection to System Generator for DSP as shown in the following figure and click OK.

» | Export RTL Dialog =5

Export RTL
por &

Format Selection

lSystem Generator for DSP v‘

Options

| Evaluate l‘u’erilog vl

[] Do not show this dialog box again.

[OK l l Cancel

Figure 83: Export HLS IP to System Generator

When the Export RTL process completes, Vivado HLS displays this message:
Finished export RTL.

8. Exit Vivado HLS.

Model-Based DSP Design Using System Generator N Send Feedback 91
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=91

& XILINX

ALL PROGRAMMABLE.

Lab 7: Modeling Blocks with C Code

Step 2: Including a Vivado HLS Package in a System Generator
Design

1. Launch System Generator and open the Lab7 1.s1x file in the Lab7 folder. This should open the

LA

model as shown in the following figure.

Constant
start k- -
e

R .
rewd -2

E—bamn e pixel
G o2 g - -
R———" ~

Moy Image RGBZY LineButier

Figure 84: Lab7_1 Design

» Ot i pimal

Noisy Input Image

Gatevrui Out |:|

Gateway Oul
meea]__oul——

Gateway Out?
Gateway Oui
'
i Gateway Oud Scope
H
;

Output Delayl
Filiered Image

Add a Vivado HLS block by right-clicking anywhere on the canvas workspace.

Select Xilinx BlockAdd.
Type Vivado HLS in the Add block dialog box.

Select Vivado HLS as shown in the figure below.

Model-Based DSP Design Using System Generator

UG948 (v2016.4) November 30, 2016

www.xilinx.com

| Send Feedback I 92

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=92

€ X”‘INX Lab 7: Modeling Blocks with C Code

> Out) pixal
= =
i
Constant i Moisy Input Image
car}--> Add block Vivado HLS|
g
A Vivado HLS >
owl f--=
PR T S 1N :
G v - -
PR \
B - .J Lal
Mmsy Image o -
RGB2 LineButier o
i
i d
- Out Z9 > pimal
Cutput Doty
Filtered Image

Figure 85: Adding a Vivado HLS Block

6. Double-click the Vivado HLS block to open the Properties Editor.

7. Use the Browse button to select the solution created by Vivado HLS in Strep 1, at

C:/SysGen Tutorial/Lab7/hls project/solutionl,as shown in Figure 86: Importing
Vivado HLS IP.

8. Click OK to import the Vivado HLS IP.

3¢ Vivado HLS (Xilinx High Level Synth.. | o | @ || &3 |

This block allows including C,C++ and SystemC source files in
System Generator for DSP designs.

Solution I_Tutorial/Lab7/hls_project/solution1’

[] use ¢ simulation model if available

|| pisplay signal types

Output Sample Times[SimuIink system period 'l

ok || cancel || melp || apply

Figure 86: Importing Vivado HLS IP

Model-Based DSP Design Using System Generator N Send Feedback 93
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/_l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=93

& XILINX

ALL PROGRAMMABLE.

Lab 7: Modeling Blocks with C Code

9. Connect the input and output ports of the block as shown in the following figure.

> Out B pixel
Inp
Constant
= el ——— ou——|
star Gateway Out
Lo st ———oul——
rowl -—|_. Gateway Outl
Med
o on By ————__ou———
Gateway Out?
rewg I v > Out——
Gateway Cutd
RO Vsp vid > Out——*
| 4
RGE2Y LineFusffer Vivado HLS Gateway Out Soope
= oul—> 7° [
Output Doyt
Flltered Image

Figure 87: Completed Lab7_1 Design

10. Navigate into the Noisy Image sub-system and double-click the Image From File block 1ena.png
to open the Source Block Parameters dialog box.

11. Use the Browse button to ensure the file name correctly point to the file 1ena. jpg as shown
below.

Model-Based DSP Design Using System Generator
UG948 (v2016.4) November 30, 2016 www.xilinx.com

94

| Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=94

& X”‘INX Lab 7: Modeling Blocks with C Code

& Source Block Parameters: Image From File @
Image From File
Reads an image from a file.
Use the File name parameter to specify the image file you want

to import into your model. Use the Sample time parameter to
set the sample period of the block.

Main Data Types

Parameters

File name: C:\SysGen_Tutaorial\Lab7\lena.jpg

Sample time: ImSize*ImSize

Image signal: [Separate color signals ']

QOutput port labels: R|G|B

[OK H Cancel H Help H Apply

Figure 88: Input Image Location

12. Click OK to exit the Source Block Parameters dialog box.
13. Use the toolbar button Up to Parent 4P to return to the top level.
14. Save the design.

15. Simulate the design and verify the image is filtered, as shown in the following figures.

Model-Based DSP Design Using System Generator N Send Feedback 95
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=95

& XILINX

Lab 7: Modeling Blocks with C Code
B Noisy Input Image ' = | @ | &2 | | B Filtered Image = "
File Tools View Simulation Help > File Tools View Simulation Help ~
& R 0| |a | E00% M = R O |] | E106% M

I IEY | or® =w

Ready 1256x256 [T=131072.000 | Ready 1256x256 [T=131072.000

Figure 89: Lab7_1 Simulation Results

Summary

In this lab exercise you were able to take a filter written in C++, synthesize it with Vivado HLS and
incorporate the design into MATLAB. This process allows you to use any C, C++ or SystemC design and
create a custom block for use in your designs.

This exercise showed you how to import the RTL design generated by Vivado HLS and use the design
inside MATLAB.

Solutions to this lab can be found in the following location:

C:/SysGen Tutorial/Lab7/solution

Model-Based DSP Design Using System Generator N Send Feedback 96
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/_l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=96

& XILINX

ALL PROGRAMMABLE.

Lab 8: Using AXI Interfaces and IP Integrator

Introduction

In this lab, you will learn how AXI interfaces are implemented using System Generator. You will save the
design in IP catalog format and use the resulting IP in the Vivado IP Integrator environment. Then you
will see how IP Integrator enhances your productively by supplying connection assistance when you use
AXI interfaces.

Objectives
After completing this lab, you will be able to:

e Implement AXI interfaces in your designs.
e Add your design as IP in the Vivado IP Catalog.

e Connect your design in IP Integrator.

Procedure

This exercise has four primary parts.
e InStep 1, you will review how AXI interfaces are implemented using System Generator.
e In Step 2, you will create a Vivado project for your System Generator IP.
e In Step 3, you will create a design in IP Integrator using the System Generator IP.

e In Step 4, you will implement the design and generate an FPGA bitstream (the file used to
program the FPGA).

Model-Based DSP Design Using System Generator N Send Feedback 97
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=97

X X”‘INX Lab 8: Using AXI Interfaces and IP Integrator

Step 1: Review the AXI Interfaces

In this step you review how AXI interfaces are defined and created.

1. Invoke System Generator and use the Current Folder browser to change the directory to
C:\SysGen Tutoriall\Lab8.

2. Type open Lab8 1.slx inthe Command Window.

This opens the design shown in the following figure.

e
*| Out treecy
§_awis_source_tready Ta Workspace?
cdouble Bool
in_tdata
wm:s@prgcc:! Bodl P e 0
= block_data_|
g = el Bool N
anta] Bool UFix_ 32 in_tvalid ool — DES_out_data dout_tlast Out tlast
“ n ali ekt start m_awis_dout Hast EyTr—
From 5_axis_source_tvalid Boal N
Bool UFix 52 0 =
Workspace UFix 32 tdsta tlast in_tlast out_tlast DES_out_last dout_tdata > Out DES_output
Bool s 3
sy DES receive interlace block m_axis_dout ldata To Warkspacel
coublo Boo ool it
AXIFIFO DES_out_vald dout_tvalid » Out CES_outpen_valid
From s_ads_source tlast m_axs_dout_tvalid T Woranenet
Workspace2 DES transmil interface black
Data In
booloan I —] D
r >
L 7
o b decrypt tart et
G ﬁn ible. Boal m DES_parity_erm
in
| party_erm R —
decrypt ready — 0 Workspace:
Constantd reset y
erat
. uints2 UFix 52 0 rest
.—5—0 j }—|
Bool
Constant Key[63:32] hi UFix_64_0 Parity Error

DEScore

Figure 90: Lab8 1 Design

This design uses a number of AXI interfaces. You will review these shortly.

e Using AXI interfaces allows a design exported to the Vivado IP Catalog to be efficiently integrated
into a larger system using IP Integrator.

e Itis not a requirement for designs exported to the IP Catalog to use AXI interfaces.
This design uses the following AXI interfaces:

e An AXI4-Stream interface is used for ports s _axis source *. All Gateway In and Out signals are
prefixed with the same name (s_axis source), ensuring they are grouped into the same
interface. The suffixes for all ports are valid AXI4-Stream interface signal names (tready, tvalid,
tlast and tdata).

e Similarly, an AXI4-Stream interface is used for portsm axis dout *.

e An AXI4-Lite interface is used for the remaining ports. You can confirm this using the following
steps:

3. Double-click Gateway In instance decrypt (or any of reset, Keys[63:32], Keys[31:0], or parity_err).

Model-Based DSP Design Using System Generator N Send Feedback 98
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=98

X X”‘INX Lab 8: Using AXI Interfaces and IP Integrator

4. 1In the Properties Editor select the Implementation tab.
5. Confirm the Interface is specified as AXI4-Lite in the Interface options.
6. Click OK to exit the Properties Editor.

Details on simulating the design are provided in the canvas notes. For this exercise, you will
concentrate on exporting the design to the Vivado IP catalog and use the IP in an existing design.

Step 2: Create a Vivado Project using System Generator IP

In this step you create a Vivado project which you will use to create your hardware design.

Double-click the System Generator token to open the Properties Editor.
In the Properties Editor, make sure IP Catalog is selected for the Compilation type.
Click Generate to generate a design in IP Catalog format.

Click OK to dismiss the Compilation status dialog box.

A

Click OK to dismiss the System Generator token.

The design has been written in IP Catalog format to the directory . /sys gen ip. You will now
import this IP into the Vivado IP Catalog and use the IP in an existing example project.

6. Open the Vivado IDE using Start > All Programs > Xilinx Design Tools > Vivado 2016.3 >
Vivado 2016.3.

7. Click Create New Project.
8. Click Next.

9. Specify the project location as C: /SysGen Tutorial/Lab8/IPI Project.

O TIP: You will have to manually type /TPI Project in the Project location box to
create the IPI_Project directory.

Model-Based DSP Design Using System Generator N Send Feedback 99
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=99

X X”‘INX Lab 8: Using AXI Interfaces and IP Integrator

¢ New Project @

Project Name
Enter a name for your project and specify a directory where the project data files will be stored. '

Eroject name: | project_1
Project location: | C:/SysGen_Tutorial/Lab8/IPT_Project \:l
v'| Create project subdirectory

Project will be created at: C:/SysGen_Tutorial/Lab8/IPL_Project/project_1

< Back ” Next = Finish Cancel

Figure 91: Vivado IPI Project

10. Click Next.
11. Select both RTL Project and Do not specify sources at this time and click Next.
12. Select Boards and ZYNQ-7 ZC702 Evaluation Board as shown in the next figure.

Model-Based DSP Design Using System Generator N Send Feedback 100
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=100

& X”‘INX Lab 8: Using AXI Interfaces and IP Integrator

¢ New Project @
Default Part
Choose a default Xilinx part or board for your project. This can be changed later. ‘

Select: & Parts |@ Boards
4 Filter/ Preview

Vendor: All -
Display Name: | All -
Board Rev: Latest -
Reset All Filters
Search: -

i "] " Block
Display Name Vendor Board Rev Part I/O Pin Count File Version RAMS
@ ZedBoard Zyng Evaluation and Development Kit em.avnet.com d @ xc7z020clg484-1 484 1.3 140
@ Artix-7 AC701 Evaluation Platform xilinx.com 1.1 @ xc7a200tfbg676-2 676 1.3 365
@ Kintex-7 KC705 Evaluation Platform xilinx.com 1.1 @ xc7k325tffgo00-2 900 1.3 445
E Kintex-UltraScale KCU105 Evaluation Platform xilinx.com 1.0 @ xckun40-fivall56-2-e 1,156 1.1 600
E Virtex-7 VC707 Evaluation Platform xilinx.com 1.1 @ xcvx485tffgl761-2 1,761 1.3 1030
E Virtex-7 VC709 Evaluation Platform xilinx.com 1.0 @ xcIvx600tffgl761-2 1,761 1.8 1470
E Virtex-UltraScale VCU108 Evaluation Platform xilinx.com 1.0 @ xovu095-ffva2104-2-e 2,104 1.1 1728
@ Vvirtex-UltraScale VCU110 Evaluation Platform xilinx.com 1.0 @ xovul190-flge2104-2-e 2,104 1.1 3780
¢ ZYNQ-7 ZC702 Evaluation Board 4
@ ZynQ-7 ZC706 Evaluation Board xilinx.com 1.1 @ xc7z045ffgo00-2 900 1.3 545
1| (1] | §

< Back ” Next = Einish

Figure 92: Target Device

13. Click Next.
14. Click Finish.

You have now created a Vivado project based on the ZC702 evaluation board.

Step 3: Create a Design in IP Integrator (IPI)

In this step you will create a design using the System Generator IP.

1. Click Create Block Design in the Flow Navigator pane.

Model-Based DSP Design Using System Generator N Send Feedback 101
UG948 (v2016.4) November 30, 2016 www.xilinx.com I—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=101

& XILINX

ALL PROGRAMMABLE.

Lab 8: Using AXI Interfaces and IP Integrator

File Edit Flow Tools Window Layout View Help
AR o BB X P P % & KB |2 pefault Layout

Flow Mavigator

Oy g
b |

4 Project Manager
ﬁ Project Settings
(" Add Sources

« Project Manager - project_1

Sources

A== e R
-+ Design Sources

[+= Constraints

=17 Simulation Sources

i/ Language Templates “Esim_1
1F 1P catalog
4 IP Integrator
fﬁ Create Block Design
3 Hierarchw | |ihraries | Comnile QOrder
;_ OpEn BT e reate Block Design
@ Generate Create and add an [P subsystem to the project.

4 Simulation
#% simulation Settings

Properties

« =[x

Figure 93: Open Block Design

2. In the Create Block Design dialog box, click OK to accept the default name.

You will first create an IP repository for the System Generator IP and add the IP to the repository.

3. Click the IP Setting button as shown below.

This design is empty. Press the 4 button to add IP

Z= Diagram X
#] i design_1
o
o
[
Ly
e,
=
iF
i,
3
¥
o)
.| IP Settings
~| Settings for IP Catalog, IP Generation, and IP Packager.

Figure 94: Open IP Settings

Model-Based DSP Design Using System Generator

UG948 (v2016.4) November 30, 2016

www.xilinx.com

| Send Feedback I 102

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=102

& X”‘INX Lab 8: Using AXI Interfaces and IP Integrator

4. In the Repository Manager tab, click the Add button (+) to add a repository.
5. Navigate to C:\SysGen Tutorial\Lab8\sys gen ip\ip.

6. With folder ip selected, click Select to create the new repository as shown below.

¢ 1P Repositories @
Recent: (O C:/SysGen_Tutorial/Lab8/sys_gen_ip/ip T OER, WM EXDDIZI G
IO C:\ SysGen_Tutorial\Lab8\sys_gen_iphip
[l | SysGen_Tutorial -
| Labl
- Lab2
| Lab3
| Lab4
[| Labs L
[| Lab6 3
| Lab7? i
=-| Lab8
F | IPL Project
ip_repo
[| solution
B | starting_point
B Sys_gen_ip
B X
=Ll
. - [constrs <
- L driver =]
Select H Cancel

Figure 95: IP Repository ip

7. Click OK to exit the Add Repository dialog box.

8. Click OK to exit the Repository Manager.

9. Click the Add IP button in the center of the canvas.

10. Type zyng in the Search dialog box.

11. Double-click ZYNQ7 Processing System to add the CPU.

Model-Based DSP Design Using System Generator N Send Feedback 103
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=103

& XILINX

Lab 8: Using AXI Interfaces and IP Integrator
&= Diagram X [I E
| A design_1
O
&

&
[zyng| (2 matches)
I:i -
Ly
e
= —hpty. Press the £ button to add IP
— ENTER to select, ESC to cancel, Ctrl+Q for IP details
¥
L
B
&
B
@
el
Figure 96: Adding the Zynq Processor
12. Click Run Block Automation as shown in the following figure.
Z= Diagram X | B Address Editor x T

#] &, design_1

& (@ Designer Assistance available. Run Block Automation

Qg -
&l

Figure 97: Block Automation

13. Leave Apply Board Preset selected and click OK. This will ensure the design is automatically
configured to operate on the ZC702 evaluation board.

14. Right-click anywhere in the block diagram and select Add IP.

Model-Based DSP Design Using System Generator N Send Feedback 104
UG948 (v2016.4) November 30, 2016 www.xilinx.com I—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=104

& XILINX

Lab 8: Using AXI Interfaces and IP Integrator
Z= Diagram X | Address Editor x [E
*[| & design_1
a: ,
< processing_system?7_0
E“ PTP_ETHERNET 0= |||
DDR ||
it Cirl+E FIXED_104¢ ||
i Delete USBIND_0+- || 5DR
Q - M_AXI_GPO<5 |
Ctrl+C il o
T —_ NO . TTCO_WAVED_OUT FIXED_IO
=) TTCO_WAVEL_OUT =
A, Search... Ctrl+F

& R O TTCO_WAVEZ_OUT =

- & Curl+A FCLK_CLKD

" £ Add IP... Ctrl+1 FCLK_RESETO_N jm=

3 & IP Settings...

Ocecc e Suete

{g ¥ validate Design F6 ocessing system
@ Create Hierarchy...
@f Create Comment i
1 Create Port... Ctrl+K 3

Figure 98: Add IP to the IP Integrator Diagram

15. Type 1ab8 in the Search dialog box.
16. Double-click 1ab8 1 to add the IP to the design.

You will now connect the IP to the rest of the design. Vivado IP Integrator provides automated
assistance when the design uses AXI interfaces.

17. Click Run Connection Automation (at the top of the design canvas).

18. Click OK to accept the default options (1ab8 1 0/lab8 1 s axi to
processing system7 0/M AXI GPO)and connect the AXI4-Lite interface to the Zyng 7000
IP SoC.

19. Double-click the ZYNQ7 Processing System to customize the IP.
20. Click the PS-PL Configuration as shown in the figure below.
21. Expand the HP Slave AXI Interface and Select the S AXI HPO interface.

Model-Based DSP Design Using System Generator N Send Feedback 105
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=105

& XILINX

Lab 8: Using AXI Interfaces and IP Integrator
1F Re-customize IP \EI
ZYNQ7 Processing System (5.5) ‘

! Documentation 45 Presets [IP Location #; Import XPS Settings

Page Mavigator “ || PS-PL Configuration Summary Report
Zynq Block Design
¥ g + Search:
PS-PL Configuration A
<, Name Select Description
Peripheral /O Pins % . General
MIO Configuration -A){I Mon Secure Enablement 0 = Enable AXI Non Secure Transaction
[+ GP Slave AXI Interface
Clock Configuration = HP Slave AXI Interface
B S AXIHPO interface Enables AXT high performance slave interface 0
DDR Configuration
S AXIHPL interface [l Enables AXI high performance slave interface 1
SMC Timing Calculation S AXI HP2 interface O Enables AXI high performance slave interface 2
Interrupts S AXI HF3 interface |:| Enables AXI high performance slave interface 3
[+ ACP Slave AXI Interface
[DMA Controller
[+-PS-PL Cross Trigger interface O Enables PL cross trigger signals to PS and vice-versa

oK] ’ Cancel

Figure 99: Customize the Zynq Processing System

22. Click OK to add this port to the Zynq Processing System.

23. On the System Generator IP lab8_1 block, click the AXI4-Stream input interface port
s_axis_ source and drag the mouse. Possible valid connections are shown with green check
marks as the pencil cursor approaches them. Drag the mouse to the S_AXI_HPO port on the
Zyng Processing System to complete the connection.

Model-Based DSP Design Using System Generator N Send Feedback 106
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=106

& X”‘INX Lab 8: Using AXI Interfaces and IP Integrator

M
*

Z= Diagram X | B Address Editor x -
3] & design_1 »

MNew AXI DMA (High/Medium frequency transfer)|

‘! > ﬁ
: ZYNO ['Fi - _:'%"z" =ysiemT 0 ad_periph =4
; - L |4 Bl
? Connect from 's_axis_source' interface D%D
R to 'S_AXI_HPQ' interface = —eln

LR IS gBHAOOTZERR

~

il 3

Figure 100: Connecting the AXI4-Stream Interface

24. Click OK in the Make Connection window.

25. Finally, click Run Connection Automation to connect the AXI4-Lite interface on the AXI DMA
to the processor.

26. Click OK to accept the default.

27. Use the Validate Design toolbar button to confirm the design has no errors.

File Edit Flow Tools Window Layout View Help
AR R oo Eh X2 P S XKL E | XS Dpefault Layout ~ ek D

Flows Navigator Validate Design (F6)
QD= Validate and display errors and critical warnings in this design. | piay
2| A D |E) g 30 s d

4 Proiect Manaaer [l = _ = =

Figure 101: Validate the IPI Design

28. Click OK to close the Validate Design message.

The design from System Generator has now been successfully incorporated into an IP Integrator design.
The IP in the repository may be used within any Vivado project, by simply adding the repository to the
project.

You will now process the design through to bitstream.

Model-Based DSP Design Using System Generator N Send Feedback 107
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=107

X X”‘INX Lab 8: Using AXI Interfaces and IP Integrator

Step 4: Implement the Design
In this step you will implement the IPI design and generate a bitsteam.

1. Return to the Project Manager view by clicking Project Manager in the Flow Navigator.

2. In the Sources browser in the main workspace pane, a Block Diagram object called design 1 is at
the top of the Design Sources tree view.

3. Right-click this object and select Generate Output Products.

Block Design - design_1

Tu
b

Sources - 0O
7 5 pa % =k | B EI

Z= Diagram x [E

L= Ry —] # & design_1 »
—H= Design Sources (1) Qg
'i'",ﬂﬂ.l:-.l desig il g .
1 Constraints &l Source MNode Properties... Ctrl+E
4----_'Simulatinn Sources (1) * Open File Alt+0
= sim_1 (1)

Create HDL Wrapper...
View Instantiation Template
Generate Output Products...
Reset Output Products...

Hierarchy | IP Sources | Librarie

- [_ —

Figure 102: Generate Output Products

4. In the Generate Output Products dialog box, click Generate to start the process of generating the
necessary source files.

5. When the generation completes, right-click the design 1 object again, select Create HDL
Wrapper, and click OK (and let Vivado manage the wrapper) to exit the resulting dialog box.

The top level of the Design Sources tree becomes the design 1 wrapper.v file. The design is now
ready to be synthesized, implemented, and to have an FPGA programming bitstream generated.

6. In the Flow Navigator, click Generate Bitstream to initiate the remainder of the flow.
7. Click Yes to generate the synthesis and implementation files.

8. In the dialog that appears after bitstream generation has completed, select Open Implemented
Design and click OK.

9. Exit the Vivado IDE.

The next tutorial: Lab 9: Using a System Generator Design with a Zyng-7000 AP SoC, shows how this
design may be further processed using the Vivado IDE to implement this design with software on a
Xilinx ZC702 evaluation board.

Model-Based DSP Design Using System Generator N Send Feedback 108
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=108

X X”‘INX Lab 8: Using AXI Interfaces and IP Integrator

Summary

In this lab, you learned how AXI interfaces are added to a System Generator design and how a System
Generator design is saved in IP Catalog format, incorporated into the Vivado IP Catalog, and used in a
larger design. You also saw how IP Integrator can substantially increase productivity with connection
automation and hints when AXI interfaces are used in your design.

The following solutions directory contains the final System Generator (*.slx) files for this lab. The
solutions directory does not contain the IP output from System Generator or the files and directories
generated when Vivado is executed.

C:/SysGen Tutorial/Lab8/solution

Model-Based DSP Design Using System Generator N Send Feedback 109
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=109

& XILINX

ALL PROGRAMMABLE.

Lab 9: Using a System Generator Design with a
Zynq-7000 AP SoC

Introduction

In this lab, you will learn how to export your Vivado design with System Generator IP to a software
environment and use driver files created by System Generator to quickly implement your project on a
Xilinx evaluation board, running hardware with software in the same design.

Objectives

After completing this lab, you will be able to:

e Understand how to export your Vivado design with System Generator IP to a software
environment (SDK).

e Understand how System Generator automatically creates software driver files for AX14-Lite
interfaces.

e Understand how to integrate the System Generator driver files into your software application.

Procedure

This exercise has two primary parts.
e In Step 1, you will review the AXI4-Lite interface and associated C drivers.

e In Step 2, you will export your Vivado design to a software environment and run it on a board.

Model-Based DSP Design Using System Generator N Send Feedback 110
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=110

& XILINX

ALL PROGRAMMABLE.

Lab 9: Using a System Generator Design with a Zyng-7000 AP SoC

Step 1: Review the AXI4-Lite Interface Drivers

In this step you review how AXI4-Lite interface drivers are provided when a design with an AXI4-Lite

interface is saved.

This exercise uses the same design as Lab 8: Using AXI Interfaces and IP Integrator.

1. Invoke System Generator and use the Current Folder browser to change the directory to:

C:\SysGen Tutorial\Lab®.

2. At the command prompt, type open Lab9 1.slx.

This opens the design shown in the following figure.

1 Wit

out treecly

5_axis_saurce_tready ey —

DES_out_last dout_taata

DES_out_vald dout_tvalid

Boal N e
A_tlast tlasst

Out

m_axis_oout_tlast To Workspaces

UFix 32 0 1 nt32

ui
Out CES_output

m_andis_cout_tdata To Workapacel

Bool 1 Wit

Out CES_output_vald

m_axis_doul_tvalid

Ta Workspaced

DES transmil interface black

decrypt roady

Parity Error

couble
From
‘Workspaced . =
it Bool
AM In tvalid tdadla
From s_axis_source_tvalid
Workspace UFix 32 tcdata tlast
traady
double
From s_anis_source_llast
Workspace?
boolean ’—‘BW\
< *| in
~ ; decrypt
G Fousie %
*|in
Gonstantd reset
uink2 UFix_32_0
- : }_|
Constant Keyl63:32] Ll UFix 610
uint32 UFix_33
- n b
fan

Keyiat1:0]

DEScore

Figure 103: Lab9_1 Design

DES_parity_er

To Workspace2

This design uses a number of AXI interfaces. These interfaces were reviewed in Lab 8 and the review is
repeated here with additional details on the AXI4-Lite register addressing.

e Using AXI interfaces allows a design exported to the Vivado IP Catalog to be efficiently
integrated into a greater system using IP integrator.

e Itis not a requirement for designs exported to the IP Catalog to use AXI interfaces.

The design uses the following AXI interfaces:

e An AXI4-Stream interface is used for ports s _axis source *.All Gateway In and Out signals
are prefixed with same name (s_axis source) ensuring they are grouped into the same
interface. The suffix for all ports are valid AXI4-Stream interface signal names (tvalid, tlast

and tdata).

e An AXI4-Lite interface is used for the remaining ports. You can confirm this by performing the

following steps:

Model-Based DSP Design Using System Generator

UG948 (v2016.4) November 30, 2016

www.xilinx.com

l Send Feedback I 11

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=111

& X”'INX Lab 9: Using a System Generator Design with a Zyng-7000 AP SoC

3. Double-click Gateway In decrypt (or any of reset, Keys[63:32], Keys[31:0], parity err).
4. 1In the Properties Editor select the Implementation tab.
5. Confirm the Interface is specified as AXI4-Lite in the Interface options.

Also note how the address of this port may be automatically assigned (as the current setting of
Auto assign address offset indicates) or the address may be manually specified.

6. Click OK to exit the Properties Editor.

Details on simulating the design are provided in the canvas notes. For this exercise, you will
concentrate on exporting the design to the Vivado IP catalog and use the IP in an existing design.

7. In the System Generator token, select Generate to generate a design in IP Catalog format.
8. Click OK to dismiss the Compilation status dialog box.
9. Click OK to dismiss the System Generator token.

10. In the file system, navigate to the directory
C:\SysGen Tutoriall\Lab9\sys gen ip\ip\drivers\lab9 1 v1 2\src and view the
driver files.

The driver files for the AXI4-Lite interface are automatically created by System Generator when it saves
a design in IP Catalog format.

@Qv| » Computer » OSDisk (C:) » SysGen_Tutorial » Lab9 » sys gen_ip » ip » drivers » lab9_ 1 vl 2 » src

Organize ~ Include in library = Share with ~ Burn New folder
Favorites MName Date modified Type Size

lab9_1.c 4/10/2015 344 PM C Source 2 KB

' Libraries labg_1h 4/10/2015 3:44 PM (/C++ Heade 5 KB
lab9_1_hw.h 4/10/2015 3:44 PM C/C++ Header 1KB

» & Computer lab9_1_linux.c 4/10/2015 3:44 PM C Source 5 KB
lab9_1_sinit.c 4/10/2015 3:44 PM C Source 2 KB

- & Network Makefile 4/10/20153:44 PM File 1KB

Figure 104: AXI4-Lite Driver Files

11. Open file 1ab9 1 hw.h to review which addresses the ports in the AXI4-Lite interface were
automatically assigned.

Model-Based DSP Design Using System Generator N Send Feedback 112
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=112

X X”‘INX Lab 9: Using a System Generator Design with a Zyng-7000 AP SoC

* Thi= header file contains identifiers and driver functions (or

* macros) that can be used to access the device. The user should refer to the
* hardware device specification for more details of the device operation.

wf

fdefine LABS 1 RESET 0x0/**< reset */
fdefine LABS 1 DECRYPT Ox4/**< decryp
fdefine LABY 1 REY 63 32 0Ox8/**<
fdefine LABY 1 KEY 31 0 Oxc/**<

fdefine LZB% 1 PARITY ERR 0Ox10/*

Figure 105: AXI4-Lite Address Assignment

12. Open file 1ab9 1.c to review the C code for the driver functions. These are used to read and write
to the AXI4-Lite registers and can be incorporated into your C program running on the Zyng-7000
CPU. The function to write to the decrypt register is shown in the figure below.

#include "lab% 1.h
¥ifndef _ linux
int lab% 1 CcfgInitialize(lab%_ 1 *InstancePtr, lab% 1 Config *ConfigPtr) |
¥il AssertNonvoid({InstancePtr != NULL);
¥il AssertNonvoid(ConfigPtr != NULL);

InstancePtr->lab% 1 Baselddress = ConfigPtr->lab% 1 BaseRddress;
InstancePtr—->IsReady = 1;

return X3T SUCCESS;
}

fendif
void lab% 1 reset write(lab% 1 “InstancePtr, u32 Data) |
¥il AssertVoid(InstancePtr != NULL);
lab% 1 WriteReg(InstancePtr->lab% 1 BaseRddress, 0, Data);

u32 lab® 1 reset read(lab3 1 *InstancePtr) {

u32 Data;
¥il AssertVoid(InstancePtr != NULL);

Data = labS 1 ReadReg(InstancePtr—->labZ 1 BaseRddress, 0);
return Data;

}

void NELERRENTIS R sakdd(lab? 1 *InstancePtr, u32 Data) {

¥il AssertVoid(InstancePtr != NULL);

lab% 1 WriteReg(InstancePtr—->lab% 1 BaseRddress, 4, Data);

Figure 106: AXI4-Lite Driver Code

Model-Based DSP Design Using System Generator N Send Feedback 113
UG948 (v2016.4) November 30, 2016 www.xilinx.com I—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=113

& X”'INX Lab 9: Using a System Generator Design with a Zyng-7000 AP SoC

The driver files are automatically included when the System Generator design is added to the IP
Catalog. The procedure for adding a System Generator design to the IP Catalog is detailed in Lab 8. In
the next step, you will implement the design

Step 2: Developing Software and Running it on the
ZYNQ-7000 System

In this step you will use a copy of the design which was completed in Lab 8: Using AXI Interfaces and IP
Integrator.
1. Open the Vivado IDE:

e Use Start > All Programs > Xilinx Design Tools > Vivado 2016. 3 > Vivado 2016.3.

In this lab you will use the same design as Lab 8, but this time you will create the design using a Tcl file,
rather than the interactive process used in Lab 8.

2. Using the Tcl console as shown in the following figure:
a. Type cd C:/SysGen Tutorial/Lab9/IPI Project to change to the project directory.

b. Type source lab9 design.tcl to create the RTL design.

Model-Based DSP Design Using System Generator N Send Feedback 114
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=114

& XILINX

This creates the project, creates the IPI design and builds the implementation (RTL synthesis, followed
by place and route). This may take some time to complete (same as the final step of lab8).

ALL PROGRAMMABLE.

File Flow Tools Window Help

Lab 9: Using a System Generator Design with a Zyng-7000 AP SoC

Vl\/ADO‘ Productivity. Multiplied.

Quick Start
&
CreatelNehroject Open Project
Tasks

x%

Manage IF Open Hardware Manager

Information Center

E_.

Open Example Project

&

HKilinx Tcl Store

1

Tcl Console

start_gui
cd C:/5yaGen_Tutorial/Lab%/IPI_Froject/

X i) & = 1k B

4

Iscurce lab8_design.tcl

Figure 107: Lab9 IPI Design

When it completes:

3.
4.
5.

Leave everything as local to the project.

Click OK to export the hardware.

Model-Based DSP Design Using System Generator

UG948 (v2016.4) November 30, 2016

Click Open Implemented Design in the Flow Navigator pane.
From the Vivado File menu select Export > Export Hardware.

In the Export Hardware dialog box make sure the Include Bitstream option is enabled.

www.xilinx.com

| Send Feedback I 115

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=115

£ XILINX

7.

10.

11.
12.
13.

Lab 9: Using a System Generator Design with a Zyng-7000 AP SoC

From the Vivado File menu select Launch SDK.
In the Launch SDK dialog box, leave everything as local to the project.
Click OK to open SDK.

SDK opens. Observe that Sysgen IP 1ab9 1 is listed in the IP blocks present in the design section of
the system.hdf file.

Note: If the Welcome page is open, close it.
From the SDK File menu, select New > Application Project.
Enter the project name Des_Test in the New Project dialog box.
A board support package will also be created as part of this step.
Click Next.
Select the Hello World template.
Click Finish.

You may expand the Des Test bsp container, as shown below, to confirm the AXI4-Lite driver code is
included in the project.

Model-Based DSP Design Using System Generator

. l Send Feedback I 116
UG948 (v2016.4) November 30, 2016 www.xilinx.com

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=116

X X”‘INX Lab 9: Using a System Generator Design with a Zyng-7000 AP SoC

[Project Explorer &2
s 125 Des_Test
4 [Des_Test_bsp
i BSP Documentation
4 (7= ps/_cortexa8_0
(= code
. (2= include
. = lib
4 (= libsrc
> (= axidma_v8_1
. (= canps_v3_0
= coresightps_dcc_ vl 0
cpu_cortexad_v2_1
devcfg_v3_2
dmaps_v2 1
emacps_v3_0
generic_v2_0
gpiops_v3_0
iicps_v3_0
lab9 1 v1 2
4 [src
lg] lab9.1_g.c
. [h] 1ab9_1_hw.h
. |g) 1ab9_1_linux.c
> [g) 1ab9_1_sinit.c
lg] lab9_1.c
> [h] 1ab9_1.h
| & Makefile

TRV TR TR TR TR TR

Figure 108: SDK Project

14. Power up the ZC702 board so you can program the FPGA.

Make sure the board has all the connections to allow you to download the bitstream on the FPGA
device, and make sure switches SW10 and SW16 are set correctly. Refer to the documentation that
accompanies the ZC702 development board.

15. Click XilinxTools > Program FPGA.
The Done LED (DS3) goes on.
16. Select the SDK Terminal tab at the bottom of the workspace.

Model-Based DSP Design Using System Generator N Send Feedback 117
UG948 (v2016.4) November 30, 2016 www.xilinx.com l—\/—l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=117

& X”'INX Lab 9: Using a System Generator Design with a Zyng-7000 AP SoC

17. To set up the terminal in the SDK Terminal tab, click the Connect icon and perform the following:
a. Select Connection Type > Serial.

b. Select the COM port to which the USB UART cable is connected. On Windows, if you are not
sure, open the Device Manager and identify the port with the Silicon Labs driver under Ports
(COM & LPT).

¢. Change the Baud Rate to 115200.
d. Click OK to exit the Terminal Settings dialog box.
e. Check that terminal is connected by message in tab title bar.
18. Right-click application project Des_Test in the Project Explorer pane.
a. Select Run As > Launch on Hardware.
19. Switch to the SDK Terminal tab and confirm that Hello World was received.
20. Expand the container Des_Test and then expand the container src.
21. Double-click the helloworld.c file.

22. Replace the contents of this file with the contents of the file hello world final.c from the lab9
directory.

23. Save the helloworld. c source code.

24. Right-click application project Des_Test in the Explorer pane, and select Run As > Launch on
Hardware.

Note: If a window opens containing the text “debug session already exists”, click OK in that
window.

25. Review the results in the SDK Terminal tab (shown below).

Model-Based DSP Design Using System Generator N Send Feedback 118
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=118

& XILINX

ALL PROGRAMMABLE.

* initislize DES core
*j
Status = lab9 1 Initialize(&DE:_inst, MPAR_LAES 1 @ DEVICE_ID);

if (Status == XST_FAILURE) {
print("DES core initialization FAILECWrWn™);
return -1;
T else {
print{"DES core initialization PASSEDVWrYn™);
¥

f*

* Initiazlize the OM& Driver

*f

fxibmalfgPtr = MAxiCma LoockupConfig(MPAR AMI_ DM& DEVICE ID);

Status = XixiDma_CfeInitialize(&PL_ANI_DMA Device, AxiDmaCfgPtr);

if (Status = NST_FAILURE) {
WixiDma_IntrOisable{&PL_AXI_DMA_Device, XAXIDMA IRQ_ALL_MASK, XAXIDMA DEVICE_TC_DMA);
WbxiDma_IntrDisable{&PL ANT DMA Device, MANIDMA IRQ ALL MASK, XAKTDMA DMA_TO DEVICE);

£ execute test(s)
for (1 = @; i « 1@e; i++) {
run_DES_test(&0E5_inst, APL_ANI_DMA Device);

¥
¥
print("DES core - example all doneirin®™);
return 2;
T
#endif

Fl

[‘_ Prablemns | ¥ Tasks | Bl Console | £ Properties | &8 Terrminal 1 £2

Serialt (COMA, 115200, 8, 1, Mone, Mone - COMMECTELD) - Encoding: 50-3359-1)

This is & secret - 54 68 69 73 20 A2 73 2@ 6l 2@ 73 65 63 72 65 74
message that mu - 2@ &6d 65 73 ¥3 61 67 65 2@ 74 &8 61 74 2@ Ad TS
=t be hidden, no - 73 74 20 62 65 2@ 68 69 &1 &1 65 Be 2c 2@ Ge &f
matter what. Wa - 20 &d &1 74 24 &5 72 2@ 77 68 &1 74 2e 2@ 57 &1
it - what? - 69 74 20 2d 20 FF 68 61 ¥4 3T 2@ 20 20 2@ 20 2@

Running DEs accelerator tests...

DE: key = @x28574853815458580

CES plain text input:

This is a secret - 54 68 63 73 20 &% 73 28 61 28 73 65 63 72 65 74
message that mu - 28 &d 65 73 73 61 67 65 2@ 74 68 61 74 2@ 6d 75
st be hidden, no - 73 74 2@ 62 65 2@ 68 62 &4 &4 65 Ge Zc 2@ Ge &
matter what. Wa - 20 &6d 61 74 74 65 72 2@ FF 68 61 A4 2e 2@ 57 &1
it - what? - 62 74 20 2d 20 77 68 61 74 3T 2@ 20 2@ Z@ Zo 2@

AHL DMA Status = lo@@loee
AT DMA Status = 10021882
DES cipher tesxt output:

Jheg.0.. - B8 d7 BS @e a3 59 65 46 ec S5c el 67 91 4f a4 dd
VI¥e.u.f - 62 82 4d 8 20 Fo dl T5 2e Fa 59 da 93 d2 @7 Fb
...... $. - 3 74 15 1le 35 b5 52 92 12 c6 11 db d5 @d 24 oc

LMTEL" - le ed da Sa 52 dF 32 61 e@ 2b da Se &2 35 84 22

ce_Wyou®0 - dB of B9 62 5d 6 56 @5 af 5T @2 ¥9 b9 a2 Za 16

CE: deciphered output:

This is & secret - 54 68 63 73 20 69 73 20 61 2@ 73 65 63 72 65 74
message that mu - 28 6d 65 73 73 61 67 65 2@ 74 &8 61 T4 2@ Ad TS
st be hidden, no - 73 74 20 62 65 2@ 68 69 B4 A4 B5 Fe 2c 2@ Ge &F
matter what. Wa - 28 &d 61 74 74 &5 72 20 77 68 61 74 2Ze 2@ 57 61
it - what? - 69 74 20 2d 20 FF 68 61 74 3 20 20 2@ 20 20 20

CE: core - example all done

Model-Based DSP Design Using System Generator

. l Send Feedback I 119
UG948 (v2016.4) November 30, 2016 www.xilinx.com

Figure 109: Terminal Display

Lab 9: Using a System Generator Design with a Zyng-7000 AP SoC

o B 5 BE|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=119

& X”'INX Lab 9: Using a System Generator Design with a Zyng-7000 AP SoC

Summary

In this lab, you learned how to export your Vivado design containing System Generator IP to the SDK
software environment and integrate the driver files automatically created by System Generator to run
the application on the ZC702 board. You then viewed the result of the acceleration.

The following solutions directory contains the final System Generator (*.slx) files for this lab. The
solutions directory does not contain the IP output from System Generator, the files and directories
generated when Vivado is executed, or the SDK workspace.

C:/SysGen Tutorial/Lab9/solution

Model-Based DSP Design Using System Generator N Send Feedback 120
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=120

& XILINX

ALL PROGRAMMABLE.

Legal Notices

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort,
including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in
connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss
or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party)
even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no
obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not
reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and
conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty
and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:
http://www.xilinx.com/warranty.htm#critapps.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS,
THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A
SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING
LIMITATIONS ON PRODUCT LIABILITY.

©Copyright 2013-2016 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, UltraScale and other designated brands
included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective
owners.

Model-Based DSP Design Using System Generator N Send Feedback 121
UG948 (v2016.4) November 30, 2016 www.xilinx.com [—\/—]

http://www.xilinx.com/
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm%23critapps
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=UG948&Title=Vivado%20Design%20Suite%20Tutorial%3A%20Model-Based%20DSP%20Design%20Using%20System%20Generator&releaseVersion=2016.4&docPage=121

	Vivado Design Suite Tutorial: Model-Based DSP Design Using System Generator
	Revision History
	Table of Contents
	System Generator for DSP Overview
	Introduction
	Software Requirements
	Configuring MATLAB to the Vivado® Design Suite
	Locating and Preparing the Tutorial Design Files

	Lab 1: Introduction to System Generator
	Introduction
	Objectives
	Procedure

	Step 1: Creating a Design in an FPGA
	Configure the System Generator Blocks
	Create the Hardware and Review the Results

	Step 2: Creating an Optimized Design in an FPGA
	Step 3: Creating a Design Using Discrete Resources
	Summary

	Lab 2: Working with Data Types
	Introduction
	Objectives
	Procedure

	Step 1: Designing with Floating-Point Data Types
	Step 2: Designing with Fixed-Point Data Types
	Summary

	Lab 3: Working with Multi-Rate Systems
	Introduction
	Objectives
	Procedure

	Step 1: Creating Clock Domain Hierarchies
	Step 2: Creating Asynchronous Channels
	Step 3: Specifying Clock Domains
	Summary

	Lab 4: Working with Workspace Variables
	Introduction
	Objectives
	Procedure

	Step 1: Using Workspace Variables
	Summary

	Lab 5: Modeling Control with M-Code
	Introduction
	Objectives
	Procedure

	Step 1: Designing Padding Logic
	Summary

	Lab 6: Modeling Blocks with HDL
	Introduction
	Objectives

	Step 1: Import RTL as a Black Box
	Summary

	Lab 7: Modeling Blocks with C Code
	Introduction
	Objectives
	Procedure

	Step 1: Creating a System Generator Package from Vivado HLS
	Step 2: Including a Vivado HLS Package in a System Generator Design
	Summary

	Lab 8: Using AXI Interfaces and IP Integrator
	Introduction
	Objectives
	Procedure

	Step 1: Review the AXI Interfaces
	Step 2: Create a Vivado Project using System Generator IP
	Step 3: Create a Design in IP Integrator (IPI)
	Step 4: Implement the Design
	Summary

	Lab 9: Using a System Generator Design with a Zynq-7000 AP SoC
	Introduction
	Objectives
	Procedure

	Step 1: Review the AXI4-Lite Interface Drivers
	Step 2: Developing Software and Running it on the ZYNQ-7000 System
	Summary

	Legal Notices
	Please Read: Important Legal Notices

